1	International Journal of Antimicrobial Agents, Volume 41, Issue 5, 2013, Pages		
2	488–489		
3	http://dx.doi.org/10.1016/j.ijantimicag.2013.01.001		
4	Title		
5	Activity of the efflux pump inhibitor SILA 421 against drug-resistant tuberculosis		
6			
7	Authors		
8	Sami O. Simons# ¹ , Jette E. Kristiansen ² , Gyorgy Hajos ³ , Tridia van der Laan ⁴ , József		
9	Molnár ⁵ , Martin J. Boeree ¹ , Jakko van Ingen ⁶ , Jørn B. Christensen ⁷ , Miguel Viveiros ⁸ ,		
10	Zsuzsanna Riedl ³ , Leonard Amaral ⁸ , and Dick van Soolingen ⁶		
11			
12	Affiliations		
13	¹ Department of Pulmonary Medicine, Radboud University Nijmegen Medical Centre,		
14	Nijmegen, the Netherlands		
15	² Centre for Biomembrane Physics (Memphys), University of Southern Denmark, Odense,		
16	Denmark		
17	³ Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy		
18	of Sciences, Budapest, Hungary		
19	⁴ National Tuberculosis Reference Laboratory, National Institute for Public Health and the		
20	Environment (RIVM), Bilthoven, the Netherlands		
21	⁵ Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged,		
22	Hungary		
23	⁶ Department of Clinical Microbiology, Radboud University Nijmegen Medical Centre,		
24	Nijmegen, the Netherlands		
25	⁷ Department of Chemistry, University of Copenhagen, Copenhagen, Denmark		

- ⁸Unit of Mycobacteriology, Institute of Hygiene and Tropical Medicine, New University of
- 27 Lisbon, Lisbon, Portugal
- *(#)Corresponding author:*
- 30 Sami O. Simons, MD
- 31 Department of Pulmonary Medicine
- 32 Radboud University Nijmegen Medical Centre
- *PO Box 9101, 6500 HB Nijmegen*
- *the Netherlands*
- *Tel:* +*31* (0)243610325
- *Fax:* +31 (0)243610324
- *E-mail: s.simons@long.umcn.nl*

- .0

- -

51 Dear editor,

53	Organosilicon compounds are efflux pump inhibitors with potency as an antituberculosis
54	drug. Of the organisilicon compounds tested, SILA 421 has been shown to have a highest
55	potency as an antituberculosis drug (1). It shares the common pathways for antimycobacterial
56	killing with other efflux pump inhibitors: it revealed direct in vitro activity against M.
57	tuberculosis (1), it has been shown to modify resistance by inhibiting mdr-1 efflux pumps and
58	has shown to enhance killing of <i>M. tuberculosis</i> by macrophages (1). However, the activity of
59	SILA 421 has only been tested against the <i>M. tuberculosis</i> H37Rv type strain and one clinical
60	XDR <i>M. tuberculosis</i> isolate so far (1). We therefore assessed the antimycobacterial activity
61	of SILA 421 against an extended set of <i>M. tuberculosis</i> strains with varying drug
62	susceptibility profiles. Secondly, we compared antimycobacterial activity of SILA 421 with
63	that of thioridazine and other phenothiazines.
64	We selected 21 clinical <i>M. tuberculosis</i> isolates with varying drug susceptibility profiles: five
65	isolates were pansusceptible, 11 were monoresistant (6 isoniazid monoresistant, 4 rifampin
66	monoresistant and 1 streptomycin monoresistant) and 5 were MDR M. tuberculosis isolates.
67	All isolates were extracted from a -70 °C freezer collection and sub-cultured on Ogawa
68	medium. Inoculum preparation was performed as described previously aiming at 2×10^3 to 10
69	x 10^3 CFU (2). To determine the Minimal Inhibitory Concentration (MIC) we performed
70	drug-susceptibility testing using a well-standardized Middlebrook 7H10 agar dilution method
71	as described previously (2) using the following drug concentrations: 1, 2, 4, 8, and 16 mg/L.
72	All drugs were received as chemically pure powder. SILA 421 was provided by Dr. G. Hajos
73	(Institute for Biomolecular Chemistry, Budapest, Hungary). Chlorpromazine, desipramine,
74	promazine and thioridazine were obtained from Sigma-Aldrich (Zwijndrecht, the
75	Netherlands). Because the thioridazine S-enantiomer might induce less side-effects (4) we

- ⁷⁶ studied both thioridazine enantiomers separately. The two thioridazine enantiomers were
- 77 prepared by Dr. J.B. Christensen (Dept. Chemistry, Copenhagen, Denmark). All drugs were
- dissolved in distilled water to a stock solution of 10 g/L
- 79 The MIC of SILA 421 could be determined after a median of 14 days (range 14-18 days). The
- 80 MIC₅₀ was 4 mg/L and the MIC₉₀ was 8 mg/L. Table 1 shows the comparison of the MIC₅₀
- and MIC₉₀ of SILA 421 with the various phenothiazines. The MICs found for the
- phenothiazines were comparable with those found in the literature (3). The MIC_{50} of SILA
- 421 was similar to the MIC_{50} of thioridazine and chlorpromazine. On the contrary, MIC_{50} of
- both desipramine and promazine were both much higher than the MIC₅₀ of SILA 421. When
- comparing the MIC_{90} , lowest MIC_{90} was measured for SILA 421.
- 86 These data show that the SILA 421 is active in vitro against *M. tuberculosis* isolates with a
- 87 wide variety of drug susceptibility patterns, thereby providing incremental evidence of its
- 88 antimycobacterial activity. Moreover, we showed that SILA 421 is equally active in vitro as
- 89 thioridazine, another well-known efflux pump inhibitor.
- In a previous study, SILA 421 has been proposed to be more potent that thioridazine (1).
- 91 However, only two M. tuberculosis isolates had been tested (1). The present study confirms
- 92 that SILA 421 may be a promising antituberculosis drug with activity against a wide variety
- 93 of *M. tuberculosis* strains comparable to that of thioridazine. Further studies are warranted to
- 94 investigate the potency of SILA 421 as an antituberculosis drug in animals and in humans.
- 95 Besides its antimycobacterial activity, SILA 421 might also have another appealing feature.
- Like all efflux pump inhibitors, SILA 421 will inhibit the activity of efflux pumps of MDR
- 97 mycobacteria, presumptively rendering mycobacteria more susceptible to the antituberculosis
- drugs to which it was initially resistant as a consequence of their extrusion from the cell (5).
- 99 Thus, these drug resistance modifiers might be of interest not only for their immediate

antimycobacterial activity but also as an adjunctive agent to be added to new or existingantituberculosis regimens.

Of additional interest is our finding that the S-enantiomer of thioridazine is as effective as 102 thioridazine itself against *M. tuberculosis*. It is thought this S-enantiomer might induce less 103 neurological side effects owing to a lower affinity to the D2 dopamine receptor (4), putatively 104 favoring the S-enantiomer over the racemate as an antituberculosis drug. However, it is 105 unknown if the D2 dopamine receptor is the only target for neurological side-effects of 106 thioridazine and it is unclear whether the pharmacokinetic and pharmacodynamic properties 107 of the thioridazine enantiomers are equal. Notwithstanding these limitations, our findings 108 109 raise hope that structural optimization of thioridazine-derivatives is possible without losing antimycobacterial activity (3.4). 110 In conclusion, the present study provides confirmatory and incremental evidence of the 111 112 antimycobacterial activity of SILA 421 and the phenothiazines, such as thioridazine. Therapeutic opportunities lay in the structural optimization of these drugs as well as in their 113 114 drug resistance modifying effect. Future studies should bring SILA 421 and the

115 phenothiazines further up the drug development pipeline.

118	1.	Martins M, Viveiros M, Ramos J, Couto I, Molnar J, Boeree M, et al. SILA 421, an
119		inhibitor of efflux pumps of cancer cells, enhances the killing of intracellular extensively
120		drug-resistant tuberculosis (XDR-TB). Int. J. Antimicrob. Agents. 2009;33:479-482.
121		
122	2.	Van Klingeren B, Dessens-Kroon M, Van der Laan T, Kremer K, Van Soolingen D.
123		Drug susceptibility testing of Mycobacterium tuberculosis complex by use of a high-
124		throughput, reproducible, absolute concentration method. J. Clin. Microbiol.
125		2007;45:2662-2668.
126		
127	3.	Amaral L, Viveiros M. Why thioridazine in combination with antibiotics cures
128		extensively drug-resistant Mycobacterium tuberculosis infections. Int. J. Antimicrob.
129		Agents 2012;39:376-380.
130		
131	4.	Thanacoody HK. Thioridazine: resurrection as an antimicrobial agent? Br. J. Clin.
132		Pharmacol. 2007;64:566-574.
133		
134	5.	Amaral L, Viveiros M. Why thioridazine in combination with antibiotics cures
135		extensively durg-resistant Mycobacterium tuberculosis infections. Int J Antimicrob
136		Agents 2012;39:376-80
137		
138		

140 Tables

141

- 142 Table 1
- 143 The MIC₅₀ and MIC₉₀ of SILA 421 and the various phenothiazines^(a).

Efflux pump inhibitor	MIC ₅₀ (mg/L)	MIC ₉₀ (mg/L)	Range (mg/L)
SILA 421	4	8	2 - 16
Thioridazine	4	16	2 - 16
Thioridazine, S-enantiomer	8	16	4 - 16
Thioridazine, R-enantiomer	8	16	4 - 16
Chlorpromazine	4	16	<1 - 16
Desipramine ^(b)	>16	>16	16 - >16
Promazine ^(b)	>16	>16	16 ->16

144 (a) MIC₅₀, MIC at which \geq 50% of isolates are inhibited. MIC₉₀, MIC at which \geq 90% of

isolates are inhibited.

146 ^(b) MIC distribution was based on 20 instead of 21 isolates.