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Abstract 
 

X-ray crystallography is the most powerful technique for structural determination of 

proteins, a vital research tool, enabling insight at the atomic level, of the three dimensional 

structure of key protein receptors for potential drug compounds. To be successful, single, 

high quality crystals of the compound in question are required. Current methods to 

produce crystals involve frustratingly long timescales, extensive trial and error using large 

amounts of material, and have no guarantee of success. Polymorphic compounds add 

another level of frustration, requiring the thermodynamic control of crystallisation in order 

to overcome Ostwald’s rule of stages, which considers crystallisation from bulk solution to 

be under kinetic control with metastable polymorphs often crystallising initially. These 

factors have led to what is currently referred to as the “bottle-neck” of protein 

crystallisation, an acute problem1 motivating the rapid development of protein 

crystallisation techniques2. 

 This thesis aims to alleviate the bottle-neck found in protein crystallisation by 

exploring protein crystallisation using microemulsions; a technique, which until now, has 

only been successfully applied to the thermodynamic control of crystallisation for small 

compounds, such as 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (commonly 

known as ROY)3 and glycine4. Through the application of several different surfactant 

systems for the crystallisation of model protein, Lysozyme, this thesis explores the use of 

microemulsions with the aim of producing high quality single crystals suitable for X-ray 

diffraction experiments.  

 Numerous, large, high quality, single crystals of Lysozyme were successfully grown 

using a TritonX-100/1-hexanol surfactant system in which an anti-solvent, mixed 

microemulsion method was applied. Small angle X-ray scattering (SAXS) was effectively 

used to confirm formation of microemulsions and led to the determination of droplet sizes 

using generalised indirect Fourier Transform (GIFT) analysis. X-ray diffraction experiments 

showed single crystals grown from microemulsions to have a high internal order, with the 

resultant data sets of a publishable quality and of a comparative quality to data sets 

collected from crystals grown using standard vapour diffusion crystallisation techniques. 

This thesis demonstrates, for the first time, that microemulsions can be successfully 

used to produce high quality, single crystals of the protein, Lysozyme, shining light on this 

novel technique as a potential means of relieving the bottle-neck of protein crystallisation. 

Future directions of this work include exploring the robustness of the microemulsion 
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crystallisation technique with other proteins such as insulin, glucose isomerase and 

albumin. Expanding this novel technique to the crystallisation of membrane proteins may 

be initially explored through the crystallisation of a 25 residue, membrane spanning part of 

the M2 protein of the influenza virus. This would provide an interesting starting point due 

to the proteins’ biological importance as a target of anti-influenza drugs. 

  



iv 
 

Contents 
 

 Page 
Chapter One Introduction 1 
Chapter Two Background 4 

2.1 Surfactants 4 
2.1.1 Classification 5 
2.1.2 Interfacial Tension 6 
2.1.3 Properties: Efficiency and Effectiveness 6 
2.1.4 Micellisation 7 
2.1.5 The Krafft Point 10 
2.1.6 The Cloud Point 11 

2.2 Emulsions 12 
2.2.1 Hydrophilic-lipophilic Balance (HLB) 14 
2.2.2 Phase Inversion Temperature (PIT) 15 
2.2.3 Nano-emulsions 16 
2.2.4 Microemulsions 17 
2.2.5 Microemulsions: Microstructure and Classification 18 
2.2.6 Co-surfactant 19 
2.2.7 Surfactant Film Spontaneous Curvature 20 
2.2.8 Bending Elasticity of the Surfactant Film 21 
2.2.9 Phase Behaviour 21 

2.2.10 Microemulsions: Droplet Polydispersity 23 
2.2.11 Applications of Microemulsions 24 

2.3 Crystallisation 24 
2.3.1 Nucleation and Supersaturation 25 
2.3.2 Homogeneous Nucleation 26 
2.3.3 Heterogeneous Nucleation 27 
2.3.4 Chemical Crystallisation 29 
2.3.5 Protein Crystallisation 30 
2.3.6 Vapour Diffusion methods 30 
2.3.7 Batch Methods 33 
2.3.8 Polymorphism 33 
2.3.9 The Microemulsion Method: Thermodynamic Control of Crystallisation 34 

2.3.10 Lysozyme: A model Protein for Crystallisation Studies 37 
2.3.11 Membrane Proteins: A Crystallisation Challenge 38 

2.4 X-ray Crystallography 40 
2.4.1 Crystal Structure 41 
2.4.2 The Reciprocal Lattice 42 
2.4.3 Miller Indices 42 
2.4.4 X-ray Scattering 44 
2.4.5 The Phase Problem 45 
2.4.6 Small Angle X-ray Scattering (SAXS) 46 

Chapter 
Three 

Experimental Methods 48 

3.1 Chemical Crystallisation 48 
3.1.1 Initial Solubility Screens 48 
3.1.2 Crystallisation by Evaporation 49 
3.1.3 Crystallisation by Liquid Diffusion 49 
3.1.4 Crystallisation by Vapour Diffusion 50 



v 
 

3.1.5 Selecting and Harvesting a Crystal 51 
3.2 Protein Crystallisation 51 

3.2.1 Preparation of Hanging Drop Vapour Diffusion Trays 52 
3.2.2 Microemulsion Preparation 52 

3.2.2.1 Phase Diagrams 53 
3.2.2.2 Ionic Surfactant Systems 54 
3.2.2.3 Non-ionic Surfactant Systems 55 
3.2.2.4 Methods for Further Facilitating Crystallisation in Microemulsions 55 

3.3 Microemulsion Droplet Size Determination 57 
3.3.1 Geometric Calculations 57 
3.3.2 X-ray Scattering Experiments for Microemulsions: SAXS 57 
3.3.3 Generalised Indirect Fourier Transform (GIFT) 58 

3.4 Optical Microscopy 59 
3.5 X-ray Diffraction Experiments for Single Crystals: X-ray Crystallography 60 

3.5.1 Harvesting a Crystal 60 
3.5.2 Screening a Crystal 61 
3.5.3 Data Collection and Processing 63 

Chapter 
Four 

Results 64 

4.1 Chemical Crystallisation 64 
4.1.1 Crystallisation of ASH89 64 
4.1.2 Crystallisation of ASH81/87 66 
4.1.3 Crystallisation of ASH82 68 
4.1.4 Crystallisation of ASH90 68 
4.1.5 Crystallisation of ASH93 69 
4.1.6 Crystallisation of ASH91 69 
4.1.7 Crystallisation of ASH59 70 
4.1.8 Crystallisation of GDL02, GDL38 and GDL39 70 

4.2 Proteins Crystallisation from Hanging Drop Vapour Diffusion Trays 71 
4.3 Bulk Anti-solvent Experiments 73 
4.4 Protein Crystallisation from Microemulsions 74 

4.4.1 AOT Surfactant System 74 
4.4.2 AOT Surfactant System: SAXS/GIFT Analysis 78 
4.4.3 Span80/Brij30 Surfactant System 79 
4.4.4 Span80/Tween80 Surfactant System 80 
4.4.5 TX-100/1-hexanol and TX-114 Surfactant Systems: Phase Diagrams 83 
4.4.6 TritonX-114 Surfactant System 86 
4.4.7 TritonX-100/1-hexanol Surfactant System 86 
4.4.8 TritonX-100/1-hexanol Surfactant System: Mixed Microemulsions 88 

4.5 TritonX-100/1-hexanol Surfactant System: Droplet Size Analysis 94 
4.5.1 Varying Lysozyme Concentration in Single Microemulsions 94 
4.5.2 Varying Composition Ratio of Single Anti-solvent Microemulsions 96 
4.5.3 Droplet Sizes of Mixed Microemulsions 99 

4.6 Single Crystal X-ray Diffraction Experiments 103 
Chapter Five Conclusions 108 

Appendix  112 
A1 Crystallisation Conditions for Different Crystal Forms of Lysozyme  

and Lysozyme Nitrate 
112 

A2 Preparation of Compounds Subjected to Chemical Crystallisation 114 
References  115 

 



vi 
 

List of Abbreviations 
 

  

% (wt) Percentage by mass 
2D Two Dimensional 
3D Three Dimensional 
AOT Dioctyl sulfosuccinate sodium salt 
API active pharmaceutical ingredient 
Brij30 Dodecyl tetraethylene glycol ether 
CMC Critical Micelle Concentration 
CSD Cambridge Structural Database 
CTAB Hexadecyltrimethylammonium bromide 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
EMIGEN N,N-Dimethyl-N-dodecylglycine betaine 
FT Fourier Transform 
GEWL Guinea Fowl egg-white Lysozyme 
GIFT General indirect fourier transform 
GPCR G-Protein Coupled Receptors 
HEWL Hen egg-white Lysozyme 
HLB Hydrophilic-lipophilic balance 
LCP Lipidic cubic phase 
LSP Lipidic sponge phase 
mRNA Messenger ribonucleic acid 
NaAc Sodium Acetate 
NaCl Sodium Chloride 
o/w Oil-in-water 
PDB Protein Data Bank 
PEG Polyethylene glycol 
PGSE-NMR pulsed gradient spin-echo nuclear magnetic resonance 
PIT Phase Inversion Temperature 
ROY 5-methyl-2-[(2-nitrophenyl) amino]-3-thiophenecarbonitrile 
SAXS Small Angle X-ray Scattering 
SGC Structural Genomics Consortium 
SNR Signal to noise ratio 
Span80 Sorbitane monooleate 
Surfactant Surface Active Agent 
TEWL Turkey egg-white Lysozyme 
TritonX-100 or TX-100 t-Octylphenoxypolyethoxyethanol 
TritonX-114 or TX-114 Polyethylene glycol tert-octylphenyl ether 
tRNA transfer ribonucleic acid 
Tween80 polyoxyethylenesorbitan monooleate 
V/V volume/volume percentage 
w/o water-in-oil 
w/V weight/volume percentage 
w/w weight/weight percentage 



vii 
 

List of Figures  

 

Figure  Page 
2.1 Chemical Structure of Span80 4 
2.2 Plot showing how conductivity of a solution changes with surfactant 

concentration. 
8 

2.3 Shapes of surfactant aggregates 9 
2.4 Changes in the solubility and the CMC as temperature is increased 11 
2.5 The physical appearance of macro-emulsions, nano-emulsions and 

microemulsions 
12 

2.6 Schematic of mechanisms of emulsion degradation 13 
2.7 The effect of temperature, oil polarity and electrolyte concentration on the 

PIT 
15 

2.8 Schematic of Winsor classification of microemulsions 18 
2.9 Schematic defining spontaneous curvature of a surfactant film 20 

2.10 Phase diagrams 23 
2.11 Crystallisation phase diagram 26 
2.12 Schematic of heterogeneous nucleation of a liquid droplet on a smooth, 

structureless substrate 
28 

2.13 Schematic of chemical crystallisation methods 29 
2.14 Schematic of vapour diffusion, protein crystallisation methods 31 
2.15 Crystallisation phase diagram highlighting nucleation and crystal growth 32 
2.16 Schematic of batch crystallisation method 33 
2.17 Helmholtz free energy plots 35 
2.18 Schematic of transient dimmer formation between microemulsion droplets 37 
2.19 Schematic of a unit cell 41 
2.20 Schematic of regularly arranged crystal lattice points 43 
2.21 Schematic of Miller Indices assignment 43 
2.22 Scattering diagram 44 
2.23 Schematic of Bragg’s Law 45 

3.1 Ternary phase diagram 53 
3.2 Single crystal mounted and centred on goniometer 61 
3.3 Diffraction image 62 
4.1 Clusters of ASH89 crystals 64 
4.2 Separated cluster of Ash89 crystals 65 
4.3 Cluster of ASH81/87 crystals 67 
4.4 Isolate needle ASH81/87 crystal 67 
4.5 Multiple crystallisation events in one hanging drop 72 
4.6 Single crystal grown from hanging drop vapour diffusion tray 73 
4.7 Ternary phase diagram for AOT surfactant system 75 
4.8      against   plot for microemulsion of the AOT surfactant system 78 
4.9 Pair distribution plot for microemulsions of the AOT surfactant system 79 

4.10 Pseudo ternary phase diagram for Span80/Tween80 surfactant system 81 
4.11 Pseudo ternary phase diagrams for TX-100/1-hexanol surfactant system 84 
4.12 Ternary phase diagram for TX-114 surfactant system 85 
4.13 Crystals grown from mixed microemulsion 90 
4.14 Single crystals grown from mixed microemulsion 91 
4.15 Crystallisation outcome of several different mixed microemulsions 92 
4.16      against   plot for single Lysozyme microemulsions 94 
4.17 Pair distribution plot for single Lysozyme microemulsions 95 



viii 
 

4.18      against   plot for single anti-solvent microemulsions 97 
4.19 Pair distribution plot for single anti-solvent microemulsions 97 
4.20      against   plot for mixed microemulsions, anti-solvent microemulsion 

composition ratio 1:3:6, varying Lysozyme concentration 
99 

4.21      against   plot for mixed microemulsions, anti-solvent microemulsion 
composition ratio 2:3:5, varying Lysozyme concentration 

100 

4.22 Pair distribution plot for mixed microemulsions, anti-solvent 
microemulsion composition ratio 1:3:6, varying Lysozyme concentration 

101 

4.23 Pair distribution plot for mixed microemulsions, anti-solvent 
microemulsion composition ratio 2:3:5, varying Lysozyme concentration 

101 

4.24 Single crystal mounted and centred on goniometer 104 
4.25 Spatial distribution of (I-<I>)/su 106 

 

  



1 
 

Chapter One 

Introduction 
 

The structural characterisation of proteins and small chemical compounds (including 

peptides composed of less than twenty-four amino acids) is deemed highly valuable 

research within both the academic and industrial communities. From a single crystal of the 

compound in question, it is possible to determine the compound’s physical attributes; bond 

length and angles, as well as torsion angles, electrostatic potential and a very good idea 

about intermolecular interactions can be deciphered. The benefits of such knowledge are 

manifold. For a drug molecule to be effective, it must be able to bind to a protein receptor 

site, and hence the protein’s tertiary structure must be known for successful design of drug 

molecules. It is also highly advantageous to obtain structural characterisation of 

pharmaceutical active ingredients (API) as it is important in both drug application and the 

patenting process. The importance is highlighted by the large investment made by 

pharmaceutical companies, which extensively fund research into new drug molecules. The 

importance of obtaining structural information for these molecules is manifold, including 

being able to make predictions of protein ligand interactions through the use of molecular 

modelling5-7. 

 Single crystal X-ray crystallography is by far the most powerful method of structural 

characterisation; enabling the compound’s three dimensional structure to be solved, and 

ideally to a high resolution. This valuable method has led to four Nobel prizes in the last 

twelve years and will be celebrated in the International Year of Crystallography in 20148.  

The three dimensional structure of a compound can be determined provided diffraction-

quality single crystals can be produced. Unfortunately, current methods to produce crystals 

involve frustratingly long timescales with no guarantee of success. Additionally, with 

polymorphic compounds, careful selection of the appropriate crystallisation conditions has 

to be considered in order to obtain a particular polymorph (often the most 

thermodynamically stable form). Failure to crystallise the required crystal form can have 

serious repercussions, as was the case for a marketed anti-HIV drug, Ritonavir9, in 1998. 

Naively, a metastable form of the compound was initially marketed; however, over time, 

the active ingredient transformed to a more stable form which had a reduced 

bioavailability, making the drug less effective. This resulted in Ritonavir being removed from 

the market at a substantial financial cost10. 
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 This thesis will address both chemical and protein crystallisation. For chemical 

crystallisation, commonly used methods of crystallisation will be applied, with the aim of 

using single crystal X-ray diffraction experiments to characterise the structure of the 

crystals produced. This will rely upon successful crystallisation of the compounds, which in 

some cases, is not always guaranteed and often hindered by the small amount of 

crystallisable material available. For protein crystallisation, this thesis pioneers the use of 

microemulsions to determine whether a generic improvement in the protein crystallisation 

methodology is possible.  

 Interest in the application of microemulsions to protein crystallisation stems from 

successful related work, showing an improved quality and stability of small molecule 

crystals can be obtained directly from microemulsions. It has recently been illustrated that 

microemulsion systems can impart thermodynamic control on the crystallisation process. 

Crystallisation from bulk solutions is typically under kinetic control, hence metastable 

polymorphs tend to crystallise first (in accordance with Ostwald’s 1897 rule of stages11, 12 

described in Section 2.3.8). However, in the 3D-nanoconfinement of microemulsion 

droplets, a limited amount of crystallisable material within the droplets means that the 

controlling factor becomes the ability to form stable critical nuclei. Consequently, the more 

thermodynamically stable polymorphs are inherently favoured over higher energy, or less 

crystalline, forms3. This approach has been successfully demonstrated for the crystallisation 

of small molecules4. For this thesis it can be expected that protein crystallisation could be 

enhanced in a similar manner. 

To show that crystallisation in microemulsions offers an improved methodology for 

protein crystallisation, the crystallisation of a commonly used standard protein from 

microemulsions will be compared to its crystallisation using conventional techniques. The 

standard test protein, Lysozyme, is known to crystallise easily. Hen egg-white Lysozyme can 

be crystallised in triclinic, monoclinic, tetragonal and hexagonal crystal forms13. The 

advantage using Lysozyme is all the different crystal forms have been extensively studied 

and hence comparative data is available. X-ray diffraction from crystals grown both by 

standard methods and using microemulsions will be used to draw conclusions with regards 

to the quality of the crystals grown from the two different mediums. 

This thesis begins by detailing in Chapter Two the relevant background related to 

my research project on chemical crystallisation and the crystallisation of proteins from 

microemulsions. Chapter Three then continues to explain methods and experimental 

details used in the attempt to grow crystals for analysis, as well as the implications from the 
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data acquired by X-ray diffraction. Finally, conclusions (Chapter Five) will be drawn from the 

experimental results detailed in Chapter Four, which will be used to lead further research 

being conducted within these areas. 
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Chapter Two 

Background 
 

2.1|  Surfactants 

 

Surface active agents, commonly known as surfactants, are amphiphilic in nature. 

Amphiphilic molecules or ions simultaneously display lipophilic and hydrophilic affinities14. 

There are many substances that can act as surfactants; all share a characteristic molecular 

structure consisting of two distinct moieties: a hydrophilic head group and a hydrophobic 

alkyl chain group (Figure 2.1). Surfactants are of great interest due to their ability to reduce 

interfacial tension and their many potential applications such as detergents and wetting 

agents. 

 

 

Figure 2.1|  A single molecule of a non-ionic surfactant, Span 80, showing the hydrophobic tail group 

and the hydrophilic head group highlighted in grey. 
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2.1.1|  Classification 

 

A primary classification of surfactants is made according to the charge of their hydrophilic 

head groups. There are two main classes: ionic (including anionic, cationic and zwitterionic 

head groups) and non-ionic (which have an uncharged head group) (Table 2.1). The 

hydrophilic head group of a particular surfactant facilitates an enhanced solubility in a range 

of aqueous solvents through hydrogen bonding and electrostatic interactions for non-ionic 

and ionic surfactants respectively15.  

The nature of the hydrophobic tail group has a smaller influence on the qualitative 

behaviour of the surfactant compared to the head group despite the diversity among 

surfactants14. An extensive range of surfactants is available, and much research has been 

undertaken to improve preparation and optimise their physiochemical behaviour for 

specific applications16.  

 

 Example 

Class Schematic structure Name Stucture 

Ionic - Anionic 
 

AOT 

 

Ionic - 
Cationic  

CTAB 

 

Ionic - 
Zwitterionic 

 

EMPIGEN17 

 

Non-ionic 
 

Triton X-100 

 

 

Table 2.1|  Classification of surfactants based on  the charge of the hydrophilic head groups. 
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2.1.2|  Interfacial Tension 

 

An interface is the boundary between two immiscible phases18. The potential energies of 

molecules at the interface are greater than that for the same molecules within the 

respective bulk phases. This is due to the interaction energies at the interface between the 

dissimilar molecules of the two phases. Further, the equivalent difference in potential 

energies requires work to bring a molecule from the bulk phase to the interface. Interfacial 

tension,  , is a measure of this work; it is the minimum amount of work required to create a 

unit area of interface.  

 The change in Gibbs free energy associated with interfacial tension is given by 

Equation 2.119, 

 

                           (2. 1) 

 

where   is the Gibbs free energy of the system,  ,  , and   are the pressure, volume and 

temperature of the system respectively,    is the chemical potential of component  ,    is 

the number of moles of component  ,   is the interfacial tension and   is the interfacial 

area. In a system of fixed composition, at constant temperature and pressure, interfacial 

tension can be described as the Gibbs energy change per unit area of interfacial tension 

(Equation 2.2)19. 

 

        
  

  
 
      

    (2. 2) 

 

High interfacial tension is found between dissimilar phases; however, the 

application of surfactant can be used to reduce interfacial tension. This is a primary 

application of surfactants and is made possible by their amphiphilic nature. 

 

2.1.3|  Properties: Efficiency and Effectiveness 

 

Surfactants are able to reduce interfacial tension by adsorbing at the interface as a result of 

their amphiphilic nature. When added to two immiscible phases, the surfactant molecules 

will arrange so that the hydrophilic head groups are orientated towards the polar, aqueous 

phase and the hydrophobic tails groups towards the non-polar, oil phase. The interactions 

between the hydrophilic and hydrophobic moieties of the surfactant with the respective 
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phases are more favourable compared to the interaction between molecules of the two 

immiscible phases; thus surfactants significantly reduce interfacial tension. 

The tendency to accumulate at interfaces and as a result, the extent of reduction in 

the interfacial tension, differs from surfactant to surfactant. Therefore, choice of surfactant 

is dependent on application. When comparing a particular surfactant’s ability to reduce the 

interfacial tension of a given system, two parameters, efficiency and effectiveness, should 

be considered16, 18.   

Efficiency is related to the bulk phase surfactant concentration required to reduce 

the interfacial tension by a given amount. Efficiency has been found to vary with length of 

hydrophobic alkyl chain length20, 21 and degree of branching22-25. Surfactants with greater 

hydrophobic character and no branching are  the most efficient in the reduction of 

interfacial tension26. For ionic surfactants, the use of a more strongly bound counter ion 

improves efficiency. Positioning of the hydrophilic head group also influences efficiency, 

with a terminal position being most efficient compared to a non-terminal position.  

Effectiveness is the maximum reduction in interfacial tension that can be achieved 

by a particular surfactant irrespective of its concentration and to a large extent is dependent 

on the cohesiveness of the surfactant hydrophobic groups. Branched hydrophobic tail 

groups are therefore more effective as they have lower cohesive forces than straight chain 

hydrophobic tail groups. The effectiveness of surfactants increases when silicone or 

fluorocarbon-based hydrophobic groups are used instead of the more common alkyl chain 

tail groups18. 

 

2.1.4|  Micellisation 

 

A characteristic property of surfactant molecules in solution is their ability to self-assemble 

into micelles, a process referred to as micellisation. Micelles are dynamic aggregates of 

surfactant molecules that form spontaneously at or above the critical micelle concentration 

(CMC).  The CMC is the concentration, at a given temperature and pressure, above which 

micellisation can occur. The CMC may vary with temperature and pressure. For a solution of 

anionic surfactant, measurements of electrical conductance indicate the absence of 

aggregation when there is a low surfactant concentration. There is a sharp reduction in 

conductance (Figure 2.2) when surfactant concentration reaches a particular value, the 

CMC, indicating the formation of micelles16. Above the CMC, the surfactant concentration in 

solution is effectively constant; excess surfactant aggregates into micelles which are in 
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dynamic equilibrium with the monomer surfactant in solution27. Changes in other physical 

properties, such as turgidity and surface tension, can also be used to determine the CMC of 

a particular surfactant28.  

 

Figure 2.2|  Plot of equivalent conductivity (specific conductance per gram-equivalent of solute) 

against the square root of the normality of solution (gram equivalent weight of a solute per litre of 

solution). The sharp decline in conductance for the surfactant solution indicates the point of micelle 

formation. Adapted from Rosen
16

.  

 

For spherical micelles (Figure 2.3a) in a polar solvent such as water, the hydrophobic 

tails of the surfactant molecules are contained within the interior of the micelle and the 

hydrophilic head groups are orientated towards the bulk aqueous solution29-31. Reverse 

micelles (Figure 2.3b) are formed in bulk oil solutions where the hydrophilic head groups are 

orientated away from the oil. Other structural forms of micelles include cylindrical micelles 

and bilayers (Figure 2.3c and d). Micellar shape can be predicted by the packing parameter 

(Table 2.2) of the particular surfactant32. The packing parameter is given by            , 

which is the ratio of the volume of the surfactants hydrophobic chain ,  , to the product of 

effective surfactant length,   , and the effective head group surface area,   , which reflects 

the size and charge of the head group and its surrounding electrostatic environment33. 
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Figure 2.3|  Shapes of surfactant aggregates: a) spherical micelle, b) spherical reverse micelle, c) 

cylindrical micelle, d) bilayer. 

 

 The free energy change of micelle formation,    , is given by Equation 2.3, where 

  is the temperature of the system and     and     are the enthalpy and entropy 

changes for micellisation respectively34.  

 

                    (2. 3) 

 

These parameters can be determined from the temperature dependence of the CMC or 

measured directly by using microcalorimetry. Micellisation is spontaneous and 

thermodynamically favoured when      is large and negative under the given conditions. 

At room temperature, hydrophobic interactions are the main driving force for micelle 

formation34. As surfactant concentration is increased above the CMC, the release of water 

molecules from ordered shells of hydration that surround the hydrophobic surfactant tails 

results in a large entropic gain. Other models such as ‘Phase Separation’ and ‘Mass Action’ 

can also be used to describe micelle formation31, 35. 
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Packing Parameter Micelle Shape 

   
 

 
 Spherical 

 

 
    

 

 
 Cylindrical 

 

 
      Bilayer 

     Reverse 

 

Table 2.2|  Typical shape of surfactant aggregates based on the packing parameter,   , of the 

surfactant. Adapted from Tolbert et al
36

. 

 

2.1.5|  The Krafft Point 

 

The Krafft point, also known as the Krafft temperature,   , is commonly observed in ionic 

surfactants but rarely in non-ionic surfactants37. Philips defined the Krafft point as the 

temperature at which a surfactant’s solubility is equal to its critical micelle concentration 

(CMC)38. Below the Krafft point, surfactants display a low solubility and tend not to form 

micelles. At, the Krafft point and above, there is a steep increase in the solubility of the 

surfactant due to the occurrence of surfactant micellisation39. 

To determine the Krafft point of a particular surfactant, measurements of its CMC 

and solubility with changing temperature are required. The point of intersection between a 

solubility curve and CMC curve makes clear the concept of the Krafft point as shown in 

Figure 2.4. 
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Figure 2.4|  Changes in the solubility and the CMC as temperature is increased. The point of 

intersection between the two curves is defined as the Krafft temperature,   . Adapted from
27

. 

 

The Krafft point varies with surfactant hydrophobic chain length, extent of 

branching40, bulkiness of the hydrophilic head group and addition of a counter-ion31. When 

selecting a surfactant for a particular application it is important to consider its Krafft point, 

as below    a surfactant is significantly less effective and micellisation is not permitted. 

 

2.1.6|  The Cloud Point 

 

Observed in non-ionic surfactants, the cloud point is the temperature at which a surfactant 

solution phase separates into surfactant-rich and surfactant-deficient phases. Clouding can 

affect solutions of ionic surfactants41, 42, but is predominantly observed for non-ionic 

surfactants. As the cloud point is approached, the hydrophilic head groups of micelles are 

dehydrated, and non-ionic surfactant micelles aggregate to form clusters43  via an attractive 

potential, whose well-depth increases with temperature44. The cloudy appearance of a 

surfactant solution, at or above its cloud point, is due to the scattering of light by the 

micellar aggregates.  

There is currently limited knowledge about the mechanism that results in the 

observed phase separation when the cloud point of a surfactant solution is reached.  Initial 

explanations focused on a transition of micellar expansion from a globular shape to an 

enlarged rod-like shape45. However this remains a contentious explanation. More recently, 

A. Zliman and H. Bock attribute phase separation to the formation of a connected micellar 
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network or directional hydrogen bonding between surfactant head groups and molecules of 

water respectfully46, 47. 

Variables such as structure and concentration of surfactant and the presence of 

additives, such as electrolytes or organic molecules, have been found to affect the cloud 

point of surfactants43. Fritz investigated the effect of surfactant chain length, and found the 

cloud point decreased with increasing carbon chain length48. Changes in pressure may also 

result in clouding49, 50.  

 

2.2|  Emulsions 

 

Emulsions are conventionally described as a dispersion of one liquid in another, where both 

liquids are either mutually immiscible with one another or poorly miscible51. Depending on 

the droplet size, three categories of emulsion can be defined. Macro-emulsions (Figure 2.5a) 

have a droplet size of approximately ≥400 nm and are white and cloudy in appearance, 

nano-emulsions (Figure 2.5b) have a droplet size of approximately 50-200 nm52, 53 and 

appear blue and cloudy, and microemulsions (Figure 2.5c) have a droplet size of typically 2-

1-100 nm54 and are transparent.  

 

 

Figure 2.5|  The transparency of an emulsion depends on the size of the droplets. a) Macro-emulsion 

b) Nano-emulsion c) Microemulsion. 
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Macro-emulsions are thermodynamically unstable55 due to an inherent positive free 

energy of formation.  Thus, after a finite time, they will separate into two or more phases. 

Separation of emulsions, which are non-equilibrium systems, is due to the unfavourable 

high specific surface areas caused by the process of dispersion of one phase into another 

immiscible phase51. Emulsions may degrade into two or more phases via a number of 

different mechanisms56  as summarised in Figure 2.6. Coalescence is the predominant 

mechanism of degradation for many emulsion systems; however, Ostwald ripening can be a 

significant factor, but is often neglected56. Oswald ripening occurs due to the difference in 

chemical potentials of materials confined within small droplets compared to material within 

larger droplets. This causes emulsion droplets of a significant size to grow larger at the cost 

of the smaller droplets. Differences in chemical potentials arise due to the differences in the 

radius of curvature of the droplets. 

 

Figure 2.6|  Schematic representation of mechanisms of emulsion degradation. Adapted from 

Taylor
56

. 

 

There have been extensive efforts to try and increase the stability, and thus lifetime 

of macro-emulsions. Such stability is required in macro-emulsions as they are used by 

industry for a broad range of applications including acting as carriers for drug molecules57, 58 

and pesticides59.  
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2.2.1|  Hydrophilic-lipophilic Balance (HLB) 

 

HLB, the hydrophilic-lipophilic balance, was first introduced in 1949 by Griffin60. HLB is an 

arbitrary scale that assigns a numerical value to individual surfactants indicating the balance 

of the strength and size of the surfactants’ hydrophilic and hydrophobic moieties. For 

particular applications, considering the HLB of potential surfactants enables one to predict 

whether an oil-in-water emulsion or a water-in-oil emulsion will form in a given system60 . 

Surfactants with HLB values of less the 10 typically form w/o-emulsions, whereas those with 

HLB values greater than 10 typically form o/w-emulsions. Table 2.3 summaries expected 

functions of surfactants based on their HLB values61. 

 

Surfactant HLB Number Expected application of Surfactant 

1.5-3 Anti-foaming agent 

1-4 Emulsifier for w/o emulsions 

6-8 Wetting agents 

10-13 Emulsifier for o/w emulsions 

13-15 Detergent 

15-18 Solubiliser 

 

Table 2.3|  Expected application of surfactants given their assigned HLB value. Adapted from 

Kruglyakov
61

. 

 

Griffin first developed an empirical formula (Equation 2.4) for calculating the HLB of 

non-ionic alkyl polyglycol ethers based on the weight percentages of ethylene oxide and 

hydroxide groups,        and       , respectively. 

 

        
            

 
    (2. 4) 

 

Davies and Rideal62 further developed Griffin’s initial concept to create a general empirical 

equation (Equation 2.5) to define HLB in terms of numerical values assigned to the chemical 

groupings present in the surfactant molecule.  

 

                                                   (2. 5) 

 

If more than one surfactant is used, the HLB of the blend can easily be calculated using an 

additive approach60. For example, a surfactant blend composed of 25% surfactant A with 

HLB 4 and 75% surfactant B with HLB 14 would have an overall HLB value of 11.5. HLB values 
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(along with other influencing factors) of the surfactants used in thesis have been considered 

in order to obtain water in oil microemulsion systems. 

  

2.2.2|  Phase Inversion Temperature (PIT) 

 

The stability of emulsions formed from a surfactant system, are highly temperature 

dependent. Water-continuous emulsions are most stable at a low temperature, and oil-

continuous emulsions are most stable at higher temperatures. This is because the extent of 

hydration around the hydrophilic surfactant head groups decreases as temperature is 

increased. Consequently, the hydrophilic nature of a surfactant decreases as temperature 

increases16. PIT, the phase inversion temperature, is defined as the temperature at which a 

particular non-ionic surfactant system switches from an o/w emulsion to a w/o emulsion. 

Unlike HLB, which is a parameter regarding an individual surfactant independent of the 

system, PIT is a parameter concerning the whole system. There is an approximately linear 

relationship between PIT and HLB; increasing the chain length on a surfactant results in both 

a higher HLB and PIT value.  

The nature of the oil used, the ratio of oil to water, and the use of additives (such as 

salts) all influence the PIT31. Oil additives such as fatty acids or alcohols, which increase the 

polarity of the oil, result in a significant reduction in the PIT. Figure 2.7 demonstrates the 

effect that such factors have on an emulsion system, highlighting the change in curvature at 

the oil-water interface and the change in position of the surfactants tail group across the 

interface. At the PIT, the interfacial tension between oil and water is found to be at a 

minimum.  

 

Figure 2.7|  Schematic representation of the effect of temperature, oil polarity and electrolyte 

concentration on the PIT, where ‘o’ and ’w ’indicate oil and water phases respectively. Adapted from 

Jönsson et al
31

. 
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2.2.3|  Nano-emulsions 

 

Emulsions with droplet sizes of approximately 50-200 nm are commonly and most 

favourably known as nano-emulsions53, 63 but they are also referred to as mini-emulsions64 

or sometimes submicron emulsions65. Due to their small droplet size, nano-emulsions 

appear translucent or transparent with a blue tint (due to scattering of light) (Figure 2.5b) 

and present stability towards creaming. They are more kinetically stable then macro-

emulsions; however, they are not thermodynamically stable.  

Nano-emulsions are non-equilibrium systems and do not form spontaneously under 

ambient conditions63. To form small droplets, energy and/or large amounts of surfactant are 

required.  The Laplace pressure,  , which is the difference in pressure between the inside 

and outside of a nano-emulsion droplet, can aid understanding when considering the large 

amount of energy required to form nano-emulsions compared to macro-emulsions53. The 

Laplace pressure  , is given by Equation 2.6, where    and    are the droplet radii of 

curvature and   is interfacial tension.             for spherical drops, reducing to 

Equation 2.7. 

 

         
 

  
 

 

  
     (2. 6) 

 

      
  

 
    (2. 7) 

 

Considering the inverse relationship, it is apparent that the Laplace pressure increases as a 

droplet is deformed to create smaller droplets; this can be demonstrated when a spherical 

droplet deforms to form a prolate ellipsoid. The stress needed to deform a drop is greater 

for smaller drops due to a spherical drop having one radius of curvature and a prolate 

ellipsoid having two radii of curvature. More energy is required to produce smaller drops as 

more vigorous agitation from the surrounding liquid is required when the stress is greater66. 

As previously mentioned in Section 2.1.2 addition of surfactants will lower the interfacial 

tension, thus facilitating the formation of nano-emulsions as   is reduced with a decrease in 

 . To assist the preparation of nano-emulsions, numerous methods have been developed 

including application of the PIT concept, high pressure homogenisers and the employment 

of the low energy emulsification method at constant temperature53.  

Nano-emulsions have many diverse applications; including the provision of an 

encapsulation medium for delivery of antimicrobial essential oils67, as a medium for the 
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production of polymeric nano-particles, and a method known as the mini-emulsion 

polymerisation, which considers nano-emulsion droplets as nano-reactors68. The appeal of 

nano-emulsions in such applications is manifold, including their stability against 

sedimentation or creaming and their ability to remain a dispersed system due to their small 

droplet sizes preventing flocculation. 

 

2.2.4|  Microemulsions 

 

Microemulsions are thermodynamically stable69, self-aggregated systems. Macroscopically, 

they are homogeneous mixtures of water, oil and surfactant. However, at a microscopic 

level, microemulsions consist of a colloidal dispersion of water-rich or oil-rich domains 

separated by a film of amphiphilic molecules70. In some systems a co-surfactant is also used. 

Microemulsions form spontaneously and, at equilibrium, will have droplet sizes of 1-100 

nm54. Small droplet sizes reduces scattering of visible light, leading to their transparent 

appearance. Microemulsions are of great interest due to their chemical and physical 

stability, enabling long-lived stability of mixed oil and water systems which cannot be 

achieved through the use of macro-emulsions. 

 The micellisation process during the formation of microemulsions can be described 

using Equation 2.871, where     is the free energy of formation,   is the interfacial tension, 

   is the change in interfacial area, temperature is denoted   and    the change in 

entropy. Formation is favourable when        ; therefore, microemulsions will form 

when an ultra-low interfacial tension is achieved which compensates for the large change in 

interfacial area that occurs due to the formation of droplets.  

 

                  (2. 8) 

 

Since microemulsions were first described in 1943 by Schulman72, extensive 

research has been facilitated by the development of experimental characterisation 

techniques such as small-angle X-ray scattering (SAXS), small-angle neuron scattering (SANS) 

and electron microscopy73. As a result, an extensive knowledge of microemulsion structure 

has been established and today work continues to explore the potential applications of 

microemulsions74. 
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2.2.5|  Microemulsions: Microstructure and Classification  

 

In 1948, Winsor first described four classifications of equilibrium microemulsion systems 

composed of water (or aqueous salt solution), oil (a mixture of single organic liquid) and 

approximately 5-25% of surfactant75. Figure 2.8 depicts these four classes which he 

described as: Winsor I, a phase separated system with an upper excess oil phase and a 

lower o/w microemulsion; Winsor II, a phase separated system with an upper w/o 

microemulsion and a lower excess water phase; Winsor III, a triple layer system with an 

upper excess oil phase, a lower excess water phase and a middle biscontinuous 

microemulsion phase; and Winsor IV, a homogeneous system consisting of one 

microemulsion phase70. Depending on the conditions, this single phase can be an o/w 

microemulsion consisting of normal micelles or a w/o microemulsion consisting of reverse 

micelles. The four Winsor equilibrium systems described can interconvert between one 

another depending on the conditions.  

 

Figure 2.8|  Schematic representation of the four Winsor classifications of microemulsions. Different 

phases are highlighted in different shades of grey; pale grey indicates an Oil (O) phase, dark grey 

indicates a Water (W) phase, medium grey indicates a microemulsion phase. The type of 

microemulsion phase varies depending on the Winsor type; O/W indicates oil-in-water 

microemulsion, W/O indicates a water-in-oil microemulsion. Winsor type IV could be each of the 

different microemulsion forms, W/O, biscontinuous or O/W. 
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2.2.6|  Co-surfactant 

 

A co-surfactant is often used to aid stability of microemulsions and support the dispersion of 

surfactant molecules at the interface between the oil and water phases76. Weakly 

amphiphilic molecules such as medium and long chain alcohols are typically used as co-

surfactants alongside the primary surfactant to lower the interfacial tension. However, in 

some circumstances short chain alcohols such as methanol also prove effective4. 

 For ternary microemulsions (those without a co-surfactant) extensive investigations 

exploring their microstructures have shown good agreement between theory and 

experiments when considering changes in parameters such as salinity of the aqueous phase 

or temperature. However, there is limited understanding for quaternary microemulsions in 

which the co-surfactant may partition among the oil, aqueous and interface domains 

instead of exclusively residing at the interface as seen in ternary microemulsion systems. A 

quantitative description of the dependence of a quaternary systems composition on the 

partition equilibria is crucial to gaining a greater understanding of quaternary 

microemulsions. Palozo et al in 2003 investigated the interfacial composition of 

CTAB/water/n-pentanol/n-hexane microemulsions, and quantitatively discussed the w/o 

droplet size in terms of surface composition and water content for a wide range of system 

compositions77.  Using PGSE-NMR experiments, it was found that n-pentanol partitions 

strongly at the interface. The composition of the interface could be described to be 

dependent on the overall composition using a simple partition equilibrium. The total 

interface area was found to increase and the film thickness to decrease as the amount of n-

pentanol was increased. The amount of water in the quaternary microemulsions was also 

found to have an effect, resulting in an increase of reverse micellar radii as more water was 

added. Over the experimental composition range used only inverse micellar structures were 

observed.  

Within this investigation, a co-surfactant of 1-hexanol will be used with surfactant 

TritonX-100, to create a surfactant system which will support the formation of reverse 

micelles in a stable microemulsion system for the crystallisation of Lysozyme (Section 

3.2.2.3 and 4.4.7).  
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2.2.7|  Surfactant Film Spontaneous Curvature 

 

Aggregates of surfactant within microemulsions can be considered to be composed of 

surfactant films. The curvature of such films influences the structures of the resultant 

aggregates. Alongside spontaneous curvature,   , the volume fractions of oil and water also 

govern whether a w/o or o/w microemulsion is formed78. Spontaneous curvature is the 

inverse of the radius of curvature and is defined to be negative if the surfactant film is 

curved around the hydrophilic domain or positive if it is curved towards the hydrophobic 

domain31, as demonstrated in Figure 2.9. Overall a surfactant film is flexible, displaying 

regions of both positive and negative curvature. A spontaneous curvature close to zero 

shows that the film has little curvature towards either of the aqueous or non-polar phases. 

Planar films such as lamellar, bicontinuous phases and sponge-like phases all exhibit zero 

spontaneous curvature. Droplet microemulsions are the most common structure observed 

in microemulsions78. Normal micelles formed in o/w microemulsions will have a positive film 

curvature and reverse micelles in w/o microemulsions will have a negative film curvature.  

 

Figure 2.9|  Spontaneous curvature is defined to be positive or negative depending on which way the 

surfactant film curves around the hydrophilic domain. 

 

The type of microemulsion formed can be manipulated by varying the spontaneous 

curvature. By lowering the repulsions between surfactant head groups, which can be 

achieved for ionic surfactants by using electrolyte additives, spontaneous curvature can be 

decreased. Spontaneous curvature can be more readily controlled in ternary microemulsion 

systems compared to quaternary systems which incorporate a co-surfactant. In such 

systems    depends on the surfactant/co-surfactant ratio at the interface which can be 

varied by altering the surfactant/co-surfactant ratio in the overall mixture with the aqueous 
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and non-polar phases. However, as previously mentioned in Section 2.2.6, co-surfactants 

can partition in both immiscible phases thus resulting in little to no control. 

 

2.2.8|  Bending Elasticity of the Surfactant Film 

 

Understanding the phase behaviour of surfactant systems, and trying to select a particular 

micellar structure from, requires consideration of numerous parameters including simple 

packing and energy considerations. The bending elastic energy of a surfactant film 

contributes to the free energy of the surfactant systems. The contribution of the surfactant 

film to the free energy (per unit area) is given in Equation 2.978, where    and    are the 

principal curvatures of the surfactant films,    is the spontaneous curvature, and   and    

are the mean and Gaussian bending elastic constants. To describe the elastic properties of a 

surfactant film the two elastic constants,           are required.  

 

 

     
 

 
            

           (2. 9) 

 

Gradzielski noted the importance of determining the elastic constants in order to 

attain understanding of the behaviour and properties of microemulsions. As a result, in 

1996 Gradzielski et al conducted a study of a simple system which could be varied 

systematically in order to investigate how parameters such as the chain length of the 

surfactant influenced the elastic constants79. They found that the elastic theory of the 

surfactant film aided understanding of microemulsion microstructure and macroscopic 

properties such as interfacial tension by observing that macroscopic interfacial tension, 

droplet radii and polydispersity index could be related to   and   . The sum,      , was 

found to scale approximately with surfactant chain length to the power of three; the oil 

hydrocarbon chain length was found to have little influence on the elastic constants.  

   

2.2.9|  Phase Behaviour 

 

A phase can be defined as a region of space filled homogenously with a physically distinctive 

form of matter. Light, neutron and X-ray scattering techniques can be used to distinguish 

between phases based on their diffraction properties. More simply, viscosity can be used to 

distinguish phases; however, this cannot be used as an unambiguous method since viscosity 
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is dependent on concentration and surfactant. For droplet phases, a distinction between 

reverse or normal micelles can be made based on composition, as characteristically reverse 

micelles form in an oil-rich environment and normal micelles form in a water-rich 

environment31. 

Gibbs introduced the phase rule as defined in Equation 2.10, where   is the number 

of phases that coexist,   is the number of components that constitute the system and   is 

the number of degrees of freedom.  

 

                (2. 10) 

 

Within a microemulsion, the degrees of freedom include temperature, pressure and 

composition variables. For the purposes of this discussion pressure will be considered to be 

constant, thus reducing the number of degrees of freedom by one.  

Phase diagrams enable the schematic representation of a microemulsion’s phase 

equilibria, depicting how many phases there are present in a system, what the phases are 

and detailing the composition of the phase in question. Completing a phase diagram 

becomes increasingly difficult as the number of components within a system increases. 

Typically, a three component phase diagram, also known as a ternary phase diagram, is used 

to describe a microemulsion which includes an aqueous phase, oil phase and surfactant 

phase. If co-surfactant is required, a pseudo-ternary phase diagram can be used in which 

one of the three components consists of a mixture of surfactant and co-surfactant at a fixed 

ratio. It is often useful to consider phase behaviour at a fixed temperature as depicted in 

Figure 2.10a. Considering the temperature dependence of phase behaviour gives rise to a 

triangular prism consisting of stacks of isothermal phase diagrams (Figure 2.10b and c). 

Different cuts through the triangular phase prism can be made in order to understand the 

effects that different microemulsion components have on phase behaviour. Such cuts 

include the Lund cut80, which gives a fixed ratio between the surfactant and oil phases while 

varying the water content (Figure 2.10b), and the Kahlweit fish cut81, which gives a fixed 

ratio between the water and oil phases (typically 1:1) while varying surfactant concentration 

(Figure 2.10c). The Kahlweit Fish phase diagram (Figure 2.10d) enables information 

regarding the surfactants’ effectiveness to be inferred82.  
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Figure 2.10|   a) Pseudo ternary phase diagram at fixed temperature; b) Lund cut through phase 

prism; c) Kahlweit fish cut through phase prism; d) Kahlweit fish phase diagram. 

 

 Pseudo ternary phase diagrams of the form pictured in Figure 2.10a are the most 

appropriate phase diagram for the aims of this investigation. These phase diagrams will aid 

selection of suitable composition ratios that will enable the formation of stable 

microemulsions for each surfactant system explored (Section 3.2.2.1).  

 

2.2.10|  Microemulsions: Droplet Polydispersity 

 

There is a slight droplet polydispersity observed in microemulsions which can be measured 

using electrical birefringence experiments83. Such polydispersity is an equilibrium property78 

due to the thermodynamic stability of the microemulsion micellar phase. Polydispersity is 

partially a result of droplet collisions which result in the formation of transient aggregates, 

also referred to as transient dimers. The formation of transient aggregates allows transfer of 

solubilised materials from droplet to droplet. The transient droplets have a short life-time, 

typically of the order of microseconds. However, if there exists attractive interactions 

between droplets, the transient dimer’s life-time may be slightly extended84. For the 

purpose of the following investigation discussed in this thesis, droplets will be assumed to 

be relatively monodisperse.  
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2.2.11|  Applications of Microemulsions 

 

The applications of microemulsions across both academic research and industry have been 

extensively explored and reviewed74 . Interest in microemulsions accelerated following their 

use in enhanced oil recovery74, 85, 86, in which approximately 20% of otherwise unrecovered 

underground oil was obtained using a process referred to as surfactant-polymer flooding. In 

this process, the high interfacial tension between crude oil and reservoir brine, which 

caused oil to remain trapped in porous material underground, was reduced through the 

formation of a middle-phase microemulsion in situ between crude oil and excess reservoir 

brine.  

 Exploring further, microemulsion fuels have successfully been shown to reduce soot 

formation and the emission rates of nitrogen oxides and carbon monoxide during 

combustion of microemulsion fuels87. Other applications of microemulsions include their 

use in cosmetics88 and as a chemical reaction medium, the first use of which was in 1973, 

where microemulsions were used to accelerate the hydrolysis of esters89. More recently, 

interest in microemulsions has grown based on their ability to provide thermodynamic 

control for crystallisation of polymorphic compounds3 . 

 

2.3|  Crystallisation 

 

The development of X-ray crystallography, a valuable tool for structure determination, has 

called for an in-depth understanding of the process of crystallisation and for the design of 

suitable methods that will yield single crystals of a high quality appropriate for X-ray 

diffraction experiments. Preparative methods of compounds of interest often yield the 

product in a ‘crystalline’ form but frequently such crystals are of an insufficient quality. 

Appropriate quality crystals typically have well formed, clear faces and will shine brightly 

when viewed with polarised light under a microscope. An exception to this observation 

occurs for crystals of high symmetry and for those that are cubic90. Although visually some 

crystals may appear of a good quality, it is their internal order which determines their 

diffraction pattern. Only crystals which are internally ordered will produce diffraction 

patterns.  For membrane proteins it is quite common to produce visually pleasing objects; 

however, they often have very little internal order and this diffract poorly91.  

Crystallisation comprises of two stages: nucleation and crystal growth92. The 

occurrence of nucleation is a prerequisite for crystal growth to take place. Each 
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crystallisation method aims to create a supersaturated solution (a solution in which the 

solubility limit of the crystallisable material is exceeded) as this facilitates the formation of 

nucleation sites. This section will lay out the fundamental scientific principles that dictate 

crystallisation and highlight the wealth of crystallisation techniques available for crystallising 

both proteins and small molecules.  

 

2.3.1|  Nucleation and Supersaturation 

 

A prerequisite for crystallisation to occur is nucleation. Nucleation is the phase change from 

solution to solid at a localised point; it results in the formation of small clusters of building 

units consisting of regularly ordered molecules associated in identical orientations. How 

many nucleation events take place in a solution is influenced by several variables including 

temperature, pressure and the concentration of the solution. The continued adsorption of 

the specimen molecules to the surface of the critical nuclei will result in the growth of a 

single crystal given that the molecules adsorb in an identical orientation.  

 Nucleation is strongly influenced by a solution’s degree of supersaturation. 

Supersaturation is a metastable state (Figure 2.11) where the system is not in equilibrium93. 

The solution in the metastable region has more dissolved compound compared to a 

saturated solution which is in equilibrium. If nucleation overcomes an activation barrier, 

which enables the metastable system to move towards equilibrium, the dissolved 

compound will precipitate out of solution (ideally in a crystalline state, but this may not be 

the case). The newly formed precipitate will then be in equilibrium with the saturated 

solution which subsequently forms. The stability condition (Equation 2.11) 

thermodynamically defines the limits of the metastable region of supersaturation where    

is the mean molar Gibbs energy of the system and    is the molar fraction of the sample 

compound.  

 

      
    

   
        (2. 11) 

 

Spontaneous decomposition of a solution results by further increasing the concentration of 

the sample compound to form an extremely supersaturated solution (Point A in Figure 

2.11). At this point the second derivative in Equation 2.11 becomes negative. 
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Figure 2.11|  Crystallisation phase diagram. The region of supersaturation in which nucleation can 

occur is highlighted grey. Point A marks the area in which the crystallisable material is likely to crash 

out of solution as a result of the solution being extremely supersaturated.  

 

2.3.2|  Homogeneous Nucleation 

 

Nucleation that occurs spontaneously in the interior of a pure supersaturated solution is 

termed homogeneous nucleation. The total Gibbs free energy change associated with 

homogeneous nucleation, which leads to the formation of a spherical critical nuclei of radius 

 , can be described by Equation 2.1294, where    is the number-density of the newly formed 

nuclei and   is the interfacial tension of the newly formed solid-liquid interface.  

 

       
 

 
                (2. 12) 

 

The chemical potential,    (               ), is the difference between the 

chemical potential of the solid phase,        the liquid phase,   . The change in Gibbs free 

energy (Equation 2.12) consists of two terms: the ‘bulk’ term (
 

 
       ) and the ‘surface’ 

term (     ). The bulk term is negative and proportional to the volume of the nuclei; it 

conveys the greater stability of the newly formed solid compared to the supersaturated 
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solution. The loss of free energy due to the formation of a solid-liquid interface is accounted 

for by the surface term, which is negative and proportional to the surface area of the 

nuclei94.  

 If a system experiences free energy fluctuations that have insufficient free energy to 

form nuclei of a critical size, the nuclei are likely to re-dissolve instead of growing into 

crystals. Nuclei that do not re-dissolve have a radius of    and are termed critical nuclei. The 

Gibbs free energy for the formation of critical nuclei is a maximum value. The radius    can 

be determined using the Gibbs-Thomson equation (Equation 2.14) which is found by setting 

the first derivative of    with respect to   to zero (Equation 2.13).  

 

    
   

  
                   (2. 13) 

 

        
  

      
    (2. 14) 

 

 Substituting Equation 2.14 into Equation 2.12 gives the Gibbs free energy of 

formation for a critical nucleus,     (Equation 2.15). The formation of critical nuclei of 

radius ≥    will result in further crystal growth. 

 

         
     

         
    (2. 15) 

 

Within the microemulsion systems detailed in this thesis it is hoped that 

homogeneous nucleation will be facilitated within the microemulsion droplets, resulting in 

the formation of critical nuclei of radius ≥   and thus supporting the subsequent growth of 

Lysozyme crystals.  

 

2.3.3|  Heterogeneous Nucleation 

 

Typically, it is undesirable for nuclei to form on the wall of the reaction vessel. This occurs 

when nucleation is stimulated by the presence of impurities such as ions, foreign surfaces 

and particles. Such a process is known as heterogeneous nucleation95.  
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To account for the energetic influence of impurities on the free energy change of 

heterogeneous nucleation a ‘wetting’ function,     , needs to be taken into consideration . 

The wetting function is dependent on the wetting angle,  , as shown in Figure 2.12.  

 

 

Figure 2.12|  Heterogeneous nucleation of a liquid droplet (with radius of curvature  , and projected 

radius      ) on a smooth structureless substrate, where   is the wetting angle which characterises 

the influence of the substrate. The Young equation
96

 is used to determine the wetting angle using 

the surface specific energies of the free surfaces of the substrate and droplet, and the interface 

between the droplet and substrate, denoted by      and  , respectively. Wetting angle, θ, on which 

The wetting function      is dependent on the wetting angle,  . Adapted from Markov
95

. 

 

Taking the wetting function,      into consideration the Gibbs free energy change 

associated with heterogeneous nucleation can be described by Equation 2.16. 

 

       
       

           (2. 16) 

 

For the case when        equals zero, known as complete wetting, the Gibbs 

free energy change,    
    equals zero indicating that it is thermodynamically unfavourable 

for heterogeneous nucleation to occur. A polar case to this would be complete non-wetting 

in which        equals one and     
     equals    

    . For this case, the critical nuclei 

formed are spherical and the impurities present in the sample do not have an energetic 

influence on the Gibbs free energy change for formation95. 
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2.3.4|  Chemical Crystallisation 

 

Chemical crystallisation is typically concerned with the crystallisation of relatively small 

compounds and peptides composed of less than twenty-four amino acids. This branch of 

crystallography is of significant importance due to the large spectrum of applications to 

which such molecules may be applied. For example, the structure solution of 

Cyclolinopeptide A, a nine residue cyclopeptide extracted from linseed oil97-99, has 

encouraged continued research exploring the cyclopeptide’s function as a potential 

immunosuppressor100. Successful, published structure solutions are submitted to the 

Cambridge Structural Database (CSD), the world repository of small molecule crystal 

structures which performs vital checks to ensure correct structures are published101.  

Solution methods are versatile and present a vast array of potential solvents, alone 

or in combination, which can be used to create a supersaturated solution of the given 

compound. There exist several variants of the solution method, including simple 

evaporation of the solvent, re-crystallisation by liquid diffusion and crystallisation through 

vapour diffusion in a closed system90 (Figure 2.13). The variant which yields the best crystals 

is entirely dependent on the compound under study. The compound’s solubility, thermal 

stability and chemical properties will all influence the choice of method and choice of 

solvent.  

 

Figure 2.13|  Methods of chemical crystallisation. a) Evaporation of solvent in an open system b) 

liquid diffusion in a closed system c) Vapour diffusion in a closed system. Dark grey indicates anti-

solvent and light grey indicates crystallisable material in solution. Adapted from Jones
90

. 
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2.3.5|  Protein Crystallisation 

 

Advances in molecular biology such as recombinant DNA technology had a profound effect 

on protein crystallisation. The development of various expression systems facilitated the 

production of large amounts of pure protein, a feat that could rarely be achieved using 

natural sources102. More recently, the biotechnology group within The Structural Genomics 

Consortium (SGC)103 have worked on determining which proteins can be expressed in a 

soluble and stable form which can be used for structural and functional studies. The group 

have continued the successful development and optimisation of high-throughput protocols 

for protein production and validation. Such advances have led to what is known as the 

‘bottleneck of crystallisation’, an increasingly acute problem1, and has seen the rapid 

development of protein crystallisation techniques within both industry and the academic 

community2 .  

 Substantial commitment has been put into developing rapid automation of protein 

crystallisation techniques to allow extensive screening of crystallisation conditions. Robots 

have now been successfully implemented and are routinely used within laboratories to 

great effect and efficiency104, 105. The structural information that can be gained from X-ray 

crystallography is extremely valuable, promoting the need for successful crystallisation 

techniques. For example, through X-ray crystallography, insight has been gained into the 

structure and mechanism of the ribosome, a key cellular organelle that enables the 

synthesis of proteins in all kingdoms of life. The structure of the Eukaryotic ribosome has 

successfully been solved to 3.0 Å by X-ray crystallography using crystals grown from hanging 

drop vapour diffusion crystallisation trays106, a commonly used technique detailed in Section 

2.3.6. The work achieved through X-ray crystallography is vast and is enabled both by 

advances in X-ray diffraction experiments and the development of successful crystallisation 

techniques, several of which are detailed in this following section. The success of this 

extremely valuable technique was celebrated through the Nobel Prize in Chemistry 2012, 

jointly awarded to Robert J. Lefkowitz and Brian K. Kobilka in107 “for studies on G-protein-

coupled-receptors”.  

 

2.3.6|  Vapour Diffusion Methods 

 

For protein crystallisation, the most frequently and successfully used crystallisation 

technique is that of vapour diffusion which includes the hanging drop, sitting drop and 
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sandwich variants (Figure 2.14). While hanging drop and sandwich vapour diffusion are 

manual methods, sitting drop vapour diffusion has efficiently been automated allowing 

beneficial rapid screening of crystallisation conditions. All variants consist of a reservoir 

solution containing precipitants and a crystallisation drop containing the protein and buffer 

solution. Water diffuses down its concentration gradient from the crystallisation drop to the 

reservoir solution bringing the crystallisation drop into supersaturation. This facilitates 

nucleation and subsequent crystal growth. Vapour diffusion set ups allow screening of many 

crystallisation conditions; an experimental necessity, as in most samples crystallisation will 

not occur due to incorrect external parameters such as, pH and type of precipitant (anti-

solvent). 

Figure 2.14|  Three vapour diffusion setups for protein crystallisation. a) Hanging drop b) Sitting drop 

c) sandwich drop. Light grey indicates the protein solution and dark grey indicates the reservoir 

solution. 

 

 Sandwich vapour diffusion is a rarely used variant of the vapour diffusion technique. 

However, the method facilitates the ability to reduce the area of a drop that is exposed to 

air, resulting in a slower rate of diffusion between the reservoir solution and the 

crystallisation drop compared to the rate observed for hanging and sitting drop setups.  

 Crystallisation (phase) diagrams (Figure 2.15) can conveniently be used to 

schematically visualise the events that occur during a vapour diffusion experiment. If 

nucleation does not occur early on in the metastable supersaturation region where 

spontaneous nucleation can take place, numerous critical nuclei may form resulting in 

potential growth of several small crystals (Pathway A in Figure 2.15). This is not ideal, and 

conditions which facilitate nucleation early in the spontaneous nucleation region should be 

found to allow ideally a single nucleation event resulting in the growth of a large single 

crystal (Pathway B in Figure 2.15) which may be suitable for X-ray diffraction experiments. 

Upon the formation of critical nuclei, crystal growth may occur until the crystals reach 
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equilibrium with the saturated solution, at which point (Point X in Figure 2.15) crystal 

growth does not continue. 

 

 

Figure 2.15|  Crystallisation phase diagram. Pathway A: An ideal situation in which nucleation occurs 

early on in the supersaturated metastable region resulting in a singular nucleation event and 

subsequent growth of a large single crystal. Pathway B: nucleation occurs further into the 

supersaturated metastable region resulting in numerous small crystals. X indicates the point at which 

the growing crystals reach equilibrium with the saturated solution, thus no more crystal growth 

occurs. 

 

In both hanging drop and sitting drop vapour diffusion, crystals may not form as a 

result of the closed system not reaching supersaturation, making it thermodynamically 

impossible for crystals to form. This negative result may be rectified by increasing the 

precipitant concentration of the reservoir solution108. Another plausible problem may be 

inadequate nucleation events due to a large kinetic barrier; this is potentially solved through 

seeding, which is the introduction of external nucleation points.  

 A clear advantage of sitting drop vapour diffusion compared to hanging drop vapour 

diffusion is the ability to automate the setting up of trays. Trays of 96 wells can rapidly be 

made with widespread crystallisation conditions; automatic dispensing robots have enabled 

the drop size to be reduced from typically 1 µl in manual setups to 100 nl, facilitating an 
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order of magnitude more experiments to be made with the same amount of valuable 

compound available. However, sitting drop trays are sealed with a sheet of adhesive tape 

which does not allow easy and repeatable access to crystals. Comparatively, for hanging 

drop trays, each well is covered by a siliconised glass cover slip which allows easy access to 

crystals, one well at a time, and enables the system to be resealed easily.  

 

2.3.7|  Batch Methods 

 

In contrast to vapour diffusion, the batch crystallisation set up involves the reservoir 

solution and the crystallisation solution being in direct contact with one another (Figure 

2.16) as opposed to separation through a gaseous phase.  

 

Figure 2.16|  Experimental setup for protein crystallisation using the batch method; the system is 

isolated and undisturbed to allow equilibrium to be reached. The drop (pale grey), a mixture of the 

protein and reservoir solutions is isolated from the environment via oil (dark grey). 

 

Conveniently, the batch method can be readily automated and miniaturised using nanolitre 

drops and immediate sealing of the system using oil. This microbatch method109 is efficient 

for the initial screening of crystallisation conditions and has successfully been 

implemented110, 111.  

 

2.3.8|  Polymorphism 

 

Polymorphism is a phenomenon whereby a particular compound in a solid crystalline state 

exists in two or more different lattice structures. Different crystal forms may be observed by 

varying crystallisation conditions and it can be advantageous to optimise these conditions to 
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obtain good quality crystals of numerous morphologies for a particular compound under 

study. Advantages include the ability to select a crystal morphology that gives the highest 

quality X-ray diffraction data. Also, information regarding crystallisation artefacts may be 

gained by studying several morphologies. 

 While advantageous in some respects polymorphism can be problematic within the 

pharmaceutical industry as great efforts are required to control polymorphism of 

Pharmaceutical active ingredients (APIs). Ostwald’s rule of stages11 states that the least 

stable (the metastable) polymorph tends to crystallise first, as this involves the 

crystallisation system moving to a lower energy via the smallest possible free energy 

change. This is the most likely result due to the typical kinetic control of crystallisation 

rather than thermodynamic control. Upon crystallisation of the metastable polymorph, it 

may then transform to a more thermodynamically stable form over a variable time period. 

APIs can display different crystal forms and morphologies which present varying 

bioavailability, absorption and release. Consequently, the pharmaceutical industry must 

ensure that a particular morphology of a particular API is obtained and that there is no 

question as to whether the polymorph obtained will transform over time.  Approval of the 

API will not be granted if this is not the case.  

 

2.3.9|  The Microemulsion Method: Thermodynamic Control of Crystallisation 

 

The favoured crystallisation of a metastable crystal form compared to a more stable form 

according to Ostwald’s rule of stages can be visualised using a free energy profile (Figure 

2.17). As discussed in Section 2.3.1, for crystal growth to occur there has to be sufficient 

energy to overcome a free energy barrier of nucleation, resulting in the formation of critical 

nuclei of radius   , thus permitting crystal growth. Figure 2.17a displays a Helmholtz free 

energy profile for conventional, unconfined crystallisation conditions. Under such 

conditions, the nucleation barrier for the metastable polymorph, B, is smaller than that for 

the more stable polymorph, A, and consequently the metastable polymorph will crystallise 

first, displaying kinetic control of crystallisation.  
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Figure 2.17|  Example graphs of Helmholtz free energy changes,    vs nucleus radius,  , for systems 

crystallising from a) bulk solution and b), c), d), a 3D nano-confined microemulsion solution. 

Polymorph A is the more thermodynamically stable, and polymorph B is metastable. (a) Ostwald’s 

rule of stages is observed. (b) Crystallisation is disfavoured and a minimum in free energy is formed 

due to 3D nano-confinement. (c) Thermodynamic control of crystallisation is achieved. (d) 

Thermodynamic control is lost and both polymorphs will typically crystallise out. Adapted from 

Cooper et al
3
. 

 

Microemulsions give the ability to ‘leap-frog’ Ostwald’s rule of stages and provide 

an elegant method of thermodynamically controlling crystallisation through three 

dimensional (3D) nano-confinement to directly crystallise the most stable polymorph. When 

a solution is three dimensionally nano-confined, a minimum in free energy is observed as a 

result of the substantial decrease in supersaturation as the crystal nuclei/phase forms and 

increases in size.  This minimum in free energy is denoted    
      , and the corresponding 

nuclei has a radius of        . Typically the minimum in free energy for the more stable 

polymorph, A, is less than that of the metastable polymorph, B, (   
         

     ). This 

difference in free energy is depicted in Figure 2.17b and can be expected as a result of 

polymorph A’s greater stability in solution. Before supersaturation is depleted polymorph A 

is able to grow to a larger size, with a greater radius (       ), compared to the metastable 

polymorph, B. This is because the stable polymorph has a lower solubility in solution.  
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 The Boltzmann Factor,         
         , determines the population of nuclei of 

radius         when the system is at equilibrium and stipulates that a significant population 

of stable nuclei results when    
        . Subsequently, as schematically illustrated in 

Figure 2.17c, thermodynamic control can be established in 3D nano-confined 

microemulsions when    
         for the most stable polymorph, A, only. This condition 

would result in a significant population of post-critical nuclei for polymorph A given that the 

nucleation barrier for formation could be overcome. With smaller droplets within a 

microemulsion, higher initial supersaturations are reached ensuring that nucleation barriers 

can be overcome.  

The continued increase of supersaturation within a confined droplet has two 

possible outcomes: the retention of thermodynamic control or the system converting to 

kinetic control with the loss of advantageous thermodynamic control. The outcome is 

dependent on the relative proportions of         and         which results in favouring 

crystallisation of one polymorph over another. The equilibrium concentration of         can 

be maintained if the reverse process of         dissolution is of a sufficient rate. This would 

result in thermodynamic control being retained and is dependent on the magnitude of 

   
     

     . The rate of dissolution of         nuclei will be slow if    
     

      

   and the nucleation barrier,    
 , can be overcome. This is shown in Figure 2.17d where 

         . In this case the relative proportion of         and         then becomes 

dependent on their rates of formation only, and the system reverts to kinetic control as 

would be found in a non-confined bulk system.  

 Upon establishing thermodynamic control within the 3D nano-confined 

microemulsion and the subsequent formation of a significant population of stable nuclei of 

the most stable polymorph, crystal growth follows. Brownian motion describes the 

movement of microemulsion droplets and the potential for collisions to occur between 

droplets. If sufficient in energy, droplet collisions can result in the formation of transient 

dimers (Figure 2.18) which allow the exchange of material between droplets. The solute 

confined within the droplets will move according to its concentration gradient; a droplet 

containing one or several nuclei will have a lower local concentration surrounding the 

mentioned nuclei compared to a droplet in which no nuclei were established. Once crystal 

growth exceeds the limited size of the droplet the microemulsion will break and the crystal 

will precipitate out of the system and often settle at the bottom of the reaction vessel.  
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Figure 2.18|  Formation of transient dimers and subsequent exchange of material between droplets 

upon collision of microemulsion droplets. 

 

Microemulsions have successfully been used to implement thermodynamic control 

over the crystallisation of Glycine4. Glycine was an ideal small molecule to use as it can 

crystallise in three different polymorphic forms, with the most thermodynamically stable   

polymorph being just 0.2 kJmol-1 more stable at ambient temperatures than the metastable 

  polymorph112. Using microemulsion crystals of the most thermodynamic, γ polymorph 

were directly grown in ambient conditions. 

 

2.3.10|  Lysozyme: A Model Protein for Crystallisation Studies 

 

Lysozyme was the first enzyme structure to be solved by X-ray crystallography. It was first 

found in nasal mucus and named by Fleming in 1922113 when he observed the protein’s 

antibacterial properties. Known as a glycoside hydrolase enzyme, Lysozyme presents 

antibacterial properties through catalysing the hydrolysis of 1,4-beta-glycosidic bonds 

between N-acetylmuramic acid and N-acetry-D-glucosamine residues of peptidoglycan, a 

protective layer found on the cell walls of gram positive bacteria114-116. The main source of 

Lysozyme for research purposes is from hen egg-white (HEWL) but Lysozyme can also be 

found in animal tissues and fluids117. 

Since its discovery, Lysozyme has undergone extensive investigations118 and has 

been used to establish models for protein crystal growth and investigate some general 

crystalline properties of proteins119-121.  Lysozyme is commonly used as a model system due 

to its stability, solubility and ability to crystallise under different conditions122 yielding 

different polymorphic crystals.  Variation of additives, ions, pH and temperature have lead 

to the formation of six different symmetries of Lysozyme crystals123 tetragonal, monoclinic, 

triclinic, orthorhombic, hexagonal and trigonal. Appendix A1 summarises the varying 

crystallisation conditions that have been successfully used to grow different crystal forms of 

Lysozyme to yield structural information for the protein. 
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The first crystal structure of Lysozyme to be solved was a tetragonal crystal of Hen-

egg-white-Lysozyme (HEWL)124. Crystal structures of different crystal polymorphic forms 

rapidly followed including triclinic118, 122, monoclinic122, 125-127, orthorhombic118, 128 and 

hexagonal13, 128. Crystal structures for turkey egg-white Lysozyme (TEWL)129, 130 and guinea 

fowl egg-white Lysozyme (GEWL)131 have also been solved from hexagonal crystal forms. 

 

2.3.11|  Membrane proteins: A Crystallisation Challenge 

 

Crystallisation of aqueous soluble proteins is a time consuming process involving extensive 

trial and error in order to obtain well ordered three-dimensional crystals, a prerequisite to 

high resolution X-ray structural determination. However, membrane proteins, which 

traverse hydrophobic cellular membranes, present a further crystallisation challenge and 

typically prove to be more problematic due to the difficulty associated with their isolation 

and purification, a consequence of their hydrophobic nature. 

Domains of membrane proteins that display on the cell surface provide a large 

target for pharmaceuticals facilitating the potential therapeutic control of cell signal 

pathways. Aided by the three dimensional structure of membrane proteins, the structural 

based design of small molecules becomes an attainable goal. Industry values the potential 

held within membrane protein structure determination and requires a series of protein 

structures rather than a single result, in order to screen their pharmaceuticals as potential 

therapeutics. For this to be a reality, there is need for a reliable way of producing crystals of 

membrane proteins that diffract at a high resolution132.  

Membrane proteins are abundant in nature. Genome-wide analysis has predicted 

that 20-30% of the open reading frames from eubacterial, archaean and eukaryotic 

organisms encode for the production of integral membrane proteins133. In humans, 15-39% 

of the 23000 or so human proteins are thought to be integral membrane proteins. 

However, despite their abundance, there is a disproportionately low number of membrane 

protein structures submitted to the Protein Data Bank (PDB)134; of approximately 300 

integral membrane proteins, about twenty or so are human. This clearly reflects the 

difficulty in obtaining and crystallising membrane proteins.  

 This difficulty in crystallising membrane proteins results from the hydrophobic 

nature of the integral membrane domains which, when embedded in the cell membrane, 

are in contact with the hydrophobic acyl chains of the phospholipids. In comparison, 

soluble domains of membrane proteins are in contact with the surrounding aqueous phase 
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and the polar head groups of the phospholipids. When removed from the hydrophobic 

membrane environment into an aqueous solution, integral domains of membrane proteins 

become unstable and typically aggregate and precipitate out of solution. Amphiphilic 

detergents are therefore often required to solubilise membrane proteins in aqueous 

solutions. When the detergent is used above its CMC, a detergent micelle is established 

covering the hydrophobic surface of the membrane and providing stability for the 

membrane protein in an aqueous environment135-137.  

Currently, detergent based techniques remain the method of choice giving rise to 

the most success in the crystallisation of membrane proteins138. The protocol resembles 

that used to crystallise aqueous soluble proteins, in which detergent solubilised and 

purified membrane proteins are crystallised using standard vapour diffusion protocols. 

However, despite numerous examples of success, the quality of crystals gained from 

detergent based methods can be difficult to maintain, and in some cases require frustrating 

and time consuming crystal treatment in order to obtain a crystal of appropriate quality for 

structural determination139. It is therefore with good reason that time and resources have 

to be committed to explore alternative methods for the crystallisation of membrane 

proteins. Progress has been made through the use of protein specific antibodies which 

enable the enlargement of soluble domains to provide larger surface contacts for crystal 

formation140. This methodology has enabled crystallisation141 and structure solution142 of 

membrane proteins as complexes with anti-body fragments, but presents specialised 

protocols that may restrict access to the technique in many laboratories. An alternative to 

using protein specific antibodies to increase the soluble domains of membrane proteins is 

provided by protein engineering143. 

Lipidic phases offer an increasingly popular and promising methodology for 

membrane protein crystallisation. First demonstrated by Landau and Rosenbusch144, it was 

thought that by reintroducing purified membrane proteins into a lipid bilayer environment 

there would be an enhancement in the protein’s stability, which would support the 

crystallisation process. Three mesophases, lipid cubic phases (LCP), lipid sponge phases 

(LSP) and lipid bicelles, are method variants that branch from this central hypothesis. The 

characteristics of both LCP145 and LSP146  have been clearly established and, with the aid of 

small-angle X-ray scattering and cross-polarised microscopy, different lipid phases can 

easily be distinguished. Lipid bicelles can be thought as solubilised lipid bilayer disks147, 148 

that successfully maintain the functionality of reconstituted membrane proteins149. A 
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hypothesis has been proposed regarding how in meso crystallisation takes place at the 

molecule level150-152. 

 Lipid phases were first successfully used in 1997, permitting the structure 

determination of bacteriorhodopsin to 2.5 Å153; however, the crystals used were later found 

to be twinned154. A twinned crystal contains two or more single crystals of the same crystal 

lattice type but they lie in different directions resulting in some overlap between the 

respective crystal lattice points. Continuing from this initial success, the in meso method 

has enabled the crystallisation of both eukaryotic and prokaryotic membrane proteins, 

including chromophore-containing and chromophore-free proteins, multimeric proteins 

and α-helical and β-barrel proteins155. This highlights the method’s potential as a general 

protocol for the crystallisation of membrane proteins. The understanding of how 

membrane proteins function at a molecular level has been furthered by the use of lipid 

phases to crystallise membrane proteins for structural determination. For example, the 

structure of a sensory rhodopsin II-transducer complex revealed critical details into the 

modes of signal communication that takes place in phototaxis and chemitaxis156. Similarly, 

in 2007, the first high resolution structures of two non-rhodopsin G-protein coupled 

receptors (GPCR) were achieved using crystals grown from lipid phases157, 158.  

 The importance of further developing techniques for the crystallisation of 

membrane proteins is emphasised by the financial support given to the pursuit of 

membrane protein structure determination. In 2011, the Structural Genomics Consortium 

(SGC) received nearly £32 million from funding bodies, including the Wellcome Trust, to 

sustain four years of operations following their success in solving the structure of a human 

mitochondrial ABC transporter159, 160.   

 

2.4|  X-ray Crystallography 

X-ray crystallography is the most powerful tool for accurately determining the three 

dimensional structure of a compound. The diffraction pattern which forms as a result of a 

crystal being exposed to X-ray radiation enables the structure of a compound to be 

determined. This valuable technique can be used on a wide range of compounds, from small 

molecules to macromolecular proteins. 

 

 



41 
 

2.4.1|  Crystal Structure 

In 1611, Johannes Kepler was the first to explore the relationship between the regular 

external morphology of a crystal and the crystal’s internal order161. This lead to the 

development of a central concept in crystallography describing the composition of a crystal 

in terms of building blocks termed unit cells. A crystal can be generally described as a self-

assembled, periodic array of identical unit cells which are displaced repeatedly in three 

dimensions with translational and orientational long-range order. A unit cell (Figure 2.19) is 

described by three axial lengths, a,b,c and three angles, α, β, γ where α lies between axes b 

and c. Axial lengths are expressed in terms of Ångströms (Å), and the inter-axial angles are 

expressed in terms of degrees  (°) in most published papers. 

Figure 2.19|  A schematic depiction of a unit cell showing the three angles (α, β, γ) and three axes (a, 

b and c). 

The contents of a unit cell vary depending on the internal symmetry of the crystal ranging 

from a fraction of a molecule to one or more molecules. Some unit cells may even 

encompass a whole protein or large multi-component complexes. Unit cell geometries can 

be described using the seven crystal systems which result from restrictions in both 

rotational and reflectional symmetry. For structures which display more than purely 

translational symmetry, it is conventional to include more than one point in the unit cell so 

that the unit cell can better describe its symmetry. As a result, there exists what are known 

as the 14 Bravias lattices which each belong to one of the 7 crystal systems. It is the unit 

cells of the Bravais lattices which can be regarded as the “building blocks” of crystals. The 
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internal symmetry of a crystal is restricted as it must obey the translational symmetry of the 

crystal; consequently, 32 point groups and 230 crystallographic space groups are generated 

that can be used to describe the symmetry of a crystal.  

Protein molecules lack symmetry due being built from L-α-amino acids, resulting in 

their chiral nature. This limits the possible combinations of symmetry operations; all mirror 

symmetry operations are eliminated, generating only 65 discrete chiral space groups from 

which a protein crystal can be described.  

 

2.4.2|  The Reciprocal Lattice 

 

Mathematical constructs are required to aid the description of a crystal in relation to the 

diffraction events that emanate from it when exposed to X-rays. Developed by P. Ewald in 

1921162, the reciprocal lattice is one such mathematical construct which also enables the 

determination of the conditions necessary for diffraction to occur. To construct the 

reciprocal lattice, the crystal lattice in real 3D-space first has to be considered. The crystal 

lattice is dependent on the crystal’s unit cells geometry, as it is generated by representing 

each unit cell with an isolated point, with each lattice point being in exactly the same 

environment. Consequently, if the unit cell is large, a widely spaced crystal lattice would be 

generated. The reciprocal lattice is seen in the pattern of the diffracted spots and has a 

reciprocal relationship with the real 3D-space crystal lattice generated from the unit cell of 

the crystal.  

 

2.4.3|  Miller Indices 

 

Lattice planes, both in 2D (Figure 2.20a) and 3D (Figure 2.20b), can be drawn using lines 

through the points of the real 3D-space crystal lattice. There are multiple ways of classifying 

lattice planes. However, some are not ideally suited to aid the description of X-ray 

diffraction experiments. For example, the generation of Weiss indices for each set of lattice 

planes using a direct indexing scheme proves problematic, as planes that are parallel to a 

lattice vector intersect the corresponding lattice vector an infinite number of times which is 

mathematically unhelpful. Consequently, it is most beneficial to use reciprocal Miller indices 

to uniquely classify sets of lattice planes within the crystal.  
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Figure 2.20|  Regularly arranged crystal lattice points of  a) 2D lattice planes b) 3D lattice planes. 

 

 Miller indices         are always integers and are generated by selecting axes that 

facilitate the alignment of the axes x, y, and z with the unit cell axes a, b, and c respectively. 

Using the Miller Indices, planes can be defined by      ,      and      as shown in Figure 

2.21.  

 

Figure 2.21|  Miller Indices; here the Miller plane intersects the x axis at zero, the y axis at zero and 

the z axis at ¼. The plane is therefore defined as 004. 
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2.4.4|  X-ray Scattering 

  

X-rays are a form of electromagnetic radiation that interacts with matter mainly though 

their oscillating electric field vectors. A fundamental tool to understand X-ray diffraction 

experiments is the ability to geometrically describe the scattering events that take place 

when X-rays are scattered by electrons in the regularly arranged and orientated atoms 

present in the crystal. This can efficiently be achieved using scattering diagrams (Figure 

2.22), which describe scattering using wave vectors. The difference between the initial 

incoming wave vector,   , and the wave vector of the scattered wave,   , gives the 

scattering vector,  . Only coherent scattering (also known as elastic scattering) is relevant to 

the diffraction of X-rays. This is when a scattering event takes place without a transfer of 

energy between the electron and the photon. As a result of coherent scattering, all excited 

electrons emit photons which are in-phase. The diffraction pattern results from the sum of 

all independent, in-phase scattered photons.  

 

Figure 2.22|  Scattering diagram used to geometrically describe the scattering events that take place 

when X-rays are scattered by electrons in the regularly arranged and orientated atoms present in the 

crystal. 

 

 To simplify the interpretation of X-ray diffraction, Bragg’s Law can be applied. This 

central concept to X-ray crystallography, developed by Sir William Laurence Bragg, views the 

scattering vector,  , as a normal to the reflection of X-rays from a set of equidistant lattice 

planes a.  

 

                    (2. 17) 

 

This allowed the formulation of Bragg’s equation (Equation 2.17), which forms a 

quantitative relationship between the spacing between lattice planes,     , and the 

diffraction angle,  , of separate reflections. Consequently, it can be seen that for maximum 
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constructive interference, the path difference between two diffracted waves,       , has 

to be a multiple of   . 

 

Figure  2.23| Bragg’s law viewing X-ray diffraction as reflections from equivalent crystal lattice 

planes. 

 

2.4.5|  The Phase Problem 

 

Information regarding the phase of the waves emanating from excited electrons is required 

in order to determine the electron density, and hence crystal structure, from the diffraction 

pattern. However, the attainment of such information is the central problems presented by 

X-ray crystallography as only the intensity, equal to the square magnitude of the diffracted 

wave amplitude, is recorded and all phase information is systematically lost. The extraction 

of phase information is termed the phase problem. Herbert A. Hauptman and Jerome Karle 

were awarded the 1985 Nobel Prize in Chemistry for their work on direct methods used to 

help solve the phase problem; this clearly indicates the importance and significance of the 

phase problem in the determination of crystal structures. 

 The structure factor          for a reflection         is a complex number defined by 

Equation 2.18 and is calculated by summing over all atoms,  .  

 

                      
                      

     
     (2. 18) 
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The type of atom and the diffraction angle of the associated reflection         influences 

the scattering factor of an atom,     . From the positions of each reflection collected in a 

diffraction experiment, the indices         can be determined, and an appropriate intensity 

can be assigned to each reflection. The square of the structure factor amplitude can be 

determined experimentally, as it is proportional to the scalar intensity value. Subsequently, 

a Fourier Transform (FT) can be applied to the structure factor, which is a periodic function, 

to enable electron density to be evaluated and thus the structure determined. Equation 

2.19 describes the electron density resulting from the FT which enables an image in 

reciprocal space, the diffraction pattern, to be transformed into an image in real or direct 

space, the electron density. 

 

          
 

 
                                             (2. 19) 

 

 The phase problem prevents the immediate calculation of electron density as the 

structure factor is only known in part; phase information, which is not recorded, is still 

required. Several techniques have been developed with the aim of solving the phase 

problem. The first crystal structures were solved by trial and error163; however, this method 

had a very low efficiency, particularly for crystals of low symmetry. Alternative phase 

techniques include the Patterson method164, which was later developed and relies on 

additional experimental information gained through the use of heavy atoms within the 

structure. Today the more widely used direct methods approach165 is applied to solving the 

phase problem which was developed by Woolfson and Sheldrick into widely used programs. 

The methods above were developed for the structure solution of small molecules; other 

methods have been developed for solving the phase problem for protein crystals. 

 

2.4.6|  Small Angle X-ray Scattering (SAXS) 

 

Colloidal dimensions are comparatively large with respect to the wavelength of X-rays. This 

makes the angular range of observable X-ray scattering experiments comparatively small. 

Therefore, for solids and fluids of colloidal size (in the nanometre range), small angle X-ray 

scattering (SAXS) can be utilised to explore their structural characterisation through probing 

inhomogeneties in their electron densities on a length scale of typically 1-100 nm. SAXS 

enables the determination of size, shape and internal structure of colloidal particles, 
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measuring at angles less than 1°. This analytical technique typically only considers coherent 

scattering since incoherent scattering is weak at very small angles.  

  

       
  

 
        (2. 20) 

 

The data gained from SAXS experiments is commonly presented in scattering 

vectors of   (Equation 2.20), instead of    which is quoted in X-ray crystallography. This 

proves beneficial for obtaining results which are independent of the wavelength used. 
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Chapter Three 

Experimental Methods 
 

3.1|  Chemical Crystallisation 

 

All chemical compounds for crystallisation were provided by members of Dr Steven Cobb’s 

research group in the Department of Chemistry, Durham University. The compounds ASH89, 

ASH81/87, ASH93, ASH91, ASH82, ASH90 and ASH59 compounds were stored in the fridge 

at 4°C and GDL02, GDL38 and GDL39 compounds were stored at room temperature. None 

of the compounds were air sensitive; however, as a precaution compounds were stored in 

tape sealed glass vials. Appendix A2 details the preparation of each of the above mentioned 

compounds. 

 

3.1.1|  Initial Solubility Screens 

 

Prior to solubility screens, initial observations of the sample were made under an optical 

microscope and the nature of the sample was noted including the sample’s crystallinity (as 

shown through birefringence using a polarised light filter), colour and habit as well as the 

presence of any crystals from which a crystal shape could be predicted. A small amount of 

compound for study was spread in a central thin line over the length of a standard glass 

microscope slide and up to 6 µl of solvent was used. A range of solvents were used with a 

broad range of boiling points.  

 A clean needle was used to add a small amount of powdered compound to each 

solvent drop which was deposited onto the glass slide using a 2-20 µl Gilson pipette. The 

relative extent of the compound’s solubility in each solvent was visualised under the optical 

microscope and noted. Further observations were also made regarding the occurrence of 

any crystallisation upon evaporation of the solvent and the manner in which the powdered 

compound separated upon being added to the solvent. This could potentially indicate the 

shape of the crystalline material in the sample and may also suggest the habit that would 

result upon crystallisation of the compound.  
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3.1.2|  Crystallisation by Evaporation 

 

For solvent evaporation experiments it is preferable to use a watch glass, a nine-well glass 

plate or a glass vial. All glass must be free from dust and clean and have a means of easily 

removing small crystals. For example, the aperture of the glass vial must be of a large 

enough size for efficient crystal removal. When using solvents of a comparatively higher 

boiling point, such as Polyethylene Glycol (PEG), it may be suitable to carry out the 

evaporation experiment on the initial glass slide used for solubility screening. 

 It is often preferable to use a glass vial as these can be stored at a slight angle to 

promote crystal growth on the side of the vial rather than at the bottom of the vial, thus 

aiding collection of the crystals. Also, the rate of evaporation for volatile solvents can be 

more readily controlled through the use of a perforated cap. For slow evaporating solvents 

the vial can be left uncapped. Altering the temperature or the rate of evaporation may allow 

a stable and sustainable growth phase to occur. To explore this, in some cases, evaporation 

experiments were repeated in the refrigerator at 4°C. Lowering the temperature of 

evaporation experiments may prevent crystallisation failure by allowing molecules of the 

compound to orientate in identical conformations for a period adequate for sustaining 

crystal growth.  

Supersaturation of the system is achieved through the evaporation of the solvent. 

This allows nucleation to occur with the system relaxing into the metastable region and 

facilitating crystal growth. However, evaporation experiments are difficult to reproduce due 

to the many varying conditions that can influence an open system. Upon evaporation of the 

solvent no crystallisation may occur due to the system not reaching the point of 

supersaturation. This undesirable result can potentially be solved by varying the ratio of 

solvent and sample. However, with a limited amount of material (less than 5 mg) this 

methodology may waste material if the solvent is unsuitable. If this is the case, it is desirable 

to seek an alternative solvent in which the compound displays a lower solubility.   

 

3.1.3|  Crystallisation by Liquid Diffusion 

 

The open system of evaporation experiments may not result in crystallisation. Alternatively, 

a closed system may be more successful by enabling a higher degree of control over the 

conditions for crystallisation experiments. Crystallisation from evaporation experiments 

may fail as a result of the compound’s solubility being too high in the chosen solvent, 
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preventing supersaturation from being reached. Anti-solvents offer a solution to this 

problem and can be implemented using liquid diffusion experiments.  

 Solvents in which the sample is insoluble (or barely soluble) are by definition anti-

solvents. The anti-solvents for each sample can easily be identified using the initial solubility 

screen. By using solvents in combination with anti-solvents the sample’s solubility can be 

modified and supersaturation can be established within a closed system, making nucleation 

and crystal growth attainable.  

Ideally the solvent used should provide moderate solubility for the sample. 

However, if this is not available, a solvent in which the sample has a high degree of solubility 

has to be used and consequently a stronger anti-solvent is required. The solvent and anti-

solvent should be miscible but have distinct densities. This requirement facilitates the 

formation of a diffusion region, an area in which the solvent and anti-solvent are in contact 

but to a limited degree. An undesirable extent of mixing will occur if the two solvents have 

too similar densities. It is most helpful if the solvent with the dissolved sample has a higher 

density and volatility than the anti-solvent, allowing the anti-solvent to form the top layer 

within the glass vial. The system can be reversed but at the disadvantage of not being able 

to add more anti-solvent upon requirement.  

If liquid diffusion experiments do not yield any crystals, they can readily be altered 

in an attempt to improve the crystallisation conditions. More anti-solvent can be added to 

ensure supersaturation is attained and temperature can easily be varied. However, care 

must be taken to ensure as little disturbance to the system as possible in order to avoid 

over-mixing of the two solvents.  

 

3.1.4|  Crystallisation by Vapour Diffusion 

 

Vapour diffusion is a flexible technique suitable for small amounts of sample. Compared to 

liquid diffusion, vapour diffusion is a slower crystallisation technique which will aid the 

growth of more ordered, single crystals. If no crystallisation results, the glass vials 

containing the solvent/sample solution can easily be moved to a different anti-solvent, thus 

preventing sample from being wasted.  As with liquid diffusion, it is preferable for the 

sample/solvent solution to be less volatile than the anti-solvent; however, it is less 

problematic in vapour diffusion if this is not the case.  
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3.1.5|  Selecting and Harvesting a Crystal 

 

As briefly discussed in Section 2.3 there exist key indicators to aid selection of a suitable 

crystal for X-ray diffraction experiments. The shape of a crystal is the most immediate 

indicator of quality. Crystals with well defined edges and no ‘satellite’ crystals are preferred. 

‘Satellite’ crystals cannot be removed from the surface of crystals, and therefore present no 

potential use in single crystal X-ray diffraction experiments. Except for a few cases (cubic 

crystals and tetragonal and hexagonal crystals if viewed along the c axis), crystals are 

birefringent. A crystal which displays even birefringence across the whole crystal when 

rotated under polarised light is likely to be highly ordered and therefore of appropriate 

quality. Often the equipment being used for X-ray diffraction experiments may influence the 

size of crystal required to produce a good data set. It is only through screening potential 

crystals (Section 3.5.2) that the required size of a particular crystal can be inferred.  

 To harvest a selected crystal a paper taper is used to transfer the crystal from the 

crystal growth medium (mother liquor) to a small amount of inert oil placed on a glass slide. 

Care should be taken to ensure the crystal remains intact. It is advantageous to transfer a 

crystal to a drop of inert oil (Fomblin), as often this provides a more viscous medium which 

aids the manipulation of crystals and helps secure the crystal once it is mounted and frozen 

in the Cryo stream. In some cases crystals grow as clusters from which a fragment may be 

broken off to produce a single crystal which may potentially be suitable for X-ray diffraction 

experiment. Clusters can be teased apart or fragmented using a needle or a paper taper 

which is less likely to cause destructive damage. 

 To mount the crystal onto the X-ray diffractometer for screening (Section 3.5.2), a 

glass fibre attached to a pin is used. The pin is then attached to the goniometer head ready 

for screening the crystal. Before the crystal was collected onto the glass pin the pin was 

approximately centred on the diffractometer. Care was taken to ensure a minimal amount 

of fomblin oil was collected with the crystal. 

 

3.2|  Protein Crystallisation 

 

Surfactants and solvents were of a laboratory reagent grade (unless stated otherwise)  and 

were used as supplied: Span80 (Sigma), Brij30 (Sigma-Aldrich), Tween80 (Sigma-Aldrich), 

Aerosol-OT (AOT) (Fisher - general purpose grade), TritonX-100 (Fisher - Electrophoresis 

grade), TritonX-114 (Sigma-Aldrich), n-heptane (Fisher), cyclohexane (Fisher), 1-hexanol 
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(Sigma-Aldrich), sodium chloride (sigma  99.5%). Lysozyme from chicken egg white, 

provided by Sigma-Aldrich (Fluka), was used for crystallisation experiments. Water was 

obtained from a USF Elga Purelab water purifier and purified to a resistivity of 18 MΩcm.  

 

3.2.1|  Preparation of Hanging Drop Vapour Diffusion Trays 

 

Hanging drop vapour diffusion trays for Lysozyme crystallisation were set up as shown in 

Table 3.1. A protein solution of 50 mgml-1 Lysozyme in 0.1M NaAc pH 4.8 buffer was 

prepared and centrifuged using a desk-top centrifuge for three minutes to sediment any 

dust and/or non-dissolved Lysozyme. Stock reservoir solutions were prepared consisting of 

10% (w/V) NaCl, 0.1M NaAc buffer of varying pH (pH 4.4, 4.8, 5.2, 5.6) and 25% (V/V) 

ethylene glycol. A volume of 1 µl was used per drop and the wells were filled with 0.5 ml of 

reservoir solution. Each well was sealed using vacuum grease and a siliconised cover slip. 

Crystallisation trays were stored at room temperature.  

 

 
Ratio for Protein solution(µl):Reservoir 

solution(µl) 
3:1 2:1 3:2 2:2 1:2 1:3 

pH of Buffer 
solution 

Well reference 1 2 3 4 5 6 

4.4 A       

4.8 B       

5.2 C       

5.6 D       

 

Table 3.1|  Set up for 4x6 hanging drop vapour diffusion crystallisation tray. 

 

3.2.2|  Microemulsion Preparation  

 

To date, the crystallisation of proteins using microemulsions to produce single crystals of an 

appropriate quality for X-ray diffraction experiments has not been explored. Previous work 

involving proteins and microemulsions includes the use of w/o AOT microemulsions as a 

medium to control aggregation of Ferritin166, a water soluble, iron storage protein, in order 

to produce discrete protein nanocrystals. Also, microemulsions have successfully been used 

as a reaction medium for the immobilisation of proteins to hydrophilised surfaces167 and a 

means of separating protein mixtures168, 169.  
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3.2.2.1|  Phase Diagrams 

 

Conducted at room temperature, ternary phase diagrams (Figure 3.1) for different 

surfactant systems were made, varying the ratio (percentage by mass) of aqueous, oil and 

surfactant phases. 

 

Figure 3.1|  Ternary phase diagram used to select appropriate ratios of aqueous, oil and surfactant 

phases to give stable, transparent microemulsions. 

 

For systems in which a co-surfactant was used the ratio of the two surfactant components 

remained fixed. Assessment was conducted visually noting a colourless, transparent, non-

gel like solution to be a microemulsion. Table 3.2 gives the components used in each ternary 

phase diagram. 

 

Aqueous Phase Oil Phase Surfactant/co-surfactant 

H2O Cyclohexane TX-114 

H2O Cyclohexane TX-100:1-hexanol (1:1 w/w) 

5% (wt) NaCl by mass in H2O Cyclohexane TX-114 

5% (wt) NaCl by mass in H2O Cyclohexane TX-100:1-hexanol (1:1) 

0.1M NaAc pH 4.8 Heptane Span80:Tween80 (1:1) 

5% (wt) NaCl by mass is H2O Heptane AOT 

H2O Heptane AOT 

 

Table 3.2| Components of ternary phase diagrams. 
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3.2.2.2|  Ionic Surfactant Systems 

 

Test protein Lysozyme is an aqueous soluble, globular protein. Subsequently, to explore 

thermodynamic control of Lysozyme crystallisation via 3D nanoconfinement in 

microemulsions, water-in-oil microemulsions (Winsor II) are required. Following the 

successful application of microemulsions for Ferritin aggregation166, the use of AOT as a 

surfactant system provides a starting point for the application of microemulsions for 

Lysozyme crystallisation. 

Stock solutions of 10% (wt) and 5% (wt) of AOT in heptane were prepared and 

sonicated for one hour to ensure all AOT was dissolved and a homogenous solution was 

formed. To explore the amount of aqueous phase that could be confined within the 

surfactant/continuous phase and to serve as a control experiment, varying amounts of pure 

water (10-100 µl) was added to varying volumes of surfactant/continuous phase solution 

(0.5-5 ml). A ternary phase diagram was generated at room temperature to aid the 

determination of a suitable ratio of surfactant/continuous to aqueous phase. Upon addition 

of the aqueous phase to the surfactant/continuous phase the sample was shaken by hand 

or vortexed to facilitate the complete dispersion of the aqueous phase. In some cases were 

shaking and votexing appeared insufficient, the sample was placed in a sonicator bath set at 

room temperature to form, in successful cases, a transparent, single phase microemulsion. 

Moving forward, stock solutions of varying Lysozyme concentrations (5-50 mgml-1) 

were made using solvents of pure water and four different buffer solutions of 0.1 M NaAc 

with varying pH (4.6, 4.8, 5.2 and 5.6). Lysozyme solutions were stored in the fridge at 4°C 

and were not sonicated in order to prevent denaturing the protein by the potential localised 

increase in temperature170. Aliquots of Lysozyme solution were added to the 

surfactant/continuous phase, vortexed or sonicated, and then stored at room temperature. 

A series of experiments were conducted to explore the effects of varying the ratio of 

dispersed (aqueous) phase to surfactant/continuous phase, the concentration of Lysozyme 

and the aqueous buffer used. The same microemulsion preparation method was used for 

each surfactant system used as detailed in below sections. 
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3.2.2.3|  Non-ionic Surfactant Systems 

 

As previously mentioned, thermodynamic control of crystallisation has been successfully 

demonstrated with the crystallisation of glycine polymorphs4. This was achieved using a 

surfactant system of Span80:Brij30 in a 1:1 ratio dissolved in heptane to make a 40% (wt) 

surfactant solution. Subsequently both Span80:Brij30 and Span80:Tween80 surfactant 

systems were applied to Lysozyme crystallisation experiments. This would also enable a 

comparison to be drawn between non-ionic surfactant systems and ionic (AOT) surfactant 

systems in the use for Lysozyme crystallisation. 

Batch solutions of Span80:Brij30 in a 1:1 ratio 40% (wt) in heptane and 

Span80:Tween80 in a 1:1 ratio 20% (wt) in heptane were prepared and sonicated for two 

hours and left to settle for 24 hours to allow the homogeneous surfactant solution to return 

to room temperature. As with the AOT surfactant system, a phase diagram and a series of 

experiments were conducted to explore the affects of several variables including the ratio of 

dispersed (aqueous phase) to surfactant/continuous phase, the concentration of Lysozyme 

and the aqueous buffer. 

Further exploring the use of non-ionic surfactant systems, both TritonX-100 (TX-100 

and TritonX-114 (TX-114) were used. The TX-100 surfactant required the use of a co-

surfactant, 1-hexanol, in order to form stable w/o microemulsions. A 1:1 ratio of surfactant 

to co-surfactant was used for TX-100, and for both TX-100 and TX-114, cyclohexane was 

used as the continuous phase.  Appropriate ratios of water:surfactant/co-surfactant:oil 

were noted from the phase diagrams and samples of these ratios were made in which the 

water was replaced by a solution of Lysozyme in water of varying concentrations for both 

TX-100 and TX-114 . 

 

3.2.2.4|  Methods for Further Facilitating Crystallisation in Microemulsions 

 

As with other crystallisation methods, it is sometimes found that addition of an anti-solvent, 

also known as a precipitant, is required to bring the solution into supersaturation to enable 

nucleation and subsequent crystal growth. To apply this to the microemulsion method, 

several approaches were employed using solutions of sodium chloride (NaCl) as the anti-

solvent.  

 The direct addition of bulk solutions was used to first establish an approximate ratio 

of protein to anti-solvent solutions that would bring the protein concentration into 
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supersaturation and facilitate crystal growth as detailed in Table 3.3. The ratio was then 

applied to microemulsions by directly adding an aliquot of anti-solvent solution directly to 

the microemulsion and mixing the two together via vortexing.  

 

 
[NaCl]   
(% wt) 

500 µl 
Lysozyme 
50 mgml-1 
in water 

500 µl 
Lysozyme 
50 mgml-1 
in water 

500 µl 
Lysozyme 
50 mgml-1 

in 0.1M 
NaAc pH 4.8 

500 µl 
Lysozyme 50 

mgml-1 in 
0.1M NaAc 

pH 4.8 

Volume of 
NaCl solution  

(µl) 

5 500 1000 500 1000 

10 500 1000 500 1000 

15 500 1000 500 1000 

20 500 1000 500 1000 

 

Table 3.3|  Direct addition of anti-solvent solution (NaCl solution) to bulk Lysozyme solution of 

concentration 50 mgml
-1

. 

 

 An alternative, mixed microemulsion method was also used in an attempt to 

introduce anti-solvent into the system. Mixed microemulsions have previously been used in 

the crystallisation of glycine in which methanol was used as the anti-solvent4. Phase 

diagrams incorporating different concentrations of an anti-solvent solution as the dispersed 

aqueous phase were established for each surfactant system. Both Lysozyme microemulsions 

and anti-solvent microemulsions were separately made then directly mixed together and 

vortexed. Again, the ratio of Lysozyme solution to anti-solvent solution was applied to the 

mixed microemulsion method where possible. In some cases, ratios of the three 

microemulsions components for the anti-solvent system that lay just outside the region in 

which a microemulsion was formed were also used. This explored the possibility that the 

mixing of a Lysozyme microemulsion with an anti-solvent emulsion or nano-emulsion may 

form a microemulsion overall.  

 In the absence of anti-solvent, a method in which the continuous phase was 

evaporated was used. The mass of the microemulsion was taken before and after the 

evaporation of continuous phase and the volume of the microemulsion was allowed to 

reduce by approximately two thirds, as judged by eye. Evaporation experiments were 

conducted in a fume hood 48 hours after the microemulsions had been made.  
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3.3|  Microemulsion Droplet Size Determination 

 

SAXS and subsequent GIFT analysis were used to confirm the formation of microemulsions 

in samples of each surfactant system by determining the droplet size. Sample that diffract 

and have droplet sizes within 1-100 nm are considered to be microemulsions.   

 

3.3.1|  Geometric Calculations 

 

An estimate of the microemulsion droplet radius can be made using geometrical 

calculations. When the composition of the microemulsions is known, Equation 3.1 can be 

used to predict the droplet radius, where   is the dispersed volume fraction,    is the 

number of surfactant molecules per unit volume and   is the area per surfactant molecule78. 

 

       
  

   
     (3. 1) 

 

Geometric calculations of microemulsion droplet radius assume that all the 

surfactant/co-surfactant molecules sit at the oil-water interface and that each of them 

occupies a well-defined area, independent of the microemulsion’s composition.  

 

3.3.2|  X-ray Scattering Experiments for Microemulsions: SAXS 

 

Small Angle X-ray Scattering (SAXS) can be used to determine the size of droplets within 

microemulsion samples experimentally, and confirm whether 3D nanoconfinement has 

been achieved. SAXS data was collected using a Brucker Nanostar SAXS machine operated at 

40 kV and 35 mA to produce Cu Kα radiation with a wavelength of 1.54 Å. The machine was 

fitted with a Hi-star 2D detector at a distance of 65 cm and had cross coupled Gobel mirrors 

and pinhole collimation for point focus geometry.  

 Microemulsion samples were inserted into the sample chamber via a sealed 2mm, 

vacuum tight quartz capillary and the chamber evacuated to a pressure of 10-1 mbar. It is 

important for the capillary to be positioned correctly at a point where minimal transmission 

occurs. The ideal positioning of the capillary can be ensured using the Gadds program 

Radiography/nanography run with the attenuator in the dropped position.  A data collection 

can be made once the sample stage has been set to the ideal position and the attenuator 

returned to the lifted position. The time taken to collect sufficient SAXS data can easily be 
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changed and depends on the nature of the sample.  The duration of the SAXS experiment 

should be modified in order to gain a good signal to noise ratio. For each surfactant system, 

SAXS data was collected for 2 hours.  

 

3.3.3|  Generalised Indirect Fourier Transform (GIFT) 

 

SAXS data collected from a dilute solution can be directly related to the scattering particles 

using an indirect Fourier transformation.  However, for more concentrated solutions, 

evaluation of SAXS data diverges away from a solution to a linear weighted least-squares 

problem. This is due to the resultant scattering intensity including both intra- and inter-

particle scattering contributions. Unlike dilute solutions, particle interactions have to be 

taken into consideration and it can no longer be assumed that the average distance 

between particles is much greater than the dimensions of the particles themselves171.  

Scattering from isolated particles, as found in dilute solutions, can be expressed by 

the form factor,       where   is the length of the scattering vector, which describes intra-

particle scattering. The structure factor,       corresponds to the inter-particle scattering. 

Under certain conditions, the product of the form factor and the structure factor can be 

used to approximate the total scattering intensity,      (Equation 3.2). In these cases 

evaluation of the scattering data becomes a non-linear problem171. 

 

                     (3. 2) 

 

For concentrated solutions, it is important not to neglect inter-particle interactions 

as the influence of the corresponding structure factor can readily be seen in the 

experimental data through the deviation of the scattering curve from the ideal particle 

scattering curve at low   values. Also, scattering intensity decreases at low   values due to 

repulsive interactions between particles. Oscillations in the pair distance distribution 

function may result from these deviations at low   values, leading to incorrect evaluation of 

the experimental scattering data.  

 The structure of aggregates in solution is dependent on the concentration of 

amphiphilic molecules. It is therefore not possible to eliminate the influence of inter-particle 

interactions by conducting SAXS experiments at several concentrations and then 

extrapolating the scattering data to a concentration of zero. Consequently, a global 

technique for the evaluation of SAXS data was developed that allows the simultaneous 

determination of the form factor and the structure factor through the use of an algorithm to 
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solve the non-linear least squares problem.  The technique developed, known as 

generalised indirect Fourier transformation (GIFT)171, is possible due to the different 

analytical behaviour of the two functions for the form and structure factors. GIFT does not 

use models or analytical restrictions for the determination of the form factor. However, the 

determination of the structure factor is parameterised. For a particular particle interaction 

model, up to four parameters (including volume fraction, polydispersity, radius and effective 

charge) can be utilised.  

 The pair distance distribution function,     , which can be obtained by the Fourier 

transform of the scattering curve, measures the probability, weighted by the electron 

density contrast, of finding a distance  , within the scattering particle. Hence       falls to 

zero at the largest dimension of the scattering particle. The scattering data will fit one of 

several models; the model can be inferred from the shape of the      function. For a core 

shell model, the      function will have minima corresponding to regions of electron 

density of alternating sign, often relating to differences in the electron densities of the inner 

phase, the surfactant and the continuous phase. The      function for the hard sphere 

model has no minima and results due to there being negligible difference in the electron 

densities of the surfactant tail groups and the continuous phase. If there is only a very slight 

difference between the electron densities of the surfactant tails and the continuous phase, 

the surfactant tails may not be effectively seen by SAXS due this difference being negligible 

and there may be partitioning of the oil continuous phase among the surfactant tails. 

GIFT analysis has been successfully applied to many cases including an investigation 

into various intrinsic parameters that influence structural variation of reverse micelles in 

non-ionic surfactant/oil systems172. Within the investigation detailed in this thesis, GIFT 

analysis is applied to determine the droplet size of reverse micelles to confirm the formation 

of microemulsions in systems used to attempt crystallisation of Lysozyme.  

   

3.4|  Optical Microscopy 

 

Optical microscopes enable the magnification of small objects using visible light and a lens 

system. Typically, this is an appropriate means of clearly viewing crystals which is aided by 

the use of filters to polarise light, highlighting the birefringent nature of crystals. Materials 

that appear birefringent which have a refractive index dependent on the polarisation and 

propagation direction of light. Optical microscopes were used to monitor crystal growth, aid 

initial solubility screens for small molecule crystallisation, harvest crystals for X-ray 
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diffraction experiments and to capture images of crystals. Both a Leica MZ16 and Leica 

M165C were used to do this.  

  

3.5|  X-ray Diffraction Experiments for Single Crystals: X-ray Crystallography 

 

Upon selection of a high quality single crystal, X-ray diffraction experiments were conducted 

as a means of further differentiating the quality of crystals grown using microemulsions. The 

quality of data obtained from crystals grown using microemulsions was compared to the 

quality of data sets collected from crystals grown using standard vapour diffusion methods.  

 

3.5.1|  Harvesting a Crystal 

 

Upon selection of potential crystal(s) (Section 3.1.5), taking into consideration the quality of 

crystal, a method for extracting the crystals from their growth environment has to be 

established. The method of extraction used depends on the type of experimental setup. 

Individual wells from hanging drop vapour diffusion trays can be independently selected; 

the cover slip can then be turned over and placed on a suitable stage (typically the lid of the 

hanging drop tray). The crystal(s) can then be directly harvested from the crystallisation 

drop. If more than one crystal is present in a drop, the cover slip can be returned to the 

hanging drop tray and the system resealed, ready for harvesting a crystal for a later 

experiment. Harvesting crystals grown via microemulsions required a less direct approach. 

Due to the depth of the glass vials which contained the microemulsions, crystals could not 

be independently and directly selected from the bottom of the glass vial. Aliquots of the 

microemulsion/crystal mixture were taken by gently drawing up a sample from the bottom 

of the glass vial using a Pasteur pipette to which the opening had been increased by 

breaking off the bottom glass part (care was taken to prevent contamination with glass 

shards/dust). The aliquots were then deposited on a glass slide from which crystals could be 

selected and directly harvested.  

 Crystals selected were then screened on a diffractometer. This required crystals 

grown from both hanging drop vapour diffusion trays and microemulsions to be harvested 

using a CryoLoop173. The size of the CryoLoop was selected to accommodate the size of the 

crystal. Typically a 0.4-0.5 mm CryoLoop was required. Care was taken to include a minimal 

amount of solution that surrounded the crystal when picking up the crystal in the CryoLoop. 
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Some liquid is required to secure the crystal once it has been frozen in the Cryo stream, 

however an excess should not be used to avoid interference with diffraction.  

 

3.5.2|  Screening a crystal 

 

Screening on the diffractometer174 can be used to indicate the diffraction quality of the 

crystals. This is required as, although in some cases a crystal appears of a good quality under 

the microscope it may diffract poorly and vice versa, a crystal which visually appears to be a 

poor quality crystal may in fact diffract well.  

 Before picking up the selected crystal, the head of the CryoLoop was roughly 

centred on the diffractometer using the attached camera. This ensured that once mounted 

onto the goniometer the crystal was likely to be directly in the Cryo stream and be in a good 

starting position for the crystal to be centred. Centring (Figure 3.2) the crystal required 

finding the crystal’s centre of gravity. This ensures the crystal remains in the path of the X-

ray beam at all times by preventing the crystal from slipping or becoming dislodged when 

rotated. To centre the crystal, small pins on the goniometer head were used to alter the 

position of the CryoLoop while rotating through φ at an Ω angle of 60°.  

 

Figure 3.2|  Centring a crystal, approximately 0.5 mm x 0.4 mm x 0.3 mm in size, is aided through use 

of the attached camera which gave rise to this image. 
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 To screen the crystals for diffraction quality single frames of widths 1° and 0.5° were 

taken at angles φ of 0° and 90°. An exposure time of 10 seconds was adequate for the 

testing of Lysozyme crystals grown from both hanging drop vapour diffusion trays and from 

microemulsions. Exposure times can be varied to give reflections of an appropriate intensity 

that do not exceed the limits of the detector. An idea of diffraction quality can be obtained 

from the diffraction image (Figure 3.3); ideally reflections are bright, have well defined 

edges and are not doubled as this would indicate that the crystal is not a single crystal. Data 

should not be collected from crystals that diffract poorly. 

 

Figure 3.3|  A diffraction image can give an initial idea of the quality of diffraction from a single 

crystal by considering the brightness and shape of the diffraction spots.  

 

 An orientation matrix was determined for the first crystals grown from a hanging 

drop vapour diffusion tray and from microemulsions that diffracted well enough to warrant 

collecting a data set from. This process enabled the unit cell of the crystals to be determined 

by determining the matrix function. The matrix function relates the real-space unit cell of 

the crystal to the reciprocal lattice.  

The determination of the crystal unit cell is an important piece of information to 

initially obtain. Through collecting sufficient data in order to determine the unit cell it is 

possible to infer the ability of the crystal to diffract well at a variety of φ and Ω angles and 

also the crystal’s ability to retain sharp and intense reflections as initially observed through 

the screening of the crystal.  For collection of data in the aim of solving the crystal structure, 

knowledge of the unit cell aids the design of the data collection in order to gain a data set 

which is complete. If there is doubt to the correct unit cell, data collection should be 
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designed assuming that the correct unit cell is the one with the lowest symmetry. This will 

reduce the possibility of collecting an incomplete data set which would have limited 

benefits.   

 

3.5.3|  Data collection and Processing 

 

A Brucker MicroStar diffractometer was used for the screening of crystals and for data 

collection of crystals grown from both hanging drop vapour diffusion and microemulsions. 

X-ray radiation was sourced from a copper rotating anode and the diffractometer was set 

up with a Helios mirror monochromator system and a Platinum 135 CCD area detector. The 

diffractometer was operated at 40 kV and 60 mA. 

 The same data collection strategy was used for all Lysozyme crystals consisting of a 

range of φ and Ω scans. An exposure time of 30 seconds was used. A manual design of the 

data collection strategy was sufficient to achieve a complete data set. However, if required, 

there is data collection strategy software which can be utilised to design a complete 

diffraction experiment with an appropriate redundancy. Redundancy is the term used to 

describe repeated collection of equivalent reflections. The software also gives an estimated 

time of completion taking into consideration the exposure time for each frame. 

 Upon completion of a data collection the data is merged, integrated and scaled 

using SAINT and automatic absorption corrections are made using SADABS. Following this 

initial processing, XPREP175 is used to examine the systematic absences in the reflection data 

and determine the space group of the crystal. For the Lysozyme crystals, data processing 

was not taken any further and statistical values were compiled for each data set.  
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Chapter Four 

Results 
 

4.1|  Chemical Crystallisation 

 

The following sections (Section 4.1.1 – 4.1.8) details the crystallisation results for 

compounds described in Appendix A2. The methods for the crystallisation of these 

compounds are discussed in Sections 3.1.1 – 3.1.4. 

 

4.1.1|  Crystallisation of ASH89 

 

The sample of ASH89 provided appeared birefringent under polarised light, was off-white in 

colour and no prediction of crystal habit could be made from the bulk sample. An initial 

solubility screen showed ASH89 to be soluble in methanol, acetonitrile, ethanol, DMSO, 

ethyl acetate and chloroform and partially soluble in ethylene glycol, cyclohexane, 1-

pentanol, heptane, 1-hexanol and decane. Although the sample was soluble in several 

solvents, not all were suitable for crystal growth. For example, when dissolved in both 

methanol and acetonitrile, oil was produced upon evaporation of the solvents.   

 

 

Figure 4.1|  Clusters of ASH89 crystals grown via evaporation of solvent, ethylene glycol. Needles 

were thin, approximately a width of <10 µm. 
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After three days at room temperature crystal growth was observed on the initial 

solubility screen slide for the sample dissolved in ethylene glycol and in DMSO. In DMSO a 

network of fine, wispy needles were formed from which no single crystal could be isolated. 

The formation of disordered crystals may be due to too rapid crystal growth upon a high 

rate of solvent evaporation. When dissolved in ethylene glycol, crystals of the tri-peptide 

grew in clusters of needles (Figure 4.1). The clusters were small, with needles approximately 

10 µm in width and 50 µm in length. Clusters of crystals are not suitable for X-ray diffraction 

experiments; therefore a paper taper was used to separate the clusters to try and isolate a 

single crystal needle (Figure 4.2). Upon dispersion of the needle cluster, fragments of 

needles, which may potentially be suitable for X-ray diffraction experiments, were selected 

and carefully transferred to a drop of inert oil, Fomblin.  

 

Figure 4.2|  Cluster of ASH89 crystals that has been separated using a paper taper in an attempt to 

isolate single crystal needle for X-ray diffraction experiments.  

Needles were thin, approximately a width of <10 µm. 

 

Screening of the crystals found them to diffract weakly. Two crystal needles were 

tested but both were probably not of sufficient size. Testing the crystals on intense 

synchrotron beamlines available at resources such as Diamond Light Source LTS may have 

given better results for structure determination.  

 Attempts were made to grow larger crystals which may be suitable for X-ray 

diffraction experiments. Firstly, attempts were made to form a larger volume of ASH89 

saturated ethylene glycol solution by using a glass well plate in which larger volumes of 

solvent could be used. A supersaturated solution was achieved in 6 µl of ethylene glycol and 

again clusters of needle crystals were observed at the edge of the drop with the tip of the 
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needles protruding towards the centre of the drop. The needles present in the clusters grew 

length ways to a greater extent than those observed in the initial solvent screen; however, 

the width of the crystals was still too limiting for good quality diffraction. Another saturated 

drop of ethylene glycol was prepared and seeded with a needle originally grown for the 

initial solvent screen; a crystal which appeared to have the largest width was selected. This 

however did not lead to single crystal growth but clusters.   

 

4.1.2|  Crystallisation of ASH81/87 

 

The sample of ASH81/87, a white crystalline material, was observed to be soluble in 

methanol, acetonitrile, ethanol, DMSO, 1-pentanol, ethyl acetate and insoluble in water, 

cyclohexane, decane, hexane and toluene. Partial solubility was observed in ethylene glycol 

and 1-hexanol. As expected not all solvents lead to re-crystallisation of the compound upon 

evaporation of the solvent. Oil was formed upon evaporation of 1-pentanol, heptane and 

ethyl acetate. Two of solvents, ethanol and DMSO, gave a crystalline material from the 

evaporation of solvent leaving a ring of crystalline material on the initial solvent screen glass 

slide. Although crystalline, no single crystals were observed and crystal habit could not be 

predicted from the material gained from DMSO. However, the ring of crystalline material 

left upon evaporation of ethanol appeared to be in clusters of very small, thin needles, 

giving an indication of the compound’s potential crystal habit. 

 Needles were grown from the drop of ethylene glycol on the initial solubility 

screen glass slide stored at room temperature. The crystals grew in clusters of thin needles, 

less than 10 µm in width, after 36 hours. At this point the clusters of needles were 

extremely small; the slide was therefore left for a further two days at room temperature. 

This led to further lengthwise growth of the crystal needles in the clusters but no change in 

the width of the crystals was observed (Figure 4.3). The larger crystal clusters were carefully 

teased apart using acupuncture needles resulting in the isolation of single needles 

approximately 70 µm in length (Figure 4.4). Several attempts to isolate single crystals were 

required, rapidly depleting the number of potential crystals for experiment as the needles 

were extremely brittle and fractured effortlessly.  
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Figure 4.3|  Cluster of ASH81/87 needle crystals grown via evaporation of ethylene glycol at room 

temperature for three and a half days. Needles were very thin, approximately 5 µm. 

 

 

Figure 4.4|  An isolated needle of ASH81/87 grown via evaporation of ethylene glycol at room 

temperature for three and a half days. Needles were very thin, approximately 5 µm.  

 

Larger volumes of saturated ASH81/87 solutions in ethylene glycol were prepared in 

a glass well plate. Crystal growth was observed as seen on the initial solvent screen slide; 

clusters of needles grew over five days. There was little difference in the size of the clusters 

of needles, however more clusters were grown. Clusters were transferred to inert oil and 

attempts were made to isolate single needles for screening. Using single needles grown in 

the glass well plate from ethylene glycol, two saturated solutions were seeded. In ethylene 

glycol no single crystal growth occurred and the expected clusters of needles resulted. 

Seeding a saturated solution of ASH81/87 in DMSO resulted in the growth of numerous 

clusters of insignificant size for experimental use.  
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4.1.3|  Crystallisation of ASH82 

 

The initial solvent screen for ASH82, a birefringent compound, showed the compound to be 

soluble in a limited number of solvents including acetonitrile and ethyl acetate. Partial 

solubility in toluene, 1-pentanol and 1-hexanol was observed and the compound was 

insoluble in water, methanol, ethanol and decane. On the glass slide used for the initial 

screen, evaporation of acetonitrile led to the formation of a mesh of long, thin, fibre-like 

crystals. ASH82 displayed a low solubility in toluene; however addition of the bulk sample to 

toluene lead to a separation of the material into what appeared to be single needles. These 

needles were far too small and fragile for analysis by X-ray diffraction. 

 Evaporation of 100% acetonitrile in a glass well plate lead to the same result as 

observed in the initial solvent screen. The mesh of fibre-like needles was transferred to 

another drop of acetonitrile and re-dissolved. Re-crystallisation did not occur. Similarly, 

crystal growth was not facilitated by evaporation of 100% toluene. Evaporation experiments 

were set up using a mixture of acetonitrile and toluene in ratios 1:1, 1:2 and 1:3. No single 

crystal growth resulted; therefore attempts were made to slow the rapid and abundant 

nucleation using liquid diffusion experiments. Water and decane were used as anti-solvents 

for ASH82 dissolved in acetonitrile. A 2:5 ratio of solvent to anti-solvent was used. After 

three weeks, no crystal growth had occurred for each of the liquid diffusion experiments; 

the solutions were allowed to evaporate, but still no crystal growth occurred.  

 

4.1.4|  Crystallisation of ASH90 

 

No crystal habit of ASH90, a birefringent solid, could be inferred upon initial observations 

under an optical microscope. The initial solvent screen found ASH90 to be soluble in 

acetonitrile, DMSO, and ethyl acetate, and partially soluble in 1-pentanol. Potential anti-

solvents may be selected from water, methanol, ethanol, ethylene glycol, cyclohexane, 

heptane, 1-hexanol, decane and hexane, in all of which ASH90 was observed to be insoluble. 

No crystal growth was observed for solvents in which ASH90 was readily soluble. Upon 

evaporation of 1-pentanol a ring of birefringent material was left deposited on the glass 

slide. No crystal habit could be predicted.  

 The liquid diffusion method was applied using a 2:5 ratio of ethyl acetate to hexane. 

However, very small clusters of needles were formed in a gel like manner which grew on the 
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side of the glass wall. This indicated that the compound was likely to crystallise in a bad 

habit unsuitable for structure determining X-ray diffraction experiments.  

 

4.1.5|  Crystallisation of ASH93 

 

A 3 mg sample of ASH 93, a white crystalline compound, was provided for crystallisation and 

subsequent structure determination. Potential anti-solvents were found to be water, 

methanol, ethanol, cyclohexane, 1-pentanol, hexane, heptane and decane. The compound 

was found to be soluble in a limited number of solvents including acetonitrile, DMSO, and 

ethyl acetate. Solutions of ASH93 in these three solvents were prepared in small glass vials 

with the lid partially open in attempt to slow evaporation rate. No crystal growth was 

observed for experiments conducted at room temperature and at 4 °C.  

 Vapour diffusion experiments were tested for each solvent using methanol, 1-

pentanol, cyclohexane and decane as an anti -solvent. This was an advantageous method 

for the small amount of material provided, requiring only three solutions of ASH93 which 

could easily be transferred to each of the anti-solvents. The vapour diffusion systems were 

closed and left for three days with each anti-solvent; however, no crystal growth resulted. 

 

4.1.6|  Crystallisation of ASH91 

 

The sample of ASH91 provided (2 mg) displayed a limited solubility in the solvents used in 

the initial solvent screen. Partial solubility was observed in acetonitrile, ethylene glycol 

(when gently heated), DMSO and ethyl acetate. DMSO was found not to be a promising 

solvent for crystal growth as evaporation of the solvent left an oily residue behind on the 

glass slide.  Evaporation of both acetonitrile and ethyl acetate left a small ring of a 

birefringent material, from which no deduction of the crystal habit could be made.  The 

ethylene glycol drop did not yield any crystals.  

 A similar approach was taken to that used in attempts to crystallise ASH93. Vapour 

diffusion experiments were set up for the two solvents and these were screened against 

each of the anti-solvents. Initially a 2:5 ratio of solvent to anti-solvent was used, but this did 

not yield any crystal growth, leading to the trial of a 2:9 ratio. Crystal growth did not occur 

through vapour diffusion experiments.  
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4.1.7|  Crystallisation of ASH59 

 

ASH59 was observed to be soluble in mainly polar solvents including methanol, acetonitrile, 

ethanol, DMSO, 1-pentanol, and ethyl acetate. ASH59 also showed partial solubility in larger 

alcohol solvents such as 1-hexanol. Potential anti-solvents were observed to be water, 

cyclohexane, heptane, decane and toluene. No crystal growth was observed from the initial 

solvent screen, and evaporation of methanol, acetonitrile, and 1-pentanol left a deposit of 

oil.  

 Evaporation experiments were conducted in a glass well plate with 20 µl of 100% 

DMSO which lead to the growth of clusters of needles that aggregated together as more 

solvent evaporated. This experiment was repeated and a cluster of needles removed and 

transferred to a drop of inert oil before aggregation of clusters prevented their isolation. 

Unfortunately, no single needle crystal of sufficient quality and size could be separated from 

the clusters for analysis by X-ray diffraction. No evaporation experiments were conducted 

for methanol or ethanol as at room temperature these solvents evaporate too quickly.  

 Vapour diffusion experiments were set up for ASH59 dissolved in both methanol 

and acetonitrile, exploring several anti-solvents including water, cyclohexane and heptane. 

After two weeks no crystal growth was observed. Unfortunately, despite considerable 

effort, no crystals for ASH59 have yet been obtained for X-ray diffraction experiments.  

 

4.1.8|  Crystallisation of GDL02, GDL38 and GDL39 

 

Three birefringent compounds, GDL02, GDL38 and GDL39, yellow orange, yellow and orange 

in colour respectively, were provided for crystallisation and subsequent structural studies. 

All three compounds displayed similar results in the initial solubility screens, typically 

soluble in methanol, acetonitrile, ethanol, ethylene glycol, DMSO and toluene. Partial 

solubility was observed in water, ethyl acetate, 1-pentanol and 1-hexanol while typically the 

compounds were insoluble in cyclohexane, hexane, heptane and decane. Some variations in 

the solubility profiles of each compound were observed; GDL02 was insoluble in water, 

ethylene glycol and DMSO; GDL38 was partially soluble in toluene and GDL39 was soluble in 

ethylene glycol and 1-pentanol. 

 No crystallisation was observed on the initial solvent screen glass slides for each of 

the three molecules. However, when GDL02 was added to a drop of 1-hexanol, although 

only slightly soluble, small platelets with ill defined edges that had an oily appearance 
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appeared to grow out from the material that had not been dissolved. Evaporation of 25 µl 1-

1-hexanol in a glass well plate resulted in the formation of an oil upon evaporation of the 

solvent.  

 

4.2.|  Protein Crystallisation from Hanging Drop Vapour Diffusion Trays 

 

Crystals were observed in several drops of the crystallisation tray twelve hours after set-up. 

The differing conditions (pH of the reservoir solution and ratio of protein solution to 

reservoir solution in the hanging drop) resulted in different crystallisation outcomes 

including variation in the size and quality of crystals grown and the number of crystals 

grown per drop. After initial observation of crystal growth, the trays were stored at room 

temperature for a further 48 hours to allow the crystals present to grow larger. 

Crystallisation results from hanging drop vapour diffusion trays are summarised in Table 

4.1. 

 

Ratio for Protein solution(µl):Reservoir solution(µl) 

pH of Buffer 
solution 

3:1 2:1 3:2 2:2 1:2 1:3 

4.4 

Two, 
medium, 

single 
crystals. 

Two, 
medium, 

single 
crystals. 

Two, 
large, 
single 

crystals. 

Some 
crystalline 
material. 

No 
crystals 

No 
crystals 

4.8 
Some 

crystalline 
material. 

No 
crystals 

No 
crystals 

Large, 
single 

crystal. 

No 
crystals 

No 
crystals 

5.2 

Large, 
single 

crystal. 
Figure 4.6 

No 
crystals 

No 
crystals 

No 
crystals 

No 
crystals 

No 
crystals 

5.6 

Multiple, 
small, 
single 

crystals. 
Figure 4.5 

Multiple, 
small, 
single 

crystals. 

No 
crystals 

Some 
crystalline 
material. 

No 
crystals 

No 
crystals 

 

Table 4.1|  Crystallisation outcome of hanging drop vapour diffusion crystallisation tray stored at 

room temperature for 48 hours. The pH of the buffer solution and the protein to buffer solution ratio 

in the hanging drops were varied. 
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 Several of the drops were unsuccessful and no crystallisation resulted from vapour 

diffusion. Also, despite the occurrence of crystallisation in some of the drops, the crystalline 

material that resulted was not suitable for single crystal X-ray diffraction experiments. 

Drops with a pH of 5.6 and a 3:1 drop ratio of protein solution to reservoir solution resulted 

in the crystallisation of numerous small crystals which lacked the defined shape and edges 

required for the collection of a good X-ray diffraction data set (Figure 4.5). 

 

Figure 4.5|  Crystallisation outcome from hanging drop vapour diffusion tray in a well with reservoir 

solution of pH 5.6 and a hanging drop ratio of 3:1 of protein solution to reservoir solution. 

 

Single crystals were grown to a large size, approximately 500 µm x 750 µm, from 

several drops in the crystallisation tray. These crystals had well defined edges and displayed 

birefringence under polarised light (Figure 4.6). 
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Figure 4.6|  Crystallisation outcome from hanging drop vapour diffusion tray in a well with reservoir 

solution of pH 5.2 and a hanging drop ratio of 3:1 of protein solution to reservoir solution. 

 

Three repeats of the hanging drop vapour diffusion crystallisation tray were made 

and large, single crystals were harvested from wells of pH4.8 (drop ratio, 2:2) and wells of 

pH4.4 (drop ratio, 3:2) for X-ray diffraction experiments (the results of which are discussed 

in Section 4.6).  

 

4.3|  Bulk Anti-solvent Experiments 

 

Varying concentrations of NaCl solution (% by mass) were added to bulk 50 mgml-1 

Lysozyme solutions in 1:1 and 1:2 ratios of Lysozyme solution to NaCl solution. The 

crystallisation results of these bulk experiments are summarised in Table 4.2.  

 

 
50 mgml-1 Lysozyme in water: 

NaCl solution 
50 mgml-1 Lysozyme in 0.1M 
NaAc, pH 4.8: NaCl solution 

[NaCl] (% by 
mass) 

1:1 1:2 1:1 1:2 

1% 
No crystal 

growth 
No crystal 

growth 
No crystal 

growth 
No crystal 

growth 

5% Crystal growth Crystal growth Crystal growth Crystal growth 

10% 
Amorphous 

solid 
Amorphous 

solid 
Crystal growth 

Amorphous 
solid 

20% 
Amorphous 

solid 
Amorphous 

solid 
Amorphous 

solid 
Amorphous 

solid 

 

Table 4.2|  Crystallisation results from bulk anti-solvent experiments. 
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A 10-20% NaCl solution led to the rapid formation of a white amorphous solid when 

added to the Lysozyme solutions in both 1:1 and 1:2 ratios. However, crystal growth was 

observed when 10% NaCl was added in a 1:1 ratio to the Lysozyme in 0.1M NaAc, pH 4.8 

solution. The crystalline material grew quickly and was therefore disordered and irregular in 

shape. The addition of 1% NaCl solution did not facilitate crystal growth suggesting that 

supersaturation of the Lysozyme solution was not reached with this low NaCl 

concentration.  

A ratio of 1:1 and 1:2 with a 5% (wt) NaCl solution was found to be suitable for 

promoting growth of single Lysozyme crystals. Crystal formation was quicker with a ratio of 

1:2. However, little differentiation could be made between the quality of crystals obtained 

from both 1:1 and 1:2 ratios. Consequently, for direct addition of anti-solvent to 

microemulsion samples and for mixed microemulsion experiments, a 5% (wt) NaCl solution 

was typically used. 

 

4.4|  Protein Crystallisation from Microemulsions 

 

The below sections (Section 4.4.1 – 4.4.8) detail the crystallisation results for AOT, 

Span80/Brij30, Span80/Tween80, TX-114 and TX-100/1-hexanol surfactant systems. Results 

of varying the microemulsion method, including direct addition of anti-solvent, evaporation 

of the continuous phase and mixed microemulsion methods, are also discussed. 

 

4.4.1|  AOT Surfactant System  

 

Phase diagrams were constructed for AOT, an anionic surfactant, and comparisons were 

drawn between a dispersed phase of pure water and a 5% by mass NaCl solution. A NaCl 

solution of 5% by mass was chosen as this concentration was found to promote crystal 

growth of Lysozyme in bulk experiments with a ratio of both 1:1 and 1:2 for protein 

solution to salt solution. 
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Figure 4.7|  Ternary phase diagram constructed at room temperature for AOT, pure water and 

heptane. Markers indicate composition ratios which formed microemulsions. 

 

As depicted in Figure 4.7, a large region of stable microemulsions was possible for a 

dispersed phase of pure water. This usable region incorporated a large range of surfactant 

concentrations ranging from 10-50% by mass. The flexibility in composition of the three 

microemulsion components presented by an AOT surfactant system may therefore enable 

expansive variations in the microemulsions environment in order to find the niche 

composition that might enable Lysozyme crystallisation.  

In comparison, no stable microemulsions were formed for the tested compositions 

within a phase diagram when a solution of 5% (wt) NaCl was used as the dispersed aqueous 

phase. This restricted the flexibility for the design of mixed microemulsion experiments for 

the AOT surfactant system.  

A series of experiments were set up for the AOT surfactant system in which the 

Lysozyme concentration was varied. It was initially thought that it would be advantageous 

to prepare microemulsions on a small scale so that the methodology maintained the 

potential to be applied to the crystallisation of other proteins for which only small amounts 

of material were available. 

Consequently, microemulsions samples were prepared in 500 µl of both a 10% (wt) 

and 5% (wt) AOT/heptane solution. It was possible to incorporate a large range of Lysozyme 

concentrations into the 10% (wt) AOT surfactant system. However, Lysozyme solutions in a 

buffer of 0.1M NaAc of varying pH could not be dispersed in the surfactant system to form 

stable microemulsions. Table 4.3 summaries the samples which formed stable 

microemulsions with the 10% (wt) and 5% (wt) AOT in heptane surfactant systems and a 

dispersed aqueous phase of Lysozyme in water.  
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500 µl AOT 10% (wt) in heptane 500 µl AOT 5% (wt) in heptane 

Lysozyme 
concentration 

(mgml-1) 

Volume of 
aqueous phase 

(µl) 

Lysozyme 
concentration 

(mgml-1) 

Volume of 
aqueous phase 

(µl) 

50 10-40 50 10-20 

40 10-50 40 10-50 

30 10-50 30 10-50 

20 10-70 20 10-60 

10 10-100 10 10-60 

 

Table 4.3|  Samples which formed stable microemulsions prepared from the AOT surfactant system. 

 

No crystallisation was observed for single Lysozyme microemulsions. Therefore, 

experiments involving direct addition of the anti-solvent were set up in an attempt to 

facilitate crystal growth. Direct addition of 5% (wt) NaCl in 1:1, 1:2 and 1:0.5 ratios of 

microemulsion aqueous phase to anti-solvent solution to each of the microemulsions 

samples listed in Table 4.3 lead to phase separation. Subsequently, a methodology which 

did not involve an anti-solvent solution was applied. 

 Evaporation of the continuous phase was conducted on microemulsions that were 

prepared on a larger scale. The move to make microemulsions on a 2 ml scale as opposed 

to the previously used 500 µl scale was made because viewing the microemulsion samples 

via optical microscopy proved difficult for samples contained within such a small glass vial. 

Also, in anticipation of crystallisation, it was thought that a larger sample volume, and thus 

larger glass vial, would aid the crystal harvesting process and potentially produce larger 

crystals if more of the crystallisable material was contained within the microemulsions.  

 Table 4.4 lists the samples which formed stable microemulsions prepared from 2 ml 

of 10% (wt) AOT in heptane. Two repeats of the samples were made; for the first repeat no 

further experimental procedure was carried out and the samples were observed using an 

optical microscope to monitor crystallisation. The second repeat was used for experiments 

involving the evaporation of the continuous, heptane phase. Over a period of 16 hours the 

mass of each sample was reduced by approximately 15%. A third repeat of the samples was 

made; upon evaporation of the continuous phase the samples became cloudy and viscous 

when the mass of the samples was reduced by over 25%. No crystallisation of Lysozyme 

resulted from evaporation of the continuous phase.  
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Lysozyme concentration 
(mgml-1) 

Volume of aqueous phase 
(µl) 

30 20-200 

32 20-200 

34 20-200 

36 20-200 

38 20-200 

40 20-200 

42 20-200 

44 20-200 

46 20-180 

48 20-160 

50 20-160 

 

Table 4.4|  Samples which formed stable microemulsions in 2 ml of AOT 10% (wt) in heptane. Three 

repeats of these samples were made two of which were used for evaporation of the continuous 

phase experiments. 

 

Two methodologies, direct addition of an anti-solvent solution and evaporation of 

the continuous phase, failed to facilitate crystal growth from microemulsions using the AOT 

surfactant system. Mixed microemulsion experiments provide an alternative method; 

however, for the AOT surfactant system it was not possible to disperse NaCl solutions, 5-

10% by mass, to form stable microemulsions. In 1 ml of 10% (wt) AOT in heptane 10-40 µl 

of both a 1% and 0.5% (wt) NaCl solution was successfully dispersed. However, these NaCl 

concentrations, considering the initial bulk experiments, are not known to facilitate 

crystallisation of Lysozyme. Despite this, single Lysozyme microemulsions listed in Table 4.4 

were systematically combined with the NaCl microemulsions. No stable microemulsions 

were formed from the prepared mixed microemulsion samples.  
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4.4.2|  AOT Surfactant System: SAXS/GIFT Analysis 

 

A white precipitate was observed which formed immediately upon the addition of 

the aqueous Lysozyme solution to the surfactant system. However, once the sample was 

vortexed the precipitate was no longer observed and a transparent, colourless 

microemulsion was formed. To confirm that that precipitate was not being dispersed but 

was re-dissolving into the system, SAXS and subsequent GIFT analysis were applied to 

confirm the formation of microemulsion droplets.  

 

Figure 4.8|  Plot of      against   for single Lysozyme microemulsions consisting of 500 µl AOT 10% 

(wt) in heptane and a dispersed phase of either 10 µl of pure water or 10 µl of an aqueous Lysozyme 

solution of concentration 50 mgml
-1

. 

 

The formation of microemulsion droplets was confirmed by SAXS experiments 

(Figure 4.8) and by subsequent GIFT analysis which found the droplet for each sample to be 

within the expected size range for microemulsions. From Figure 4.9 it can be seen that the 

droplet radius increases when an aqueous Lysozyme solution is incorporated into the 

microemulsion system compared to when a dispersed phase of pure water is used. GIFT 

analysis found the radius to be 2.1 nm and 2.5 nm for a dispersed phase of pure water and 

of a 50 mgml-1 Lysozyme solution respectively. The confirmed presence of microemulsions 

droplets suggests that the white precipitate observed upon addition of the aqueous 

Lysozyme phase to the surfactant system is re-dissolved into the system upon vortexing of 

the sample.  
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Figure 4.9|  Pair distance distribution plot,     , for single Lysozyme microemulsions consisting of 

500 µl AOT 10% (wt) in heptane and a dispersed phase of either 10 µl of pure water or 10 µl of an 

aqueous Lysozyme solution of concentration 50 mgml
-1

. 

  

4.4.3|  Span80/Brij30 Surfactant System 

 

Following the success of glycine crystallisation from microemulsions4, samples of a similar 

nature were adapted for the application to Lysozyme crystallisation experiments. For the 

glycine experiments, 0.25g of aqueous phase in 7g of 40% Span80/Brij30 by mass in a 1:1 

ratio dissolved in heptane, formed stable microemulsions4. Applying this as a starting point 

for Lysozyme crystallisation experiments, it was found that 0.1-0.3g of 2.6 mgml-1 Lysozyme 

in water could be dispersed within 7g of the surfactant system to form stable 

microemulsions. No crystallisation occurred from the prepared samples. Lysozyme 

concentrations above 2.6 mgml-1 formed emulsions when the same microemulsion 

compositions were applied. 

Samples were prepared for varying concentrations of Lysozyme solution in the four 

buffers of differing pH. Only samples which incorporated an aqueous phase of Lysozyme 

solution in water formed stable microemulsions. No stable microemulsions were formed 

for the four buffer solutions of different pH.  

  It was possible to incorporate 0.1-0.3g of 1% (wt) NaCl solution into 7g of 40% by 

mass Span80/Brij30 in a 1:1 ratio dissolved in heptane. Mixed microemulsion samples were 

prepared, combining the single Lysozyme microemulsions and single NaCl microemulsions. 

All mixed samples formed emulsions and over time phase separated. If it was possible to 
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form stable mixed microemulsions from the single microemulsions mentioned, 

crystallisation may not have been expected based on the bulk anti-solvent experiments 

discussed in Section 4.3. The addition of a 1% (wt) NaCl solution to a 50 mgml-1 Lysozyme 

solution in both a 1:1 and 1:2 ratios did not lead to crystal growth. Thus formation of mixed 

microemulsions which incorporated a 1% (wt) NaCl in similar ratios and a Lysozyme solution 

much lower in concentration is not likely to achieve supersaturation within the 

microemulsions droplets and therefore subsequent crystallisation will not result. 

 It is also worth noting that at such a low Lysozyme concentration there will be 

approximately 1x1016 to 3x1016 Lysozyme molecules within each single microemulsion 

sample. Consequently, based on geometrical droplet size calculations, this would result in a 

Lysozyme molecule being present in 1 of approximately 3000 droplets. The probability of 

collisions between droplets containing Lysozyme molecules to form transient dimers for 

exchange of material and therefore support crystal growth is therefore significantly 

reduced. This may explain why no crystal growth occurred from the single Lysozyme 

microemulsions. However, this is of course assuming that the microemulsion droplets were 

supersaturated and nucleation had occurred.  

 

4.4.4|  Span80/Tween80 Surfactant System 

 

For the surfactant system Span80/Brij30 it was not possible to form stable microemulsions 

when Lysozyme was dissolved in a 0.1M NaAc buffer of varying pH. Consequently, in an 

attempt to explore an alternative surfactant system that would disperse the four buffer 

solutions, a Span80/Tween80 in heptane surfactant system was explored. A pseudo ternary 

phase diagram incorporating an aqueous phase of 0.1M NaAc buffer with a pH of 4.8 was 

established.  
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Figure 4.10|  Pseudo ternary phase diagram constructed at room temperature for Span80/Tween80 

(1:1), 0.1M NaAc buffer solution of pH 4.8 and heptane. Markers indicate composition ratios which 

formed microemulsions. 

 

 Only a small region of stable microemulsions (Figure 4.10) was formed. Stable 

microemulsions only formed with a low percentage by mass of aqueous phase, 

approximately 10%, and a surfactant concentration of approximately 40-60% by mass. 

Despite a small region of stable microemulsions, the surfactant system Span80/Tween80 

does allow dispersion of the buffer solution which will aid examination of the affect of pH 

on Lysozyme crystallisation from microemulsions.  Consequently, a series of samples were 

setup for the Span80/Tween80 surfactant system in which pH of the buffer solution and the 

Lysozyme concentration was varied. 

 It was found that for a solution of Lysozyme to be dispersed within the surfactant 

system to form stable microemulsions, a lower amount of surfactant was required 

compared to the amount thought to be required according to the pseudo ternary phase 

diagram (Figure 4.10). In 1 g of 20% by mass Span80/Teen80 in a 1:1 ratio dissolved in 

heptane, a maximum Lysozyme concentration of 2 mgml-1 could be dispersed to form 

stable microemulsions with each of the four buffer solutions. Prepared samples within this 

series of experiments which formed stable microemulsions are summarised in Table 4.5. No 

crystallisation resulted from the single Lysozyme microemulsions of varying buffer pH and 

Lysozyme concentration. 
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Lysozyme 
concentration 

(mgml-1) 
pH of buffer solution 

Volume of aqueous phase 
dispersed in 1 g of 20% (wt) 

Span80/Tween80 (1:1) in 
heptane (µl) 

1 

4.4 40-100 

4.8 20-120 

5.2 40-100 

5.6 40-100 

2 

4.4 50-90 

4.8 70-110 

5.2 60-100 

5.6 60-100 

 

Table 4.5|  Samples which formed stable microemulsions incorporating an aqueous phase of 

Lysozyme solutions in 0.1M NaAc buffer of varying pH within a surfactant system of 1 g 

Span80/Tween80 (1:1) 20% (wt) in heptane. 

 

 Consequently, in an attempt to increase the supersaturation of the microemulsion 

droplets, an experimental method was explored in which an anti-solvent solution of 5% (wt) 

NaCl was directly added to the single Lysozyme microemulsions listed in Table 4.5. The anti-

solvent solution was added 24 hours after initial formation of the single Lysozyme 

microemulsions. For each Lysozyme microemulsion, 5% (wt) NaCl solution was added in a 

1:1 and 1:2 ratio of microemulsion aqueous phase to anti-solvent solution. Direct addition 

of the anti-solvent solution in both 1:1 and 1:2 ratios led to the phase separation of the 

Lysozyme microemulsions. A ratio of 1:0.5 was thus conducted but this also led to phase 

separation.  

 Following this, mixed microemulsions were explored providing an alternative 

method for the facilitation of Lysozyme crystallisation by ensuring supersaturation within 

the microemulsion droplets was reached. A volume of 40-80 µl of 5% (wt) NaCl solution was 

successfully dispersed to form microemulsions in 1 g of 20% (wt) Span80/Tween80 in a 1:1 

ratio dissolved in heptane. Table 4.6 summarises the mixed microemulsion samples which 

formed stable microemulsions upon combining single Lysozyme and single anti-solvent 

microemulsions.  
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Aqueous phase 
volume ratio of 
single Lysozyme 

microemulsions to 
single anti-solvent 

microemulsions 

Lysozyme 
concentration 

(mgml-1) in single 
microemulsions 

pH of Lysozyme 
buffer solution 

Aqueous phase in 
single Lysozyme 

microemulsions (µl) 

1:1 

1 

4.4 40-80 

4.8 30-100 

5.2 40-90 

5.6 40-90 

2 

4.4 50-100 

4.8 40-90 

5.2 70-90 

1:2 

1 

4.4 40-50 

4.8 40-50 

5.2 40-50 

5.6 40-50 

2 
4.4 40-50 

4.8 40-50 

 

Table 4.6|  Summary of mixed microemulsion samples which formed stable microemulsions upon 

combing single Lysozyme and anti-solvent microemulsions. All single Lysozyme and anti-solvent 

microemulsions were made from 1 g of Span80/Tween80 in a 1:1 ratio, 20% (wt) dissolved in 

heptane, to which the stated volume of aqueous phase was added. 

 

 For the Span80/Tween80 surfactant system no crystallisation resulted from the 

mixed microemulsions. As thought with the Span80/Brij30 surfactant system this may be a 

consequence of the low Lysozyme concentration used. Such a low concentration of 

Lysozyme may mean that supersaturation within the microemulsions droplets is not 

reached even when an anti-solvent is introduced through mixed microemulsions. Also, 

assuming nucleation has occurred, few droplets within the microemulsions systems will 

contain Lysozyme molecules and therefore collisions between droplets to form transient 

dimers in support of crystal growth may be rare events. 

 

4.4.5|  TX100/1-hexanol and TX-114 Surfactant Systems: Phase Diagrams 

 

It has previously been reported that inclusion of electrolytes and additives such as acid, can 

affect the phase behaviour of microemulsions depending of the nature of the surfactant 

used176, 177. In some cases the affect of salt has been significant; phase separation has been 

reported178. Within this study previous surfactant systems (AOT, span80/Brij30 and 

span80/Tween80) have demonstrated such difficulties; their phase diagrams incorporating 
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a solution of electrolytes (NaCl solution of varying concentrations, % by mass) found either 

a very small or no area of stable microemulsion to be possible for varying compositions of 

the oil, aqueous and surfactant phases. An alternative surfactant system was sought that 

would enable a solution of NaCl to be utilised as the dispersed phase within a stable 

microemulsion. This was desirable in order to explore the application of the mixed 

microemulsion method to introduce an anti-solvent into the protein microemulsion in an 

attempt to increase supersaturation and mediate crystal growth.  

 Surfactant systems Triton X-100/1-hexanol and Triton X-114 offered a system that, 

compared with the other systems explored, enabled the largest region of stable 

microemulsion to be formed when a 5% (wt) NaCl solution was used as the dispersed 

phase. This was indicated through the preparation of their phase diagrams. Visualisation of 

the effect caused by the use of a NaCl solution was addressed by comparing the phase 

diagram incorporating 5% (wt) NaCl solution with an equivalent phase diagram in which 

pure water was used.  

 

 

Figure 4.11|  Pseudo ternary phase diagrams for TX-100/1-hexanol surfactant system with a 

continuous phase of cyclohexane and an aqueous phase of a) pure water b) 5% (wt) NaCl solution. 

Markers indicate composition ratios which formed microemulsions. 

 

 First examining the phase diagrams for the Triton X-100/1- hexanol system (Figure 

4.11) it can be clearly seen that replacement of pure water with 5% (wt) NaCl solution 

restricts the region in which stable microemulsions can be formed. The number of suitable 

compositions for the three microemulsion components is reduced by approximately two 

thirds.  Typically, for microemulsions containing a pure water dispersed phase, stable 
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microemulsions are formed with a low percentage by mass of aqueous phase, 

approximately 10-30%, and a high surfactant concentration, approximately 40-60% by 

mass. Use of 5% (wt) NaCl solution as the dispersed phase reduces the amount of aqueous 

phase that can be incorporated in a stable microemulsion to approximately 10% mass. To 

facilitate the formation of these stable microemulsions approximately 30-50% of surfactant 

is required.  

A similar result was observed for the Triton X-114 surfactant system (Figure 4.12). 

Using 5% (wt) NaCl solution as the dispersed phase led to a reduction in the compositional 

area in which stable microemulsions were formed. Stable microemulsions with a dispersed 

phase of pure water only formed when the aqueous phase contributed approximately 10% 

by mass of the whole microemulsion; however, a broad range of surfactant concentrations 

could be used, ranging from approximately 30-70% by mass. A dispersed phase of 5% (wt) 

NaCl solution achieved stable microemulsion with a percentage mass of approximately 

10%. The required surfactant concentration was shifted slightly higher to 40-80% compared 

to the phase diagram incorporating pure water. Unusually, the composition area for stable 

microemulsions was expanded when 5% (wt) NaCl solution was used instead of pure water.   

 

 

Figure 4.12|  Ternary phase diagrams for TX-114 surfactant system with a continuous phase of 

cyclohexane and an aqueous phase of a) pure water b) 5% (wt) NaCl solution. Markers indicate 

composition ratios which formed microemulsions. 
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4.4.6|  TritonX-114 Surfactant System 

 

Based on the initial results from the pseudo ternary phase diagram (Figure 4.12), samples 

were made in which Lysozyme solutions of varying concentrations were used for the 

aqueous, dispersed phase, replacing pure water. The phases of these samples are 

summarised in Table 4.7. Composition ratios found to form stable microemulsions in the 

pseudo ternary phase diagram typically also formed stable microemulsions when different 

Lysozyme concentrations were used in the aqueous phase. There were a few exceptions for 

the composition ratio 1:7:2 for which emulsions were formed with Lysozyme 

concentrations of 50 mgml-1 and 40 mgml-1. The microemulsions formed were monitored 

regularly using an optical microscope for a period of two months during which no 

crystallisation was observed. 

 

 Lysozyme concentration (mgml-1) 

Lysozyme solution: 
TX-114: 

Cyclohexane 
50 40 30 20 10 5 

1:4:5       

1:5:4       

1:6:3       
1:7:2 e e     

 

Table 4.7|  Phase results for samples prepared for the TX-114 surfactant system incorporating a 

Lysozyme solution of  varying concentrations (50-5 mgml
-1

) as the dispersed phase. An emulsion is 

indicated by ‘e’ and a microemulsion is indicated by ‘’. 

 

Subsequently mixed microemulsions were made in an attempt to facilitate crystal 

growth. The mixed microemulsions consisted of combing each of the samples listed in Table 

4.7 with each of the composition ratios that formed stable microemulsions when a 

dispersed phase of 5% (wt) NaCl solution was used. All mixed systems formed stable 

microemulsions and did not degrade into emulsions or phase separate over time. No crystal 

growth resulted from mixed microemulsions made for the TX-114 surfactant system.  

 

4.4.7|  TritonX-100/1-hexanol Surfactant System 

 

Composition ratios of the three microemulsion components that gave stable, transparent 

microemulsions were selected from the pseudo ternary phase diagram in which the 
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dispersed phase used was pure water. The aqueous solution was replaced by a solution of 

Lysozyme in water with varying protein concentrations for each of the selected composition 

ratios. The phases of the resultant samples are summarised in Table 4.8. Although able to 

form microemulsions with a dispersed phase of pure water, some compositions did not 

permit microemulsions regardless of Lysozyme concentration. A dependence on Lysozyme 

concentration was observed for some compositions, typically forming emulsions at higher 

Lysozyme concentrations. Only two composition ratios, 2:4:4 and 2:5:3, formed 

microemulsions with each concentration of Lysozyme used.  

 

 Lysozyme concentration  (mgml-1) 

Lysozyme solution: 
TX-100/1-hexanol 

(1:1): 
Cyclohexane 

50 40 30 20 10 5 

1:3:6       
1:4:5 e      
1:5:4 e e e e e  

1:6:3 e e e e e e 

1:7:2 e e e e e e 

2:4:4       

2:5:3       
2:6:2 e      

2:7:1 e e e e e e 

3:4:3 e e     

3:5:2 e e e e e e 

3:6:1 e e e e e e 

 

Table 4.8|  Phase results for samples prepared for the TX-100/1-hexanol surfactant system 

incorporating a Lysozyme solution of varying concentrations (50-5 mgml
-1

) as the dispersed phase.  

An emulsion is indicated by ‘e’ and a microemulsion is indicated by ‘’. 

 

 All samples were stored at room temperature; microemulsions listed in Table 4.8 

displayed no degradation towards forming emulsions over time. Examination, by eye and 

optical microscope, of all Lysozyme microemulsions showed no crystal growth after four 

weeks. The lack of crystal growth led to the application of the mixed microemulsion 

method and evaporation of continuous phase in an attempt to facilitate crystal growth 

from these samples. 
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4.4.8|  TritonX-100/1-hexanol Surfactant System: Mixed Microemulsions 

 

Given the phase results displayed in Table 4.8 a 2:5:3 ratio was selected for use in the 

mixed microemulsion method, as this composition formed stable microemulsions with all 

Lysozyme concentrations used.  

The mixture formed from combining protein and anti-solvent microemulsions has 

to be a stable microemulsion in order for thermodynamic control of crystallisation through 

3D nanoconfinement to be achieved. However, this is not to say that the two components 

of the mixture have to be microemulsions themselves. It may be possible to combine one 

stable microemulsion with a nano- or macro-emulsion and still form a stable microemulsion 

for the final mixture. This has been demonstrated through the use of the mixed 

microemulsion method in the crystallisation of glycine polymorphs4.  

 Mixed microemulsions were prepared for the TX-100 surfactant system, combining 

stable Lysozyme microemulsions of varying Lysozyme concentrations and a composition 

ratio of 2:5:3 with different compositions of a 5% (wt) NaCl, anti-solvent microemulsion. 

Table 4.9 summarises the phases that were formed upon mixing. Generally, a stable 

microemulsion was made from combining two stable microemulsions. Macro-emulsions 

(white and cloudy in appearance) were initially formed upon mixing the 1:4:5 and 1:5:4 

compositions of the 5% (wt) NaCl microemulsions with higher Lysozyme concentration 

microemulsions.  

 

Protein 
Microemulsion 

(2:5:3) 
5% (wt) NaCl microemulsion (aqueous: surfactant/co-surfactant: oil) 

Lysozyme 
concentration  

(mgml-1) 
1:3:6 1:4:5 1:5:4 2:3:5 

50  e e  

40  e e  

30  e e  

20   e  

10     

5     

 

Table 4.9|  Phase results for the mixed microemulsion method using a TX-100/1-hexanol surfactant 

system. An emulsion is indicated by ‘e’ and a microemulsion is indicated by ‘’. 
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Crystal growth was observed in the mixed microemulsions three days after mixing. 

Examination under an optical microscope found that after approximately two weeks no 

further crystal growth occurred. The crystallisation result varied according to the 

concentration of Lysozyme used and the composition ratio of the anti-solvent 

microemulsion. Three repeats of the mixed microemulsions were made; for each repeat the 

same crystallisation outcome was observed as summarised in Table 4.10 with related Figure 

4.15a-p. 

 

Protein 
Microemulsion 

(2:5:3) 

5% (wt) NaCl microemulsion (aqueous: surfactant/co-surfactant: 
oil) 

Lysozyme 
concentration  

(mgml-1) 
1:3:6 1:4:5 1:5:4 2:3:5 

5 
No crystal 

growth 
No crystal 

growth 
No crystal 

growth 
No crystal 

growth 

10 
No crystal 

growth 
No crystal 

growth 
No crystal 

growth 
No crystal 

growth 

20 Figure 4.15a Figure 4.15e Figure 4.15i Figure 4.15m 

30 Figure 4.15b Figure 4.15f Figure 4.15j Figure 4.15n 

40 Figure 4.15c Figure 4.15g Figure 4.15k Figure 4.15o 

50 Figure 4.15d Figure 4.15h Figure 4.15l Figure 4.15p 

 

Table 4.10|  Crystallisation results for mixed microemulsions prepared with the TX-100/1-hexanol 

surfactant system. 

 

For each anti-solvent composition ratio, no crystal growth was seen for Lysozyme 

concentrations of 10 mgml-1 and 5 mgml-1. For these concentrations of Lysozyme it is 

possible that the droplets are not supersaturated; therefore nucleation cannot take place 

and no crystal growth will occur. The amount of crystalline material increased as the 

concentration of Lysozyme used in the microemulsions was also increased. No single 

crystals with well defined edges were observed for the anti-solvent composition ratios 

1:3:6, 1:4:5 and 1:5:4.  

A sheet of crystalline material was formed over the bottom of the glass vial from 

samples which formed emulsions upon mixing. For low Lysozyme concentrations only small 

areas of crystalline material were observed surrounded by an amorphous material which 

appeared dark and dull under the microscope. As Lysozyme concentration was increased 

the sheet of crystalline material began to present some shape with rough, non-uniform 

edges. However, the connected nature of the sheet prohibited isolation.  
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For an anti-solvent composition ratio of 1:3:6, aggregates of crystalline material 

were formed when a Lysozyme concentration of 30-50 mgml-1 was used. As Lysozyme 

concentration was increased, the crystals began to grow into a shape similar to that 

observed in successful wells in the hanging drop vapour diffusion trays. For Lysozyme 

concentrations of 40 and 50 mgml-1, single needles seemed to grow outwardly from the 

aggregates of crystalline material (Figure 4.13). With great care these needles may be able 

to be separated from the crystalline aggregates and used for structural analysis. However, 

these needles are not of the crystal quality that would be typically selected for analysis. 

 

Figure 4.13|  Crystal grown from a mixed microemulsion composed from a single Lysozyme 

microemulsion with concentration 40 mgml
-1

 and a single NaCl, anti-solvent microemulsion with a 

composition ratio of 1:3:6. 

 

Single crystals were only observed for mixed microemulsions formed from a NaCl 

microemulsion with a composition ratio of 2:3:5. However, the nature of these single 

crystals varied depending on the concentration of Lysozyme used. For each Lysozyme 

concentration more single crystals were formed compared to the number of crystals which 

can be grown from one drop in the hanging drop vapour diffusion tray. The quality of single 

crystals formed improved as Lysozyme concentration was increased. The better quality 

crystals, approximately 500µm x 500µm x 300µm in size, with a well defined shape and 

edges, were obtained from a Lysozyme concentration of 50 mgml-1 (Figure 4.14). Crystals 

from this mixed microemulsion were used for subsequent X-ray diffraction experiments.  
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Figure 4.14|  Single crystals grown from a mixed microemulsion composed from a single Lysozyme 

microemulsion with concentration 50 mgml
-1

 and a single NaCl, anti-solvent microemulsion of 

composition ratio 2:3:5. 

 

A series of control experiments were conducted for the TX-100 surfactant system. 

Repeats of the mixed microemulsions were made in which for the first repeat the Lysozyme 

solution was replaced with pure water and the anti-solvent microemulsion kept the same. 

This would indicate there was salt, NaCl, crystallising out of the mixed microemulsions. A 

second repeat was made in which the 5% (wt) NaCl solution was replaced with pure water 

to see if Lysozyme would crystallise out from the mixed microemulsions in the absence of 

an anti-solvent. This would aid discussion as to whether the crystallisation of Lysozyme 

from mixed microemulsions was a result of an increased supersaturation or a function of 

droplet size. For all of the control experiments conducted, no crystallisation was observed 

and the phase behaviour observed was identical to that of the original mixed 

microemulsions.  
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Figure 4.15 |  Optical microscope images of crystalline material grown from mixed microemulsions formed from an anti-solvent microemulsion with composition ratio X:X:X 

and a single Lysozyme microemulsion (composition ratio 2:5:3) of concentrations as follows: 

a) 1:3:6, 20 mgml
-1

 b) 1:3:6, 30 mgml
-1

 c) 1:3:6, 40 mgml
-1

 d) 1:3:6, 50 mgml
-1

 e) 1:4:5, 20 mgml
-1

 f) 1:4:5, 30 mgml
-1

 g) 1:4:5, 40 mgml
-1

 h) 1:4:5, 50 mgml
-1
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Figure 4.15 |  Optical microscope images of crystalline material grown from mixed microemulsions formed from an anti-solvent microemulsion with composition ratio X:X:X 

and a single Lysozyme microemulsion (composition ratio 2:5:3) of concentrations as follows: 

i) 1:5:4, 20 mgml
-1

 j) 1:5:4, 30 mgml
-1

, k) 1:5:4, 40 mgml
-1

 l) 1:5:4, 50 mgml
-1

 m) 2:3:5, 20 mgml
-1

 n) 2:3:5, 30 mgml
-1

, o) 2:3:5, 40 mgml
-1

 p) 2:3:5, 50 mgml
-1

. 
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4.5|  TritonX-100/1-hexanol Surfactant System: Droplet Size Analysis 

 

The crystallisation results from mixed microemulsions varied depending on the 

concentration of Lysozyme used and the composition ratio of the NaCl, anti-solvent 

microemulsions. Variation in both the form and amount of the crystalline material was 

observed. SAXS experiments and subsequent GIFT analysis of the X-ray scattering data were 

used to aid discussion as to how such differences in crystallisation results correlate to the 

environment from which the crystalline material was grown. SAXS data was collected for 

mixed microemulsions composed of anti-solvent microemulsions with composition ratios 

1:3:6 and 2:3:5 and with Lysozyme microemulsions of concentration 50-0 mgml-1.  

 

4.5.1|  Varying Lysozyme Concentration in Single Microemulsions 

 

For comparison, the droplet sizes of the single microemulsions that were used to form the 

mixed microemulsions were also determined. Figures 4.16 and 4.17 show the scattering 

plots and pair distance distribution plots respectively, for microemulsions formed from a 

composition ratio of 2:5:3 of the TX-100/1-hexanol surfactant system with varying 

Lysozyme concentrations of 0-50 mgml-1. The samples diffracted well, showing that the 

aqueous phase had been successfully dispersed and confined, forming microemulsion 

droplets.  

 

Figure 4.16|  Plot of      against  , obtained from SAXS experiments for single microemulsions of 

the TX-100/1-hexanol surfactant system with composition ratio 2:5:3 and varying Lysozyme 

concentrations. 



95 
 

The formation of microemulsions was confirmed using GIFT analysis, which found 

droplets to be within the expected size range. The data collected fit a hard sphere model. 

As can be seen in Figure 4.17 and summarised in Table 4.11, there is little variation in the 

radius of microemulsion droplets as the Lysozyme concentration is varied. The slight 

differences in radius values calculated using GIFT analysis all occur within the expected 

error of ± 0.3 nm for SAXS experiments. This suggests that the radius of microemulsion 

droplets is not affected by the concentration of Lysozyme.  

 

Figure 4.17|  Pair distance distribution plot for single microemulsions of the TX-100/1-hexanol 

surfactant system with composition ratio 2:5:3 and varying Lysozyme concentrations. 

 

 

 
Lysozyme concentration (mgml-1) in single 

microemulsions with composition ratio 2:5:3 

50 40 30 20 10 5 0 

Mean droplet radius 
(GIFT) (nm) 

3.9 3.9 3.8 3.7 3.6 3.8 3.8 

No. of droplets in 
microemulsion (x 1018) 

1.43 1.45 1.51 1.64 1.75 1.54 1.56 

Normal mean No. 
Lysozyme molecules 

per droplet 
0.58 0.46 0.33 0.20 0.09 0.05 0 

 

Table 4.11|  GIFT analysis results for single microemulsions of the TX-100/1-hexanol surfactant 

system with composition ratio 2:5:3 and varying Lysozyme concentrations. 
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 Calculation of the geometric droplet size does not correlate with the droplet size as 

determined by GIFT analysis. However, for geometric calculations, lowering the mass of the 

co-surfactant, 1-hexanol, residing at the interface and subsequently increasing the mass of 

the continuous phase, leads to a calculated geometric droplet radius that is similar to the 

radius calculated by GIFT analysis. Table 4.12 summarises the radii of droplets predicted 

using geometric droplet size calculations depending on the amount of 1-hexanol taken to 

reside at the interface between the water and oil phases. Any 1-hexanol not thought be 

residing at the interface is taken to partition into the cyclohexane, oil phase. Reducing the 

mass of 1-hexanol that resided at the interface from 0.5g to approximately 0.25-0.27g, 

results in a closer agreement between the droplet radii calculated by geometric calculations 

and by GIFT analysis. 

 

 
1-hexanol (g) residing at the interface 

0.5 0.3 0.27 0.25 0.23 

Geometric 
radius (nm) 

2.7 3.6 3.8 3.9 4.1 

 

Table 4.12 |  Variation of geometrically calculated droplet size when the amount of 1-hexanol 

thought to reside at the interface between the aqueous and oil phases is varied. Calculations made 

for single microemulsions of the TX-100/1-hexanol surfactant system with composition ratio 2:5:3. 

 

4.5.2|  Varying Composition Ratio of Single Anti-solvent Microemulsions  

 

SAXS experiments confirmed that the aqueous phase (5% (wt) NaCl solution) was 

successfully confined within microemulsion droplets. Changes in droplet size are observed 

for the single anti-solvent microemulsions as the composition ratio (aqueous phase: 

surfactant/co-surfactant: oil phase) is varied. Figures 4.18 and 4.19 respectively show the 

scattering plots and pair distance distribution plots for single NaCl anti-solvent 

microemulsions with differing composition ratios. The scattering intensity increases 

significantly as the mass of the aqueous phase is doubled from 0.2 g to 0.4g. The slight dis-

symmetry observed in the      plots is thought to be caused by the polydispersity present 

among microemulsion droplets. The polydispersity observed may be a result of many 

factors including a slightly non-spherical shape which does not quite fit the hard sphere 

model, the formation of transient dimers and an inhomogeneous distribution of droplet 

sizes within the microemulsions sample78.  
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Figure 4.18|  Plot of      against   for single NaCl, anti-solvent microemulsions of different 

composition ratios, made using a TX-100/1-hexanol surfactant system. 

 

 

Figure 4.19|  Pair distance distribution plots for single NaCl, anti-solvent microemulsions of different 

composition ratios, made using a TX-100/1-hexanol surfactant system. 

 

For these four anti-solvent microemulsions, the largest droplet size is seen for a 

composition ratio of 2:3:5 and the smallest droplet size with a composition of 1:5:4 (Table 

4.13). The droplet radius is found to be larger for composition ratios that have a smaller 

surfactant/co-surfactant content. Larger droplets are also observed for microemulsions 
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with a larger amount of aqueous phase. As expected, the number of droplets present in the 

microemulsions increases as the radius of microemulsion droplets decreases. 

 

 
Composition ratio of  5% (wt) NaCl anti-solvent 

microemulsion 

1:3:6 1:4:5 1:5:4 2:3:5 

Mean droplet radius (GIFT) 
(nm) 

4.8 4.2 3.9 6.8 

No. of droplets in 
microemulsion (x 1018) 

0.85 1.51 2.20 0.45 

 

Table 4.13|  Radii of single anti-solvent microemulsions of different composition ratios, made using a 

TX-100/1-hexanol surfactant system. The radii were determined by SAXS experiments and 

subsequent GIFT analysis. 

 

As seen with the single Lysozyme microemulsions, the estimated droplet sizes from 

geometrical droplet calculations do not correlate closely to the radii values calculated using 

GIFT analysis. Varying the amount of co-surfactant, 1-hexanol, which resides at the 

interface leads to a closer correlation between the two calculations of droplet size. 

However, there is variation in the percentage reduction of 1-hexanol at the interface (and 

thus subsequent increase in the mass of continuous phase) for each composition ratio of 

the NaCl microemulsions (Table 4.14) 

 

 
Composition ratio of  5% (wt) NaCl anti-

solvent microemulsion 

1:3:6 1:4:5 1:5:4 2:3:5 

Mean droplet radius 
(GIFT) (nm) 

4.9 4.2 3.9 6.8 

Total 1-hexanol in 
microemulsion (g) 

0.3 0.4 0.5 0.3 

Estimate of 1-hexanol at 
the interface (g) 

0.07 0.09 0.105 0.08 

% reduction of 1-hexanol 
at the interface 

76.7 77.5 79.0 73.3 

Geometric radius (nm) 4.8 4.2 4.0 6.9 

 

Table 4.14|  The percentage reduction of 1-hexanol required to bring the estimated droplet size, as 

determined using geometric droplet size calculations, into closer correlation with the experimentally 

determined droplets size using SAXS experiments and subsequent GIFT analysis for single NaCl, anti-

solvent microemulsions of different composition ratios, made using a TX-100/1-hexanol surfactant 

system. 
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4.5.3|  Droplet Sizes of Mixed Microemulsions 

 

SAXS experiments were conducted for mixed microemulsions composed of single Lysozyme 

microemulsions of concentration 50-5 mgml-1
 and single anti-solvent microemulsions with 

composition ratios 1:3:6 and 2:3:5. SAXS data could not be collected for mixed 

microemulsions which incorporated single anti-solvent microemulsions with composition 

ratios 1:4:5 and 2:3:5 as the majority of these samples formed emulsions which have a 

droplet size larger than the detectable particle size for SAXS experiments. Confinement of 

the aqueous phase within the mixed microemulsions was confirmed through the scattering 

of X-rays by the samples as shown in Figure 4.20 and 4.21. Droplet sizes for all the mixed 

microemulsion samples were found to be within the expected 1-100nm range. 

 

 

Figure 4.20|  Plot of      against   for mixed microemulsions of the TX-100/1-hexanol surfactant 

system, composed of single Lysozyme microemulsions with composition ratio 2:5:3 and varying 

Lysozyme concentration and of single anti-solvent microemulsions with composition ratio 1:3:6. 
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Figure 4.21|       against   plot for mixed microemulsions of the TX-100/1-hexanol surfactant 

system, composed of a single Lysozyme microemulsion with composition ratio 2:5:3 with varying 

Lysozyme concentration and a single anti-solvent microemulsion with composition ratio 2:3:5. 

 

From GIFT analysis, Figures 4.22 and 4.23 and Table 4.15, it can be seen that the 

variation in Lysozyme concentration in the mixed microemulsions does not have a 

significant effect on the microemulsion droplet size. The slight variation in droplet size as 

the concentration of Lysozyme is varied falls within the error of ± 0.3 associated with SAXS 

experiments for both the 1:3:6 and 2:3:5 composition ratios. However, a reasonable 

difference in mixed microemulsion droplet size is observed when anti-solvent 

microemulsions of different composition ratios are used. Larger microemulsions droplets 

are observed for mixed microemulsions composed of an anti-solvent microemulsion with a 

composition ratio 2:3:5. This trend is observed independent of Lysozyme concentration.  

Using small angle X-ray diffraction measurements, Krigbaum found the radius of 

gyration,   , of Lysozyme to be 14.3 Å in solution179. This can be approximated to a radius 

of 0.9 nm. Therefore, incorporation of Lysozyme into the aqueous dispersed phase will not 

perturb the mean droplet size, as determined by GIFT, as droplets sizes of the mixed 

microemulsions of the TX-100/1-hexanol surfactant system were found to be considerably 

larger than the approximate radius of Lysozyme. 

 

 



101 
 

 

Figure 4.22|  Pair distance distribution plots for mixed microemulsions of the TX-100/1-hexanol 

surfactant system, composed of single Lysozyme microemulsions with composition ratio 2:5:3 with 

varying Lysozyme concentration and of single anti-solvent microemulsions with composition ratio 

1:3:6. 

 

Figure 4.23|  Pair distance distribution plots for mixed microemulsions of the TX-100/1-hexanol 

surfactant system, composed of a single Lysozyme microemulsion with composition ratio 2:5:3 with 

varying Lysozyme concentration and a single anti-solvent microemulsion with composition ratio 

2:3:5. 
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Lysozyme concentration (mgml-1) in single 

microemulsions with composition ratio 1:3:6 

50 40 30 20 10 5 

Mena droplet radius 
(GIFT) (nm) 

4.6 4.5 4.6 4.5 4.6 4.5 

No. of droplets in 
microemulsion (x 1018) 

2.94 3.02 2.80 3.05 2.78 2.95 

Normal mean No. 
Lysozyme molecules 

per droplet 
0.28 0.22 0.18 0.12 0.06 0.03 

 

Table 4.15|  GIFT analysis results for mixed microemulsions of the TX-100/1-hexanol surfactant 

system, composed a single anti-solvent microemulsions with a composition ratio of 1:3:6 and single 

Lysozyme microemulsions of varying concentration. 

 

 
Lysozyme concentration (mgml-1) in single 

microemulsions with composition ratio 2:5:3 

50 40 30 20 10 5 

Mean droplet radius 
(GIFT) (nm) 

5.4 4.9 5.2 5.0 5.3 5.2 

No. of droplets in 
microemulsion (x 1018) 

2.10 2.75 2.25 2.62 2.17 2.27 

Normal mean No. 
Lysozyme molecules 

per droplet 
0.39 0.24 0.22 0.13 0.08 0.04 

 

Table 4.16|  GIFT analysis results for mixed microemulsions of the TX-100/1-hexanol surfactant 

system, composed a single anti-solvent microemulsions with a composition ratio of 2:3:5 and single 

Lysozyme microemulsions of varying concentration. 

 

 As seen with the single microemulsions of the TX-100/1-hexanol surfactant system, 

the mixed microemulsions also require a reduction in the amount of 1-hexanol thought to 

reside at the interface between the oil and aqueous phases in order for a correlation to be 

seen between predicted radii values using geometric calculations and radii values 

determined experimentally. Table 4.17 details the estimated mass of 1-hexanol through to 

reside at the interface with the corresponding droplet radii values for mixed 

microemulsions incorporating anti-solvent microemulsions with composition ratios 1:3:6 

and 2:3:5. A percentage reduction of approximately 60-65% in the mass of 1-hexanol is 

required for mixed microemulsions incorporating anti-solvent microemulsions with 

composition ratio 1:3:6 and approximately 55-63% for microemulsions incorporating anti-

solvent microemulsions with composition ratio 2:3:5. 
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Composition 
ratio of anti-

solvent 
microemulsion 

Total 1-hexanol 
in mixed 

microemulsion 
(g) 

 

1:3:6 0.8 

Estimate of 1-
hexanol at the 

interface (g) 
0.28 0.29 0.30 0.31 

Geometric radius 
(nm) 

4.7 4.6 4.5 4.5 

% reduction of 1-
hexanol at the 

interface 
65.00 63.75 62.50 61.25 

2:3:5 0.8 

Estimate of 1-
hexanol at the 

interface (g) 
0.30 0.32 0.34 0.36 

Geometric radius 
(nm) 

5.3 5.1 5.0 4.8 

% reduction of 1-
hexanol at the 

interface 
62.50 60.00 57.50 55.00 

 

Table 4.17|  The percentage reduction of 1-hexanol required to bring the estimated droplet size, as 

determined using geometric droplet size calculations, into closer correlation with the experimentally 

determined droplets size using GIFT analysis for the mixed microemulsion systems of the TX-100/1-

hexanol surfactant system. 

 

4.6|  Single Crystal X-ray Diffraction Experiments 

 

Single crystals grown from both hanging drop vapour diffusion trays and mixed 

microemulsions were subject to X-ray diffraction experiments. An assessment of the data 

quality was made for the data collection of each single crystal as a means of comparing the 

quality of crystals grown from the two different crystallisation mediums. On average, 

crystals grown from each crystallisation method were the same size, approximately 0.4 mm 

x 0.3 mm x 0.2 mm as shown in Figure 4.24. 
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Figure 4.24|  Single crystal grown from a TX-100/1-hexanol mixed microemulsion composed of a 

single Lysozyme microemulsion with composition ratio 2:5:3, Lysozyme concentration of 50 mgml
-1

, 

and of a single anti-solvent microemulsion with composition ratio of 2:3:5. Approximately 0.4 mm x 

0.3 mm x 0.2 mm in size, the crystal is mounted and centred on the goniometer. 

 

 R-merge factors indicate data quality and thus internal consistency of the crystal. 

Consequently, R(int) values, the number of independent observations (redundancy) and 

I/sigma(I) values (computed for the entire data set as well as in resolution bins) of different 

data sets are commonly used to compare the quality of diffraction data. R(Int), a linear 

merging R-value, is the most commonly used data quality indicator used to indicated the 

general merging on identical, but otherwise unmerged, intensities. Here we discuss some of 

the quality and validation criteria for data used to solve macromolecular structures in X-ray 

crystallography for diffraction data obtained from crystals of Lysozyme grown in both 

standard hanging drop vapour diffusion trays and from mixed microemulsions.  

 The four single crystals were all found to have a primitive, tetragonal until cell. For 

the two crystals grown using hanging drop vapour diffusion trays, no statistically significant 

difference was observed in their unit cell parameters. However, for mixed microemulsion 

grown crystals, the parameters of their respective unit cells were found to have a 

statistically significant difference suggesting that the two crystals collected are different. 

The determination of unit cell parameters from rotation is not extremely accurate as the 

rotation angle is refined to optimise the quality of the data not the accuracy of the unit cell 

parameters. Analysis of several high-resolution protein structures180 revealed that 

considerable errors in the unit cell parameters were a common occurrence despite 

refinement during data processing. 
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Table 4.18|  Data statistics for single Lysozyme crystals grown from hanging drop vapour diffusion 

trays in which the pH of the reservoir buffer solution and the hanging drop ratio (protein solution: 

reservoir solution) were both varied. 

 

 Crystals grown from mixed microemulsion 

Crystal 1 Crystal 2 

Temperature (K) 100 100 

Crystal System Tetragonal Tetragonal 

Space Group P4(3)2(1)2 P4(3)2(1)2 

a  (Å) 76.901 78.049 

b (Å) 76.901 78.049 

c  (Å) 37.249 37.262 

α  (°) 90.00 90.00 

β  (°) 90.00 90.00 

γ  (°) 90.00 90.00 

Volume (Å3) 220282.34 226983.38 

Resolution (Å3) 1.80 1.61 

Mean I 22.5 19.3 

Mean I/Sigma 28.86 23.36 

R(Int) 0.0494 0.0403 

R(Sigma) 0.0269 0.0296 

Redundancy 8.15 5.56 

% Complete 99.3 97.2 

 

Table 4.19|  Data statistics for two single Lysozyme crystals grown from a TX-100/1-hexanol mixed 

microemulsion composed of a single Lysozyme microemulsion with composition ratio 2:5:3, 

Lysozyme concentration of 50 mgml
-1

, and of a single anti-solvent microemulsion with composition 

ratio, 2:3:5. 

 Crystals grown from hanging drop vapour 
diffusion tray 

pH 4.8, 2:2 pH 4.4, 3:2 

Temperature (K) 100 100 

Crystal System Tetragonal Tetragonal 

Space Group P4(3)2(1)2 P4(3)2(1)2 

a  (Å) 78.408 78.814 

b (Å) 78.408 78.814 

c  (Å) 36.880 36.790 

α  (°) 90.00 90.00 

β  (°) 90.00 90.00 

γ  (°) 90.00 90.00 

Volume (Å3) 226732.61 228530.00 

Resolution (Å3) 1.80 1.60 

Mean I 25.7 23.7 

Mean I/Sigma 35.85 48.55 

R(Int) 0.0399 0.0258 

R(Sigma) 0.0225 0.0150 

Redundancy 8.54 7.64 

% Complete 99.3 98.4 
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Common indicators of data quality for Lysozyme crystals grown in hanging drop 

vapour diffusion trays and via mixed microemulsions are listed in Tables 4.18 and 4.19 

respectively. Similar results were obtained for each data set collected from each of the four 

Lysozyme crystals. The values obtained were typical for a data collection of a test protein, 

Lysozyme, from the diffractometer used. For crystals grown in both crystallisation media 

explored in this thesis, R-values within the expected range were obtained. However, for the 

crystal grown in a hanging drop of pH 4.4 and hanging drop ratio of 3:2, a slightly low R(Int) 

value was observed. This may be associated with the slightly lower redundancy of the data 

set. Alternatively, the low R(Int) value may be an artefact of the freezing of the crystal in 

the cryo stream which differs for each crystal tested.  

The minimal differences observed between each data set may be accounted for by 

differences in freezing of each Lysozyme crystal in the cryo stream. The setup of the 

diffractometer should also be considered. Due to the availability of the diffractometer the 

data sets were not conducted consecutively. Over time, water condensation can build 

between the Phosphor layer and the glass plate of the detector. This results from the 

difference in temperature as the CCD chip is cooled to -60°C. Consequently, the recorded 

intensity of the X-rays hitting the detector may be above or below the expected intensity. 

This can be seen using a spatial distribution of (I-<I>)/su plot, Figure 4.25, which indicates in 

red and blue, intensities that are observed to be above and below the expected intensity 

respectively.  

 

Figure 4.25|  Spatial distribution of (I-<I>)/su from data set collected from crystal grown using 

hanging drop vapour diffusion, with reservoir solution pH 4.4 and hanging drop ratio, 3:2. Red and 

blue points respectively indicate intensities that are observed to be above and below the expected 

intensity. 
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Over the period of which the four data collections were conducted this was found to be the 

case. This may contribute to the differences in data quality for each of the four Lysozyme 

crystals exposed to X-ray diffraction experiments. Subsequently, the diffractometer has 

been serviced and the condensation between the phosphor layer and glass plate has been 

addressed. 
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Chapter Five 

Conclusions 
 

In this thesis the crystallisation from microemulsions of a commonly used standard protein, 

Lysozyme, was compared to its crystallisation using a standard technique, hanging drop 

vapour diffusion. An assessment of the resultant Lysozyme crystals grown from each 

crystallisation medium was made with the aid of single crystal X-ray diffraction 

experiments. Previously, microemulsions have been utilised in the successful crystallisation 

of small molecules only such as ROY3 and glycine4. Here, it is shown, for the first time that 

the novel microemulsion methodology can be successfully used for the crystallisation of 

proteins, extending the methods towards macromolecular crystallography.  

Several surfactant systems were explored and variations of the microemulsion 

method exploited in an attempt to crystallise Lysozyme under thermodynamic control using 

3D nano-confinement in microemulsions. The five surfactant systems used include 

Span80/Brij30, Span80/Tween80, AOT, TX-114 and TX-100/1-hexanol. Three variations of 

the microemulsion method were made: direct addition of anti-solvent (an aqueous NaCl 

solution was used), the mixed microemulsion method and evaporation of the continuous 

phase. SAXS experiments were conducted to confirm the formation of microemulsions 

through the occurrence of X-ray scattering and subsequent determination of the droplet 

size using GIFT analysis.  

To aid the assessment of the quality of Lysozyme crystals grown using 

microemulsions a standard hanging drop vapour diffusion tray was utilised to grow 

Lysozyme crystals of a typically expected quality for single crystal X-ray diffraction 

experiments. In these standard trays the pH of the reservoir solutions and the ratio of the 

50 mgml-1 Lysozyme solution and reservoir solution within the hanging drop were varied.  

 A Bruker MicroStar diffractometer was used for the screening of crystals and for 

data collection of crystals grown from both hanging drop vapour diffusion and 

microemulsions. An evaluation of the collected data sets was made through comparison of 

key indicators of data quality commonly published within the crystallographic “table 1”. 

From the quality of each data set a comparative assessment of crystal quality was made for 

crystals grown by both protein crystallisation mediums explored within this thesis.  

Demonstrating the success of a commonly used crystallisation technique, Lysozyme 

crystals were grown using a hanging drop vapour diffusion tray. Crystals of a high quality 
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used for X-ray diffraction experiments were grown from a reservoir solution of pH 4.8 and 

4.4 with hanging drop ratio 2:2 and 3:2, respectively. Not all crystallisation conditions in the 

individual wells were successful and the quality (as judged by eye) and number of crystals 

present in successful wells varied across the tray (Table 4.1). Crystallisation may not have 

occurred because of several influencing factors; most likely, supersaturation was not 

reached. The growth of several smaller crystals within the same drop may be a result of 

nucleation occurring later on in the supersaturated metastable region resulting in the 

formation of numerous critical nuclei and thus growth of several small crystals (as shown in 

the crystallisation phase diagram, Figure 2.15). As expected, in light of extensive previous 

work on the crystallisation of Lysozyme13, single Lysozyme crystals of a good quality could 

be successfully and reliably grown using the hanging drop vapour diffusion trays. 

Of the several surfactant systems explored, not all were successful in supporting 

the crystallisation of Lysozyme despite being shown to form microemulsions by SAXS 

experiments and subsequent droplet size determination. Unsuccessful systems typically 

incorporated either or both a small Lysozyme concentration (less than 3 mgml-1) and/or a 

small volume of aqueous phase. In these circumstances, crystallisation may not occur due 

to supersaturation not being obtained within the microemulsion droplets on account of the 

low Lysozyme concentrations. In cases where supersaturation may have been reached and 

nucleation within the droplets has taken place, the slow rate of droplet collision due the 

limited amount of aqueous phase incorporated in the microemulsion system may inhibit 

crystal growth.  

The TX-100/1-hexanol surfactant system was found to be most successful system, 

and therefore the system of choice, successfully crystallising Lysozyme when the mixed 

microemulsion methodology was applied. The quality, morphology and quantity of 

Lysozyme crystals were found to vary with the composition ratio of the single anti-solvent 

(5% (wt) NaCl solution) microemulsions and the concentration of Lysozyme in the single 

protein microemulsion of composition ratio 2:5:3. Lysozyme crystals of the most suitable 

quality, as judged by eye and later shown through diffraction experiments, for single crystal 

X-ray diffraction experiments were obtained from a mixed microemulsion with a Lysozyme 

microemulsion of concentration 50 mgml-1 and a NaCl, anti-solvent microemulsion of 

composition ration 2:3:5. Crystallisation from this mixed microemulsion gave numerous, 

good quality crystals in one sample. This result was successfully repeated.  

The use of SAXS experiments on microemulsion samples proved highly valuable, 

confirming the formation of microemulsions through the occurrence of X-ray scattering and 
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the subsequent determination of droplet sizes using GIFT analysis, all of which fell within 

the expected 1-100 nm range for microemulsions. Interestingly for both the TX-114 and TX-

100/1-hexanol surfactant system it was found that to bring the geometrically calculated 

droplet size and the GIFT calculated droplet size into correlation a reduced amount of 1-

hexanol thought to partition at the oil/water interface was required in the geometric 

calculations.  

Key indicators of data quality, including R-values and redundancy, were similar for 

each data set collected from single Lysozyme crystals grown from both hanging drop 

vapour diffusion trays and microemulsions, a new methodology for protein crystallisation 

presented in this thesis. Using the Bruker MicroStar diffractometer, data sets of an equally 

good quality can be collected from single Lysozyme crystals grown from the two 

crystallisation mediums discussed in Sections 4.2 and 4.4.8. The data sets collected are of a 

publishable quality, with the values of common data quality indicators being within the 

ranges found and expected within literature181-183. This demonstrates that microemulsions 

provide a novel methodology for protein crystallisation producing crystals of a quality 

commonly found using standard techniques.  

Crystallisation remains the bottle neck for structural analysis of proteins1, 

particularly proteins for which structural information is vital for structure based drug design 

of these key targets. While structures of some targets are known184-187, many remain to be 

determined. Ideally, the development of a generic methodology for protein crystallisation 

will help relieve the bottle neck in crystallisation, particularly for proteins which display 

polymorphism. This would be advantageous for pharmaceutical companies which may 

require the most thermodynamically stable form of a peptide drug, a type of drug which is 

being increasingly being developed as therapeutic mediums188. To this end, further work 

should be carried out in which the microemulsion method, used for the crystallisation of 

Lysozyme in this thesis, should be applied to the crystallisation of different model proteins. 

Proteins such as Insulin, glucose isomerase and albumin would be well suited for this task. 

Alternative surfactant systems may be required and their crystallisation may or may not 

require the use of mixed microemulsions as was seen for Lysozyme crystallisation.  

Expanding the microemulsion technique to the crystallisation of membrane 

proteins may require the development of an oil in water microemulsion system as a result 

of the hydrophobic nature of membrane proteins. Complications may arise for 

transmembrane proteins which consist of both hydrophobic and hydrophilic moieties. The 

isolation and purification of membrane proteins through the use of detergent/surfactant 
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molecules often leads to protein/detergent complexes. The incorporation of these 

complexes into a microemulsion system may see the complex residing at the interface of 

the dispersed and continuous phases due to the presence of detergent molecules. SAXS and 

subsequent GIFT analysis may be used to confirm formation of microemulsions and 

determine droplets size, it may also be possible to decipher where the membrane protein 

partitions within the microemulsion structure, either in the oil or water phases or at their 

interface.  

Several potential membrane proteins and membrane spanning peptides could be 

utilised in order to explore the use of microemulsions for their crystallisation. In particular 

the 25 residue, membrane-spanning part of the M2 protein of the influenza virus would be 

an interesting starting point due to its biological importance as a target of anti-influenza 

drugs, amantadine and rimantadine189. The M2 peptide is well suited for systematic 

crystallisation studies as the crystallisation conditions for the wild-type peptide are known, 

thus serving as a benchmark for crystal quality. Also, although the peptide is soluble in 

aqueous solution it inserts itself into biological membranes and therefore behaves like a 

small integral membrane protein. Through the use of microemulsions for the crystallisation 

of resistant determining variants of the M2 peptide there is prospect in gaining further 

insight into one of the resistance mechanisms of the influenza virus. Further still, 

microemulsions could be applied to the crystallisation of bacteriorhodopsin for which 

crystallisation conditions are known, again serving as a benchmark for crystal quality.  

Microemulsions had previously only been applied to the crystallisation of small 

molecules, glycine and ROY; in this thesis microemulsions have been successfully used as a 

novel technique for crystallising the model protein, Lysozyme. The use of microemulsions to 

crystallise Lysozyme opens up a new avenue for macromolecular crystallography in 

attempts to relieve the “bottle neck” in crystallisation currently experienced within 

research concerning the structural exploration of proteins and membrane proteins.  
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Appendix 
 

A1|  Crystallisation Conditions for Different Crystal Forms of Lysozyme and Lysozyme 

Nitrate 

 

 Crystal form Crystallisation conditions 

Lysozyme 

Monoclinic 

1) 1.0 g HEWL dissolved in 10 ml aqueous solution 
containing 10% NaCI and 5% 1-propanol. The pH of the 
solution was adjusted to 7.6 with 0.1 M HCl at 313K125. 
  

Triclinic 

1) Sitting drop, vapour diffusion. 30 mgml-1 protein, 20 nM 
sodium acetate buffer, pH4.7. Well solution = 0.5 M 
NaNO3, 0.1 M sodium acetate buffer, pH4.7, 20% ethylene 
glycol. 1.5 µl drops of protein and well solutions were 
micro-seeded with crushed crystals of triclinic Lysozyme. 
Crystals grew at 292K over 5days190. 

 
2) D2O solution containing 1% (w/v) protein, 2% (w,v) NaNO3 

and 10 nM sodium acetate. Seed crystals were added to 
the protein solution and was allowed to stand at 313K191. 

 
3) Triclinic form II was formed by transformation of form I by 

its exposure to a dry nitrogen gas stream at 263K191. 
 

Hexagonal 

1) Solid sodium bicarbonate added to 10% (v/v) aqueous 
acetone solution until pH8.4. Solution saturated with 
NaNO3, final protein concentration of 25 mgml-1 at 293K13. 
 

Orthorhombic 

1) Batch method. 500 mg HEWL in 5 ml water. 0.625 ml of 
0.3M acetate buffer, pH4.7 and 1.875 ml of water. 7.5 ml 
of 100 mgml-1 NaCl solution. Crystals obtained in two 
days192. 

 
2) Hanging drop, vapour diffusion. Droplet solution = 40 

mgml-1 protein, phosphate buffer, pH6.5, 5% (w,v) NaCl. 
Well solution = phosphate buffer, pH6.5, 20% (w.v) NaCl. 
Crystals took approximately two weeks to grow193. 

 

Tetragonal 

1) Yeast extracts, Marmite, Promite and Vegimite using 
counter diffusion crystallisation194. 
 

2) Batch method. Equal volumes of protein solution (50  
mgml-1 Lysozyme solution in 50 mM sodium acetate at 
pH4.5) and of the precipitating agent (precipitant NaCl in 
the same buffer, which concentration varied: 0.6, 0.8, 1.0, 
and 2.0 M),both prepared at room temperature. Prior to 
crystallization, all solutions were filtered through 0.22 μm 
syringe filters (Millipore). Quasi two-dimensional glass 
cells used195. 
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Lysozyme 
nitrate 

Monoclinic 

1) Generally obtained in the absence of acetate buffer196. 
 

2) 1% protein solution adjusted to pH4.5 by addition of nitric 
acid, and 0.35 M sodium nitrate at room temperature196. 

 
3) 3% protein solution in 0.23 M sodium nitrate at pH4.5 at 

4°C an 23°C. Nature of buffer missing but thought most 
likely to be acetate to fix pH4.5196. 

 
4) 0.2 M NaNO3, 50 mM acetate buffer, pH4.5 in light and 

heavy water solutions196, 197. 
 

Triclinic 

1) 0.2 M NaNO3, 50 mM acetate buffered solution, pH4.5, 
light water196. 

 
2) 30 mgml-1 of protein, acetate buffer, pH4.5. Monoclinic 

forms initially at 23°C, stable for weeks-months. 
Monoclinic crystals dissolve slowly as triclinic begin to 
form196. 

 
3) 7 mgml-1 of protein, 0.2-0.3 M NaNO3, 50 mM acetic acid/ 

Na acetate buffer, pH4.5, stored overnight at 4°C 
(precipitation step), triclinc crystals begin to form over a 
few days at 18°C196. 

 
4) <5 mgml-1 (3.4 and 3.0 mgml-1) protein, 4°C precipitation 

step, seeded at 18.5°C with triclinic crystals, kept at 
18.5°C for four weeks196. 
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A2|  Preparation of Compounds Subjected to Chemical Crystallisation 

 

 

  

Compound Amino acid sequence Preparation 

ASH81/87 Boc-SerArF-OBn 
Made from Boc-L-Ser-OBn with 
pentafluoropyridine and K2CO3 (Base) 

ASH91 Fmoc-Ser(tbu)-SerArF-OBn 

Boc-SerArF-OBn (ASH 81/87) was treated 

with trifluoroacetic acid (TFA) to remove 
Boc protection to yield: H-SerArF-OBn 

which was coupled to Fmoc-Ser(tBu)-OH 

with PyBOP (activator) and NMM (base) 

ASH93 Fmoc-Cys(trt)-SerArF-OBn 

Boc-SerArF-OBn (ASH 81/87) was treated 

with TFA to remove Boc protection to 
yield: H-SerArF-OBn which was coupled to 

Fmoc-Cys(trt)-OH with PyBOP (activator) 

and NMM (base) to yield: Fmoc-Cys(trt)-
SerArF-OBn (ASH 74). 

(ASH 74) was then treated with TFA to 
remove the trt protection from the 

cysteine. 

ASH59  
ASH 59 was a side product formed in the 
preparation of ASH81/87 

ASH82 Boc-SerArF-Ala-OBn 

Boc-SerArF-OBn was hydrogenated to 
deprotect the benzyl protection to yield 

Boc-SerArF-OH (ASH 80) 
Boc-Ala-OH was treated with benzyl 

bromide to yield Boc-Ala-OBn (ASH 79), 

ASH 79 was treated with TFA to remove 
the Boc protection and yield H-Ala-OBn 

(H-L-Ala-OBzl.HCl). 
This H-Ala-OBn (H-L-Ala-OBzl.HCl) was 

coupled to Boc-SerArF-OH (ASH 80) 

AH89 Boc-Ala-SerArF-Ala-OBn 
ASH 82 was treated with TFA to yield H-
SerArF-Ala-OBn, this was coupled to Boc-

Ala-OH to yeild ASH 89 
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