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Statistical Classification of Cascading Failures in
Power Grids

René Pfitzner, Konstantin Turitsyn and Michael Chertkov

Abstract—We introduce a new microscopic model of the
outages in transmission power grids. This model accounts for
the automatic response of the grid to load fluctuations that take
place on the scale of minutes, when the optimum power flow
adjustments and load shedding controls are unavailable. Wede-
scribe extreme events, initiated by load fluctuations, which cause
cascading failures of loads, generators and lines. Our model is
quasi-static in the causal, discrete time and sequential resolution
of individual failures. The model, in its simplest realization based
on the Directed Current description of the power flow problem,
is tested on three standard IEEE systems consisting of30, 39

and 118 buses. Our statistical analysis suggests a straightforward
classification of cascading and islanding phases in terms ofthe
ratios between average number of removed loads, generatorsand
links. The analysis also demonstrates sensitivity to variations
in line capacities. Future research challenges in modelingand
control of cascading outages over real-world power networks are
discussed.

Index Terms—Power system dynamics, Power system faults,
Power system reliability

I. I NTRODUCTION

The power transmission system is one of the greatest
engineering achievements of the past century. The power grid
system provides electricity 24 hours a day, seven days a
week. However, due to its complexity and spatial extent, it
is also vulnerable to failures of various sizes and significance.
Extreme events, like the infamous August 2003 blackout [1]
which left a significant part of North Eastern US without
electricity, are rare but their costs to the economy and society
are enormous. The significance of this subject has stimulated
research in this important area, summarized in a recent review
paper by Dobson et al. [2]. Well known cascading models
include random network models [3], initial power flow based
models with gradual load increase, maintenance and random
failures [4], [5], [6], phenomenological stochastic models [7],
[8], hidden-failure embedded power flow models [9], [10], and
recently power flow based models accounting for adaptive
control [11]. In this manuscript, we consider a power flow
model of cascading failures, applicable to temporal scales
shorter than the time of operator-induced Optimal Power
Flow (OPF) control. (OPF, redistributing power generation,
shedding load and adjusting frequency, is typically executed
on the scale of minutes.)
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The demand on the transmission grid grows at a pace sig-
nificantly exceeding maintenance and system reinforcement.
Hence the stress on the grid gradually increases, forcing
the system to operate close to its capacity. In a system far
from saturation (call it the ”grid of yesterday”) fluctuations
in demand rarely led to any significant outage, not to men-
tion a devastating cascade. On the contrary, in the system
under stress (the ”grid of today or tomorrow”) short-term
fluctuations in demand can and unfortunately will lead to
significant outages. One realistic scenario of interest is of a
grid with sufficient penetration of renewable generation. Main
effect of the renewables, considered as negative loads, consists
in generating more frequently the super-critical (leadingto
outages) fluctuations in demand. This consideration motivates
us to analyze outages and cascades generated solely by short-
term fluctuations in demand.

Our model and approach extends the research begun in [4],
[5], [6], in which the first quasi-static and microscopic (i.e.
based on power flows and not on an abstract model of stress
redistribution) models of cascades were considered. As in [4],
[5], [6], tripping of overloaded lines is a significant part of
our power flow dynamics. However, our approach is different
in what causes the tripping and how it occurs. Furthermore,
in contrast to [4], [5] our analysis concentrates solely on the
short-time scale. We do not trip multiple overloaded lines at
once, focusing instead on the tripping occurred naturally in
response to excessive demand. We do not account for external
line outages [5], effects of sympathetic line tripping [6],and
effects of hidden failures [10], which are conjectured to be
less significant at the relatively short times discussed in this
manuscript. (Comparative study of outages caused by these
different types of failures, and by the combination thereof,
will be the subject of a future publication.)

This study is inspired by the actual operational paradigm
guiding the grid dynamics on the scale of minutes or even
seconds, when an intelligent manual or semi-automatic con-
trol (typically including a human decision in the loop) is
unavailable or undesirable. We only account for some stan-
dard, automatic and system inherent controls, such as voltage
control, automatic line tripping and droop control executed at
the generators. The highlights of our method and results are:

• We study cascading behavior by solving the power
flow equations. Unlike the phenomenological (”disease
spread”-like) models, our model accounts fornon-local
power-flow based dynamic responses of the power sys-
tem.

• We propose a realistic cascade algorithm executed over
IEEE test beds, and not over abstract (tree-like or random)
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structures. This results in a realistic spatio-temporal re-
distribution of overloads. We point out the importance of
this course of action since power systems are not arbitrary
but designed intelligently (e.g. capable to withstand any
N − 1 contingency).

• Our cascade algorithm relies heavily on inhomogeneous
line overload and tripping, thus resulting in a dynamical
change of the network structure and (in the case of
significant damage) leading to the emergence of islands.
To study these cascades, we then solve the power flow
problem on every island independently. Islanding may
also result in an extreme form of load shedding, i.e.
blackout of the entire island if the cumulative load
exceeds the generation capacity.

• The only source of randomness in our model is associated
with fluctuations in demand. We show that these demand
fluctuations, without other random external influences,
are sufficient for causing cascades.

• The outage growth is quantified in terms of the average
number of tripped elements (loads, generators and lines)
and their dependence on the magnitude of demand fluc-
tuations. We identify four phases of the overload which
differ in how the average characteristics compare. (See
Fig. 4.)

This manuscript is organized in four Sections. Our cascad-
ing algorithm is described in Section II. The algorithm requires
solving the power flow equations many times, in a way that
mimics the actual dynamics of the grid in a quasi-static causal
fashion. We discuss the application of our cascading algorithm
to three IEEE systems, consisting of 30, 39 and 118 buses
respectively, in Section III. The last Section of the manuscript
is reserved for Conclusions and discussing the Path Forward.

II. CASCADING ALGORITHM

Our algorithm models cascades triggered by demand fluc-
tuations around the base OPF solution. We consider a quasi-
static, sequence of steady states, model. This algorithm takes
an instance of demand for the input and it outputs a solution
with balanced load and generation, possibly over a sub-gridof
the original grid. A flow chart of the general structure of the
algorithm is shown in Fig. 1. The algorithm is rather involved.
Thus we find it useful to begin with a high-level description
in the main body, followed by more detailed expositions of
the algorithm sub-tasks in their respective Subsections. (The
order of Subsections in this Section is dictated by convenience
of the presentation as well as by the interdependence of the
material. It does not necessarily reflect the importance of the
sub-tasks or their order in execution of the algorithm.)

The algorithm begins by computing the OPF solutiong0 =
(gi|i ∈ Gg), using d0 = (di|i ∈ Gd) as the base/reference
point. Here,G = (G0,G1) is the graph of the power grid
consisting of a set of vertexes,G0, and edges,G1. Gg ⊂ G0

and Gd ⊂ G0 is the subset of nodes with generators and
demands, respectively. Then, the OPF solution is perturbed
by a random demand fluctuation,δ = (δi|i ∈ Gd), drawn from
a distribution parameterized by its root-mean-square deviation
from the mean,d0. (A detailed discussion of the probability

distribution function of the load distribution consideredin
our simulations can be found in the beginning of Section
III-A.) We apply demand perturbations in a step-wise fashion,
with one step corresponding to one cycle of the outer loop
in the chart diagram of Fig. 1. The number of steps varies
with the perturbation and depends on the severity (number of
consecutive violations of line or generator constraints which
need to be resolved) in the fluctuation of demand. Each step
(loop) consists of the following mini-steps: (a) sequential
evaluation of the time rescaling parametert⋆; (b) redistribution
of new loads solely according to droop control (remind that
we do not include in this study any control of demand);
(c) calculation of Power Flow (PF) solution for the resulting
rescaled configuration of demandsd0 + t⋆δ, laying (in the
multi-dimensional space of demands) strictly in between the
reference pointd0 and the investigated configurationd0 + δ;
(d) line check and possible tripping of one violated line
based on the DC power flow solution (note that this sub-step
involves some randomness in selecting the tripped edge of
possibly many violated ones); and (e) checking if the tripping
resulted in any islanding. These five mini-steps of the loop are
described in detail in Sections II-E, II-D, II-A, II-F and II-C
respectively.

It is important to stress at this point that the relatively
involved structure of the algorithm mimics the actual mi-
croscopic dynamics of the power grid control/adjustment to
the demand change. In particular, the gradual modification
in demand from the reference point to the final contingency,
modeled witht⋆ increasing monotonically from zero to one
in a finite number of steps, reflects the physics of the causal
response of the grid. Here we assume that the generator-
based control of the power flow takes place on the scale
of milliseconds, while any change in demand and resulting
tripping events occur at much slower pace (measured in
seconds, or even longer intervals). Thus the grid has enough
time to respond to each individual contingency establishing
a quasi-static equilibrium, modeled in our algorithm by the
power flow solver and by the check for islanding steps, after
each of the elementary line-tripping or generator-saturation
events.

A. DC power flow

The power solver takes injection and consumption of powers
at all the nodes of the power grid as well as system parameters
as input and it outputs voltages and phases at the nodes, as well
as the power transmitted over all the links of the grid. Gen-
erally, AC power flow is a nonlinear algebraic problem, that
becomes a linear problem under a set of additional, so-called
Directed Current (DC), assumptions. Our cascading algorithm
will work with the most general power solver. However, in this
paper we choose to work with a DC solver, which is simpler
in implementation and does not require special algorithms for
distributing the losses between the generators. The DC solver
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Fig. 1. Flowchart of the proposed cascading algorithm

evaluates

∀i ∈ G0 :
∑

j∼i

pij =

{ gi, i ∈ Gg

−di, i ∈ Gd

0, i ∈ G0 \ (Gg ∪ Gd)
(1)

∀{i, j} ∈ G1 : θi − θj = xijpij (2)

wherex = (xij |{i, j} ∈ G1), g = (gi|i ∈ Gg), d = (di|i ∈
Gd), θ = (θi|i ∈ G0), p = (pij = −pji|{i, j} ∈ G1) are
the vector of line inductances, the vector of powers injected
at generators, the vector of demands consumed at loads, the
vector of phases and vector of line flows, respectively. (Here
{i, j} is our notation for directed edges andj ∼ i indicates
that j is the graph neighbor ofi.) Note that to streamline
notations, we used an abbreviated version of the DC power
flow equations in (1,2). In particular, we ignore terms asso-
ciated with tap transformers. However, n our simulations we
utilize the DC PF solver from the Matlab based MATPOWER
package [12] taking into account effects of transformers and
other devices included in the description of the 30, 39 and 118
nodes IEEE systems.

B. Optimal Power Flow

To set up the system, we solve the standard DC optimal
power flow problem finding optimum generator dispatch given
the initial load d0, cost functionsf = (fi|i ∈ Gg) for
every generator as well as generation power and line capacity
constraints. To execute this task we use MATPOWER [12],
and cost functions provided in the description of the IEEE
systems studied. The DC optimal power flow, in the simplest
nomenclature, corresponds to solving

min
p,g,θ

∑

i

fi(gi)

∣

∣

∣

∣

∣

Eqs. (1,2), whered → d0

∀{i, j} : |pij | ≤ pmax
ij

∀i : gmin
i ≤ gi ≤ gmax

i

(3)

for the branch flows,p, and generation powers,g. The resulting
p0, g0 and θ0 form the base (reference) solution for our
cascading algorithm.

C. Identify islands

Our algorithm does not generate a surviving balanced sub-
grid at once, but instead it resolves it in steps mimicking
dynamics of realistic cascades. The temporal evolution of
the surviving sub-grid is induced by cutting saturated lines,
which might also cause the formation of islands, and removing
freshly formed but overloaded islands. We check for islanding
(i.e. splitting of the grid into independent components) using
the functiongrCompof the MATLAB grTheorytoolbox [13].

If an island is formed, we do all other computations within
the cascading algorithm (including DC Power Flow, droop
control and calculation oft⋆) independently for every island.

D. Droop control

In the process of evaluating the cascading algorithm, it
can happen, due to tripping of overloaded lines, that some
loads or generators will become disconnected from the grid
or that the grid splits up into islands. Both scenarios require
automatic redistribution of generation, done in the so-called
droop control fashion [14].

Droop control is executed at each generator locally in
response to an increase or decrease of the system frequency
(measured locally as well). It is required if the grid changes
its structure, i.e. following the appearance of new island(s)
in the result of line tripping, or if the demand at any node
on the island has changed. Here we assume that the power
generation,gi(+), at nodei after at least one of these events
is

gi(+) =
gi(−)

gΣ(−)
dΣ(+), (4)

where the newly introduced quantities on the right hand
side of Eq. (4) are the current power generation,gi(−), at
node i; the total power generation (before droop control),
gΣ(−) =

∑

j∈Σg
gj(−), at the freshly formed island,Σ ⊂

G, the generator belongs to; and the total power demand,
dΣ(+) =

∑

j∈Σd
dj(+), of the island observed after any of the

two droop control requiring events. Note that if neither of the
two events occurred at the islandΣ′, dΣ′(+) = dΣ′(−) will
hold. Since we always make sure that a stable well-balanced
solution demand and generation match,dΣ′(−) = gΣ′(−)
should hold and we arrive atgi(+) = gi(−) in the result.

Droop control is executed at all the generators of the grid
simultaneously. Note that the ratio on the rhs of Eq. (4)
changes in the process of our discrete event simulations in
accordance with the modification of islands. If at some pointin
the process a generator becomes saturated, we do not include
it anymore in the droop control mechanism described above,
but instead keep its generation level constant (at the maximum
generation capacity). As long as demand and total power
generation can be matched, the island persists. However, ifthe
total demand of the island exceeds its total generation capacity,
we shut down the entire island. Thus, the transition point from
phase two to phase three shown in Fig. 4 is associated with
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the emergence of a statistically significant number of islands
which were shut down.

E. Discrete Time Evolution of Loads

We do not increase the demand fromd = d0 to d = d0+δ at
once, but instead break the change into a number of (generally
not equally spaced) incremental steps. Each and every next
increment is computed separately, as being associated with
only a single element modification of the underlying grid
(see types (a) and (b) below). To account for the incremental
increase of demand, we generate a monotonically increasing
sequence of (fraction) timest⋆ ∈ (0, 1] of load disturbances,
each associated with the new configuration of loads,d0+ t⋆δ.
(We recall that if the grid is islanded, we calculate the discrete
time sequence separately for each island and choose the
minimum time over all islands ast⋆.) As described below, this
time sequence is evaluated analytically thus allowing compu-
tationally efficient and accurate discrete time implementation
in the algorithm.

We account for constraint breaking events of the following
two types:

a) Exceeding the local maximum generation power con-
straint at timet⋆ = tg.

b) Exceeding the line capacity constraint at timet⋆ = tl.

The time of locally exceeding generation capacity is

tg = min
i





gmax
i − gi(−)

gi(−)
gΣ(−)δΣ



 . (5)

Indeed,tg is the time whengi(+, tg) ≥ gmax
i holds for exactly

one special generator sitei ∈ Σ. Then, the expression for the
post-event generation at the special site is

gi(+, t) =
gi(−)

gΣ(−)
dΣ(+, t) (6)

=
gi(−)

gΣ(−)
[dΣ(−) + tδΣ] (7)

= gi(−) + t
gi(−)

gΣ(−)
δΣ, (8)

where dΣ(+, t) = dΣ(−) + tδΣ is the post-event cumula-
tive demand over the islandΣ, and Eq. (5) follows from
gi(+, tg) = gmax

i .
Analogously, the time of exceeding a line constraint is

tl = min
(ij)

(

pmax
ij − pij(−)

PF (G, δ,∆g)

)

, (9)

which follows from the following consideration. Letp(±) =
PF(G(±), d(±), g(±)) denote the vector of power flows,p,
over the transmission lines of the gridG(±), obtained by solv-
ing Eqs. (1,2) with demandd(±) and generationg(±), where
± indicates (as before) relevance to the pre- and post- droop
control state. One derives that,p(+, t) = PF(G(−), d(−) +
tδ, g(−)+t∆g), where(∆g)i is defined according to the droop
control rule, Eq. (8). Furthermore, since PF(...) is linear ind
andg, one finds that

p(+, t) = p(−) + t · PF(G(−), δ,∆g), (10)

thus arriving, under condition thatpij(+, tl) = pmax
ij holds for

exactly one line, at Eq. (9).

F. Line checking and tripping

After solving the DC PF equations, we check for lines with
violated constraints. The constraints are stated in the twolast
lines of the conditions for OPF in Eq. (3).1 It can easily
happen, that one encounters degeneracy, in the sense that the
constraints are violated at more than one line. If this is the
case, we do not trip all the lines with violated constraints
at once, but instead exclude only one of them and then do
droop control and DC power flow again. (See the small loop
in the flowchart Fig. 1.) The order of exclusion is chosen
randomly prior to executing the cascading algorithm and it
is maintained the same over all iterations and samplings. We
stress that this degeneracy can only happen if at a previous
step tg < tl held, which implies that we change local
power generationsinstantly. This course of actions is an
approximation and it would of course be more physical to
not increase the generation power instantly, but gradually, and
to account for singular line tripping events during this gradual
increase. However, since dynamic generator data is very often
not known, we choose to follow this simple and reasonable
scheme.

From the quantitative analysis point of view, we only count
a line as tripped when at some point the line flow exceeds its
capacity. This means that if an island is overloaded and thusre-
moved from the grid, we do not count lines within the removed
island (which now do not carry any current) as tripped. After
all, these lines show no need for maintenance. This is different
from the way we account for tripped generators and demands.
When an island shuts down (then cumulative load exceeds
generation capacity), we count these unserved demands and
the generators set off-line as tripped.

III. R ESULTS

In this Section we report the results of testing our cascading
algorithm, described in details in Section II, on three IEEE
systems.

A. Effect of random demand distributions

In this Subsection we report tests on standard IEEE systems
with 30 and 39 buses respectively. For these two systems all
the important system parameters (maximum generation power,
gmax
i , maximum line capacities, average demand distribution,
d(0)) are available in the system specifications documented
in [12]. We select the average load according to,dG =
0.565gmax

G , while maintaining the same relative distribution
of demands between load buses, as specified in [12]. (The
re-scaling reflects a typical day scenario for the reference
point.) Then we set the distribution of generation according
to the optimal power flow solution of Eq. (3). Fluctuations in

1We remind that this manuscript deals with relatively fast outages (devel-
oping in minutes or even shorter periods), when line capacity can be modeled
as a single valued characteristic (emergency rating, C).
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Fig. 2. Average characteristics of outages in the 30 bus network induced
by fluctuations in demand explained in the text. Every data point presents
the average over 200 i.i.d. samples using the specified distribution. d(0)Σ =

0.565g
(max)
Σ . We observe three transition points. Prior to reaching the first

transition point the grid is resilient to fluctuations in demand. In between the
first and second transition points the probability of havingan outage increases
slowly. It turns out that the outage in this regime corresponds to tripping of two
lines (due to overload) followed by islanding of the adjusted demand node.
Here, one observes no cascades yet but only increased probability of line
and demand tripping (as also witnessed by the low slope of tripped demands
and the stress diagram of the system shown in Fig. 5). Passingthe second
transition point indicates emergence of a macroscopicallysignificant number
of tripped generators, which also results in a faster rise ofdemand tripping
and signifies the start of cascades. In this system we also note a third transition
point at which the number of tripped demands exceeds the number of tripped
lines, thus indicating that significant number of the unserved demands belong
to islands left without power.
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the demands are generated using the half normal distribution
allowing only positive fluctuations, in demand∀i ∈ G0:

P(δi) =











exp(−(δi)
2/(2d0

i∆))√
πd0

i
∆/2

, d0i + δi > d0i

1/2, d0i + δi = d0i
0, d0i + δi < d0i

(11)

Running our algorithm and observing average character-
istics of outages, we see the emergence of three distinct
cascading phases, illustrated in Figure 4. Phase #0, described
by small demand fluctuations, does not lead to any significant
damage. Phase #1, described by modest fluctuations, resultsin
the removal of some number of lines as well as the removal
of a few loads (the formation of islands which do not have
any generation and are thus blacked out immediately), while
generators remain largely unaffected. This phase can have a

de-stressing effect on the grid seen in a significant reduc-
tion of damage increase with increasing demand fluctuations.
Phase #2, described by sizable fluctuations, is characterized
by the appearance of some tripped generators (surrounded
by tripped lines), while the relations,〈# of tripped lines〉 >
〈#of tripped loads〉 > 〈# of tripped generators〉, remain
valid. Finally, phase #3, described by large demand fluc-
tuations, is characterized by multiple islands, of which a
sizable O(1) portion is outaged:〈# of tripped loads〉 >
〈#of tripped lines〉 > 〈# of tripped generators〉. Typical in-
stances, contributing to phases #1-#3, develop in multiple
sequential steps, and as such can all be interpreted as cascades
of severity increasing with the numerical index of the phase.

Figs. 2 and 3 show simulation results on average char-
acteristics of outages, caused by the distribution of demand
Eq. (11) under different values of dispersion, for the systems
of 30 and 39 buses respectively. Although the qualitative
forms of the curves observed are quite similar, one also finds
interesting differences in the way how cascades evolve in the
two systems. Whereas in the 30-bus system the first phase
is associated with line tripping also resulting in isolation of
a few demands, this state is virtually absent in the 39-bus
system, where the cascading behavior begins with the second
phase. The increase in the number of unserved demands is
here in fact induced by generator tripping. Furthermore phase
two and phase three almost coincide in the 39-bus system.
However, as the stress-diagrams (see Fig. 6 and Fig. 5) of
both systems show, islanding is an important effect. The
absence of phase one in the 39-bus system appears to be
due to the fact that created islands are (a) rather big, (b)
include generators, and (c) are stressed and become powerless
almost immediately after emergence. In phase one of the 30-
bus system, islands are small and immediately removed from
the grid (as not containing generators). This early removal
of many small islands has a positive, de-stressing effect on
the remaining part of the grid. The stress diagrams, shown in
Fig. 6 and Fig. 5, provide additional evidence supporting the
aforementioned explanations.
A qualitatively similar behavior to the one shown in Figs. 2
and 3 was also observed for some other choices of demand
distributions Eq. (11), e.g. for fluctuations allowing a decrease
in demands (yet keeping the total demand positive). Hence
one can speculate that the qualitative picture of outage growth
induced by increase in load fluctuations is universal.

We would like to comment on one interesting similarity
between our microscopic results and the results of Dobson
et al. reported for the phenomenological CASCADE model
[7]. The CASCADE model is an abstract representation of
the power grid, considering equivalent components failing
according to some pre-defined distribution. If a component
fails, a certain amount of load is distributed equally to all
other components. The model is structureless and as such it
carries no explicit relation to the power flow equations. It is
argued in [7] that an increase in the parameter mimicking
increase in the total load, results in an abrupt increase in the
size of the damage starting at some finite threshold value of the
parameter. This observation is akin to the transition from phase
one to phase two (see Fig. 4) observed in our microscopic
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Fig. 4. Illustration of possible cascade phases. In phase 0 the grid is resilient
against fluctuations in demand. Phase 1 shows tripping of demands due to
tripping of overloaded lines. This has a overall ”de-stressing” effect on the
grid. In phase 2 generator nodes start to become tripped, mainly due to
islanding of individual generators. With the early tripping of generators the
system becomes stressed and cascade evolves much faster (with increase in
the level of demand fluctuations) when compared with a relatively modest
increase observed in phase 1. Outages in phase 3 are associated with removal
from the grid of complex islands, containing both generators and demands.

model. Moreover, a similar observation was made recently in
the context of yet another phenomenological model discussed
in [15]. In contrast to the model of [7], the one of [15] is
based on a network with some spatial structure. Overall, we
conclude that transition from phase one (in which almost all
generators are functional) to phase two (where a significant,
O(1), fraction of generators is in outage) is observed across
the models and hence seems to be an universal feature.

B. Effects of line capacities

In this Section we describe results of our cascading al-
gorithm test on the larger IEEE 118-bus system. In the
contrast with the 30-bus and 39-bus system, specification of
the 118-bus system available in MATPOWER does not have
line capacities. To resolve this problem, we experimented
with synthetic distribution of line capacities. We observed
that variability in the line capacities affects the dynamics of
cascades in a strong way, in particular influencing the structure
of emerging islands.

This strong sensitivity to the line capacity distribution,made
first on the 118-bus system, led us to testing the smaller
systems. We show in Figs. 8 how the cascading behavior
is influenced by different distributions of line capacitiesin
the 30-bus system with 6 generation and 24 demand nodes.
We consider three cases, where all the capacities are set
to the same value: equal to the smallest, largest or mean
characteristics of the original distribution (available in the
MATPOWER specification for the system). When the unival-
ued line capacity is maximal (top left figure), no line outage
or islanding is observed. Outages in such systems are solely
due to generators exceeding their capacities, which obviously
becomes more likely with increase in∆. Referring to our
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Fig. 5. Stress diagram of the 30-bus system, corresponding to Fig. 2, using
the specified distribution. From top left to bottom right stress in the system
is increased:∆ = 0.1, ∆ = 0.2, ∆ = 0.9, ∆ = 1.2 and ∆ = 2.0.
Buses labeledG# are generator buses, all other are load-only buses. The
average probability of tripping a line or a bus (over 200 samples) is color-
coded for every component. Every instance is normalized by the maximum
tripping probabilitypmax of a component. Yellow (light) means small and red
(dark) means maximum tripping probability. (See electronic version of the
manuscript for color figures.)

classification scheme, phase 1 and 2 are absent in this case.
This observation is also consistent with results obtained earlier
in [7] or [15]. In contrast, when the univalued line capacity
is minimal (top right figure), the cascading behavior is not
seen. In this case, any (sensible) initial distribution leads
to islanding and blackout of some of these islands. (Note
that in this case the whole grid is never outaged completely,
instead we reach a stable point with 4 loads and 2 generators
remaining for a rather wide variability range in∆. We attribute
this peculiar result to the specific topology of the grid and
the initial demand distribution,d0. The islands are formed
in a way that two remaining generators provide powers to
the remaining loads without exceeding line capacities.) Inthe
univalued case corresponding to the mean value of the original
distribution, illustrated in the bottom left of Fig. 8, phases 1
and 2 are missing again, suggesting that islanding did not lead
to any relief (de-stressing). Looking at all these three univalued
examples from a quantitative perspective, we observe that the
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Fig. 6. Stress diagram of the 39-bus system, corresponding to Fig. 3, using
the specified distribution. From top left to bottom right stress in the system
is increased:∆ = 0.3, ∆ = 0.4 and ∆ = 0.6. Buses labeledG# are
generator buses, all other are load-only buses. The averageprobability of
tripping a line or bus (over 200 samples) is color-coded for every component.
Every instance is normalized by the maximum tripping probability pmax of
a component. Yellow (light) means small and red (dark) meansmaximum
tripping probability. (See electronic version of the manuscript for color
figures.)
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Fig. 7. Outages in the IEEE 118-bus network induced by disorder in the
demands. Every data point presents the average over 25 i.i.d. samples using the
specified distribution.d(0)Σ = 0.565g

(max)
Σ . Since for this systems the IEEE

standard does not specify line capacities, we assign line capacities randomly
according to the relative-capacity-distribution from the30-bus case.

average size of the outage at the maximum fluctuations in
the demand considered,∆ = 5, is significantly larger than in
the original case of a realistic distribution of capacities. We
associate this negative effect of the univalued capacity with
the lack of heterogeneity in the islands formed under stress.
To conclude, we find that setting the line capacities to the
same value (large, small or averaged) leads to overestimation
of the strength of the outage in comparison with the realistic,
intelligently designed case.

Therefore, to generate a realistic study of the 118-bus
system, we distributed line capacities according to the relative-
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Fig. 8. Outages in the IEEE-30bus network with univalued line capacities
induced by fluctuations in demands. Every data point is a result of averaging
over 200 i.i.d. samples from Eq. (11).d(0)Σ = 0.565g

(max)
Σ . Top left: Set

all line capacities equal to the maximum line capacity from the original
distribution. Top right: Set all line capacities equal to the minimum line
capacity of the original distribution. Bottom left: Set allline capacities equal
to the mean of the original distribution.

capacity-distribution of the 30-bus system, i.e. according to

pmax
ij

p0ij
(30 bus) ∼ Distij(30 bus). (12)

We obtain the maximum possible power flow (line capacity)
over lineα in the system as

pmax
ij (118 bus) ∼ Distij(30 bus) · p0ij(118 bus). (13)

Of course, our way of distributing capacities in a random
fashion according to equation (12) does not really capture all
the features of an intelligently designed system, but serves
here as a ”second-order” approximation (the univalued case
being the first order approximation).

Fig. 7 shows the resulting outage diagram observed in
this synthetic system. These results are consistent with the
simulations of the smaller systems and also with the quali-
tative scheme described in Fig. 4, although phase 1 is more
suppressed and phase 2 more extended. Using an intelligent
(non-random) assignment of line capacities will lead to a more
realistic picture, and should be accounted for un future studies.
Note however, that the same simulations conducted with
univalued capacities (not shown) give a significantly different
picture, qualitatively consistent with the results reported in
Fig. 8 for univalued capacity tests in smaller systems.

Based on the results of this Subsection, we conclude that
in order to capture realistic cascading effects, like islanding,
it is crucial to take thenon-uniformity of line capacities
into account (at least in a ”second-order” approximation as
presented here).

IV. D ISCUSSION AND CONCLUSION

In this manuscript, we proposed a new microscopic model
of cascades in power grid. The model was tested on three
IEEE systems. We solved the power flow dynamics (in the
DC approximation), analyzed structural evolution of the oper-
ational part of the grid associated with islanding, and observed
the emergence of cascades caused solely by fluctuations in
loads. Analyzing the statistics of the damage, we identified
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four distinct phases, observed in response to variations in
demand fluctuations. Testing the dependence of the phase
structure on line capacities, we observed that selecting line
capacities with sufficient variability over the grid is important
for capturing realistic dynamics of outages. In particular, our
simulations suggest that introducing sufficient variability in
line capacities (expressing realm of existing power grids)
reinforces the grid, creating multiple islands, and thus making
the resulting grid more resistant to a correlated large scale
blackout. One observes that a cascade model, which does not
account for variations in line capacities, would overestimate
the damage.

Our study suggests that to describe dynamics and statistics
of outages in the power grid faithfully, one most account for
(a) fluctuations (and eventuall increases) in demand (leading
locally and globally to exceeding the generation capacities)
and (b) islanding influenced by the distribution of line capac-
ities.

Obviously, this study constitutes only the beginning of a
strategy for analyzing power grid cascades. One natural exten-
sion would be to replace the DC power flow solver by a more
realistic AC solver. We also intend to study mixed models
combining the effects of demand fluctuations with effects of
incidental line tripping. Then, with an eye toward aiding efforts
in grid reinforcement, we plan to continue our analysis of the
effect of capacity inhomogeneities on islanding. Finally,our
long-term goal is to build a novel phenomenological model and
theory of cascades based on a detailed microscopic analysis
of the type discussed in this manuscript.
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