
MPEG-4’s BIFS-Anim Protocol: Using

MPEG-4 for streaming of 3D animations.

A thesis submitted as a requirement for the degree of

Masters of Engineering in Electronic Engineering.

Author: Tony Walsh

Supervisor: Tommy Curran

Dublin City University School of Electronic

Engineering

09-September-2000

1

Declaration

I hereby certify that this material, which I now submit for assessment on

the programme of study leading to the award o f Master o f Engineering is

entirely my own work and has not been taken from the work o f others save

and to the extent that such work has been cited and acknowledged within

the text of my work.

Dale: £)9-Sptenflber-20U0

2

Dedicated to my Parents.

Thanks to Tommy <r urran, Sean Murphy, Liam Ward, Noel O’Connor and Eoin

Connely.

Acknowledgements

3

Abstract

This thesis explores issues related to the generation and animation of synthetic objects

within the context o f MPEG-4. MPEG-4 was designed to provide a standard that will

deliver rich multimedia content on many different platforms and networks. MPEG-4

should be viewed as a toolbox rather than as a monolithic standard as each

implementer of the standard will pick the necessary tools adequate to their needs,

likely to be a small subset o f the available tools. The subset of MPEG-4 that will be

examined here are the tools relating to the generation o f 3D scenes and to the

animation of those scenes. A comparison with the most popular 3D standard, Virtual

Reality Modeling Language (VRML) will be included.

An overview o f the MPEG-4 standard will be given, describing the basic concepts.

MPEG-4 uses a scene description language called Binary Format for Scene (BIFS) for

the composition of scenes, this description language will be described. The potential

for the technology used in BIFS to provide low bitrate streaming 3D animations will

be analysed and some examples of the possible uses of this technology will be given.

A tool for the encoding of streaming 3D animations will be described and results will

be shown that MPEG-4 provides a more efficient way o f encoding 3D data when

compared to VRML. Finally a look will be taken at the future o f 3D content on the

Internet.

4

Table of Contents

1 IN T R O D U C T IO N ..9

1.1 H ist o r y o f C y b e r s p a c e .. 9

1.2 M P E G -4 a n d M u l t im e d ia ...10

1.3 R e se a r c h o b je c t iv e s ...i l

l .4 T h e sis St r u c t u r e ... 12

2 A P P L IC A T IO N S F O R B IF S -A N IM ...14

2.1 In t r o d u c t io n .. 14

2 .1.1 3D Soap O p era ... 14

2.1.2 3D sports ..15

2.2 V ir t u a l C o m m u n it ie s .. 16

3 D E S C R IP T IO N O F M P E G -4 18

3.1 M ed ia O b je c t s .. 20

3.2 N a t u r a l A u d io C o d i n g ..21

3.2.1 Basic A Igorithms..22

3.2.2 Scalability.. 22

3.3 Sy n t h e s is e d A u d i o .. 23

3.4 C o d in g o f N a t u r a l V id e o O b j e c t s .. 25

3.4 .1 Introduction... 25

3.4.2 Features and Functionality........................... 25

3.4.3 Structure and syntax 26

3.5 Sy s t e m s A r c h it e c t u r e ..31

3.5.1 Introduction 31

3.5.2 Delivery Layer............................. 33

3.5.3 The Systems Decoder Model.. 33

3.5.4 Sync Layer. 36

3.5.5 Compression Layer.. 37

3.5.6 Object Descriptor Framework..38

3.5.7 Intellectual property management and protection (1PMP) ..40

3.5.8 Object Content Information.. , 41

3.5.9 Syntax Description Language...41

4 B IF S A N D S C E N E D E S C R IP T IO N .. 43

4.1 In t r o d u c t io n .. 43

4 .2 R e q u ir e m e n t s ...43

4.3 V ir t u a l Re a l it y M o d e l l in g L a n g u a g e a n d B IF S ...43

4.3.1 Nodes.. 44

4.3.2 Fields -..... 46

5

4.3.3 Event Processing..... 47

4.3.4 Reusing Nodes... 48

4.3.5 VRML Scene ... 49

4.3.6 BIFS has more Functionality.. 51

4 .4 B IFS COMPRESSION...54

4.4.1 Context Dependency................... -..............54

4.4.2 Node Definition Type Tables........................... 55

4.4.3 Node Coding Tables... 56

4.4.4 Quantization 58

5 A N IM A T IO N IN B IF S ... 60

5.1 INTRODUCTION...60

5.2 INTERPOLATOR NODES..60

5.3 B IFS-C o m m a n d ... 63

5.4 B IF S -A n im .. 63

5.4.1 Configuration*........................ 64

5.4.2 Allowable Nodes................................. ..64

5.5 A n im a t io n M a s k .. 65

5.5 .1 Quantization................................. «............... 66

5.6 An im a t io n F r a m e s ...74

5.6.1 AnimationFrame Header... 74

5.6.2 AnimationFrame Data...76

5.7 In t r a a n d P r e d ic t iv e m o d e s ..78

5.8 A d v a n t a g e s ..80

6 B IF S -A N IM E N C O D IN G T O O L .. 82

6.1 IM 1 ..82

6.1.1 IM1 Tools..82

6.1.2 Compositors.. —■■■■.84

6.1.3 Usage o f the 3 tools.. 85

6.1.4 Verification o f 1M1... 86

6.2 C o n t e n t C r e a t io n ...86

6.2.1 Structure o f Anim description fi le .. 87

6.2.2 Scene Creation ... 89

6.2.3 Analysis o f Anim Description f i l e 90

6.3 T he En c o d in g T o o l .. 91

6.3.1 Overview.. 91

6.3.2 Parsing and main Data Structures... 91

6.3.3 Utility Functions... 93

6.3.4 Operc ‘ :on o f the Encoder...*.................... 93

6.3.5 I M l BIFS-Anim Decoder.. 96

6

6.4 T e s t in g ..97

6.4.1 Verification Testing .. 97

6.4.2 Compression Testing 97

6.4.3 Description o f the 3D scenes.................. 99

6.4.4 Results ... 100

6.4.5 Analysis o f Results.. .102

7 C O N C L U S IO N S ... 104

7.1 F u t u r e o f B IF S -A n i m ..104

7.1.1 Internet deliver layer .. 105

7.1.2 Content Creation................... 105

7.1.3 Players... 107

7.2 Fu t u r e o f W eb 3 D .. 108

R e f e r e n c e s ..109

A N N E X A F IE L D C O D IN G T A B L E D A T A S T R U C T U R E ... A1

A N N E X B A N IM F 1 E L D Q P D A T A S T R U C T U R E ... B1

A N N E X C A D A P T . / E A R IT H M E T IC D E C O D E R F O R B IF S -A N IM .. C l

A N N E X D E X A M PL E . F IL E S U S E D B Y IM 1 B IF S E N C O D E R A N D M U X T O O L S D1

A N N E X E S Y N T A C T IC D E S C R IP T IO N L A N G U A G E ... E l

E .l In t r o d u c t io n ..E l

E.2 El e m e n t a r y D a t a T y p e s ..E l

E.2 .1 Constant-Length Direct Representation Bit F ields E l

E.2.2 Variable Length Direct Representation Bit Fields .. E2

E.2.3 Constant-Length Indirect Representation Bit Fields.. E2

E.2.4 Variable Length Indirect Representation Bit Fields..E3

E.3 Co m p o s it e D a t a T y p e s ...E4

E.3.1 Classes... E4

E. 3.2 Abstract Classes... E5

E.3.3 Expandable classes..E5

E.3.4 Parameter types... E6

E.3.5 A rray ,.. E7

E.3.6 Partin Arrays.. E8

E.3.7 Implicit Arrays E9

E.4 A r it h m e t ic a n d Lo g ic a l E x p r e s s io n s ... E9

E.5 Sy n t a c t ic F lo w C o n t r o l ... E9

E .6 B u il t -In O p e r a t o r s .. E10

E .7 Sc o pin g R u l e s ..E10

7

Table of Figures

F ig u r e l - A s s ig n m e n t o f c o d e c s t o b it r a t e r a n g e s ..21

f ig u r e 2 : Ex a m pl e o f a n M P E G -4 v id e o b it s t r e a m l o g ic a l s t r u c t u r e ...28

F ig u r e 3: G e n e r a l b l o c k d ia g r a m o f M PE G -4 v id e o ...30

F ig u r e 4 : m p e g -4 Sy s t e m s A r c h it e c t u r e ... 32

F ig u r e 5: S y s t e m s D e c o d e r m o d e i .. 35

F ig iir e 6: C o m p o s it io n u n it a v a il a b il it y ... 35

F ig u r e 7: T h e sy n c l a y e r .. 36

F ig u r e 8: T h e C o m p r e ssio n La y e r ... 38

F ig u r e 9: T h e in itia l o b je c t d e s c r ip t o r ..40

F i g u r e 10: A s a m p l e v r m l s c e n e ...49

F ig u r e 11: T h e sa m ,e s c e n e d is p l a y e d u s in g In t e r n e t E x p l o r e r .. 5 1

F ig u r e 12: A s im p l e V R M L s c e n e u t il is in g a p o s it io n in te r po l a t o r ..62

F ig u r e 13: Fr a m eR a t b .. 75

F ig u r e 15: A n im a t io n F ie l d ...77

F i g u r e 16: U s a g e o f t h e t o o l s t o p r o d u c e a n m p e g - 4 b i t s t r e a m .. 86

F ig u r e 17: O v e r v ie w o f t h e o p e r a t io n o f t h e En c o d e r ... 95

f i g u r e !8 : A n i m a t e d F i g u r e .. i o o

F ig u r e 19: C o m pa r iso n o f VRML, a n d M P E G -4 a p p r o a c h e s t o A n im a t io n ...102

8

1 Introduction

1.1 History of Cyberspace

In 1994 one of the most influential science fiction novels o f recent times was

published. That novel was William Gibson’s Neuromancer [10], The novel

Neuromancer portrayed a world in which all the computers of the world were

connected together and communicated with each other and the individuals using them.

Gibson called this matrix o f computers “cyberspace”.

At the time Gibson wrote Neuromancer the Internet consisted o f a few thousand

computers mostly located at universities or defence installations. The Internet at this

stage was difficult to use, cryptic command sets were needed and important

information was difficult to find. The Internet grew steadily and soon its size was

beginning to overwhelm those using it. There was a significant amount of information

available via the Internet, but it was often very difficult to find. All this information

was stored in separate files: the information was isolated from the rest of the

information on the Internet. Consequently, one could spend some time searching for a

document on a particular topic. This was a problem especially in the sciences where

each new work draws upon the prior work o f others.

To help solve this problem Tim Bemers-Lee, a software engineer at the CERN

institute in G e n e v a , developed a set of protocols that made it possible to show the

connections between documents. These protocols became the foundation for the

World Wide Web. Then Marc Andreesen created a web browser that could mix

different types of media. Now for example a document could contain both text and

images. This browser was given the name NCSA Mosaic. There are really two ages of

the Internet, before Mosaic and after Mosaic. Mosaic made it easy to browse the

World Wide Web, which today spans the entire Internet.

9

For some the M o^ic interface was not enough, it did not represent the real world very

well. The idea of a three dimensional interface to the web was bom. This interface

should allow its users to move about and work in 3D and attract many more people to

the Internet, as they would be using an environment closer to what they are familiar

with. In February 1994 the world’s first 3D Web browser was created by Tony Parisi

and Mark Pesce. They could use their browser to go to link to a Web site in 3D or

click on a link in a Web document and enter a 3D world. Later in 1994 Silicon

Graphics released the file format of their Open Inventor scene description language

into the public domain. This formed the basis o f the VRML 1.0 specification [3],

VRML 1.0 was important as it was the first standard that allowed 3D content to be

displayed over the Internet.

While version 1.0 proved the concept of 3Dweb content, Version 2.0 of the VRML [4]

standard released ir 1997 over comes many o f the limitations o f the original effort

[20]. Version 2 added new functionality: most importantly the ability to move through

the scene and to add animations to the scene.

It is possible that we are at the beginning of another revolution in computing as the

Internet changes to 3D. Slowly this change is happening as more and more people are

using and creating VRML worlds. The type of applications to benefit from VRML are

many, they inclu/s Games and entertainment, Multi-User Interactive 3D worlds, E-

Commerce product and technology demonstrations. No single “killer app” has

emerged, Instead most people indicate that a steady growth in the use of VRML

continues across a wide variety of application areas. Right now the tools and

technology are being released that will allow the web to change to a 3D medium.

1.2 MPEG-4 and Multimedia

The Motion Picture Experts Group (MPEG) have recently developed an international

standard that supports the encoding o f 3D information. This standard - MPEG-4 - has

much more functionality, but the functionality that is of primary concern here is the

3D encoding functionality. This enables 3D content to be stored and replayed at some

10

later date, but, more importantly, it enables 3D content to be distributed over the web.

MPEG-4 was developed to provide a standard that will deliver rich multimedia

content on many different platforms and networks. The types of applications that will

benefit from MPEG-4 are many and found in very different environments [22] and as

such MPEG-4 is ; very large standard. MPEG-4 should be viewed as a toolbox rather

than as a monolithic standard, as each implementer o f the standard will pick the

necessary tools adequate to their needs, which is likely to be a small subset o f the

available tools. Anyone who chooses to use MPEG-4 for a particular application has a

set of standardised tools at their disposal and can choose those that are most

appropriate. Most applications will only require that a small subset of the tools

available in the standard be implemented.

As MPEG-4 is a large toolbox, we will investigate those parts of the toolbox that will

add extra functionality to 3D applications on the Internet. MPEG-4 defines a scene

description language called Binary Format for Scene (BIFS). This scene description

language borrows heavily from the existing VRML 2.0 specification and in fact

includes all the functionality o f VRML. BIFS allows a 3D scene to be defined, such

that the user can move around the scene and interact with the scene. The BIFS-Anim

protocol allows animations in the scene and the BIFS-Command protocol allows the

scene to be updated. The two main advantages in using BIFS are that it is a much

more efficient coding scheme and that it supports streaming o f 3D animations. We

will examine why these two improvements are a significant advance over VRML.

1.3 Research objectives

There are 4 main cams to this research work, they are:

• To develop a good understanding of the technology used in MPEG-4 systems.

• To investigate and compare the scene description approaches taken by VRML and

MPEG-4.

• To design and develop a tool for encoding BIFS-Anim bitstreams. BIFS-Anim is a

mechanism in MPEG-4 that allows objects in the scene to be animated.

• To take part in the development and verification of the MPEG-4 systems reference

software.

11

1.4 Thesis St: icture

Chapter 2 examines a number of possible applications that would benefit from the use

of BIFS-Anim and MPEG-4 technology.

Chapter 3 will give an overview o f MPEG-4. The basic concepts on which the

standard are based are first introduced. Particular emphasis is given to the way in

which a scene is composed in MPEG-4. Then we will look at the audio, video and

systems parts of MPEG-4. With MPEG-4, audio and video compression is changing to

encompass the whole concept o f multimedia. The rest o f this chapter and in fact the

rest o f the thesis deals with MPEG-4 systems. The systems part of MPEG-4 deals with

combining the different media (video, audio) into a complete scene. This chapter will

describe the systems part o f MPEG-4 up to the scene description.

Chapter 4 describes the MPEG-4 systems scene description language, which is called

BIFS (Binary Format for Scenes). We will look at the concepts behind the scene

description language such as nodes, fields and events. The compression techniques

used by BIFS, context dependency and quantization and the mechanism for updating

the scene will also be examined.

The emphasis in chapter 5 is on animation. Here we look at ways of animating objects

in the scene. In particular we will examine the BIFS-Anim protocol. BIFS-Anim is a

protocol that is used for continuous streaming animation o f a scene. We will focus on

the configuration o f a BIFS-Anim bitstream and the quantization of BIFS-Anim.

Finally in this chapter will look at the advantages o f BIFS-Anim and some example

applications using BIFS-Anim technology.

Chapter 6 starts b_ describing the work done by the IM1 MPEG-4 group and the tools

they developed. Then we will look at a tool that encodes from a simple description

language into BIFS-Anim bitstreams. Finally in this chapter we will look at some

results produced by the encoder tool.

12

Chapter 7 will review all the preceding chapters and offer the conclusions of the

thesis. We will also look at possible future areas o f research and the possible direction

that the technology will follow.

13

2 Applications for BIFS-Anim

2.1 Introduction

In this section we will describe a number o f real world applications using MPEG-4

and BIFS-Anim. Three separate applications will be described and examined. Then

we will take a look at the issue of online communities and examine what technology

BIFS-Anim and MPEG-4 can add to their design.

All these applications use the Internet as the network layer. This is for two reasons:

The compression techniques used in BIFS-Anim reduce the bandwidth requirements

for animations down to what can be transmitted over a normal Internet connection.

Also at this time the Internet is the best medium which can use the interactivity

features of MPEG-4. In all the examples below good quality 3D models and textures

need to be created and then those models animated.

2.1.1 3D Soap Opera

The 3D soap opera would work like a normal soap in that at a prescribed time a new

episode would be made available to the public. The user would open an Internet page

and the latest episode would be streamed using BIFS-Anim and MPEG-4 audio (TTS

could also be used). The viewer would watch the 3D characters move about a 3D

world and interact with each other to produce a story line.

The 3D soap provides two features not available to a TV program, the ability to

navigate and interactivity. The user has the option to move through the 3D scene and

view the action from any angle. It is possible to have two parts of the story line

happening at the same time and the viewer chooses which one to watch. This idea was

used in the successful play Tamara in the late 1980s. Tamara was performed in a

large old house, with the audience actually following whichever character interested

them from room to room [21]. With MPEG-4 the user can replay the soap multiple

times to gather all the different parts of the story line.

14

With interactivity the viewer can decide on the outcome o f the story and which

possible outcome to watch. At predetermined times in the story the user may be

presented with a number of options, each option resulting in a different outcome. The

distinction between watching the story and playing a character in the story may be

blurred.

For the above scenario to work the user needs to have an initial scene ready to be

loaded into memory. This initial scene is likely to be large as it contains all the

textures and models needed for the scene and how those models are used to create the

world. For example, if the soap was to take place in an office building the 3D model

of the office building with all its rooms, tables, chairs etc needs to be loaded into

memory before the animation of that scene may take place.

The big advantage of the MPEG-4 approach is that this initial scene need only be

downloaded once and the future animations streamed using BIFS-Anim will change

the values of the nodes in the initial scene. Small updates to the initial scene can be

made using BIFS-Command. Compare this to the VRML approach where for every

episode the whole scene would need to be downloaded.

2.1.2 3D sports

The technology exists today to convert the flat 2D video o f a sports event into an

animated 3D scene [32]. This conversion can currently not be done in real time. This

technology is used by television stations to show short 3D clips o f exciting moments

from soccer matches.

Using such technology 3D content can be created, and this content can be transmitted

over the web using MPEG-4 and BIFS-Anim. This application now becomes similar

to the 3D soap opera except that the 3D content is generated automatically. This is an

important distinction as quality 3D content is difficult to create.

15

The viewer now has the option o f watching the event from any angle, some examples

include.

• To watch the match from the eyes of their favourite player

• To watch the match from the referee’s viewpoint

• When a goal is scored change to the goalie’s viewpoint

• To browse fhc match as if browsing a VRML scene

While it is unlikely that 3D transmissions o f a match will replace traditional television

transmissions the 3D model has an important advantage in that fans o f a sporting

event or team will be able to follow the action over the Internet if they live outside of

the traditional coverage areas.

2.2 Virtual Communities

With the advent of the Internet, broadcasters are losing viewers and revenue to more

collaborative media. Studies indicate that children from homes connected to the

Internet spend more time online than they do watching television [15]. For the larger

Internet service providers such as AoL and CompuServe, almost half their customer’s

time online is spent in chat rooms. Pavel Curtis o f Xerox said that “People are the

killer application o f the Internet.”

Thousands of people meet in 3D worlds every day over the Internet. Many play First

Person Shoote>- type games where the goal is to kill the other players before they kill

you. Others play online role playing games such as Everquest where the people

playing will assume a virtual persona and interact with the other players, often acting

out their own story line or even getting virtually married to each other. Everquest has

up to 50,000 people on-line at the once. Others spend time in interacting in multi-user

VRML worlds [8], where one o f the attractions is the ability to add to the world, often

in the form of extra buildings or features. For the release o f the film Star Trek: First

Contact, Paramount included in its web-site interactive VRML recreations o f the

bridge, engineering room and other well know Enterprise sets. The site received

16

nearly 6 million hits per day making the site one o f the most popular film web-sites in

the webs short history [12].

One of the big problems with multi-user VRML worlds is the problem o f updating the

scene, when a user interacts with the scene [6]. Take the simple interaction o f a user

moving about the world or a user adding a new object to the world. To update the

position o f the user or to add the new object, every user would need to reload the

complete scene again. If BIFS is used then the server containing the world can update

the position of the user’s avatars by a BIFS-Anim stream or add the new object by a

BIFS-Command stream sent to every person online in the world. The other problem

with virtual worlds is how to update the user with information that is relevant to them

and to ignore my noise. For example imagine a virtual world with 10,000 people

online at the one time, updating every user with what each other user is doing all the

time would be crazy. Everquest solves this problem by dividing its world up into

zones. Each user gets updated with the information relevant to the zone they are in.

Changing zones takes a little time as the information for that zone is downloaded.

17

3 Description of MPEG-4

MPEG-4 is a multimedia standard developed by the Moving Pictures Experts Group

(MPEG) o f the International Organisation for Standardisation (ISO). MPEG-4 is the

third standard in the series (there was no MPEG-3). MPEG-4 is ambitious in scope as

it aims to be a complete multimedia standard, where natural recorded images can

coexist with synthetic 3D models in the same scene.

MPEG-1 [23] was approved in November 1992 and targeted the storage and retrieval

of video and audio on compact disk (bitrates of 1.5 Mbit/s). It is used for DAB in

Europe and Canada and an MPEG-1 software decoder is included in the windows

95/NT operating systems. MPEG-2 [24] was standardised in November 1994 and was

aimed at digital television. MPEG-2 is also the standard used for DVD players.

MPEG-4 was started in July 1993 and has attracted a very large group o f experts

working to create new multimedia standards. For example at the Dublin meeting in

July 1998 over 380 people attended representing 23 nationalities and more than 200

companies. The investment in R&D that the participating companies have made to

MPEG-4 is huge.

The scope of MPEG-4 is much larger than its predecessors. MPEG-4 aims at being a

complete multimedia standard supporting a large number of possible applications and

supporting content delivery over a wide range o f bitstreams (Internet, mobile phones

to Digital TV).

Within MPEG-4 there are many working groups, these include video coding [25],

audio coding [26] and systems [27], The video coding and audio coding groups look

at ways o f encoding video and audio signals, both continuing the work done on

MPEG-1 and MPEG-2 and also providing new coding methods that fit into the new

media object framework. The MPEG-4 systems group greatly expanded its scope. It is

the work that the systems group did that sets MPEG-4 apart from the other MPEG

18

standards. MPEG-4 Systems provides the glue that allows all the objects to be

composed inlo a meaningful scene.

In this chapter the idea o f MPEG-4 media objects and how they are composed to make

a scene will be examined. Then a brief overview o f MPEG-4 audio and video will be

given. The new features that are in MPEG-4 video and audio and how they add to the

object model will be described. Finally an in depth look at MPEG-4 Systems will be

taken, stoppi- 3 at the scene description language which is a topic for another chapter.

19

3.1 Media Objects

The audio and video components o f MPEG-4 are know as media objects [28]. A

typical MPEG-4 scene is usually composed o f several media objects organised in a

hierarchical fashion. As the hierarchical tree is descended the media objects become

more primitive. It is important to realise that any media object can exist

independently, and that a single media object could represent a whole scene or

multiple media objects combined may represent the scene depending on the wishes o f

the scene creator. Examples of objects include,

• Video objects (e.g. a live newscast)

• Shaped video objects (e.g. a person jogging without a background)

• Audio objects (e.g. the sound o f the footsteps of the runner)

• Still images (e.g. a background)

• 2D objects (e.g. scrolling text)

• 3D objects (e.g. a 3D model o f a jogger)

Visual objects are given a position within a two-dimensional or three-dimensional

space. When defined in a three-dimensional the position o f the viewer relative to the

objects in the scene needs to be defined. The viewer can change their location and

orientation in the scene. The calculations to update the graphics and sound are done

locally at thf viewers terminal. MPEG-4 has a language called BIFS to define the

scene description. BIFS will be examined in chapter 3.

20

3.2 Natural Audio Coding

MPEG-1 Layer-3 (mp3) audio coding scheme has found its way into many

applications including widespread acceptance on the Internet. MPEG-4 audio is

designed to be the successor o f traditional audio coding schemes such as mp3. The

tools produced by the audio group provide scalability and the notion o f audio objects.

No single paradigm was found to cover the complete range of bitrate requirements for

the MPEG-4, so a number o f different algorithms were developed to establish

optimum coding efficiency for the broad range o f anticipated applications [2]. Figure

1 [2] shows the basic audio framework.

Satellite Celluiarphone
Secure com.

Internet ISDN

4 6 8 10121416 24 bit-rata (bps) 32 4S 64

Scalable Coder

Speech Coding

General Audio Coding

4 kHz 8 kHz Typical Audio Bandwidth 20 kHz

Figure 1 - Assignment o f codecs to bitrate ranges

3.2.1 Basic Algorithms

There are 4 main algorithms for MPEG-4 natural audio coding,

• General Audio Coding (AAC based)

General Audio Coding covers bitrates from 16 kbit/s per channel up to bitrates

higher than 64 kbit/s per channel. Using MPEG-4 General Audio quality levels

between better than A M up to transparent audio quality can be achieved. Since

MPEG-4 \ud io is defined in a way that it remains backwards compatible to

MPEG-2 AAC, it supports all tools defined in MPEG-2 AAC. Additionally

MPEG-4 Audio defines ways for bitrate scalability.

• TwinYQ

To increase coding efficiency for coding o f musical signals at very low bitrates,

the TwinVQ coding tools are defined by MPEG-4 audio.

• HVXC (Harmonic Vector eXcitation Coding)

HVXC is a speech coding framework supporting low bitrates of 2 kbit/s or 4

kbit/s. HVXC can operate down to an average o f 1.2 kbit/s in its variable bitrate

mode.

• CELP (Code Excited Linear Predictive coding)

CELP is a speech coding framework designed for use with bitrates higher than 3.8

kbit/s. CELP supports 2 different sampling frequencies 8KHz and 16KHz. The

algorithmic delay by HVXC and CELP is comparable to that of other standards for

two-way communications, therefore, MPEG-4 Natural Speech Coding Tool Set is

also applicable to such applications.

3.2.2 Scalability

MPEG-4 audio supports bitrate scalability. Bitstream scalability is the ability o f an

audio codec to support an ordered set o f bit streams, which can produce a

reconstructed sequence. Moreover, the codec can output useful audio when certain

22

subsets of the bit stream are decoded. The minimum subset that can be decoded is

called the base layer. The remaining bit streams in the set are called enhancement or

extension layers. Depending on the size o f the extension layers we talk about large

step or small step (granularity) scalability.

3.3 Synthesised A udio

In addition to its sophisticated audio-compression capabilities, MPEG-4 provides

compression, representation, and transmission o f synthetic sound and the combination

of synthetic and natural sound into hybrid soundtracks [17]. Through these tools,

MPEG-4 provides advanced capabilities for ultra-low-bitrate sound transmission,

interactive sound scenes, and flexible, re-purposable delivery of sound content.

MPEG-4 provides systems for generating speech sound according to a given text and

the capability to generate more general forms of sound including music also according

to a given text. These are know a Text-To-Speech (TTS) and Score Driven Synthesis.

Text To Speech:

Text-to-speech (TTS) systems generate speech sound according to given text. This

technology enables the translation o f text information into speech so that the text can

be transferred through speech channels such as telephone lines. Today, TTS systems

are used for many applications, including automatic voice-response systems e-mail

reading, and information services for the visually handicapped.

TTS systems typically accept text as input and generate a corresponding phoneme

sequence. Phonemes are the smallest units o f human language; each phoneme

corresponds to one sound used in speech. A surprisingly small set o f phonemes, about

120, is sufficient to describe all human languages.

The basic MPEG-4 TTS format requires a very low bitrate. A bitstream can be sent

containing only the text to be spoken at a bitrate of 200 bits per second. TTS allows a

bitstream to be sent that not only contains the basic text but also the detailed prosody

of the original speech, i.e. phoneme sequence, duration of each phoneme, base

23

frequency (pitch) o f each phoneme, and energy of each phoneme. The synthesised

speech in this case will be very similar to the original speech.

One important feature o f TTS is the ability to synchronise the lip movements of a

facial animation with the synthesised speech. Using this feature of MPEG-4 it is

possible to have a synthetic 3D animation o f a face, to hear the synthetic speech and to

see the lips o f the 3D face move in synchronisation with the audio.

Score Driven Synthesis:

MPEG-4 provides structured audio tools that decode input data and produce sounds. A

new audio synthesis language called Structured Audio Orchestra Language (SOAL) is

defined as part o f MPEG-4. This language is used to define an “orchestra” made up of

instruments which create and process control data. An instrument is a small network

of signal processing primitives that might enable some specific sounds such as those

of a natural acoustic instrument.

Careful control in conjunction with customised instrument definition, allows the

generation o f sounds ranging from simple audio effects, such as footsteps or door

closures, to the simulation o f natural sounds such as rainfall or music played on

conventional instruments, to fully synthetic sounds for complex audio effects of

futuristic music.

24

3.4 Coding of Natural Video Objects

3.4.1 Introduction

Past video compression standards, MPEG-1 and MPEG-2 all work well for the

applications for which they were designed (Digital Television, DVD, DAB) but are

not flexible enough to address the requirements o f a multimedia standard. The MPEG-

4 standard provides video coding algorithms designed to allow the user to view,

access, and manipulate the content in completely new ways. MPEG-4 video provides

tools for Shape coding, motion estimation and compensation, texture coding, error

resilience, sprite coding and scalability [9].

3.4.2 Features and Functionality

The most important features provided by MPEG-4 video can be grouped into three

main categories.

1. Compression efficiency has been the leading principle for MPEG-1 and MPEG-2,

and in itself has enabled applications such as Digital TV and DVD. Improved

coding efficiency and coding o f multiple concurrent data streams will increase

acceptance of applications based on the MPEG-4 standard.

2. Content-based interactivity: Coding and representing video objects rather than

video frames enables content-based applications. It is one o f the most important

novelties offered by MPEG-4. Based on efficient representation o f objects, object

manipulation, bitstream editing, and object-based scalability allow new levels of

content interactivity

3. Universal access: Robustness in error-prone environments allows MPEG-4

encoded content to be accessible over a wide range of media, such as mobile

networks as well as wired connections. In addition, object-based temporal and

spatial scalability allow the user to decide where to use sparse resources, which

25

can be the available bandwidth, but also the computing capacity or power

consumption.

To support some o f this functionality, MPEG-4 provides the capability to represent

arbitrarily shaped video objects. Each object can be encoded with different

parameters, and at different qualities. The shape o f a video object can be represented

in MPEG-4 by a binary or a gray-level (alpha) plane. The texture is coded separately

from its shape. For low-bitrate applications, frame based coding o f texture can be

used, similar to MPEG-1 and MPEG-2. To increase robustness to errors, special

provisions are made at the bitstream level to allow fast resynchronization, and

efficient error recovery.

The MPEG-4 visual standard has been explicitly optimized for three bitrate ranges:

1) Below 64 kbit/sec

2) 64- 384 kbit/sec

3) 384- 4 Mbit/sec

3.4.3 Structure and syntax

The central concept defined by the MPEG-4 standard is the audio-visual object, which

forms the foundation o f the object-based representation. A video object may consist of

one or more layers to support scalable coding. The scalable syntax allows the

reconstruction of video in a layered fashion starting from a standalone base layer, and

adding a number o f enhancement layers. This allows applications to generate a single

MPEG-4 video bitstream for a variety of bandwidth and/or computational complexity

requirements. A special case where a high degree of scalability is needed, is when

static image data is mapped onto two or three dimensional objects. To address this

requirements, MPEG-4 provides a special mode for encoding static textures using a

wavelet transform.

An MPEG-4 visual scene may consist o f one or more video objects. Each video object

is characterized by temporal and spatial information in the form o f shape, motion, and

texture. For certain applications video objects may not be desirable, because of either

26

the associated overhead or the difficulty o f generating video objects. For those

applications, MPEG-4 video allows coding of rectangular frames which represent a

degenerate case of an arbitrarily shaped object.

An MPEG-4 visual bitstream provides a hierarchical description of a visual scene as

shown in Figure 2 [9]. Each level o f the hierarchy can be accessed in the bitstream by

special code values called start codes. The hierarchical levels that describe the scene

most directly are:

• Visual Object Sequence (VS): The complete MPEG-4 scene which may contain

any 2-D or 3-D natural or synthetic objects and their enhancement layers.

• Video Object (VO): A video object corresponds to a particular (2-D) object in the

scene. In the most simple case this can be a rectangular frame, or it can be an

arbitrarily shaped object corresponding to an object or background o f the scene.

27

Y S t . . . V 3 s

VOFi ,„ V O P k V O J V i . . . KOPhr V O F i. . .VO P#

Lover 1 Laver 2

Figure 2: Example of an MPEG-4 video bitstream logical structure

• Video Object Layer (VOL): Each video object can be encoded in scalable (multi­

layer) or non-scalable form (single layer), depending on the application,

represented by the video object layer (VOL). The VOL provides support for

scalabL coding. A video object can be encoded using spatial or temporal

scalability, going from coarse to fine resolution. Depending on parameters such as

available bandwidth, computational power, and user preferences, the desired

resolution can be made available to the decoder.

Each video object is sampled in time, each time sample of a video object is a video

object plane. Video object planes can be grouped together to form a group of video

object planes:

28

• Group of Video Object Planes (GOV): The GOV groups together video object

planes. GOVs can provide points in the bitstream where video object planes are

encoded independently of each other, and can thus provide random access points

into the .-itstream. GOVs are optional.

• Video Object Plane (VOP): A VOP is a time sample of a video object. VOPs can

be encoded independently of each other, or dependent on each other by using

motion compensation. A conventional video frame can be represented by a VOP

with rectangular shape.

A video object plane can be used in several different ways. In the most common way

the VOP contains the encoded video data o f a time sample o f a video object. In that

case it contains motion parameters, shape information and texture data. These are

encoded using macroblocks. It can also be used to code a sprite. A sprite is a video

object that is usually larger than the displayed video, and is persistent over time. There

are ways to slightly modify a sprite, by changing its brightness, or by warping it to

take into ac ount spatial deformation. It is used to represent large, more or less static

areas, such as backgrounds. Sprites are encoded using macroblocks.

A macroblock contains a section of the luminance component and the spatially

subsampled chrominance components. In the MPEG-4 visual standard there is support

for only one chrominance format for a macroblock, the 4:2:0 format. In this format,

each macroblock contains 4 luminance blocks, and 2 chrominance blocks. Each block

contains 8x8 pixels, and is encoded using the DCT transform. A macroblock carries

the shape information, motion information, and texture information. Figure 3 [9]

illustrates the general block diagram of MPEG-4 encoding and decoding based on the

notion of video objects. Each video object is coded separately.

29

Bitstream

Video Output

User Interaction User Interaction

Figure 3: General block diagram o f MPEG-4 video

30

3.5 Systems Architecture

3.5.1 Introduction

MPEG-4 Systems defines a new approach to multimedia. It allows different types of

media to be mixed in the same scene and for the viewer to interact with that scene.

A scene consists of audio-visual objects. Examples of audio-visual objects include,

video (H263, AVI etc), an audio track, a 3D animation, scrolling text or an animated

3D face. MPEG-4 Systems specify how the objects are composed to make the scene

and how the user can interact with the scene. These audio-visual objects are known as

Elementary Streams in MPEG-4.

MPEG-4 Systems deal with the coding and streaming of elementary audio-visual

sources, and provides a description o f how they are combined to form a scene. All the

information that MPEG-4 Systems deals with is coded into a binary form, this is to

increase bandwidth efficiency. As the audio-visual sources are streamed means that

not all of the audio-visual object needs to be downloaded to be displayed. MPEG-4

Systems does not deal with the encoding of audio or visual information but only with

the information related to the combinations o f streams: combination o f audio-visual

objects to create an interactive audio visual scene, synchronization of streams,

multiplexing of streams for storage or transport.

MPEG-4 Systems is based on a 3 layer architecture, see figure 4 [27] for an overview.

31

rii Display and
User

Interaction

o
Composition and Rendering

f) f] f)LJ 1.J LJ

& £ 40
©> & ?

Object
Descriptor

Scene
Description
Information

Upstream
m * Information

AV Object
data

Compression
Layer

Elementary Streams Elementary Stream Interface

SL SL SL SL SL SL

SL
Sync
Layer

SL-Packetized Streams

f DMIF Application Interface

T L
FlexMux

(PES)
MPEG-2

TS

(RTP)
UDP

IP

FlexMux

AAL2
ATM

H223
PSTN

DAB
Mux

Delivery
Layer

> i
i J1 M ultiplexed Streams

Transmission/Storage Medium

Figure 4: MPEG-4 Systems Architecture

32

3.5.2 Delivery Layer

The Delivery Layer consists o f a transport multiplex and the MPEG-4 multiplex

(FlexMux). There are many existing network protocols that provide ways for

packetization and transport o f data (RTP, MPEG-2, ATM). MPEG-4 allows for the

content of a scene to originate from many different locations, also MPEG-4 makes no

assumption about the type of underlying communications structure and hence the

transport multiplex is not defined by MPEG-4.

The FlexMux is a tool that provides a flexible, low overhead way o f interleaving SL-

packetized streams. It is not designed to be robust to errors as it can be transported

within a robust transport multiplex. The use o f the FlexMux is optional.

3.5.3 The Systems Decoder Model

The Systems Decoder Model (SDM) provides an abstract model of the behaviour of

an MPEG-4 receiving terminal. The SDM describes the idealised decoder architecture

and defines how the receiving terminal will behave in terms o f buffer management

and synchronisation of elementary streams with each other. The SDM expects the

simultaneous delivery o f the demultiplexed elementary streams to the decoding

buffers of their respective decoders.

The systems decoder model specifies

• The interface for accessing the already demultiplexed elementary streams,

• Required buffer resources for each elementary stream,

• The timing of the elementary streams decoders,

• Composition memory for the Access Units from the decoders,

• The resources needed by the compositor to display the data in the composition

memory.

33

Every elementary stream is made up of a sequence o f Access Units (AU). An Access

unit is the smallest data entity to which timing information can be attributed (example

a frame of video). This is done in a uniform manner for all different stream types in

order to ease identification and processing of the access units in each stream. The

semantic meaning of an AU is determined by the individual media encoder and is not

relevant to the SDM.

Figure 5 [27] gives a view of the Systems Decoder model. Each Access Unit (or part

of) is sent to a decoding buffer where it is decoded at its decoding time and then

composed on the screen of the receiving terminal. The SDM assumes instantaneous

decoding of the access unit, removal from the decoding buffer and insertion o f the

decoded Access Unit into composition memory. With this model it is possible for the

encoding terminal to know the buffer space available at the receiving terminal for a

specific elementary stream at any point in time.

The contents o f the decoding buffer is used by the decoders to produce Composition

Units. The relationship between Access Units and composition units may not be one-

to-one, but will be consistent for each specific type. Each composition unit must be

ready for composition at a specified time, the two time stamps involved are,

• Decoding Time Stamp (DTS),

This is the time that the Access Unit must be removed from the decoding buffer

and placed in the composition memory.

• Composition Time Stamp (CTS).

This is the time the Access Unit must be available in the composition memory for

composition

All the time stamps are based on an object time base (OTB). The object time base

defines the notation of time for a given elementary stream. The OTB is set by the

sending side. Since the OTB is not a universal clock, object clock references (OCR)

must be sent periodically to the receiver. The value o f the OCR corresponds to the

value of the OTB at the time the sending terminal generates the object clock reference

time stamp.

34

I

Figure 5: Systems Decoder Model

Figure 6 [27] shows 2 Access Units from the demultiplexer to the decoding buffers.

Once the lime specified by the Decoding Time stamp is reached, the Access Unit is

decoded and the Composition Units are placed in the composition memory. They

become available for composition when the time specified by the Composition Time

stamp is reached.

A rrival(A U i)

A rrival(A Uo) D TS (A ll*)
DTS (A U ,)

Y i

D ecoding ^ v s \/

Buffer AU,

V

Composition

M em ory

!

CUo

A
CU,

1 - A

= available for
C T S (C U o) C T S (C U t) com position

Figure 6: Composition unit availability

35

3.5.4 Sync Layer

This sync layer defines the tools to maintain synchronisation within and among

elementary streams. It supplies information needed by both the delivery layer and the

compression layer. On the sync layer, an elementary stream is mapped into a sequence

of packets, called an SL-packetized stream (SPS). The sync layer (SL) specifies a

syntax for the packetization of elementary streams into access units or parts thereof.

See figure 7 [27] for a view o f the sync layer.

SL

Elementary Stream Interface

Sync Layer

DM IF Application Interface

Elementary Streams

SL

SL-Packetized Streams

SL SL
V

Figure 7: The sync layer

The sync layer can be configured individually for each elementary stream. This is

done via the SLConfig descriptor, which is required for the elementary stream

descriptor. The SLConfig descriptor defines parameters such as the resolution and

accuracy o f time stamps and clock references. The length o f the parameters can be

defined according to the requirements of the elementary stream. Lower bitrate streams

may be defined to have timestamps that require fewer bits, thus improving efficiency.

The SLComfig may also contain 2 sequence numbers to track lost SL packets and

access units.

36

3.5.5 Compression Layer

Basically the Compression Layer performs all the necessary operations needed to

reconstruct the original information and display the scene. The compression layer

consists of,

• Scene Description,

The scene description declares the spatio-temporal relationship o f audio-visual

objects in the scene. The Scene Description information is sent as an Elementary

Stream. The scene description language is called BIFS and will be examined in

detail in chapter 3.

• Elementary Streams,

The data for each audio-visual object is fully or partially coded in a separate

stream called an Elementary Stream. Scene description and control information is

also coded as elementary streams. Each Elementary Stream contains only one type

o f data.

• Object Descriptors,

The Object Descriptor framework provides the link between the Scene Description

and the Elementary Streams. The object descriptor stream contains information

that the receiving terminal needs to interpret the rest o f the elementary streams.

This information includes the format o f the data as well as an indication of the

resources necessary for decoding of the stream.

The scene description information is separated from the stream description

information [11]. The scene description contains no information about how to

reconstruct a particular audio-visual object. The stream description contains no

information about how an audio-visual object is used in the scene. This separation

improves content manageability as content providers may relocate streams without

affecting the scene description. Figure 8 [1] gives an overview of the compression

layer.

37

Figure 8: The Compression Layer

The link between the scene description and the stream description is a numeric object

descriptor identifier that the scene description uses to point to the object descriptors.

These links provide the receiving terminal with the necessary information for

assembling the elementary data in order to decode and reconstruct the object at hand.

3.5.6 Object Descriptor Framework

The object descriptor framework is composed of hierarchical structured set of

descriptors. The highest level descriptor is the object descriptor itself. The object

descriptor is a container that contains a number o f other descriptors. Other descriptors

provide auxiliary information, to describe textual information about the content of the

streams (Object Content Information, OCI) and information about the intellectual

38

property management and protection o f the streams (IPMP). The object descriptor

elementary stream contains all the object descriptors for the current scene.

The linking of the scene to the elementary streams is a two step process.

Every object descriptor contains a numeric identifier called the object descriptor ID

(OD ID), thai is a reference to that object descriptor. This reference is used by the

scene description stream to link the object descriptor to the stream.

Each elementary stream is assigned an identifier called the elementary stream ID

(E SID). The E S I D is contained within the object descriptor and is used to reference

the stream.

In the most simple case, an object descriptor contains one elementary stream

descriptor, for example a video stream. An object descriptor can also contain many

elementary stream descriptors, possibly to identify a low bitrate version of the stream

and a high bitrate one, or to identify different language audio streams. An object

descriptor can contain the elementary streams that make up a scalable encoding of

audio-visual data.

A special object descriptor called the initial object descriptor is defined to contain the

scene description and associated object descriptors necessary for the initial decoding

of the scene. The initial object descriptor also contains content complexity information

expressed in profile and level indicators and usually contains two elementary stream

descriptors one points to the scene description stream and the other to the object

descriptor stream (figure 9 [1]).

39

I n i t m l O l) J r e i f t e t e r i p t o r

Figure 9: The initial object descriptor

3.5.7 Intellectual property management and protection (IPMP)

MPEG-4 provides mechanisms that allow the owners o f content the right to exclude

others (with certain limited exceptions) from the use or re-use o f their intellectual

property without a licence from the IPR owner.

An object descriptor may contain an Intellectual Property Identification (IPI) which is

used to contain information about the type of content and standardised identifiers for

content, examples are ISBN or ISMN.

While MPEG-4 does not standardize IPMP systems themselves, it does standardize

the MPEG-4 IPMP interface. This interface consists of IPMP Descriptors (IPMP-Ds)

and IPMP Elementary Streams (IPMP-ES). The IPMP descriptors convey proprietary

information that aids in decrypting the elementary streams or conveying authorisation

40

or entitlement information to be used by a proprietary IPMP subsystem at the

receiving end.

There will be no standard MPEG-4 IPMP system, this is because the requirements for

the management and protection o f intellectual property are diverse. All IPMP

subsystems will use the standardised IPMP interface, but there is likely to be different

IPMP subsystems for a variety of applications. It is left up to the implementers of

IPMP subsystems to decide what type o f encryption or authentication techniques are

used.

3.5.8 Object Content Information

Object content information (OCI) descriptors attach descriptive information to audio­

visual objects. This information includes a keyword description (possible used by

search engines), context classification descriptors, textual description of the content,

language information, content rating descriptions and descriptions about the author of

the content and creation date of the content.

All elementary streams contained within the same object descriptor are meant to refer

to the same content item, there is no object content information for individual

elementary streams. It is also possible to stream object content information to the

object descriptor. This allows the object content information to change over time.

Object content descriptors and streams may be attached to audio-visual streams and

also to scene description streams.

3.5.9 Syntax Description Language

MPEG-4 provides a syntax description language, which is a documentation tool to

describe the ^xact binary syntax of both visual-audio bitstreams, and scene description

information. The need for a standard way to represent bitstreams arose from the fact

that past MPEG standardisation works used a number of ah-hoc techniques to describe

41

the syntax o f their data. SDL was designed to be a natural extension o f the typing

system o f C++.

SDL has been designed to follow a declarative approach to bitstream specification.

Developers ^necify how the data is laid out on the bitstream, and do not detail a step-

by-step procedure that parses it. SDL makes it easy and efficient to convert the

representation o f the bitstream into running code. For a description o f SDL see

Appendix E [27J. A translator is available that converts SDL into C++ or Java code

[29].

42

4 BIFS and Scene description

4.1 Introduction

BIFS stands for Binary Format for Scenes, that is the language that MPEG-4 uses to

describe scenes and also for dynamically changing the scene. BIFS describes the

spatial and temporal locations of objects in scenes, along with their attributes and

behaviours. BIFS is more than just a scene description language, in that it integrates

both natural and synthetic objects in the same composition space. Some objects are

fully described within the scene description itself.

4.2 Requirements

We have seen that in MPEG-4 media are separately coded. Also MPEG-4 can transmit

2D, 3D, natural and synthetic media together. MPEG-4 needed a format that allowed

both 3D and 2D media to be composed in a 2D or 3D space. MPEG wanted a scene

description language that allowed interactivity between these objects. Rather that start

from scratch MPEG-4 used VRML version 2.0 as the basis for BIFS.

4.3 Virtual Reality Modelling Language and BIFS

The structure of BIFS is very similar to Virtual Reality Modelling Language (VRML).

VRML is a standard for generating 3D content for the Internet. VRML can be looked

at as a 3D HTML, as a means of publishing 3D web pages. BIFS and VRML can be

viewed a., different representations of the same data. In VRML all the object

information is transmitted as text like a high level language. BIFS encodes all this

information in binary resulting in a much more efficient way of transmitting the same

content. Typically BIFS will be 10 to 15 times shorter for the same content [13].

43

4.3.1 Nodes

BIFS uses a hierarchical scene graph to describe 3D objects and the relationships

between them. Entities in the scene graph are called nodes. A node is the fundamental

building block of a BIFS scene and nodes can represent a variety o f different

concepts. BIFS describes about 101 different node types, including basic primitives,

lighting properties, sound properties and grouping nodes. Many nodes may contain

other nodes (have children) and may be contained in more than one node (parent) but

a node must not contain itself. The following are the types o f possible nodes:

• Shape node,

Is the basic container for a geometry object. A shape node contains exactly one

geomi "ry node in its geometry field. A shape node also contains nodes that define

the geometry’s appearance.

• Geometry Nodes,

These nodes provide basic geometry, examples of this type o f node are Box,
Sphere and IndexFaceSet.

• Appearance Node,

This defines surface properties of the object. The types of properties include

colour, smoothness o f its surface, shininess and texture.

• Grouping Nodes,

These nodes allow you to group objects together and define a coordinate space for

its chi'dren.

• Light Source Nodes,

These nodes define how Shape nodes are illuminated. There are 3 different types

of light nodes: Direct ionalLight, PointLight and SpotLight.
• DirectionalLight Nodes,

Are lights considered to be at infinity. A DirectionaLight illuminates

a scene with parallel rays from the one direction.

44

• PointLight Nodes,

A point light is located at a specific point and illuminates in all

directions.

• SpotLight Nodes,

A spotlight is located at a specific point and illuminates in the shape o f a

cone in a specific direction.

• Sensor Nodes,

These nodes keep an eye on the user interactions with the scene and also with the

dynamic changes within the scene, examples are TouchSensor, TimeSensor
and Collision.

• Interpolator Nodes.

Interpolator nodes are used to generate linear keyframed animation in the scene.

An interpolator node contains 2 fields, key and keyValue. Key contains a list of

keyframe times, each represented as a fraction o f the total animation time

represented as a floating point number from 0 to 1 inclusive. KeyValue contains a

list o f values, one for each keyframe to interpolate along. Examples include

Positionlnterpolator, and Colorlnterpolator.

• Time-dependent nodes

These nodes activate and deactivate themselves at specified times. Examples

include MovieTexture and TimeSensor.

Each node has a semantic definition that contains the node name, the list of fields in

that node with the name o f each field, its default values and its event types. For

example here is the definition for the Transform node. A Transform node is a

grouping node that defines a coordinate system for its children that is relative to the

coordinate systems of its parents. As a Transform node is a grouping node it can

contain Transform nodes as its children.

45

Transform {
B b o x C e n t e r 0 0 0 # S F V e c t 3 f

B b o x S i z e - 1 - 1 - 1 # S F V e c t 3 f

T r a n s l a t i o n 0 0 0 t t e x p o s e d f i e l d S F V e c t 3 f

R o t a t i o n 0 1 0 1 t t e x p o s e d f i e l d S F R o t a t i on

S c a l e 1 1 1 # e x p o s e d f i e l d S F V e c t 3 f

S c a l e O r i e n t a t i o n 0 0 1 0 t t e x p o s e d f i e l d S F R o t a t i o n

C e n t e r 0 0 0 # e x p o s e d f i e l d S F V e c t 3 f

C h i l d r e n i :1 t t e x p o s e d f i e l d MFNode }

4 . 3 . 2 F ie ld s

Every node contains a sel o f fields that contain the values for that node. There are two

different types o f fields: fields that can contain a single value, and fields that can

contain multiple values. Fields that contain single values are know as “SF” fields and

their names begin with “SF” such as SFColor. Fields that contain multiple values

are know as “MF” fields and their name begin with “MF” such as MFFloat. An SF

field, even thought it contains only a single value, can contain more than one number,

example an SFColor node could contain the values 0, 1 ,0 representing the colour

green. Table 1 gives an overview o f the basic field types and the types o f values they

may contain.

46

Data Type Single Field

Type

Multiple Field

Type

Example

Boolean Value SFBool N/A TRUE

Colour SFColor MFColor (1.0 1.0 0.0)

Floating Point Value SFFloat MFFloat 12.98

Image SFImage N/A

Integer Value SFInt MFInt 12

A single Node SFNode MFNode Transform!

Box{}

}

Rotation around an axis SFRotation MFRotation (1 0 0 3.14)

is a 180-degree

rotation about x axis

UTF-8 format string SFString MFString “Hello World”

Time value SFTime MFTime 0.2

2D vector SFVect2f MFVect2f (2.0 4.0)

3D vector SFVect3f MFVect3f (2.5 4.5 5.5)

Table 1: Basic Field Types

4.3.3 Event Processing

BIFS defines events which provide a message passing mechanism allowing different

nodes in the scene graph to communicate with each other. Fields can be labelled of

type event In, eventOut or exposedField. An event is an indication that

something has happened in the scene, for example the user has moved or clicked the

mouse, or that a certain amount o f time has passed, eventln and eventOut define

the type o f events that each node may receive or generate. Fields that can receive

47

events are labelled eventln, those that send events are labelled eventOut, and

those tha' can both receive and send events are labelled exposedField.

Most of the nodes in BIFS have at least one eventln definition and hence can

receive events. Incoming events are data messages sent by other nodes to the receiving

node. These data messages change some state within the receiving node. Many nodes

also have an eventOut definition. These are used when some state has changed in

the source node to send data messages to the destination node.

The link from the node generating the event to the node that is receiving is called a

route. Routes are not nodes but a means o f creating event paths between nodes.

The event model is an important features in BIFS as it forms the basis for much of the

animation and interaction functionality in BIFS.

4.3.4 Reusing Nodes

For reuse o f a node the keyword DEF is used. DEF allows a node to be given a name

and then to be referenced later by use o f the USE or Route statements. Naming a node

and referring to that node a number o f times is know as instantiation. The USE

statement will not create a copy o f the node, instead the node is placed into the scene

graph a second time.

48

4.3.5 VRML Scene

#VRML V2.0 utf8

DEF LIGHT PointLight {
on FALSE
intensity 1.0
radius 100.0

Transform {
translation 2.5 0 0
children [

DEF LIGHT_SWITCH TouchSensor (enabled TRUE }
Shape {

appearance Appearance {
material Material

{diffuseColor 1 0 0
ambientlntensity 0.0}}

geometry Box {}
}

ROUTE LIGHT SWITCH.isActive TO LIGHT.set on

Figure 10: A sample VRML scene

49

Figure 10 shows a VRML scene demonstrating many of the concepts explained above.

The first node in the example is a PointLight node. Note that the PointLight
will not be active when the scene is first loaded as the on field is set to false. The next

node in the example is a Transform node, which is a grouping node that defines a

coordinate system for its children that is relative to the coordinate system of its

parents. In this case the transform node has no parents. The next node is a

TouchSensor node, which interacts with any geometry that’s also a child of the

same grouping node. A sensor by itself has no geometry or other visible

manifestation. If you don’t explicitly include some geometry as a sibling of your

pointing-device sensor, the user can’t click anything and the sensor is useless. A red

box is then defined using the Appearance and Box nodes. Using the DEF statement

the TouchSensor is named LIGHT_SWITCH and the PointLight is named

LIGHT. The final statement in the example is a ROUTE command. For the

TouchSensor the event isActive TRUE is generated when the user has the

mouse button pressed and the mouse is pointing to the geometry and when the user

releases the mouse button (regardless of what the mouse is pointing to) the event

isActive FALSE is generated. So in our example, when the user presses the mouse

button and the mouse is pointing over the box the light is turned on, when the user

releases the mouse the light is turned off. Figure 11 shows what the scene looks like

using Internet Explorer and Cosmo Player to display the scene.

50

{ > I S f 1m * Ucto

H T T d

J J 4
'.Bfr &«*«•“> l i W

3 M J) ' *
U * n k f r r t d . i HiiSKf ' “ huI flirt.

j $ C 3

i . ' * * T

* *

,) . ! f ' Tv * ■
* ’ j ‘ ‘ v . ' k ‘

- i f - A ,

‘ ** ■ ' * 1 ' ' : V i

M * , •

i" ., ~tV '

' * ~ *, f T ' * 2 r ‘ ■

_ • • - -.L. 1.1 • ; ’ A

&0u» JU M»Cor<̂
aBStatj ; 'J} ££ 0 J j - W H a 111 ' • ."/ t ^Pfcr^SiaPM CJg | Sft>4*<SkV »WB

Figure 11: The sample scene displayed using Internet Explorer

4.3.6 BIFS has more Functionality

BIFS extends the VRML specification in the following areas:

New 2D nodes:

A BIFS scene can be fully 2D. This functionality was added to facilitate content

creators who wish to provide low complexity scenes. The computer processing

required for rendering and navigating fully 3D content is very large. Many industries

will need ? cheap decoder such as television set-top boxes. BIFS allows 2D and 3D

data to be combined in the same scene.

51

Binary Representation:

VRML is only concerned with scene description, whereas MPEG-4 is also concerned

with compression o f the scene description and with optimised delivery of the content.

The big difference between BIFS and VRML is that a VRML file is readable text file

where the BIFS file is a efficient binary representation of the scene.

Facial anir-'ation:

A special set of nodes are provided within BIFS for facial animation. These nodes

expose properties of a face model that allow that model to be animated in a realistic

way. Both realistic facial expressions (smile, frown) and realistic lip synchronisation

to speech are provided for. The facial animation parameters are sent by a separate

facial animation Elementary Stream.

Enhanced Audio:

New audio nodes support advanced audio features. These nodes provide the

functionality for synthesised sound. The audio nodes create their own scene graph

called an audio subgraph.

Streaming Animations:

BIFS allows an initial scene to be loaded by the receiving terminal and then using a

mechanism called BIFS-Anim streams animations in real time to the scene. This

mechanism will be looked at in greater detail in chapter 4.

BIFS-Command:

The BIFS-Command protocol allows nodes in the scene to be added/deleted/replaced.

Modification of fields and behavioural elements in the scene graph can be replaced.

The BIFS-Command information is transmitted in the BIFS-Command elementary

stream. The following are the operations provided by BIFS-Command.

• Scene Replacement: When a BIFS replace scene command is received, the old

scene is deleted and a new scene graph based on the new BIFS scene is created.

52

• Node Insertion: A new node may be inserted into the scene but only into the

children field of a grouping node. The node gets added at the desired position in

the list of children nodes o f an already existing node.

• Indexed Value Insertion: Indexed Value Insertion allows the insertion o f a new

value in a multiple field(“MF” field) at the desired position.

• ROUTE Insertion: Allows a new ROUTE to be added to the list o f ROUTEs for

the current scene.

• Node Deletion: Node deletion deletes the node with a specific node ID. A node

receives an ID by use of the DEF command. Node deletion deletes all instances of

that node along with all its fields and any ROUTEs related to the node.

• Indexed Value Deletion: Permits the deletion o f a specific element in a multiple

value field.

• ROUTE Deletion: Deletes a ROUTE with a given route ID, similar to the

deletion of a node.

• Node Replacement: Allows the deletion of an existing node and replacement with

a new node. All instances and ROUTEs related to the deleted node are also

deleted.

• Field replacement: Changes the value o f a field in a node.

• Indexed Value replacement: Changes the value of an element in any position of

a multiple valued field.

• ROUTF. replacement: Deletes an existing ROUTE and replaces it with a new

one.

53

4.4 BIFS Compression

The BIFS language represents a trade off between compression efficiency on the one

hand and parsing complexity on the other. A BIFS scene can often be compressed

further due to the fact that certain types o f data contain redundancy not eliminated by

BIFS. One example is that of strings, as BIFS encodes strings as a sequence of

characters.

4.4.1 Context Dependency

The use o f context dependency is used heavily in BIFS [1]. This technique is based on

the fact that once some scene graph information has been previously received, it is

possible to anticipate the type and format o f data to be received subsequently. This

technique is easy to demonstrate. Consider a simple coding scheme with the following

tags:

<begin> - beginning of record
<end> - end of record
<break> - end of element in record
<string> - text string follows
<number> - number follows

We wish to use this scheme to code a record consisting o f first name, last name and

phone number, for example:

First name: Jim
Last name: Brown
Phone: 777 1234

With no knowledge context we would need to code this as:

<start><string>Jim<break><string>Brown<break><number>7771234<break><end>

54

If the context is known, i.e. we know that the structure of the record is “string, string,

number” we do not have to spend bits specifying the type o f each element:

<start>Jim<break>Brown<break>7771234<end>

VRML treats all nodes as being of type SFNode or MFNode, while BIFS makes use

o f the fact that only certain nodes can appear as children o f other nodes.

4.4.2 Node Definition Type Tables

BIFS defines over 30 different Node Data Types (NDT) [27] and each node belongs to

at least one of them. Each NDT table consists of a list o f nodes for each NDT and

some context information for that node. In every NDT, each node in the table receives

a fixed-bina’-v-length local ID value that corresponds to its position in the NDT. For

example, the Shape node can be used in both a 3D and a 2D context and therefore

appears both in the SF2DNode and the SF3Dnode node data types. In a 3D context,

the Shape node can appear in the children field of a Transform node. This field

has the type MF3Dnode and it accepts nodes of type SF3DNode. In a 2D context, the

Shape node can appear in the children field of a Trans f orm2D node, which has type

MF2DNode. The binary ID code for a Shape node thus depends on the context in

which it appears. When it is a SF3DNode, it has a 6-bit binary ID value o f 100100

(decimal value 36), because it occupies position number 36 in the list o f 48 total

SF3DNodes. In the 2D case, its ID is represented by 5-bits with value 10111. There

are only 30 different SF2DNodes, requiring only 5 bits to specify them all.

This node representation is quite efficient. It doesn’t make sense to apply entropy-

coding techniques based on the probabilistic distribution o f nodes in scenes since data

does not currently exist.

The Node Definition Table for the SFGeometryNode is shown in table 2. This table

shows a list of the nodes belonging to SFGeometryNode with their index in the

table. The next 4 columns refer to the number of bits needed to code all the fields of

the 4 modes, def ID, inID, out ID and dynlD. This will be explained in the next

section on the Node Coding Tables.

55

| S F G e o m e ' ’N o d e 7 N o d e s

| re se rv e d 10 0 0 0 0 I l 1
| B itm ap j 0 0 0 0 1 fo D EF bits 0 IN bits [0 O U T bits 0 DYN bits

|B o x jooo io jo D EF bits 0 IN bits jo O U T bits 0 DYN bits

| C ircle j 0 0 0 1 1 10 D E F bits 0 IN bits jo O U T bits 0 DYN bits

[C o n e 10 0 1 0 0 |2 D EF bits 0 IN bits jo O U T bits 0 DYN bits

[C u rv e 2 D | 0 0 1 0 1 12 D EF bits 2 IN bits \2 O U T bits 0 DYN bits

(C y lin d er |0 0 1 1 0 |3 D E F bits 0 IN bits jo O U T bits 0 DYN bits

| E levationG rid lo o m [4 D EF bits 2 IN bits {2 O U T bits 0 DYN bits

| E xtrusion | 0 1 0 0 0 [4 D EF bits 2 IN bits jo O U T bits 0 DYN bits

I ln d e x e d F a c e S e t |0 1 0 0 1 | 4 D EF bits 3 IN bits \2 O U T bits 0 DYN bits

j ln d e x e d F a c e S e t2 D I 01010 (3 D EF bits 3 IN bits 12 O U T bits 0 DYN bits

IlndexedL in S e t |0 1 0 1 1 j 3 D EF bits 2 IN bits j 1 O U T bits 0 DYN bits

j ln d ex ed L in eS et2D fo n o o [3 D EF bits 2 IN bits j 1 O U T bits 0 DYN bits

|P o in tS e t |0 1 101 j 1 D E F bits 1 IN bits j 1 O U T bits 0 DYN bits

[P o in lse t2 D [0 1 1 1 0 j 1 D EF bits 1 IN bits j 1 O U T bits 0 DYN bits

| R e c ta n g le |0 1 111 jo D EF bits 0 IN bits jo O U T bits 0 DYN bits

| S p h e re PToooo j 0 D EF bits 0 IN bits j 0 O U T bits 0 DYN bits

|T e x t [1 0 0 0 1 {2 D EF bits 2 IN bits \2 O U T bits 1 DYN bits

Table 2: Node Definition Table for the S F G eo m etry N o d e

4.4.3 Node Coding Tables

Every node has its own Node Coding Table (NCT). Each node’s Node Coding Table

holds information on how the fields in the node are coded. For every node its fields

are indexed using a code called f ieldlD. This f ieldID is not unique for each field

of each node but varies depending on one of 5 usage categories. For each field of each

node, the binary values of the f ieldlDs for each category are defined in the Node

Coding Tables. The categories are:

• defID
Used for those fields that may have a value when declared. This corresponds to

fields of type exposedField and field modes since these are the only modes

that have /alucs that can be specified.

• inID
Used for fields whose data can be modified using BIFS command or ROUTEs.

This corresponds to the exposedField and Eventln modes.

56

• outID
Refers to fields of type EventOut and ExposedField modes. That is, fields

that can be used as input values for ROUTEs.

• dynID

Used for all fields that can be animated using BIFS-Anim. They refer to a subset

of the fields represented by inlDs.

• alllD
Refers to all events and fields o f that node. There is an alllD for each field o f a

node.

Using these 5 different indexing modes a BIFS scene indexes fields using a minimal

number of bits. For example the Viewpoint node defines a specific location in a local

coordinate system from which the viewer can view the scene has 8 fields that can be

defined at creation. So each field when indexed using the a l l l D mode needs 3 bits.

The Viewpoint node has only 3 fields that may be animated under BIFS-Anim

(dynID mode), so only 2 bits are needed to index the field that is animated by BIFS-

Anim. The Node Coding Table for the viewpoint node is shown in Table 3. The table

shows the node name, its three Node Data Types and their binary representation. The

name of each field in the node is then listed along with their field types and the binary

ID for the 4 modes. Some fields have a maximum and minimum value specified as

well as a quantization and animation category.

V ie w p o in t

S F W o rld N o d e

S F 3 D N o d e

S F V iew P o in tN o d e

1 1 0 0 0 0 1

1 1 0 0 1 0

1

Field name Field type \D E F id \ IN id \ OUT id | DYN id [m ,M] |Q A
se t_b in d S F B ool | |0 0 0 j I

fieldOfView S F F Io at j 0 0 0 |0 0 1 j 0 0 0 j 0 0 [0 , 3 . 1 4 1 5 9 2 7] 16 8
jum p S F B ool j 0 0 1 |0 1 0 j 001 I '
orientation S F R o tatio n 10 1 0 |0 1 1 i 0 1 0 j 01 (To 10

position S F V e c 3 f |0 1 1 11 0 0 |0 1 1 J 10 [- i ,+ i] |1 1

descrip tion S F S trin g j 1 0 0 I

bindTim e S F T im e | | |1 0 0 I

isB ound S F B o o l | | 1101
(.

Table 3: Node coding table for the Viewpoint node

57

4.4.4 Quantization

BIFS contains a special node for the purposes o f Quantization: the

QuantizationParameter node. The QuantizationParameter node will

provide the quantization values to be applied to fields with a numerical type.

Quantization o f BIFS data efficiently is complex because no clear statistics can be

derived from the source data [18]. For quantization 14 quantization categories have

been defined (see table 4). Each numerical field in every node will fit into one o f these

categories. Tue use o f a node structure to convey the quantization parameters allows

the use of existing DEF and USE mechanisms that will enable the reuse of the

QuantizationParameter node. The correct category for each field is got from

the Q column of the relevant Node Coding Table.

The information contained within the QuantizationParameter for each

category is, a boolean that turns the quantization on or off, the minimal and maximum

values for the fields and the number o f bits to be used for quantization. The

QuantizationParameter also contains the fields isLocal and

useEfficientCoding. If isLocal is false the node will provide the

quantization parameters for its children nodes. If isLocal is true then quantization

will only apply to the following child node. If there is no child node following the

QuantizationParameter node declaration, the node has no effect. If

useEf f icientCoding is false then the float is encoded using the IEEE 32 bit

format for float. If true then the float is coded as an efficient float. Quantization of

Bifs-Anim will be looked at in detail in section 4.5.

58

Category Description
0 None
1 3D position
2 2D positions
3 Drawing order
4 SFColor
5 Texture Coordinate
6 Angle
7 Scale
8 Interpolator keys
9 Normals
10 Rotations
11 Object Size 3D (1)
12 Object Size 2D (2)
13 Linear Scalar Quantization
14 Coordlndex
15 Reserved

Table 4: Quantization Categories

59

5 Animation in BIFS

5.1 Introduction

Animation is the process of introducing changes to the scene usually to make object in

the scene move. The way animation works in BIFS is to change the values of a nodes

field over time.

There are 3 ways to animate a scene in MPEG-4 systems, using interpolator nodes

common to both VRML and MPEG-4, using BIFS-Command and using BIFS-Anim.

The aim o f this chapter is to give the reader a good understanding of the underlying

concepts behind BIFS-Anim and to give a view of the types o f applications BIFS-

Anim can be used for.

5.2 Interpolator Nodes

Interpolator nodes are used to generate linear keyframed animation in the scene and

are common to both BIFS and VRML. To use an interpolator you specify a list of

keyframe times with one set of location values for each keyframe. The playing

terminal will interpolate the values in-between the keyframes. Interpolators are

restricted to doing only linear interpolation. There are 2 ways to perform non-linear

interpolation in VRML.

• You can tessellate the curve into a linear approximation. The resulting interpolator

would have many keyframe values close together to simulate a curve by

connecting several short lines.

60

• Write a script that implements the mathematics o f the curve function. This way is

more efficient in terms of memory usage but is not as fast at executing and

displaying the animation.

The six interpolator nodes are,

• Colorlnt jrpolator implements keyframe animation on a color value.

• Coordinatelnterpolator allows keyfame animation on a set o f vertices.

• Normallnterpolator performs keyframe animation on a set o f normals.

• Orientationlnterpolator implements keyframe animation on a rotation

value.

• Positionlnterpolator allows keyframe animation on a position in 3D

space.

• Scalarlnterpolator allows keyframe animation on a single floating point

value.

61

#VRML V2.0 utf8
Group {

DEF location Transform {
Translation 1 1 1
Children [

Shape {
ggeometry Cylinder {

radius 5
height 6

}

}

]

}

}

DEF mover Positionlnterpolator {
Key [0, 0 .1, 0 . 5, 0 . 8, 1]
KeyValue [1 1 1, 2 1 1, 3 11, 6 1 1, 7 7 7]

}

DEF timer limeSensor {
Cyclelnterval 2

ROUTE timer.fraction_changed to mover.Key
ROUTE mover.KeyValue to location.Translation

Figure 12: A simple VRML scene utilising a Positionlnterpolator.

62

Figure 12 shows a VRML scene where a 3D cylinder moves from position 1,1,1 to

7,7,7 over a period o f 2 seconds. In the scene the 3 important nodes are the Transform

node named location, the Positionlnterpolator node named mover and the TimeSensor

node named timer. By default when the scene is loaded the timer starts producing

fraction changed events which is the fraction of the Cyclelnterval completed from

0(start of cycle) to l(end o f cycle). This value is Routed to the Key field of the

Positionlnterpolator. The Positionlnterpolator then produces KeyValue events, which

are routed to the Translation field o f the Transform node. As the values o f the

Transform field change the cylinder moves.

5.3 BIFS-Command

It is possible to use the BIFS-Command protocol to perform animations in a BIFS

scene. The field replacement operation can be used to change the values in the fields

o f the node you wish to animate. This method would only be suitable for small

animations.

5.4 BIFS-Anim

BIFS-Anim is a streaming protocol provided with MPEG-4 systems. BIFS-Anim was

designed to provide a low overhead mechanism for the continuous animation of

changes to the numerical values in the scene. BIFS-Anim is a more efficient way of

animating the parameters in a scene. It provides a further way of compressing the

animation data.

A BIFS-Anim stream is one o f many possible elementary streams that can make up an

MPEG-4 scene. There are 2 special elementary streams, the scene description scene

and the object descriptor stream. The scene descriptor stream describes the spatial and

temporal relationships between the audio-visual objects present in the scene. It is the

values in the scene descriptor scene that a BIFS-Anim stream will change over time.

The object descriptor stream contains information that the receiving terminal needs to

63

interpret the rest o f the elementary streams. This is important for BIFS-Aim as the

object descriptor stream contains a lot o f the information needed to play a BIFS-Anim

bitstream correctly.

5.4.1 Configuration

A BIFS-Anim session has two components, the AnimationMask and the

AnimationFrame. Only the AnimationFrame is sent in the BIFS-Anim

elementary stream.

The AnimationMask is sent in the object descriptor for the BIFS-Anim elementary

stream. The AnimationMask specifies which fields from what nodes in the scene

are to be animated. The AnimationMask also provides the initial quantization

parameters.

The AnimationFrames contains the access units o f the BIFS-Anim elementary

stream. They contain the changes to the numerical information in the scene. The

AnimationFrame can send information in either intra (the absolute value is sent)

or predictive (the difference between the current and last value is sent) mode.

5.4.2 Allowable Nodes

Only updateable nodes, those which have an assigned node ID (using the DEF

statement) may be updated by BIFS-Anim. Only fields that have an assigned

animation category in the node coding tables may be animated. Finally only those

fields of type eventIN and exposedField (called Dynamic fields) may be

animated.

64

The list of dynamic fields is as follows,

• S F I n t 3 2 /M F I n t32

• S F F lo a t /M F F lo a t

• SFRotation/MFRotation

• SFColor/MFColor

• S F V ec2 f/M F V ec2 f

• S F V ec3 f/M F V ec3 f

5.5 Animation Mask

The Animati onMask contains all the set-up information needed by the receiving

terminal to play the BIFS-Anim bitstream. This information is contained in the object

descriptor stream. The AnimationMask contains the following information:

• The number o f bits used to represent n o d e ID s, which defines the maximum

possible number o f N ode ID s available to the session. This is set as 5 bits in the

bitstream.

• If the random access is possible (randomAccess flag)

• The number of nodes to be animated

• The ID of each node that will be animated,

• Which fields for each node will be animated,

• If the field is a M F F ie ld , which o f the fields individual elements are to be

animated.

• Initial quantization information for each field.

65

5.5.1 Quantization

In BIFS-Anim field data is always quantized. The AnimationMask defines all the

parameters nted for quantization [27]. For each animated field the following

information is needed,

• Upper bounds of data (floatMax),

• Lower Bounds o f data (floatMin),

• Number of bits used to encode a value.

The field is quantized depending on the animation method from the node coding

tables.

The following table lists the animation categories.

Category Description
0 None
1 Position 3D
2 Positions 2D
3 Reserved
4 Color
5 Reserved
6 Angle
7 Float
8 BoundFloat
9 Normals
10 Rotation
11 Size 3D
12 Size 2D
13 Integer
14 Reserved
15 Reserved

Table 5: Animation Categories

66

The value of floatMin is set according to the table 6.

A n i m T y p e a q p .u s e D e f a u l t f l o a t M i n

4 Color True fct.min[0], fct.min[0],
fct.min[0]

False aqp.IMin[0], aqp.IMin[0],
aqp.IMin[0]

8 BoundFloat True fct.min[0]
False aqp.IMin[0]

1 Position 3D False aqp.IMin
2 Position 2D False aqp.IMin
11 Size 3D False aqp.IMin[0], aqp.IMin[0],

aqp.IMin[0]
12 Size 2D False aqp.IMin[0], aqp.IMin[0]

Float False aqp.IMin[0]
6 Angle
9 Normal
10 Rotation

False 0.0

13 Inteqer False NULL
14,15 Reseved NULL

Table 6: Value of floatMin, depending on animType

And the value of floatMax is set according to the table 7.

A n i m T y p e a q p . u s e D e f a u l t F l o a t M a x

4 C o l o r t r u e f c t . m a x [0] , f c t . m a x [0] ,
f c t . m a x [0]

f a l s e a q p . I M a x [0] , a q p . I M a x [0] ,
a q p . I M a x [0]

8 B o u n d F l o a t t r u e f c t . m a x [0]
F a l s e a q p . I M a x [0]

1 P o s i t i o n 3D F a l s e a q p . Imax
2 P o s i t i o n 2D F a l s e a q p . Imax
11 S i z e 3D F a l s e a q p . I M a x [0] , a q p . I M a x [0] ,

a q p . I M a x [0]
12 S i z e 2D F a l s e a q p . I M a x [0] , a q p . I M a x [0]
7 F l o a t F a l s e a q p . I M a x [0]
6 A n g l
9 N o r m a l
10 R o t a t i o n

False 2 * P i
False 1.0

13 I n t e g e r False NULL
14,15 R e s e v e d NULL

Table 7: Value o f floatMax, depending on animType

67

A number o f animation types have set bounds, which are Color and BoundFloat.
The animation category Color is for every field o f SFColor/MFColor type and

the animation category BoundFloat is for those nodes o f type

SFFloat/MFFloat that have an upper and lower bound defined in the Node

Coding Tables. For example the field intensity from the node PointLight is

defined to be within the bounds o f 0 to 1. For these animation categories we have a

choice to take the default values or to assign or own bounds specified by

aqp.usedefault.

In the above tables fc t refers to the Field Coding Table, a data structure defined within

MPEG-4. The Field Coding Table contains data need for the quantization of that field.

The values for the Field Coding Table are got from the relevant Node Coding Table.

In the above tables aqp refers to AnimFieldQP, a data structure defined within

MPEG-4. The AnimFieldQP contains the quantization parameters needed for the

animation o f mat field. The AnimFieldQP is always set in the AnimationMask
and the values may be updated by the AnimationFrames.

The value o f intMax is set according to table 8.

animType intMin
1,2,4,6,7,8
9,10,11,12

NULL

13 aqp.Iminlnt[0]
14,15 NULL

Table 8: value o f intMin depending on animation category

It is also assumed that the following function is available.

Int getNboOunds(AnimFieldQP aqp)
Which returns the number o f bounds for the animation category received for the

following table.

68

aqp.animType value
returned

4/6,7,8
9,10
11,12,13

1

2 2
1 3

Table 9: Return values o f getNbBounds

Only the animation categories Position2D and Position3D have a specific set

of bounds for their components. These two categories define quantization bounds for

each component o f their field. The category Position2D is always o f field type

SFVect2f which contains a pair o f floating poinl values. Separate quantization

bounds are needed for each of these two values.

The following piece o f code in Syntax Description Language defines the bitstream

needed to set the values o f the AnimFieldQP for a field. The InitialAnimQP is
set in the AnimationMask.

69

InitialAnimQP(animFieldQP aqp) {

aqp.useDefault=FALSE;
switch(aqp.animType) I

case 4: // Color
case 8: // BoundFloats

bit(l) aqp.useDefault
case 1: // Position 3D
case 2: // Position 2D
case 11: // Size 3D
case 12: // Size 2D
case 7: // Floats

if (!aqp.useDefault) {
for (i=0;i<getNbBounds(aqp);i++) {
bit(l) useEfficientCoding
GenericFloat aqp.Imin[i](useEfficientCoding)

}
for (i=0;i<getNbBounds(aqp);i++) {
bit(l) useEfficientCoding
GenericFloat aqp.Imax[i](useEfficientCoding)

)
}
break;

case 13: // Integers
int(32) aqp.Iminlnt[0];

break;
}
unsigned int(5) aqp.INbBits;

for (i=Q;KgetNbBounds(aqp);i++) {
int(INbBits+1) vq
aqp.Pmin[i] = vq-2"'aqp. INbBits;

}

unsigned int (4) aqp.PNbBits;

70

The above code does the following,

• Sets aqp.useDefault to be false.
• Performs a switch on the animation category.
• If the current animation category is 4 (colour) or 8 (bound floats)

• Read a bit from the bitstream
• If the bit is a 1 set aqp.useDefault to be true

• If the animation category is 4 (colour), 8 (bound floats), 1 (position 2D), 2 (position 3D), 11
(size 3D), 12 (size 2D) or 7 (floats) and aqp.usedDefault is true.

• Do a loop getNbBounds times
• Read a bit from the bitstream
• If bit is a 1 we will use efficient floats
• Read a float for the bitstream. If we are not using efficient floats this will

be 32 bits. Store value in aqp.lmin[l]

• Do a loop getNbBounds times
• Read a bit from the bitstream
• If bit is a 1 we will use efficient floats
• Read a float from the bitstream. If we are not using efficient floats this

will be 32 bits. Store value in aqp.lmax[l]

• If the animation category is 12 (integer)
• Read 32 bits from the bitstream
• Store value in aqp.Iminlnt

• Read 5 bits from the bitstream
• Store value in aqp.InbBits

• Do a loop getNbBounds times
• Read (aqp.lnbBits+1)
• Store value in aq
• Assign aqp.Pmin[i] = vq-2Aaqp.lnbBits

• Read 4 bits from the bitstream
• Store value in aqp.PNBits.

71

The function GenericFloat encodes values as floats. If u s e E f f icientCoding is

false then the float is encoded using the IEEE 32 bit format for float. If true then the

float is coded as an efficient float.

For Quantization we have,

int quantize (float Vmin, float Vmax, float v, int Nb), which returns

= _ V ~ J / mjn _nNh - j)

" V - Vmax min

For Inverse Quantization,

float invQuantize (float Vmin,float Vmax,int vq, int Nb), which returns

F - V -
v = V • + vy r mm 1 v , max min

-1

For Animation types 1,2,4,6,7,8,11,12 the process is:

For each component of the field, the float quantization is applied:

v,[i] = quantize(floatMin[/],floatMax[/], v[/J,nbBits)

For the inverse quantization:

v[/] = invQ uantize(floatMin[/], floatMax[<], v q [/], nbBits)

For integers, the quantized value is the integer shifted to fit the interval [0, 2nbBl1s -1],

v(/ = v - intMin

The inverse quantization process in then:

v = intMin + v„

For nom ::ls and rotations, the quantization method is as follows.

Normals are first renormalized :

72

Rotations (axis n , angle a) are first written as quaternions :

v[0] = cos(^) v[l] = ^ . s h A v[2] = p ^ .s in (^) v[3] = ^ . s i n A
2 « 2 « 2 « 2

The number of reduced components is defined to be N: 2 for normals, and 3 for
rotations. Note that v is then of dimension N +l. The compression and quantization
process L> the same for both :

The orientation k o f the unit vector v is determined by the largest component in
absolute value: k = argMax(|v[/]|). This is an integer between 0 and N that is encoded

using two bits.

The direction o f the unit vector v is 1 or -1 and is determined by the sign of the
component v[£]. Note that this value is not written for rotations (because of the
properties o f quaternions).

The N components of the compressed vector are computed by mapping the square on

If nbBits=0, the process is complete. Otherwise, each component of vt. (which lies
between -1 and 1) is quantized as a signed integer as follows :

v,[/] = quantize(floatMin[0],floatMax[0],vc[z],nbBits - l)

The value encoded in the bitstream is

v[(< + k + l)mod(A^ +1)]
v[k]

2 nbBits-l

The decoding process is the following :

The value decoded from the stream is converted to a signed value

vq [0 viJemdecl ^
nbBits-1

The inverse quantization is performed

73

vt [/] = invQ uantize(floatM in[0],floatM in[0],v(/[/ '] ,n b B its - l)

After extracting the orientation (k) and direction (dir) , the inverse mapping can be
performed :

If the object is a rotation, vcan be either used directly or converted back from a
quaternion to a SFRotation

5.6 AnimationFrames

An AnimationFrame [27] is broken into two, a header and a data part. The header part

animated. An AnimationFrame can be sent in Intra or Predictive mode. In intra mode

the actual value is quantized and coded, in predictive mode the difference between the

quantized value o f the current and the last transmitted value o f the field is coded.

5.6.1 AnimationFrame Header

The AnimationFrame header contains the following information,

Start Code

A start code may be sent at the start of each frame to enable resynchronisation. The

next 23 jits of the bitstream are read ahead and stored in a variable. If this variable is

equal to zero, then the next 32 bits are read as the Start Code.

1

contains timing information and the data part contains the data for all the nodes to be

74

If the frame is Intra or Predictive

A bit is read from the bitstream and if this bit is one then the following frame is an

intra frame.

Active Nodes

A bit for every node currently animated. If this bit is 1 then that node will be animated

this frame.

Time Code

A bit is read from the bitstream and if 1, then a timecode is expected, so timecode

structure is an optional structure.

The time code specifies the time base for the current frame. It has the format shown in

table 10 The market bit is a 1 bit integer whose value must always be 1. The purpose

o f the marker bits is to avoid start code emulation.

Time_code range of value No. of bits Mnemonic
Time_code_hours 0 - 2 3 5 uimsbf
Time_code_minutes 0 - 5 9 6 uimsbf
M&.kerbit 1 1 bslbf
time_code_seconds 0 - 5 9 6 uimsbf

Table 10: TimeCode

Frame Rate

A bit is read from the bitstream if 1, and then a FrameRate structure is expected.

Figure 13 shows using syntax description language the structure o f FrameRate.

class FrameRate {
unsigned int(8) frameRate;
unsigned int(4) seconds;
bit(l) frequencyOffset;

}

Figure 13: FrameRate

75

FrameRate is an 8-bit integer defining the reference frame rate.

Seconds is a 4-bit integer defining the fractional reference frame rate.

The frame rate is,

Frame rate = (FrameRate + seconds/16)

FrequencyOf f set is a 1 bit flag, which when set to 1 defines that the frame rate

uses the NTSC frequency offset of 1000/1001. If set to 1 the frame rate is,

Frame rate = (1000/1001) * (FrameRate + seconds/16)

Skip F; ;.mes.

A bit is read from the bitstream and if 1, then a Skipframe structure is expected.

Figure 14 shows using syntax description language the structure o f Skipframe

class SkipFrame {
int nFrame = 0;
do {

bit(4) number_of_frames_to_skip;
rFrame = number_of_frames_to_skip + nFrame;

} while (number_of_frames_to_skip == Obllll);
}

Figure 14: SkipFrame

number_of_f rames_to_skip is a 4-bit integer defining the number o f frames to

be skipped. If number_of_frames_to_ skip is equal to 1111, then another 4-bit

integer follows, if the 8-bit pattern equals 11111111, then another 4-bits follows and

so on. Each 4-bit pattern of 1111 increments the number of frames to_skip
by 15.

5.6.2 AnimationFrame Data

The animation frame data contains the new values for the fields that are being

animated for the current frame. The main data structure in the animation frame data is

the AnimationField, figure 15.

76

class AnimationField(FieldData field, boolean islntra) {
AnimFieldQP aqp = field.aqp;
if (islntra) {

bit(l) hasQP;
if(hasQP) {
AnimQP QP(aqp);

}
int i;
for (i=0; i<aqp.numElements; i++)

if (aqp.indexList[i])
AnimlValue ivalue(field);

} else {
int i;
for (i=0; i<aqp.numElements; i++)

if (aqp.indexListf i])
AnimPValue pvalue(field);

}
}

Figure 15: Animation Field

If the frame is intra then new quantization parameters may be sent. The AnimQP is

similar to the InitialAnimQP. If new quantization parameters are sent they will

remain valid until the next intra frame. If the value of hasQP is false then the boolean

value randomAccess will determine the qunatization parameters to use.

If randomAccess is true,

• The I ni t i a 1 AnimQp will be used until the next intra frame

• The arithmetic decoder models for the current field will be reset to the uniform

models.

If randomAccess is false,

• Then the AnimQP that was used for the last frame shall be used.

• The arithmetic decoder models for the current field will only be reset if a new

AnimQP is received.

77

For imra frame a number o f bits equal to InbBits (define in the InitiaAnimQP) is read

from the bitstream for each field value. For predictive frames the values is decoded

from the bitstream using an adaptive arithmetic decoder as defined in Annex A.

5.7 Intra and Predictive modes

If the rrame is Intra then the data is read from the bitstream and inverse quantized. The

number of bits used to encode the data will be the number o f bits read from the

bitstream. For predictive frames the value is decodcd from the bitstream using an

adaptive arithmetic decoder.

In predictive mode, the difference between the quantized value o f the current and the

last transmitted value of the field are coded [27 j.

The table that follows shows a simple example. The first row is the value that we want

to send. The second row is that value quantized. The third row is the actual value that

is encoded into the bitstream. The first value is sent as Intra, the rest as predictive.

Here are our quantization values:

So, 1 ,_,3,4,5 quantize to 0 and 6,7,8,9,10 quantize to 1 and 11,12,13,14,15 quantize to

2 and 16,17,18,19,20 quantize to 3.

And 0 inverse quantizes to 2, 1 inverse quantizes to 7, 2 inverse quantizes to 12 and 3

inverse quantizes to 17.

Real Value 1 3 4 8 9 12 14 16 18

Quantized Value 0 0 0 1 1 2 2 3 3

Sent Value 0 0 0 1 0 1 0 1 0

78

On the Decoder Side:

First value: 0 (is intra) and decodes that to 2,

Second value: 0 (is predictive) and adds that to 0 giving 0 decodes to 2,

Third value: 0 (is predictive) and adds that to 0 giving 0 decodes to 2,

Forth value: 1 (is predictive) and adds that to 0 giving 1 decodes to 7,

Fifth value: 0 (is predictive) and adds that to 1 giving 1 decodes to 7,

Sixth value: 1 (is predictive) and adds that to 1 giving 2 decodes to 12,

Seventh value: 0 (is predictive) and adds that to 2 giving 2 decodes to 12,

Eight value: 1 (is predictive) and adds that to 2 giving 3 decodes to 17,

Ninth value: 0 (is predictive) and adds that to 3 giving 3 decodes to 17.

But what about the following? We can not send a -3 as it is not within our

quantization bounds.

Real Value 1 3 4 8 9 12 14 15 18 1

Quantized Value 0 0 0 1 1 2 2 3 3 0

Sent Value 0 0 0 1 0 1 0 1 0 -3

Lets take a look at the spec here is part o f the InitialAnimQP

for (i=0;i<getNbBounds(aqp);i++) {
int(INbBits+1) vq
aqp.Pmin[i] = vq-2Aaqp.INbBits;

}

unsigned int(4) aqp.PNbBits;

We send 2 values vq coded using INbBits + 1 and PNbBits coded using 4 bits.

Prain is then calculated from vq. INbBits is the number o f bits used to encode

intra values, and 2 A INbBits is the number o f levels in the quantizer.

If INbBits is 2 and vq is 0 then Pmin will be -4.

79

Taking Pmin to be 4, in our example above we add (subtract —4) 4 to every sent

value (predictive only), and that value becomes the new sent value. The decoder will

decode the value from the bitstream and then subtract Pmin. This value is then

inverse quantized.

PNbBits is used to determine the number o f symbols in our tables for our Adaptive

Arithmetic Encoding.

5.8 Advantages

There are a number of advantages to using BIFS-Anim over interpolator nodes to

animate a scene. These are

• Smaller initial download: VRML files can be very large and the whole file needs

to be downloaded before any part o f the scene is displayed. With BIFS-Anim the

initial scene will not contain any animation data and so the initial download is

smaller and the scene will be displayed quicker. Once the initial download

happens the animation data can then be streamed.

• Compression: BIFS-Anim bitstreams use a number o f compression mechanisms,

the two main ones being arithmetic decoding and quantization.

• Live transmission: A video camera recording a live event can transmit this data

live over a number of network types. A similar idea holds for BIFS-Anim. It is

possible to take real world data and use this data to animate a scene in real time.

The VRML standard provides a format for defining a 3D world and as such it is a

revolutionary standard allowing the web to be browsed in 3D. It opens up so many

possibilities for using 3D content over the Internet.

80

The tv o main features lacking in VRML are,

1. No streaming,

2. No binary coding scheme.

Together they mean that the transmission o f VRML content is inefficient. Added to

the fact that VRML is mainly used over the Internet this inefficiency soon restricts the

size of available VRML scenes. The lack o f efficiency resulting in large downloads is

clearly the biggest reason that VRML has not been successful. Broadband Internet

access is seen by some [7] as a solution to this problem. While the introduction of

broadband Internet access is likely to increase the success o f future web 3D

technology, bandwidth will be limited and more efficient coding schemes will always

provide a large advantage.

Any future web 3D technology that does not offer streaming is doomed. Right now

the Internet can be used to listen to streamed music, streamed radio stations and watch

streamed video, why not streamed 3D content. The efficiency gain from streaming is

enormous. The next generation o f VRML called X3D aims to extend the VRML

syntax. Essentially, XML is just another file syntax and there are no plans to extend

the VRML standard to include streaming.

81

6 BIFS-Anim encoding tool

In the last chapter we took an in depth look at BIFS-Anim. We saw how it provides

streaming updates to the 3D part o f an MPEG-4 scene. In this chapter we will look at

some of the work done by the group responsible for providing the reference software

for MPEG-4 systems. Then we will examine our work done in developing a BIFS-

Anim elementary stream encoding tool, and some results provided by the tool.

6.1 IM1

IM1 is synonymous with the Ad-hoc Group on Systems Version 1.0 Software

Implementation [30], Their mandate is to develop, integrate and demonstrate Systems

Versio"’ 1.0 software with the help of the committed partners, that means in particular

to support the creation of the MPEG-4 reference code and to provide for software and

test streams for demonstrating MPEG-4 capabilities before it becomes an international

standard.

6.1.1 IM1 Tools

The IM1 group has produced a number o f tools which allow MPEG-4 scenes to be

created and played. These tools are free to the members o f MPEG to use or modify in

hardware or software products claiming conformance to the MPEG-4 Systems

standard.

The reference software produced by the IM1 group is very important. One purpose of

the reference code is to clear up any ambiguities that remain in the standard. In many

ways what is contained in the IM1 software becomes the de-facto standard.

82

• BIFS-Encoder (Bifsenc)

BIFS-Encoder is a console application which receives one argument - the input

file name. The default extension is .txt. The application produces two files. Both

have the same name as the input file, one with the extension .bif the other with the

extension .od. In addition, a text file with same name and the extension .1st is

produced. This file lists all the input lines, each followed by error descriptions, if

any, and a textual description of the binary encoding.

The input file contains a textual description of a scene, scene updates and

ObjectDescriptor commands. The textual scene description that is used by

Bifsenc is very similar to VRML. The two output files are binary. The file with the

.bif extension contains the BIFS elementary stream and the file with the .od

extension contains the ObjectDescriptor stream.

• Multiplexer (Mux)

The off-line multiplexer is a software tool which reads a set o f files, each

containing an MPEG-4 elementary stream, and multiplexes them according to

FlexMux specifications into one bitstream. The multiplexing includes the process

of creating the SL-packetized streams.

The Mux is a console application. It requires one command argument - a name of

a script file. The default extension is ,scr. The output o f the Multiplexer is a file

with the same name, and with the .mp4 extension.

The script file describes the streams that you wish to multiplex. It contains a series

o f textual descriptions o f ObjectDescriptor objects, identical to the objects

used as input to the BIFS Encoder. Each o f the Ob j ectDescriptors contains

one or more ESDescriptor objects, which describe the elementary streams

used by the scene.

83

• IM1 Player

The IM1 Player is a “core” player that provides a platform for the full implementation

of an MPEG-4 player. It includes demultiplexing, BIFS decoding, scene construction

and manages synchronized flow of data between the multiplexer, the decoders and the

compositor through decoding and composition buffers. It supports the API for

Decoder, DMIF (Delivery Multimedia Integration Framework) and IPMP (Intellectual

Property Management and Protection) plug-ins. The core module implements the IM1

Application Programming Interface (API) [31]. The core module is the foundation

layer foi customised MPEG-4 applications. It contains hooks for plugging in all kind

of decoders and customised compositors. Its code is platform independent and has

been used by the group as the infrastructure for applications that run on either

Windows or Unix.

The core module is accompanied by a test application. The test application is a Win95

“console” application which reads a multiplexed file, uses H.263 and G.723 decoders

to decode video and audio streams, and produces two text files. One file shows the

“presentation” time of each composition unit (CU), i.e., the time when a plug-in

compositor would receive the CU for presentation, compared to the composition time

stamp attached to the encoded unit. The other file shows a textual recording of the

binary scene description (BIFS).

6.1.2 Compositors

A number of compositors were built using the core module to provide complete

MPEG-4 players. There is a 2D only player and two 3D players know as the “Telnor”

player and the “Pact” player. These players added a rendering engine to the core

module. The “Telnor” player uses OpenGL and the “Pact” player uses DirectX.

Primarily the one person developed the core module over the lifetime o f MPEG-4.

Parts of the core were contributed by others such as the IPMP module or the BIFS-

Anim decoder. This was not the case with the compositors, which witnessed a large

84

number of different people working on them over their lifetime. As such the

compositors tended not to be updated along with the core and many nodes were not

implemented in the compositor software. It must be remembered that the companies

involved in the providing the IM1 are providing their resources for free.

6.1.3 Usage of the 3 tools

By using the 3 tools provided by the IM1 group it is possible to create an MPEG-4

scene and then to play that scene (see figure 16). The procedure is as follows.

First a VRML like text file is produced with the scene description. Following the

scene (Ascription is the textual description o f Object Descriptors and

ESDescriptors. This file is passed to the application BIFS Encoder which

produces the BIFS file and the ObjectDescriptor stream. The BIFS Encoder

will convert the textual VRML like scene description into BIFS.

Secondly a script file for the Multiplexer is created. The script file describes the

streams that you wish to multiplex. It contains a series of textual descriptions of

Obj ectDescriptor objects, almost identical to the objects used as input to the

BIFS Encoder. Each o f the ObjectDescriptors contains one or more

ESDescriptor objects, which describe the elementary streams used by the scene.

This script file is used for input to the Multiplexer. The Multiplexer will multiplex the

files referenced by the script file into one bitstream.

Finally t' e bitstream created by the Multiplexer is passed to the IM lPlayer which will

consume the bitstream. Annex D provides an example o f such a scene.

85

Figure 16: Usage of the tools to produce an MPEG-4 bitstream

6.1.4 Verification of IM1

It is also an aim o f this project to produce bitstreams that will verify that the BIFS-

Anim decoder used within the IM1 software is performing according to the standard.

This is done by creating test bitstreams, running these through the IM1 player and

then comparing the received output with the expected output. The test bitstreams

provided by the tool described here were the only BIFS-Anim bitstreams provided for

verification o f the BIFS-Anim decoder provided within the IM1 software.

6.2 Content Creation

To create a tool for the encoding o f BIFS-Anim bitstreams we need a data format to

encode from. So the first problem with creating a BIFS-Anim content creation tool is

where to get animation content. A high-level animation description is needed which

can then be encoded into a BIFS-Anim bitstream.

86

A BIFS-Anim bitstream cannot exist by itself as it is linked to whole scene

description. BIFS-Anim provides streaming updates to the values in the scene. Not

only is a high-level animation description needed but also the tool for building scenes

and the playing of those scenes. The only tools available for creating MPEG-4 scenes

and playing MPEG-4 content are the tools provided by the 1M1 group. It was decided

to provide a textual description o f the values to be encoded. The textual description is

defined in such a way that the data from VRML interpolators can easily be used for

our values. This allows VRML scenes to be created using a text editor or a 3D

graphical tool and then these VRML scenes can be modified and used as the input to

the BIFS-Anim encoder and the IM1 tools.

6.2.1 Structure of Anim description file

This sectir n gives the format o f the file consumed by the BIFS-Anim decoder as well

as an example file. The structure of the Anim description file was chosen for its

simplicity and also ease of parsing.

[NodelDbits]

followed by the

[NodelD bits]

followed by the

[FrameRate]

Followed by the

[frame rateJ

The start of the information for each node must begin with:

[NewNode]

Followed by the:

\nodeID\

[dynlD’s for Node]

87

Then for each animated field the:

[field Type in dynlD order]

If the node is a MF node then,

[number of multiple values\

\Data\

The file must end with:

[End]

Allowable field types are:

• SFRotation

• SFFloat

• SFColor

• SFVectff

• MFVect3f

• SFInt

• Normal

Example:

NodelD 5 t .< is a Viewpoint node

NodelD 501 is a Coordinate node.

[FrameRate]

[2]
[NewNode]

[500]

[0,1,1]
[SFRotation]

[0.0 1.0 0.0 45,1.0 0.0 0.0 90]

[SFVect3f]

[1 2 3,4 5 6]

[NewNode]

[501]

[1]
[MFVect3f|

[4]
[1 2 3 1 2 3 1 2 3 1 2 3,2 3 4 2 3 4 2 3 4 2 3 4]

[End]

6.2.2 Scene Creation

Creation o f the animation description, scene description and the Multiplexer script file

go hand in hand.

The animation description file will reference the following data from the scene

description,

• The number o f bits used to represent each node ID
• The n o u e lD of each node to be animated

• The type of the node to be animated

• The fields in each node to be animated

The scene description will reference the following from the BIFS-Anim creation tool.

• The name of the Animation Mask file. The Animation Mask file is one of the

outputs used by the BIFS creation tool. The animation mask is part o f the Object

Descriptor stream. The animation mask is binary while the scene description

contains a textual description of the object descriptors. The BIFS Encoder will

convert the textual object descriptors into binary and will insert the binary

Animation Mask into the Object Descriptor stream at the correct location.

The script file will reference the following from the BIFS Encode.

89

• The name of the BIFS stream.

• The name of the Object descriptor stream.

The script file will reference the following from the BIFS-Anim creation tool.

• The name of the file containing the BIFS-Anim stream

The Multiplexer will multiplex the 3 streams, BIFS, Object Descriptor and BIFS-

Anim according to FlexMux specifications into one bitstream. This bitstream will be

consumed by the Im l Player.

6.2.3 Analysis of Anim Description file

It is observed from the systems specification that each field type (SFFloat,
SFColor etc) in MPEG-4 will be encoded for BIFS-Anim in its own way. It does not

matter which Node or Field the field type belongs to. For example the position field in

a Viewpoint node is encoded in the same way as a scale field in a Transform node is

encoded. Bo'1'1 fields are of type SFVect3 f.

The only information that a BIFS-Anim encoder needs to know about each node is the

nodes NodelD, the dynld' s for the node, and the field type for each dynlD. The

number of dynld's for each node is defined in the Node Coding Tables. Each

dynld is represented in the Anim description file as a ‘ 1 ’ or a ‘O’. If the dynld is ‘ 1’

the field that the dynID represents will be animated. The order o f the dynID' s is the

order the field is defined in the Node Coding Tables read from top to bottom.

Each field type representing a positive dynID and the data associated with the field

follow the dynID definition. These field types must be defined in dynID order due

to the context dependency inherent in BIFS.

90

6.3 The Encoding Tool

6.3.1 Overview

The encoding tool was developed using MS VC++ 6 and under Windows 95. The

encoder takes as its input the Anim Description file, parses this file and produces two

binary output files containing the BIFS-Anim bitstreams.

The BIFS-Anim creation tool consumes a file containing the Anim descriptions and

produces two files containing the Animation Mask and the Animation Frames. The

Animation Mask contains the information necessary for the decoder (player) to read

the Animation Frames. The operation o f the tool is split into two parts. The first part

parses the description file and stores its contents into data structures. The second part

performs operations on the data structures to write the Animation Mask and the

Animation Frames. The Animation Frames will consist o f an Animation Frame header

followed by the animation data for every frame of animation.

6.3.2 Parsing and main Data Structures

The description file is parsed and the data is stored in the relevant data structures. The

main data structure is the NodeData class. The parsing fills in the following variables:

• The NodelD
• Number o f Fields in the node

• The Number o f fields to be animated

• An array containing the d y n lD s

• A data structure called FieldData containing the data for each field in the node to

be animated. This is an array containing 1 entry for each field to be animated.

The NodeData structure also contains the following,

• A binary variable containing the active mask.

The Parsing f;lls in for the FieldData structure the following,

91

• Number of Bounds (n b B o u n d s see table 9)

• Number o f Components to the data in the field (SFColor has 3, SFFloat has 1

etc)

• The number of elements for MF fields

• An array containing the data. The data is store sequentially in the order that each

piece of data is read from the file.

The FieldData structure also contains the following,

• The value of INbBits (The number o f bits used to encode a value for

quantization for this field)

• The value of PNbBits (Used to determine the number of symbols in our tables

for the Adaptive Arithmetic Encoding.)

• An array, containing the minimum bounds for the field. This array will be number

o f Bounds for the field in size.

• An array, containing the maximum bounds for the field. This array will be number

o f Bounds for the field in size.

• An array, containing the last transmitted value, used in predictive mode. This array

will be thf* number o f components for the field in size.

• A variable containing the value o f VQ.

• An array, containing the symbols for the arithmetic model for the current field.

This array will be PNbBits in size. There will be a separate array for the number

o f bounds for the current field (a 2 dimensional array).

• A variable (AUcounter) that acts as a pointer to the next piece of data from the

data array.

• An array which will be used to store the data for the current frame. This will be

used to compare the current data with the next frames to determine the active mask

and the number of skip frames.

92

6.3.3 Utility Functions

A number of utility procedures were created to deal with outputting binary values to a

buffer. The three main functions are

• int IntegerToBinary (int IntValue, int nBits)

• void FloatToBinary (float FloatYalue)

• void FloatToEfficientFloat (float FloatValue)

The function IntegerToBinary is called with 2 parameters. IntegerToBinary will

encode the value IntValue using nBits to the array. FloatToBinary will encode the

value FloatValue using 32 bits and FloatToEfficientFloat will encode the float as an

efficient float. For example to encode the value ‘0’ using two bits the function

IntegerToBinary is called with the parameters (0,2).

6.3.4 Operation of the Encoder

I will now describe the main operations o f the Encoder.

1. The Animation Description file is parsed and the relevant data structures are filled
2. The Animation Mask is generated. This is a two stage process: First a buffer is

filled with the binary data then this buffer is written to a file. All the data needed for
the animation mask is easily retrieved directly from the data structures.

3. The Animation Frames are then generated once again a buffer is filled with the
binary data and this buffer is written to a file.

4. The Animation Frame header is created.

• The frame rate is encoded in the Animation Frame header and is optional.

The frame rate for the sequence is only encoded once and is sent with the

first Animation Frame.

93

• In the Animation Frame header it is possible to exclude nodes from the
current frame. For each node a ‘1’ or ‘0’ is sent (mask.isActive). If the node is
to be animated in this frame a ‘1’ is sent. If the values for each field in a node
are the same as for the last frame this node is excluded from the current
frame and a 'O’ value is sent for that node. It is not possible to skip a field in a

node if any of its other fields are to be animated this frame.

• The number of skip frames is encoded next and is optional. If the values for
every field in every node for the current frame are the same as the last frame,
skip frames will be sent. The value of skip frames will be the same as the
number of identical frames in sequence.

5. The Animation Frame data is encoded next, the process is slightly different
depending on whether the frame is Intra or Predictive.

If the frame is Intra
The arithmetic model for that field is reset.
For each component in the field,

The next value is read from the data array

The value is quantized
The quantized value is put into the buffer using InbBits bits

The last transmitted value is assigned the quantized value
The pointer to the next piece of data is incremented

If the frame is Predictive.
For each component in the field,

The next value is read from the data array

The value is quantized

The last transmitted value and value of Pmin is subtracted from the

quantized value (see 3.7)
This value is encoded to the buffer using the arithmetic encoder

The last transmitted value is assigned the quantized value
The pointer to the next piece of data is incremented

6. Once the ' eader and all the data has been encoded to the buffer, this buffer is

then saved to a file

94

7. A function is then called to determine the number of skipped frames if any and the

active mask for the next non skipped frame by reading ahead and comparing the
data for the current frame with the data for the following frame. If there are
skipped frames the pointer to the next piece of data for each field will point to the
start of next non skipped frame.

Figure 17: Overview o f the operation of the Encoder

95

6.3.5 IM1 BIFS-Anim Decoder

To test the BIFS-Anim encoder some simple BIFS scenes with corresponding BIFS-

Anim bitstreams were created. The IM1 player was used to play the scene and the

outputted results compared to the expected results. It was soon noticed that the

outputted results were not as expected. This was found to be due to errors in the BIFS-

Anim decoder code within the IM1 player. The person who developed the original

code was no longer available to work for IM1, so the errors in the BIFS-Anim sections

of the IM1 player needed to be fixed. The main errors in the code were.

• Predictive frames not implemented correctly.

The decoder was not expecting to be sent the difference between the quantized

current value and the last transmitted value. It appears that the decoder was

expecting the difference between the quantized current value and the last real

value sent, which was completely wrong.

• Pmin not ta<ven into account.

The value decoded from the bitstream did not have Pmin subtracted from it for

predictive frames.

• Inverse quantization of fields with number o f bounds equal to one was incorrect.

Any field that had more than one component but only one bound (e.g. SFColor)
was inverse quantized incorrectly.

<» Normals and Rotations not inverse quantized correctly.

There were a number o f errors with the inverse quantization process for rotations

and normals. One o f these was due to an error in the standard, which called for

2Anbbits-l to be subtracted twice. This error will be corrected in a future

corrigendum to the systems standard.

96

6.4 Testing

There were 2 separate phases of testing. The first was to test the operation of the

encoder and the IM1 decoding tools. The second was to produce results showing the

compression gains from using BIFS.

6.4.1 Verification Testing

For the first round of testing a number o f simple scenes and animation data for the

scenes were created. For each field type that could be animated a scene was created.

This animation data was encoded with the BIFS-Anim Decoder tool and the resulting

scene was played using the IM1 Player. The purpose of this testing was to verify that

the IM1 software was decoding the BIFS-Anim bitstreams correctly. Any errors in the

decoding were corrected (see 5.3.5 above). The scene description and animation

description for these scenes was created using a text editor. This testing verified that

the encoder could encode BIFS-Anim bitstreams for each field type and that the

player could decode the BIFS-Anim bitstreams and play the scene.

6.4.2 Compression Testing

To look at the compression rates provided by BIFS-Anim, some real world data

needed to be generated. To generate this data using a text editor would be very

difficult. Aiso it proved impossible to use existing VRML scenes as the animation was

expressed as interpolator nodes. The animation description format was designed so

that it is easy to convert from VRML interpolators to the animation description format

but the VRML interpolator must include a key value for every frame of the animation.

The commercial 3D modelling and animation package 3D studio Max was used to

generate the test sequences. One of the features included with 3D studio Max is the

ability to export its scenes as VRML. With the 3D Studio Max VRML exporter it is

possible to specify a frame rate for the animated sequence. The exported VRML

interpolators then have a key value for each frame in the animation. For example if

97

when exporting the sequence a frame rate of 20 frames per second is chosen and the

animation lasts 1 second, then the exported interpolators will have 20 key frames and

20 key values. For a simple animation, say moving an object from 1 point to another

with a constant velocity, only 2 key frames and 2 key values are needed to represent

this as a VRML interpolator. When 3D Studio Max exports this scene it will have

many key frames and key values which is an inefficient way of representing the

VRML but suits the needs o f the animation description format.

Two test sequences were created using 3D Studio Max. The first was a series o f five

simple shapes moving around the screen, the second is an animated 3D scene o f a man

walking (see figure 17).

The process for generating the test scenes is as follows. First a scene is created using

the graphical tools provide by 3D Studio Max. This scene is then exported to VRML

with the desired frame rate specified. The VRML scene can then be viewed using any

VRML browser. The VRML file is then split into two. The first part represents the

static scene and the second part contains the VRML interpolator data. The first part

after some modification is consumed by the BIFS-Encoder tool to produce the scene

description elementary stream and the object descriptor elementary stream. The

modification consists o f adding n o d e l D 's to the VRML and changing the VRML

syntax for the BIFS-Encoder tool. The part containing the interpolator data is then

converted to the animation description format. The animation description file is then

consumed by the BIFS-Anim encoder tool to produce two files. The first file contains

the Animation Mas!; and the second contains the Animation Frames. A script file for

the Multiplexer is created using a text editor. The Multiplexer is then run, which

produces a file with the extension .mp4, which is consumed by the player.

98

6.4.3 Description of the 3D scenes

The first scene contained 5 simple shapes; a sphere, a box, a cylinder, a cone and a

pyramid. These 5 shapes moved around the screen in all 3 directions. The total

animation time was 16 seconds with a frame rate o f 10 frames per second.

The VRML file for the scene with the 5 simple shapes is 24 KB. The scene is

composed of 5 separate interpolators, one for each o f the shapes. This scene split into

the static scene at 3 KB and the interpolator data at 19 KB. The interpolator data was

then converted into an animation description file at 13 KB in size. The difference in

size result from the fact that the animation description data only contains the keyframe

values and not the keyframe times. The keyframe times are not needed as it is

assumed that the frame rate will be constant over the length o f the scene.

The “figure walking” scene is composed of 16 simple objects each representing a

different body part. Each of these objects when exported to VRML is represented by

the IndexedF ceSet node. A colour was assigned to each o f the body parts.

The total animation time is 12.3 seconds and the frame rate is 10 frames per second.

The size of the VRML file resulting for the 3D scene o f the “figure walking” is 340

KB. The VRML scene is composed of 53 separate interpolators each running at the

same time. This split into the static scene at 40 KB and the interpolator data at 269

KB (unnecessary spaces were removed). The interpolator data was then converted into

an animation description file at 130 KB in size.

99

Figure 18: Animated Figure

6.4.4 Results

The first frame is always encoded as an intra frame and the tests were run twice, once

using predictive frames and once using intra frames. No quantization was used in the

scene description. The results are as follows (see tables 11 and 12).

• Scene with the simple shapes:

For the scene with the simple shapes the size of the scene description elementary

stream was less than 1 KB (485 bytes).

100

Firstly using predictive frames the size of the BIFS-Anim bitstream was 0.8 KB.

When the scene was run using only intra frames the resulting BIFS-Anim

bitstream was 1 KB.

• Scene o f the “figure walking”:

For the scent with the simple shapes the size o f the scene description elementary

stream was 16 KB.

Firstly using predictive frames the size o f the BIFS-Anim bitstream was just under

5 KB. When the scene was run using only intra frames the resulting BIFS-Anim

bitstream was 9 KB.

Sizes VRML Interpolator

data

Animation

description

Animation

Frame

“Simple Shapes” 24 KB 19 KB 13 KB .8 KB

“Figure Walking” 340 KB 269 KB 130 KB 5 KB

Table 11 Test values for Predictive frames

Sizes VRML Interpolator

data

Animation

description

Animation

Frame

“Simple Shapes” 24 KB 19 KB 13 KB 1 KB

“Figure Walking” 340 KB 269 KB 130 KB 9 KB

Table 12 Test values for Intra frames

101

6.4.5 Analysis of Results

Our example scenes shows clearly the advantages o f the MPEG-4 approach. In the

case of the “figure walking” scene a download o f 340 KB to play a 12 second scene

was reduced into a 16 KB initial scene description download followed by a 5 KB

stream, which can be streamed at less than 1 KB per second.

If we assume an Tntemet connection o f 5 KB per second we have an 86 second delay

before the VRML scene is displayed. With the MPEG-4 scene there will be slightly

more than a 3 second delay before we can begirt to display the scene. The BIFS-Anim

approach offers considerable compression gains when compared to VRML. The gains

in compression are similar to what others have achieved [19].

Figure 19: Comparison of VRML and MPEG-4 approaches to Animation

102

The “figure walking” scene compresses better and shows a greater difference between

using predictive and Intra frames (Table 13). This is due to the distribution o f data in

both scenes. Each of the 5 shapes in the “simple shape” scene are moving erratically

about the screen and at each frame the x, y and z values for its position are changing.

The range o f values is higher for the “simple scene” and so .he number of quantization

levels and Arithmetic Encoding levels will be larger. The change to the fields in the

“figure walking” scene happens in a more linear way. For many frames only one value

out of 3 will be required to change. Also in the “figure walking” scene nodes are

skipped for some frames (m ask . i s A c t i v e) .

Predictive Intra

“Simple Shapes” 1/23 1/19

“Figure Walking” 1/53 1/29

Table 13 Size of Animation Frame bitstream compared to Interpolator data

It should be noted that the 2 approaches to animating a scene are fundamentally

different. BIFS-Anim is like video where every frame will be encoded, while an

interpolator node defines a linear function. There are definitely times when using

interpolators will be the more efficient method. If there is a small amount of keyframe

times and values in relation to the cycle interval then it may be more efficient to use

an interpolator. For example if the cycle interval in figure 15 was changed to 1,000

seconds, then representing that animation as an interpolator would be efficient. If that

animation was transmitted as a BIFS-Anim stream then that BIFS-Anim stream would

contain values for every frame of the animation.

103

7 Conclusions

This document has largely concentrated on the technical aspects oiMPEG-4, VRML

and BIFS-Anim. Chapter 2 gave an overview of the MPEG-4 standard, Chapter 3

continued this overview but looked in detail at MPEG-4 scene description and the

improvement it offered over VRML. Chapter 4 looked in detail at one protocol o f the

scene description language, namely BIFS-Anim. Chapter 5 described a tool for

encoding BIFS-Anim and gave some results from using that tool. Finally Chapter 6

gave some examples of real world applications using BIFS-Anim and the issues

surrounding online multi-user communities was examined.

This chapter will take a critical look will be taken at BIFS-Anim and its place in the

spectrum web 3D Internet technology. The term web 3D is used for any technology

that offers a means of displaying 3D content over the Internet.

.Further work is needed to be done on this topic, mainly in the areas o f the type of

database technology need to store a persistent 3D world.

7.1 Future of BIFS-Anim

For BIFS-Anim to become a common technology 3 things are needed:

• Content creation tools

• MPEG-4 players

• MPEG-4 Internet standard.

104

7.1.1 Internet deliver layer

The transport multiplex is not defined by MPEG-4 as there are many possible deliver

protocols that may be used to transmit MPEG-4 content. The Internet is one of the

more important delivery protocols and the Internet standardisation body (IETF) is

currently working on a standard for streaming of MPEG-4 using Real Time Protocol

[33], [34],

7.1.2 Content Creation

There are two main problems with creating VRML content. The first, which is

common to BIFS. is that 3D content is difficult to create. Creating simple scenes using

a text editor was asy, but to create anything complex proved to be time consuming

and required some artistic talent. The graphical 3D creation tool used to create the

scenes for the test data was feature rich but difficult to use.

MPEG-4 defines how to decode a bitstream. There is no mention about how that

bitstream is to be creatcd. This is left up to the developers of the encoding tools. The

developers of the encoding tool will need to decide how to encode content into an

efficient MPEG-4 bitstream. With MPEG-4 there is another problem, which is how to

create the content in the first place. For example, tools are needed to extract objects

from video before they can be encoded as MPEG-4 shape coded video, or tools are

needed to create 3D objects and animations before these 3D objects can be encoded.

Once the individual objects are created then tools are needed that will allow content

creators to assemble the individual objects into a complete scene. One of the goals of

MPEG-4 was to allow the reusability o f objects, but without useful tools to access and

create scenes made o f objects this goal will not be realised.

To create the animated figure used for the test data, the professional tool 3D Studio

Max was used. The scene was saved as VRML and then the VRML was converted to

BIFS. 3D Studio Max has a plug-in architecture allowing developers to provide extra

functionality to the product. There are a number o f companies that exist to provide

plug-in tools for Studio Max. The plug-in architecture allows you to take the internal

Studio Max representation o f a 3D model and convert that representation to BIFS and

105

export as a BIFS elementary stream. This would then provide a graphical tool that

many professional animators are proficient in for creating 3D MPEG-4 content. The

problem with this approach is that Studio Max is a professional 3D creation tool it is

difficult to use and it is also expensive.

The tools available for creating VRML content fall into 2 categories; tools for

professionals and tools for amateurs. The are a number of very good professional

VRML creation tools of which 3D Studio Max is one example. Like Studio Max they

tend to be expensive and very difficult to use. The are very few low end VRML

creation tools [16] and this is a big problem. Any tools designed for amateurs must

provide ease o f use for people coming from a non artistic background. The low end

VRML tools could have added extra functionality to export content as BIFS. The

BIFS-Anim encoder could be included as part o f a content creation tool, taking the

internal 3D representation o f the animation as input.

Is the content more important than the technology? Compelling content is what

matters most, and does not matter what tools are used to create that content or what

tools are used to transport the content. Recently the largest corporate merger in history

took place between America Online and Time Warner [5]. This merger creates a

company with a large Internet user base and expertise in content delivery over the

Internet from AOL and the expertise in content creation from Time Warner. This

merger is an indication of how important quality content will become in the future of

the Internet.

106

7.1.3 Players

Without MPEG-4 players, MPEG-4 content can’t be played. Currently there are no

commercial MPEG-4 players in existence. The feature set o f an MPEG-4 player will

depend on the environment in which it is used: A player used in a television broadcast

will need different features to a player designed to play 3D animations over the

Internet. Here we s ill look at the needs o f 3D MPEG-4 content over the Internet.

For BIFS-Anim the following is needed from an MPEG-4 player.

• The rendering needs to be of high quality

• It needs to be free

• The player should work as an attachment to an Internet browser

Providing a fast efficient 3D Rendering engine is not a trivial task. If a future MPEG-4

player has poor quality rendering then the whole technology will look bad. A

comparison of the Cosmo VRML player and the Microsoft VRML player shows that

the Microsoft player produces poor results even when the scene consists o f simple

objects and lighting [14]. The loss of smooth colour gradients and accurate lighting

completely destroys the sense of object depth, and therefore of the perception of 3D

space using the Microsoft player. The amount of effort required to produce a good

rendered image is large, and even companies with a lot o f resources don’t always get

it right.

The cost o f developing a professional MPEG-4 player will be very large and for that

player to reach a large audience it must be given away free. It is unlikely that

consumers will pay money for players when they are used to getting them for free.

Netscape Communicator and Internet Explorer are both free as are most VRML

browsers and Real Player. I think it is correct to say that t; le consumer will not pay for

an MPEG-4 player. Not only will the player need to be free but it is also possible that

the creators of the player will need to pay royalties to the companies that own patents

on MPEG-4 technology. The company that produced the best VRML player (Cosmo)

went out o f business.

107

7.2 Future of Web 3D

There are a number o f companies providing web 3D solutions [35]. Most of these are

proprietary. These companies typically provide a free player for their technology and

then provide the content creation tools at a cost. This model is not open to MPEG-4 as

the standard is open and any company can provide a content creation tool.

The number o f companies providing web 3D solutions suggests that this is an

important technology. I confidently predict that 3D technology over the Internet will

become a “killer app”. Whether this solution is MPEG-4 or another technology does

not really matter. This thesis has shown the advantages o f such a technology and any

successful 3D web technology will surely provide a feature set as rich as MPEG-4

BIFS.

108

7.3 References

[1] Olivier Avaro et al, "Mpeg-4 Systems: Overview", Signal Processing: Image

Communication, 1999, pages 6,7,10,12.

[2] Karlheinz Brandenburg, Oliver Kunz and Akihiko Sugiyama, "MPEG-4 Natural

Audio Coding", Signal Processing: Image Communication, 1999, pages 1-2, 10.

[3] Bell G., Parisi, A., Pesce, M. 1995. "The Virtual Reality Modeling Language,

Version 1.0 Specification"

http://vrml.wired.com/vrml.tech/vrml 10-3.html.

[4] Bell, G., Carey, R., Marrin, C. 1996. The Virtual Reality Modeling Language,

Version 2.0 Specification, ISO/IEC CD 14772.

[5] Joe Carroll, "Time Warner and Net firm in world's biggest merger", Irish Times,

Tuesday, January 11, 2000.

[6] Bob Crispen, "Cyberspace", VRMLWorks, May 1999.

[7] Leonard Daly and Laurel Daly, "Broadband and Intemet2: Are We Ready?"

www.realism.com/e3d/.

18] Bruce Damer, "Multi-User VRML Enviroments", VRML Site Magazine, April 97,

www. vrml site. corn/apr97/a. cgi / spot2. html.

[9] Touradj Ebrahimi and Caspar Home, "MPEG-4 Natural Video Coding an

Overview", Signal Processing: Image Communication, 1999, pages 6-12.

[10] William Gibson, "Neuromancer", Ace books July 1994 (ISBN:0441000681).

[11] C. Herpela and A. Eleftheriadis, "MPEG-4 Systems: Elementary Stream

Management", Signal Processing: Image Communication, 1999, Pages 1,2,11.

109

http://vrml.wired.com/vrml.tech/vrml
http://www.realism.com/e3d/

[12] Tiby Kantrowitz, "VRML and Hollywood?", VRML Site Magazine, March 97,

www.vrmlsite.com/mar97/a.cgi/spot4.html.

[13] Rob Koenen, "MPEG-4 Multimedia for our time", IEEE Spectrum February 1999

Volume 36 Number 2, page 3.

[14] Robert Polevoi, VRML—Embers in the Ashes - Part 1,

http://www.webreference.com/3d.

[15] Dr. Tim Regan, "Taking Living Worlds Into Peoples Living Rooms", VRML 98

Symposium Monterey California.

[16] Sandy Ressler, "Musings on the Future o f Web3D",

http://web3d.about.com/compute/web3d/library/weekly/aa010500a.htm.

[17] Eric D. Scheirer, Youngjik Lee and Jae-Woo Yang, "Synthetic and SNHC Audio

in MPEG-4", Signal Processing: Image Communication, 1999, pages 1,4,6.

[18] J. Signes, Y. Fisher, A. Eleftheriadis, "MPEG-4's Binary Format for Scene

Description", Sipnal Processing: Image Communication, 1999, pages 4,17,18.

[19] J. Signes, "Binary format for scene (BIFS): combining MPEG-4 media to build

rich multimedia services. [Conference Paper] SPIE-Int. Soc. Opt. Eng. Proceedings of

Spie - the International Society for Optical Engineering, vol 3653, pt. 1-2, 1998, pages

10- 12 .

[20] Jeff Sonstem, "Pratical Applications for VRML 2.0" - VRML Site Magazine

August 1996.

[21] Misty West, "The Territory is the Map: Approaching Storytelling in 3D space",

VRML Site Magazine, April 97, www.vrmlsite.com/apr97/a.cgi/spotl.html

[22] MPEG-4 Requirements, ISO/IEC JTC1/SC29/WG11 N2323.

110

http://www.vrmlsite.com/mar97/a.cgi/spot4.html
http://www.webreference.com/3d
http://web3d.about.com/compute/web3d/library/weekly/aa010500a.htm
http://www.vrmlsite.com/apr97/a.cgi/spotl.html

[23] MPEG-1 Video Group, "Information Technology - Coding of Moving Pictures

and Associated Audio for Digital Storage Media up to about 1.5 Mbit/s: Part 2 -

Video," ISO/IEC 11172-2, International Standard, 1993.

[24] MPEG-2 Video Group, "Information Technology - Generic Coding o f Moving

Pictures and Associated Audio: Part 2 - Video," ISO/IEC 13818-2, International

Standard, 1995.

[25] Coding o f Audio-Visual Objects: Visual, ISO/IEC 14496-2 Final Draft

International Standard, ISO/IEC JTC1/SC29/WG11 N2502, December 1998.

[26] Coding of Audio-Visual Objects: Audio, ISO/IEC 14496-3 Final Draft

International Standard, ISO/IEC JTC1/SC29/WG11 N2503, December 1998.

[27] Coding o f Audio-Visual Objects: Systems, ISO/IEC 14496-1 Final Draft

International Standard, ISO/IEC JTC1/SC29/WG11 N2501, December 1998, pages

19-21, 29-32, 86-104, 131-136, 218-226.

[28] Overview of the MPEG-4 Standard, Final Draft March 1999, ISO/IEC

JTC1/SC29/WG11 N2725.

[29] Flavour Web Site, http://www.ee.columbia.edu/flavour

[30] Coding of Audio-Visual Objects: Reference Software, ISO/IEC 14496-5 Final

Draft International Standard, ISO/IEC JTC1/SC29/WG11 N2505, December 1998.

[31] API's for Systems Software Implementation ISO/IEC JTC1/SC29WG11 M3111,

Contribution for San Jose, California, January 1998.

[32] Orads Web site, http://www.orad.co.il.

[33] Internet Draft "drsft-ietf-avt-rtp-mpef4-01.txt" RTP Payload for MPEG-4

Streams.

I l l

http://www.ee.columbia.edu/flavour
http://www.orad.co.il

[34] Internet D r *1 "draft-guillemot-genrtp-01.txt" RTP Payload Format for MPEG-4

with Scaleable & Flexible Error Resiliency.

[35]http://web3d.about.com/compute/web3d/library/blw3dcomp.htm.

112

http://web3d.about.com/compute/web3d/library/blw3dcomp.htm

Annex A FieldCodingTable Data Structure

This data structure contains parameters relating to the quantization of the field. It is
created from the field’s entry in the relevant node coding table.

Class
FieldCodingTable {

float floatMinf];

float floatMax[];

float intMin[];

float intMax[];

int defaultNbBits;

The minimum default bounds for fields of type SFFIoat,
SFVec2f and SFVec3f. These values are obtained from
the “[m, M]” column of the node coding table.
The minimum default bounds for fields of type SFFIoat,
SFVec2f and SFVec3f. These values are obtained from
the “[m, M]” column of the node coding table.
The minimum default bounds for fields of type SFInt32.
These values are obtained from the “[m, M]” c lumn of
the node coding table.
The minimum default bounds for fields of type SFInt32.
These values are obtained from the “[m, M]” column of
the node coding table.
The number of bits used by default for each field. Only
used when the quantization category of the field is 13. For
quantization category 13, the number of bits used for
coding is also specified in the node coding (e.g “13 16" in
the node coding table means category 13 with 16 bits).

A l

Annex B AnimFieldQP Data Structure

This data structure contains the necessary quantization parameters and information for the
animation of a field. It is updated throughout the BIFS-Anim session.

class AnimFieldQP {
int animType;

boolean useDefault;

boolean isTotal;

int numElement;

int indexList [];

float [] Imin;

float[] Imax;

int[] Iminlnt;

int[] Pmin;

int INbBits;

int PNbBits;

The animation method for the field. This is given by the “A
column of the node coding table for each node.

If this bit is set to TRUE, then the bounds used in intrj
mode are those specified in the “[m, M]” column of the
node coding table. The default value is FALSE.
If the field is a multiple field and if this boolean is set t(
TRUE, all the components of the multiple field are
animated.
The number of elements being animated in the field. This
is 1 for all single fields, and equal to or greater than 1 fo
multiple fields.
If the field is a multiple field and if isTotal is fa se, this is
the list of the indices of the animated SFFie ids. Fo
instance, if the field is an MFField with elemenis 3,4 am
7 being animated, the valuse of indexList will be {3,4,7}
The minimum values for bounds of the field in intra mode
This value is obtained from the “[m, M]” column of th(
node coding table (if useDefault is TRUE), the
InitialAnimQP (if useDefault is FALSE and the las
intra did not hold any new AnimQP), or the AnimQP.
The maximum values for bounds of the field in intra mode
This value is obtained from the “[m, M]” colurm of the
semantics table (if useDefault is TRUE), the
InitialAnimQP (if useDefault is FALSE and if the las
intra did not hold any new AnimQP), or the AnimQP.
The minimum value for bounds of variations of intege
fields in intra mode. This value is obtained from the
InitialAnimQP (if the last intra did not hold any nev
AnimQP) or AnimQP structure.
The minimum value for bounds of variations of the field ir
predictive mode. This value is obtained from the
InitialAnimQP (if the last intra did not hold any nev
AnimQP) or AnimQP.
The number of bits used in intra mode for the field. This
value is obtained from the InitialAnimQP or AnimQP.
The number of bits used in predictive mode for the field
This value is obtained from the InitialAnimQP (if the
last intra did not hold any new AnimQP) or AnimQi
structure.

B1

Annex C Adaptive Arithmetic Decoder for BIFS-Anim

The follwing procedures, in C code, describe the adaptative arithmetic deoder used in
a BIFS-Anim session. The model is specified through the array int*
cumul f req [] . The decoded symbol is returned through its index in the model.

First, the following integers are defined :

static long bottom=0, ql=2A14, q2=2A15, q3=3*2A14,
top=2A16;
The decoder is initialized to start decoding an arithmetic coded bitstream by calling
the following procedure.

static long low, high, code_value, bit, length, sacindex,
cum, zerorun=0;
void decoder_reset()
{
int i;
zerorun =0; /* clear consecutive zero's counter

* /
codevalue = 0;
low = 0;
high = top;
for (i = 1; i <= 16; i++) { //16 bits are read

ahead
bit_out_psc_layer();
code value = 2 * code_value + bit;

}
used_bits = 0;

}

In the BIFS-Anim decoding process, a symbol is decoded using a model specified
through the array cumulf req [] and by calling the following procedure.

static long low, high, code_value, bit, length, sacindex,
cum, zerorun=0;

int aa_decode(int cumul_freq[])
{
length = high - low + 1;
cum = (-1 + (code_value - low +1) * cumul_freq[0]) /

length;
J for (sacindex = 1; cumul_freq[sacindex] > cum;
sacindex++) ;
high = low - 1 + (length * cumul freq[sacindex-1]) /

cumul_ freq[0] ;
low += (l e n g t h * c u m u l _ f r e q [s a c i n d e x]) / c u m u l _ f r e q [0] ;

f o r (; ;) {

Cl

if (high < q2) ;
else if (low >= q2) {

code value -= q2;
low -= q2;
high -= q2;

}
else if (low >= ql && high < q3) {

code_value -= ql;
low - ql;
high -= ql;

}
else {
break;

}
low *= 2;
high = 2 *high + 1 ;
bit_out_psc_layer();
code_value = 2 *code_value + bit;
used_bits++;

}
return (sacindex-1);

}

void bit_out_psc_layer()
{
bit = getbits(1);

}

The model is specified in the array cumul f req []. It is reset with the following
procedure.

void model reset(int nbBits)
{
int nbValues = (l<<nbBits)+1;
int* cumul freq = (int*) malloc(sizeof(int)*nbValues);
int i;
for (i=l;i<=nbValues;i++) {

cumul_freq[i] = nbValues-i;
}

The model is updated when the value symbol is read with the following procedure.

void update_model(int cumul_freq[], int symbol) {
if (cumul_freq[0] == ql) { //The model is rescaled to

avoid overflow
int cum = 0;
for(int i=nb_of_symbols-l; i>=0; i--) {

cum += (cumul_freq[i]-cumul_freq[i+1]+1)/2;
cumul_freq[i] = cum;

}
cumul_freq[nb_of_symbols] = 0;

}

C2

while(symbol>0)
cumul_freq[symbol--] + + ;

C3

Annex D Example Files used by Im1 BIFS Encoder and Mux Tools

This code is an example o f a file consumed by the BIFS Encoder. The scene

description information is at the top of the file and is similar to VRML. The textual

description of the Object Descriptors is in the second half o f the example.

Group {
DEF location Transform {

Translation 1 1 1
Children [

Shape {
ggeometry Cylinder {

radius 5
height 6

}

}

]

}

DEF Anim AnimationStream {
loop FALSE
url 10

}

}

UPDATE OD [
{

objectDescriptorlD 10
es_descriptor {

es_Number 1
url earthStream.mp4
streamData 5
decConfigDescr {

streamType 4 // AnimationStream

D1

bufferSizeDB 1000
bifsDecoderConfig {

nodelDbits 10
routelDbits 10
isCommandStream FALSE
animMask earthStream.mask

}

}

alConfigDescr {
useTimeStampsFlag TRUE
timeStampLength 10

}

}

}

This code is an example of a file consumed by the Mux.

// Initial OD:

objectDescriptorlD 0
es_descriptor [

{

es_Number 1
fileName earth.od
decConfigDescr {
streamType 2 // OD Stream
bufferSizeDB 1000
}

alConfigDescr {
useAccessUnitStartFlag TRUE
useAccessUnitEndFlag TRUE
useRandomAccessPointFlag TRUE
useTimeStampsFlag TRUE

D2

timeStampResolution 1000
timeStampLength 14
}

}

{

es_Number 2
fileName earth.bif
decConfigDescr {
streamType 4 // BIFS Stream
bufferSizeDB 1000
bifsDecoderConfig {

nodelDbits 10
routelDbits 10
isCommandStream TRUE
pixelMetric TRUE

}

}

alConfigDescr {
useAccessUnitStartFlag TRUE
useAccessUnitEndFlag TRUE
useRandomAccessPointFlag TRUE
useTimeStampsFlag TRUE
timeStampResolution 100
timeStampLength 14
}

}

]

// Media streams ODs

objectDescriptorlD 10
es descriptor {

es Number 1

D3

fileName earthStream.frames
streamData 5
decConfigDescr {
streamType 8 // AnimationStream
bufferSizeDB 1000
}

alConfigDescr {
useTimeStampsFlag TRUE
//timeStampResolution 1000 // clock ticks/s
timeStampLength 10
}

}

D4

Annex E Syntactic Description Language

E.1 Introduction

The elementary constructs are described first, followed by the composite syntactic constructs,
and arithmetic and logical expressions. Finally, syntactic control flow and built-in functions are
addressed. Syntactic flow control is needed to take into account context-sensitive data.
Several examples are used to clarify the structure.
E.2 E'amentary Data Types

The SDL uses the following elementary data types:
1. Constant-length direct representation bit fields or Fixed Length Codes — FLCs. These

describe the encoded value exactly as it is to be used by the appropriate decoding
process.

2. Variable length direct representation bit fields, or parametric FLCs. These are FLCs for
which the actual length is determined by the context of the bitstream (e.g., the value of
another parameter).

3. Const?nt-length indirect representation bit fields. These require an extra lookup into an
appropriate table or variable to obtain the desired value or set of values.

4. Variable-length indirect representation bit fields (e.g., Huffman codes).
These elementary data types are described in more detail in the clauses to follow
immediately.
All quantities shall be represented in the bitstream with the most significant byte first, and also
with the most significant bit first.
E.2.1 Constant-Length Direct Representation Bit Fields

Constant-length direct representation bit fields shall be represented as:

Rule E.1: Elementary Data Types
[aligned] type[(length)] element_name [= value]: H C++-style comments allowed

The type may be any of the following: int for signed integer, unsigned int for unsigned
integer, double for floating point, and bit for raw binary data. The length attribute indicates
the length of the element in bits, as it is actually stored in the bitstream. Note that a data type
equal to double shall only use 32 or 64 bit lengths. The value attribute shall be present only
when the value is fixed (e.g., start codes or object IDs), and it may also indicate a range of
values (i.e., ‘0x01..OxAF’). The type and the optional length attributes are always present,
except if the data is non-parsable, i.e., it is not included in the bitstream. The keyword
aligned indicates that the data is aligned on a byte boundary. As an example, a start code
would be represented as:
aligned bit(32) picture_start_code=0x00000100;

El

An optional,numeric modifier, as in aligned(32), may be used to signify alignment on other
than byte boundary. Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to
alignment shall have the value ‘O’. An entity such as temporal reference would be represented
as:
unsigned int(5) temporal_reference;

where unsigned int (5) indicates that the element shall be interpreted as a 5-bit unsigned
integer. By default, data shall be represented with the most significant bit first, and the most
significant byte first.
The value of parsable variables with declarations that fall outside the flow of declarations (see
E.5) shall be set to 0.
Constants shall be defined using the keyword const.
EXAMPLE —
const int SOME_VALUE=255; // non-parsable constant
const bit(3) BIT PATTERN=1; // this is equivalent to the bit string "001"

To designate binary values, the Ob prefix shall be used, similar to the Ox prefix for
hexadecimal numbers. A period ('.’) may be optionally placed after every four digits for
readability. Hence OxOF is equivalent to 0b0000.1111.
In several .Yistances, it may be desirable to examine the immediately following bits in the
bitstream, without actually consuming these bits. To support this behavior, a character
shall be placed after the parse size parentheses to modify the parse size semantics.

Rule E.2: Look-ahead parsing
[aligned] type (length) * element_name\

For example, the value of next 32 bits in the bitstream can be checked to be an unsigned
integer without advancing the current position in the bitstream using the following
representation:
aligned unsigned int (32)* next_code;

E.2.2 Variable Length Direct Representation Bit Fields

This case is covered by Rule E.1, by allowing the length attribute to be a variable included in
the bitstream, a non-parsable variable, or an expression involving such variables.
EXAMPLE —
unsigned int(3) precision;
int(precision) DC;

E.2.3 Coiistant-Length Indirect Representation Bit Fields

Indirect representation indicates that the actual value of the element at hand is indirectly
specified by the bitstream through the use of a table or map. In other words, the value
extracted from the bitstream is an index to a table from which the final desired value is
extracted. This indirection may be expressed by defining the map itself:

Rule E.3: Maps
map MapName (outputjype) {

index, {value_ 1, ... value_M},

}

E2

These tables are used to translate or map bits from the bitstream into a set of one or more
values. The input type of a map (the index specified in the first column) shall always be bit.
The output_type entry shall be either a predefined type or a defined class (classes are defined
in E.3.1). Ttie map is defined as a set of pairs of such indices and values. Keys are binary
string constants while values are outputjtype constants. Values shall be specified as
aggregates surrounded by curly braces, similar to C or C++ structures.
EXAMPLE —
class YUVblocks {// classes are fully defined later on

int Yblocks;
int Ublocks;
int Vblocks;

}

// a table.that relates the chroma format with the number of blocks
// per signal component
map blocks_per_component (YUVblocks) (

ObOO, {4, 1, 1}, // 4:2:0
ObOl, {4, 2, 2) , // 4:2:2
OblO, {4, 4, 4} // 4:4:4

}

The next rule describes the use of such a map.

Rule E.4: Mapped Data Types
type (MapName) name,

The type of the variable shall be identical to the type returned from the map.
EXAMPLE —
YUVblocks(blocks_per_component) chroma_ format;

Using the above declaration, a particular value of the map may be accessed using the construct:
chroma^format.Ublocks.

E.2.4 Variable Length Indirect Representation Bit Fields

For a variable length element utilizing a Huffman or variable length code table, an identical
specification to the fixed length case shall be used:
class val {

unsigned int foo;
int bar;

)

map sample_vlc_map (val) {
ObOOOO.001, {0, 5},
ObOOOO.0001, (1, -14}

}

The only dif<drence is that the indices of the map are now of variable length. The variable-
length codewords are (as before) binary strings, expressed by default in ‘0b’ or 'Ox1 format,
optionally using the period ('.’) every four digits for readability.
Very often, variable length code tables are partially defined. Due to the large number of
possible entries, it may be inefficient to keep using variable length codewords for all possible
values. This necessitates the use of escape codes, that signal the subsequent use of a fixed-

E3

length (or even variable length) representation. To allow for such exceptions, parsable type
declarations are allowed for map values.
EXAMPLE — This example uses the class type 'val’ as defined above.

map sample_map_with_esc (val) {
ObOOOO.001, {0, 5],
ObOOOO.0001, {1, -14},
ObOOOO.0000.1, (5, int(32)},
ObOOOO.0000.0, {0, -20}

}

When the codeword ObOOOO.0000.1 is encountered in the bitstream, then the value ‘5' is assigned to the
first element (val.foo). The following 32 bits are parsed and assigned as the value of the second
element (val.bar). Note that, in case more than one element utilizes a parsable type declaration, the
order is significant and is the order in which elements are parsed. In addition, the type within the map
declaration shali match the type used in the class declaration associated with the map's return type.

E.3 Composite Data Types

E.3.1 Classes

Classes are the mechanism with which definitions of composite types or objects is performed.
Their definition is as follows.

Rule C.1: Classes
[aligned] [abstract] [expandable[(maxClassSize)]] class object_name

[extends parent_class] [: bit (length) [id_name=] ob jectjd \ id_range] {
[element, ...]// zero or more elements

}

The different elements within the curly braces are the definitions of the elementary bitstream
components discussed in 12.2 or control flow elements that will be discussed in a subsequent
subclause.
The optional keyword extends specifies that the class is "derived” from another class.
Derivation implies that all information present in the base class is also present in the derived
class, and that, in the bitstream, all such information precedes any additional bitstream
syntax declarations specified in the new class
The optional attribute id_name allows to assign an objectjd, and, if present, is the key
demultiplexing entity which allows differentiation between base and derived objects. It is also
possible to have a range of possible values: the id_range is specified as startJd .. endjd,
inclusive of both bounds.
If the attribute id_name is used, a derived class may appear at any point in the bitstream
where its base class is specified in the syntax. This allows to express polymorphism in the
SDL syntax description. The actual class to be parsed is determined as follows:

The base class declaration shall assign a constant value or range of values to objectjd.

Each derived class declaration shall assign a constant value or ranges of values to
objectjd. This value or set of values shall correspond to legal objectjd value(s) for the base
class.
NOTE 1 — Derivation of classes is possible even when objectjds are not used. However, in that case
derived classes may not replace their base class in the bitstream.

NOTE 2 — Derived classes may use the same objectjd value as the base class. In that case classes
can only be discriminated through context information.

E4

EXAMPLE —
class slice: aligned bit(32) slice_start_code=0x00000101 .. OxOOOOOlAF {

I I here we get vertical__size_extension, if present
if (scalable_mode==DATA_PARTITIONING) {

unsigned int (7) priority_breakpoint;
}

class foo {
int(3) a;

)

class bar extends foo {
int(5) b; // this b is preceded by the 3 bits of a
int(10) c;

}

The order of declaration of the bitstream components is important: it is the same order in which the
elements appear in the bitstream. In the above examples, bar.b immediately precedes bar.c in the
bitstream.

Objects may also be encapsulated within other objects. In this case, the element in Rule C.1
is an object itself.
E.3.2 Abstract Classes

When the abstract keyword is used in the class declaration, it indicates that only derived
classes of this class shall be present in the bitstream. This implies that the derived classes
may use the entire range of IDs available. The declaration of the abstract class requires a
declaration of an ID, with the value 0.
EXAMPLE —
abstract class Foo : bit(l) id=0 (I I the value 0 is not really used

1

// derived classes are free to use the entire range of IDs
class FooO extends Foo : bit(l) id=0 {

)

class Fool extends Foo : bit(l) id=l {

)

class Exampjj {
Foo f; // can only be FooO or Fool, not Foo

}

E.3.3 Expandable classes

When the expandable keyword is used in the class declaration, it indicates that the class
may contain implicit arrays or undefined trailing data, called the "expansion". In this case the
class encodes its own size in bytes explicitly. This may be used for classes that require
future compatible extension or that may include private data. A legacy device is able to
decode an expandable class up to the last parsable variable that has been defined for a
given revision of this class. Using the size information, the parser shall skip the class data
following the l*?st known syntax element. Anywhere in the syntax where a set of expandable

E5

classes with objectjd is expected it is permissible to intersperse expandable classes with
unknown objectjd values. These classes shall be skipped, using the size information.
The size encoding precedes any parsable variables of the class. If the class has an
objectjd, the encoding of the objectjd precedes the size encoding. The size information
shall not include the number of bytes needed for the size and the objectjd encoding.
Instances of expandable classes shall always have a size corresponding to an integer number
of bytes. The size information is accessible within the class as class instance variable
sizeOfI n s t a n c e .

If the expandable keyword has a maxClassSize attribute, then this indicates the maximum
permissible size of this class in bytes, including any expansion.
The length encoding is itself defined in SDL as follows:
int sizeOfInstance = 0;
bit(l) nextByte;
bit (7) sizeOfInstance;
while(nextByte) (

bit(l) nextByte;
bit (7) sizeByte;
sizeOf Instance = sizeOf Instance«7 | sizeByte;

}

E.3.4 Parameter types

A parameter type defines a class with parameters. This is to address cases where the data
structure of the class depends on variables of one or more other objects. Since SDL follows
a declarative approach, references to other objects, in such cases, cannot be performed
directly (none is instantiated). Parameter types provide placeholders for such references, in
the same way as the arguments in a C function declaration. The syntax of a class definition
with parameters is as follows.

Rule C.2: Class Parameter Types
[aligned] [abstract] class object_name [(parameter list)] [extends parent_class]

[: b i t (length) [id_name=]
ob jectjd | id_range] {

[<element; ...]// zero or more elements
}

The parameter list is a list of type names and variable name pairs separated by commas.
Any element of the bitstream, or value derived from the bitstream with a variable-length
codeword, or a constant, can be passed as a parameter.
A class that uses parameter types is dependent on the objects in its parameter list, whether
class objects or simple variables. When instantiating such a class into an object, the
parameters have to be instantiated objects of their corresponding classes or types.
EXAMPLE —
class A {

// class body

unsigned int (4) format;
)

class B (A a, int i) { // B uses parameter types
unsigned int(i) bar;

if(a.format == SOME_FORMAT) {

E6

I

class C {
int (2) i;
A a;
B foo(a, I); // instantiated parameters are required

}

E.3.5 Arrays

Arrays are defied in a similar way as in C/C++, i.e., using square brackets. Their length,
however, can depend on run-time parameters such as other bitstream values or expressions
that involve such values. The array declaration is applicable to both elementary as well as
composite objects.

I

Rule A.1: Arrays
typespec name [length] ;

typespec is a type specification (including bitstream representation information, e.g.
‘int (2)'). The attribute name is the name of the array, and length is its length.
EXAMPLE —

unsigned int(4) a [5];
int(10) b;
int(2) c[b] ;

Here 'a' is an array of 5 elements, each of which is represented using 4 bits in the bitstream and
interpreted as an unsigned integer. In the case of 'c \ its length depends on the actual value of 'b'. Multi­
dimensional arrays are allowed as well. The parsing order from the bitstream corresponds to scanning
the array by incrementing first the right-most index of the array, then the second, and so on .

E.3.6 Partial Arrays

In several situations, it is desirable to load the values of an array one by one, in order to
check, for example, a terminating or other condition. For this purpose, an extended array
declaration is allowed in which individual elements of the array may be accessed.

Rule A.2: Partial Arrays
typespec name [[index]];

Here index is the element of the array that is defined. Several such partial definitions may be
given, but they shall all agree on the type specification. This notation is also valid for
multidimensional arrays.
EXAMPLE —

int (4) a [[3]] [[5]] ;

indicates the element a(5, 3) of the array (the element in the 6lh row and the 4th column), while

int(4) a [3] [[5]];

indicates the ent.. e sixth column of the array, and

E7

int(4) a[[3]] [5];

indicates the entire fourth row of the array, with a length of 5 elements.

NOTE — a[5] means that the array has five elements, whereas a[[5]] implies that there are at least six.
E.3.7 Implicit Arrays

When a series of polymorphic classes is present in the bitstream, it may be represented as an
array of the same type as that of the base class. Let us assume that a set of polymorphic
classes is defined, derived from the base class Foo (may or may not be abstract):
class Foo : int(16) id = 0 {

}

For an array of such objects, it is possible to implicitly determine the length by examining the
validity of the class ID. Objects are inserted in the array as long as the ID can be properly
resolved to one of the IDs defined in the base (if not abstract) or its derived classes. This
behavior is indicated by an array declaration without a length specification.
EXAMPLE 1 —

class Example {
Foo f [] ; // length implicitly obtained via ID resolution

}

To limit the minimum and maximum length of the array, a range specification may be inserted in the
specification of the length.

EXAMPLE 2 —

class Example {
Foo f[l .. 255]; I I at least 1, at most 255 elements

}

In this example, ‘f may have at least 1 and at most 255 elements.

E.4 Arithmetic and Logical Expressions

All standard arithmetic and logical operators of C++ are allowed, including their precedence
rules.
In order to accommodate complex syntactic constructs, in which context information cannot
be directly obtained from the bitstream but only as a result of a non-trivial computation, non-
parsable variables are allowed. These are strictly of local scope to the class they are defined
in. They may be used in expressions and conditions in the same way as bitstream-level
variables. In the following example, the number of non-zero elements of an array is computed,
unsigned int(6) size;
int(4) array[size];

int i; // this is a temporary, non-parsable variable
for (i=0, n=0; i<size; i++) {

if (array![i]]!=0)
n++; '

j

int(3) coefficients[n];
// read as many coefficients as there are non-zero elements in array

E8

E.5 Syntactic Flow Control

The syntactic flow control provides constructs that allow conditional parsing, depending on
context, as well as repetitive parsing. The familiar C/C++ if-then-else construct is used for
testing conditions. Similarly to C/C++, zero corresponds to false, and non-zero corresponds to
true.

Rule FC.1: Flow Control Using If-Then-Else
if (condition) {

> [else if (condition) {

}] [else {

}]

EXAMPLE 1 —
class conditional_object {

unsigned int(3) foo;
bit(l) bar_flag;
if (bar_flag) {

unsigned int (8) bar;
1
unsigned int(32) more_foo;

Here the presence of the entity 'bar1 is determined by the ‘bar_flag’.
EXAMPLE 2 —

class conditional_object {
unsigned int(3) foo;
bit(l) bar_flag;
if (bar_flag) {

unsigned int (8) bar;
} else {

unsigned int(some_vlc_table) bar;
}
unsigned int(32) more_foo;

Here we allow two different representations for ‘bar’, depending on the value of 'bar_flag'. We could
equally well have another entity instead of the second version (the variable length one) of 'bar' (another
object, or another variable). Note that the use of a flag necessitates its declaration before the conditional
is encountered. Also, if a variable appears twice (as in the example above), the types shall be identical.

In order to facilitate cascades of if-then-else constructs, the 'switch' statement is also allowed.

Rule FC.2: Flow Control Using Switch
switch (condition) {

[case labell: ...]
[default:]

}

The same category of context-sensitive objects also includes iterative definitions of objects.
These simply imply the repetitive use of the same syntax to parse the bitstream, until some
condition is met (it is the conditional repetition that implies context, but fixed repetitions are

E9

obviously treated the same way). The familiar structures of 'for', ‘while’, and ‘do’ loops can be
used for this purpose.

Rule FC.3: Flow Control Using For
for (expressions, expression2; expression3) {

}

expression 1 is executed prior to starting the repetitions. Then expression2 is evaluated, and if
it is non-zero (true) the declarations within the braces are executed, followed by the execution
of expression3. The process repeats until expression2 evaluates to zero (false).
Note that it is not allowed to include a variable declaration in expressionl (in contrast to C++).

Rule FC.4: Flow Control Using Do
do {

} w h ile (condition);

Here the block of statements is executed until condition evaluates to false. Note that the block
will be executed at least once.

Rule FC.5: Flow Control Using While
while (condition) {

}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).

E.6 Built-lr Operators

The following built-in operators are defined.

Rule 0.1: lengthof() Operator
lengthof (variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length
is the number of bits that was most recently used to parse the quantity at hand. A return value
of 0 means that no bits were parsed for this variable.
E.7 Scoping Rules

All parsable variables have class scope, i.e., they are available as class member variables.
For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is
introduced by curly braces: ‘{‘ and ‘}’). In particular, only variables declared in class scope are
considered class member variables, and are thus available in objects of that particular type.

ElO

