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Statistical Classification of Cascading Failures in
Power Grids

René Pfitzner, Konstantin Turitsyn and Michael Chertkov

Abstract—We introduce a new microscopic model of the
outages in transmission power grids. This model accounts ffo
the automatic response of the grid to load fluctuations that ake

place on the scale of minutes, when the optimum power flow

adjustments and load shedding controls are unavailable. Wele-
scribe extreme events, initiated by load fluctuations, whie cause
cascading failures of loads, generators and lines. Our motiés
quasi-static in the causal, discrete time and sequential salution
of individual failures. The model, in its simplest realizaion based
on the Directed Current description of the power flow problem
is tested on three standard IEEE systems consisting d30, 39
and 118 buses. Our statistical analysis suggests a straightforwer
classification of cascading and islanding phases in terms dhe
ratios between average number of removed loads, generatosnd
links. The analysis also demonstrates sensitivity to vart#ons
in line capacities. Future research challenges in modelingnd
control of cascading outages over real-world power network are
discussed.

Index Terms—Power system dynamics, Power system faults,

Power system reliability

|I. INTRODUCTION

The demand on the transmission grid grows at a pace sig-
nificantly exceeding maintenance and system reinforcement
Hence the stress on the grid gradually increases, forcing
the system to operate close to its capacity. In a system far
from saturation (call it the "grid of yesterday”) fluctuati®
in demand rarely led to any significant outage, not to men-
tion a devastating cascade. On the contrary, in the system
under stress (the "grid of today or tomorrow”) short-term
fluctuations in demand can and unfortunately will lead to
significant outages. One realistic scenario of interestfia o
grid with sufficient penetration of renewable generatiomiM
effect of the renewables, considered as negative loadsiatsn
in generating more frequently the super-critical (leading
outages) fluctuations in demand. This consideration migsva
us to analyze outages and cascades generated solely by short
term fluctuations in demand.

Our model and approach extends the research begun in [4],
[5], [6], in which the first quasi-static and microscopice(i.
based on power flows and not on an abstract model of stress
redistribution) models of cascades were considered. Ad]in [

The power transmission system is one of the greatg5i, [6], tripping of overloaded lines is a significant part o
engineering achievements of the past century. The power gour power flow dynamics. However, our approach is different
system provides electricity 24 hours a day, seven daysirawhat causes the tripping and how it occurs. Furthermore,
week. However, due to its complexity and spatial extent, iit contrast to [4], [5] our analysis concentrates solely o t

is also vulnerable to failures of various sizes and sigmifiea

short-time scale. We do not trip multiple overloaded linés a

Extreme events, like the infamous August 2003 blackout [bhce, focusing instead on the tripping occurred naturaly i
which left a significant part of North Eastern US withoutesponse to excessive demand. We do not account for external
electricity, are rare but their costs to the economy ande$pci line outages [5], effects of sympathetic line tripping [&hd

are enormous. The significance of this subject has stindilateffects of hidden failures [10], which are conjectured to be
research in this important area, summarized in a recergweviless significant at the relatively short times discussecdhia t
paper by Dobson et al. [2]. Well known cascading modefaanuscript. (Comparative study of outages caused by these
include random network models [3], initial power flow basedifferent types of failures, and by the combination thereof
models with gradual load increase, maintenance and randwafiti be the subject of a future publication.)

failures [4], [5], [6], phenomenological stochastic maf],

This study is inspired by the actual operational paradigm

[8], hidden-failure embedded power flow models [9], [10]danguiding the grid dynamics on the scale of minutes or even
recently power flow based models accounting for adaptigeconds, when an intelligent manual or semi-automatic con-
control [11]. In this manuscript, we consider a power flowrol (typically including a human decision in the loop) is
model of cascading failures, applicable to temporal scalasavailable or undesirable. We only account for some stan-
shorter than the time of operator-induced Optimal Poweard, automatic and system inherent controls, such asgeolta
Flow (OPF) control. (OPF, redistributing power generatiorrontrol, automatic line tripping and droop control execudé
shedding load and adjusting frequency, is typically exedutthe generators. The highlights of our method and results are
on the scale of minutes.) « We study cascading behavior by solving the power
flow equations. Unlike the phenomenological ("disease
spread”-like) models, our model accounts fown-local
power-flow based dynamic responses of the power sys-
tem.
« We propose a realistic cascade algorithm executed over
IEEE test beds, and not over abstract (tree-like or random)
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structures. This results in a realistic spatio-temporal rdistribution function of the load distribution consideréu
distribution of overloads. We point out the importance obur simulations can be found in the beginning of Section
this course of action since power systems are not arbitrdtitA.) We apply demand perturbations in a step-wise fashio
but designed intelligently (e.g. capable to withstand arwith one step corresponding to one cycle of the outer loop
N — 1 contingency). in the chart diagram of Fig. 1. The number of steps varies

« Our cascade algorithm relies heavily on inhomogeneowsth the perturbation and depends on the severity (number of
line overload and tripping, thus resulting in a dynamicalonsecutive violations of line or generator constraintscivh
change of the network structure and (in the case o&ed to be resolved) in the fluctuation of demand. Each step
significant damage) leading to the emergence of islandkop) consists of the following mini-steps: (a) sequentia
To study these cascades, we then solve the power flewaluation of the time rescaling parameter(b) redistribution
problem on every island independently. Islanding mayf new loads solely according to droop control (remind that
also result in an extreme form of load shedding, i.eve do not include in this study any control of demand);
blackout of the entire island if the cumulative loadc) calculation of Power Flow (PF) solution for the resuitin
exceeds the generation capacity. rescaled configuration of demand$ + t*¢, laying (in the

« The only source of randomness in our model is associateullti-dimensional space of demands) strictly in between th
with fluctuations in demand. We show that these demaneference pointl® and the investigated configuratiofi + 6;
fluctuations, without other random external influence¢d) line check and possible tripping of one violated line
are sufficient for causing cascades. based on the DC power flow solution (note that this sub-step

« The outage growth is quantified in terms of the averagevolves some randomness in selecting the tripped edge of
number of tripped elements (loads, generators and lingg)ssibly many violated ones); and (e) checking if the trigpi
and their dependence on the magnitude of demand fluesulted in any islanding. These five mini-steps of the lo@p a
tuations. We identify four phases of the overload whictescribed in detail in Sections II-E, II-D, II-A, 1I-F and-C
differ in how the average characteristics compare. (Sesspectively.

Fig. 4.) It is important to stress at this point that the relatively
This manuscript is organized in four Sections. Our cascaigvolved structure of the algorithm mimics the actual mi-
ing algorithm is described in Section II. The algorithm reégs  croscopic dynamics of the power grid control/adjustment to
solving the power flow equations many times, in a way th@ie demand change. In particular, the gradual modification
mimics the actual dynamics of the grid in a quasi-static aausn demand from the reference point to the final contingency,

fashion. We discuss the application of our cascading dlgori modeled witht* increasing monotonically from zero to one
to three IEEE systems, consisting of 30, 39 and 118 busg@sa finite number of steps, reflects the physics of the causal
respectively, in Section Ill. The last Section of the manmipsc response of the grid. Here we assume that the generator-
is reserved for Conclusions and discussing the Path Forwasdsed control of the power flow takes place on the scale
of milliseconds, while any change in demand and resulting
Il. CASCADING ALGORITHM tripping events occur at much slower pace (measured in

i i seconds, or even longer intervals). Thus the grid has enough
Our algorithm models cascades triggered by demand flygse 15 respond to each individual contingency establighin

tuations around the base OPF solution. We consider a quasiy, asi_static equilibrium, modeled in our algorithm by the
static, sequence of steady states, model. This algorltkafstapower flow solver and by the check for islanding steps, after

an instance of demand for the input and it outputs a solutiQ ., ¢ the elementary line-tripping or generator-saitmat
with balanced load and generation, possibly over a subegridev

the original grid. A flow chart of the general structure of the
algorithm is shown in Fig. 1. The algorithm is rather invalve
Thus we find it useful to begin with a high-level description
in the main body, followed by more detailed expositions of
the algorithm sub-tasks in their respective Subsectiofise (
order of Subsections in this Section is dictated by converge
of the presentation as well as by the interdependence of the
material. It does not necessarily reflect the importancénef t The power solver takes injection and consumption of powers
sub-tasks or their order in execution of the algorithm.) at all the nodes of the power grid as well as system parameters
The algorithm begins by computing the OPF solutidn= as input and it outputs voltages and phases at the nodes|las we
(gili € Gy), usingd® = (d;|i € Gq) as the baselreferenceas the power transmitted over all the links of the grid. Gen-
point. Here,G = (Go,G1) is the graph of the power grid erally, AC power flow is a nonlinear algebraic problem, that
consisting of a set of vertexe§,, and edgesg,. G, C Gy becomes a linear problem under a set of additional, soetalle
and G; C Gy is the subset of nodes with generators anbirected Current (DC), assumptions. Our cascading alyorit
demands, respectively. Then, the OPF solution is perturbedl work with the most general power solver. However, insthi
by a random demand fluctuatioh= (9;|i € G4), drawn from paper we choose to work with a DC solver, which is simpler
a distribution parameterized by its root-mean-squareadievi in implementation and does not require special algorithons f
from the meand®. (A detailed discussion of the probabilitydistributing the losses between the generators. The D@solv

A. DC power flow



| Optimal Power Flow:d®, g° | for the branch flowsp, and generation powerg, The resulting

l p°, ¢° and 0° form the base (reference) solution for our
cascading algorithm.

C. Identify islands

Our algorithm does not generate a surviving balanced sub-
grid at. once, but_ ir)stead it resolves it in steps mimi_cking
dynamics of realistic cascades. The temporal evolution of
the surviving sub-grid is induced by cutting saturated dine

which might also cause the formation of islands, and renwpvin

freshly formed but overloaded islands. We check for islagdi

(i.e. splitting of the grid into independent componentshgs

the functiongrCompof the MATLAB grTheorytoolbox [13].

no violation andt* < 1

If an island is formed, we do all other computations within
the cascading algorithm (including DC Power Flow, droop
control and calculation of*) independently for every island.

| cut one overloaded Iinei

violation

no violation andt* = 1 D. Droop control

In the process of evaluating the cascading algorithm, it
can happen, due to tripping of overloaded lines, that some
loads or generators will become disconnected from the grid
or that the grid splits up into islands. Both scenarios negjui
automatic redistribution of generation, done in the sdecal

Fig. 1. Flowchart of the proposed cascading algorithm

evaluates ) droop control fashion [14].
Gis i €Gy Droop control is executed at each generator locally in
Vie o Zpij = { —d;, i €Ga 1) response to an increase or decrease of the system frequency
g 0, i€Go\(GyUGba) (measured locally as well). It is required if the grid chamge
V{i,j} € Gi: 0; —0; = xzijpi; (2) its structure, i.e. following the appearance of new islahd(
wherez = (x4;|{i,j} € G1), g = (gili € Gy), d = (di]i € in the r_esult of line tripping, or if the demand at any node
Ga), 0 = (0ii € Go), p = (pij = —piil{i.j} € Gi) are on the island has changed. Here we assume that the power

the vector of line inductances, the vector of powers inidacté’enerat'ongi(ﬂ' at nodei after at least one of these events

at generators, the vector of demands consumed at loads, 'the gi(—)
vector of phases and vector of line flows, respectively. éHer gi(+) = ——%ds(+), (4)

{4,7} is our notation for directed edges apd~ i indicates _ 92(=) N _

that j is the graph neighbor of.) Note that to streamline where the newly introduced quantities on th_e right hand
notations, we used an abbreviated version of the DC poviif® of Ed. (4) are the current power generatigri-), at
flow equations in (1,2). In particular, we ignore terms ass@0de i; the total power generation (before droop control),
ciated with tap transformers. However, n our simulations wie (=) = Xjex, 95(—), at the freshly formed island. C
utilize the DC PF solver from the Matlab based MATPOWER: the generator belongs to; and the total power demand,
package [12] taking into account effects of transformerd aff=(+) = Xjex, di(+), _O_f the island observed f_;lfter_any of the
other devices included in the description of the 30, 39 argl 1o droop control requiring events. Note that if neither o t

nodes IEEE systems. two events occurred at the islaidl, ds/ (+) = ds/(—) will
hold. Since we always make sure that a stable well-balanced
B. Optimal Power Flow solution demand and generation matehy(—) = gs/(—)

To set up the system, we solve the standard DC optimsanoumi hold and we arrive g(-+) = gi(—) in the resuit

power flow problem finding optimum generator dispatch given Droop control is executed at al _the generators of the grid
the initial load d°, cost functionsf — (fili € G,) for simultaneously. Note that the ratio on the rhs of Eq. (4)

: : cpanges in the process of our discrete event simulations in
every generator as well as generation power and line cgpaci

constraints. To execute this task we use MATPOWER [1 ccordance with the modification of islands. If at some pmnt
. : ) . e process a generator becomes saturated, we do not include
and cost functions provided in the description of the IEEI

) X . : anymore in the droop control mechanism described above,
systems studied. The DC optimal power flow, in the simplest . : . ;
) ut instead keep its generation level constant (at the maxim
nomenclature, corresponds to solving

generation capacity). As long as demand and total power
. generation can be matched, the island persists. Howevhg if
S Z filgi) Egs. (1,2), wherel — d° () total demand of the island exceeds its total generationoigpa
! Y{i, 5} pijl < pi™ we shut down the entire island. Thus, the transition poiorinfr

Vi giin<g < gmax phase two to phase three shown in Fig. 4 is associated with



the emergence of a statistically significant number of @tanthus arriving, under condition that; (+, ) = pj3** holds for
which were shut down. exactly one line, at Eq. (9).

E. Discrete Time Evolution of Loads E Line Checking and tr|pp|ng

We do notincrease the demand fram= d’ tod = d°+dat  after solving the DC PF equations, we check for lines with
once, but instead break the change into a number of (geyergihated constraints. The constraints are stated in thelaso
not equaIIy_ spaced) incremental steps. E_ach and every Nexts of the conditions for OPF in Eq. (8)It can easily
increment is computed separately, as being associated Withpen, that one encounters degeneracy, in the sense ghat th
only a single element modification of the underlying gridonstraints are violated at more than one line. If this is the
(see types (a) and (b) below). To account for the incrementalse we do not trip all the lines with violated constraints
increase of demand, we generate a monotonically increasifidonce, but instead exclude only one of them and then do
sequence of (fraction) times < (0, 1] of load disturbances, groop control and DC power flow again. (See the small loop
each associated with the new configuration of loalisi-t*0. i the flowchart Fig. 1.) The order of exclusion is chosen
(We recall that if the grid is islanded, we calculate the B8 angomly prior to executing the cascading algorithm and it
time sequence separately for each island and choose éaintained the same over all iterations and samplings. We
minimum time over all islands a$.) As described below, this giress that this degeneracy can only happen if at a previous

time sequence is evaluated analy_tically thus qllowing MPsten ¢, < t, held, which implies that we change local
tationally efficient and accurate discrete time implemgoita power generationsnstantly This course of actions is an

in the algorithm. . . ~approximation and it would of course be more physical to
We account for constraint breaking events of the followinggt increase the generation power instantly, but graduatig
two types: to account for singular line tripping events during thisdyral
a) Exceeding the local maximum generation power cofincrease. However, since dynamic generator data is veen oft
straint at timet* = ¢,. not known, we choose to follow this simple and reasonable
b) Exceeding the line capacity constraint at timie=t;.  scheme.
The time of locally exceeding generation capacity is From the quantitative analysis point of view, we only count

a line as tripped when at some point the line flow exceeds its
capacity. This means that if an island is overloaded andrétus
moved from the grid, we do not count lines within the removed
island (which now do not carry any current) as tripped. After
Indeedy, is the time whery;(+,t,) > ¢/*** holds for exactly all, these lines show no need for maintenance. This is diffier
one special generator sifec Y. Then, the expression for thefrom the way we account for tripped generators and demands.

t!] = m.in 9 q.(i)gi(_)
m(0) 0%

(5)

post-event generation at the special site is When an island shuts down (then cumulative load exceeds
(=) generation capacity), we count these unserved demands and
gi(+,t) = ggl( )dg(+, t) (6) the generators set off-line as tripped.

s (—

_ gi(=)

= gE(_)[dz(—) + tos] @) ll. RESULTS

B gi(—) 5 a In this Section we report the results of testing our casaadin

= 9i(-) +tgz(_) ) (8) algorithm, described in details in Section Il, on three IEEE

systems.

where ds.(+,t) = ds(—) + téx is the post-event cumula-
tive demand over the islan®, and Eq. (5) follows from

gi(+,t4) = gmax. A. Effect of random demand distributions
Analogously, the time of exceeding a line constraint is In this Subsection we report tests on standard IEEE systems
(D5 = pii(—) with 30 and 39 buses respectively. For these two systems all
= 1831 (m) J ©)  the important system parameters (maximum generation power

) ) _ . ¢, maximum line capacities, average demand distribution,
which follows from the following consideration. Let(+) = ;(0)) are available in the system specifications documented
PHG(+),d(+),9(+)) denote the vector of power flows, in [12]. We select the average load according ti, =

over the transmission lines of the gdd=), obtained by solv-  5654max, while maintaining the same relative distribution
ing Egs. (1,2) with demand(+) and generatiog(+), where of demands between load buses, as specified in [12]. (The
+ indicates (as before) relevance to the pre- and post- drq@pscaling reflects a typical day scenario for the reference
control state. One derives that(+,¢) = PRG(—),d(—) + point.) Then we set the distribution of generation accaydin

t9,9(=)+1Ag), where(Ag); is defined according to the drooptg the optimal power flow solution of Eq. (3). Fluctuations in
control rule, Eq. (8). Furthermore, since (PH is linear ind
and g, one finds that 1We remind that this manuscript deals with relatively fastages (devel-

oping in minutes or even shorter periods), when line capaeih be modeled
p(+,t) = p(—) +t-PHG(-),d, Ag), (10) as a single valued characteristic (emergency rating, C).



16f < %<1 de-stressing effect on the grid seen in a significant reduc-
? x < tion of damage increase with increasing demand fluctuations
s * B 1 Phase #2, described by sizable fluctuations, is charaeteriz
%12’1 x 1 by the appearance of some tripped generators (surrounded
élo—“ I Een h 1 by tripped lines), while the relationg# of tripped lines >
I L 1 (4#of tripped loads > (# of tripped generatojs remain

X tripped demands

valid. Finally, phase #3, described by large demand fluc-

% tripped generators

tuations, is characterized by multiple islands, of which a

N * *%**%%%*******%****WL . . . .
2 ***HHH** * 1 S|zable.O(1) _portlon is outa_tged:(# of tripped Iogd$ >
etk *js I (#of tripped I|ne$ > (# of tripped generatofs Typ|§:al in-
' ' A ' ' stances, contributing to phases #1-#3, develop in multiple
sequential steps, and as such can all be interpreted asleasca
Fig. 2. Average characteristics of outages in the 30 bus ar&tinduced of severity increasing with the numerical index of the phase

by fluctuations in demand explained in the text. Every datatppresents
the average over 200 i.i.d. samples using the specifieditalison. dg)) =

0.565g(Emax). We observe three transition points. Prior to reaching tret fi
transition point the grid is resilient to fluctuations in demd. In between the
first and second transition points the probability of havémgoutage increases
slowly. It turns out that the outage in this regime corresfsoio tripping of two
lines (due to overload) followed by islanding of the adjdsttemand node.
Here, one observes no cascades yet but only increased pitgbab line
and demand tripping (as also witnessed by the low slope mfe¢d demands
and the stress diagram of the system shown in Fig. 5). Pasisengecond
transition point indicates emergence of a macroscopictipificant number
of tripped generators, which also results in a faster risdeshand tripping
and signifies the start of cascades. In this system we algoartbird transition
point at which the number of tripped demands exceeds the euofliripped
lines, thus indicating that significant number of the unsedrdemands belong
to islands left without power.

Figs. 2 and 3 show simulation results on average char-
acteristics of outages, caused by the distribution of deman
Eq. (11) under different values of dispersion, for the ayste
of 30 and 39 buses respectively. Although the qualitative
forms of the curves observed are quite similar, one also finds
interesting differences in the way how cascades evolveedn th
two systems. Whereas in the 30-bus system the first phase
is associated with line tripping also resulting in isolatiof
a few demands, this state is virtually absent in the 39-bus
system, where the cascading behavior begins with the second
phase. The increase in the number of unserved demands is
here in fact induced by generator tripping. Furthermorespha
two and phase three almost coincide in the 39-bus system.
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However, as the stress-diagrams (see Fig. 6 and Fig. 5) of
both systems show, islanding is an important effect. The
absence of phase one in the 39-bus system appears to be
due to the fact that created islands are (a) rather big, (b)
include generators, and (c) are stressed and become pssverle
almost immediately after emergence. In phase one of the 30-
bus system, islands are small and immediately removed from
the grid (as not containing generators). This early removal
of many small islands has a positive, de-stressing effect on
the remaining part of the grid. The stress diagrams, shown in
Fig. 6 and Fig. 5, provide additional evidence supporting th

aforementioned explanations.
A qualitatively similar behavior to the one shown in Figs. 2
and 3 was also observed for some other choices of demand
distributions Eq. (11), e.qg. for fluctuations allowing a tEase
in demands (yet keeping the total demand positive). Hence
@ne can speculate that the qualitative picture of outagethro
induced by increase in load fluctuations is universal.

We would like to comment on one interesting similarity
between our microscopic results and the results of Dobson

Fig. 3. Outages in the 39bus network induced by disorderéndth??nds.
0) _

Every data point presents the average over 200 samples dfLEQdy,
(max)

0.5659."

the demands are generated using the half normal distribut
allowing only positive fluctuations, in demasd € Gy:

o) CAIA) g0 4 5 5

\/mdOA /2 ’ .
P(6;) = 1/12 & 45 — o (11) et al. reported for the phenomenological CASCADE model
0. dg N 5? Z dg [7]. The CASCADE model is an abstract representation of

the power grid, considering equivalent components failing
Running our algorithm and observing average charactaecording to some pre-defined distribution. If a component
istics of outages, we see the emergence of three distifmils, a certain amount of load is distributed equally to all
cascading phases, illustrated in Figure 4. Phase #0, bedcriother components. The model is structureless and as such it
by small demand fluctuations, does not lead to any significazgrries no explicit relation to the power flow equations.sit i
damage. Phase #1, described by modest fluctuations, resultargued in [7] that an increase in the parameter mimicking
the removal of some number of lines as well as the removatrease in the total load, results in an abrupt increaséen t
of a few loads (the formation of islands which do not havsize of the damage starting at some finite threshold valueof t
any generation and are thus blacked out immediately), whip@rameter. This observation is akin to the transition frévage
generators remain largely unaffected. This phase can haveng to phase two (see Fig. 4) observed in our microscopic
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Fig. 4. lllustration of possible cascade phases. In phake @rid is resilient 2) @
against fluctuations in demand. Phase 1 shows tripping ofaddsndue to % %
tripping of overloaded lines. This has a overall "de-stirggs effect on the
grid. In phase 2 generator nodes start to become trippedalyndue to
h . TN . . . @ @
islanding of individual generators. With the early trippiof generators the
system becomes stressed and cascade evolves much faskeingrease in ®© @ () Prippes=?™
the level of demand fluctuations) when compared with a kelgtimodest .
increase observed in phase 1. Outages in phase 3 are asdagitit removal ®
from the grid of complex islands, containing both genest@nd demands. @ ® @ @
®© o _ %

model. Moreover, a similar observation was made recently @ @ @ . e @

the context of yet another phenomenological model discliss ©)

in [15]. In contrast to the model of [7], the one of [15] is .,@

based on a network with some spatial structure. Overall, \ ®

conclude that transition from phase one (in which almost ¢ ® ® Puped™

generators are functional) to phase two (where a significant . - _
O(1), fraction of generators is in outage) is observed acroS4- 5. Stress diagram of the 30-bus system, correspondiriggt 2, using
h del dh to b . | feat the specified distribution. From top left to bottom rightesss in the system
the models and hence seems to be an universal feature. s icreased:A = 0.1, A = 02, A = 09 A = 1.2 and A = 2.0.

Buses labeled5# are generator buses, all other are load-only buses. The
) o average probability of tripping a line or a bus (over 200 sks)pis color-
B. Effects of line capacities coded for every component. Every instance is normalizedheymaximum

. . . . tripping probabilityp™®* of a component. Yellow (light) means small and red
In this Section we describe results of our cascading Qrk) means maximum tripping probability. (See elecovérsion of the

gorithm test on the larger IEEE 118-bus system. In thmeanuscript for color figures.)
contrast with the 30-bus and 39-bus system, specification of
the 118-bus system available in MATPOWER does not have
line capacities. To resolve this problem, we experimentethssification scheme, phase 1 and 2 are absent in this case.
with synthetic distribution of line capacities. We obsetveThis observation is also consistent with results obtairzeties
that variability in the line capacities affects the dynasnaf in [7] or [15]. In contrast, when the univalued line capacity
cascades in a strong way, in particular influencing the &irec is minimal (top right figure), the cascading behavior is not
of emerging islands. seen. In this case, any (sensible) initial distributiondkea
This strong sensitivity to the line capacity distributiomade to islanding and blackout of some of these islands. (Note
first on the 118-bus system, led us to testing the smalldmat in this case the whole grid is never outaged completely,
systems. We show in Figs. 8 how the cascading behaviostead we reach a stable point with 4 loads and 2 generators
is influenced by different distributions of line capacities remaining for a rather wide variability range & We attribute
the 30-bus system with 6 generation and 24 demand nodiss peculiar result to the specific topology of the grid and
We consider three cases, where all the capacities are tbet initial demand distributiond®. The islands are formed
to the same value: equal to the smallest, largest or mdana way that two remaining generators provide powers to
characteristics of the original distribution (available the the remaining loads without exceeding line capacitiesthin
MATPOWER specification for the system). When the univalinivalued case corresponding to the mean value of the atigin
ued line capacity is maximal (top left figure), no line outagdistribution, illustrated in the bottom left of Fig. 8, plessl
or islanding is observed. Outages in such systems are solehd 2 are missing again, suggesting that islanding did ot le
due to generators exceeding their capacities, which oblyiouto any relief (de-stressing). Looking at all these threeainied
becomes more likely with increase iA. Referring to our examples from a quantitative perspective, we observe ligat t
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Fig. 8. Outages in the IEEE-30bus network with univaluea lgapacities
induced by fluctuations in demands. Every data point is dtre$@averaging

over 200 ii.d. samples from Eq. (llz)lg)) = 0.565g(2max). Top left: Set
all line capacities equal to the maximum line capacity frame riginal

distribution. Top right: Set all line capacities equal te tminimum line

capacity of the original distribution. Bottom left: Set &tie capacities equal
to the mean of the original distribution.

Puipped=0

capacity-distribution of the 30-bus system, i.e. accaydim

Fig. 6. Stress diagram of the 39-bus system, correspondiifiggt 3, using max

the specified distribution. From top left to bottom rightesss in the system Pij (30 bus ~ Dist; _(30 bus). (12)
is increased:A = 0.3, A = 0.4 and A = 0.6. Buses labeled=# are p?j J
generator buses, all other are load-only buses. The averadmbility of

tripping a line or bus (over 200 samples) is color-coded farg component. We obtain the maximum possible power flow (line capacity)
Every instance is normalized by the maximum tripping praligbp™2* of over linea in the system as

a component. Yellow (light) means small and red (dark) meaagimum

g&?ﬁf) probability. (See electronic version of the masrygt for color p;rjl_ax(118 bu$ ~ Distq-j (30 bué -p?j(118 bu$. (13)

Of course, our way of distributing capacities in a random
70 | fashion according to equation (12) does not really captlire a

+ tripped lines

|| wiped cemands . + the features of an intelligently designed system, but serve
* Upped gemators ¥ xoxox T here as a "second-order” approximation (the univalued case
being the first order approximation).
Fig. 7 shows the resulting outage diagram observed in
this synthetic system. These results are consistent wih th
XXy simulations of the smaller systems and also with the quali-
%k KFx 4 . . . . .
. ik tative scheme described in Fig. 4, although phase 1 is more
oo * ;f* 1 suppressed and phase 2 more extended. Using an intelligent
%;;***M*?‘ : ‘ ‘ ‘ ‘ ‘ ‘ ‘ (non-random) assignment of line capacities will lead to aeno
oSt s 2 s 8 38 4 48 S raalistic picture, and should be accounted for un futurdistu
Note however, that the same simulations conducted with
Fig. 7. Outages in the IEEE 118-bus network induced by desond the univalued Capacities (not Shown) give a Signiﬁcantly ddfe

demands. Every data point presents the average over 25antples using the . L . . .
specified distributiond'?) = 0.565¢\™. Since for this systems the IEEE picture, qualitatively consistent with the results repdrin

standard does not specify line capacities, we assign lipadities randomly Fig. 8 for univalued capacity tests in smaller systems.
according to the relative-capacity-distribution from %@bus case. Based on the results of this Subsection, we conclude that

in order to capture realistic cascading effects, like idlag,

it is crucial to take thenon-uniformity of line capacities
average size of the outage at the maximum fluctuations iff0 account (at least in a "second-order” approximation as
the demand considered, = 5, is significantly larger than in presented here).
the original case of a realistic distribution of capacitigée
associate this negative effect of the univalued capacith wi IV. DISCUSSION AND CONCLUSION
the lack of heterogeneity in the islands formed under stressin this manuscript, we proposed a new microscopic model
To conclude, we find that setting the line capacities to thg cascades in power grid. The model was tested on three
same value (large, small or averaged) leads to overesimatieEE systems. We solved the power flow dynamics (in the
of the strength of the outage in comparison with the realistipC approximation), analyzed structural evolution of themwep
intelligently designed case. ational part of the grid associated with islanding, and oles#

Therefore, to generate a realistic study of the 118-btlse emergence of cascades caused solely by fluctuations in

system, we distributed line capacities according to thatiked- loads. Analyzing the statistics of the damage, we identified
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four distinct phases, observed in response to variations fa]

|. Dobson, B. Carreras, V. Lynch, and D. Newman, “An iaiti

demand fluctuations. Testing the dependence of the phase Model for complex dynamics in electric power system blatkbu

structure on line capacities, we observed that selecting li
capacities with sufficient variability over the grid is immpant
for capturing realistic dynamics of outages. In particutamr 5]
simulations suggest that introducing sufficient variapilin

line capacities (expressing realm of existing power grids)
reinforces the grid, creating multiple islands, and thuginm

the resulting grid more resistant to a correlated Iarge&sca[6
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Our study suggests that to describe dynamics and statistics
of outages in the power grid faithfully, one most account for®]
(a) fluctuations (and eventuall increases) in demand (hepdi
locally and globally to exceeding the generation capagjitie [9]
and (b) islanding influenced by the distribution of line capa
ities.

Obviously, this study constitutes only the beginning of a
strategy for analyzing power grid cascades. One naturahext°
sion would be to replace the DC power flow solver by a more
realistic AC solver. We also intend to study mixed models
combining the effects of demand fluctuations with effects of
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