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Introduction

Aside from the general perturbation theory for frames (see [4]) there are many
results concerning the stability of Gabor systems under perturbations such as
distortions of the lattice or the window (see for example [10], [22]).

In this thesis we want to consider another type of stability: For g a Gaussian and
lattice parameters a, b > 0 consider the system {gm,n}m,n∈Z where

gm,n(t) = e2πinb·t gαm,n(t−ma)

and gαm,n is obtained from rotating g by an angle αm,n in the time-frequency
plane. This rotation is realized by applying a fractional power of the Fourier
transform, also simply known as a fractional Fourier transform (FrFT). Geomet-
rically one can think of the system {gm,n} as a collection of rotated ellipses, which
are positioned along the lattice aZ×bZ in the time-frequency plane. We will refer
to such systems as rotated Gabor-like systems. In general they are not Gabor
systems and we want to investigate the in�uence of the rotation parameters on
the frame bounds.

In chapter 1 we brie�y recall many of the basic concepts from Fourier Analysis in-
cluding the Fourier transform (FT), the short-time Fourier transform (STFT) and
Hermite functions, which are important when dealing with the FrFT. Chapters
2 and 3 contain the fundamental notions from frame theory and Gabor analysis
that we are going to use.

Chapter 4 is dedicated to the fractional Fourier transform and especially its im-
plementation on a computer. After discussing the de�nition and basic properties
we compare two algorithms for computing discrete Hermite functions, which we
then use to construct discrete analogs of the FrFT. One of these algorithms,
which was developed by Feichtinger, focuses on the rotation aspect mentioned
above and we will use it to simulate the systems {gm,n} numerically.

In chapter 5 we describe the results of such simulations for various choices of the
αm,n. We start with the case αm,n = α ∀m,n which yields a Gabor system. We
will see that in this case the behavior of the frame bounds is easily understood,
yet not unsurprising. Then we will look at some special choices of the rotation
parameters as well as the randomized case.

Chapter 6 �nally contains results concerning the stability of the frame bounds for
the systems at hand. We show that if the width of the Gaussian g is su�ciently
close to 1, any choice of the αm,n will yield a frame, as long as the lattice allows it.
Furthermore if {gm,n} is a frame then a small, uniformly bounded perturbation
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of the αm,n does not change this fact.

The numerous experiments throughout the paper have been performed in MAT-

LAB 7.9 with heavy use of the tools developed at NuHAG, which are available

from http://nuhag.eu. There one can also �nd a color version of this thesis.
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1 Fourier Analysis

In this section we give a brief overview over the concepts from Fourier Analysis

that will be used later on and cover the basic de�nitions. For more detailed

information including proofs we refer to [11], [12] and [13].

1.1 The Fourier transform

De�nition 1.1. Let f ∈ L1(Rd), we de�ne the Fourier transform of f by

Ff(ω) = f̂(ω) :=

∫
Rd
f(x)e−2πix·ωdx, ω ∈ Rd (1.1)

Theorem 1.1. (Riemann-Lebesgue) The Fourier transform of an L1-function is

uniformly continuous and vanishes at in�nity, i.e.

F : L1(Rd)→ C0(Rd)

Theorem 1.2. (Inversion Formula) Take f ∈ L1(Rd), if f̂ ∈ L1(Rd) then

f(x) =

∫
Rd
f̂(ω)e2πix·ωdω (1.2)

at all points x where f is continuous.

Theorem 1.3. (Plancherel) For f ∈ L1(Rd) ∩ L2(Rd)

‖f‖2 = ‖f̂‖2

For f ∈ L2(Rd) we can choose fn ∈ L1(Rd) ∩ L2(Rd) s.t ‖f − fn‖2 → 0 (e.g.

fn = f · χ[−n,n]d). Then by Theorem 1.3: ‖f̂m − f̂n‖2 = ‖fm − fn‖2 and we

de�ne f̂ := lim f̂n. It turns out that extends F to a unitary operator on L2(Rd)

(therefore 〈f, g〉 = 〈f̂ , ĝ〉 for f, g ∈ L2 and sometimes we refer to this statement

as Plancherel's theorem). Keep in mind though, that the integral (1.1) might

not exist for f ∈ L2, but by the above we can still approximate f̂ by integrals,

because

f̂(ω) = lim
n→∞

∫
[−n,n]d

f(x)e−2πix·ωdx, a.e.
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Remark 1.1. The integral kernel in (1.1) consists of the functions x 7→ e2πix·ω, ω ∈
Rd, so-called pure frequencies. For d = 1 they move along the unit circle in the

complex plane with frequency |ω|. So, if we interpret f(t) as a signal varying in

time, f̂(ω) can be seen as its decomposition into frequencies (we often use ω for

'frequency-variables'). This shift of perspective allows for new insights and ways

to manipulate a signal, making the Fourier transform one of the basic and most

important tools for signal processing.

1.2 Basic operators

De�nition 1.2. (Translation and modulation) Let x, ω ∈ Rd

(i) We de�ne the translation operator (or time shift) Tx : L2(Rd)→ L2(Rd) by

Txf(t) := f(t− x).

(ii) The modulation operator Mω : L2(Rd)→ L2(Rd) is de�ned by

Mωf(t) := e2πit·ωf(t).

(Mω is also called frequency shift. This name will be clear in light of The-

orem 1.4(iv).)

Theorem 1.4. For x, ω, x1, x2, ω1, ω2 ∈ Rd and f ∈ L2(Rd)

(i) Tx and Mω are unitary operators on L2(Rd). T−1
x = T ∗x = T−x and M−1

ω =

M∗
ω = M−ω.

(ii) T0 = M0 = Id

(iii) Tx2 ◦ Tx1 = Tx1+x2 and Mω2 ◦Mω1 = Mω1+ω2.

(iv) F ◦ Tx = M−x ◦ F and F ◦Mω = Tω ◦ F

(v) TxMωf = e−2πx·ωMωTxf

Proof. Straightforward.

Note that by Theorem 1.4 (ii), (iii) the mappings (x, f) 7→ Txf and (ω, f) 7→
Mωf de�ne actions of (Rd,+) on L2(Rd). Combining translations and modula-

tions yields time-frequency shifts, the key operators for time-frequency analysis:
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De�nition 1.3. For λ = (x, ω) ∈ Rd × R̂d = R2d we de�ne the time-frequency

shift π(λ) : L2(Rd)→ L2(Rd)

π(λ) := Mω ◦ Tx.

As a composition of unitary operators π(λ) is unitary and thus

π(λ)−1 = π(λ)∗ = T ∗xM
∗
ω = T−xM−ω = e−2πix·ωM−ωT−x = e−2πix·ωπ(−λ)

and more general

π(λ2) ◦ π(λ1) = e−2πix2ω1π(λ1 + λ2) (1.3)

De�nition 1.4. (Dilation) For A ∈ GL(d,R) we de�ne the dilation operator

DA : L2(Rd)→ L2(Rd) by

DAf(t) := | detA|−1/2f(A−1t) (1.4)

We will mostly consider the case d = 1, A = s > 0, then (1.4) becomes

Dsf(t) = |s|−1/2f

(
t

s

)

Theorem 1.5. For A,B ∈ GL(d,R), x, ω ∈ Rd:

(i) DA is unitary on L2(Rd).

(ii) DId = Id.

(iii) DB ◦DA = DBA.

(iv) F ◦DA = DA−T ◦ F .

(v) Tx ◦DA = DA ◦ TA−1x.

(vi) Mω ◦DA = DA ◦MATω.

Proof. Straightforward.

De�nition 1.5. (Involution, re�ection) Given a function f : Rd → C we de�ne

the involution operator ∗ by

f ∗(x) := f(−x)

and the re�ection operator I by

If(x) := f(−x)
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One easily checks

Ff ∗ = Ff and FIf = IFf

De�nition 1.6. (Convolution) For two suitable functions f, g : Rd → C the

function de�ned by

(f ∗ g)(x) :=

∫
Rd
f(y)g(t− y)dy, x ∈ Rd

is called the convolution of f and g.

Theorem 1.6. (Young's Inequality) For 1 ≤ p, q, r ≤ ∞, 1
p

+ 1
q

= 1 + 1
r
and

f ∈ Lp(Rd), g ∈ Lq(Rd)

‖f ∗ g‖r ≤ ‖f‖p‖g‖q <∞

Note that Young's inequality implies that (L1(Rd), ∗) is a Banach algebra. Of

fundamental importance is the following relation between the Fourier transform

and convolutions.

Theorem 1.7. (Convolution Theorem) For f, g ∈ L1(Rd)

F(f ∗ g) = (Ff) · (Fg)

or: F : (L1(Rd), ∗)→ (C0(Rd), ·) is a homomorphism of Banach algebras.

Remark 1.2. The Convolution Theorem is also true for f, g ∈ L2(Rd) in which

case we have f ∗ g ∈ L∞ ∩ C0 (see [11], p.203). Furthermore the convolution (as

well as the FT) can be extended to certain distributions, see [11] for a thorough

treatment. We mention only one case, which we will need in chapter 6: Given a

measure µ ∈M(R) = C ′0(R) and f ∈ C0(R) we de�ne

(µ ∗ f)(x) := µ(TxIf), x ∈ R

and it turns out that (µ ∗ f) ∈ C0(R).

A function t 7→ eiπqt
2
is called a chirp. We can think of it as the line ω = −qx

in the TF-plane. We de�ne two operators based on chirps which we will encounter

when we dealing with the fractional Fourier transform.
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De�nition 1.7. (Chirp multiplication and chirp convolution) For q, c ∈ R we

de�ne the chirp multiplication Qq : L2(R)→ L2(R) by

(Qqf)(t) := e−iπqt
2

f(t)

and the chirp convolution Cc : L2(R)→ L2(R) by

(Ccf)(t) := e−iπ/4
√

1

c
(f ∗ eiπu2/c)

Theorem 1.8. Qq and Cc are unitary operators on L2(R) and

F ◦ Qq = Cq ◦ F

1.3 The short-time Fourier transform

So while for a suitable signal f all information is contained in its time repre-

sentation f as well as in its frequency representation f̂ , we do not yet have a

representation uniting both aspects. Except for simple special cases we will not

gain much frequency information by looking at f only, since cancellation and

superposition often make it impossible to recognize the presence of speci�c fre-

quencies. On the other hand f̂ provides information about which frequencies are

active in our signal, but not about at which time they occur.

The idea now is to localize f in time at a point x by multiplying with a suitable

window function g centered at x and then perform a Fourier transform, hoping

to obtain information about the frequency content near x. While this idea is

easily distilled into the de�nition of the short-time Fourier transform (or STFT)

there are fundamental obstacles, we refer to them as uncertainty principles, which

limit the quality of the resulting time-frequency picture. [13] contains an excel-

lent introduction to the STFT and we will give a short summary. With minor

exceptions the rest of the chapter is taken from [13] and we also refer to it for

omitted proofs.

De�nition 1.8. (Short-Time Fourier Transform) Given g ∈ L2(Rd) we de�ne

the short-time Fourier transform of f ∈ L2(Rd) with window g by

Vgf(x, ω) := F(f · Txg)(ω) =

∫
Rd
f(t)g(t− x)e−2πit·ωdt (1.5)
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Lemma 1.1. For f, g ∈ L2(Rd) the function Vgf : R2d 7→ R is uniformly contin-

uous and can be written as

Vgf(x, ω) = 〈f,MωTxg〉 (1.6)

The following theorem gives the analog of Plancherel's formula for the STFT:

Theorem 1.9. (Orthogonality Relations for the STFT) For f1, f2, g1, g2 ∈ L2(Rd)

we have that Vgifi ∈ L2(Rd), i = 1, 2 and furthermore

〈Vg1f1, Vg2f2〉L2(R2d) = 〈f1, f2〉〈g1, g2〉 (1.7)

So if ‖g‖2 = 1 the mapping Vg : L2(Rd) 7→ R(Vg) ⊆ L2(R2d) is unitary. Since

〈H,Vgh〉L2(R2d) =

∫∫
R2d

H(x, ω)〈MωTxg, h〉 dxdω (1.8)

the adjoint operator V ∗g is given by F 7→
∫∫

R2d F (x, ω)MωTxg dxdω, where the

integral is interpreted in the weak sense (see [13], p.43). Therefore

f = V ∗g Vgf =

∫∫
R2d

Vgf(x, ω)MωTxg dxdω (1.9)

Remarkably, a much stronger inversion formula for the STFT formula holds:

Theorem 1.10. (Inversion Formula for the STFT) Take g, γ ∈ L2(Rd) with

〈g, γ〉 6= 0, then ∀f ∈ L2(Rd)

f =
1

〈g, γ〉

∫∫
R2d

Vgf(x, ω)MωTxγ dxdω (1.10)

or
1

〈g, γ〉
V ∗γ Vg = Id. (1.11)

Now that we are equipped with the basic facts about the STFT we come back

to the limitations mentioned above. Ideally we would like Vgf(x, ω) to measure

the presence of the frequency ω at time x. Unfortunately this is not possible in a

perfect way because of so-called uncertainty principles which limit the combined

quality of the time and frequency resolution of the STFT. We will only state one

fundamental result in this direction and refer once again to [13] for more detailed

information.
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Theorem 1.11. (Heisenberg-Pauli-Weyl Inequality) For f ∈ L2(R) and a, b ∈ R(∫
R
(x− a)2 |f(x)|2 dx

)1/2(∫
R
(ω − b)2|f̂(ω)|2 dω

)1/2

≥ 1

4π
‖f‖2

2 , (1.12)

with equality i� f is a multiple of TaMbϕc(x), where ϕc(x) = (2/c)d/4e−πx
2/c.

The �rst factor on the left side of (1.12) measures the size of the essential sup-

port of f , while the second term gives the essential bandwidth. Theorem 1.11

basically says that a function can not be well concentrated in both, time and

frequency. If we apply this to our window function g we see that we cannot have

arbitrarily good time- and frequency resolution for the STFT and that increased

time resolution (by a narrow window) implies worse frequency resolution and vice

versa.

We state a few more observations we will need later.

Lemma 1.2.

Vĝf̂(x, ω) = e−2πiyτVgf(−ω, x) (1.13)

Lemma 1.3.

(VgMτTyf)(x, ω) = e2πi(τ−ω)y Vgf(x− y, ω − τ) (1.14)

Proof. An easy computation using the commutation relation for time-frequency

shifts.

Lemma 1.4. Given A ∈ GL(d,R)

VDAgDAf = DÃVgf (1.15)

where Ã =

(
A 0

0 A−T

)
∈ SL(2d,R).

Proof. By Theorem 1.5

VDAgDAf(x, ω) = 〈DAf,MωTxDAg〉
= 〈DAf,DAMATωTA−1xg〉
= 〈f,MATωTA−1xg〉
= Vgf(A−1x,ATω)

and the claim follows since det Ã = detA 1
detA

= 1.

Lemma 1.5. For q ∈ R, f, g ∈ L2(R)

VQqgQqf(x, ω) = eiπqx
2

Vgf(x, ω + qx)

Proof. Straightforward
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1.4 The discrete Fourier transform

When working with digital signals we have to do Fourier analysis on sequences

and vectors. We will give analogs to many of the above concepts for CL which

allow direct implementation on a computer.

De�nition 1.9. For L ∈ N we de�ne the discrete Fourier transform (DFT)

F : CL → CL via

(Ff)k :=
1√
L

L−1∑
n=0

fn e
−2πikn/L, for k = 0, ..., L− 1 (1.16)

where f = (f0, ..., fL−1).

We will also use F to denote the matrix corresponding to the DFT, i.e. (F )m,n =√
1/L e−2πimn/L. It's not di�cult to see that F is unitary and thus

fn =
1√
L

L−1∑
k=0

(Ff)k e
2πikn/L, for n = 0, ..., L− 1 (1.17)

Remark 1.3. The usual de�nition of the discrete Fourier transform is without the

factor 1√
L
, making it non-unitary. For us it is more convenient to work directly

with the normalized version.

We also want to de�ne discrete analogs of translation, modulation and convolu-

tion (see [9], Chapter 8). From now on we do all arithmetic on vector indicies in

ZL.

De�nition 1.10. Given f = (f0, ..., fL−1) ∈ CL, x, ω ∈ Z we de�ne

(Txf)k := fk−x

(Mωf)k := e2πiωk/Lfk

(f ∗ g)k :=
L−1∑
n=0

fngk−n

Theorem 1.12.

(i) FTx = M−xF and FMω = TωF .

(ii) (F (f ∗ g))n = (Ff)n · (Fg)n.
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Remark 1.4. One of the main reason for the importance of Fourier Analysis for

applications is the existence of the fast Fourier transform (FFT), an algorithm im-

plementing the DFT with complexity O(L logL), while a direct implementation

would require O(L2) operations. The FFT can also be used to e�ciently compute

discrete convolutions in the DFT-domain and thus carry out multiplications of

polynomials or very high integers.

1.5 Gaussians

De�nition 1.11. Given c > 0 de�ne the normalized d-dimensional Gaussian of

width c by

ϕc(t) = (2/c)d/4e−πt
2/c

and we often write ϕ for ϕ1. Observe that ϕc = D√c ϕ.

Gaussians are the minimizers of (1.12) and they also behave nicely under the

Fourier transform:

Fϕc = ϕ1/c. (1.18)

and in particular Fϕ = ϕ.This makes g = ϕ a canonical choice for the STFT

window function and it is the most commonly used one.

The STFT of a Gaussian can be computed explicitly:

Lemma 1.6. (STFT of a Gaussian) For x, ω ∈ Rd, a > 0

Vϕϕc(x, ω) = ϕc+1(x)ϕ c+1
c

(ω) e−2πi c
c+1

xω. (1.19)

Proof. A variation of the proof of Lemma 1.5.2 in [13]:

Vϕϕc(x, ω) = 2d/2c−d/4
∫
Rd
e−πt

2/ce−π(t−x)2e−2πit·ωdt

= 2d/2c−d/4
∫
Rd
e
−π((
√

1+1/c t− 1√
1+1/c

x)2+(1− 1
1+1/c

)x2)
e−2πit·ωdt

= 2d/2c−d/4
∫
Rd
e−π

1
c+1

x2 e−π
c+1
c

(t− c
c+1

x)2 e−2πit·ωdt

= ϕc+1(x)(T c
c+1

xϕ c
c+1

)̂ (ω)

= ϕc+1(x)ϕ c+1
c

(ω) e−2πi c
c+1

xω
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Remark 1.5. From Lemma 1.6 it's easy to see that the level-set of |Vϕϕc| at level
L ∈ (0, K], where K := ( 4c

(c+1)2
)d/4 is the solution set of

x2 + cω2 = −(c+ 1)

π
log

L

K
(1.20)

and thus, for d=1, an ellipse in �rst canonical position for c > 1 and second

canonical position for c < 1. For c = 1 we get a circle in the TF-plane.

In Chapter 5 we make heavy use of discrete Gaussians in numerical experiments.

They are obtained by sampling and periodization of the continuous functions (see

[14] for more on this general principle). For signal length L the vector Φc ∈ CL,

de�ned by

Φc(n) := L1/4

∞∑
j=−∞

ϕc(n/
√
L+ j

√
L), n = 0, ..., L− 1. (1.21)

is used instead of ϕc. It behaves nicely under the DFT:

Theorem 1.13.

FΦc = Φ1/c.

Proof. Since the Poisson summation formula holds pointwise for the Schwartz

function ϕc (see [11], p.347) we get

Φc(n) = L1/4

∞∑
j=−∞

ϕc(n/
√
L+ j

√
L)

= L−1/4

∞∑
j=−∞

ϕ̂c(j/
√
L)e2πijn/L

= L−1/4

∞∑
j=−∞

ϕ1/c

(
j/
√
L
)
e2πijn/L.

Because the series converges absolutely we can change the order of summation

and writing j = kL+m we get

Φc(n) = L−1/4

L−1∑
m=0

( ∞∑
k=−∞

ϕ1/c(
kL+m√

L
)

)
e2πinm/L

and thus
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(FΦc)(m) = L−1/4

∞∑
k=−∞

ϕ1/c(m/
√
L+ k

√
L)

= Φ1/c(m)

1.6 The Hermite functions

Since F is unitary and F4 = Id the only possible eigenvalues for F are 1, i,−1,−i
and we cannot expect the corresponding eigenfunctions to be unique. However

there exists are particularly nice set of eigenfunctions of F , called the Hermite

functions (or Hermite-Gaussian functions). They are de�ned via the Hermite

polynomials:

De�nition 1.12. For n ∈ N the n-th Hermite polynomial Hn is de�ned as

Hn(x) := (−1)nex
2/2 d

dxn
e−x

2/2 (1.22)

The Hermite polynomials satisfy an easy recursion ([17]) allowing for fast com-

putation:

H0(x) = 1, H1(x) = 2x, Hn+1(x) = 2xHn(x)− 2nHn−1(x) (1.23)

Now the Hermite functions are just normalized Hermite polynomials multiplied

with a Gaussian weight:

De�nition 1.13. For n ∈ N the n− th Hermite function ψn is de�ned as

ψn(x) :=
21/4

√
2nn!

Hn(
√

2πx) e−πx
2

(1.24)

Theorem 1.14. The Hermite functions satisfy ([17])

(i) {ψn}n∈N is an orthonormal basis for L2(R).

(ii) Fψn = e−inπ/2ψn.

(iii) d2

dx2
ψn + 4π2

(
2n+1

2π
− x2

)
ψn = 0.

(iv) ψn is even if n is even and odd otherwise.

(v) ψ0 = ϕ.
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2 Frames

In modern signal processing it is customary to work within the concept of frames.

Unlike bases they are usually linearly dependent and thus more robust against

noise or data loss. We give a short introduction to the topic, following mainly

[4], which is a perfect introduction to the topic.

2.1 Basic concepts

De�nition 2.1. A sequence (gk)
∞
k=1 of elements of a Hilbert space H is called a

frame for H if there exist constants A,B > 0 s.t.

A ‖f‖2 ≤
∞∑
k=1

|〈f, gk〉|2 ≤ B ‖f‖2, ∀f ∈ H (2.1)

We refer to A and B as upper and lower frame bound. The largest (resp. small-

est) number A (resp. B) satisfying (2.1) is called the optimal lower (upper) frame

bound and denoted by Aopt (Bopt). If Aopt = Bopt we call {gk}∞k=1 a tight frame.

If there exists at least B > 0 satisfying the right hand-side of (2.1) we call {gk}∞k=1

a Bessel sequence.

Remark 2.1. Notice that any an orthonormal basis {ek}∞k=1 for H is a (tight)

frame with bound 1. The system {e1, e1, e2, e3, ...} is a frame with bound 1 and

2, whereas {e2, e3, ...} is only a Bessel sequence. It is clear from a de�nition that

any frame for H is complete in H.

Given a Bessel sequence {gk}∞k=1 we can de�ne the bounded operator

T : l2(N) 7→ H, T c =
∞∑
k=1

ckgk (2.2)

called the pre-frame operator (or synthesis operator). Its adjoint T ∗ is called the

analysis operator and given by

T ∗ : H 7→ l2(N), T ∗f = (〈f, gk〉)∞k=1. (2.3)

A central role is now taken by the frame operator S de�ned by

S : H 7→ H, Sf = TT ∗f =
∞∑
k=1

〈f, gk〉gk (2.4)
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Theorem 2.1. Given a frame {gk}∞k=1 with bounds A,B and frame operator S

we have

(i) S is bounded, invertible, self-adjoint and positive de�nite.

(ii) {S−1gk}∞k=1 is a frame with bounds 1
B
and 1

A
and frame operator S−1. We

call it the canonical dual frame for {gk}∞k=1 and , denote the corresponding

operators by TD and SD.

(iii) {S−1/2gk}∞k=1 is a tight frame with bounds equal to 1, whose frame operator

is the identity. We call it the canonical tight frame for {gk}∞k=1.

Proof. See [4], Lemma 5.1.5. and Theorem 5.3.4..

Theorem 2.2. With the above notation we set hk = S−1gk, then we have for all

f ∈ H
TDT

∗ = Id = TT ∗D (2.5)

or

f =
∞∑
k=1

〈f, hk〉gk and f =
∞∑
k=1

〈f, gk〉hk (2.6)

and both series converge unconditionally in H.

Proof. By Theorem 2.1

f = SS−1f =
∞∑
k=1

〈S−1f, gk〉gk =
∞∑
k=1

〈f, S−1gk〉gk (2.7)

and the second statement in (2.6) follows similarly. The convergence statement

follows from [4], Corollary 3.2.5.

Any frame {hk}∞k=1 satisfying the left side of (2.6) is called a dual frame for

{gk}∞k=1. The canonical dual is special in the sense that among all dual frames

the frame coe�cients obtained from the canonical dual have minimal l2-norm.

Theorem 2.3. For a frame {gk}∞k=1 denote the largest and smallest eigenvalues

of its frame operator S by λmin and λmax. Then the optimal frame bounds are

given by

Aopt = ‖S−1‖−1 = λmin = ‖T †‖2 and Bopt = ‖S‖ = λmax = ‖T‖2 (2.8)
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Proof. Since S is self-adjoint

‖S‖ = sup
‖f‖=1

〈Sf, f〉 = sup
‖f‖=1

∞∑
k=1

〈f, gk〉〈gk, f〉 = sup
‖f‖=1

∞∑
k=1

|〈f, gk〉|2 = Bopt

By Theorem 2.1 the canonical dual frame has frame operator S−1 and optimal

upper bound 1
Aopt

, so by the above argument it follows that ‖S−1‖ = 1
Aopt

. For

the statements concerning T see [4], Proposition 5.4.4.

Remark 2.2. A measure of a frame's quality is it's condition number, given by

the expression
Bopt

Aopt
= ‖S‖

∥∥S−1
∥∥ = cond(S)

For a tight frame (e.g. an orthonormal basis) this is equal to one, and since

cond(SD) = cond(S−1) = cond(S) the canonical dual frame has the same condi-

tion number.

A special class of frames are the so-called Riesz basis, which have many desirable

properties we know from �nite-dimensional basis. We summarize the main facts

from [4]:

De�nition 2.2. A Riesz basis for a Hilbert space H is a family of the from

{Uek}∞k=1 where {ek}∞k=1 is an orthonormal basis for H and U is a bounded bijec-

tive operator from H to H.

Lemma 2.1. For family {fk}∞k=1 the following are equivalent

(i) {fk} is a Riesz basis.

(ii) {fk} is an unconditional basis and satis�es 0 < inf ‖fk‖ ≤ sup ‖fk‖ <∞.

(iii) {fk} is complete and there exist A,B > 0, s.t. for every �nite scalar se-

quence (ck) one has

A
∑
|ck|2 ≤

∥∥∥∑ ckfk

∥∥∥2

≤ B
∑
|ck|2

Theorem 2.4. For a frame {fk}∞k=1 the following are equivalent

(i) {fk} is a Riesz basis.
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(ii) {fk} is minimal.

(iii) {fk} and {S−1fk} are biorthogonal.

(iv) If
∑

k ckfk = 0 for (ck) ∈ l2(N) then ck = 0, ∀k ∈ N.

(v) {fk} is a basis.

We now want get an intuitive idea of the above concepts by looking at a very

simple �nite-dimensional example:

Example 2.1. In Rn the notion of frames reduces to that of �nite generating

systems. For n = 2 we consider the system {gk}3
k=1 given by

g1 = (2, 0)T , g2 = (−1, 0.1)T , g3 = (−2,−0.1)T

and we easily compute

T =

(
2 −1 −2

0 0.1 −0.1

)
, S = TT ∗ =

(
9 0.1

0.1 0.02

)
.

The eigenvalue-decomposition of S is given by

S =

(
−0.9999 0.0111

−0.0111 −0.9999

)
·
(

9.0011 0

0 0.0198

)
·
(
−0.9999 0.0111

−0.0111 −0.9999

)T
and it follows Aopt = 0.0198 and Bopt = 9.0011. We get the canonical dual frame

{hk}3
k=1 from

(h1 |h2 |h3) = S−1T =

(
0.2353 −0.1765 −0.1765

−1.1765 5.8824 −4.117

)
and the canonical tight frame {tk}3

k=1 from

(t1 | t2 | t3) = S−1/2T =

(
0.6683 −0.3419 −0.6606

−0.1546 0.8049 −0.5730

)
In Figure 1 all three systems are displayed as arrows. Let us �rst look at {gk}3

k=1.

The frame bounds indicate a systems of very poor quality and looking at eigen-

vectors of S we see that they tell us about areas of low or high concentration: The

eigenvector corresponding to Bopt points along the x-axis where we have very high

concentration of the gk whereas the eigenvector for Aopt points along the y-axis,

where the frame has very low concentration. This seems to be exactly reversed
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for the dual frame, and it's not surprising:

Assume for an arbitrary frame {fk}∞k=1 for H with dual frame {dk}∞k=1 that there

is f ∈ H, ‖f‖ = 1 s.t. |〈f, fk〉| < ε, ∀k. Then

1 = 〈f, f〉 =
〈
f,
∑
〈f, dk〉fk

〉
≤ ε

∑
|〈f, dk〉|

⇒
∑
|〈f, dk〉| ≥

1

ε

So a dual frame is always highly concentrated in areas where the primal frame

has low concentration.

Returning to our example we also see that the canonical tight frame balances the

primal and dual frame, yielding a uniform distribution across the plane.

Figure 1: From left to right: primal, canonical dual and canonical tight frame for

Example 2.1

Remark 2.3. Frames are a useful tool for signal processing: Given a signal f ∈ H
with ‖f‖ = 1, a frame {gk}∞k=1 with bounds A and B and a corresponding dual

frame {hk}∞k=1 and the corresponding operators T, S, TD, SD we can use (2.6)

to analyze the signal. First we compute the frame coe�cients {〈f, gk〉}∞k=1 (by
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applying T ∗, also called the analysis step). These we can store, transmit or ma-

nipulate and afterwards we perform the synthesis step (i.e. apply TD) and recover

(a manipulated version of) f . Where do the frame bounds come in?

Assume that the frame coe�cients are corrupted a noise term n ∈ l2(N). The

signal we reconstruct from the noisy coe�cients is given by

frec = TD(T ∗f + n) = f + TDn

and thus

‖f − frec‖ ≤ ‖TD‖‖n‖ =
1√
Aopt
‖n‖

So we see that a high lower frame bound increases the robustness of the analysis-

synthesis procedure against noise on the coe�cients. On the other hand a high

upper frame bound increases the stability against noise on f . It might also in-

dicate that one could remove elements from the frame (and thus save time and

space when doing analysis or synthesis) without signi�cantly reducing its quality.

2.2 Perturbation of frames

The following theorem concerns stability of the frame property against perturba-

tions of the frame elements. We will make use of it in chapter 6.

Theorem 2.5 (Paley-Wiener Theorem for frames). Let {fk}k∈N be a frame for

a Hilbert space H with bounds A,B. Let {gk}k∈N be a sequence in H and assume

that there exist constants λ, µ ≥ 0 such that λ+ µ√
A
< 1 and∥∥∥∑ ck(fk − gk)

∥∥∥ < λ
∥∥∥∑ ckfk

∥∥∥+ µ(
∑
|ck|2)1/2

for all �nite scalar sequences (ck). Then {gk}k∈N is a frame for H with bounds

A

(
1−

(
λ+

µ√
A

))2

, B

(
1 + λ+

µ√
B

)2

Moreover, if {fk} is a Riesz basis, then so is {gk}.

Proof. See [4], Theorem 15.1.1
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Corollary 2.1. Take {fk}k∈N, {gk}k∈N as above. If the perturbation operator

P : l2(Z)→ H, (ck) 7→
∑

ck(fk − gk)

is bounded with ‖P‖ <
√
A, then {gk}k∈N is a frame with bounds

A

(
1− ‖P‖√

A

)2

, B

(
1 +
‖P‖√
B

)2

.
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3 Gabor Analysis

While the STFT is an elegant tool for describing the time-frequency behavior of

a function f , representing f as Vgf is clearly highly redundant. The idea behind

Gabor analysis is to consider only samples of the STFT, respectively to discretize

the TF-plane. Of course a main question is how such a discretization can be

done in order to get a well-behaved and invertible transform. We summarize

some important results and brie�y describe the construction of �nite-dimensional

Gabor systems. Our main references are [13] and [8].

3.1 Gabor frames

De�nition 3.1. (Lattice) A subgroup Λ of (R2d,+) is called a lattice if there exists

A ∈ GL(2d,R) s.t. Λ = AZ2d. If A is diagonal the lattice is called separable.

The redundancy of Λ is de�ned as |Λ| := 1
|det(A)| .

De�nition 3.2. Given a lattice Λ and a window function g ∈ L2(Rd) the family

G(g,Λ) := {π(λ)g : λ ∈ Λ} (3.1)

is called a Gabor system. If it is a frame we call it a Gabor frame and denote the

frame operator by Sg,Λ. If Λ = aZ× bZ we also write G(g, a, b).

Remark 3.1. A warning to the reader: Often (e.g. in [13]) time-frequency shifts

are de�ned as

π̃(x, ω) := TxMω = e−2πix·ωπ(x, ω).

This alternative de�nition is motivated by the connections to the Heisenberg

group, while ours is natural when starting from the STFT. One easily checks

that the resulting frame operators are equal, and therefore this di�erence is not

important for us.

One of the main reasons for the usefulness of Gabor analysis is that the dual

frame of a Gabor frame is again a Gabor frame:

Theorem 3.1. If G(g,Λ) is a frame then there exists a dual window γ = S−1
g,Λg ∈

L2(Rd) s.t the dual frame of G(g,Λ) is given by G(γ,Λ). Therefore every f ∈
L2(Rd) satis�es

f =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ

=
∑
λ∈Λ

Vg(λ)π(λ)γ (3.2)
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with unconditional convergence in L2(Rd).

Proof. It su�ces to show that for λ′ ∈ Λ we have Sg,Λπ(λ′) = π(λ′)Sg,Λ which is

not di�cult ([13], p.94). The rest follows from Theorems 2.1 and 2.2.

So to compute (resp. store) the dual frame for Gg,Λ it su�ces to compute (store)

γ. We call γ the canonical dual window.

A necessary condition on the lattice parameters a and b is given by the so-called

density theorem. For an easily accessible proof we refer to [15].

Theorem 3.2. If G(g, a, b) is a frame, then ab ≤ 1. If G(g, a, b) is a Riesz basis

then ab = 1.

More is known for Gaussian windows (i.e. g = ϕc, for some c > 0): G(ϕc, a, b) is

a frame if and only if ab < 1. Thus it is never a Riesz basis ([8]).

Given a lattice Λ ⊆ we de�ne

Λo := {λo ∈ R2d : π(λ)π(λo) = π(λo)π(λ)∀λ ∈ Λ}

One easily checks that Λo is again a lattice and we call it the adjoint lattice of

Λ. It appears in many of the fundamental results in Gabor analysis. The next

theorem, which is taken form [8], summarizes some these results. Unfortunately

for them to hold we need to restrict our window space. A well-suited candidate

is Feichtinger's algebra S0:

De�nition 3.3.

S0(Rd) :=
{
f ∈ L2(Rd) : ‖f‖S0

= ‖Vϕf‖L1(R2d) <∞
}

S0 has numerous nice properties which make it a perfect candidate for a window

space in Gabor analysis. We refer to [9] for a thorough treatment.

Theorem 3.3. Given a lattice Λ ⊆ R2d and g, γ ∈ S0(Rd) we have

(i) (Fundamental Identity of Gabor Analysis)∑
λ∈Λ

〈f, π(λ)γ〉〈π(λ)g, h〉 = |Λ|
∑
λo∈Λo

〈g, π(λo)γ〉〈π(λo)f, h〉

for all f, h ∈ L2 and both sides converge absolutely.

(ii) (Wexler-Raz Identity)

Sg,γ,Λf = |Λ| · Sf,γ,Λog

for all f ∈ L2.
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(iii) (Janssen Representation)

Sg,γ,Λ = |Λ|
∑
λo∈Λo

(Vgγ)(λo)π(λo)

where the series converges unconditionally in the strong operator sense.

Theorem 3.4. (Ron-Shen Duality Principle) For g ∈ L2(Rd) the system G(g,Λ)

is a frame for L2(Rd) if and only if G(g,Λo) is a Riesz basis for its closed linear

span.

3.2 Finite-dimensional Gabor analysis

In section 1.6 we have already de�ned the translation and modulation operator

on CL and we will now use them to build �nite-dimensional Gabor system. We

basically follow [20] and [8]. For L ∈ N, two divisors a, b of L and a window

g = (g(0), ..., g(L− 1))T we de�ne

gm,n(t) := (MnbTmag)(t) = e2πinbt/Lg(t−ma), t = 0, . . . , L− 1

where the indices are again taken modulo L. Setting ã := L
a
, b̃ := L

b
we de�ne the

matrix G corresponding to the Gabor system as

G :=
(
g0,0, g1,0, . . . , gã−1, g0,1, . . . , gã−1,1, . . . , g0,b̃−1, . . . , gã−1,b̃−1

)
∈ CL,ãb̃

and the associated frame operator matrix as

S := GG∗.

Computing the elements in S and using the fact that
∑ã−1

k=0 e
2πijbk/L = 0 if b̃ does

not divide j (this is a consequence of Poisson's summation formula) we get the

so-called Walnut Representation of S ([20]):

Theorem 3.5.

(S)jl =

{
b̃
∑ã−1

m=0 g(j − am)g(l − am) if |j − l| is divided by b̃

0 otherwise

From this it is easy to see that S is a block circulant matrix with block size a× a
and that only every b̃-th subdiagonal is non-zero.
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Clearly we can obtain the canonical dual frame from the rows ofG† = G∗(GG∗)−1 =

G∗S−1, the pseudoinverse of G. However, as in the continuous case, it is again a

Gabor frame with window γ = S−1g, so it su�ces to solve Sγ = g. Because of

the highly structured form of S there exist several e�cient algorithms that solve

this problem, see for example [9].

For much more information on discrete Gabor analysis see also [21] and [14].
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4 The Fractional Fourier Transform

The Fourier transform F : L2(R) 7→ L2(R) can be interpreted as change of

coordinates in the time-frequency plane: A function f , which we think of as

being represented along the time axis, is mapped to f̂ , which is a function in

the frequency variable. Theorem 1.2 further justi�es interpreting the Fourier

transform as a counterclockwise axis rotation in the time-frequency plane by an

angle of π
2
. This is consistent with

F2f(x) = f(−x), F3f(ω) = f̂(−ω) and F4f(x) = f(x)

or in operator notation

F2 = I, F3 = IF and F4 = Id

Given an angle α we now ask for an operator Rα, which we can interpret as a

counterclockwise axis rotation in the TF-plane by α. So the family of operators

{Rα|α ∈ R} should satisfy

(i) Rπ/2 = F

(ii) R0 = Id

(iii) RβRα = Rα+β

Note that (ii) and (iii) imply that ({Rα}, ◦) is an abelian group.

In addition we would like to have a connection between certain time-frequency

representations of a function f and Rαf , justifying the interpretation as a rota-

tion in the TF-plane. For each α ∈ R such an operator Rα exists and we call it

the fractional Fourier transform (FrFT) with angle α.

4.1 De�nition and properties

We give a de�nition of the FrFT as a linear integral transform which is taken

from [17].

De�nition 4.1. For α ∈ R, α not an integer multiple of π, we de�ne the frac-

tional Fourier transform with angle α of a function f ∈ L2(R) by

Rαf(u) = fα(u) :=
√

1− i cotα

∫
R
f(v) eiπ((u2+v2) cotα−2uv cscα)dv (4.1)
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where csc(α) = sin(α)−1 and the square root is de�ned s.t. the result's argument

is in (−π
2
, π

2
]. Sometimes we will write fα instead of Rαf .

For α = 2kπ, k ∈ Z we de�ne Rαf(u) := f(u), and for α = (2k + 1)π set

Rαf(u) := f(−u)

Remark 4.1. The FrFT is continuous in α but this is not immediately clear from

the above piecewise de�nition. See [17], p.120 for details.

Remark 4.2. We choose the notation Rα to emphasize the interpretation of the

FrFT as a rotation. Often it is denoted (as a power of the FT) by Fa, where
a = 2α

π
.

Remark 4.3. Considering that for 0 < |α| < π we have ([17], p.119)

Aα :=
√

1− i cotα =
1√
|sinα|

ei(α/2−sgn(α)π/4)

we can rewrite (4.1) as

Rαf(u) = Aα e
iπu2 cotα

∫
R
f(v) eiπv

2 cotα e−2πiuv cscαdv

= ei(α/2−sgn(α)π/4) (Q− cotαDsinαF Q− cotα f)(u) (4.2)

So Rα is a composition of unitary operators on L2(R) and therefore unitary. Also,

since with the exception of F all operators appearing in the above expression are

'harmless', the FrFT inherits numerous properties from the Fourier transform,

e.g. the Riemann-Lebesgue Lemma is still valid (whenever α is not a multiple of

π).

The above representation of Rα immediately implies an inversion formula:

f(u) = e−i(α/2−sgn(α)π/4) (QcotαF−1DcscαQcotα fα)(u)

= e−i(α/2−sgn(α)π/4)
√
|sinα| e−iπu2 cotα

×
∫
R
fα(v|sinα|) e−iπv2 sinα2 cotα e2πiuvdv

= R−αfα(u)

where the last equality follows easily from a change of variables v′ = v|sinα|. So
(Rα)−1 = (Rα)∗ = R−α.
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The next Theorem summarizes some basic properties of the FrFT.

Theorem 4.1. (Properties of the FrFT)

(i) R0 = Id

(ii) Rπ/2 = F

(iii) Rβ ◦Rα = Rα+β

(iv) Rα : L2(R) 7→ L2(R) is unitary.

Proof: (i) and (ii) are obvious from the de�nition, for (iii) we refer to [17], for

(iv) see the above remark.

Remark 4.4. Following [1] we can interpret the FrFT as a decomposition into

chirps: Denote the integral kernel in (4.1) by

Kα(u, v) :=
√

1− i cotα eiπ((u2+v2) cotα−2uv cscα) (4.3)

then we have

f(u) =

∫
R
K−α(u, v)fα(v)dv. (4.4)

De�ne for �xed v and α the function cv,α : t 7→ Kα(t, v), then fα can be seen as

a decomposition of f into the system {cv,α | v ∈ R}. It's easy to check that

cv,α(t) = e−iπv
2 tanα c0,α(u− v secα) (4.5)

or

cv,α = e−iπv
2 tanα Tv secα c0,α (4.6)

So, up to phase factors, the system {cv,α} consists of Translations of the chirp

c0,α(t) =
√

1− i cotα eiπt
2 cotα. See Figure 2 for plots of c0,α for di�erent values

of α.

We can understand the chirp- and translation parameters geometrically: For

v ∈ R consider the line in the TF-plane(
x0(λ)

ω0(λ)

)
:=

(
v

0

)
+ λ ·

(
0

1

)
which can be interpreted as the TF-picture of δv. If we apply a rotation by −α
the rotated line is given by(

xα(λ)

ωα(λ)

)
:=

(
v cosα

−v sinα

)
+ λ ·

(
sinα

cosα

)
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Figure 2: The real part of the chirp c0,α in the interval [−2, 2] for di�erent values

of α.

and we get

cotα(xα(λ)− v cscα) = cotα
(
v(cosα− cscα) + λ sinα

)
= v

cos2 α− 1

sinα
+ λ cosα

= ωα(λ)

The parameters in the linear equation above correspond to the chirp- and trans-

lation parameters in (4.6). So the TF-picture of cv,α is a vertical line at x = v

rotated clockwise by α. For α = π
2
we get horizontal lines, which we can interpret

as pure frequencies.

After these observation it's not surprising that the FrFT can indeed be inter-

preted as a rotation in the TF-plane. From now on we denote by

Mα :=

(
cosα − sinα

sinα cosα

)
(4.7)
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the rotation matrix for an angle α and for given (x, ω) we write(
y

τ

)
:= Mα ·

(
x

ω

)
(4.8)

for the rotated coordinates.

The following theorem gives the desired TF-rotation property. It is a generaliza-

tion of Theorem 1 in [19], where it is proofed for Gaussian windows. We also give

a somewhat more accessible proof, based on the decomposition in (4.2). Also

note that the complex factor disappears if we replace the STFT by the Wigner

transform.

Theorem 4.2. For f, g ∈ L2(R), α ∈ R

(VRαgR
αf)(x, ω) = (Vgf)(y, τ) e2πi((x2−ω2)(sin 2α/4)−xω sin2 α).

Proof. Using (4.2) together with Lemmas 1.2, 1.4 and 1.5 we get

VRαgR
αf(x, ω) = VQ− cotαDsinαFQ− cotαgQ− cotαDsinαFQ− cotαf(x, ω)

= VDsinαFQ− cotαgDsinαFQ− cotαf(x, ω − cotαx) · e−iπx2 cotα

= VFQ− cotαg FQ− cotαf( x
sinα

,−x cosα + ω sinα) · e−iπx2 cotα

= VQ− cotαgQ− cotαf(x cosα− ω sinα, x
sinα

)

· e−iπx2 cotα · e2πi(x2 cotα−xω)

= Vgf(x cosα− ω sinα, x
sinα
− cotα(x cosα− ω sinα))

· eiπ(x2 cotα−2xω) · eiπ cotα(x2 cos2 α−2xω sinα cosα+ω2 sin2 α)

= Vgf(x cosα− ω sinα, x( 1
sinα
− cos2 α

sinα
) + ω cosα)

· eiπ((x2−ω2) sinα cosα−2xω sin2 α)

= Vgf(y, τ) e2πi((x2−ω2)(sin 2α/4)−xω sin2 α).

where the last equality follows from

sinα cosα =
sin 2α

2
.
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Remark 4.5. As mentioned in [17], Theorem 4.2 is essentially based on the matrix

decomposition

(
cosα sinα

− sinα cosα

)
=

(
1 0

cotα 1

)(
sinα 0

0 1
sinα

)(
0 1

−1 0

)(
1 0

cotα 1

)
(4.9)

The �rst and last matrix on the right side of (4.9) describe the e�ect of Q− cotα

in the TF-plane which is a vertical shear. The other matrices describe a counter-

clockwise rotation by π
2
which corresponds to the Fourier transform and the e�ect

of Dsinα - a stretch by sinα in time and 1
sinα

in frequency. Figure 3 illustrates

how these operations result in a counter-clockwise rotation by α.
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Figure 3: A rectangular area in the TF-plane (top left) after subsequent applica-

tion of the matrices in (4.9) (for α = π
5
).

From Theorem 4.2 follows easily a commutation relation for TF-shifts and the

FrFT:

Corollary 4.1. Take f ∈ L2(R), x, ω, α ∈ R, then we have

MωTxF
af = e−2πi((x2−ω2)sin(2α)/4−xω sin2 α) · F aMτTyf.
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Proof. Set c := e2πi((x2−ω2)sin(2α)/4−xω sin2 α), then for any h ∈ L2(R)

〈h,MωTxF
αf〉 = VFαfh(x, ω)

= c · VfF−αh(y, τ)

= c · 〈F−αh,MτTyf〉
= 〈h, c · FαMτTyf〉.

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

Figure 4: For α = π
8
(left) and α = π

4
(right) the time-frequency and time

representations of RαD3ϕ (real part: solid, imaginary part: dashed).

The Gaussian is invariant under the FrFT:

Lemma 4.1. For a ∈ R
F aϕ = ϕ (4.10)
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Proof. Using Lemmas 1.6 and 4.2 we get

(VϕF
aϕ)(x, ω) = ϕ2(y)ϕ2(τ) e−πiyτ e2πi((x2−ω2)(sin 2α/4)−xω sin2 α)

= e−π(y2+τ2)/2 eπix
2(− sin 2α/2+cosα sinα) eπiω

2(sin 2α/2−cosα sinα)

× e−πixω(−2 sin2 α−cos2 α+sin2 α)

= e−π(x2+ω2)/2 e−πixω

= (Vϕϕ)(x, ω)

and the claim follows from Theorem 1.9.

Theorem 4.3. (FrFT and Dilation) Take α ∈ R, s > 0 and choose α′ s.t.

tanα′ = 1
s2

tanα and α and α′ lie in the same quadrant. Then for f ∈ L2(Rd)

RαDsf = d · Qcotα(cos2 α′/ cos2 α−1)D sinα
s sinα′

Rα′f (4.11)

for a unit magnitude constant d := s ·
√

sinα−i cosα
sinα′−i cosα′

.

Proof. An adaption of [17], p.154, table 4.3, formula 2 to our notation and sub-

sequent simpli�cation . That |d| = 1 follows from the unitarity of the involved

operators.

Remark 4.6. Following [17], p. 157 we can again state a matrix equality corre-

sponding to Theorem 4.3: Set s′ := sinα
s sinα′

and q := cotα( cos2 α′

cos2 α
− 1) then

(
cosα sinα

− sinα cosα

)(
s 0

0 1
s

)
=

(
1 0

−q 1

)(
s′ 0

0 1
s′

)(
cosα′ sinα′

− sinα′ cosα′

)
(4.12)

Figure 5 illustrates (4.12) for α = π
3
and s = 2.

4.2 Spectral decomposition of the FrFT

Since the Hermite functions provide a complete eigensystem for the Fourier trans-

form we can use them de�ne an operator satisfying (i)-(iv) in Theorem 4.1. For

n ∈ N: The n-th order Hermite function ψn satis�es

Fψn(ω) = e−inπ/2ψn(ω) (4.13)
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Figure 5: Illustration of (4.12) for α = π
3
: left side - top row, right side - bottom

row.

and any linear operator T : L2(R) 7→ L2(R) that meets 4.13 with T instead of

F for all n is equal to the Fourier transform. So it su�ces to �nd a sequence

z = (zn)n∈N of complex numbers s.t. z
π/2
n = e−inπ/2 and de�ne for α ∈ R

Tαz f :=
∑
n∈N

zαn〈f, ψn〉ψn.

Then Tαz satis�es (i)-(iv) in Theorem 4.1. For any integer-sequence (kn)n∈N

zn := e−i(n+4kn)

meets the above requirement and di�erent choices for (kn) yield di�erent oper-

ators Tαz . But they don't necessarily satisfy the rotation property of the FrFT

(see Figure 6). It turns out that kn = 0∀n gives the FrFT:

Theorem 4.4. For f ∈ L2(R) we have

Rαf =
∑
n∈N

e−inα〈f, ψn〉ψn. (4.14)

Proof. See [17], p.122.
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Figure 6: |VϕTαz D6ϕ|, for α = 7π
5
and kn = 2k.

4.3 Implementation of the FrFT

In this section we describe various di�erent ways of implementing the fractional

Fourier transform. First we look at an algorithm approximating the FrFT as it

is de�ned in De�nition 4.1. Our main focus however will lie on comparing an

implementation of the so-called discrete FrFT with an algorithm developed by

Feichtinger.

4.3.1 Computation of the continuous FrFT

We summarize an algorithm from [17] and [2] which maps samples of a function

f ∈ L2(R) to samples of an approximation of fα. The key idea is to rewrite

(4.1) as a chirp multiplication followed by a chirp convolution and another chirp

multiplication: Using cotα− cscα = tan α
2
we have

(u2 − v2) cotα− 2uv cscα = −u2 tan
α

2
+ (u− v)2 cscα− v2 tan

α

2

and (assuming w.l.o.g. 0 < |α| < π) we can rewrite (4.1) as

fα(u) = Aαe
−iπu2 tanα/2

∫
R
f(v) e−iπv

2 tanα/2 eiπ(u−v)2 cscαdv

= Bα (Qtanα/2 CsinαQtanα/2 f)(u) (4.15)

where Bα := ei(α+sgn(α)π)/2.
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The input for the algorithm is a vector F containing uniform samples of f (which

is assumed to be essentially compactly supported and bandlimited). The chirp

multiplication is easily computed, then the chirp convolution is computed in the

FFT-domain and �nally another chirp multiplication is applied. One has to take

into account that chirp multiplication and convolution can increase the band-

width. So in order to avoid aliasing F is upsampled at the begin of the algorithm

(using sinc-interpolation) and in the end the result is downsampled to match the

length of F . The resulting algorithm is FFT-based and therefore has complexity

N logN , where N is the length of F . For a detailed description of the implemen-

tation and the freely available Matlab-�le we refer to [2].

4.3.2 The discrete fractional Fourier transform

The discrete fractional Fourier transform (DFrFT) was developed in [3]. For

n ∈ N the goal is to construct an orthonormal set {Ei}i=1,...,n of eigenvectors of

the DFT-matrix F of size n, that can be interpreted a discrete analog of the Her-

mite functions. Given α ∈ R the DFrFT is then de�ned as a Hermite-multiplier

analogous to (4.14). From this de�nition the analog of Theorem 4.1 will be ob-

vious.

We brie�y sketch the construction of the Ei: The continuous Hermite functions

are known to be the unique eigenfunctions of the operator

S := D2 + FD2F−1 (4.16)

where D is the di�erentiation operator. First D2 is approximated by a central dif-

ference quotient leading to a matrix approximation S of S which commutes with

the DFT matrix F and thus has a common set of eigenvectors with F. However

the eigenvalues of S are mutually distinct and the eigenvectors therefore unique.

For a thorough treatment we refer to [3]. The algorithm also allows to use higher

order di�erences for the approximation of D2 resulting in a better approximation

of the ψj by the Ej.

So we now have a complete orthonormal set {Ej}j=1,...,n of eigenvectors for F .

The corresponding eigenvectors {µj}j=1,...,n are given by µj = (−i)j−1 for j =

1, . . . , n− 1 and µn = 1 if n is equivalent 0 or 1 modulo 4 and µn = −1 otherwise

([2]). So except for µn they coincide with the eigenvalues in the continuous case.

We now take look at VϕEj. The continuous Hermite functions are known to be

concentrated on circles in the TF-plane (see [16]). Figure 7 suggests that this is
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approximately true for the Ej, only if j is small compared to n. For larger values

of j the TF-pictures of the Ej turn into squares which �nally �t themselves to

the border of the TF-plane. So we can only hope to obtain good approximations

for ψj via Ej if j is small compared to n, respectively in the limit n→∞.
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Figure 7: Plots of |VϕEi| for n = 540 and di�erent values of i.

Indeed the following theorem, which is taken form [2], shows that after some

rearrangement the Ej converge to samples of the continuous H-G functions for

n→∞.

Theorem 4.5. For j, n ∈ N with n > j and n even de�ne

ej,n := [Ej(n/2 + 2), ...Ej(n), Ej(1), ..., Ej(n/2 + 2)]T (4.17)

and

Ψj,n := [ψj−1(xk) : k = −n/2, ..., n/2]T , xk := k
√

2π/(n+ 1). (4.18)
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Then, after proper normalization, ej,n converges to Ψj,n as n→∞.

Equipped with the system {Ej}j=1,...,n it is not di�cult to de�ne an analog to

the FrFT. Set E := (E1| . . . |En) and for given α ∈ R de�ne the n × n diagonal

matrix Dα
E by

(Dα
E)jj = e−iα(j−1), j = 1, ..., n− 1,

(Dα
E)nn = e−iαn for n even, (Dα

E)nn = e−iα(n−1) for n odd.

Now we de�ne the discrete fractional Fourier transform with angle α as

Rα
E : Cn → Cn, f 7→ EDα

EE
∗f. (4.19)

We will investigate Rα
E further in section 4.3.4.

4.3.3 A di�erent approach

A di�erent approach to constructing discrete Hermite-Gauss functions was pro-

posed by Feichtinger. It relies on the fact that the continuous Hermite functions

are concentrated on circles in the TF-plane. The corresponding algorithm can be

found at www.nuhag.eu in form of the MATLAB-�le hermf.m. We give a brief

description and compare the results to the discrete FrFT. Unless stated otherwise

all observations made are based on experiments.

Given n ∈ N the algorithm starts by constructing an n× n matrix W that con-

tains samples of a radial symmetric weight which is centered around the origin of

the TF-plane and decreases linearly from there (see Figure 8). Next we construct

the STFT-multiplier (with Gaussian window) associated to W , we call it M . In

the continuous case the eigenfunctions of such an operator are known to be the

Hermite functions, see [5].

In the �nite-dimensional case we �nd that M is self-adjoint and commutes with

F . Thus an eigenvalue-decomposition ofM yields an orthonormal set {Hj}j=1,...,n

of joint eigenvectors of M and F . Since every eigenvalue of M is real and has

algebraic multiplicity one (Figure 8), the eigenvectors are unique up to sign and

we can reorder them in such a way that the corresponding eigenvalues decrease.

Finally the routine checks each Hj for constant complex factors and removes

them, since the continuous Hermite functions are real-valued.

The idea behind the algorithm is that H1, the eigenvector corresponding to the

largest eigenvalue ofM , should be concentrated around the maximum ofW which
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Figure 8: For n = 540: The weight-matrix W (left) and the spectrum of the

corresponding STFT-multiplier M .

is obtained at the origin of the TF-plane. And indeed H1 is equal to the Gaussian

(which we used in the construction of M). The next of the Hj we expect to be

TF-concentrated on circles of increasing size (corresponding to the level sets of

W ). Figure 9 shows for n = 540 the absolute values of VϕHj for di�erent j. We

see that what we expected is mostly the case, but at some point (here around

i = 380) the circles reach the borders of our �nite TF-plane. Then the concen-

tration of the Hj starts to shift towards the intersection points of the circles with

the axes. If we increase j further the TF-pictures resume the form of circles, but

with those parts cut o� that would not �t in the picture. After these observa-

tions we may hope that, at least for j not too large, the Hj give a reasonable

discrete approximation to the Hermite-Gauss functions. This will be the topic of

the following experiment.

Experiment 4.1. We seek experimental veri�cation of a result similar to Theorem

4.5 for the Hj. It quickly turns out that we cannot adopt the de�nitions from

there unchanged but need to modify them slightly. For n, j ∈ N, n > j and n

even we set

hj,n := [Hj(n/2 + 2), ...Hj(n), Hj(1), ..., Hj(n/2 + 2)]T (4.20)

and

Ψ̃j,n := [ψj−1(x̃k) : k = −n/2+1, ..., n/2+1]T , x̃k := (4/5)k
√

2π/(n+ 1). (4.21)
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Figure 9: For n = 540: Plots of |VϕHj| for di�erent values of j.

The factor 4/5 in the de�nition in the de�nition of x̃k is somewhat mysterious

yet numerous experiments suggest that it gives the best results. The evaluation

of ψj−1 via De�nition 1.13 is straightforward. We remark that the recursion for

the Hermite-polynomials is much faster evaluated when using a loop instead of a

purely recursive implementation. For (roughly) j > 70 however the blowup in the

coe�cients of the j − th Hermite polynomial causes severe cancellation, making

the evaluation of the ψj di�cult. Therefore we will restrict our experiments to

values j < 70.

Figure 10 shows that for n = 30 and j ∈ {2, 5, 10, 20} the hj,n give good approx-

imations to the Ψ̃j,n (of which upsampled versions are plotted). Only for j = 20
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there are severe deviations near the borders.
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Figure 10: For n = 30 and di�erent values of j: Comparison of hj,n (red stars)

to the Hermite-Gauss function of order j − 1 (blue)

From Figure 11 we see that, with respect to the ∞-norm, the Ψ̃j,n are indeed

very well approximated by the hj,n as long as j < 18 for n = 30 resp. j < 41 for

n = 60. For higher values of j the approximation becomes much worse and soon

useless. This is not surprising since also the spectrograms of the Hj no longer

resemble circles once they reach the border of the TF-plane. Heuristically one

can argue that this happens roughly around Jn := n/
√

2, since the ratio of the

diagonal of a square to its side is
√

2. And indeed Jn turns out to be a decent

estimate for the index up to which the hj,n resemble the Ψ̃j,n.

Finally the data from Figure 12 strongly suggests that for �xed j we have

‖hj,n − Ψ̃j,n‖∞ → 0 as n → ∞ with linear convergence rate and thus an analog
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Figure 11: For n = 30 (left) and n = 60 (right): ‖hj,n − Ψ̃j,n‖∞ (blue) and

‖hj,n − Ψ̃j,n‖2 (green) for j ranging from 0 to n.

of Theorem 4.5 holds.
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Figure 12: Semi-logarithmic plot of ‖hj,n−Ψ̃j,n‖∞ for j = 5 (blue), j = 20 (green)

and j = 50 (red) with varying n.

Next we look at the eigenvalues of the DFT that correspond to the Hj.

Form the above it is clear that {Hj}j=1,...,n constitutes a complete eigensystem
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for the DFT. We denote the eigenvalue corresponding to Hj by λj and set λ :=

(λ1, ..., λn). The experiments indicate that for each n ∈ N there is an odd index

jn such that

λ =
(
(−i)0, ..., (−i)jn−1, ijn+1, ijn+2, ..., in

)
(4.22)

So the eigenvalues start out like in the continuous case but after λjn there is a

'jump' (from −1 to 1 or 1 to −1). Afterwards the eigenvalues resume cycling

{1, i,−1,−i} but now in the counter-clockwise direction in the complex plane.

Figure 13 contains values for jn
n

for di�erent n. We see that, at least for n

within a certain range, jn depends nearly linearly on n and in every case we get

jn > 0.7 · n. For indices this high the Hi are concentrated outside the 'incircle'

of the TF-plane, where the Hj approximate the Hermite functions (see again

Figure 13). So for the Hj, for which the TF-pictures resemble those of the Her-

mite functions, the eigenvalues are equal to the ones we get in the continuous case.
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−200

Figure 13: Left: values of jn
n

for 38 random values of n between 1 and 3000;

Right: for n = 397, a plot of |VϕHjn|

We now want to de�ne a FrFT-like operator based on the system {Hj}j=1,...n.

Similar to the previous section we set H = (H1|...|Hn) and for α ∈ R we de�ne

(in light of (4.22)) the n× n-diagonal matrix Dα
H by

(Dα
H)jj := e−iα(j−1), j = 1, ..., jn and (Dα

H)jj := e−iαj, j = jn + 1, ..., n. (4.23)
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The discrete Hermite-rotation with angle α is now de�ned as

Rα
H : Cn → Cn, f 7→ HDα

HH
∗f. (4.24)

Remark 4.7. The above de�nition of Rα
E requires to know jn. The direct way

of �nding jn would be the diagonalization of the DFT-matrix using H. Here

we could use the data from Figure 13 to guess an approximate value and only

compute the corresponding part of the diagonalization. However since from the

previous results we expect the Hj to give useful discrete Hermite functions only

up to some index ĵn < jn one could argue that Rα
Hf will only be a reasonable

substitute for Rαf if 〈f,Hj〉 ≈ 0, ∀j > ĵn. Therefore we could replace (4.23) by

(Dα
H)jj := e−iα(j−1), j = 1, ..., n without signi�cant damage. Of course we then

no longer have R
π/2
H = F .

Remark 4.8. We note that the speci�c choice of the weight W has only very little

e�ect on the resulting Hj as long as W is chosen radial symmetric and strictly

decreasing from the origin.

4.3.4 Comparison of Rα
E and Rα

H

In this section we want to compare the operators Rα
E and Rα

H and look at how

well they ful�ll properties we know to be true for the continuous FrFT.

It's clear from their de�nitions that both operators satisfy the analogs of Theorem

4.1. However the distinguishing property of the FrFT is the rotation property

from Theorem 4.2. Figure 14 illustrates how a Dirac comb behaves under Rα
H

and Rα
E. We see that Rα

H , while showing unclear behavior at the boundaries,

acts as a rotation at on the 'in-circle' of the TF-plane. And of course in the

�nite-dimensional case this circle is the maximum area on which such a rotation

property can hold for all α. When we look at Rα
E however we see a signi�cantly

di�erent behavior: While the results look 'smoother', in the sense that the lines

from the pictures for α = 0 are still connected, there is signi�cant distortion to-

wards the corners of the TF-plane and a rotation property is clearly not satis�ed.

Based on these observations we will from now on use Rα
Hf as an approximation

to the FrFT with angle α. However before applying the operator we have to make

sure that the functions at hand are essentially concentrated on the 'in-circle' of

the TF plane, meaning that 〈f,Hj〉 is small for (roughly) j ≥ n/
√

2. Since for
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Figure 14: STFTs of a Dirac comb under the action of Rα
H (left) and Rα

E (right)

for α = 0 (top), α = π
10

(middle) and α = π
3
(bottom).

us mainly functions of the from Dsϕ will be of interest this poses no restriction,

as long as s is not too big.
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5 Experiments on Rotated Gabor-like Systems

Given a, b, s > 0, (αm,n) ∈ RZ×Z we now consider system of the form {gm,n}m,n∈Z
where

gm,n := MnbTmaR
αm,nDsϕ. (5.1)

So each function in the system {gm,n} is a dilated Gaussian, which is �rst rotated

in the TF-plane by an angle −αm,n and then TF-shifted to a point on the lattice

aZ×bZ (see Figure 4). We will refer to systems of this type as rotated Gabor-like

systems.

We will look at di�erent choices for the αm,n and the quality of the resulting

systems. Afterwards we will compare these systems to get a feel of how the align-

ment of these rotated 'ellipses' in the TF-plane is re�ected in the frame bounds.

Our observations will mostly be based on numerical experiments for which we use

�nite-dimensional simulations of the gm,n. In one case however we will compare

them to values obtained in the continuous case. For the Matlab �le which was

used for creating the systems, please see the appendix.

5.1 The Gabor case

Given a, b we set αm,n = α ∀m,n in (5.1), then the system {gm,n} becomes a

regular Gabor system with window RαDsϕ and lattice-parameters a, b. We want

to investigate these systems, especially there quality as frames, for di�erent values

of α and s. To make notation easier when comparing di�erent systems we will

sometimes write gα,sm,n for gm,n. We will denote the optimal frame bounds for the

systems {gα,sm,n} by A(α, s) and B(α, s). Since

ĝm,n = TnbM−maR
αD1/sϕ

the systems for s > 1 and s < 1 are related via an exchange of the lattice param-

eters and we need only consider s > 1.

In addition we have

MωTxR
π−αDsϕ = MωTxR

−αDsϕ (5.2)

= M−ωTxRαDsϕ

meaning that A(π−α, s) = A(α, s) and B(π−α, s) = B(α, s). Since the bounds

are obviously π-periodic in α we will only consider α ∈ [0, π
2
].
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Remark 5.1. In the following we will sometimes speak of the time-frequency

concentration of a subspace V of Cn. We mean the sum over all spectrograms of

some orthonormal basis for V . Since for any ONB (v1, ..., vk) for V and x, ω ∈ Z
we have

k∑
i=1

|〈vi,MωTxϕ〉|2 = ‖PVMωTxϕ‖2
2

and the last term is independent of the chosen ONB the time-frequency concen-

tration of V is well de�ned.

Experiment 5.1. We consider the case a = b, in which the frame bounds are

periodic in α with period π
2
. This follows from

MωTxR
α+π/2Dsϕ = FTωM−xRαDsϕ (5.3)

implying that for a = b the systems {gα,sm,n} for α and α + π
2
are related via the

Fourier transform and therefore satisfy the same frame bounds. Together with

the observation in (5.2) we get A(α, s) = A(π
2
− α, s) and the same for B.

For signal length 540 and a = b = 18 Figure 15 shows the optimal lower and

upper frame bounds for s = 3 and α ∈ [0, π
2
]. We see that the frame bounds

(especially the lower one) react very sensitive to changes of α. A ranges from

0.0027 to 1.34 varying by a factor 500. Interestingly better lower and upper

frame bounds go 'hand in hand' or, to be more precise: The experiment indi-

cates sgn( d
dα
A(α, s)) = −sgn( d

dα
B(α, s)), ∀α, s. So from now on we use A(α, s)

to measure for the quality of the frame. We also see the symmetry over α = π
4

mentioned above (it will be missing in the case a 6= b).

To understand the e�ect of α and s on A we extend Figure 15 to an image:

Again for signal length 540, a = b = 18 Figure 16 contains the optimal lower

frame bounds for α ranging from 0 to π
2
on the horizontal axis and s varying on

a geometric scale from 1.05 to 1.0532 on the vertical axis. The vertical black lines

mark critical angles which result in low values of A for large enough s (see below).

The blue-colored areas correspond to small values of A indicating frames of poor

quality. We'll look at those �rst and because of the above we can restrict our

investigation to α ≤ π
4
. The largest blue area is on the left border, where α is

close to 0. For α = 0 the functions gm,n form parallel, horizontal 'lines' in the

TF-plane. Along those lines there is high overlap of close-by atoms resulting in a

high upper frame bound, whereas in between we have large 'gaps' with low con-

centration yielding a small lower bound. Increasing s will only make this worse
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since more and more atoms will overlap and the 'gaps' will grow wider.

The second largest blue area is found where α is close to π
4
. Here we have a similar

situation, but this time the lines formed by the atoms will be diagonal. Notice

that for equally bad frames s has to be bigger, i.e. the atoms more 'stretched',

than for α = 0. This makes sense since along the diagonal lines the distance

between lattice points is greater.

Once we have made these observations it is not di�cult to understand the re-

maining blue areas. For a lattice point P , Figure 17 shows close-by lattice points.

As indicated by the dashed line, we are only interested in those that lie at an

angle between −π
4
and 0, because for s > 1, α ∈ [0, π

4
] these are the directions

in which the atoms will be 'pointing' in the TF-plane. Closest to P is point

number 1, which corresponds to α = 0 and we have already seen that this gives

the worst frames, even for small s. If we increase s the second blue area we �nd

is for α = π
4
, corresponding to point no. 2, the second closest to P among the

numbered points. Point no. 3 we �nd at −arctan( b
2a

) = −arctan(1
2
) ≈ −0.46

and α = arctan(1
2
) is exactly where we �nd the third largest blue area. For

α = arctan(1
2
) and s large enough the atom centered at P overlaps with the one

centered at point no. 3, so in the global picture the atoms are once again 'lined

up', resulting in a frame of poor quality. Analogously we �nd the next largest

blue areas at α = arctan(1
3
) (corresponding to point no. 4) and α = arctan(2

3
)

(point no. 5).

Interestingly the above reasoning already explains all the blue areas in Figure 16,

including the ones we can already guess for larger s. To get frames of constant

good quality, even for large s, we have to avoid values for α which cause the

rotated atoms to point towards a nearby lattice point (where the meaning of

nearby depends on s).

Experiment 5.2. Using the notation from Experiment 5.1 we want to make the

statements from there about areas with high and low concentration more pre-

cise by looking at the corresponding frame operators Sα,s. These operators are

self-adjoint and positive-semide�nite and hence we can perform an eigenvalue-

decomposition. We know from Theorem 2.3 that the optimal frame bounds

A(α, s), B(α, s) are the smallest and largest eigenvalues of Sα,s, so let's look at the

corresponding eigenspaces. Again we take signal length 540, a = b = 18, s = 3.

We set α = π
4
which, as we have seen in Experiment 5.1, results in a badly con-
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Figure 15: Optimal lower (left) and upper (right) frame bounds for Gabor systems

with window RαD3ϕ for α varying from 0 to π
2

ditioned frame. Figure 18 shows the time-frequency concentration (see Remark

5.1 of the eigenspaces corresponding to A(α, s) ≈ 0.04 and B(α, s) ≈ 3.5. The

white stars indicate the lattice. The results con�rm the heuristic explanations

stated in Experiment 5.1: The eigenvectors responsible for the high upper frame

bound are concentrated on diagonal lines along the lattice points. In between the

vectors corresponding to A are located.

After considering a quadratic lattice in Experiment 5.1 we next look at the

case a 6= b.

Experiment 5.3. As in Experiment 5.1 we again compute optimal frame bounds

for {gα,sm,n} with signal length 540 but this time for a = 27, b = 12, which gives the

same redundancy as before. Figure 19 shows the results, which are very similar

to the quadratic case: Again we �nd bad frames for angles α = arctan nb
ma

for

small values of m and n. They are indicated by the black lines and correspond

to neighboring lattice points. Values for α close to 0 give good frames if s is

not too large since these systems are well �tted to the lattice. On the other

hand α close to π
2
results in bad systems, even for small s, caused by the verti-

cal 'gaps' in between the lattice points. Furthermore we see that good systems

exist again for all the considered values of s and they are of a the same quality

as those in the quadratic case. And �nally the observation from the quadratic

case about the connection between upper and lower frame bound also carries over.
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Figure 16: For a = b = 18: Optimal lower frame bounds for Gabor systems with

window RαDsϕ for α ranging from 0 to π
2
on the horizontal axis and s varying

geometrically from 1.051 to 1.0532. (See Figure 30 for black and white version)

The same experiment has also been conducted for non-separable lattices, with

very similar results.
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Figure 17: Illustration of the lattice points around a �xed point P. The diamond-

marked points correspond to vertical black lines in �gure 16.

 

 

 

 

Figure 18: TF-concentration of eigenspaces corresponding to the smallest (left)

and largest (right) eigenvalues of Sπ/4,3.
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Figure 19: For a = 27, b = 12: Optimal lower frame bounds for Gabor systems

with window RαDsϕ for α ranging from 0 to π
2
on the horizontal axis and s

varying geometrically from 1.051 to 1.0532 (See Figure 31 for black and white

version).
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5.2 Some special cases

5.2.1 Special case 1

After considering the case αm,n = α, ∀m,n in the previous section and identifying

the values for α and s which result in bad systems we now want to compare them

to a special case: Geometrically we want the atoms gm,n to be rotated along

concentric circles in the TF-plane leaving a 'hole' in the center, i.e. an area with

low concentration. Intuitively this should yield a small lower frame bound.

First we make a slight change of notation and set (for a, b, s, αm,n yet to be

de�ned)

g̃m,n := π((m+ 1
2
)a, (n+ 1

2
)b)Fαm,nDsϕ = π(a

2
, b

2
)gm,n (5.4)

This change to the a�ne lattice a(Z+ 1
2
)× b(Z+ 1

2
) allows us to center the 'hole'

mentioned above at the origin. Its not di�cult to see that the choice

αm,n :=
π

2
− arctan

(n+ 1/2)b

(m+ 1/2)a
, m, n ∈ Z (5.5)

gives the desired alignment. We �rst simulate the resulting system numerically.

Experiment 5.4. We look at the �nite dimensional case with signal length 540,

a = b = 18. Figure 20 illustrates our system for s = 3 and contains the relevant

part of the STFT of the eigenvector corresponding to the smallest eigenvalue

of the frame operator. It is clearly concentrated at the 'hole' left by the frame

elements around the origin of the TF-plane. Thus we might hope to approximate

the lower frame bound by looking at the frame coe�cients of ϕ. The double-

logarithmic plot in Figure 21 shows that this approximation is not too bad, at

least for smaller values of s, which varies from 1 to 4.6 along the x-axis. The blue

line marks the lower frame bounds A(s) and the green line marks evaluations of

the �nite-dimensional analog of ∑
m,n∈Z

|〈ϕ, g̃m,n〉|2 (5.6)

which is obviously an upper bound for A(s) since ‖ϕ‖2 = 1.

Now we turn to the continuous case: First observe that by Corollary 4.1 and
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Figure 20: Left: contour plot of (a part of) the system {g̃m,n} in the TF-plane.

The contour lines are drawn at 90% of the maximal absolute value. Right: STFT

of the eigenvector for the smallest eigenvalue of the corresponding frame operator

1.1 1.4 1.9 2.5 3.4 4.5
0.05

0.13

0.32

0.8

2

Figure 21: Double-logarithmic plot: Comparison of lower frame bound of {g̃m,n}
(blue) and (5.6) (green) for varying s.

Lemmas 1.6 and 4.1 for m,n ∈ Z:

|〈ϕ, g̃m,n〉|2 = |〈ϕ,M(n+1/2)bT(m+1/2)aF
αm,nDsϕ〉|2

= |〈Fαm,nϕ, Fαm,nMτTyDsϕ〉|2

= |〈ϕ,MτTyDsϕ〉|2

= |(VϕDsϕ)(−y,−τ)|2

= ϕ s2+1
2

(y)ϕ s2+1

2s2
(τ) (5.7)
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Where y and τ are given by(
y

τ

)
:=

(
cosαm,n − sinαm,n
sinαm,n cosαm,n

)
·
(

(m+ 1/2)a

(n+ 1/2)b

)
. (5.8)

Setting x := (m+ 1
2
)a, ω := (n+ 1

2
)b we get

y = cos
(π

2
− arctan

ω

x

)
x− sin

(π
2
− arctan

ω

x

)
ω

= sin
(

arctan
ω

x

)
x− cos

(
arctan

ω

x

)
ω

= 0

since
sin
(
arctan ω

x

)
cos
(
arctan ω

x

) = tan
(

arctan
ω

x

)
=
ω

x
.

And it follows that

|τ | =
√
x2 + ω2.

We now set a = b =
√

3
5
and assume that {g̃m,n}m,n∈Z is a frame with bounds

A, B. Note that the choice of a and b yields the same redundancy as in Exper-

iment 5.4. In order to compare the continuous and �nite-dimensional case we

want to evaluate the estimate for A given in (5.6).

A ≤
∑

(m,n)∈Z2

|〈ϕ, g̃m,n〉|2

=
∑

(m,n)∈Z2

ϕ s2+1
2s2

(
a

√(
m+ 1

2

)2
+
(
n+ 1

2

)2
)

(5.9)

The points of the a�ne lattice (Z + 1
2
) × (Z + 1

2
) are grouped on squares of

increasing size, all centered at the origin. The 4 points on the innermost square

all have distance 1√
2
from the origin. On the second innermost square we �nd 4

points with distance
√

9
2
and 8 points at distance

√
5
2
. It's easy to see that the

k-th innermost square contains 4(2k − 1) points of the a�ne lattice, all of which

have a distance of more than (k− 1
2
) from the origin. Using this we can estimate

(5.9) by

4ϕ s2+1
2s2

(√
1
2
a
)

+ 8ϕ s2+1
2s2

(√
5
2
a
)

+ 4ϕ s2+1
2s2

(√
9
2
a
)

+
∑
k≥3

4(2k− 1)ϕ s2+1
2s2

(
(k− 1

2
)a
)
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And so for λ := e
−π 2s2

s2+1
a2

we get

A ≤ 4
(

4s2

s2+1

)1/4
(
λ1/2 + 2λ5/2 + λ9/2 +

∞∑
k=3

(2k − 1)λ(k−1/2)2
)
. (5.10)

Since λ < 1 the series in (5.10) converges (very fast) and numerical evaluations

suggest that it is su�ciently close to 0 to use (5.10) as an approximation for (5.9).

Figure 22 compares evaluations of (5.6) for the �nite-dimensional and continuous

case. The results are surprising: The value for the continuous case is signi�cantly

higher (up to a factor 3.5) and decreases at lower and non-constant rate. In light

of this we have to be careful when we draw conclusions about the behavior of

frame bounds from numerical simulations.

1.1 1.4 1.9 2.5 3.4 4.5

0.32

0.43

0.59

0.8

1.08

1.47

Figure 22: Double logarithmic plotting of the evaluations of (5.6) in the contin-

uous case (blue) and �nite-dimensional case (green) for di�erent s.

Remark 5.2. From (5.7) it's not di�cult to see that the choice of the αm,n which

we have considered here is the one which minimizes the coe�cients of ϕ, i.e. the

expression (5.6).
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5.2.2 Special case 2

We look at another choice of the αm,n for which we expect to get bad systems:

αm,n =

{
−π

4
, if m+ n is even

π
4
, otherwise.

(5.11)

For signal length 540, a = b = 18, s = 3 the resulting system is shown in Fig-

ure 23, along with the TF-concentration of the eigenspace corresponding to the

smallest eigenvalue A = 0.0125 of the frame operator. Clearly there are areas

of high concentration where the atoms meet and areas of low concentration in

between. We will later see that for growing s the lower frame bound for this

system decreases very fast.

Figure 23: Left: Illustration of the system de�ned via (5.11), the contour lines

are drawn at 90% of the maximal absolute value.Right: TF-concentration of the

eigenspace for the smallest eigenvector of the frame operator.

5.3 The random case

Experiment 5.5. For this experiment we choose the αm,n in (5.1) randomly (uni-

formly distributed) between 0 and 2π. The histograms in Figure 24 contain the

optimal upper and lower frame bounds for 100 rotated Gabor-type systems for

signal length 540, a = b = 18 and s = 3. Both data sets pass a Kolmogorov-

Smirnov test for normal distribution at signi�cance level 0.05.
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Figure 24: Distribution of the optimal lower (left) and upper (right) frame bounds

of 100 random rotated Gabor-type systems

We put s on a geometric scale ranging, as before, from 1.05 to 1.0532 and con-

struct for each value 10 random systems. Figure 25 shows the development of the

mean of the corresponding optimal bounds, which we will refer to as A(s) and

B(s). Since s as well as the frame bounds lie naturally on a geometric scale the

plots are double-logarithmic. The red lines are the best linear �ts for the plots

and we see that A is very well approximated, especially for smaller s, indicating

that A(s) ≈ sk · d, for k = −1.86, d = 1.55. We also note that B is best approxi-

mated by k = 0.52, d = 2.34.

Finally, for the above range of s Figure 26 contains the coe�cients of variation

for the frame bounds (i.e. the standard deviation divided by the mean). For

both, upper and lower bounds, the coe�cients tend to increase with s, but there

is some oscillation, which might be caused by the rather small sample size (10

for each value of s), which is due to high computational e�ort. The coe�cients

for the upper bound are remarkably small with a maximum of 0.035.

Experiment 5.6. Our goal now is of course to better understand which choices of

the αm,n yield bad systems. Therefore we look at a particular randomly generated

system from the previous experiment with lower frame bound A = 0.13, which

is well below average (see Figure 24). Figure 27 contains the relevant part of the
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Figure 25: Double-logarithmic plots of the mean of the frame bounds for ran-

domly rotated systems for varying s (left: lower bound, right: upper bound),

together with linear �ts (red).

STFT of the eigenvector corresponding to the smallest eigenvalue A of the frame

operator along with an illustration of how the atoms gm,n are arranged in this

part of the TF-plane.

We see four atoms forming an 'x' and thus creating a point of very high con-

centration between themselves. Furthermore the neighboring atoms, especially

those at the left, right and at the top, are aligned in such a way that they do not

point towards the 'x'. Apparently the eigenvector responsible for the bad quality

of the frame is concentrated around the center of the 'x' except the area on the

lower right where some atoms point towards the 'x'. So the arrangement of the

atoms in this area is somewhat similar to the above mentioned 'Special Case 2',

however not as extreme.
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Figure 26: Coe�cients of variation for the frame bounds of randomly rotated

systems for di�erent s. (left: lower bound, right: upper bound)

5.4 Conclusion

To conclude this section we compare the development of the lower frame bounds

of the discussed systems as the dilation parameter s increases. The experiments

have shown that the lower bound is usually the critical one. Compared to it the

upper bound does not vary too much.

Figure 28 shows the lower frame bound for the di�erent systems with s ranging

on a geometric scale from 1.05 to 1.0532 = 4.76. For large s by far the worst

systems are the Gabor systems obtained with αm,n = 0∀m,n for which A(s) de-

creases superexponentially. As we have already mentioned above for the Gabor

case there are systems of equally good quality for all of the considered values of s.

One might expect the special cases 1 and 2 to behave similarly, since the lower

frame bound measures the 'worst case' and thus it makes no di�erence if there

are many 'holes' (as in case 2) or just one. This however proofs to be absolutely

wrong for larger values of s, for which the bound for case 2 decreases much faster.

The behavior in the random case is well approximated by our special case 1.

Concerning the quality of speci�c random systems some insight could be gained

in the above experiments, but in many cases the behavior wasn't clear just from

looking at the alignment of the atoms.
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Figure 27: Left: Detail of the STFT of the eigenvector corresponding to the lowest

eigenvalue of the frame operator of a badly behaved system. Right: Illustration

of the alignment of the frame elements in the corresponding area of the TF-plane.

The contour lines are drawn at 90% of the maximal absolute value.

We have also seen that the continuous case can behave very di�erent from our

�nite-dimensional model raising of course the question how far we can draw con-

clusions from the performed experiments.
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Figure 28: Double-logarithmic plot of the lower frame bounds of di�erent systems

for varying s.
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6 Stability Results for Rotated Gabor-like Sys-

tems

6.1 Wiener amalgam spaces

The Wiener amalgam spaces (or Wiener type spaces) were introduced in [7] but

we will not de�ne them in the generality found there. The idea is to measure the

local and global behavior of function with di�erent norms. In order to separate

local and global aspects we �rst de�ne a special class of partitions of unity.

De�nition 6.1. (BUPU)

Let A be a Banach space of functions on Rd. A family Ψ = (ψi)i∈I of functions in

A is called a bounded uniform partition of unity in A (or BUPU) if there exists

a constant M and a discrete set of points {yi}i∈I as well as a neighborhood U of

0 s.t.

(i)
∑

i∈I ψi(x) = 1, ∀x ∈ Rd

(ii) supi∈I ‖ψi‖A ≤M

(iii) suppψi ⊆ yi + U, ∀i ∈ I

(iv) supx∈Rd |{i |x ∈ yi +K} ≤ CK <∞ for any compact set K ⊆ Rd.

De�nition 6.2. (Wiener amalgam spaces)

Given two 'suitable' Banach space A and B and p ∈ [1,∞] together with a BUPU

(ψi)i∈I for A we de�ne the space

W (B,Lp) := {f ∈ Bloc :

(∑
i∈I

‖ψif‖pB
)1/p

<∞}

For the explanation of 'suitable' in the above de�nition and the connection of A

and B we refer to [7], p.3. We only mention that for B = Lq(Rd), 1 ≤ q ≤ ∞ or

B = M(Rd) we can choose A = C0(Rd). We state some basic facts from [7].

Theorem 6.1. (i) W (B,Lp) is a well-de�ned Banach space.

(ii) W (Lp, Lp) = Lp

(iii) If B1 ⊆ B2 and p ≤ q then W (B1, L
p) ⊆ W (B2, L

q).

(iv) If B1∗B2 ⊆ B3 and L
p∗Lq ⊆ Lr then W (B1, L

q)∗W (B2, L
q) ⊆ W (B3, L

r).
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6.2 Stability results

We now want to show that a system of the form {MnbTmaF
αm,nDsϕ}m,n∈Z is a

frame, if the lattice allows it and s is su�ciently close to 1. Our argument will

be based on Theorem 2.5. An important part of the strategy for the proof was

suggested by H. G. Feichtinger.

Lemma 6.1. De�ne the weight W (x, ω) := (1 + x2 + ω2)2. Then for s↘ 1

‖Vϕ(FαDsϕ− ϕ)‖L∞W (R2) → 0 uniformly for α ∈ R

Proof. First observe that by Lemma 4.2

|Vϕ(FαDsϕ− ϕ)(x, ω)|W (x, ω) = |Vϕ(Fα(Dsϕ− ϕ))(x, ω)|W (x, ω)

= |Vϕ(Dsϕ− ϕ)(y, τ)|W (y, τ)

where y, τ are de�ned as in 4.8. So w.l.o.g. we set α = 0. By Lemma 1.6∣∣∣∣Vϕ(Dsϕ− ϕ)(x, ω)

∣∣∣∣ =

∣∣∣∣ϕs2+1(x)ϕ s2+1

s2
(ω) e

−2πi s2

s2+1
xω − ϕ2(x)ϕ2(ω)e−πixω

∣∣∣∣
=

∣∣∣∣
√

2s

s2 + 1
e
π 1
s2+1

(x2+s2ω2)
e
−πi 1−s

2

1+s2
xω − e−π

1
2

(x2+ω2)

∣∣∣∣
We �rst look at the real part:

|Re(Vϕ(ϕ−Dsϕ)(x, ω))| =
∣∣∣∣e−π x2+ω22 −

√
2s

s2 + 1
e
−π 1

s2+1
(x2+s2ω2)

× cos(π 1− s2

1 + s2
xω)

∣∣∣∣
Set

y1 = y1(x, ω) := π
x2 + ω2

2
,

y2 = y2(x, ω, s) := π
1

s2 + 1
(x2 + s2ω2)− 1

2
log(

2s

s2 + 1
)

z = z(x, ω, s) := π
1− s2

1 + s2
xω

I1 := [min(y1, y2),max(y1, y2)], I2 := [min(0, z),max(0, z)]
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We rewrite the above and use the mean-value Theorem:

|Re(Vϕ(ϕ−Dsϕ)(x, ω))| = |e−y1 − e−y2cos(z)|
≤ |e−y1 − e−y2|+ |e−y2cos(0)− e−y2cos(z)|
≤ sup

ξ∈I1
e−ξ |y2 − y1|+ e−y2 sup

η∈I2
|sin(η)||z|

≤ e−min(y1,y2)|y2 − y1|+ e−y2|z|
=: A(x, ω, s) + B(x, ω, s)

Take ε > 0. First we look at A: Fix any S > 1, then ∀s ∈ [1, S]

y2(x, ω, s) ≥ π
1

S2 + 1
(x2 + ω2)− 1

2
log(S) ≤ y1(x, ω, s)

and also

|y2 − y1| ≤ π
s2 − 1

2(s2 + 1)
(x2 + ω2) +

∣∣∣∣12 log(
2s

s2 + 1
)

∣∣∣∣
≤ π

S2 − 1

2(S2 + 1)
(x2 + ω2) +

1

2
log(S)

This gives ∀s ∈ [1, S]

A(x, ω, s)W (x, ω) ≤ e
−π 1

S2+1
(x2+ω2)− 1

2
logS

×
(
π

S2 − 1

2(S2 + 1)
(x2 + ω2) +

1

2
logS

)
(1 + |x|2 + |ω|2)2

From this we see that A(x, ω, s)W (x, ω)→ 0 for x2 + ω2 →∞ uniformly for s ∈
[1, S]. So we can chooseM1 s.t. A(x, ω, s)W (x, ω) < ε for x2+ω2 ≥M1, s ∈ [1, S].

From the above estimate for |y2 − y1| it's clear that |y2 − y1| → 0 for s ↘ 1

uniformly on {(x, ω) : x2 +ω2 ≤M1}. We can therefore choose S1 ≤ S such that

A(x, ω, s) ≤ ε, ∀(x, ω), s ∈ [1, S1].

Next we look at B(x, ω, s). For s ∈ [1, S]

B(x, ω, s)W (x, ω) ≤
√
S e
−π 1

S2+1
(x2+ω2)

π
S2 − 1

2
|xω|(1 + x2 + ω2)2

So B(x, ω, s)→ 0 for x2 +ω2 →∞ uniformly for s ∈ [1, S]. So we can choose M2

s.t. B(x, ω, s)W (x, ω) < ε for x2 + ω2 ≥ M2, s ∈ [1, S]. And again, since by the

above estimate B(x, ω, s)W (x, ω)→ 0 for s↘ 1 uniformly on {(x, ω) : x2 +ω2 ≤
M2}, we can choose S2 ≤ S st. B(x, ω, s) ≤ ε, ∀(x, ω), s ∈ [1, S2].
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We still need to look at the imaginary part:

|Im(Vϕ(ϕ−Dsϕ)(x, ω))| = |0− e−y2sin(z)|

An argument analogous to that we used for B shows that we can choose S3 s.t.

‖Im(Vϕ(ϕ−Dsϕ))‖L∞W (R2) < ε for s ≤ S3.

Then for 1 ≤ s ≤ min(S1, S2, S3) we have

‖Vϕ(ϕ−Dsϕ)‖L∞W (R2) < 3ε.

In [7] was shown that for two 'suitable' Banach-Convolution-Triples (B1, B2, B3)

and (C1, C2, C3) there is C > 0, s.t. for f1 ∈ W (B1, C1), f2 ∈ W (B2, C2) we have

‖f ∗ g‖W (B3,C3) ≤ C ‖f‖W (B1,C1) ‖f2‖W (B2,C2). In following Lemma we mimic the

argument from there to get a concrete value of C for the BCTs (M,C0, C0) and

(L2, L1, L2).

Lemma 6.2. Given a, b > 0 de�ne ψ := χ[−a/2,a/2)×[−b/2,b/2) and for i = (i1, i2) ∈
R2 set ψi := T(i1a,i2b)ψ. Denote by ‖.‖W (.,.) the Wiener-Amalgam norms associ-

ated with the BUPU Φ := {ψi : i ∈ Z2}.

Then for g ∈ W (C0(R2), L1), µ ∈ W (M(R2), L2):

‖µ ∗ g‖L2(R2) ≤
√

(3a+ 1)(3b+ 1) ‖µ‖W (M,L2) ‖g‖W (C0,L1) <∞

Proof. Clearly

‖µ ∗ g‖2 ≤ (

∫
R2

‖Tzψ (µ ∗ g)‖2
∞dz)1/2

We look at the integrand: for z ∈ R2

‖Tzψ (µ ∗ g)‖∞ = ‖
∑

(i,j)∈(Z2)2

Tzψ (ψiµ ∗ ψjg)‖∞

In the following denote intervals of the form [c− r, c+ r] by [c± r]. We have for

x = (x1, x2) ∈ R2

x ∈ supp(ψiµ ∗ ψjg)⇒ µ(ψi Tx((ψjg)̌ ) 6= 0

⇒ ψi Tx((ψjg)̌ ) 6= 0

⇒
(
[i1a± a

2
]× [i2b± b

2
]
)
∩(

[−j1a+ x1 ± a
2
]× [−j2b+ x2 ± b

2
]
)
6= ∅

⇒ |(i1 + j1)a− x1| ≤ a ∧ |(i2 + jj)b− x2| ≤ b
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Now for z ∈ R2 de�ne

Iz := {(i, j) ∈ (Z2)2 : ([z1 ± a
2
] ∩ [(i1 + j1)a± a])×

([z2 ± b
2
] ∩ [(i2 + j2)b± b]) 6= ∅}

= {(i, j) ∈ (Z2)2 : |z1 − a(i1 + j1)| < 3
2
a ∧ |z2 − b(i2 + j2)| < 3

2
b}

It's easy to see that

supp(Tzψ) ∩ supp(ψiµ ∗ ψjg) 6= ∅ ⇒ (i, j) ∈ Iz

and that for (i, j) ∈ Iz it follows that

z ∈ [a(i1 + j1)± 3
2
a]× [b(i2 + j2)± 3

2
b]

⇒ [−j1a+ z1 ± 1
2
]× [−j2b+ z2 ± 1

2
] ⊆ [i1a± (3

2
a+ 1

2
)]× [i2b± (3

2
b+ 1

2
)]

and thus, for d1 := 3
2
a+ 1

2
, d2 := 3

2
b+ 1

2
, we have

χ[i1a±d1]×[i2a±d2] ∗ χ[j1± 1
2

]×[j2± 1
2

](z) = 1, ∀(i, j) ∈ Iz

Using this we obtain

‖µ ∗ g‖2
2 ≤

∫
R2

∑
(i,j)∈(Z2)2

‖Tzψ (ψiµ ∗ ψjg)‖2
∞ dz

=

∫
R2

∑
(i,j)∈Iz

‖Tzψ (ψiµ ∗ ψjg)‖2
∞ dz

≤
∫
R2

∑
(i,j)∈Iz

‖ψiµ‖2
M ‖ψjg‖2

∞
(
χ[i1a±d1]×[i2a±d2] ∗ χ[j1± 1

2
]×[j2± 1

2
]

)2
(z) dz

≤
∫
R2

((∑
i∈Z2

‖ψiµ‖M χ[i1a±d1]×[i2a±d2]

)
∗

(∑
j∈Z2

‖ψjg‖∞ χ[j1± 1
2

]×[j2± 1
2

]

))2

(z) dz

≤ 4d1d2 ‖µ‖2
W (M,L2) ‖g‖2

W (C0,L1)

And the result follows. In the last step we have used Young's inequality.

Theorem 6.2. Take a, b ∈ R and set ϕm,n := MnbTmaϕ. If {ϕm,n}m,n∈Z is a

frame (this is equivalent to ab < 1) then there exists S > 1 and positive numbers

Ã, B̃ such that for s ∈ [1, S] and any sequence (αm,n) the system {ϕ̃m,n}m,n∈Z,
where ϕ̃m,n := MnbTmaF

αm,nDsϕ, is a frame with bounds Ã and B̃.
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Proof. We look at the pertubation operator

P : l2(Z2)→ L2(R), (cm,n) 7→
∑
m,n

cm,n(ϕ̃m,n − ϕm,n)

and show that for s ↘ 1 ||P || → 0 independently of the αm,n. Then the result

follows from Corollary 2.1.

Let ε > 0. By Lemma 6.1 ∃S > 1 s.t. for W (x, ω) := (1 +x2 +ω2)2 and s ∈ [1, S]

||Vϕ(F aDsϕ− ϕ)||L∞W < ε, ∀a ∈ R

Then it's easy to see that for any m,n ∈ Z and x, ω ∈ R, s ∈ [1, S]

|T(−ma,−nb)(Vϕ(ϕ̃m,n − ϕm,n))(x, ω)| = |Vϕ(Fαm,nDsϕ− ϕ)(x, ω)|

≤ ε

W (x, ω)

Take c = (cm,n) ∈ l2(Z2), s ∈ [1, S]. Using the Wiener-amalgam norms from

Lemma 6.2

‖Pc‖L2(R) =
∥∥∑
m,n

cm,n Vϕ(ϕ̃m,n − ϕm,n)
∥∥
L2(R2)

=
∥∥∑
m,n

cm,n (δ(ma,nb) ∗ (T(−ma,−nb)Vϕ(ϕ̃m,n − ϕm,n)))
∥∥
L2(R2)

≤
∥∥∑
m,n

|cm,n| (δ(ma,nb) ∗ |Vϕ(Fαm,nDsϕ− ϕ)|)
∥∥
L2(R2)

≤
∥∥(
∑
m,n

|cm,n| δ(ma,nb)) ∗
ε

W

∥∥
L2(R2)

≤
√

(3a+ 1)(3b+ 1)
∥∥∑
m,n

|cm,n| δ(ma,nb)

∥∥
W (M(R2),L2(R2))

∥∥ ε
W

∥∥
W (C0(R2),L1(R2))

We have ∥∥ ε
W

∥∥
W (C0(R2),L1(R2))

≤ ε
∑

M,N∈Z

sup
(x,ω)∈CM,N

1

(1 + x2 + ω2)2︸ ︷︷ ︸
:=K,<∞

(6.1)

where CM,N := [(M ± 1
2
)a]× [(N ± 1

2
)b].
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Furthermore for ψi as in Lemma 6.2∥∥∑
m,n

|cm,n| δ(ma,nb)

∥∥2

W (M,l2)
=
∑
i∈Z2

∥∥ψi ( ∑
(m,n)∈Z2

|cm,nδ(ma,nb))
∥∥2

M

≤
∑
i∈Z2

sup
‖f‖∞=1

( ∑
(m,n)∈Z2

|cm,n|2 |f(ma, nb)|2︸ ︷︷ ︸
≤1

ψi(ma, nb)
2︸ ︷︷ ︸

δi,(m,n)

)
≤ ‖c‖2

2

It follows that for s ∈ [1, S]

‖Pc‖L2(R) ≤ ε
√

(3a+ 1)(3b+ 1)K ‖c‖l2(Z2)

and thus ‖P‖ → 0 as s↘ 1.

Remark 6.1. The proof of Theorem 6.2 also works for any other window g for

which an analog of Lemma 6.1 holds.

Remark 6.2. Numerical simulations suggest that the frame bounds obtained from

Corollary 2.1 are, in our situation, not optimal. Figure 29 shows the result of an

experiment for signal length 360, a = b = 15 and randomly chosen αm,n. The

solid lines give the optimal frame bounds for the systems {ϕ̃m,n} for s running

from 1 to 3. The dashed lines indicate the bounds coming from Corollary 2.1.

(For s ≥ 2.4 the condition ‖P‖ <
√
A is not satis�ed.)

Nevertheless we want to evaluate the result from Theorem 6.2 in order to obtain

concrete frame bounds in the continuous case for di�erent values of a, b and s.

First we need frame bounds for the standard Gabor system with Gaussian win-

dow. As mentioned in [6] the Janssen representation provides an easy way of

estimating frame bounds for the frame operator Sg,Λ of a Gabor system with

window g, satisfying ‖g‖2 = 1, and a lattice Λ. Set

γ :=
∑

λo∈Λo, λo 6=0

|Vgg(λo)|, (6.2)

if γ < 1 then

Aopt = ‖S−1
g,Λ‖

−1 ≥ redΛ (1− γ) (6.3)

and

Bopt = ‖Sg,Λ‖ ≤ redΛ (1 + γ).

In our case, for g = ϕ and Λ = aZ× bZ, we have
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Figure 29: Solid: Optimal lower (left) and upper (right) frame bounds for {ϕ̃m,n}
for di�erent values of s and a �xed random choice of the αm,n. Dashed: Lower

and upper bounds computed via Corollary 2.1

γ =
∑

(m,n)6=(0,0)

e−π(m
2

2b2
+ n2

2a2
).

The series converges extremely fast and can be evaluated easily, yielding frame

bounds A,B.

Next we computeK from (6.1). The series de�ningK only converges at a polyno-

mial rate but still allows for su�ciently precise numerical evaluation by restricting

the summation to max(|M | , |N |) < K, K � 1. Then the error is of order

1

δ2

∫
x2+y2≥K2

1

(x2 + y2)2
dxdy = O(

1

δ2K2
)

where δ := min(a, b).

Following the proof of Theorem 6.2 we now set

ε :=

√
A

K
√

(3a+ 1)(3b+ 1)

and compute s as in Lemma 6.1. The easiest way to do this (at least approx-

imately) is to evaluate Vϕ(Dsϕ − ϕ) ·W on a grid around 0, �nd the absolute
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maximum and, if this is greater then ε, reduce s and repeat until the maximum

is smaller than ε.

Unfortunately for this to happen, s has to be chosen very close to 1. For a = b =

0.75 we get s = 1.025 and other values for a and b yield similar s. Comparing

this with numerical experiments, in which the frame bounds didn't react too

sensitive on changes in s, we conclude that the technique used to proof Theorem

6.2 provides only rather pessimistic estimates and more e�ort will be required to

obtain satisfactory results.

Using the same technique as for Theorem 6.2 we can also easily get result con-

cerning stability in the αm,n.

Lemma 6.3. For s > 0, α, β ∈ R and W (x, ω) := (1 + x2 + ω2)2 we have

‖Vϕ(RβDsϕ−RαDsϕ)‖L∞W (R2)→ 0 as β → α.

Sketch of proof: Since W is rotationally symmetric and because of Theorem 4.2

we can assume α = 0. Then the proof is similar to that of Lemma 6.1.

Theorem 6.3. Given a, b ∈ R, s > 1, αm,n ∈ RZ×Z set ϕm,n := MnbTmaR
αm,nDsϕ

for m,n ∈ Z. If {ϕm,n}m,n∈Z is a frame, then there exists δ > 0 and positive

numbers Ã, B̃ such that for any sequence (βm,n) with |βm,n − αm,n| < δ,∀m,n
and ϕ̃m,n := MnbTmaR

βm,nDsϕ the system {ϕ̃m,n}m,n∈Z is a frame with bounds Ã

and B̃.

Proof. Like for Theorem 6.2, but using Lemma 6.3 instead of Lemma 6.1.
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Appendix

Matlab code

hermf_simple.m

% HERMF_SIMPLE.M

%

% COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA

% http://nuhag.eu/

% Permission is granted to modify and re-distribute this

% code in any manner as long as this notice is preserved.

% All standard disclaimers apply.

%

% HERMF(unctions).M HGFei

% (reduced and simplified for easy readability by A. Missbauer)

%

% generates an orthonormal system of discrete Hermite functions

%

% USAGE: HERM = hermf(n);

%

% Input: n signal length

% Output: HERM orthogonal n by n matrix, i-th column approximates the

% (i-1)-th Hermite function, up to (roughly) i=n/sqrt(2)

function HERM = hermf_simple(n)

g = gaussc(n,1).';

%construct weight W and corresponding STFT-multiplier,

RW = radwgh(n);

MRW = max(RW(:));

W = 1 + MRW - RW;

GMW = gabmulhf(W,g,1,1);

% perform eigenvalue-decomposition and -sorting on the GMW

HERM = eigsort(GMW);

% eliminate constant complex factors

HERM = twtoreal(HERM,2).';
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%weight function:

function radMat = radwgh(m,n)

if nargin < 2; n = m; end;

dm=min(0:m-1, m:-1:1); % calculating minimum distance along the row

dn=min(0:n-1, n:-1:1); % calculating minimum distance across column

radMat= sqrt((ones(m,1)*dn).^2+((dm(:)*ones(1,n)).^2))+1; %matrix with

% minimum distance of a point from (1,1)

gabbastfr.m

% GABBASTFR

%

% Andreas Missbauer, 2012

% Uses hermf.m, hermrot.m, rotmod.m. which are copyrighted by

% NuHAG, University of Vienna.

%

% Generates a gabor-like system from a window g and a lattice

% xp (given by a 0-1-matrix). For separable lattices use parameters a,b

% instead.

% Each atom is rotated clockwise in the time frequency plane (via the

% routine hermrot.m, a discrete analog of the FRFT) according to the values

% in R, which are interpreted in degrees.

% If R==0 the angles are chosen randomly. If R contains nans the

% corresponding functions are left out.

%

% Supports 2 modes:

% 'f': fast: values in R are rounded to degrees (default), fft is

% used for speed-up

% 'p': precise: no rounding, slow

%

% Usage: G=gabbastfr(g,R,xp)

% or G=gabbastfr(g,R,a,b)

% or G=gabbastfr(g,R,xp,'f')

% or G=gabbastfr(g,R,a,b,'f')

%

% Input: g ... window of length n

% R ... nxn matrix containing the angles

% xp ... lattice OR a,b ... lattice parameters
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% mode ... string specifying mode ('f' or 'p')

%

% Output: G ... matrix, each row contains an element of the system

function [G]=gabbastfr(g,R,a,b,mode)

n=length(g);

if nargin==4 && ~ischar(b)

mode='f';

a=lattp(n,a,b);

elseif nargin==4

mode=b;

elseif nargin==5

a=lattp(n,a,b);

end

H=hermf(n);

% In fast-mode: create a dictionary with all the required rotated windows

% use FFT and addition property of the FRFT for speed-up

if strcmp(mode,'f')

R=round(R);

R=mod(R,360);

Rots=nan(360,n); % dictionary

ac=zeros(1,360); % already computed rotations

for ii=1:n

for jj=1:n

if ac(R(ii,jj)+1)==1

1;

elseif ac(mod(R(ii,jj)-90,360)+1)==1

Rots(R(ii,jj)+1,:)= ...

fft(Rots(mod(R(ii,jj)-90,360)+1,:))/sqrt(n);
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elseif ac(mod(R(ii,jj)+90,360)+1)==1

Rots(R(ii,jj)+1,:)= ...

ifft(Rots(mod(R(ii,jj)+90,360)+1,:))*sqrt(n);

elseif ac(mod(R(ii,jj)+180,360)+1)==1

Rots(R(ii,jj)+1,:)= ...

Rots(mod(R(ii,jj)+180,360)+1,[1,n:-1:2]);

elseif ac(R(ii,jj)+1)==0

Rots(R(ii,jj)+1,:)=hermrot(g,H,R(ii,jj));

end

ac(R(ii,jj)+1)=1;

end

end

end

co=a(:); co=find(co>0);

nopoints=length(co);

G=zeros(nopoints,n);

if norm(R)==0

R=ceil(rand(n)*noang);

end

[rind,cind]=ind2sub([n,n],co);

for jj=1:nopoints

t=cind(jj)-1;

f=rind(jj)-1;

if isnan(R(rind(jj),cind(jj)))

G(jj,:)=0;

elseif strcmp(mode,'f')

G(jj,:)=rotmod(Rots(R(rind(jj),cind(jj))+1,:),t,f);
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elseif strcmp(mode,'p')

G(jj,:)=rotmod(hermrot(g,H,R(rind(jj),cind(jj))),t,f);

end

end
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Figure 30: Like Figure 16: For a = b = 18: Optimal lower frame bounds for

Gabor systems with window RαDsϕ for α ranging from 0 to π
2
on the horizontal

axis and s varying geometrically from 1.051 to 1.0532.
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Figure 31: Like Figure 19: For a = 27, b = 12: Optimal lower frame bounds for

Gabor systems with window RαDsϕ for α ranging from 0 to π
2
on the horizontal

axis and s varying geometrically from 1.051 to 1.0532.
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Abstract in English

The intention of this diploma thesis is to examine the e�ects of the fractional

Fourier transform on Gabor frames with Gaussian window. Starting from such a

Gabor system we apply some fractional power of the Fourier transform to each

element. Geometrically one can think of the resulting family as a collection of

(independently) rotated ellipses, positioned along a lattice in the time-frequency

plane. We will see how the alignment of the ellipses is re�ected in the frame

bounds.

While chapters 1 to 3 cover the necessary tools and concepts from Fourier- and

Gabor analysis, chapter 4 is dedicated to the fractional Fourier transform and

especially its implementation on a computer. We compare two algorithms for

computing discrete Hermite functions, one from [3] and one which was developed

at NuHAG. We also investigate the convergence behavior of the latter one.

In chapter 5 we conduct numerical experiments for di�erent choices of the rotation-

parameters. If the resulting system is a Gabor frame the behavior of the frame

bounds is easily understood, yet not unsurprising. We also investigate some

special cases and the systems resulting from random choices of the rotation pa-

rameters.

Finally chapter 6 contains stability results for the frame bounds of the systems

at hand, which we establish via the theory of Wiener amalgam spaces.
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Deutsches Abstract

Ziel der vorliegenden Diplomarbeit ist, den E�ekt der fraktionalen Fourier Trans-

formantion auf Gabor Frames mit Gauÿscher Fensterfunktion zu untersuchen.

Ausgehend von solch einem Gabor-System wird auf jedes Element eine Wurzel

der Fourier Transformation angewandt. Die entstehenden Systeme kann man

sich geometrisch als eine Familie rotierter Ellipsen vorstellen, die entlang eines

Gitters in der Zeit-Frequenz Ebene positioniert sind. Es wird ersichtlich, wie sich

die Anordnung dieser Ellipsen in den Frame-Schranken widerspiegelt.

Nachdem in den Kapiteln 1 bis 3 die Grundlagen der Fourier- und Gabor Analyisis

beschrieben werden, widmet sich Kapitel 4 der fraktionalen Fourier Transforma-

tion und ihrer Implementation. Hierzu wird ein etablierter Algorithmus (siehe

[3]) mit einem in der NuHAG entwickelten Verfahren verglichen, für das auch

eine Konvergenzanalyse durchgeführt wird.

Kapitel 5 beschreibt die Ergebnisse numerischer Experimente zu den oben genan-

nten Systemen. Es zeigt sich, dass falls das resultierende System ein Gabor

Frame ist, das Verhalten der Frameschranken leicht verständlich, aber durchaus

erstaunlich ist. Auÿerdem werden einige Spezialfälle betrachtet, sowie jene Sys-

teme, die durch eine zufällige Wahl der Rotationsparameter entstehen.

In Kapitel 6 schlieÿlich �nden sich Stabilitätsresultate für die Frame-Schranken

der untersuchten Systeme. Diese werden mit Hilfe der Theorie der Wiener-

Amalgam Räumen bewiesen.
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