TRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)

The Hardware Implementation of Private-key Block ’
Ciphers

by

@©DMohsin Riaz

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the requirements for
the degree of Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

July, 1999

St. John’s Newfoundland Canada

Dedication

To my mom, Qaiser, whose selfless love and tenderness for me always make me strive for

better in life.

Abstract

The National Institute of Standards and Technology (NIST) in the U.S. has initiated
a process to develop a Federal Information Processing Standard (FIPS) for an Advanced
Encryption Standard (AES) [1], to become the standard for private-key block encryption.
The new encryption algorithm will be based on a 128-bit block size and the key size can be
128, 192, or 256 bits. AES will be a replacement for the Data Encryption Standard (DES) [2]
which is based on a 64-bit block size and has a 56-bit key. In this regard, the agency has
accepted candidate algorithm nominations for AES.

One of the important evaluation criteria concerns the efficiency of the private-key block

cipher from the i ion perspective . RC6 [3] and CAST-256 [4] are among

the fifteen candidate algorithms that have been accepted in the first round of the AES
development phase. This thesis investigates the efficiency of these two AES candidates from
the hard impl i ive with Field F Gate Arrays (FPGAs)

as the target technology.

Our analysis and synthesis studies of both the ciphers suggest it would be desirable for
FPGA implementations to have a simpler cipher design that makes use of simpler operations
that not only possess good cryptographic properties, but also make the overall cipher design
efficient from the i i ive. As a result, the thesis also proposes

a new private-key block cipher design that, not only is very efficient as far as its implemen-

tation in FPGAs is concerned, but at the same time is secure against the two most potent

attacks that have been applied to block ciphers, namely, dif ial and linear cry

Acknowledgements

I wish to express my gratitude to my mentor and supervisor, Dr. Howard Heys for his
valuable time, guidance, and financial support throughout the course of my research. His
constant encouragement especially during hard times is not only appreciated, but will always
be remembered.

A special thank you to my family and friends, who had always been there for me. To
Bala and Sidhu - better friends I could not ask for - a heart-felt appreciation for reminding
me what else there is to life.

I also appreciate the timely support provided to me by Mr. Michael Rendell while I was

battling along with the CAD tools.

iii

Contents

Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures viii
List of Tables xi
Symbols and Abbreviations xii

1 Introduction 1
1.1 Motivation forthe Research 3
12 ‘OnthineofTHOEE == o = 5 Sumiemine = 2 a o siasmissmemseie i 8 o 4

2 Review of Previous Research 6
2.1 Private Key Block Ciphers 8
211 Avchitectures . . ;oo cooedis 5e sodas a5 aeiie s @ @ s e 9

2.1.2 Popular Private-key Block Ciphers 12

2.1.3 Advanced Encryption Standard (AES) 14

22 Cryptographic Properties of 2 Block Cipher 15
221 16
222 17
2.23 Completeness 17
224 Strict Avalanche Criterionccon.a..... 17
225 Information TheOry - . .o ooouvnneoanonnaan. .. 18
226 Tverbibiiy wronessEnaE s § ¢ aaETITERE A E E S SREEE 18

2.3 Cryptanalysis of Private-key Block Ciphers 19
23.1 Brute force Attackl 19
2.3.2 Differential Cryptanalysis 20
238" Linear Cryptanalysis + = 5 57 ¥ a3 swaisd s 5 5 ¥ 5 8 & swales 21
234 THOHEARBE woc s e o v vs smmsan 5 & 8 € ¥ ¥ 5.5 e < 22

2.4 Security of RC6 and CAST-256 Encryption Algorithms 22

5 Comlumion s 4145 8 24 4 9 Sraler @ i T s o 5 sl enssn v 24

for Cry hic Applicati 25

3.1 Hardware Encryption vs. Software Encryption 26

3.2 Field Programmable Gate Arrays (FPGAS) 27
321 Advantages of FPGAsover MPGAS 29
322 Disadvantages of FPGAsover MPGAS 30

33 SRAMbMd FPGAS - = s ssasnsnisvnss s saesadaens 31
3.3.1 Xilinx XC4000 Structure 32

3L XCAD00SHUCHS! e o i s winrsimsnsrssans s s 33

'S

Programming Technologyonou. ..

Interconmectionsot

3.4 Cryptographic Algorithms: FPGAs vs. ASICs

3i5 CoNCHBIOR vravs = & & v 2 « & % & % # CSIEHRETES B 5 B 5 B ¥ B 6 B @ e &

Design of RC6 and CAST-256
4.1 The RC6 Cipher

4.2 The CAST-256 CIDhEr - « « « « oo et et e e et
43 D HTORMERt .« . vt e e
44 Designof REE: s 5oz vy pouennibs RS P B P85 8 BVAROENS 25 8
441 ROSDatapatli = o smwowmm s v 5 ¢ ¥ 6 & & S SpREEEE S ¥ 5 @
441.1 Design of 32-bit Barrel Shifter

4412 Designof 32-bit Adder

4413 Design of 32-bit XOR

4414 Design of 32 x 32 “Partial” Integer Multiplier

4.42 RC6 Control Path Design
4.42.1 RC6 Global State Machine

4.42.2 RC6 Data Flow Controller

443 KeyStoragefor RC6
4.4.4 Simulation and Synthesis Results
4.5 Design of CAST-256o tiiit it
4.5.1 CAST-256 Datapath

4.5.1.1 Generic Round Function

L)

4512 TheS-BoxDeSign -voveuenooo.. 68

452 CAST-356 Contral Path DeBRH = : « v convawrmsas wimesnis 69
4521 CAST-236 Global State Machine 69

4.5.2.2 CAST-256 Data Flow Controller 70

453 TheKeyStorage Unit . ..o svosvunnsvnvssnnsesssn n
454 Simulation and Synthesis Results - 7

4.6 Comparison of RC6 and CAST-256 Ciphers 75
461 Some Recent Modifications . - « « «o at i 76

ol Conlomion....onxssoasssssfitnopmpesnasdnaissdsisns m
A New Private-key Block Cipher Design 79
5.1 The Proposed Gipher o oo v oe et e 79
5.2 FPGA Implementation of the Proposed Cipher. 82
521 Datapatho 82
522 Control Path Design . - « - . « oot oot oe e 84
5.2.3 The Key Storage Uit . - . - -« o0 o ovoin e e e e 84
5.2.4 Simulation and Synthesis Results 8

5.3 Security ADAlYSiS - e e e 87
5.3.1 Selecting Nonlinear Round Functions 87
532 Linear Cryptanalysis - - « « -« « oo oo ettt 88
533 Differential Cryptanalysis - . . - - - oot ei e 9

54 COMCMSIOn . . - . . . oo e 96
97

Conclusions and Future Work

6.1 Summaryofthe Thesis . . . - . .. oottt

6.2 Suggestions for Future Workl
Bibliography

A VHDL Description of RC6 Global State Machine

Gate-Level Simulation of RC6 Cipher

Gate-Level Simulation of CAST-256 Cipher

Gate-Level Simulation of Fast Hardware Cipher (FHC)

viii

101

109

127

136

List of Figures

2.1
22
2.3
2.4

3.1
3.2
33
34

3.6
3.7
3.8

4.2
4.3
44

A General Cryptosystem -« covinvn e e nn e 8
Private and Public Key Cryptosystems 9
A Basic Substitution-Permutation Network 10
ABesicFeistelStructure cicv it ineiiaie e 12
A Simple FPGA TAXOMOMY .« -« <« « o v o e e e e et e e e s 28
A Xilinx XC4000 Structure v o v v v e i 33
Pass Transistor Control Technique 35
Multiplexer Control Techniqueo oo v oo oo nnn.. 35
A Lookup Table Implementation 36
A Xilinx XC4000 Switch Matrixo comuvneanannnnn 37
Simplified Logic Schematic of a Xilinx CLB 38
Simplified Block Diagram of Xilinx IOB 39
Encryption with RC6-w/r/b 44
Encryption with CAST-256 46

of RC6 ion in 48

Functional Representation of RC6 Datapath

4.3
4.6
4.7
4.8
49
4.10
411

B.1
B.2
B.3
B4

B6
B7
B8
B9

C1
C2
C3

C ble Logic Block Sch ic of the 32-bit Carry Ripple Adder . 52
A High Level Organization of Wallace Tree Multiplier 58
A Component Interface of RC6 Encryptor 60
AC Interface ion of RC6 Global State Machine 62
CAST-236 Encryption in Hardware 66
‘The Generic Round Function Module 68
CAST-256 State Machine Unit 70
CAST-256 DataFlow Controller.. 71
Encryption with Fast Hardware Cipher (FHC) 81

of Fast Cipher in Hardware 83
Gate-Level Simulation of RC6 Cipher Design 118
Gate-Level Simulation of RC6 Cipher Design Cont'd 119
Gate-Level Simulation of RC6 Cipher Design Cont’d 120
Gate-Level Simulation of RC6 Cipher Design Cont’d 121
Gate-Level Simulation of RC6 Cipher Design Cont'd 122
Gate-Level Simulation of RC6 Cipher Design Cont’'d 123
Gate-Level Simulation of RC6 Cipher Design Cont'd 124
Gate-Level Simulation of RC6 Cipher Design Cont’d 125
Gate-Level Simulation of RC6 Cipher Design Cont'd 126
Gate-Level Simulation of CAST-256 Cipher Design . - - - - - . - 128
Gate-Level Simulation of CAST-256 Cipher Design Cont’d 129
Gate-Level Simulation of CAST-256 Cipher Design Cont’d 130

C4
C.5
C6
Cc7
Ccs8

D.1
D.2
D.3
D4
D.5
D.6
D.7
D.8

Gate-Level Simulation of CAST-256 Cipher Design Cont’d 131
Gate-Level Simulation of CAST-256 Cipher Design Cont'd 132
Gate-Level Simulation of CAST-256 Cipher Design Cont’d .

Gate-Level Simulation of CAST-256 Cipher Design Cont'd

Gate-Level Simulation of CAST-256 Cipher Design Cont'd 135
Gate-Level Simulation of FHC Design 137
Gate-Level Simulation of FHC Design Cont’d

Gate-Level Simulation of FHC Design Cont'd

Gate-Level Simulation of FHC Design Cont'd 140
Gate-Level Simulation of FHC Design Cont'd 141
Gate-Level Simulation of FHC Design Cont'd 142
Gate-Level Simulation of FHC Design Cont’d 143
Gate-Level Simulation of FHC Design Cont'd 144

List of Tables

5.1 Probabilities of selecting & nonlinear S-boxes

5.2 Linear Cryptanalysis Results for Different values of NL

List of Symbols amd Abbreviations

M Original plaintext message

(e} Encrypted ciphertext message

F Round function

r Total number of rounds of encxryption
Number of inputs to an S-box

n Number of outputs of an S-box

a Number of S-boxes in a round function

K 5-bit round subkey for the i* round

K, 32-bit masking key for the i* round

N(f) Nonlinearity of an m-bit boolean function

N(S) Nonlinearity of an S-box

K Primary key of encryption in bytes
NL Nonlinearity of S-box function

N Total number of known plaintexts needed for linear cryptanalysis to be successful

Ne Total number of chosen plaintexts needed for differential cryptanalysis to be successfi
AES Advanced Encryption Standardl

DES Data Encryption Standard

NIST National Institute of Standards. and Technology
FIPS Federal Information Processing Standard
FPGA Field Programmable Gate Arrazys

MPGA Mask Programmable Gate Array

VPN Virtual Private Network

LAN Local Area Network
WAN Wide Area Network

NBS National Bureau of Standards
SPN Substitution-Permutation Network
SAC Strict Avalanche Criterion

XOR Exclusive-OR.

LUT Lookup Table

SRAM Static RAM
AsIC Application Specific Integrated Circuits

CLB Configurable Logic Block

IOBR Input/OQutput Block

FHC Fast Hardware Cipher

CMC Canadian Microelectronics corporation
CLA Carry Lookahead Adder

BCLA Block Carry Lookahead Adder
CRA Carry Ripple Adder
CSEA Carry Select Adder

CSA Carry Save Adder

CPA Carry Propagate Adder

Tepa ‘Total delay for the 32-bit carry propagate adder
Tene Time to achieve one encryption

Tux One clock period in nanoseconds

T One logic level delay in nanoseconds

xiv

P
pi
P
Piin
Pi

n

Probability of best r-round iterative characteristic
Probability of the output XOR, given the input XOR in round

P ility that the linear imation holds true

Probability of one linear or affine function
Probability that k out of a total of eight S-boxes are nonlinear

Probability of the best linear expression for an r-round cipher

Chapter 1

Introduction

Civilization is the progress toward a society of privacy. The savage’s whole exis-
tence is public, ruled by the laws of his tribe. Civilization is the process of setting

man free from men. Ayn Rand, The Fountainhead (1943)

In the recent years, there has been a great need for much improved techniques of securely
transmitting and storing information. From electronic mail to cellular communications, se-
cure web access to smart cards and electronic commerce, wireless LAN and WAN computer
networks to virtual private networks (VPNs) - these and other new information-based ap-
plications will have far reaching consequences, affecting the way business is done as well as

private ication and social i ion. As this happens, security aspects of com-

munication systems are of growing commercial and public interest. Unfortunately, these
aspects have been widely underestimated or ignored in the past. Today, however, there is
high demand for expertise and high-quality products in the field of information security and
cryptography.

Until recently, encryption products were generally in the form of specialized hardware.

1

These encryption/decryption devices plugged into the ications line and encryp!
all the data going across the line. Although, software encryption is becoming more preva-
lent today, hardware is still the embodiment of choice for many military and commercial
applications. As an industry trend, many companies in North America as well as Europe

hic hard for icati such as secure voice, fax and data

are ing cr
networks, secure VPN cryptographic accelerators, protocol sensitive encryption for wide area
networks, and DSP voice ciphering.

Speed and security are also important issues that play in the favour of the hardware
implementation of encryption devices. Encryption algorithms involve many complex oper-
ations on the message or plaintext bits. Often these are not the type of operations that

are incorporated into our typical desktop computers. The most widely accepted private-key

block cipher, the Data Encryption (DES) [2], introduced in 1977, runs i
on general purpose processors. Although, some cryptographers have tried to shape their

algorithms to suit software impl ion: ialized hardware such as an encryption

chip will likely emerge as the winner in efficiency. Another key factor that favours the hard-
ware implementation of a block cipher is security. An encryption algorithm being run on a
generalized computing machine has no physical protection. On the other hand, hardware
encryption devices can be securely encapsulated to prevent this. Other factors that suggest
a hardware implementation include cost, ease of installation, and lower power consumption.

The National Institute of Standards and Technology (NIST) in the U.S. has initiated
a process to develop a Federal Information Processing Standard (FIPS) for an Advanced
Encryption Standard (AES) [1]. The new encryption standard is based on a 128-bit block
size and a 128, 192, or 256-bit key size. This standard will be a replacement for DES. This

thesis ines the i ion of two private-key block ciphers, RC6 [3] and

CAST-236 [4], in Field Programmable Gate Arrays (FPGAs). Both RC6 and CAST-256 are
among the fifteen candidate algorithms that have been accepted in the first round of AES
development phase. The thesis also proposes a simpler private-key block cipher design that
is very efficient in terms of hardware implementation in FPGAs.

1.1 Motivation for the Research

The Data Encryption Standard (DES) [2], a private-key block cipher, is the most widely
used cryptosystem in the world. DES was developed by IBM, as a modification of an earlier
cryptosystem known as LUCIFER [5]. DES was first published in the Federal Register in
1975. DES was adopted as a standard for “unclassified” applications in 1977 by the National
Bureau of Standards (NBS).

DES has been a target of criticism since its inception in 1977. One objection of DES
concerns the mystery surrounding the design of its S-boxes, which being the only nonlin-
ear component of the cryptosystem, is vital to its security. However, the most pertinent
criticism of DES is that the size of the key, 36 bits, is too small to be really secure. After
twenty two years, DES is nearing its demise and is theoretically breakable by two powerful

cryp lytical attacks of dil ial and linear is [6, 7]

The National Institute of Standards and Technology (NIST) has initiated a process to
develop a Federal Information Processing Standard (FIPS) for an Advanced Encryption
Standard (AES) [1] specifying an encryption algorithm for the twenty-first century as a
replacement of DES. In this regard, the agency has announced a request for candidate algo-

rithm nominations of AES. One of the important evaluation criteria concerns the efficiency

of the private-key block cipher from the i ? ive. RC6 [3] and
CAST-236 [4] are among the fifteen candidate algorithms that have been presented to the

first round of the AES development phase. Both ciphers are modifications of earlier gener-
ation ciphers (RC5 [8] and CAST-128 [9]) based on smaller (64-bit) block sizes. Like most
proposed private-key block ciphers, RC6 and CAST-256 are clearly designed for efficient
implementation in software.

This thesis discusses the issues that effect the hardware implementation of the two AES
candidates, RC6 and CAST-256, in FPGAs. The two major aspects of speed and hardware
complexity associated with the two ciphers are explored and a comparative analysis of the
two ciphers in terms of implementation in FPGAs is presented.

As the result of our study of these two ciphers, we also propose a new private-key block
cipher, specifically targeted for hardware implementation. This cipher is based on simpler

operations that not only possess good cryptographic properties, but also make the overall

cipher design efficient for i ion in custom i as FPGAs.

1.2 Outline of Thesis

The thesis is organized as follows:

« Chapter 2 presents a literature survey of the previous research that is relevant to our work.

® Chapter 3 examines the different issues ini) tb ds i ion of crypto-

graphic algorithms in FPGAs.

® Chapter 4 examines the design of RC6 and CAST-256 yptions and their i

ion in target FPGA devices.

o Chapter 5 presents the design of a new private-key block cipher based on simpler crypto-
graphic operations and its implementation in FPGAs. The security of the proposed cipher

against linear and di ial cry is is also ined in this chapter.

® Chapter 6 summarizes the results of the thesis and presents certain suggestions for

future work.

o

Chapter 2

Review of Previous Research

Security of information stems from the need for private transmission of both military and
public messages. This need is as old as civilization itself. The ancient Spartans, for in-
stance, enciphered their military messages. The first secure communication channels were
very simple and their reliability depended on the physical security of messengers. Due to

the invention of computer systems and the pervasive intrusion of computer networks, the

spectrum of ion issues has been h Many ion issues of modern day com-
puter systems and networks are strictly related to the protection of communication channels.
Due to the natural characteristics of any channel, we have a communication medium that
is accessible to eavesdroppers, so physical security is meaningless. The only way to enforce
security in communication channels is by the application of cryptography.

‘The term cryptology originates from Greek roots meaning “ hidden” and “word” and is

the umbrella term used to describe the entire field of secret communications. Cryptology

further branches into two: cry hy and cry is. Crypi iphy is the art and sci-

ence of ing infc ion into an i diate form which secures that information

while in storage or in transit. As opposed to steganography, which seeks to hide the exis-
tence of any message, cryptography seeks to render a message unintelligible even when the

message is exposed. Ci lysis, on the other hand is the aspect of cryptology

which concerns the strength analysis of a cry ic system or cry and the

penetration or breaking of a cryptosystem.

A cryptosystem is any system that employs methods of cryptography to encrypt a mes-
sage. Encryption is a process that transforms the original message or information referred to
as the plaintest into an encrypted message known as the ciphertezt. This ciphertext is then
transmitted over an insecure channel. When this ciphertext reaches the receiver, a reverse
transformation process, referred to as decryption, is performed to recover the original plain-
text from the corresponding ciphertext. This encryption/decryption scheme is also referred
to as a cipher [10]. Figure 2.1 shows the encryption/decryption process in the context of an
insecure communications channel. A block cipher is a function that maps N-bit plaintext
blocks to N-bit ciphertext blocks, where NV is the block length, which is 64 bits in the case
of DES and 128 bits in the case of AES.

In 1948 Shannon [11] proposed two principles that present a sound theoretical basis
for cryptosystems with good security, namely confusion and diffusion. Confusion employs
substitution to hide the plaintext and the key. Diffusion spreads the confusion effect across
the entire ciphertext, thereby masking any statistical properties of the plaintext.

The field of cryptography is divided into two main branches: private-key cryptography
and public-key cryptography. The two types of cryptosystems are shown in Figure 2.2. In
private-key cryptosystems, the same secret key is used both for encryption and decryption.

Assuming the algorithm to be secure enough, the security of the cryptosystem is based on

Insecure communication

channel
| |
|
Key(K) Key(K)
- on gk u ol 3
Plaintext(P) —» M"Em —_—— m;m Plaintext(P) —»
« 8
Ciphertext(C)

Figure 2.1: A General Cryptosystem

keeping the key secret. In contrast, every user in a public-key cryptosystem possesses two
keys. One key is public and is known to everyone. The other is private and is only known to
the person possessing it and no one else! Public-key cryptography has the advantage that
a secure channel is not required to exchange keys. However, its disadvantage is that it is
orders of magnitude slower to encrypt as compared to private-key cryptosystems. Most cryp-
tosystems use a combination of public and private key cryptography. In a typical scenario,
a public key scheme is first used to exchange the secret key that is then used for encrypting
or decrypting the messages using a private key encryption algorithm.

2.1 Private Key Block Ciphers

The security of a private key block cipher depends on the communicating parties sharing
the same common secret key. If this key is compromised, then the encrypted messages will
be easily decrypted using the known key. The cipher is called a block cipher because the

‘/,.Smm Key
>
< B A
|
~Plaintext —‘ Encrypﬂunj'*clyhemxl 1 Decryption |—Plaintext —»

Private-key
Cryplosystem

Public Key Private Key

— =iy PR (SN

~ Plaintext 1‘ Eneryption — Ciphertext al Decryption |— Plaintext -
A |

Public-key
Cryptosystem

Figure 2.2: Private and Public Key Cryptosystems

plaintext is broken into fixed length blocks before being encrypted.

2.1.1 Architectures

The first practical private key block cipher designs based on Shannon’s principles of con-

fusion and diffusion were laid down by Feistel [5] and Feistel, Notz and Smith [12]. These

design frameworks are referred to as Substitutic er i (SPNs) and Feistel
Networks or Feistel ciphers.
The SPN cryptographic network consists of a number of stages or rounds of substitution-

layers. Each substitution-| ion layer (SP layer) is made up of several
smaller sub-block substitutions (known as S-boxes) followed by a large bit position permu-
tation operation (known as P-box). The former has the effect of Shannon’s confusion, while

the latter operation implements Shannon's concept of diffusion. A primary key is used to

9

s s s [N] s s

TTTITTT M TTTTTI

Figure 2.3: A Basic Substitution-Permutation Network

generate all subkeys impl 1 in each substituti ion layer ding to a key
schedule scheme. An m x n S-box has a nonlinear mapping from an m bit input to an n bit
output pattern. The S-boxes for SPNs, however, must have same number of inputs and out-
puts. Such S-boxes are also known as symmetric S-boxes. Moreover, these mappings should
be bijective, meaning that they are a one-to-one mapping and are invertible. Invertibility is
needed for the purpose of decryption. Two stages of S-boxes in an SP structure based on
4 x 4 S-boxes are shown in Figure 2.3.

Another type of private key block cipher design is based on a Feistel network architecture
proposed by Feistel, Notz, and Smith [12]. In a Feistel architecture, as shown in Figure 2.4,
Shannon’s mixing transformation can be achieved using S-boxes and permutations inside a

round function f. But these operations are performed on only half the block at a time. For

10

each round, the right half is fed into 2 round function f whose output is bitwise XORed with
the left half. This is followed by an immediate swapping of the two halves. After a total of
R rounds, the two halves are to i the ciph block. The complete

encryption process can be visualized as an iteration of the following operation:

Lin = R
R = f(RoaK)®L: @1

where R; and L; are the right and left halves, respectively, of the block for the #** round.
Also, K; represents the i** round subkey.

Decryption is similar to encryption, with the only exception that the subkeys are used
in reverse order. The round function is the most critical component of the cipher design as
it introduces an element of randomness to the plaintext. It is basically the structure of the
round function that distinguishes between different Feistel ciphers. Feistel ciphers, unlike
SPNs, can have asymmetric S-boxes, i.e. m # n.

Most of the existing ial cry ic impl; ions use DES for their private

key algorithms. The Data Encryption Standard, first introduced in 1977 as an encryption
dard for i icati is based on a 64-bit block size. The key size is 56

bits. The round function expands the 32-bit input into a 48-bit block using an expansion
table, followed by an XOR ion i ing a 48-bit subkey d by the key schedule
scheme and the 48-bit expanded block. The resultant 48 bits are then fed into eight 6 x 4
S-boxes. The output of the eight S-boxes goes through a final 32-bit permutation giving the
final 32-bit output of the round function.

The ciphers are typically keyed by applying subkey bits (derived for each round by the
key schedule) to the S-boxes employing either:

11

T,

Figure 2.4: A Basic Feistel Structure

(i) selection keying: Here the key bits select the desired mapping for a particular S-box.
(i) XOR keying: Here the key bits are XORed with the input bits before feeding into the
S-box.

2.1.2 Popular Private-key Block Ciphers

Over the years, many private-key block ciphers have been proposed as potential replacements
for DES. The structure of these block ciphers may or may not be a Feistel network. An

introduction to some of the popular private-key block ciphers is presented here.
Blowfish [13] is an algorithm developed by Bruce Schneier. It is a block cipher with a
64-bit block size and variable length keys (up to 448 bits). It has gained a fair amount of
in a number of icati No 1 attacks are known against it. Blowfish

12

is used in a number of popular software packages, including Nautilus and PGPfone.
FEAL [14] is a 64-bit block cipher with a 64-bit key. It is basically a Feistel structure.
The 8 x 8 S-boxes in the round function execute XOR additions and byte rotations. The

algorithm is well suited for 8-bit microprocessors. However, the down side of this cipher

has to do with its resi against di jal cr is. It has been shown that the
algorithm with less than 8 rounds can be easily broken using differential cryptanalysis [15].
The cipher is resistant to this kind of attack only if the number of rounds exceeds 32 [16].
IDEA (International Data Encryption Algorithm) is an algorithm developed at ETH
Zurich in Switzerland [17]. It uses a 128 bit key, and it is generally considered to be very
secure. The block size is again 64 bits. The algorithm uses a mix of three different groups

of operations - bitwise XOR, integer itions and integer iplicati It has already
been around for several years, and no practical attacks on it have been published despite the
number of attempts to analyze it. IDEA is patented in the United States and in most of
the European countries. The patent is held by Ascom-Tech. Non-commercial use of IDEA
is free.

RC5 [8] is a very efficient word-oriented secret-key block cipher. It is a parameterized
family of symmetric ciphers. It uses a variable word size, a variable-length secret key and
a variable number of encryption rounds. The architecture of this novel symmetric block
cipher does not fall into the realms of a typical SPN or Feistel cipher. This algorithm makes
use of data-dependent rotations. It also makes use of integer additions, subtractions and
bitwise XORs. RC5 has been shown to be very resistant against both linear and differential
cryptanalysis (18], although potentially susceptible to timing attacks [19].

CAST-128 [9] is another private-key block cipher that is based on a 64-bit block size.

It uses a 128-bit primary encryption key. The algorithm uses six 8 x 32 S-boxes. The
strength of this algorithm has been shown to lie in the large size of the S-boxes [9]. Lee,
Heys, and Tavares [20] showed that the algorithm is resistant to both linear and differential

cryptanalysis.

2.1.3 Advanced Encryption Standard (AES)

As mentioned earlier, the National Institute of Standards and Technology (NIST) has un-
veiled a process to develop a Federal Information Processing Standard (FIPS) for an Ad-
vanced Encryption Standard (AES) [1]. The AES represents a specification for a private-key
block cipher as a replacement for DES. As a part of the AES process, a number of minimum
acceptability requirements have been drafted. These candidate algorithm evaluation criteria

include:
® AES shall be a symmetric private-key block cipher.

* The adopted standard shall be publicly defined.

® AES should be suitable both for and software i
® The key length for the AES may be increased as needed.
 Candidate algorithms that meet the above requirements will be judged on the basis of
the following factors:
1. Computational efficiency
2. Hardware complexity
3. Encryption speed

14

4. Software suitability

5. Memory requirements
6. Flexibility

7. Licensing requirements
8. Simplicity

Fifteen i Igoril have been to the first round of AES development

phase. Information on AES candidates can be found in [1]. CAST-256 and RC6 are two
of the fifteen AES submissions and are investigated in this thesis. The emphasis of this
is on the h i ion of these ciphers in FPGAs. Both ciphers

are strong candidates because they are modifications of their earlier versions (CAST-128 [9]
and RC5 [8]). Like most of these proposed ciphers, CAST-256 and RC6 are designed for

efficient implementations in software. But as one of the implementation requirements for an

AES i the iency of these i has to be
Detailed architectures of the CAST-256 and RC6 ciphers are presented in Chapter 4.

2.2 Cryptographic Properties of a Block Cipher

Since its adoption as a standard, DES has been the focus of most of the research in private-
key cryptography. Much of the effort had been directed towards cryptanalyzing DES or
investigating properties that might improve the overall security of the cipher. In this section,

different cryptographic properties that are vital to the security of a block cipher are presented.

2.2.1 Nonlinearity

Nonlinearity is the most crucial feature in the design of private-key block ciphers. For
instance, if there exists a linear relationship (on a per bit or per block basis) between the
ciphertext output and the plaintext input, the cipher can be easily broken by reducing the
cipher to a system of linear equations. These linear equations can be then solved using a
small amount of known plaintext- ciphertext pairs. Typically, an S-box is the only nonlinear
component of an SPN or a Feistel cipher. As such, the need to design highly nonlinear
S-boxes makes the difference between a more or a less secure cipher.

An m-bit affine boolean function g is defined [21] as
I(X)=a®az & ... ® amTm (2.2)
where X = [£1, ..., Zm] is the m-bit binary input, @ is the bitwise exclusive-or, and a; €
{0,1}, 0 < i < m. The Hamming distance between two m-bit boolean functions, f(X) and
g(X), is defined to be
d(f,9) =#{X € {0, 1}"|f(X) ® 9(X) =1} (2.3)
where # is the total number of m-bit binary inputs.
The nonlinearity of an m-bit boolean function f is defined as
N(f) = mind(f, 9) (2.4)
where 4 is the set of all m-bit affine boolean functions. Since an m x n S-box has n output

bits, each of which is an m-bit boolean function, the nonlinearity of the S-box S is defined as

the minimum nonlinearity over all non-zero combinations of output bit boolean functions:

.
N = o filus mo V@) &

16

where f; is the m-bit boolean function of the i** output bit of the S-box, and (c:f;)(X) =
&(fi(X)) for all X.

Heys and Tavares [21] used random search and filtering against known weaknesses to find
highly nonlinear large S-boxes. They have used this technique in constructing S-boxes for
SPNs.

2.2.2 Avalanche

Feistel, Notz, and Smith [12] first described the concept of avalanche as an important cryp-
tographic property in the design of a block cipher. The avalanche property is satisfied only

when, on average, half the output block bits vary when one input bit changes.

2.2.3 Completeness

Completeness was a concept introduced by Kam and Davida [22]. The completeness criterion
is satisfied if all output bits depend on all input bits. Kam and Davida proposed a class
of permutations in a basic SPN which ensures the completeness of an SPN, provided each
S-box is complete. Brown and Seberry [23] found that DES is complete after four to five
rounds with 2 high probability.

2.2.4 Strict Avalanche Criterion

‘Webster and Tavares [24] used the concepts of completeness and avalanche to come up with a
new cryptographic property that concerns not only the individual S-boxes but also complete
cryptosystems. This property is known as the Strict Avalanche Criterion or SAC. This
property states that for every input bit, inverting the bit causes each output bit to vary with

17

a probability of one half over all possible input vectors. Higher order properties of SAC have

been presented by Forré [25], Adams [26] and Preneel et al [27].

2.2.5 Information Theory

Many of the contributions to the field of cryptography come from the information theory
concepts introduced by Shannon [11]. In a cipher that has perfect secrecy the piaintext is

isti ind ds of the ciph ‘This means that even with an unlimited time

and computational resources at our disposal, we cannot guess the plaintext, given knowledge
of the ciphertext. For a private-key cipher to be perfectly secure, the uncertainty in the key
must be at least as large as that of the plaintext.

Dawson and Tavares [28] further investigated the work of Forré [29] in using information
theory to design the S-boxes. They proposed minimizing the mutual information between a
subset of output bits and any subset of input and/or output bits in the design of S-boxes

for SPNs and Feistel ciphers.

2.2.6 Invertibility

An n x n S-box is said to be invertible if it is a bijective mapping. Adams and Tavares [30]
proposed a method of constructing S-boxes such that it satisfies (z) bijection, (i) minimum
nonlinearity, (iii) SAC, and (iv) output bit independence by combining 0 — 1 balanced
boolean functions. However, O'Connor [31] was of the opinion that this technique becomes

impractical as n increases.

2.3 Cryptanalysis of Private-key Block Ciphers

The purpose of cryptanalysis is to recover a secret primary key used in a particular cryp-
tosystem. There are three types of general attacks that can be applied against any particular
block cipher. These include ciphertest only, known plaintest, and chosen plaintest. In case of

a ciphertext only attack, the cryptanalyst possesses the ciphertexts only. A known plaintext

attack uses the of both plai and their cor di i] . In the case
of chosen plaintext attack, the cryptanalyst can select particular plaintexts, and produces
the corresponding ciphertext. This is possible only because he or she has temporary access
to the encryption machinery.

The most fundamental way to break a cipher is exhaustive key search, referred to as the

brute force attack. Two recent and powerful methods that have demonstrated the ability

to break modern day block ciphers are dj ial and linear cryp is. This section
describes these two widely known attacks against private-key block ciphers as well. At the

end of this section a new type of attack, called the timing attack is presented.

2.3.1 Brute force Attack

A brute force attack, also known as exhaustive key search is a known plaintext attack. In

this kind of attack, the cryptanalyst gets hold of a few ci and their
plaintexts. The next step is to exhaustively search all possible keys by encrypting a known
plaintext with each of these keys. When one of the keys generates the correct ciphertext, we
very likely have the correct key. We can use a few more ciphertext-plaintext pairs to verify
the correctness of the key.

The best line of defense against this type of attack is to increase the key size such that

19

the attack becomes infeasible. Theoretically speaking, a cipher is broken, if the time and
memory resources required by any cryptanalytic attack are less than what is needed for a

brute force attack.

2.3.2 Differential Cryptanalysis

cry i by Biham and Shamir [6], is one of the most potent
techniques used to cryptanalyze many private-key block ciphers. SPNs and Feistel ciphers
belong to the class of iterated product ciphers and this attack is very much applicable to

them.

Di ial cry is is ially a chosen plaintext attack. Biham and Shamir have
successfully attacked DES using this technique and have found it to be more efficient than
a brute force attack. This method takes into account ciphertext pairs, whose corresponding

have a i i In other words, it looks at the XOR difference of

two plai and i the i i pair. In a i S-box, if
we know the input XOR of a pair, it does not ensure the knowledge of its output XOR.
However, there exists a probabilistic relation between the output XORs and every input
XOR. Differential cryptanalysis makes use of the highly probable occurrences of sequences
of output XOR differences at each round given a. i XOR di

Several methods have been proposed to ensure the immunity of a round function against
this type of attack. Several methods have been used to reduce these highly probable oc-

currences of output XORs in relation to input XORs. For example, this can be done by
increasing the output bits of the S-box to some reasonable value [32]. A second approach
uses a modular multiplication to mask the input of the S-boxes as a way to replace the XOR.

20

operation in the round function that involves the subkey [33]-

2.3.3 Linear Cryptanalysis

Linear cryptanalysis is a known plaintext attack, invented by Matsui (7], uses linear expres-
sions to approximate the action of a block cipher. This attack exploits the statistical linear
relations between plaintext, ciphertext and subkey bits. This implies that if we XOR some
plaintext bits together, XOR some ciphertext bits together and then finally XOR the result,
we end up getting a single bit that is equal to the XOR of some of the key bits with a
probability that is significantly different than one-half. This defines a linear approzimation,
which holds with a certain probability. If this probability is different from one half, we can
use this fact to construct a linear approximation of the entire algorithm. This is done by

linear imations of different rounds. Matsui, in his paper presented two

algorithms used to derive the subkey bits using a linear approximation. Algorithm 1 is used
to recover one subkey bit that is the XOR sum of a subset of subkey bits. The second
algorithm, an extension of the first, determines a number of the subkey bits at one time.
DES is highly susceptible to this kind of attack as the S-boxes of DES are not optimized
against this attack. When this attack is mounted against a 16-round DES, the cipher is
broken with 2*7 known plaintexts. As the attack greatly relies on the structure of S-boxes,
the best way to increase the immunity of SPNs against linear cryptanalysis is to select highly
nonlinear S-boxes. Alternate approaches to thwart linear cryptanalysis, involve the use of

key-dependent rotations [8] and modular additions and subtractions [13].

21

2.3.4 Timing Attack

Another type of attack aimed at breaking a private-key block cipher is the timing attack.
Based on the assumption that accurate timing measurements are available for individual
encryptions, this attack employs the methodology of deriving the key bits using timing
information from a set of ciphiertexts. The timing attack of RC5 as outlined in [19], exploits
the fact that a naive implementation of the cipher could result in data-dependent rotations
taking a time that is a function of the data. This implies that it is important for the

hic issues when i ing ciphers like RC3.

designers to be aware of different cr

However, the timing attack cam be if a digital i ion ensures that
the rotations take constant time. A barrel shifter is one piece of digital hardware that can

execute any size rotations in one clock cycle.

2.4 Security of RC6 and CAST-256 Encryption Algo-
rithms

As mentioned earlier, CAST-256 and RC6 are among the fifteen candidate algorithms that
have been presented to the fixst round of AES development phase. Although CAST-256
and RC6 are neither SPNs nor Feistel ciphers, their architectures are extensions of the basic
Feistel cipher. This section briefly discusses the security of these two AES submissions
against linear and differential <ryptanalysis as well as against brute force attack.

In AES submission for RC6 (3], several modifications have been made such as the use

of four working registers instead of two as in RC5 [8], and the introduction of a quadratic

function that uses the primitive ion of integer iplicati The use of

22

operation enhances the diffusion effect, thereby increasing the overall security of the cipher.

It has been conjectured in [3] that the best approach to attack RC6 block cipher is to
adopt brute force attack. This is achieved by carrying out an exhaustive search for the user-
supplied encryption key. Rivest, Robshaw, Sidney, and Yin [3] have concluded that the work
load needed to exhaustively search for the b-byte encryption key or the expanded forty-four
32-bit subkeys (as a part of AES submission) is min{2%,2!%8} operations! As far as the
linear and differential cryptanalytic attacks on this cipher are concerned, the data require-
ments to execute these attacks on RC6 exceed the available data. For instance, considering
an 8-round version of RC6 would require more than 27 chosen plaintext pairs for success-
fully 1 i ial cry is, while it needs more than 2% known plaintexts to

lysi Clearly, ication of these attacks to the 20-round

apply linear cry
version of RC6, as presented for AES submission makes these attacks impractical.

The security analysis of CAST-236 [4, 34] reveals that the cipher is resistant to both linear
and differential cryptanalysis. The total number of known plaintexts needed for a 48-round
linear approximation of CAST-256 is approximately 2'??, which is almost equal to the total
number of plaintexts available (2'%). This implies that linear cryptanalysis is impractical
against CAST-256. In case of differential cryptanalysis of CAST-256, we need more than
210 chosen plaintexts which is much greater than the number of plaintexts available for a
128-block size. It therefore appears that CAST-256 is immune to differential cryptanalysis
attack too.

2.5 Conclusion

of cry in the beginning of this chapter,

We have introduced the
followed by a detailed investigation of private-key block ciphers. Here, we have presented
two main architectures of block ciphers. Many popular private-key block ciphers have been
described too. In addition, various cryptographic properties that are vital to the design and
analysis of S-boxes and ciphers have been discussed. Next, different cryptanalysis techniques
as applied to ciphers have been presented. Finally, we have discussed the security of two

block ciphers, RC6 and CAST-256, against the different attacks presented.

24

Chapter 3

Hardware Environments for

Cryptographic Applications

Two i icati ions have ly the ion of an entire new

information-based industry. The first revolution was the interconnection of data networks
around the globe culminating in the Internet. The second is the recent availability of inex-
pensive high speed connections that link users at home or in the office to these networks.
This growing trend of internetworking has led to the commercialization of on-line services
and electronic commerce. This has resulted in a critical urge for data security.

Most modern day security applications make use of cryptographic hardware as a potent

weapon against different security breaches and intrusions. With the demoniac growth of

the Internet, the need for privacy, authenticity and ity has cry

to surface as a viable means of achieving security. There are now a lot of engineering

design companies that are shipping out cry hi for applications as diverse

as electronic commerce and banking, secure wireless solutions, smart cards, PCMCIA card

25

security, certification authority, digital signatures etc. One of the most recent applications
of cryptographic hardware has to do with the security of virtual private networks or VPNs

as they are popularly known. These are cryptographic accelerator modules that act as

fast providing cry i ing at wireline speeds, freeing the router
or firewall to perform other critical tasks while eliminating congestion in virtual private

networks. Other of cry ic hard include LAN/WAN encryptors.

3.1 Hardware Encryption vs. Software Encryption

Any encryption algorithm can be implemented in software. But there are several disadvan-

tages inherent to software implementations. These include lower speed, higher cost, and less

security. The speed of encryption is basically i by the i clock of

the computing platform, whereas in case of a hardware solution, we can go for an extremely

fast implementation such as a full custom ASIC impls ion. Moreover, a softw 1
solution is vulnerable to viruses, inadvertant erasing, complications from system failures,
and hackers.

In contrast, hardware encryption has many advantages over software solutions. Encryp-
tion in hardware is faster. A hardware solution is impervious to system failures such as
viruses. Hardware implementations can protect against internal and external intruders us-

ing two-fact ication: both the device and a password are necessary to

access the root or primary encryption key.
Internal key management and distribution is better taken care of using a hardware en-
cryption solution. Hardware solutions can control access to the root keys so that one can

distribute access codes across several individuals who must cooperate to gain access to the

26

root keys. Moreover, hardware solutions offer scalable security.

3.2 Field Programmable Gate Arrays (FPGAs)

A Field Programmable Gate Array (FPGA) is a general-purpose, multi-level
logic device that is customized in the package by the end users. FPGAs are devices whose
cores are populated with an array of logic structures of changing granularity and pro-
grammable interconnect used to connect them in several different ways. For instance, the
logic blocks can be SRAM-based lookup tables (LUTs) or even multiplexers with or without
registers, while special purpose routing switch boxes or segmented channels can make up the
programmable interconnect.

The structure, size and number of blocks of logic as well as the amount of glue logic or the
connectivity of the interconnection differs largely among FPGA architectures. This variation
in FPGA architectures is dictated by different programming technologies and different target

applications of the parts. This implies that an architectural arrangement that works well

with a particular i hnols does not ily work with another.
Based on different i h ies and i styles, FPGAs fall into
four groups:

o Island-style SRAM-programmed devices.

o Cellular SRAM-programmed devices.

« Channeled, antifuse-programmed devices. .

o Array-style EPROM or EEPROM-programmed devices.

SRAM-based island-style FPGAs include Xilinx LCA families. The Xilinx FPGA uses
a fairly large logic block with table lookup functionality and two D flip-flops. Xilinx arrays

27

7
.
7
>
4//
o e THEN. A
| Anifue-Programmed | |
Channeled Programmed Programmed Array |

Figure 3.1: A Simple FPGA Taxonomy

have specialized routing blocks. This enables interconnection of a subset of inputs to one
another. The AT&T Ocra and Altera Flex, as well as UTFPGAL [35], also belong to this
type of FPGA architecture. Toshiba, Plessey’s ERA, Atmel’s CLi family, the Algotronix
CAL, as well as Triptych [36] FPGAs belong to the cellular-styl hi A

and CAL reuse some of the logic cells themselves to act as routing resources.
Antifuse-based channeled FPGAs include Actel’s ACT1 and ACT?2, Quicklogic’s pASIC
and Crosspoint’s CP20K Series FPGA. Actel logic blocks are very small and multiplexer
based [37]. Actel arrays use channel EPROM- devices
include Altera’s MAX 5000 and MAX 7000, AMD’s Mach and Xilinx's EPLD, as well as a

few others. Altera logic blocks directly support multi-level combinational logic. A simple
taxonomy of FPGAs is illustrated in Figure 3.1.

28

3.2.1 Advantages of FPGAs over MPGAs

In this section, we discuss the advantages of using FPGAs as a hardware implementation
solution versus a masked programmed gate array (MPGA) implementation.

Low Tooling Costs: Every design to be impl d in a mask p gate array
(MPGA) requires custom masks to construct the custom wiring patterns. The cost of
each mask is several thousand dollars and this cost is then amortized over the total
number of units being manufactured. As a consequence, masking charges for designs
based on MPGAs are tremendous. In contrast, there is no custom tooling needed for
FPGA designs, presenting FPGAs as cost-effective for most logic designs.

Rapid From the ion of the desigu to the delivery of the finished

products, the manufacturing process takes several weeks in case of MPGAs. An FPGA

on the other hand can be programmed in minutes by the end user. Faster design

turnaround leads to faster product and shorter time-ts ket for new
FPGA products. In [38], Reinersten found that in a design environment that caters
the needs of a high-tech industry, a delay of six months in product delivery reduces
the lifetime profits of a product by thirty-three percent.

Risk: The of low initial i ineering charges and rapid

turnaround design time implies that a redesign due to an error incurs low expenses
and small delays. This encourages rapid prototyping and more aggressive logic design.

Efficient Design Verification: MPGA users have to verify their designs by extensive and
Jab: i ion before mainly, because of huge non-recurring engi-

neering costs and long manufacturing delays. An MPGA design may include errors due

29

to i ies or i i i made in the si ion model. This is because

there is need for long time simulations. FPGAs do not suffer from this dilemma. FPGA

users may choose to use in-circuit i ion, instead of si ing large amounts of

time.
Low Testing Expenses: There are three types of costs associated with testing MPGA

parts: on-chip logic for testing, generating test program and final parts testing when

the ing is done. The s test program verifies that every FPGA

will be functional for all possible designs that may be implemented on it. FPGA users
do not worry about writing design-specific tests for their designs. This eliminates the
need to build testability into the design. Moreover, since the test program for FPGAs
is the same for all designs as opposed to MPGAs, it is reasonable to invest more effort

on improving it. This achieves excellent test coverage, providing high quality ICs.

3.2.2 Disadvantages of FPGAs over MPGAs

Field programmable gate arrays (FPGAs) also have some disadvantages. These drawbacks
are mainly due to the inherent nature of the technology itself. To begin with, FPGAs suffer
from on-chip programming overhead circuitry which is responsible for the programming of
a given part. The area occupied by programming overhead cannot be utilized by the end
user. This results in low gate density for the FPGA. The programmable switch matrices
and interconnects in the FPGAs are larger than their mask-programmed counterparts in
MPGAs.

The programmable switches also increase signal delay by adding resistance and capaci-
tance to i paths. Asa FPGASs are larger and slower than equivalent

30

MPGAs. FPGAs also exhibit some design limitations in relation to ing config-
urable computing applications in them. For instance, FPGAs are well suited to algorithms

of bit-level i such as integer arithmetic, but they do not render them-
selves efficient enough for implementing numeric operations, such as high-precision multipli-

cation. In fact, dedicated multiplier circuits such as those used in microprocessor and DSP

chips can be optimized to work more i than those for logic
blocks available in FPGAs.
The on-chip memory provided by FPGAs for storing intermediate computational results

is too little. This implies that most i ications need some sort of

additional external memory. This will slow down the i However,

and industry people are developing newer and more advanced FPGA architectures that in-
corporate enough on-chip memory, very fast and efficient arithmetic processing and some
special-purpose functional units. A very recent example of such FPGAs are Xilinx's Virtex
FPGAs that not only possess great gate densities, but also harness very high speeds. The
Virtex family FPGAs have broken density and performance barriers while offering unprece-
dented system level integration, achieving clock speeds in excess of 150 MHz.

3.3 SRAM-based FPGAs

In this section, we shall focus our di: ion on the issues ing the SRAM-based
FPGAs. This is because we have used these devices as our target technology for realizing
the cipher designs in hardware.

SRAM-based FPGAs are the most popular. This is mainly due to their ability to re-
configure. Several researchers [39, 40, 41, 42, 43, 44, 36, 35, 45, 46] have all investigated

31

this class of FPGAs. An SRAM-based FPGA is by d loadi

memory from an external source. The configuration memory cells control the logic and the
interconnect that execute the application function inside an FPGA. The RAM memory is
not centralized, but rather distributed among the configurable logic blocks. This type of

h has many as well as di attached to it. One

obvious drawback is the wolatile nature of programming. This means that when power is
switched off, the device loses its programming and as such the FPGA is to reprogrammed
every time its turned on. However, the disadvantage of volatility furnishes the benefit of
reprogrammability. This ability makes SRAM-based FPGAs ideal for rapid prototyping.
This results in very high quality devices. Since the same CMOS process as used in ASICs
is employed to build these type of FPGAs, SRAM-based FPGAs benefit from process im-

driven by semi industry. Finally, because these FPGAs implement

logic using static gates, SRAM-based FPGAs have very low power consumption.

3.3.1 Xilinx XC4000 Structure

Xilinx FPGAs possess an array based structure, each chip comprising a two-dimensional
array of logic blocks interconnected by horizontal and vertical routing channels. Xilinx
introduced the first FPGA series, the XC2000 in 1985, and now offers three more generations:
XC3000, XC4000 and XC5000 devices. A very recent device family is the Xilinx's Virtex
series which is still undergoing field tests. Of all the device families introduced so far, Xilinx
XC4000 is the one that has most proven its worth over the years. This is the most widely used
FPGA family in industry. More information can be obtained from Xilinx data books [47].

A detailed description of this device family is presented.

32

Figure 3.2: A Xilinx XC4000 structure

3.3.1.1 XC4000 Structure

The Xilinx XC4000 FPGA structure is illustrated in Figure 3.2. The logic inside the FPGA
is implemented in an array of programmable blocks of logic called configurable logic blocks
(CLBs). Input to and output from the array are taken care of by the input/output blocks
(IOBs) along the edges of the array. The CLBs and the IOBs are interconnected using
several types of ble i hi C ions to and from CLBs

and I0Bs can be d and wire can be i d, to form paths that

extend from one box to another using an array of programmable connection blocks called

the switch matrices.

3.3.1.2 Programming Technology

As mentioned earlier, Xilinx uses SRAM technology to store the programming information.
After the power is applied to the circuit, the program data defining the logic configuration
must be loaded into the SRAM. The FPGA itself contains the logic needed to load the
information into itself from from a PROM. Once the programming information has been
loaded, the device switches from programming mode to operational mode in which the logic
is available. This logic is maintained as long as the device is powered up. As soon as the
device is down, it loses it. The ability to reprogram the FPGA permits a new hardware
design on the fly.

The SRAM bits control the logic that is implemented in a Xilinx XC4000 device. This

is done using three iques, namely pass istor control, multi control, and table
lookup implementation [48]. Figure 3.3 shows an SRAM cell driving the gate terminal of an
n-channel MOS transistor. When such a transistor is used to make or break a bidirectional
connection for passing a signal between two wiring segments, it is called a pass transistor.
When the SRAM cell contains a zero-bit, the transistor is OFF, the path between the two
wiring segments is OPEN, and as such no control signal can be passed. On the other hand,
when the SRAM bit contains a one, the transistor is ON, the path between the two wiring

segments is CLOSED, permitting the signal to be passed. An XC4000 series FPGA contains

tens of thousands of such pass transistors in the i
Figure 3.4 shows an SRAM cell connected to the select input of a 2 X 1 multiplexer.
When the SRAM cell contains a 0, value on the zero input line is passed to the multiplexer

output. The is used to make jons between two signals.
In the Figure 3.5, we have a lookup table (LUT) built using the SRAM cells. A LUT for

34

Figure 3.3: Pass Transistor Control Technique

Mux

Figure 3.4: Multiplexer Control Technique

a three variable function F(A, B, C) is illustrated. The SRAM cells in the LUT store the
actual truth table for the logic function F. This implies that each cell houses the value of

the function F for the corresponding minterm [49].

3.3.1.3 Interconnections

Connections between the CLBs as well as between CLBs and I0Bs are established using
wiring segments. These wiring segments extend in both the horizontal and vertical directions
in channels lying between the various blocks. Some of the segments are very long, spanning

the entire length or width of the array. Such segments are known as long lines. They are

35

F(A.B.C)

Figure 3.5: A Lookup Table Implementation

basically intended for high fan-out, time-critical signal nets, or the ones that are distributed
over long distances [47]. Other segments are long enough to span a single CLB. These can
be interconnected using the switch matrices. These are called single-length lines. Some of
the XC4000 family devices even have double-length lines or quad lines. The benefit of using
longer wire segments is that signal passes through less series resistance in traversing the
same distance compared to single-length lines.

The di ion of Xilinx i ions is i lete without describing its switch

matrices. An example of a switch matrix is shown in Figure 3.6. Here we have four segments
meeting at a point. At this particular crosspoint, there are six pass transistors: one vertical,
one horizontal and four on the diagonals. The horizontal and vertical pass transistors are
shown as a plus sign as they intersect each other. The remaining four pass transistors,
represented by black bold lines surround these two pass transistors. The connection between
two segments is CLOSED for a one stored in the SRAM cell driving the transistor gate.
Similarly, the connection is open for a zero stored in the SRAM cell. Thus, the SRAM-

36

<
2N
/

___u__‘,_m_g_

i
i
|

Figure 3.6: A Xilinx XC4000 Switch Matrix
controlled pass transistors lie at selected interconnections between the wiring segments in

the routing channels [50].

3.3.1.4 Xilinx Logic

Most of the logic in a Xilinx XC4000 device lies within the CLBs and the IOBs. The structure

of the CLB as well as of the IOB is i 11 A simpli ion of
a Xilinx XC4000 CLB is shown in Figure 3.7 [47].

Here there are thirteen inputs to the CLB, including the clock input. Two fip-flops
and their i logic are also by broken lines. The remaining part of the

CLB is used to implement the combinational logic. There are three LUTs that implement
functions. Two four-input tables impl two fanctions labeled F and G.

A third function generator, H can implement any boolean function of its three inputs. Two

37

T
r

2 Jas==

T

L .;‘;E}D ;

Figure 3.7: Simplified Logic Schematic of a Xilinx CLB

of these inputs can optionally be the Fand G outputs of the two function generators. The
third input essentially comes from outside the CLB.
A CLB can impl any of the fol

e Any function of up to four variables, any additional second function of up to four

unrelated variables, plus any third function of up to three unrelated variables.
* Any single function of five variables.
e Any function of four variables along with some functions of six variables.

© Some functions of up to nine variables.

Tiistate TS | 3
ouput Data 0 | L

input
FPGA Interlor
Xiopin
=
Input Data)
‘ by =
input Data 2 M
ore Output

Figure 3.8: Simplified Block Diagram of Xilinx IOB

User-programmable input/output blocks (IOBs) supply the interface between external
package pins and the internal logic. A simplified block diagram representation of a Xilinx
XC4000 IOB is given in Figure 3.8.

To simplify things, the IOB block is divided into two sections - an input portion and
an output part. The output part of the IOB gives the output data from the interior of the
FPGA and the I/O pin. Alternatively, it can provide the stored value of the output data
from a flip-flop. A tri-state driver on the output allows the I/O pin to be used as an input,
an output or the input/output. In the input part, the signal at the I/O pin enters the input
buffer. The signal can be fed directly to input data 1 and input data 2. These are two input
lines to the interior of the FPGA or one or both of the inputs can be fed by a stored value

from the I/O pin signal or its complement.

39

3.4 Cryptographic Algorithms: FPGAs vs. ASICs

A new development in integrated circuits that offers a hardware implementation choice
that is much more flexible than Application Specific Integrated Circuits (ASICs) is the

entry of custom these large, fast reconfigurable gate

arrays are FPGAs. In contrast, ASICs provide only functionality needed for a specific task.
A well-designed ASIC chip will support a particular application for which it is designed, but
not a slightly modified version of the same application introduced after the ASIC design is
completed. Furthermore, even if a modified ASIC can be developed, the original hardware is

too highly ized to be reused in i i In contrast, the configuration

of an FPGA can be easily to date a design
Field Programmable Gate Arrays (FPGAs) have been chosen as the target technology
for realizing the RC6 and CAST-256 cryptographic algorithms in hardware because of a

1 one cr, if with another is a trivial matter in

number of reasons.
software, but it is not the same in hardware. Moreover, at the same time hardware solutions
can offer improved performance in terms of speed, security, and cost. As such the solution
to this problem is reconfigurable hardware and FPGAs are the answer. As a matter of fact,
FPGAs can be used to build algorithm agile applications [51]. The term algorithm agility
refers to the fact that the same FPGA can be reprogrammed at run time to support different
algorithms. Other key factors that favour the use of FPGAs for hardware implementation
of ciphers include faster turnaround design time, scalable security, and variable architectural

parameters.

40

3.5 Conclusion

In this chapter, we have touched different issues that relate to the hardware implementa-
tion of cryptographic algorithms in FPGAs. We have compared hardware encryption to
encryption in software. Next, we introduced FPGAs as a viable custom architecture imple-
mentation choice. Here we have described different FPGA architectures, presented several
key advantages and disadvantages of using FPGAs as a target technology. We have focused
on SRAM-based FPGAs in general and Xilinx XC4000 family in particular. We have closed
our discussion by reasoning why FPGAs have been chosen over ASICs for this particular

application.

41

Chapter 4

Design of RC6 and CAST-256

In this chapter, we will basically focus on the FPGA implementation of two strong AES

candidates - RC6 and CAST-256. We will investigate issues relating to the efficiency of the

two ciphers from the b

4.1 The RC6 Cipher

RC6 is a symmetric (private-key) block cipher submitted to NIST for consideration as the
new AES. RC6 is an fonary imp of RC5 [8]. Modifications have been made

to meet the AES requirements, to increase security, and to enhance performance.

RC6-w/r/b, a general version of the RC6 cipher [3], operates on units of four w-bit words,
with the encryption consisting of a nonnegative number of rounds r, and b representing the
length of the encryption key in bytes. The user supplies a primary key of b bytes, where
0 < b < 255 and, from this key, the key schedule scheme of the RC6-w/r/b algorithm derives

2r + 4 subkeys, where each subkey is a w-bit word. These 2r + 4 subkeys are then stored in

42

the array 8[0,....,2r + 3]. This array of subkeys is used in both encryption and decryption.

Encryption with the RC6 algorithm is described below. RC6 works with four w-bit
registers 4, B, C, and D which contain the initial input plaintext as well as the output
ciphertext at the end of the encryption. The standard litle endian convention is used for
packing the data bytes into the input/output blocks. The encryption block involves the

following basic operations on two w-bit words a and b:

a®b : bitwise exclusive-or of w-bit words

a+b: integer addition modulo 2¢

a x b : integer multiplication modulo 2

@ < b : rotate the w-bit word a to the left by the amount

given by the least significant log, w bits of b

For the AES implementation of RC6, w= 32 and r = 20. Each of the four 32-bit registers 4,
B, C,and Dis updated after each round of encryption. The output of the 20-round encryption
is also stored in the four registers as the ciphertext. The entire process of encryption in the
RC6 algorithm is illustrated in Figure 4.1.

Decryption is similar, but involves reversing the order of the subkeys, replacing left rota-

tions by right rotations and replacing addition with i Since the AES

requires the cipher to operate on 32-bit words and there should be twenty rounds of encryp-
tion/decryption, the issues related to hardware implementation of RC6-32/20/b version will
be discussed in the coming sections. Note that for AES, b < 64 bytes (i.e. up to 512 bits of

key) are allowed as primary key. For details on the key scheduling scheme refer to [3].

43

B =B+ 8[0]

D=D+ 5]

for (i=1i<r;i++)

{
t=(B x (2B +1)) < log,w
u=(Dx (2D +1)) < logyw
A=((A@t) < u)+SPr]
C=(Cou) <t)+S2r+1]
(4,B,C, D) = (B,C,D, A)

i,

A=A+S(2r+2|

C=C+S[2r+3]

Figure 4.1: Encryption with RC6-w/r/b

4.2 The CAST-256 Cipher

CAST-256 [4] is a private-key block cipher that is a generalization of the basic Feistel network
[12]. CAST-256 algorithm uses a 128-bit block size and a 256-bit (or less) primary key that is
used in the algorithm’s key schedule scheme to generate two sets of subkeys, each of which is
used per round: a 5-bit subkey K, is used as a “rotation key” for round ¢and a 32-bit subkey
Ko, is used as a “masking key” for round 4. There are a total of 48 rounds in encryption.

Three different 32-bit round functions are used in CAST-256. Using the same notation
as for RCB6, these functions are defined as follows:

* Round Function f;

I=((Km +D) < K,)

O = ((51[L] @ Sa[L]) — S3[L]) + SalLd]
* Round Function f;

I =((Km,®D) < Ky,)

O = ((Si[La] = S:[b]) + SslL]) @ Sa[Ld]
o Round Function f3

I =((Km; — D) < Ky,)

0 = ((51lLa] + S2[L)) @ Ss[L]) — Sald]

Here D is the 32-bit data input to the round function, I, to I; are the most significant

byte through the least signi byte of I, respectively, S; is the i* substitution box or
S-box, and O is the 32-bit output of the round function. Each S-box is a nonlinear mapping
of an 8-bit input to a 32-bit output [4]. Moreover, “+” and “” are addition and subtraction

modulo 22 i “@ " is bitwise exclusive-OR ion, and, finally, “u < v” is the

rotation of u to left by the value indicated by ». The CAST-256 encryption algorithm is
illustrated in Figure 4.2.

The plaintext is stored in four 32-bit input registers A, B, C, and D. There are 48 rounds
in encryption. The four 32-bit registers are updated after each round of encryption. The
output of the 48-round encryption is also stored in the four 32-bit registers 4, B, C, and D
as the ciphertext. Decryption is identical to encryption except that the masking and round
keys derived from the primary key are used in the reverse order. Note that the 256-bit
primary key can be generated from smaller user keys as outlined in the CAST-256 algorithm
specifications [4]. Details of the key scheduling scheme for CAST-256 are also outlined in [4].

45

for (i=0; i <6; i++)

{
C=C® filD, Krypyis Kmus)
B =B [(C, Kz Kmusea)
A=AB (B, Kripysr KmaessD
D =D filA Kryur Kmusrs)

}

for (i=6;i <12; i ++)

{
D =D fi(A Kepr, Kmicrs)
A=A f1(B, Kruyzr Kmagsa
B=B® f2(C, Kryysr Kmys B
C =C® fi(D, Krayar KminaD

}

Figure 4.2: Encryption with CAST-256
4.3 Hardware Development Environment

The design cycle and CAD tools used for the hardware implementation of RC6 and CAST-
256 algorithms have been provided by Canadian Microelectronics Corporation (CMC) [52].

The entire design process can be divided into the following three stages:

® Generating the VHDL (IEEE 1076) descriptions of the cipher design, employing dif-
ferent i options. The i VHDL si ion of the design is carried

out using the Synopsys VSS simulator version 1998.02 to verify the correct operation

46

of the cryptographic algorithm.

o Gate-level synthesis and logic optimization of the design utilizing Synopsys Design

Compiler version 1998.02 to produce a ional ic in

e Place and route for a specific FPGA device followed by a final verification of the design.
The timing simulation data is generated during this design stage which is then used to

carry out timing simulation for the final verification of the design.

We chose Xilinx as the FPGA vendor and an XC4000 device family. In particular, we
used XC40200XV-9-BG560 as our target device. This particular FPGA has a total of 7056
configurable logic blocks (CLBs), which gives us a baseline with which we can measure FPGA

resource consumption. Xilinx Alliance Series version 1.5 is used for place and route.

4.4 Design of RC6

The block diagram representation of the RC6 encryption algorithm realized in hardware is
shown in Figure 4.3. The RC6 core basically consists of four components - a 32-bit adder,
a 32 x 32 “partial” integer multiplier (i.e. the product is modulo 2%), a 32-bit bitwise
exclusive-or (XOR) and a 32-bit barrel shifter. The control path of the RC6 encryptor
consists of state machine/controller unit that controls the various modes of operation of
the cipher. Other major components of the design that implement the glue logic include
shift. registers, multiplexers/demultiplexers, serial-in parallel-out (SIPO), parallel-in serial-
out (PISO) and parallel-in parallel-out (PIPO) registers. As an example, the SIPO register
takes a stream of 32-bit words and converts every four consecutive words to four parallel
output words.

47

lici:
n,JJ_ o
2" 050 T

Ciphertext i

«n 8

g

R

T

i
cock,) |, ‘

Figure 4.3: Realization of RC6 Encryption in Hardware

The implementation of the RC6 encryption algorithm is based on a single-stage iterative
hi This i i option involves the hardware for one round of

encryption. The control path of the encryptor is designed such that data flows through the
RC6 core for a total of 20 rounds as required for the AES submission.

4.4.1 RC6 Datapath

The datapath for the RC6 encryption, as illustrated in Figure 4.4, consists of two parallel
functional pipes. First there are two initial modulo 2 additions of the two 32-bit data
blocks with the two corresponding subkeys. These additions are executed in parallel. The
other two 32-bit data blocks are pushed into the two identical functional pipes without any
modifications. Each of the two functional pipes, as indicated by the operations within the
two dotted traces in Figure 4.4, are comprised of a number of operations. The 32-bit data
is first fed into a quadratic function f = 222 + z used in the cipher for enhancing the rate
of diffusion thereby improving the security of the cipher. The quadratic function f can be
implemented using an addition followed by a multiplication operation. Here it should be
noted that all these are modulo 232 operations. The 32-bit output of the quadratic function
goes through a left circular shift or rotation of 5 bits. This is followed by a 32-bit XOR
operation, another left rotation, and another modulo 2°2 addition with the 32-bit subkey for

this particular round. The amount of rotation is determined by the least significant five bits

coming from the other path. Note that the two functional pipes are not ind: dent of each
other. Before the end of the first round, the four 32-bit modified words are swapped. This is
done to increase the nonlinearity of the scheme. Finally, the four 32-bits outputs of the two
functional pipes are stored back into the four 32-bit registers. The same process is repeated
for a total of twenty rounds. Upon completion of twenty iterations, two of the four 32-bit
output blocks undergo final 32-bit additions with the last two subkeys. The other two 32-bit

output blocks are passed out without these final additions.

49

gr i
)

L i

worda. 7

L H

- &

lett rotation {

Figure 4.4: Functional Representation of RC6 Datapath
4.4.1.1 Design of 32-bit Barrel Shifter

One of the major concerns in the design of the RC6 core has to do with the data-dependent
rotations. We have to look for an implementation that would take constant time for these
rotations, irrespective of the size of the rotation. The need for constant time rotations
stems from the fact that the RC6 algorithm is vulnerable to the timing attack [19] that
may ultimately lead to breaking the cipher. This attack exploits the fact that it takes a
variable amount of time to encrypt different plaintexts. This vulnerability occurs if the
data-dependent rotations take a time that is a function of the data.

The solution to this problem has to do with the way we implement these data-dependent
rotations. A barrel shifter is a device that can shift any number of bits in one clock cycle.

We have designed a 32-bit barrel shifter at the behavioral level and our impl ions in

FPGAs reveal the following synthesis results:

e Maximum delay for the data to be shifted = 4.88 ns

50

e Total number of CLBs used = 369 (5.2 % of the total available CLBs)

Although the total number of configurable logic blocks is much greater than a normal serial
shifter, the barrel shifter is much faster and takes only one CLB propagation delay time for

any size rotation.

4.4.1.2 Design of 32-bit Adder

The i ion of a fast, low ity 32-bit adder involves the consideration of a

number of design choices.

‘We first explored a 32-bit carry ripple adder (CRA) implementation in an FPGA. A
32-bit CRA is made up of 32 stages of full adders, with the carry out of the preceding stage
feeding in as the carry in to the following one. When implemented in an FPGA, the synthesis

results are as follows:
e Maximum delay = 173.21 ns
 Total number of CLBs used = 32 (0.45 % of available FPGA resources)

The reason for this large delay is the way the 32-bit CRA is constructed as shown in Fig-
ure 4.5. It involves 32 CLB delays because the full adder at stage i has to wait for a possible
carry from stage i — 1, which in turn has to wait for a possible carry from stage i — 2, and
s0 on.

A carry lookahead adder (CLA) is the fastest of all adders as it has a maximum delay of
four logic levels, irrespective of the adder width [53]. The components of this timing delay
are one logic level for the carry propagate, carry generate, and partial sum signals, two delays

for the carry signals, and one more delay for assimilating the carries and the partial sums.

51

Figure 4.5: Configurable Logic Block Schematic of the 32-bit Carry Ripple Adder

However, it is not practically feasible to implement a CLA that adds numbers greater than
eight bits because of the very high complexity and the limitations that arise from potentially

high fan-in and fan-out i Asa impl ing a pure 32-bit CLA is

not a likely option.
Another way to design a practical CLA is to alter the basic design principle of the
ripple carry lookahead adder (RCLA) that uses 4-bit CLA blocks with an inter-block ripple.

However, our synthesis studies in relation to implementations in FPGAs reveal that a much

52

more efficient implementation is to design a hierarchical carry lookahead, also known as block
carry lookahead adder (BCLA) [54]. In this particular design approach, we ripple the carries
within the 4-bit adders, and generate carries between the 4-bit adder blocks using CLAs.
This particular adder implementation results in the following numbers:

© Maximum delay = 70 ns
« Total number of CLBs used = 60 (0.85 % of the available CLBs)

The i delay i with this i ion is reduced by a factor 2.45 over the

32-bit CRA, but at the same time the hardware complexity is increased by a factor of 1.875.
Other 32-bit adder design choices that have been investigated include a pure 32-bit carry
select adder (CSEA) as well as a 32-bit CSEA that incorporates a 4-bit CRA as the basic

unit. A carry select adder is an adder ization that i di hard to
make the carry calculations go faster [55].

The adder finally selected for our design is a hybrid of CLA and CSEA. Our synf.héis
studies using FPGAs reveal that such a design is preferred on the basis of its speed. This
particular design uses a modular architecture, wherein a 4-bit pure CLA is used to form
an 8-bit CSEA and an 8-bit CSEA is then used to develop a 16-bit CSEA and so on. Our
FPGA implementation of this design yields the following results:

® Maximum delay = 39.32 ns
* Total number of CLBs used = 197 (2.79 % of the available FPGA resources)
These results suggest that the hybrid approach is very fast (an improvement by a factor of

4.4 over the CRA implementation). But since there is always a trade off between speed

53

and hardware complexity, this design achieves this high speed at the expense of increasing
hardware complexity.
4.4.1.3 Design of 32-bit XOR

A digital hardware component is needed to perform the 32-bit bitwise exclusive-or operation.

The timing and FPGA resource reports for the synthesized 32-bit XOR unit are as follows:
o Maximum delay = 4.88 ns
e Total number of CLBs used = 16 (0.2 % of FPGA CLB resources)
These results suggest the cost effectiveness of this simple operation in the context of imple-
menting an encryption algorithm in an FPGA.
4.4.1.4 Design of 32 x 32 “Partial” Integer Multiplier

The design of an efficient multiplier has been the corner stone of the RC6 core implementation
in FPGAs. In particular, we need a 32 x 32 “partial” integer multiplier to compute integer
maultiplication modulo 2°2. This implies that we need to obtain only the least significant 32

bits of the 64-bit product. Our initial behavioral level i ion of the iplier was

very di ing. The is results for the i ion of the partial multiplier in
the target FPGA furnished the following numbers:

e Maximum delay = 294 ns

o Total number of CLBs used = 551 (7.8 % of the available CLBs)

This low speed, less efficient FPGA implementation of the multiplier forced us to in-
vestigate a structural design option for the multiplier. In this respect, we have considered

54

a number of multiplier designs and their implementation in FPGAs. The different multi-
plier architectures considered from the FPGA implementation perspective include a serial
maultiplier [56], ripple carry array multipliers [57], row adder tree designs [58], paraliel array
multipliers [59], lookup table (LUT) multipliers [60], and Wallace tree multipliers [61].

The serial multiplier is the one that uses a serial adder for computing the partial sums and
therefore produces the product at a rate of one bit per multiplier-cycle. The operational time
for this type of multiplier is 3nT per cycle and 3n?r for the entire multiplication process,
where, T represents delay of one logic level and n is the operand size in bits. Clearly,
implementation of this sort of a multiplier design is extremely slow in FPGAs.

A ripple carry array multiplier (also known as row ripple architecture) is an unrolled
embodiment of the classic shift-add multiplication algorithm. This sort of design has a
maximum delay of the order 2nr, if one ignores the routing delays. Implementations in
FPGAs of this particular structure suggest that it does not make efficient use of the logic
available inside the target FPGA and is found to be slower than many other implementations.

A variant of the ripple carry array multiplier is the row adder tree multiplier that uses
an optimized form of row ripple. Basically, the gate count is same as for row ripple one, but
it improves on the delay by arranging the row adders in tree. But it has been found that
routing such a design in an FPGA is very cumbersome and the design seems to be workable
in certain FPGAs only [62].

In principle, we can evaluate any finite function by using a lookup table (LUT) that is

with the for the ion and whose output is the result of the eval-

uation. In theory, this furnishes the fastest possible i ion, as no actual

is needed. In the case of multiplication, however, the use of a single lookup table is not prac-

55

tical for any but the smallest operands. This is because the table size grows exponentially.

LUT multipliers are simply a block of memory ining a 1 iplication table of
all possible input combinations. The large table sizes needed for even modest input widths

make these i ical for i ions in FPGAs, ially with their limited on-chip

memory. For instance, a single table for 32-bit x 32-bit integer multiplication would have a
size of 251 words x 64-bit, which is simply out of question.

A better multiplier design approach is the use of parallel array multipliers. Here the term
parallel multiplier refers to any multiplier that employs two or more adders in the adder
section. This implies that we can have multiple additions in one cycle. In this particular
design, we first have n? AND gates operating in parallel, generating the logical-AND of bit i of
the multiplier and bit j of the ipli called the iplicand-multiples. This is followed

by a number of logic layers of carry save adders [63] to add different multiplicand-multiples
along with different carries that are generated. The last stage uses an n-bit carry propagate
adder (CPA) to sum the bits coming out from the penultimate stage. The operational time
is made up of 7, where T represents on logic level delay, for generating the n? multiplicand-
multiples, 37 for each carry save adder, and the delay associated with the n-bit CPA (Tip.)-
This final n-bit adder can be any of the n-bit modulo 2*? adders discussed earlier. Here it
should be noted that each carry save adder stage is implemented using full adders as well as
half adders.

Varieties of parallel-array multipliers, for operand sizes ranging from four bits to sixteen
bits, have been commercially available for many years. However, for larger operands, high
fan-out requirements and costs are generally prohibitive. One of the major contributors to

the total delay associated with the parallel-array multipliers has to do with the way the

carry save adders are arranged in each row of the array. Taken to its logical conclusion, the

approach of having as much concurrency as possible in the operation of the carry save adder,

yields a class of multipliers known as Wallace tree multipli ipliers [61].
The basic design principles for these kind of multipliers is explained as follows. First, all

n multiplicand-multiples for n-bit x n-bit iplication are as n?
ANDs. Then a number of addition steps follow. Assume n = 3l + mqo, where 0 < mg < 2.
In the first addition step, each of the ly triplets is reduced in a carry save adder to two sets
of outputs. At this point we have 2y + mq = 3/, +m,, where 0 < m; < 2, outputs. In the
second addition step, each of /; triplets is once again reduced in a carry save adder to two
outputs. This process is repeated until only two outputs are left and these are then fed in
a carry propagate adder (CPA). As each step reduces the number of outputs by a factor of
3/2, the complete process of reduction to two outputs takes [log, s 2/2] steps.

A Wallace tree is an implementation choice that is designed for minimum propagation
delay. A Wallace tree approach rearranges the wiring so that the partial product bits with the
longest delays are wired closer to the root of the tree. This changes the delay characteristics
from O(n?) to O(n log(n)) without i ing the hardware in ison to parallel array
approach. So, finally we find this approach to be quite suitable for implementation in FPGAs.

An important consideration at this point is the requirement of producing only the least
significant 32-bits of the 64-bit product for our paertial multiplier. As a consequence, we
could easily exploit this concurrency (i.e. the parallel adder columns) that comes with the
Wallace tree design. A high-level organization of Wallace tree multiplier for our 32 x 32
partial integer multiplier is shown in Figure 4.6. Here it should be noted that the adder
blocks labelled as CSA in Figure 4.6 represent the carry save adders. Basically, the carry

57

save adders can be implemented using full adders with carry inputs. A cary save adder
essentially takes in three inputs and generates two outputs, the carry-out C' and the sum bit

S. In other words, after each stage of addition, the carry save adder reduces the number of

inputs going into the next stage by one.

MP= i

tiplicand multiple

Figure 4.6: A High Level Organization of Wallace Tree Multiplier

The extra hardware needed to compute the most significant 32 bits of the 64-bit product
is removed. In other words, we are using the hardware that is only required to produce the

partial prod used in ing the least signifi 32 bits of the 64-bit product. The

total delay constitutes one delay iated with the hard {ucing the multiplicand-

multiples, eight full adder delays plus a final delay for the 32-bit CPA. The final 32-bit CPA
is implemented using the hybrid adder. Our synthesis of this multiplier design in a target
FPGA furnished the following numbers:

® Maximum delay = 79 ns (an improvement by a factor of 3.8 over the original synthesized

behavioral description)
« Total number of CLBs used = 930 CLBs (13 % of the available CLBs)
An interesting observation has to do with the maximum delay number of 79 ns for the

FPGA implementation of the multiplier. Almost half of the total delay (ie. 39 ns) is
contributed by the final stage 32-bit adder.

4.4.2 RC6 Control Path Design
The control path for the RC6 encryptor consists of two major functional units besides some
glue logic. These are a global state machine unit and a data flow controller used for ensuring

the proper operation of various components during the encryption process.

4.4.2.1 RC6 Global State Machine

The design of a synchronous finite state machine is vital to the proper operation of the RC6
encryptor, as the cipher cycles through a number of modes of operation. These include
reset mode, key-download mode, plaintert data-download mode, idle mode, and the data-
encrypt mode. A interface ion of the RC6 encryption is illustrated

in Figure 4.7. Here it should be noted that the RC6 encryptor design essentially encrypts

the data only. However, yption can be i with minor i ions to the

original design. The cipher has three asynchronous inputs (RESET-CHIP, KD, and DD), a
32-bit data-in, a 32-bit data-out, a clock input and finally a status flag output. The status

flag is used to indicate the mode of operation of the cipher.

Figure 4.7: A Component Interface of RC6 Encryptor

When the cipher is powered up, it is in the reset mode, with all the registers and flipflops
being initialized. Now, in order to start the normal operation of the cipher, the reset-chip
input is disabled, and the cipher enters into the key-download mode. During the key-
download mode, the forty four 32-bit subkeys are downloaded into the cipher key storage
unit. Once all forty four subkeys are downloaded into the encryptor (indicated by the status
flag), then depending upon the choice of the user-select inputs KD and DD, the cipher
can either proceed forward to start downloading the plaintext or it can go into the idle

mode. The idle mode is a feature incorporated into the design of the state machine so that

we can have enough ibility among the key-download, dat: and dat: Typt
stages. During the normal operation of the cipher, once the keys have been downloaded,
the cipher enters into the plaintext data-download mode. Once the 128-bit plaintext is
downloaded, the cipher enters the data-encrypt mode. During the data encrypt mode, the
plaintext undergoes twenty rounds of encryption, finally coming out of the cipher as the
128-bit ciphertext (ie. as 128-bit encrypted data). From then onwards, the cipher can
synchronously download the 128-bit data and encrypt it. The component interface of the
RC6 global state machine is shown in Figure 4.8. The design of the RC6 state machine
is based on a synchronous finite state machine with asynchronous inputs. The RC6 state
machine has a number of synchronous inputs such as DONE-4, DONE-44, DONE-OUT,
COUNT-20. These inputs to the state machine come from different counters used during
the execution of different modes of operation of the cipher. As well, we have a number of reset
and enable outputs that feed into the datapath of the cipher and make sure that different
registers and multiplexers/demultiplexers are enabled or disabled at the appropriate time.
A sample VHDL code for the RC6 state machine design is included in the Appendix A.
Essentially, the RC6 state machine is based on Moore finite state machine approach [64].
This finite state machine model is characterized by the fact that the outputs are identified
solely with the present state of the device. OQur global state machine has been designed keep-
ing in mind that our main intent is to investigate the efficiency of the encryption algorithms

from the i i ive. As a result, the state machine design can

not be regarded as a very robust one. This is because the design does not fully account for
error conditions. Obviously, one can spend more resources to develop a more robust and

sophisticated state machine for the design, but that has not been the focus of our attention.

61

VNIVIVIVIVIVIY

STATUS_FLAGC2:8.

C6_STATE_MACHINE
Figure 4.8: A Comp Interface ion of RC6 Global State Machine

4.4.2.2 RC6 Data Flow Controller

A simple controller has been incorporated in the design of the RC6 encryptor. The controller
is needed to enable and disable a number of registers and multiplexers during the data
encryption mode of the cipher. In other words, it is used to regulate the flow of data
through the RC6 core and update the various registers after each round of encryption,
thereby allowing a feedback connection from the output of the RC6 core to its input. As
soon as the global state machine control unit forces the cipher to go into data-encrypt mode,
the flow controller starts operating until the cipher exits this mode, once the data has been

encrypted.

62

4.4.3 Key Storage for RC6

One of the major concerns in ‘the design of the RC6 cipher has to do with storage of the
forty-four 32-bit subkeys that w@re to be used during the data-encrypt mode of the cipher.
Our design of the RC6 cipher mssumes that the subkeys for encryption are being generated
outside the FPGA using the kezy schedule scheme for the cipher. The details of RC6 cipher
key schedule scheme are outlined in [3].

During the key-download mede of the RC cipher, the forty-four 32-bit subkeys are being
downloaded into the key storage unit inside the cipher. Thus the forty four clock cycles
needed to store the subkeys imside the cipher constitute the key-setup time. Our imple-
mentation of the key storage unit involves using 2 combination of serial-in parallel-out and
parallel-in parallel-out registers. The former is used during the storage of forty four 32-bit
words. During the data-encrypst mode, the forty four subkeys are being fed into the RC6
core using the parallel-in parallel-out register. This implementation of the key storage unit
consumes a total of 704 configuxable logic blocks (CLBs). This implies that the key storage

unit takes up 10% of the available FPGA resources.

4.4.4 Simulation and Synthesis Results

This section presents the findings of our simulation and synthesis studies for the complete
design of the RC6 cipher. As explained earlier, the cipher operates in five different modes
- reset mode, key-download mo-de, idle mode, data-download mode, and finally the data-
encrypt mode.

As the simulation runs for the design are very extensive, only the portions that concern

each mode of global state machine ion are i din A dix B. When the cipher

63

is powered up, it is in the reset mode as indicated by the status flag (7", decimal equivalent
of “111”). Next, when the RESET-CHIP input to the cipher is disabled, the cipher moves
into the key-download mode. During this mode of operation (status flag = ‘1’, decimal
equivalent of “001"), the forty four 32-bit subkeys are being downloaded. Once the forty
four subkeys are downloaded, the status flag changes to a new value (2", decimal equivalent
of “010”) and then the cipher enters into the idle mode as indicated by status flag (0",

decimal equivalent of “000”). Now di ding upon the KD and DD inputs,
the cipher can move into any other mode of operation. As seen from the simulation figure,
the cipher then enters the data-download mode (KD = 0’, DD = ‘I’ and status flag =
‘3’). During this mode of operation, the 128-bit data is downloaded into the cipher in four
clock cycles as the cipher has 32-bit I/O buses. Once the 128-bit plaintext is downloaded
(status flag = ‘4’), the cipher then enters the data-encrypt mode (status flag = ‘5'). After
20 rounds of encryption, the ciphertext data is latched out in four clock cycles (status flag =
‘6"). Unless directed otherwise, the cipher then goes back to download the data and encrypt

it in a synchronous fashion.

As a verification of the design ionality, we adopt a botts p approach by test-
ing each indivi and th hly until we verify the correct
operation of the entire design. Each is also sy ized and a postsy

simulation is carried out to make sure that we generate the right hardware. In addi-

pairs and en-

tion, we use test vectors such as previs encrypted
cryption subkeys to verify the correct operation of the cipher. For instance, a plaintext
B18C555EB18C555E2AASD2AB2AA5D2AB (a 128-bit plaintext block represented in hex-
adecimal form) is loaded and encrypted with the forty-four 32-bit subkeys (FFEFFFFF...)

64

stored inside the cipher. The resulting ciphertext is C749B1640A9DB0EA12579B32F94CC359D.
These simulation results have been obtained after carrying out both functional simulation
and the timing simulation after the actual place and route of the RC6 design in the target
Xilinx XC40200 FPGA device. Here it should be noted that we are assuming that the
subkeys for encryption are being generated outside the FPGA using the key schedule scheme
for the cipher and that they are being downloaded into the key storage unit. Neglecting the

key-setup time, a single encryption time T, is given as follows:
Tener = Tuata—in +20Tctk + Titata—out
= Tener = 4T + 20Tax + 4T
= Toner = 28Tox (4.1)
Here it should be noted that Ti; represents the minimum clock period and defines the
maximum combinational path delay of the design. Moreover, since there are 32-bit I/O
buses, as such it will take four clock cycles to download the 128-bit plaintext data and an
equal number of clock cycles to latch out the data onto the 32-bit output bus. Our synthesis
process results in the following numbers:
o Minimum clock period = 146 ns
e Maximum clock frequency = 6.85 MHz
o Time for a one encryption = T, = 4088 ns
® Rate of encryption = 31.3 Mbps

The hardware needed for the RC6 encryption is 4944 CLBs for the RC6 core plus 704
CLBs for key storage unit and ancther 64 CLBs for storing the 128-bit input data. Besides

65

this, there is also some data flow and control logic overhead. Thus the total FPGA resources
required is about 6450 CLBs, which implies that the design takes up 91% of the available

CLBs in the target device.

4.5 Design of CAST-256

CAST-256 is the other AES candidate that has been implemented in FPGAs in order to in-
vestigate its effici from the impl i ive. The cipher as realized

in hardware is illustrated in Figure 4.9.

Figure 4.9: CAST-256 Encryption in Hardware

66

The design of the CAST-256 cipher is based on single-stage iterative architecture. As

h involves ing the h for one round of

mentioned earlier, this design
encryption and then designing a control path that allows a feedback connection from the
output of the single round hardware to its input. As a consequence, we cycle the original
plaintext input through the single stage hardware for the required number of rounds (or
iterations), finally latching the encrypted data out at the end of the required number of

encryption rounds.

4.5.1 CAST-256 Datapath

The CAST-256 datapath basically consists of a generic round function, a number of mul-
tiplexers, demultiplexers, a feedback register, a feedback multiplexer and a final output
register. The generic round function module realizes any of the three round functions fi, f2,

or fy depending on the particular round in progress.

4.5.1.1 Generic Round Function

The generic round function module consists of four 32-bit add/subtract/ezclusive-or units, a
separate 32-bit XOR module, a 32-bit barrel shifter and four 8 x 32 S-boxes, namely, S\, Sz,
S3, and Sy. The generic round function module is shown in Figure 4.10.

The generic round function module receives two 32-bit inputs from the two 4 x 1 multi-
plexers, in addition to inputs from the masking key storage and rotation key storage units.
The generic round function module also receives control inputs from the control unit for the
cipher. The generic round function has only one 32-bit output, because any one of the four

32-bit blocks A, B, C, or D is modified at the end of each round of encryption. The 32-bit

67

o, —

Figure 4.10: The Generic Round Function Module

input which is to be modified by the generic round function module as well as additional
32-bit input that is fed into the separate XOR unit as a final process inside the module
are being selected by the two 4 x 1 multiplexers outside the round function module. These

selections are dictated by the control signal that emanate from the control unit of the cipher.

4.5.1.2 The S-Box Design

As illustrated in the block diagram representation of the generic round function module in
Figure 4.10, the 32-bit output coming out of the 32-bit barrel shifter is split into four 8-bit
vectors used as four sets of 8-bit address lines for the four 8 x 32 S-boxes. The S-boxes are

implemented as lookup tables (LUTs). The hardware complexity of the cipher is primarily

68

due to the complex structures of the S-boxes. The two-hundred and fifty-six 32-bit values
stored in each of these S-boxes are tabulated in [4].

Our synthesis results for the 8 x 32 S-boxes are presented here:
© Total number of CLBs used for each S-box = 411

e Maximum delay of each S-box = 62 ns.

The shere size of the four S-boxes and the iated delay i to the h

complexity and low speed of the generic round function module, which requires a total of

3037 CLBs (43% of the available FPGA and has a i inati path
delay of 202 ns.

4.5.2 CAST-256 Control Path Design
‘The CAST-256 control path consists of a global state machine unit with asynchronous inputs,
a data flow controller and some glue logic as is needed to integrate the control logic with the

cipher datapath.

4.5.2.1 CAST-256 Global State Machine

As in the case of RC6, here too the state machine unit is based on a Moore finite state
machine model [64]. The component interface of CAST-256 state machine is presented in
Figure 4.11. The state machine unit design has 2 number of asynchronous inputs (RESET-
CHIP, KD, and DD) in addition to other inputs. The state machine is a synchronous one.
‘The CAST-256 state machine is different from the RC6 counterpart in the sense that the

former incorporates one more key download state. As mentioned earlier, in the case of

69

CAST-256 we have two sets of keys - forty eight 5-bit rotation keys and forty eight more 32-
bit masking keys. Hence, we are concerned with an additional rotation-key-download state.

The six cipher modes - reset, king-key-d , rotation-key-download, idle, plaintext

data-download, and data-encrypt.

STATE_MACHIIIE

Figure 4.11: CAST-256 State Machine Unit

4.5.2.2 CAST-256 Data Flow Controller

The design of the data flow controller is of prime importance to the proper operation of the
cipher, as it is responsible for regulating the flow of data through the CAST-256 core. A
component interface for the controller is shown in Figure 4.12. The controller receives the
counter output that is needed to stimulate certain control signals emanating from the control
path and feeding into the datapath. The controller provides a synchronous control over the
generic round function module. It also provides control inputs for the feedback multiplexer
as well as for the two 4 x 1 multiplexers. The feedback multiplexer is used to loop back
the data after each round of encryption. The other two multiplexers decide which 32-bit

70

[DERIRE
;DL
H S M1
-DJEL nitE:

n

Figure 4.12: CAST-256 Data Flow Controller

input data is to be modified in each round. The controller also supplies four control inputs
to the generic round function that decide which operation - addition, subtraction, XOR, or

rotation operation - is to be executed for operations g, b, ¢, and d in the round function.

4.5.3 The Key Storage Unit

The key storage unit for the CAST-256 cipher is comprised of a masking keys storage part
and a rotation keys storage portion. There are forty eight 32-bit masking keys stored inside
the cipher to be fed to the generic round function. This is accomplished by designing a

serial-in parallel-out (SIPO) register, in conj ion with a parallel-in parallel-out (PIPO)

71

register. We have a similar arrangement for storing the forty eight 5-bit rotation keys . Here,
it should be noted that the subkeys for encryption are assumed to be generated outside the

FPGA using the key schedule scheme for CAST-256 [4]. The keys are then downloaded into

the key storage units during the masking-key-download and round-k modes. This

implementation of storing the keys inside the FPGA uses around 1000 CLBs.

4.5.4 Simul

and Sy
‘This section presents the findings of our simulation and synthesis studies for the complete
design of the CAST-236 cipher. As opposed to RC6, CAST-256 operates in six different

modes - reset mode, king-key-download mode, rotation-key mode, idle mode,

data-download mode, and finally the data-encrypt mode.
As the simulation runs for the design are very extensive, so only the portions that concern

each mode of global state machine ion are il in A dix C. When the cipher

is powered up, it is in the reset mode as indicated by the status flag (‘15’, decimal equivalent
of “1111"). Next, when the RESET-CHIP input to the cipher is disabled, the cipher moves
into the masking-key-download mode. During this mode of operation (status flag = ‘1’,
decimal equivalent of “0001”), the forty four 32-bit masking subkeys are being downloaded.
Once the forty four subkeys are downloaded, the status flag changes to a new value (2",
decimal equivalent of “0010”) and then the cipher enters into the rotation-key-download
mode as indicated by the status flag (‘3’, decimal equivalent of “0011”). Once the forty eight
5-bit round keys are downloaded (status flag = ‘4’), the cipher then enters the idle mode as
indicated by status flag (‘0°).

Now d¢ ing upon the KD and DD inputs, the cipher can move into

72

any other mode of operation. As seen from the simulation figure, the cipher then enters

DD = ‘1’ and status flag = 5’). During this mode of

the data-download mode (KD =
operation, the 128-bit data is downloaded into the cipher in four clock cycles as the cipher
has 32-bit I/O buses. Once the 128-bit plaintext is downloaded (status flag = ‘6’), the
cipher then enters the data-encrypt mode (status flag = ‘7"). After 48 rounds of encryption,
the ciphertext data is latched out in four clock cycles (status flag = ‘8”). Unless directed
otherwise, the cipher then goes back to download the data and encrypt it in a synchronous
fashion.

As a verification of the design ionality, we first encrypt a plaintext with a certain key

and then later on use the same ciphertext as input to the cipher and recover the original plain-
text. For the correct operation of the CAST-256 cipher, both the encryption and the follow-
ing decryption should result in the original plaintext as long as the subkeys are fed in the re-
verse order. For instance, a plaintext E2AAFC11E2AAFC11E2AAFC11E2AAFCI1 (a 128-
bit plaintext block represented in hexadecimal form) is loaded and encrypted with the forty-
eight 32-bit masking subkeys (FFEFFFFF...) and forty-eight 5-bit round subkeys stored
inside the cipher. The resulting ciphertext is 3BA95C83135B95DFC54D1C13297FC027. At
a later time, the ciphertext 3BA95C83135B95DFC54D1C13297FC027 is fed in as input to
the cipher with the subkeys applied in the reverse order to recover the original plaintext
E2AAFC11E2AAFC11E2A.... We also carry out presynthesis and postsynthesis testing of
each individual component in a bottom-up manner to verify the correct operation of our
design. Simulation results have been obtained after carrying out both functional simulation
and the timing simulation after actually place and route of the CAST-256 design in the
target Xilinx XC40200 FPGA device. Here it should be noted that we are assuming that the

3

subkeys for encryption are being generated outside the FPGA using the key schedule scheme
for the cipher and that they are being downloaded into the key storage unit. Neglecting the

key-setup time, a single encryption time Tenc- is given as follows:

Tence = Tuata—in + 48Tet + Tata—out
= Toner = AT + 48T + 4T
= Tener = 36Ter (4.2)
Here it should be noted that Ti represents the minimum clock period and defines the
maximum combinational path delay of the design. Moreover, since there are 32-bit I/O
buses, as such it will take four clock cycles to download the 128-bit plaintext data and an
equal number of clock cycles to latch out the data onto the 32-bit output bus. Our synthesis

process results in the following numbers:
* Minimum clock period = 198 ns
o Maximum clock frequency = 5.05 MHz
 Time for a one encryption = Tuner = 11088 ns
e Rate of encryption = 11.54 Mbps

The time for one encryption and the corresponding encrypted data rates apply to a
48-round CAST-256 cipher. However, if we had half the number of rounds for CAST-256,
i.e. twenty four rounds in all, the encryption speed of the cipher is almost doubled, as the
constant 48 in the expression for Temer changes to 24 and this leads to a data rate of 20.2
Mbps. There are no known cryptanalytic attacks that have been applied to a 24-round
version of the cipher.

74

The hardware needed for the CAST-256 encryption is 3037 CLBs for the generic round
function plus 768 CLBs for masking keys storage and another 120 CLBs for storing the
rotation keys. Besides this, another 64 CLBs are required for storing the 128-bit input data.
The data flow and control logic overhead amounts to around 1000 CLBs. Thus the total
FPGA resources required is about 5050 CLBs, which implies that the design takes up 72%

of the available CLBs in the target device.

4.6 Comparison of RC6 and CAST-256 Ciphers

Simulation and synthesis studies for the two ciphers suggest that neither RC6 nor CAST-256
is well suited for implementation in the targetted Xilinx FPGA. The hardware complexity

is high and the encryption speed is low, particularly d to similar impl
of DES [51).

Our simulation and synthesis studies reveal that multiplication in particular and addi-
tion to some extent are major bottlenecks as far as speed of encryption in RC6 cipher is
concerned. This has also to do with custom architecture of the FPGAs. However, a faster
implementation of RC6 cipher can only be achieved at the expense of increasingly large
hardware complexity, which implies the use of a high-end FPGA device. Moreover, it ap-
pears that implementation of RC6 in the targetted FPGA using pipelining is found to be

from a hard ity viewpoint. This is because of the large number of

CLBs (in excess of 6000 CLBs) that are needed for implementing just one round of encryp-
tion hardware. So, if we want to even pipeline say two rounds, we will be needing twice the
hardware and will need to consider very high density devices.

CAST-256 encryption in FPGAs is found to be slower than what we can achieve with

75

the RC6 cipher. At the same time, the hardware complexity associated with CAST-256
cipher is roughly of the same order as RC6. This is because the advantage of not having a

multiplication operation is being offset by the use of four large S-boxes.

4.6.1 Some Recent Modifications

Lately in our research, we have made a number of improvements in the design of some of the
key cipher components that have improved the ovreall speed of these ciphers to some extent,
as well as reduced some of the hardware that was previously in use. But, these modifications
still do not mark a significant improvement over the speed and hardware complexity for these
ciphers.

One major modification has to do with the storage of the encryption key, and the imple-
mentation of the S-boxes. We have now replaced the LUT implementation of the S-boxes
with a much faster and low complexity RAM units. Another significant modification in-
volves improving the speed of the multiplier by replacing the current 32-bit adder designs
with 2 new kind of synthesized adders provided by the LOGIBLOX toolbox available with
the new FPGA design tools. These are called “ Relationally Placed Macros” or RPMs.
These adders not only make use of the fast carry logic available within the Xilinx CLBs, but
at the same time most of the logic is aligned in parallel to reduce the delays. This 32-bit

adder i ion reduces the hard by a factor of ten over the previously employed

adder implementations. The speed of an RPM based 32-bit adder is around 20 ns as op-
posed to 39 ns for the hybrid adder design. However, it should be noted that these adder
results are only fine for the SRAM-based Xilinx FPGAs, and for the technology independent

implementation, the hybrid design appears to be the best approach.

76

Some recent modifications in the the design of control path for both the ciphers have re-
sulted in removing the Tiyeq_in = 474 overhead, so that during the last stages of encryption,
data for next encryption is already available, thus saving us four clock cycles. This has in-
creased the encryption data rate for our RC6 cipher implementation from 31 Mbps to around
37 Mbps. Similarly, the encryption data rate for CAST-256 has been improved to a value of
12.5 Mbps for 48-round implementation and 24 Mbps for a 24-round implementation.

If we compare the encryption speeds of these hardware implementations with the cor-
responding implementations in software on 200 MHz Pentium and Pentium Pro platforms,
we find that rate of encryption for RC6 is around 100 Mbps and that for CAST-256 is 38.8
Mbps [65]. However, in order to attain very high speeds in hardware, one can go for a full
custom ASIC implementation. These results also point out the fact that most of these AES
candidate algorithms have an element of bias for software implementation. As such there
is a need to look for a private-key block cipher that is very efficient in terms of hardware

implementation.

4.7 Conclusion

In this chapter, we have the FPGA i ion of two AES candidates -
RC6 and CAST-236 encryption algorithms. We have first explained the two encryption
algorithms in detail. Next we have found it necessary to talk about the hardware development
environment that has been used to implement the two ciphers. This is followed by a detailed

investigation of the design of RC6 cipher. Here, the design of RC6 datapath as well as

its control path is The FPGA i ion of the cipher is carried out and

simulation and synthesis results are presented. A similar investigation of CAST-256 cipher

i

design is followed by si ion and hesis results. Finally, the hardware

complexities of the two ciphers are compared and certain conclusions are derived.

78

Chapter 5

A New Private-key Block Cipher

Design

5.1 The Proposed Cipher

As mentioned earlier, the FPGA industry has become one of the fastest growing segments
of today’s industrial world. With the continuous enhancements in the FPGA technology
in terms of increasing gate density and faster clock speeds, applications like reconfigurable
computing, rapid prototyping, as well as algorithm agile applications are ideal for FPGA
implementations.

However, the FPGA implementation of RC6 and CAST-256 encryption algorithms has

brought forward a very i aspect of i ing the private-key block ciphers

in the hard: with these cipher designs are significant

enough to di the ibility of going for logic devices such as FPGAs.

As a consequence, we propose a much simpler cipher design that makes use of simpler

79

operations that not only possess good cryptographic properties, but also make the overall

cipher design efficient from the i ive. This h may
also encourage us to effectively pipeline multiple rounds of encryption and thereby increase
the cipher speed for FPGA i ions in particular and ions in
general.

‘The proposed cipher, which we shall refer to as Fast Hardware Cipher or FHC is a private-
key 128-bit block cipher that is a generalization of basic Feistel network, and it incorporates
the same data flow scheme as used in CAST-256. However, there are a number of key
differences between the proposed cipher and CAST-256. The proposed cipher has a much
simpler generic round function than the one used for CAST-256. Complex operations such

as iti i amnd data d i are removed. These have been

replaced by simple XOR operations. As well, the mere size and structure of the S-boxes
used in CAST-256 cipher was. a major contributor towards the overall hardware complexity
and low speed for the cipher. The round function in the proposed cipher makes use of eight
4 x 32 S-boxes instead of four 8 x 32 S-boxes. Hence, the size of each S-box is reduced from
256 x 32 bits to 16 x 32 bit.

The “penalty” for these simplifications is that the total number of encryption rounds is
increased from 48 in CAST-256 to 96 in FHC. The reason for doing so has to do with the
security of the cipher, as will be explained later in this chapter. A key schedule scheme must
used to generate the 32-bit mzasking subkeys Ko, each of which is used per round. There
are no rotation subkeys.

The round function used in FHC is defined as follows:

* Round Function f

80

for (i =0;i < 12 i ++)
{
C=C® f(D,Kmys.)
B=B® f(C, Knysa)
A= A8 f(B, Kmy.s)
D=D® f(A Kmnys)
i
for (i =12; i < 24; i ++)
{
D=D®& f(A, Kmy,,)
A= A8 f(B, Kmysa)
B =B® f(C, Knuys)
C=C® f(D, Kmy.d)
}

Figure 5.1: Encryption with Fast Hardware Cipher (FHC)

I=Kn®D
O = (S\[La] @ Sa[1s] © S3[L] @ Sa[la] @ Ss[Le] ® Se[I7] ® SrlI,] ® Ss[Ia])
where D is the 32-bit data input to the round function, I, through I, are the most signif-
icant nibble through the least significant nibble of 7, ively, S is the i
box, and O is the 32-bit output of the round function. Each S-box is a nonlinear mapping of

a 4-bit input to a 32-bit output. In our implementation, these S-boxes have been randomly
“@” is bitwise exclusive-OR. i

The proposed encryption algorithm is illustrated in Figure 5.1. The plaintext is stored in

81

four 32-bit registers, 4, B, C, and D. In each round of encryption, a 32-bit masking key is
used. The output of the 96-round encryption is also stored in the four 32-bit registers. The

design of 2 suitable key is not add d in this thesis. As in the case of

the previous two cipher implementations, here too, the subkeys for encryption are generated

outside the FPGA and downloaded into the cipher during the key-download mode.

5.2 FPGA Implementation of the Proposed Cipher

A block diagram of the proposed cipher as realized in digital hardware is presented in Fig-
ure 3.2. The cipher is constructed as a single-stage iterative structure. This implies that we
have the hardware developed for one round of encryption and the control part of the cipher

is responsible for iteratively passing the data through the encryption core.

5.2.1 Datapath

As seen from Figure 5.2, the datapath for the proposed cipher encapsulates the encryption
core implemented as a round function unit. A round function consists of a multiple exclusive-
OR operations and S-box substitutions. When the 32-bit data enters the round function unit,
it first goes through a bitwise XOR. with the 32-bit masking key for that particular round.
‘The output of this operation is then divided into eight 4-bit vectors used as address lines for
the eight 4 x 32 S-boxes. The 32-bit outputs of all eight S-boxes are then XORed to yield a
32-bit result. These final 32 bits are then XORed with appropriate 32-bit values of 4, B, C,
or D. This 32-bit output of the round function unit is then swapped along with the other
three 32-bit values and then looped back to the input of the round function. This continues
for a total of 96 rounds. The swapping of the 32-bit words and the feedback connection is

82

EE= e 32————» Key Storage Unit
i S A —clk 96x32 RAM
i) e e 0
a2 =1 S0 320K,
| Iinput Data SIPO
= — iy ————| register il
128
LL =
| ,2 R
Sz 5 5
128 i ¥ @ @
3 2 g g
— gl & o | Ciphertext
5 FHC Core [—az—»£Z[0nll 1280 § |0 5 @ 32—»
3 m ot g L
H ' : H
32 8 3
32 | E 3
bt ||
3
LT — I [
|
l catel sig cnlrl_sig
e o
——CLOCK—»‘ FHC Controller/State Machine Unit

Figure 5.2: Realization of Fast Hardware Cipher in Hardware

achieved using a number of multiplexers, demultiplexers and a feedback register.

The simple structure for the round function lends itself nicely to an FPGA implementa-
tion. This is mainly because of employing simpler cryptographic operations such as bitwise
XOR. The size of the S-boxes used in this design is reduced from the ones that were used
to implement the CAST-256 cipher. This has resulted in saving a lot of hardware as well
as reducing the critical path delay considerably. Synthesis of the round function for the
proposed cipher yields a maximum combinational path delay of just 30 ns as opposed to 202
ns for the CAST-256 generic round function implementation. The total number of CLBs

used for implementing this round function is just 192, which is a considerable improvement

83

over the CAST-256 generic round function that requires 3037 CLBs. This is mainly because
now the total number of CLBs needed for the eight 4 x 32 S-boxes is 8 x 16 = 128 as opposed

to about 4 x 411 = 1644. This i ion in the is also because the

S-boxes for the proposed cipher have been implemented as 16 x 32 RAMs, instead of lookup
table (LUT) implementations based on using the register bits in the CLBs. As such the

RAM implementation is still a LUT - just more efficient storage.

5.2.2 Control Path Design

The FHC control path is not much different from the one employed for CAST-256, except
for the total number of encryption rounds. The control path comprises of a synchronous
state machine unit with asynchronous inputs, a data flow controller and some glue logic.
The state machine for the proposed cipher is no different from the one used for the FPGA
implementation of CAST-256, except that in the case of FHC, we have only one key-download
state. The data flow controller is also based on the same design as used for CAST-256 (see

section 4.5.2.2).

5.2.3 The Key Storage Unit

One of the major to the impl jon of the proposed cipher has to do
with the way the encryption keys are being stored inside the target FPGA. Previously, key
storage module implementations for RC6 and CAST-256 employed the lookup tables (LUT)
approach, but our synthesis studies for FPGA implementations suggest that table lookup
implementations do not scale efficiently in custom architecture FPGAs, mainly because of

the restricted nature of the CLBs.

84

On the other hand, implementing the key storage unit as RAMs proves to be very efficient,
as the target device makes full use of the on-chip RAM available to it. For the proposed
cipher, we need to store ninety six 32-bit encryption subkeys. These subkeys are to be read
later on during the data-encrypt mode. Our implementation of the key storage unit for the
proposed cipher gives the following numbers:

e Maximum combinational path delay = 26.593 ns

o Total number of CLBs used = 99

5.2.4 Simulation and Synthesis Resul

The design of the complete proposed cipher has been simulated, synthesized and we place-
and-routed in a particular FPGA. The relatively small hardware complexity associated with
this design makes it possible for us to use 2 medium size FPGA device. We have used
XILINX XC4036EX FPGA. for implementing this design. The target device has been used
in the field for quite some time now and has proven to be very popular. XC4036 has a total
of 1296 CLBs.

As the simulation runs for the design are very extensive, only portions of simulation that
concern each of the five cipher modes are shown (see Appendix D). These include the reset
mode, key-download mode, idle mode, data-download mode, and the data-encrypt mode.
The key-download mode differs from the one for RC6 because the former takes 96 clock
cycles as opposed to 44 clock cycles for the latter. The manner in which the cipher cycles
through different modes of operation is the same as described in section 4.4.4.

Neglecting the key setup time, one single encryption time Tencr is given as follows:
Tener = 96Tuix + Tuata—out

85

= Tener = 96Ttk + 4T

= Toner = 100Tx (3.1)
Here it should be noted that T,y represents the minimum clock period and defines the
maximum combinational path delay of the design. Moreover, since there are 32-bit /O
buses, as such it will take four clock cycles to download the 128-bit plaintext data and an
equal number of clock cycles to latch out the data onto the 32-bit output bus. However, in
this particular implementation, we have made a modification so that during the time data
is being encrypted, the next 128-bit plaintext is already available. This has saved us four
clock cycles for downloading the input data. Qur synthesis process results in the following

numbers:
e Minimum clock period = 30 ns
e Maximum clock frequency = 33.33 MHz
© Time for a one encryption = Toner = 3000 ns
 Rate of encryption = 42.67 Mbps

The time for one ion and the i d data rates apply to a

96-round FHC implementation.

‘The hardware needed for the FHC encryption is 192 CLBs for the generic round function
plus 99 CLBs for “masking” keys storage . Besides this, another 64 CLBs for storing the
128-bit input data and 66 CLBs for each of the eight S-boxes. The data flow and control
logic overhead amounts to under 300 CLBs. Thus the total FPGA resources required is
about 750 CLBs, which implies that the design takes up 57% of the available CLBs in the

86

target device, but only 11% of the available CLBs in the device targetted for the original

RC6 and CAST-256 designs!

5.3 Security Analysis

In proposing any new cipher, one of the key design elements concerns the security of the
proposed cipher. A successful cipher should resist all proposed cryptanalysis techniques, such
as linear and differential cryptanalysis, and at the same time exhibit the potential of surviving
brute force attacks in future when computing power is increased. Moreover, there should
exist clear mathematical techniques to analyze and determine the cryptographic strength of
the cipher in question.

In this section, we analyze the security of our proposed cipher against two very potent
cryptanalytical attacks, namely linear and differential cryptanalysis. An m x n S-box is a

2™ x n lookup table. In SPNs and most Feistel ciphers, S-boxes are critically important to

security, since they are the key of nonlinearity in the algorithm. As the size of
the lookup table increases exponentially with increase of the value m, m should be chosen to
be small. On the other hand, the value of n can be selected to be large as the size of lookup
table increases linearly with n.

5.3.1 Sel Nonli Round Functi

For the proposed cipher, we have randomly selected eight 4 X 32 S-boxes. These S-boxes have

been constructed using random number It is therefore i to consider

the nonlinearity contributed to the cipher by randomly selected S-boxes. The concept of
nonlinearity and m-bit affine functions have been defined in Section 2.2.1. It follows that

87

out of all 22™ possible m-bit functions, there are 2™+! affine functions. Since there are thirty

two 4-bit linear or affine i the ility of ing a 4-bit linear or
affine function is given as pin = (25/2'%) = 2714,

Next consider the problem of selecting k = 0,1,2, ..., 8 perfectly linear S-box approxima-
tions, wherein we consider the approximation that is an XOR of some subset of output bits
of a round function and is the XOR of corresponding bits in the outputs of S-boxes. Now
the probability of & out of a total of eight S-boxes being nonlinear for a particular subset of

output bits, P, is given as a binomial distribution:
8 k 8-k =
Pe= (1 = Puin)* (Prin) (3.2)
k

Table 5.1 lists values of P for k = 0,1,2,...,8. This implies, for example, the probability
of randomly selecting all eight S-boxes contributions to the round approximations as being
linear is 2798 for a particular subset of round function output bits. We shall use these results

in our following discussion of the security of the cipher with respect to linear cryptanalysis.

P | 2788 | 276 | 9-59 | 916 | 938 | 5-28 | 9-18 | 9-8 | 0. 996

k 0 1 2 3 4 5 6 7 8

Table 5.1: Probabilities of selecting k nonlinear S-boxes

5.3.2 Linear Cryptanalysis

Linear Cr is [7] to find a linear imation of a cipher only derived
from plaintext, ciphertext, and key terms. A general linear approximation of a cipher is

derived by combining a number of linear approximations of the S-boxes of different rounds

88

so that the intermediate terms are canceled. Basically, the attack makes use of any high

babili of linear ions of input, output, and round keys in the round

function of an iterated cipher structure. As such the basic principle of linear cryptanalysis

is to determine a linear approximation of the type:

Py ®Pp®...0 P, ®Cr, ®Cr, ©....0Ch, = K, 0 K, © ... 0 Ki, (5.3)
where ji, J, --Jas k1, Kz, -k, and Iy, ba, ...l denote bit positions of the plaintext P, ciphertext
C, and key K, respectively. In [34], the probability of satisfying the best linear expression

for r-round cipher is bounded as follows:
1 1= -
|Pr o= El <2l lp = 5' (5.4)

where p; represents the probability that the linear expression 5.3 holds, ps represents the
probability of the best linear approximation of any S-box. Also, a is the number of S-boxes
involved in the linear approximation. Ideally pg = 0.5 = p = 0.5.

It has been shown in [34] that an S-box linear approximation has a probability ps where

omt _ NI
e

‘where m represents the total number of input bits to the S-box, and NL is the nonlinearity of
the S-box function used in the linear approximation. Here NL = 0 implies a linear function.

A linear cryptanalytical attack typically employs a number of linear approximations of the
rounds to develop an overall linear expression involving subsets of plaintext and ciphertext
bits. This makes it possible then to derive one key bit, which in turn is given as the

exclusive-or of a number of round key bits as in given in equation 5.3. As a result, it has

89

been shown in [7] that the number of known plaintexts required, with a success rate of 97.7%,

is approximately

-2

1 2,
Ni=|n-3 9)

In order to analyze the strength of the proposed cipher against this attack, we adopt

a very imisti by making t- i From Table 3.1, it is clear
that the probability of selecting all eight S-boxes to be linear (2-%) for a particular set of
output bits is highly remote. As such we can very safely reject the possibility of all eight
S-boxes being perfectly linear in the linear approximation of a round.

Let us consider the scenario where we have seven linear S-boxes and one nonlinear S-box.
Once again adopting a very conservative approach, assume NL = 1. Substituting this value
for NL in equation 5.5, we get a [— | = . What follows next is an example of how to
construct the best linear approximation for the round function and then extending it to the
entire cipher.

Let us assume that the best linear approximation for the round function in round 1 is as

follows:

Round1: Xy = Pou® Ky
Xy = Yp@Ya
Ky = Po®2,073 (5.7)

where equation 5.7 holds with ps = . Here X;; and Y;; represent the i* input bit to the

7% S-box and i* output bit to S-box S, respectively, and Kjs represents the i bit of j*

90

round key. Zj is the k®* output bit of the round function. Similarly, scenarios for the best
linear approximations for second, third, and fourth rounds are given below. All these best

linear approximations are assumed to hold with ps = .

Round?: %@ Z; @ Kn® K = X ® Xt
Xp®Xp = Y2 ®Yin

%020Kn® Ky = 207y (5.8)

Round3:Z10® Z1 ® Kis ® Kiy = X0 ® Xz
Xip @ Xi» = Yy
Yis = 2,

200 Ze0Kp®Kis = 2 (5.9)

Round4:Xp = Z; @ Kn
Xp = VnoYaoYn

VnoYa®Yn = Z3@®Zs®Z7

Z3® 25021 = Cop® Cro1 @ Cuas

Z;® Ky = Coy® Ci01 ® Cis (5.10)
Finally, the best linear approximation for a 4-round cipher is as follows:
Pog®Cog ®Cio1 ®Cros = Kyt ® K2 ® Kz © Ko © Ky © Ke (5.11)

Now substituting the values for a 4-round linear approximation in equations 5.4 and 5.6,

we find that the total number of known plaintexts needed to guess the right hand side of

91

equation 3.3 with a 97.7 % success rate is only 12. However, if we extend this attack to
complete 96 rounds of the cipher, then we need at least 2*° known plaintexts for 96 rounds.
Although this number is too small to claim 96 rounds for the cipher to be secure, however,
the very low probability of selecting seven linear S-boxes (see Table 5.1) implies that being
able to represent seven out of eight S-boxes in each round as linear in a linear approximation
of a round function is extremely unlikely.

Table 5.2 lists the results for 4-round, 48-round, and 96-round linear approximations

for different values of NL. We find that for all S-boxes ions used in the

with nonlinearities greater than 4, the attack becomes impractical for a 48-round cipher. The
values listed in Table 5.2 also imply that for a 96-round cipher, the attack is not successful
for NL > 2. In fact, for value of NL = 3, the number of known plaintexts required simply

exceeds the total number of plaintexts (i.e. 21%).

NLmin | Ni(r = 4) | Ny(r = 48) | Ni(r = 96)

1 >2° 2% > 2%
2 >2° 21 0%
3 > 97 967 > g2
4 2ID 298 > gl94
5 > 213 2!3! > 22714
6 218 2194 -

226 22% —

Table 5.2: Linear Cryptanalysis Results for Different values of NL

We have so far focused on the upper region of Table 5.1, and have found that even by

92

adopting very conservative values of NL = 1, the cipher seems to be pretty secure against the
linear attack. Next, we concentrate on the lower region of Table 5.1, wherein the probabilities

of selecting 3 or 4 linear S-boxes are relatively not that remote.
Our analysis so far involves only one linear S-box approximation per round function, the
bility of this ing is small, p; = 2. Now we relax our assumptions

a bit to assume that there are four out of eight S-boxes functions which are perfectly linear
in our linear approximation of a round function and the probability of this happening being
still a very unlikely, py = 2%, for randomly selected S-boxes. This implies that we are to
construct a linear approximation per round that takes into account four nonlinear S-boxes

and then ing the linear imation for each round to form a

4-round linear approximation. Finally, we extend it to 48 and 96 rounds.

Assuming a NL = 1 for four S-boxes functions, say Si, Sz, Ss, and Ss. This implies

ps — 3| = & Our analysis for this scenario yields the following results:

e Total number of known plaintexts required for a 4-round attack is greater than 2%

« Total number of known plaintexts required for a 48-round attack is approximately 27
e Total number of known plaintexts required for a 96-round attack is approximately 2%

Similarly, we apply the same attack on the proposed cipher with the condition that there are
three perfectly linear S-box approximations selected with a greater probability of ps = 2728,
This implies that we have to consider the effect of five nonlinear S-box approximations while

the linear imation per round. Once again assuming the lowest value of
nonlinearity (VL = 1), which ds to weakly i imation, we get the
following results:

93

o Total number of known plaintexts required for a 4-round attack is greater than 2°
o Total number of known plaintexts required for a 48-round attack is approximately 2%
 Total number of known plaintexts required for a 96-round attack is approximately 2167

Our analysis of the proposed cipher against linear cryptanalysis under some very pes-

simistic assumptions suggest:

o The ility of a linear i ion involving five or more linear approximations

of S-box functions is negligibly small.

o For a 96 round cipher with three or four linear S-boxes, the total number of known
plaintexts required exceeds the the total number of available plaintexts. This renders

the linear attack unsuccessful against the cipher.

e Finally, the known plaintexts requirement makes the attack increasingly impractical
if we select S-boxes in a way such that fewer than three S-boxes are perfectly linear

among them, although such cases are likely to occur.

Here it should be noted that, for our analysis, we had a very conservative approach and used

worst-case bounds on the values of i ity, because the probabilities of lower values of
NL are low. It is conceivable that a linear approximation can be constructed that involves
only one round function every four rounds, but this can be avoided if the S-boxes are selected
so that the S-box functions are balanced (i.e. there are an equal number of ones and zeroes).
‘We can safely conclude that the 96-round proposed cipher implementation is secure against

linear cryptanalysis.

94

5.3.3 Differential Cryptanalysis

In this section, we briefly present some of the studies and results in relation to the proposed

cipher’s resi: to di ial cr;

Differential cryptanalysis [6] is basically a chosen plaintext attack. This method takes

into account ci pairs, whose di i have a
In other words, it looks at the XOR di of two plai and that to the
ding ciph pair. In a particular S-box, if we know the input XOR of a pair,

it does not ensure the knowledge of its output XOR. However, there exists a probabilistic
relation between the output XORs and every input XOR. Differential cryptanalysis makes
use of the highly probable occurrences of sequences of output XOR differences at each round
given a particular plaintext XOR difference.

A block cipher can be proved to resist differential cryptanalysis if it can be shown that
high probability differentials do not exist. In a secure cipher, this probability should ap-
proach 2-¥, where N represents the block size. In the case of the proposed cipher, N = 128.
In actual practice, its very hard to derive the probability of any practical differential. As a
consequence, we search for highly probable r-round iterative characteristics. The probabili-

ties of the most likely characteristics can be estimated and used as a measure of the cipher’s

to di ial cry

In [66], it has been shown that the best 4-round iterative characteristic for a round
function having 4 x 32 S-boxes as used in the design of the proposed cipher has a differential
probability of 2~'2. In [34], the probability of best r-round iterated characteristic is given as

follows:
(5.12)

where p; is the probability of the output XOR given the input XOR. in round 7. It has been
shown in [34] that the number of chosen plaintexts is N¢ =~ p—;: for an appropriate value of
7 (usually less than the number of rounds). Applying a similar approach for our proposed
cipher, pa, is given as follows:

Pa, < (277 (5.13)
In particular, an 88-round characteristic (used to mount a potential differential attack against
the 96 round cipher) has a probability less than or equal to 2725%. As a consequence, the
number of chosen plaintexts needed for this attack would be in excess of 225 for a 96-round
implementation. These results suggest the proposed cipher appears to be quite immune to

this kind of attack.

5.4 Conclusion

In this chapter, we propose a new private-key block cipher. We have discussed the design
and implementation of the proposed cipher in FPGAs and outlined our results. We have
also investigated the security of the cipher against two very popular and effective cryptana-
Iytical attacks, namely, linear and differential cryptanalysis. Our analysis suggests that the

proposed cipher appears to be quite secure against both the attacks.

96

Chapter 6

Conclusions and Future Work

The AES process, which commenced in 1997 by the National Institute of Standards and
Technology (NIST) is a major unfolding in the field of private-key cryptography. As a conse-
quence of this concerted effort, we will select a new block cipher as an eventual replacement
for DES, which is nearing the end of its useful life. Interestingly, this event has come at the
advent of the new millennium. CAST-256 and RC6 are among the stronger candidates to
qualify as AES.

In this thesis, we have the hard impl ion of these two

encryption algorithms, bringing forth some very interesting observations and results. These

lusi a k for designing private-key block ciphers that are targetted

for a hardware environment such as the FPGAs. As a consequence of our research, we
have also proposed a new private-key block cipher which is very conducive for hardware

ially for custom archi such as the Field Programmable Gate

Arrays (FPGAs).

97

6.1 Summary of the Thesis

In this thesis, we have investigated the issues relating to the hardware implementation of
private-key block ciphers. In particular, we have selected field programmable gate arrays
(FPGAs) as our target environment for implementing these ciphers in hardware. Two key
factors have motivated us to go for FPGA implementations. Firstly, FPGAs possess this

very ive feature of ibility that has forced many applications to migrate

from ASICs to the domain of FPGAs. The other key factors that play in the favour of
FPGAs include rapid prototyping, that leads to faster design turnaround times, scalable

hif and variable

We have first presented the design of the RC6 cipher and its implementation in FPGAs.

The cipher design is based on a single-stag iterative archi This design
approach requires the hardware for only one round of encryption, and the control machinery
ensures that the data cycles through the hardware after each round of encryption. Our
simulation and synthesis studies suggest that the inclusion of multiplication operation in the
quadratic function of the RC6 core is a major bottleneck as far as the cipher encryption

speed is concerned. However, a faster implementation of RC6 can only be achieved at the

expense of i ot large ity, which implies the use of a high end FPGA
device. Implementation of RC6 in the target FPGA device using pipelining is impractical
from a hardware complexity viewpoint.

CAST-256 encryption in FPGAs is found to be even slower than what we can achieve
with RC6. At the same time, the hardware complexity of CAST-256 is roughly of the same
order as RC6. This is because the advantage of not having a multiplication operation is

offset by using four 8 x 32 S-boxes.

98

Asa of i igating the FPGA i i of these two private-key

block ciphers, we have proposed a much simpler cipher design that makes use of simpler

cryptographic operations that not only possess good cryptographic properties, but also makes

the overall cipher design efficient from the hardware impl ion perspective. The new
proposed cipher uses smaller S-boxes and does not incorporate any arithmetic operations
such as addition or multiplication. This cipher design uses only 750 CLBs as opposed to
5050 CLBs for CAST-256, which is a reduction in hardware complexity by a factor of around
7. Also, the speed of the proposed cipher is improved by a factor of 3.5 over the CAST-256
implementation, if we are looking for a 96 round implementation of the proposed cipher.
One key observation has been made with regards to the hardware complexity of the
proposed cipher. We have found that although we have been successful in bringing down the
hardware complexity to a mere 192 CLBs for the round function, the hardware associated
with the control circuitry as well as the key storage unit proves to be the overhead. This
puts a lower bound on the hardware complexity that can be achieved. Another performance
limiting factor is the maximum clock frequency of the target device. Most of the current
FPGAs have a frequency ceiling of 50 MHz. However, with the introduction of the one
million gate, 200 MHz FPGA chips, one can achieve very high data rates in the near future.
In this thesis, we have also investigated the security of the proposed cipher against linear
and differential cryptanalysis. Our analysis suggests that the new cipher appears to be

Tesistant to both kind of attacks.

99

6.2 Suggestions for Future Work

Our FPGA implementation of the proposed cipher suggests that since the hardware associ-
ated with its design is very small as compared to what we have come to know about RC6
and CAST-236, we can pipeline the new cipher to further increase the data encryption rate.
It would be possible to pipeline four stages of the proposed cipher, giving us a speedup of
about four over the present implementation. This implies that we can be looking for data
encryption rates in excess of 150 Mbps for a 96-round implementation. This will be achieved
at the expense of under 3000 CLBs and will therefore comfortably fit in the FPGA targetted
for RC6 and CAST-256 ciphers.

‘Throughout the course of this research, we have not considered the design of key schedule
scheme for any of the ciphers in question. This issue can also be investigated in the future.
Generating the encryption keys on the fly is another approach that can be explored. A

secure and efficient key schedule algorithm should be proposed for the new cipher as well.

Yet another future direction would be to i i the i ion of other
AES candidates such as MARS, RIJNDAEL, and TWOFISH [1]. Further research in this

dynamic area is strongly encouraged.

100

Bibliography

[1] “http://csrs.nist.gov/encryption/ homehtm.” NIST Advanced Encryption
Standard (AES) Development Effort Web Site.

[2] “National Bureau of Standards - Data Encryption Standard.” FIPS Publication 46,
1977.

[3] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 Block Cipher.”

available at web site, “ http://theory.lcs.mit.edu/rivest/rc6.pdf”.

[4] C. Adams, “The CAST-256 Encryption Algorithm.” available at web site, “

http://www.entrust.com/resour ces/pdf/cast256.pdf”.

[5] H. Feistel, “Cryptography and Computer Privacy,” Scientific American, vol. 288(5),
pp. 15-23, May 1973.

6] E. Biham and A. Shamir, “Di ial Cry is of DES-like Cr: » Jour-

nal of Cryptology, vol. 4, no. 1, pp. 3-72, 1991.

[7] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” in Proceedings of EURO-
CRYPT'93, pp. 386-397, Springer-Verlag, 1993.

101

[8] R. L. Rivest, “The RC5 Encryption Algorithm,” in Proceedings of Fast Software En-
cryption - 2nd International Workshop, (Leuven, Belgium), pp. 86-96, Springer-Verlag,
1995.

[9] C. Adams, “Constructing Symmetric Ciphers Using the CAST Design Procedure,” De-
signs, Codes, and Cryptography, vol. 12, no. 3, pp. 283-316, 1997.
[10] A. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography.
CRC Press, 1997.
[11] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Systems Technical

Journal, vol. 28, pp. 656-715, 1949.

[12] W. A. Notz, H. Feistel, and J. L. Smith, “Some Cryptographic Techniques for Machine-
to-Machine Data C: ications,” in £ ings of the IEEE, vol. 63(11), pp. 1545—

1554, November 1975.

[13] B. Schneier, “The Blowfish Encryption Algorithm,” in Proceedings of the Cambridge
Security Workshop on Fast Software Encryption, pp. 191-204, December 1993.

[14] A. Shimizu and S. Miyaguchi, “Fast Data Encipherment Algorithm FEAL,” in Proceed-
ings of EVROCRYPT’87, pp. 267-278, Springer-Verlag, 1987.

[15] E. Beham and A. Shamir, “Differential Cryptanalysis of FEAL and N-Hash,” in Pro-
ceedings of EUROCRYPT’91, pp. 1-16, Springer-Verlag, 1991.

[16] K. Ohta and K. Aoki, “Linear Cryptanalysis of Fast Data Encipherment Algorithm,”
in Proceedings of CRYPTO’94, pp. 12-16, Springer-Verlag, 1994.

102

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24

X. Lai, J. L. Massey, and S. Murphy, “Markov Ciphers and Differential Cryptanalysis,”
in Proceedings of EUROCRYPT"91, pp. 17-38, 1991.

B. S. K. Jr. and Y. L. Yin, “On Differential and Linear Cryptanalysis of the RC5
Encryption Algorithm,” in Proceedings of CRYPTO’95, pp. 171-184, Springer-Verlag,
1995.

H. M. Heys, “A Timing Attack on RC5,” in Proceedings of SAC’98, (Kingston, Ont.),
August 1998.

J. Lee, H. M. Heys, and S. E. Tavares, “Resistance of a CAST-Like Encryption Al-
gorithm to Linear and Differential Cryptanalysis,” Designs, Codes, and Cryptography,

vol. 12, no. 3, pp. 267-282, 1997.

H. M. Heys and S. E. Tavares, bstituti ion Networks Resi: to Dif-

ferential and Linear Cryptanalysis,” Journal of Cryptology, vol. 9, pp. 1-19, 1996.

J. B. Kam and G. I. Davida, “ A Structured Design of Substitution-Permutation En-

cryption ,” IEEE Tr ions on Computers, vol. 28, no. 10, pp. 747-753,

1979.

L. Brown and J. R. Seberry, “On the Design of Permutation P in DES Type Cryptosys-
tems,” in Proceedings of EUROCRYPT'89, pp. 696-705, 1989.

A. F. Webster and S. E. Tavares, “On the Design of S-Boxes,” in Proceedings of
CRYPTO’85, pp. 523-534, Springer-Verlag, 1985.

103

23]

(26]

[27]

(28]

(29]

[30]

(31]

[32]

R. Forré, “The Strict Avalanche Criterion: Special Properties of Boolean Functions and
an Extended Definition,” in Proceedings of \CRYPTO’88, pp. 450-468, Springer-Verlag,

1990.

C. M. Adams, “A Formal and Practical Desiign Procedure for Substitution-Permutation
Network Cryptosystems.” PhD thesis, Quee:n’s University at Kingston, Kingston, Ont.,
1990.

B. Preneel, W. V. Leekwijck, L. V. Linden, IR. Goevarts, and J. Vanderwalle, “Propaga-
tion of Boolean Functions,” in Proceedings cef EUROCRYPT’90, pp. 161-173, Springer-
Verlag, 1991.

M. H. Dawson and S. E. Tavares, “An Expeanded Set of S-Box Design Criteria Based
on Information Theory and its Relation to Differential-Like Attacks,” in Proceedings of

EUROCRYPT'91, pp. 352-367, Springer-Ve-rlag, 1991.

R. Forré, “Methods and Instruments for Deesigning S-Boxes,” Journal of Cryptology,
vol. 2, no. 3, pp. 115-130, 1990.

C. Adams and S. E. Tavares, “The Structwired Design of Cryptographically Good S-
Boxes,” Journal of Cryptology, vol. 3, no. 1, pp. 24-41, 1990.

L. O'Connor, “An Analysis of Product Ciphers Based on the Properties of Boolean

Functions” PhD thesis, University of Waterl.oo, Waterloo, Ont., 1992.

C. M. Adams and S. E. Tavares, “Designing S-Boxes for Ciphers Resistant to Differential
Cry lysis,” in P; dings of the 8rd ium on State and Progress of Research

in Cryptography, (Rome, Italy), pp. 181-190 , 1993.

104

[33]

134

[33]

[36]

(87

(38]

[39)

[40]

C. M. Adams, “Designing DES-Like Ciphers with G i to Di
and Linear Attacks,” in Proceedings of SAC'95, (Carleton University, Ottawa, Ont.),
pp. 133-144, 1995.

C. Adams, H. M. Heys, S. E. Tavares, and M. Wiener, “An Analysis of CAST-256
Cipher,” in Proceedings of CCECE’99, pp. 361-366, May 1999.

P. Chow, S. O. Seo, D. Au, T. Choy, B. Fallah, D. Lewis, C. Li, and J. Rose, “A
1.2 u CMOS FPGA using Cascaded Logic Blocks,” in Proceedings of the Ozford 1991

International Workshop on Field ble Logic and Applications, 1991.

C. Ebeling, G. Borriello, S. A. Hauck, D. Song, and E. A. Walkup, “TRYPTYCH: A
New FPGA Architecture,” in Proceedings of the Ozford 1991 International Workshop
on Field F ble Logic and Applicati 1991.

“http://www.actel.com.” , Actel web site.
D. G. Reinertsen, “Whodunit? The Search for the New-product Killers," Electronic
Business, July 1983.

W. Carter, K. Duong, R. H. Freeman, H. C. Hsieh, J. Y. Ja, J. E. Mahoney, L. T.
Ngo, and S. L. Sze, “A User Programmable Reconfigurable Gate Array,” in IEEE 1986
Custom Integrated Circuits Conference, 1986.

H. C. Hsieh, K. Duong, J. Y. Ja, R. Kanazawa, L. T. Ngo, L. G. Tinkey, W. S. Carter,
and R. H. Freeman, “A Second Generation User Programmable Gate Array,” in IEEE
1987 Custom Integrated Circuits Conference, 1987.

105

[41]

2]

[43]

(44

[43]

[46]

[47]

(48]

H. C. Hsieh, K. Duong, J. Y. Ja, R. Kanazawa, L. T. . Ngo, L. G. Tinkey, W. S. Carter,
and R. H. Freeman, “A 9000-Gate User Programmable Gate Array,” in IEEE 1988

Custom Integrated Circuits Conference, 1988.

T. Kean, “C Logic: A D; i F Cellular Archi and

its VLSI ion.” PhD thesis, University of Edi 1989.

F. Furtek, G. Stone, and 1. Jones, “Labyrinth: A Homogeneous Computational

Medium,” in IEEE 1990 Custom Integrated Circuits Conference, 1990.

K. Kawana, H. Keida, M. Sakamoto, K. Shibata, and I. Moriyama, “An Efficient Logic
Block Archi! for User Gate Array,” in IEEE 1990

Custom Integrated Circuits Conference, 1990.

S. Hauck, G. Borriello, S. Burns, and C. Ebeling, “Montage: An FPGA for Synchronous

and Asy Circuits,” in Pr dings of the 2nd It ional Workshop on Field

F Logic and Applicatic 1992.

R. Cliff, B. Ahanin, L. T. Cope, F. Heile, R. Ho, J. Huang, C. Lytle, S. Mashruwala,
B. Pedersen, R. Raman, S. Reddy, V. Singhal, C. K. Sung, K. Veenstra, and A. Gupta,

“A Dual Granularity and Globally Archif for a F
Logic Device,” in IEEE 1998 Custom Integrated Circuits Conference, 1993.

“http://www.xilinx.com”, Xilinx web site.

J. Rose, E. Gamal, and A. i Vi i i of Field Pro-
grammable Gate Arrays,” in Proceedings of the IEEE, vol. 81(7), pp. 1013-1029, July
1993.

106

[49]

[50]

1]

52

(53]

[54]

[35]

56]

7]

S. Singh et al., “The Effect of Logic Block Archif on FPGA P " IEEE
J. Solid-State Circuits, vol. 27, no. 3, pp- 281-287, 1990.

J. S. Rose and S. Brown, “Flexibility of Interconnection Structures for Field-
Programmable Gate Arrays,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 227-282,
1991.

J.-P. Kaps and C. Paar, “Fast DES Implementation for FPGAs and its Application to
a Universal Key-Search Machine,” in Proceedings of SAC'98, (Kingston, Ont.), August
1998.

“http://www.cme.ca.” , CMC web site. .

Garcia, O.N., H. Glass, and S. C. Haimes, “An Approximate and Empirical Study of
the Distribution of the Adder Inputs and Maximum Carry Length Propagation,” in
Proceedings of 4* IEEE Symposium on Computer Arithmetic, pp. 97-103, 1978.

Doran and R. W., “Variants on an Improved Carry Lookahead Adder,” IEEE Transac-

tions on Computers, vol. 37, no. 9, pp. 1110-1113, 1988.

O. Bedrijj, “Carry Select Adder,” IRE ions on Electronic Ct , vol. EC-
11, pp. 340-346, 1960.

L. Dadda, “Some Schemes for Fast Serial Input Multipliers,” in ings of 6 IEEE
Symposium on Computer Arithmetic, pp. 52-59, 1983.

D. P. Agarwal, “Optimum Array-Like Structures for High-Speed Arithmetic,” in Pro-
ceedings of 3" IEEE Symposium on Computer Arithmetic , pp. 208-219, 1975.

107

(58]

[59]

(60]

[61]

(62]

(63]

[64]

[65]

(66]

L. Ciminiera and A. Serra, “Fast Iterative Multiplying Array,” in Proceedings of 6%

IEEE Symposium on Computer Arithmetic , pp. 60-66, 1983.

Baugh, C. R., and B. A. Wooly, “ A Two's Complement Parallel Array Multiplier,”

IEEE Transactions on Computers, vol. C-22, no. 12, pp. 1045-1047, 1973.

Brubaker, T. A., and J. C. Becker, iplication Using Logari with
ROM,” IEEE transactions on Computers, vol. C-24, no. 8, pp. 761765, 1975.

Doran and R. W., “A jon for a Fast iplier,” IEEE Tt ions on Com-

puters, vol. EC-13, pp. 14-17, 1964.
“http://users.ids.net/ randraka/multipli.htm.”, Multiplication in FPGAs.

J. B. Gosling, “Design of Large High-Speed Binary Multiplier Units,” in Proceedings of
the IEE, vol. 118(3), pp. 499505, 1971.

S. H. Unger, Asynchronous Sequential Switching Circuits. Wiley (Interscience Division),
1969.
B. Schoeier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Fergu-

son, “Performance Comparison of the AES Submissions” available at web site,

"http://cste.nist.gov/encryption/aes/round1/conf2/aes2conf. htm” .

X. Zhu, “A New Class of Unbalanced CAST Ciphers and Its Security Analysis” M.Eng.

thesis, Mz ial University of dland, St. John‘s, NF, Canada, 1997.

108

Appendix A

A VHDL Description of RC6 Global

State Machine

-- This is a VHDL description of the Global state machine for the RC6 encryptor

== at the behavioral level. The state machine is based on the Moore FSM model.

-- The global state machine is a one with inputs.

library IEEE;

use IEEE.std_logic_1164.all;
use Work.RC6_types.all;

use IEEE.std_logic_arith.all;

~- Entity Declaration

109

entity RC6_STATE_MACHINE is
port (RESET_CHIP,DONE_44,DONE_4 ,DONE_QUT,KD,DD,CLK: in std_logic;
COUNT_20 : in std_logic_vector(4 downto 0);
COUNT_QUT : in std_logic_vector(l downto 0);
EN1,SEL_DEMUX,RESET_44,RESET_4,RESET_20 : out std_logic;
EN_OUTPUT_REG,RESET_MUX : out std_logic;
STATUS_FLAG : out std_logic_vector(2 downto 0));

end RC6_STATE_MACHINE;

—- Behavioral architecture for the entity
architecture BEHAVIORAL of RC6_STATE_MACHINE is
type STATE is (RESET, KEY_DOWNLOAD,IDLE,DATA_DOWNLOAD,DATA_ENCRYPT);
-~ Signal declarations
signal CURRENT : STATE := RESET;
signal COUNT_OUT_INT : INTEGER range O to 3;
begin
COUNT_QUT_INT <= conv_integer (unsigned (COUNT_OUT));
process
begin
case CURRENT is
== The encryptor is in RESET state
when RESET =>

ENL <= °17;

110

RESET_44 <= ’1’;

RESET_4 <= °1’;

RESET_20 <= ’17;

RESET_MUX <= ’17;

EN_QUTPUT_REG <= ’17;

STATUS_FLAG <= "111";

if (RESET_CHIP = ’0’) then
CURRENT <= KEY_DOWNLOAD;

elsif (RESET_CHIP = ’1’) then
CURRENT <= RESET;

end if;

-~ The encryptor is downloading the key

when KEY_DOWNLOAD =>

EN1 <= ’0’;SEL_DEMUX <= ’Q’;RESET_44 <= ’0’;
RESET_4 <= ’1’;RESET_20 <= ’17;

RESET_MUX <= 17;

EN_OUTPUT_REG <=’1’; STATUS_FLAG <= "0Q01";
if (DONE_44 = ’0’) then

STATUS_FLAG <= "010";

CURRENT <= IDLE;

RESET_44 <='1’;

e1sif (RESET_CHIP = ’1’) then

111

CURRENT <= RESET;

end if;

-~ The encryptor is in the idle state.
when IDLE =>
ENL <= '1%;
RESET_44 <= ’17;
RESET_4 <= ’17;
RESET_20 <= ’1’;
RESET_MUX <= ’17;
EN_OUTPUT_REG <= *1’;
STATUS_FLAG <= "000";
if(KD = 0’ and DD = ’1’ and RESET_CHIP = ’0’) then
CURRENT <= KEY_DOWNLOAD;
elsif (KD = ’1’ and DD = *0’ and RESET_CHIP = ’0’) then
CURRENT <= DATA_DOWNLOAD; .
elsif ((KD = DD) and RESET_CHIP = ’0’) then
CURRENT <= IDLE;
elsif (RESET_CHIP = ’1’) then
CURRENT <= RESET;
end if;

-— The encryptor is downloading the data

112

when DATA_DOWNLOAD =>
ENL <= ’0’;SEL_DEMUX <= ’1’;RESET_44 <= ’1’;RESET_4 <= ’0’;
RESET_20 <= ’1’;
RESET_MUX <= ’1’;
EN_OUTPUT_REG <= ’1’;STATUS_FLAG <= "011";
if(DONE_4 = ’0’) then
STATUS_FLAG <= "100";
CURRENT <= DATA_ENCRYPT;
RESET_4 <= ’1°;
elsif (KD = DD) and RESET_CHIP = '0’) then
CURRENT <= IDLE;
elsif (RESET_CHIP = ’1’) then
CURRENT <= RESET;

end if;

-- The encryptor is encrypting the data
when DATA_ENCRYPT =>
EN1 <= ’1?;RESET_44 <=’1’;RESET_& <= ’1’;
RESET_MUX <= ’0’;RESET_20 <= ’0’;
STATUS_FLAG <:

10:

if (COUNT_20 = "10101") then
EN_OUTPUT_REG <= ’0’;

if COUNT_QUT_INT >= O then

113

wait until CLK = ’1’;
STATUS_FLAG <= "110";
wait until CLK = ’1°;
STATUS_FLAG <= "110%;
wait until CLK = ’17;
STATUS_FLAG <= "110";
wait until CLK = ’17;
STATUS_FLAG <= "110";
end if;
if (DONE_OUT = ’0’) then
EN_OUTPUT_REG <= ’1°;
end if;
if (DONE_QUT = ’0’ and (KD = DD) and RESET_CHIP = ’0’) then
CURRENT <= IDLE;
elsif (RESET_CHIP = ’1’) then CURRENT <= RESET;
elsif (DONE_OUT = ’0’ and KD = ’1’ and DD = ’0’ and RESET_CHIP = ’0’) then
CURRENT <= DATA_DOWNLOAD;
end if;
e1sif (RESET_CHIP = ’1’) then
CURRENT <= RESET;
end if;
end case;

wait until CLK = ’17’;

114

end process;

end BEHAVIORAL;

115

Appendix B

Gate-Level Simulation of RC6 Cipher

This ix shows the gate-level si ion results for the design of RC6 cipher. The

entire simulation is divided into nine segments, with each segment illustrating a particular
mode of operation of the cipher. The simulation figures illustrate all the five modes - data-
download mode, keys-download mode, reset mode, idle mode, and the data-encrypt mode.
The simulation also shows the state of the three asynchronous signals, namely, RESET-CHIP,
KD, and DD.

During the reset-mode, all the control inputs to the datapath are disabled and as such no
ciphertext appears at the ouptut of the cipher as illustrated in the simulation figures. During
the key-download mode, forty four 32-bit subkeys are downloaded into the cipher. These
subkeys are to be used for encryption during the data-encrypt mode. During the data-
download mode, the 128-bit plaintext block is downloaded into the cipher. Finally when
the global state machine is in the data-encrypt mode, the 128-bit plaintext is encrypted
synchronously until finally at the end of the required number of rounds of encryption, the
128-bit ciphertext is available at the 32-bit output bus of the cipher. The idle mode is used

116

to provide more flexibilty to the RC6 global state machine.

117

v

v

YoV v v

A

/ENCRYPTOR_RCS_TEST/DATA_IN(31:0)
J/ENCRYPTOR_RC6_TEST/DATA_OUT(31:0)
J/ENCRYPTOR_RC6_TEST/RESET_CHIP
JENCRYPTOR_RCS_TEST/KD
/ENCRYPTOR_RC6_TEST/DD
IENCRYPTOR_RC6_TEST/CLK
/ENCRYPTOR_RC6_TEST/STATUS_FLAG(2:0)
JENCRYPTOR_RC6_TEST/PLAINTEXT(127:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(0)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0)
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(3)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0)

uuu”

7

2000

00000000

uuuuUU
SR
uuuuUUUU
UULUUUUY
uuuuuUUU

Figure B.1: Gate-Level Simulation of RC6 Cipher Design

118

1

UUUUUUUUUUUUUULUULUUULULUULULULULY

v

v

v v

¥ ¥y

22000 24000

/ENCRYPTOR_RCS_TEST/DATA_IN(31:0) FFEFFFFF 2AASD2A3
/ENCRYPTOR_RC6_TEST/DATA_OUT(31:0) 00000000
/ENCRYPTOR_RC6_TEST/RESET_CHIP

/ENCRYPTOR_RC6_TEST/KD

/ENCRYPTOR_RCS_TEST/DD

/ENCRYPTOR_RC8_TEST/CLK

/ENCRYPTOR_RC8_TEST/STATUS_FLAG(2:0) 1 2 0 3
/ENCRYPTOR_RC8_TEST/PLAINTEXT(127:0) UUUUUUUUUUUUUUUUULLULUUULUULLUUY
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(0)(31:0) uuuuuuuu FFEFFFFF
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0) (LS VVVT) FFEFFFFF
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0) [SEIVVE) FFEFFFFF
/ENCRYPTOR_RC&_TEST/ENCR_SUBKEYS(3)(31:0) [FEVVVTT) FFEFFFFF
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0) [VEVVVVY) FFEFFFFF

Figure B.2: Gate-Level Simulation of RC6 Cipher Design Cont’d

119

v

v

v

v

v

26000 28000
/ENCRVPTOR_;C:_YE;\'IDATA_[N(TI :0) - 3 ‘ABCSSSE ’ o EZAA;C! 1
J/ENCRYPTOR_RCS_TEST/DATA_OUT(31:0) 00000000
JENCRYPTOR_RC8_TEST/RESET_CHIP
/ENCRYPTOR_RC6_TEST/KD
/ENCRYPTOR_RCS_TEST/DD
/ENCRYPTOR_RCS_TEST/CLK
/ENCRYPTOR_RCB_TEST/STATUS_FLAG(2:0) 3 4 5
/ENCRYPTOR_RC6_TEST/PLAINTEXT(127:0) UUUUULUU® B18C: D248
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(0)(31:0) FFEFFFFF
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0) FFEFFFFF
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0) FFEFFFFF
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(3)(31:0) FREFFFFF
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0) FFEFFFFF

Figure B.3: Gate-Level Simulation of RC6 Cipher Design Cont'd

120

v

b

v

v

v

38000 40000

AABE1EOF FB715°CC44” 01F"

/ENCRYPTOR_RCS_TESTIDATAING1:0) “e2aarcti
/ENCRYPTOR_RC6_TEST/DATA_OUT(31:0) 00000000 C74%" 0AD" 12579° F34C” 00000000
/ENCRYPTOR_RCS_TEST/RESET_CHIP

/ENCRYPTOR_RCS_TEST/KD

/ENCRYPTOR_RC6_TEST/DD

/ENCRYPTOR_RCS_TEST/CLK

JENCRYPTOR_RCS_TEST/STATUS_FLAG(2:0) 5 6 3
/ENCRYPTOR_RCS_TEST/PLAINTEXT(127:0) B18C555EB18CS55E2AA5D2AB2AA502A8
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(0)(31:0) FFEFFFFF
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0) FFEFFFFF
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0) FFEFFFFF
/ENCRYPTOR_RCE_TEST/ENCR_SUBKEYS(3)(31:0) FFEFFFFF
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0) FFEFFFFF

Figure B.4: Gate-Level Simulation of RC6 Cipher Design Cont’d

121

¥

¥

v

A

Y

v

v

¥

¥

JENCRYPTOR_RC5_TESTIDATA_IN(1:0)
/ENCRYPTOR_RC6_TEST/DATA_OUT(31:0)
/ENCRYPTOR_RC6_TEST/RESET_CHIP
/ENCRYPTOR_RCE_TEST/KD
/ENCRYPTOR_RC6_TEST/DD
/ENCRYPTOR_RCE_TEST/CLK
JENCRYPTOR_RC6_TEST/STATUS_FLAG(2:0)
/ENCRYPTOR_RC6_TEST/PLAINTEXT(127:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(0)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0)
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(3)(31:0)
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0)

3

42000 44000

A" F87157CC44" 01F8~

FEFFFFFF

00000000

4 5

B1BC555EB18C:!

E:

Ar

1FBAAAACC:
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF

Figure B.5: Gate-Level Simulation of RC6 Cipher Design Cont’d

122

v

v

v

A

4

58000

JENCRYPTOR_RCG_TEST/DATA_IN(31:0)
/ENCRYPTOR_RC6_TEST/DATA_OUT(31:0)
/ENCRYPTOR_RCS_TEST/RESET_CHIP
/ENCRYPTOR_RCS_TEST/KD

/ENCRYPTOR_RCS_TEST/DD

/ENCRYPTOR_RCS_TEST/CLK
/ENCRYPTOR_RCS_TEST/STATUS_FLAG(2:0) 3 4
/ENCRYPTOR_RCS_TEST/PLAINTEXT(127:0) FFFFFFF"
/ENCRYPTOR_RCS_TEST/ENCR_SUBKEYS(0)(31:0)
JENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(3)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0)

Figure B.6: Gate-Level Simulation of RC6 Cipher Design Cont’d

123

60000

FB0007FF

00000000

FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FREFFFFF

v

¥

Y v v

A

/ENCRYPTOR_RC5_TEST/DATA_IN(3
/ENCRYPTOR_RC6_TEST/DATA_OUT(31:0)
/ENCRYPTOR_RCS_TEST/RESET_CHIP
/ENCRYPTOR_RCS_TEST/KD
/ENCRYPTOR_RCS_TEST/DD
/ENCRYPTOR_RCS_TEST/CLK
/ENCRYPTOR_RC6_TEST/STATUS_FLAG(2:0)
/ENCRYPTOR_RC6_TEST/PLAINTEXT(127:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(0)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(3)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0)

00000000

70000 72000

FB0007FF
4C27" 96080° 2A04° F2E0* 0000000C

FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF

Figure B.7: Gate-Level Simulation of RC6 Cipher Design Cont'd

124

> /ENCAYPTOR_RC6_TESTIDATA_IN(3:0)
> /ENCRYPTOR_RC6_TEST/DATA_OUT(31:0)
/ENCRYPTOR_RC6_TEST/RESET_CHIP
/ENCRYPTOR_RCE_TEST/KD
/ENCRYPTOR_RC6_TEST/DD
/ENCRYPTOR_RC6_TEST/CLK
> /ENCRYPTOR_RC6_TEST/STATUS_FLAG(2:0)
> /ENCRYPTOR_RCE_TEST/PLAINTEXT(127:0)
> /ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(0)(31:0)
> /ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0)
ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0)
"NCRYPTOR_RC6_TEST/ENCR_SUBKEYS(3)(31:0)
{CRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0)

3

74000
FBOOO7FF
00000000

4

76000

FBO0O7FFF8000° F80O

FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF

Figure B.8: Gate-Level Simulation of RC6 Cipher Design Cont'd

125

v

YY ¥ ¥ ¥

A

/ENCRYPTOR_RCS_TESTIDATA_INGT:0)
/ENCRYPTOR_RC8_TEST/DATA_OUT(31:0)
/ENCRYPTOR_RC6_TEST/RESET_CHIP
/ENCRYPTOR_RCS_TEST/KD
/ENCRYPTOR_RCS_TEST/DD
/ENCRYPTOR_RCS_TEST/CLK
/ENCRYPTOR_RCS_TEST/STATUS_FLAG(2:0)
/ENCRYPTOR_RC6_TEST/PLAINTEXT(127:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(0)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(1)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(2)(31:0)
/ENCRYPTOR_RCS_TEST/ENCR_SUBKEYS(3)(31:0)
/ENCRYPTOR_RC6_TEST/ENCR_SUBKEYS(4)(31:0)

Figure B.9: Gate-Level Simulation of RC6 Cipher Design Cont’d

04" 0748C" 04602"

126

3

FBOOO7FFFBDBOYFFF80007FFI£BOOO7FF

FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF

Appendix C

Gate-Level Simulation of CAST-256
Cipher

This ix shows the gate-level si ion results for the design of CAST-256 cipher. The

entire simulation is divided into eight segments, with each segment illustrating a particular
mode of operation of the cipher. The simulation figures illustrate all the six modes.

During the reset-mode, all the control inputs to the datapath are disabled and as such
no ciphertext appears at the output of the cipher as illustrated in the simulation figures.
During the masking-key-download mode, forty eight 32-bit subkeys are downloaded into the
cipher; whereas during the rotation-key-download mode, same number of 3-bit subkeys are
downloaded. When the global state machine is in the data-download mode, the 128-bit
plaintext block is downloaded into the cipher. Finally when the global state machine is in
the data-encrypt mode, the 128-bit plaintext is encrypted. The idle mode is used to provide
more flexibilty to the CAST-256 global state machine.

127

v

v

v

v

v

v

v

v

/ENCRYPTOR_CAST_256_TEST/DATA_IN(31:0)

/ENCRYPTOR_CAST_256_TEST/ENCRYPTED_DATA_OUT(31:0)

/ENCRYPTOR_CAST_256_TEST/RESET_CHIP
/ENCRYPTOR_CAST_256_TEST/KD
/ENCRYPTOR_CAST_256_TEST/DD
/ENCRYPTOR_CAST_256_TEST/CLK
JENCRYPTOR_CAST_256_TEST/STATUS_FLAG(3:0)
/ENCRYPTOR_CAST_256_TEST/PLAINTEXT(127:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(0)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(1)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(2)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(3)(31:0)
J/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(4)(31:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(0)(4:0)
JENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(1)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(2)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(3)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(4)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(S)(4:0)

uuu

15

UUUUUUUUUUUUUUUULLLLLULULLULUY

1

uuuuuuuy
[USA)
uuuuuuuU
uuuuuuUU
‘UUUUUUUU

uu

uu

uu

uu

uy

uu

Figure C.1: Gate-Level Simulation of CAST-256 Cipher Design

128

24000 26000

"> /ENCAYPTOR_CAST_256_TESTDATANG10) FFEFF- 2AASD2A8 B18CSSSE E2AAF
> /ENCRYPTOR_CAST_256_TEST/ENCRYPTED_DATA_OUT(31:0) 00000000
/ENCRYPTOR_CAST_256_TEST/RESET_CHIP
/ENCRYPTOR_CAST_256_TEST/KD
/ENCRYPTOR_CAST_256_TEST/DD
/ENCRYPTOR_CAST_256_TEST/CLK

> /ENCRYPTOR_CAST_256_TEST/STATUS_FLAG(3:0) 1 2 3

> /ENCRYPTOR_CAST_256_TEST/PLAINTEXT(127:0) UUUUUUUUUUUUUUUUUUULULLLUUULUUY

> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(0)(31:0) uuuuuuuu FFEFFFFF

- /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(1)(31:0) uuuuLUUY FFEFFFFF

~ /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(2)(31:0) uuuuULUY FFEFFFFF

> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(3)(31:0) uuuuLLUY FFEFFFFF
~MCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(4)(31:0) uuuuLUUY FFEFFFFF

YPTOR_CAST_256_TEST/ROUND_SUBKEYS(0)(4:0) uu

~ 12wuRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(1)(4:0) uu

~ /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(2)(4:0) uy
*NCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(3)(4:0) uu
ZNCRYPTOR_CAST._256_TEST/ROUND_SUBKEYS(4)(4:0) uu

- [ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(5)(4:0) uu

Figure C.2: Gate-Level Simulation of CAST-256 Cipher Design Cont'd

129

¥

v

/ENCRYPTOR_CAST_256_TEST/DATA_IN(31:0)

/ENCRYPTOR_CAST_256_TEST/ENCRYPTED_DATA_OUT(31:0)

/ENCRYPTOR_CAST_256_TEST/RESET_CHIP
/ENCRYPTOR_CAST_256_TEST/KD
/ENCRYPTOR_CAST_256_TEST/DD
/ENCRYPTOR_CAST_256_TEST/CLK
/ENCRYPTOR_CAST_256_TEST/STATUS_FLAG(3:0)
/ENCRYPTOR_CAST_256_TEST/PLAINTEXT(127:0)

- /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(0)(31:0)

A\

Yoy v

/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(1)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(2)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(3)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(4)(31:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(0)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(1)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(2)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(3)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(4)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(5)(4:0)

28000

E2AAFCT1

3

FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF

u

]

uu

uu

uu

uu

Figure C.3: Gate-Level Simulation of CAST-256 Cipher Design Cont’d

130

30000

4

0

UUUUUUUUUUUUUUUUUUULUUULULULUUUY

.4

v

A

Y

v

IEB}C’RYP}O;;CAST_EG:_‘I:ESE{;_T":(B;:0)
/ENCRYPTOR_CAST_256_TEST/ENCRYPTED_DATA_OUT(31:0)
/ENCRYPTOR_CAST_256_TEST/RESET_CHIP
/ENCRYPTOR_CAST_256_TEST/KD
/ENCRYPTOR_CAST_256_TEST/DD
/ENCRYPTOR_CAST_256_TEST/CLK
/ENCRYPTOR_CAST_256_TEST/STATU'S_FLAG(3:0)
/ENCRYPTOR_CAST_256_TEST/PLAINTEXT(127:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(0)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(1)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(2)(31:0)
SNCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(3)(31:0)
*ICRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(4)(31:0)
NCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(0)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(1)(4:0)
JENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(2)(4:0)
“NCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(3)(4:0)
NCRYPTOR_CAST_256_TEST/ROUNDI_SUBKEYS(4)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(5)(4:0)

32000 34

o 5 6 7
UUUUUUUUUUI;IUUUUUUU' E2AAFC11E2AAF
FFEFFFFF
B I;FEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF

0A
17

Figure C.4: Gate-Level Simulation of CAST-256 Cipher Design Cont'd

131

58000 60000

> /ENCRYPTOR_CAST_256_TEST/DATA_IN(31:0) F80" F80007FF
> /ENCRYPTOR_CAST_256_TEST/ENCRYPTED_DATA_OUT(31:0) 00000000 3BAQ" 135B° C54D"297F" 000000

/ENCRYPTOR_CAST_256_TEST/RESET_CHIP
/ENCRYPTOR_CAST_256_TEST/KD
/ENCRYPTOR_CAST_256_TEST/DD
/ENCRYPTOR_CAST_256_TEST/CLK

> /ENCRYPTOR_CAST_256_TEST/STATUS_FLAG(3:0) 7 8 5

> /ENCRYPTOR_CAST_256_TEST/PLAINTEXT(127:0) E2AAFC11E2AAFC11E2AAFCT1E2AAFCTY

- /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(0)(31:0) FFEFFFFF

> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(1)(31:0) FFEFFFFF

> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(2)(31:0) FFEFFFFF
'ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(3)(31:0) FFEFFFFF
ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(4)(31:0) FFEFFFFF

» /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(0)(4:0) 16

» /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(1)(4:0) 08

» /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(2)(4:0) 06

» /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(3)(4:0) 05

> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(4)(4:0) 0A

> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(5)(4:0) 7 17

Figure C.5: Gate-Level Simulation of CAST-256 Cipher Design Cont’d

132

"> /ENCRYPTOR_CAST_256_TESTIDATA_IN(31:0) o 7 Faccorer
> /ENCRYPTOR_CAST_256_TEST/ENCRYPTED_DATA_OUT(31:0) ~CD14°1158°0D8D"5A24" 00000000
/ENCRYPTOR_CAST_256_TEST/RESET_CHIP
/ENCRYPTOR_CAST_256_TEST/KD
/ENCRYPTOR_CAST_256_TEST/DD
/ENCRYPTOR_CAST_256_TEST/CLK

> /ENCRYPTOR_CAST_256_TEST/STATUS_FLAG(3:0) 7 8 s
> /[ENCRYPTOR_CAST_256_TEST/PLAINTEXT(127:0)

> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(0)(31:0) FREFFFFF

> /ENCRYPTOR_CAST_258_TEST/MASKING_SUBKEYS(1)(31:0) FFEFFFFF

> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(2)(31:0) FFEFFFFF

> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(3)(31:0) FFEFFFFF
> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(4)(31:0) FFEFFFFF
> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(0)(4:0) - 16

> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(1)(:0) B 06

> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(2)(4:0) s

> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(3)(4:0) os

> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(4)(4:0) . 0A

> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(5)(4:0) T

Figure C.6: Gate-Level Simulation of CAST-256 Cipher Design Cont'd

133

v

v

¥

v

v

v

A

v

v

A

A

/ENCRYPTOR_CAST_256_TEST/DATA_IN(31:0)

/ENCRYPTOR_CAST_256_TEST/ENCRYPTED_DATA_OUT(31:0)

/ENCRYPTOR_CAST_256_TEST/RESET_CHIP
/ENCRYPTOR_CAST_256_TEST/KD
/ENCRYPTOR_CAST_256_TEST/DD
JENCRYPTOR_CAST_256_TEST/CLK
/ENCRYPTOR_CAST_256_TEST/STATUS_FLAG(3:0)
JENCRYPTOR_CAST_256_TEST/PLAINTEXT(127:0)
J/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(0)(31:0)
J/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(1)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(2)(31:0)
/ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(3)(31:0)
JENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(4)(31:0)
JENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(0)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(1)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(2)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(3)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(4)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(S)(4:0)

62000 64000

00000000

6 7

E2AAFC11E2A° F80007FFF80007FFFB0007FFF"

FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF

16

06

06

05

0A

17

Figure C.7: Gate-Level Simulation of CAST-256 Cipher Design Cont'd

134

> /ENCRYPTOR_CAST_256_TEST/DATA_ING31:0)
> /ENCRYPTOR_CAST_256_TEST/ENCRYPTED_DATA_OUT(31:0)
/ENCRYPTOR_CAST_256_TEST/RESET_CHIP
/ENCRYPTOR_CAST_256_TEST/KD
/ENCRYPTOR_CAST_256_TEST/DD
/ENCRYPTOR_CAST_256_TEST/CLK
/ENCRYPTOR_CAST_256_TEST/STATUS_FLAG(3:0)
ENCRYPTOR_CAST_256_TEST/PLAINTEXT(127:0)
ZNCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(0)(31:0)
~ /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(1)(31:0)
> /ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(2)(31:0)
ICRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(3)(31:0)
ENCRYPTOR_CAST_256_TEST/MASKING_SUBKEYS(4)(31:0)
J/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(0)(4:0)
> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(1)(4:0)
> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(2)(4:0)
/ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(3)(4:0)
> /ENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(4)(4:0)
JENCRYPTOR_CAST_256_TEST/ROUND_SUBKEYS(5)(4:0)

v

¥

v

90000 92000

8 s 15
FB0007FFFB0007FFFB0007FFFBO007FF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
FFEFFFFF
16

Figure C.8: Gate-Level Simulation of CAST-256 Cipher Design Cont'd

135

Appendix D

Gate-Level Simulation of Fast

Hardware Cipher (FHC)

This ix shows the gate-level si ion results for the design of the proposed cipher,

referred to as Fast Hardware Cipher or FHC. The entire simulation is divided into eight

segments, with each segment il ing a i mode of ion of the cipher. The

simulation figures illustrate all the five modes - reset mode (7), key-download mode (1.2),
data-download mode (3, 4), idle mode (0), and data-encrypt mode (5,6).

During the reset-mode, all the control inputs to the datapath are disabled and as such
no ciphertext appears at the ouptut of the cipher as illustrated in the simulation figures.
During the key-download mode, ninety six 32-bit subkeys are downloaded into the cipher;
whereas during the data-download mode, the 128-bit plaintext block is downloaded into
the cipher. Finally when the global state machine is in the data-encrypt mode, the 128-bit

is encrypted until finally at the end of the required number of rounds

of encryption, the 128-bit ciphertext is available at the 32-bit output bus of the cipher.

136

-> -/VFAS;_mt'I'ES;/PLAI;a:BV(TJN(J;:OK E -gFE;FFFF
> /FAST_ENCRYPTOR_TEST/CIPHERTEXT_OUT(31:0) uur 00000000
/FAST_ENCRYPTOR_TEST/RESET_CHIP
/FAST_ENCRYPTOR_TEST/KD
/FAST_ENCRYPTOR_TEST/DD
/FAST_ENCRYPTOR_TEST/CLK
> /FAST_ENCRYPTOR_TEST/STATUS_FLAG(2:0) 7 1
> /FAST_ENCRYPTOR_TEST/FAE/DA3(31:0) XX*000000" 00° 00° 00° 00* 00° 00 00" 0°
> /FAST_ENCRYPTOR_TEST/FAE/DA4(127:0) UUUUUUUUULULULULUUUUULLULUL®
> /FAST_ENCRYPTOR_TEST/FAE/FEC/MASKING_KEYS(31:0) XX"000000" 00" 00° 00" 00* 00" 00" 007 0"

Figure D.1: Gate-Level Simulation of FHC Design

137

50000
> [FAST_ENCRYPTOR_TEST/PLAINTEXT_ING1:0) FFFFF B7424AA7 F289°F" A1DSTEDO
> /FAST_ENCRYPTOR_TEST/CIPHERTEXT_OUT(31:0) 100000000
/FAST_ENCRYPTOR_TEST/RESET_CHIP
/FAST_ENCRYPTOR_TEST/KD
/FAST_ENCRYPTOR_TEST/DD
/FAST_ENCRYPTOR_TEST/CLK

/FAST_ENCRYPTOR_TEST/STATUS_FLAG(2:0) 1 2 0 3 4 5

FAST_ENCRYPTOR_TEST/FAE/DA3(31:0) 00° 00° FF* FFEFF~ 00000000 F
> [FAST_ENCRYPTOR_TEST/FAE/DA4(127:0) UUUUUUUUUUUUUUUUUUUUT A1D578D°
> IFAST_ENCRYPTOR_TEST/FAE/FEC/MASKING_KEYS(31:0) 00" 00" FF~ FFE?P 00000000 F

Figure D.2: Gate-Level Simulation of FHC Design Cont’d

138

/FAST_ENCRYPTOR_TEST/PLAINTEXT_IN(31:0)

| 4

v

/FAST_ENCRYPTOR_TEST/CIPHERTEXT_OUT(31:0)
/FAST_ENCRYPTOR_TEST/RESET_CHIP
/FAST_ENCRYPTOR_TEST/KD
/FAST_ENCRYPTOR_TEST/DD
/FAST_ENCRYPTOR_TEST/CLK
/FAST_ENCRYPTOR_TEST/STATUS_FLAG(2:0)
IFAST_ENCRYPTOR_TEST/FAE/DA3(31:0)
/FAST_ENCRYPTOR_TEST/FAE/DA4(127:0)
/FAST_ENCRYPTOR_TEST/FAE/FEC/MASKING_KEYS(31:0)

B7427F2B9" F* A1D57800

50000 SS

00000000
o 3 4 5
FFE 00000000 FFEFFFFF

UUUUUUUUUUU® A1D578DOFCCF9543F2°
FFE" 00000000 FFEFFFFF

Figure D.3: Gate-Level Simulation of FHC Design Cont’d

139

100000

FB0007FF s

>—/F/;S+:E—N?F{Y-;TOH;T:ESTIPLAINTgY_IN(GI :0)
> /FAST_ENCRYPTOR_TEST/CIPHERTEXT_OUT(31:0) 00000000 B6" 48" 2D" 4E"00
/FAST_ENCRYPTOR_TEST/RESET_CHIP
IFAST_ENCRYPTOR_TEST/KD
/FAST_ENCRYPTOR_TEST/DD
/FAST_ENCRYPTOR_TEST/CLK
> /FAST_ENCRYPTOR_TEST/STATUS_FLAG(2:0) 5 8 3
> [FAST_ENCRYPTOR_TEST/FAE/DA3(31:0) FFFFFFFF
> /FAST_ENCRYPTOR_TEST/FAE/DA4(127:0) A1D578DOFCOFS543F2BOAE27B7424AA7
> /FAST_ENCRYPTOR_TEST/FAE/FEC/MASKING_KEYS(31:0) FF‘FFFFFF

Figure D.4: Gate-Level Simulation of FHC Design Cont’d

140

105000

;—;A»ST_ENC;RVVVPTOA_ATE-S;LA?(}RTN(& :O; o) -Féb' E5E1IE"E1" 4973351C
> /FAST_ENCRYPTOR_TEST/CIPHERTEXT_OUT(31:0) *4E" 00000000
/FAST_ENCRYPTOR_TEST/RESET_CHIP
/FAST_ENCRYPTOR_TEST/KD
/FAST_ENCRYPTOR_TEST/DD
/FAST_ENCRYPTOR_TEST/CLK

> /FAST_ENCRYPTOR_TEST/STATUS_FLAG(2:0) 6 3 4 5

» /FAST_ENCRYPTOR_TEST/FAE/DA3(31:0) FFFFFF™ DOOUOODOA FFEFFFFF
> /FAST_ENCRYPTOR_TEST/FAE/DA4(127:0) A1D578DOFCOF9543° 4973351CE1D55732
> /FAST_ENCRYPTOR_TEST/FAE/FEC/MASKING_KEYS(31:0) FFFFFF* ‘00000000 E FFEFFFFF

Figure D.5: Gate-Level Simulation of FHC Design Conts'd

141

i 4

¥

4

i g

A\

/FAST_ENCRYPTOR_TEST/PLAINTEXT_IN(31:0)

/FAST_ENCRYPTOR_TEST/CIPHERTEXT_OUT(31:0)
/FAST_ENCRYPTOR_TEST/RESET_CHIP
/FAST_ENCRYPTOR_TEST/KD
/FAST_ENCRYPTOR_TEST/DD
/FAST_ENCRYPTOR_TEST/CLK
/FAST_ENCRYPTOR_TEST/STATUS_FLAG(2:0)
/FAST_ENCRYPTOR_TEST/FAE/DA3(31:0)
/FAST_ENCRYPTOR_TEST/FAE/DA4(127:0)

/FAST_ENCRYPTOR_TEST/FAE/FEC/MASKING_KEYS(31:0)

155000

00000000 6D° A2° 41" 58" 00000000

5 6 3
| 00000000
4973351CE1D55732E1 E1AAAIESCSSCE8
L 00000000

Figure D.6: Gate-Level Simulation of FHC Design Cont’d

142

v

v

¥

A

IéAST_E‘NC’ﬁV’P‘T_(SR_TEST IPLAFEX‘I—'_IN(GI 0)
/FAST_ENCRYPTOR_TEST/CIPHERTEXT_OUT(31:0)
/FAST_ENCRYPTOR_TEST/RESET_CHIP
/FAST_ENCRYPTOR_TEST/KD
/FAST_ENCRYPTOR_TEST/DD
/FAST_ENCRYPTOR_TEST/CLK
/FAST_ENCRYPTOR_TEST/STATUS_FLAG(2:0)
/FAST_ENCRYPTOR_TEST/FAE/DA3(31:0)
/FAST_ENCRYPTOR_TEST/FAE/DA4(127:0)
/FAST_ENCRYPTOR_TEST/FAE/FEC/MASKING_KEYS(31:0)

41 58 00000000
6 3 4 5
00000000 FFEFFFFI

4973351CE1DS5732E1" 4973351C497335°
' 00000000 FFEFFFFI

Figure D.7: Gate-Level Simulation of FHC Design Cont’d

143

A\

A

A\

)

345000

/FAST_ENCRYPTOR_TEST/PLAINTEXT_IN(31:0)

/FAST_ENCRYPTOR_TEST/CIPHERTEXT_OUT(31:0)
IFAST_ENCRYPTOR_TEST/RESET_CHIP
[FAST_ENCRYPTOR_TEST/KD
/FAST_ENCRYPTOR_TEST/DD
I/FAST_ENCRYPTOR_TEST/CLK
IFAST_ENCRYPTOR_TEST/STATUS_FLAG(2:0)
'FAST_ENCRYPTOR_TEST/FAE/DA3(31:0)
AST_ENCRYPTOR_TEST/FAE/DA4(127:0)
[FAST_ENCRYPTOR_TEST/FAE/FEC/MASKING_KEYS(31:0)

4973351C
DDOObOUO

00000000

4973351C:

Figure D.8: Gate-Level Simulation of FHC Design Cont'd

144

	0001_Cover
	0002_Inside Front Cover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Dedication
	0007_Abstract
	0008_Acknowledgements
	0009_Table of Contents
	0010_Table of Contents v
	0011_Table of Contents vi
	0012_Table of Contents vii
	0013_Table of Contents viii
	0014_List of Figures
	0015_List of Figures x
	0016_List of Figures xi
	0017_List of Tables
	0018_List of Symbols and Abbreviations
	0019_List of Symbols and xiv
	0020_List of Symbols and xv
	0021_Chapter 1 - Page 1
	0022_Page 2
	0023_Page 3
	0024_Page 4
	0025_Page 5
	0026_Chapter 2 - Page 6
	0027_Page 7
	0028_Page 8
	0029_Page 9
	0030_Page 10
	0031_Page 11
	0032_Page 12
	0033_Page 13
	0034_Page 14
	0035_Page 15
	0036_Page 16
	0037_Page 17
	0038_Page 18
	0039_Page 19
	0040_Page 20
	0041_Page 21
	0042_Page 22
	0043_Page 23
	0044_Page 24
	0045_Chapter 3 - Page 25
	0046_Page 26
	0047_Page 27
	0048_Page 28
	0049_Page 29
	0050_Page 30
	0051_Page 31
	0052_Page 32
	0053_Page 33
	0054_Page 34
	0055_Page 35
	0056_Page 36
	0057_Page 37
	0058_Page 38
	0059_Page 39
	0060_Page 40
	0061_Page 41
	0062_Chapter 4 - Page 42
	0063_Page 43
	0064_Page 44
	0065_Page 45
	0066_Page 46
	0067_Page 47
	0068_Page 48
	0069_Page 49
	0070_Page 50
	0071_Page 51
	0072_Page 52
	0073_Page 53
	0074_Page 54
	0075_Page 55
	0076_Page 56
	0077_Page 57
	0078_Page 58
	0079_Page 59
	0080_Page 60
	0081_Page 61
	0082_Page 62
	0083_Page 63
	0084_Page 64
	0085_Page 65
	0086_Page 66
	0087_Page 67
	0088_Page 68
	0089_Page 69
	0090_Page 70
	0091_Page 71
	0092_Page 72
	0093_Page 73
	0094_Page 74
	0095_Page 75
	0096_Page 76
	0097_Page 77
	0098_Page 78
	0099_Chapter 5 - Page 79
	0100_Page 80
	0101_Page 81
	0102_Page 82
	0103_Page 83
	0104_Page 84
	0105_Page 85
	0106_Page 86
	0107_Page 87
	0108_Page 88
	0109_Page 89
	0110_Page 90
	0111_Page 91
	0112_Page 92
	0113_Page 93
	0114_Page 94
	0115_Page 95
	0116_Page 96
	0117_Chapter 6 - Page 97
	0118_Page 98
	0119_Page 99
	0120_Page 100
	0121_Bibliography
	0122_Page 102
	0123_Page 103
	0124_Page 104
	0125_Page 105
	0126_Page 106
	0127_Page 107
	0128_Page 108
	0129_Appendix A
	0130_Page 110
	0131_Page 111
	0132_Page 112
	0133_Page 113
	0134_Page 114
	0135_Page 115
	0136_Appendix B
	0137_Page 117
	0138_Page 118
	0139_Page 119
	0140_Page 120
	0141_Page 121
	0142_Page 122
	0143_Page 123
	0144_Page 124
	0145_Page 125
	0146_Page 126
	0147_Appendix C
	0148_Page 128
	0149_Page 129
	0150_Page 130
	0151_Page 131
	0152_Page 132
	0153_Page 133
	0154_Page 134
	0155_Page 135
	0156_Appendix D
	0157_Page 137
	0158_Page 138
	0159_Page 139
	0160_Page 140
	0161_Page 141
	0162_Page 142
	0163_Page 143
	0164_Page 144
	0165_Blank Page
	0166_Blank Page
	0167_Inside Back Cover
	0168_Back Cover

