
ar
X

iv
:1

20
1.

25
03

v1
  [

m
at

h.
D

G
] 

 1
2 

Ja
n 

20
12

COHOMOLOGY OF D-COMPLEX MANIFOLDS

DANIELE ANGELLA AND FEDERICO ALBERTO ROSSI

Abstract. In order to look for a well-behaved counterpart to Dolbeault co-
homology in D-complex geometry, we study the de Rham cohomology of an
almost D-complex manifold and its subgroups made up of the classes admit-
ting invariant, respectively anti-invariant, representatives with respect to the
almost D-complex structure, miming the theory introduced by T.-J. Li and
W. Zhang in [20] for almost complex manifolds. In particular, we prove that,
on a 4-dimensional D-complex nilmanifold, such subgroups provide a decom-
position at the level of the real second de Rham cohomology group. Moreover,
we study deformations of D-complex structures, showing in particular that
admitting D-Kähler structures is not a stable property under small deforma-
tions.

Introduction

D-complex geometry arises naturally as a counterpart of complex geometry. In-
deed, an almost D-complex structure (also called almost D-structure) on a manifold
X is an endomorphism K of the tangent bundle TX whose square K2 is equal to
the identity on TX and such that the rank of the two eigenbundles correspond-
ing to the eigenvalues {−1, 1} of K are equi-dimensional (for an almost complex
structure J ∈ End(TX), one requires just that J2 = − IdTX). Furthermore, many
connections with other branches in Mathematics and Physics (in particular, with
product structures, bi-Lagrangian geometry and optimal transport problem: see,
e.g., [17, 15, 8] and the references therein) have recently been achieved.

A problem dealing with D-complex structures (that is, almost D-complex struc-
tures satisfying an integrability condition, expressed in terms of their Nijenhuis
tensor) is that one has to handle with semi-Riemannian metrics and not with Rie-
mannian ones. In particular, one can try to reformulate aD-Dolbeault cohomological
theory for D-complex structures, in the same vein as Dolbeault cohomology theory
for complex manifolds: but one suddenly finds that such D-Dolbeault groups are in
general not finite-dimensional (for example, yet the space of D-holomorphic func-
tions on the product of two equi-dimensional manifolds is not finite-dimensional).
In fact, one loses the ellipticity of the second-order differential operator associated
to such D-Dolbeault cohomology. Therefore, it would be interesting to find some
other (well-behaved) counterpart to D-Dolbeault cohomology groups.

Recently, T.-J. Li and W. Zhang considered in [20] some subgroups, called
H+

J (X ;R) andH−
J (X ;R), of the real second de Rham cohomology groupH2

dR(X ;R)
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of an almost complex manifold (X, J), characterized by the type of their represen-
tatives with respect to the almost complex structure (more precisely, H+

J (X ;R),

respectively H−
J (X ;R), contains the de Rham cohomology classes admitting a J-

invariant, respectively J-anti-invariant, representative): in a sense, these subgroups
behave as a “generalization” of the Dolbeault cohomology groups to the complex
non-Kähler and non-integrable cases. In particular, these subgroups seem to be very
interesting for 4-dimensional compact almost complex manifolds and in studying
relations between cones of metric structures, see [20, 10, 5]. In fact, T. Drǎghici,
T.-J. Li and W. Zhang proved in [10, Theorem 2.3] that every almost complex
structure J on a 4-dimensional compact manifold X induces the decomposition
H2

dR(X ;R) = H+
J (X ;R) ⊕H−

J (X ;R); the same decomposition holds true also for
compact Kähler manifolds, thanks to Hodge decomposition (see, e.g., [20]), while
examples of complex and almost complex structures in dimension greater than 4
for which it does not hold are known.

In this work, we reformulate T.-J. Li and W. Zhang’s theory in the almost D-
complex case, constructing subgroups of the de Rham cohomology linked with the
almost D-complex structure. In particular, we are interested in studying when
an almost D-complex structure K on a manifold X induces the cohomological
decomposition

H2
dR(X ;R) = H2+

K (X ;R)⊕H2−
K (X ;R)

through the D-complex subgroups H2+
K (X ;R), H2−

K (X ;R) of H2
dR(X ;R), made

up of the classes admitting a K-invariant, respectively K-anti-invariant represen-
tative; such almost D-complex structures will be called C∞-pure-and-full (at the
2-nd stage), miming T.-J. Li and W. Zhang’s notation in [20].

We prove some results and provide some examples showing that the situation,
in the (almost) D-complex case, is very different from the (almost) complex case.
In particular, in Example 3.1 and in Example 3.2, we show that compact D-Kähler
manifolds (that is, D-complex manifolds endowed with a symplectic form that is
anti-invariant under the action of the D-complex structure) need not to satisfy
the cohomological decomposition through the D-complex subgroups we have in-
troduced. Furthermore, Example 3.4 shows a 4-dimensional almost D-complex
nilmanifold that does not satisfy such a D-complex cohomological decomposition,
providing a difference with [10, Theorem 2.3] by T. Drǎghici, T.-J. Li and W.
Zhang.

With the aim to write a partial counterpart of [10, Theorem 2.3] in the D-
complex case, we prove the following result (see §1 for the definition of pure-and-full
property).

Theorem 3.17. Every invariant D-complex structure on a 4-dimensional nilman-
ifold is C∞-pure-and-full at the 2-nd stage and hence also pure-and-full at the 2-nd
stage.

Furthermore, we prove that the hypotheses on integrability, nilpotency and dimen-
sion can not be dropped out.

Lastly, we study explicit examples of deformations of D-complex structures (see
[22, 25] for a general account). In particular, we provide examples showing that
the dimensions of the D-complex subgroups of the cohomology can jump along a
curve of D-complex structures. Furthermore, we prove the following result, which
provides another strong difference with respect to the complex case (indeed, recall
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that the property of admitting a Kähler metric is stable under small deformations
of the complex structure, as proved by K. Kodaira and D. C. Spencer in [18]).

Theorem 4.2. The property of being D-Kähler is not stable under small deforma-
tions of the D-complex structure.

The paper is organized as follows.
In Section 1, we recall what a D-complex structure is, we introduce the problem
of studying D-complex subgroups of cohomology and we introduce the concept of
C∞-pure-and-full D-complex structure to mean a structure inducing a D-complex
decomposition in cohomology. We prove that every manifold given by the product
of two equi-dimensional differentiable manifolds is C∞-pure-and-full with respect
to the natural D-complex structure (see Theorem 1.6).
In Section 2, we introduce analogous definitions at the linear level of the Lie alge-
bra associated to a (quotient of a) Lie group. In particular, we prove that, for a
completely-solvable solvmanifold with an invariant D-complex structure, the prob-
lem of the existence of a D-complex cohomological decomposition reduces to such
a (linear) decomposition at the level of its Lie algebra (see Proposition 2.4).
In Section 3, we prove Theorem 3.17 and we give some examples showing that the
hypotheses we assume can not be dropped out. Moreover, we provide examples
showing that admitting D-Kähler structures does not imply being C∞-pure-and-
full (see Proposition 3.3).
In Section 4, we study deformations of D-complex structures, providing an example
to prove Theorem 4.2 and showing that, in general, jumping for the dimensions of
the D-complex subgroups of cohomology can occur.

Acknowledgments. The authors would like to warmly thank Adriano Tomassini and
Costantino Medori for their encouragement, their constant support and for many
interesting conversations and useful remarks. The first author would like to thank
also Serena Guarino Lo Bianco for a motivating conversation.

1. D-complex decompositions of cohomology and homology

Let X be a 2n-dimensional compact manifold. Consider K ∈ End(TX) such
that K2 = λ IdTX where λ ∈ {−1, 1}: if λ = −1, we call K an almost complex
structure; if λ = 1, one gets that K has eigenvalues {1, −1} and hence there is a
decomposition TX = T+X ⊕ T−X where T±X is given, point by point, by the
eigenspace of K corresponding to the eigenvalue ±1, where ± ∈ {+, −}.
Recall that an almost D-complex structure (also called almost para-complex struc-
ture) on X is an endomorphism K ∈ End(TX) such that

K2 = IdTX and rkT+X = rkT−X =
1

2
dimX .

An almost D-complex structure is said integrable (and hence is called D-complex,
or also para-complex ) if moreover

[
T+X, T+X

]
⊆ T+X and

[
T−X, T−X

]
⊆ T−X ,

(or, equivalently, if the Nijenhius tensor of K, defined by

NK(·, ··) := [·, ··] + [K·, K · ·]−K [K·, ··]−K [·, K · ·] ,

vanishes). We refer, e.g., to [15, 1, 7, 8, 2, 3, 25, 26] and the references therein for
more results about (almost) D-complex structures and motivations for their study.
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Note that, in a natural way, starting from K ∈ End(TX), one can define an
endomorphismK ∈ End(T ∗X) and hence a natural decomposition T ∗X = T ∗+X⊕
T ∗−X into the corresponding eigenbundles. Therefore, for any ℓ ∈ N, on the space
of ℓ-forms on X , we have the decomposition

∧ℓX := ∧ℓ (T ∗X) = ∧ℓ
(
T ∗+X ⊕ T ∗−X

)

=
⊕

p+q=ℓ

∧p
(
T ∗+X

)
⊗ ∧q

(
T ∗−X

)
=:

⊕

p+q=ℓ

∧p, q
+− X

where, for any p, q ∈ N, the natural extension of K on ∧•X acts on ∧p, q
+− X :=

∧p (T ∗+X)⊗ ∧q (T ∗−X) as (+1)p (−1)q Id. In particular, for any ℓ ∈ N,

∧ℓX =
⊕

p+q=ℓ, q even

∧p, q
+− X

︸ ︷︷ ︸

=: ∧ℓ+

K
X

⊕
⊕

p+q=ℓ, q odd

∧p, q
+−X

︸ ︷︷ ︸

=: ∧ℓ−

K
X

where

K⌊∧ℓ+

K
X

= Id and K⌊∧ℓ−

K
X

= − Id .

If an (integrable) D-complex structure K is given, then the exterior differential
splits as

d = ∂+ + ∂−

where

∂+ := π∧p+1, q

+−

: ∧p, q
+− → ∧p+1, q

+−

and

∂− := π∧p, q+1

+−

: ∧p, q
+− → ∧p, q+1

+− ,

π∧r, s

+−
: ∧•, •

+− → ∧r, s
+− being the natural projection. In particular, the condition

d2 = 0 gives






∂2
+ = 0

∂+∂− + ∂−∂+ = 0

∂2
− = 0

and hence one could define the D-Dolbeault cohomology as

H
•,•
∂+

(X ;R) :=
ker ∂+
im ∂+

,

see [19]. Unfortunately, one can not hope to adjust the Hodge theory of the com-
plex case to this non-elliptic context. For example, take X1 and X2 two differ-
entiable manifolds having the same dimension: then, X1 × X2 has a natural D-
complex structure whose eigenbundles decomposition corresponds to the decompo-
sition T (X1 ×X2) = TX1 ⊕ TX2; it is straightforward to compute that the space

H
0,0
∂+

(X1 ×X2) of ∂+-closed functions on X1 ×X2 is not finite-dimensional, being

H
0,0
∂+

(X1 ×X2) ≃ C∞ (X2) .

We recall that a D-Kähler structure on a D-complex manifold (X, K) is the
datum of a K-compatible symplectic form (that is, a K-anti-invariant symplectic
form): this is the D-complex counterpart to Kähler notion in the complex case.
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1.1. D-complex subgroups of cohomology. Consider (X, K) a compact almost
D-complex manifold and let 2n := dimX .

The problem we are considering is when the decomposition

∧•X =
⊕

p,q

∧p, q
+− X = ∧•+

K X ⊕ ∧•−
K X

moves to cohomology.
Here and later, we mime T.-J. Li and W. Zhang (see, e.g., [20]). For any p, q, ℓ ∈ N,
we define

H
(p,q)
K (X ;R) :=

{
[α] ∈ H

p+q
dR (X ;R) : α ∈ ∧p, q

+− X
}

and

Hℓ+
K (X ;R) :=

{
[α] ∈ Hℓ

dR (X ;R) : Kα = α
}

=
{
[α] ∈ Hℓ

dR (X ;R) : α ∈ ∧ℓ+
K X

}
,

Hℓ−
K (X ;R) :=

{
[α] ∈ Hℓ

dR (X ;R) : Kα = −α
}

=
{
[α] ∈ Hℓ

dR (X ;R) : α ∈ ∧ℓ−
K X

}
.

Remark 1.1. Note that, if K is integrable, then, for any ℓ ∈ N,

Hℓ+
K =

⊕

p+q=ℓ, q even

H
(p,q)
K (X ;R)

and
Hℓ−

K =
⊕

p+q=ℓ, q odd

H
(p,q)
K (X ;R) .

We introduce the following definitions. (We refer, e.g., to [20, 11] and the refer-
ences therein for precise definitions, motivations and results concerning the notion
of C∞-pure-and-fullness in almost complex geometry.)

Definition 1.2. For ℓ ∈ N, an almost D-complex structure K on the manifold X

is said to be

• C∞-pure at the ℓ-th stage if

Hℓ+
K (X ;R) ∩ Hℓ−

K (X ;R) = {0} ;

• C∞-full at the ℓ-th stage if

Hℓ+
K (X ;R) + Hℓ−

K (X ;R) = Hℓ
dR (X ;R) ;

• C∞-pure-and-full at the ℓ-th stage if it is both C∞-pure at the ℓ-th stage and
C∞-full at the ℓ-th stage, or, in other words, if it satisfies the cohomological
decomposition

Hℓ
dR (X ;R) = Hℓ+

K (X ;R) ⊕ Hℓ−
K (X ;R) .

1.2. D-complex subgroups of homology. Consider (X, K) a compact almost
D-complex manifold and let 2n := dimX . Denote by D•X :=: D2n−•X the
space of currents on X , that is, the topological dual space of ∧•X . Define the
de Rham homology H•(X ;R) of X as the homology of the complex (D•X, d),
where d : D•X → D•−1X is the dual operator of d : ∧•−1 X → ∧•X . Note that
there is a natural inclusion T· : ∧• X →֒ D•X :=: D2n−•X given by

η 7→ Tη :=

∫

X

· ∧ η .
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In particular, one has that dTη = Td η. Moreover, one can prove that H•
dR(X ;R) ≃

H2n−•(X ;R) (see, e.g., [9]).
The action of K on ∧•X induces, by duality, an action on D•X (again denoted by
K) and hence a decomposition

DℓX =
⊕

p+q=ℓ

D+−
p, q X ;

note that, for any p, q ∈ N, the space D+−
p, q X :=: Dn−p, n−q

+− is the dual space of

∧p, q
+− X and that T· : ∧

p, q
+− →֒ D

p, q
+− X . As in the smooth case, we set

DK
•+X :=

⊕

q even

D+−
•, q X and DK

•−X :=
⊕

q odd

D+−
•, q X ,

so K⌊DK
•±

X= ± Id for ± ∈ {+, −} and

D•X = DK
•+X ⊕ DK

•−X .

For any p, q, ℓ ∈ N, we define

HK
(p,q) (X ;R) :=

{
[α] ∈ Hp+q (X ;R) : α ∈ D+−

p, q X
}

and

HK
ℓ+ (X ;R) := {[α] ∈ Hℓ (X ;R) : Kα = α} ,

HK
ℓ− (X ;R) := {[α] ∈ Hℓ (X ;R) : Kα = −α} .

We introduce the following definitions.

Definition 1.3. For ℓ ∈ N, an almost D-complex structure K on the manifold X

is said to be

• pure at the ℓ-th stage if

HK
ℓ+ (X ;R) ∩ HK

ℓ− (X ;R) = {0} ;

• full at the ℓ-th stage if

HK
ℓ+ (X ;R) + HK

ℓ− (X ;R) = Hℓ (X ;R) ;

• pure-and-full at the ℓ-th stage if it is both pure at the ℓ-th stage and
full at the ℓ-th stage, or, in other words, if it satisfies the homological
decomposition

Hℓ (X ;R) = HK
ℓ+ (X ;R) ⊕ HK

ℓ− (X ;R) .

1.3. Linkings between D-complex decompositions in homology and co-
homology. We use the same argument as in [20] to prove the following linkings
between C∞-pure-and-full and pure-and-full concepts.

Proposition 1.4 (see [20, Proposition 2.30] and also [4, Theorem 2.1]). Let (X, K)
be a 2n-dimensional compact almost D-complex manifold. Then, for every ℓ ∈ N,
the following implications hold:

C∞-full at the ℓ-th stage +3

��

pure at the ℓ-th stage

��

full at the (2n− ℓ) -th stage +3 C∞-pure at the (2n− ℓ) -th stage
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Proof. Since, for every p, q ∈ N, we have H
(p,q)
K (X ;R)

T·

→֒ HK
(n−p,n−q)(X ;R) and

Hℓ
dR(X ;R) ≃ H2n−ℓ(X ;R), we get that the two vertical arrows are obvious.

To prove the horizontal arrows, consider 〈·, ··〉 the duality paring DℓX ×∧ℓX → R

or the induced non-degenerate pairing Hℓ
dR(X ;R)×Hℓ(X ;R) → R. Suppose now

that K is C∞-full at the ℓ-th stage; if there exists c = [γ+] = [γ−] ∈ HK
ℓ+(X ;R) ∩

HK
ℓ−(X ;R) with γ+ ∈ DK

ℓ+X and γ− ∈ DK
ℓ−X , then

〈
Hℓ(X ;R), c

〉
=
〈
Hℓ+

K (X ;R), [γ−]
〉
+
〈
Hℓ+

K (X ;R), [γ−]
〉

= 0

and therefore c = 0 in Hℓ(X ;R); hence K is pure at the ℓ-th stage.
A similar argument proves the bottom arrow. �

Corollary 1.5. If the almost D-complex structure K on the manifold X is C∞-full
at every stage, then it is C∞-pure-and-full at every stage and pure-and-full at every
stage.

In particular, note that, on a compact 4-dimensional manifold, being C∞-full at
the 2-nd stage implies being C∞-pure at the 2-nd stage.

1.4. D-complex decompositions in (co)homology for product manifolds.
Recall that, given X1 and X2 two differentiable compact manifolds with dimX1 =
dimX2 =: n, the product X1×X2 inherits a natural D-complex structure K, given
by the decomposition

T (X1 ×X2) = TX1 ⊕ TX2 ;

in other words, K acts as Id on X1 and − Id on X2. For any ℓ ∈ N, using the
Künneth formula, one gets

Hℓ
dR (X1 ×X2;R) ≃

⊕

p+q=ℓ

Hp (X1;R) ⊗ Hq (X2;R)

=




⊕

p+q=ℓ, q even

Hp (X1;R) ⊗ Hq (X2;R)





︸ ︷︷ ︸

⊆H
ℓ +

K
(X1×X2;R)

⊕




⊕

p+q=ℓ, q odd

Hp (X1;R) ⊗ Hq (X2;R)





︸ ︷︷ ︸

⊆H
ℓ−

K
(X1×X2;R)

⊆ Hℓ+
K (X1 ×X2;R) + Hℓ−

K (X1 ×X2;R) .

Therefore, using also Corollary 1.5, one gets the following result (compare it with
[11, Proposition 2.6]).

Theorem 1.6. Let X1 and X2 be two equi-dimensional compact manifolds. Then
the natural D-complex structure on the product X1 × X2 is C∞-pure-and-full at
every stage and pure-and-full at every stage.
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2. Invariant D-complex structures on solvmanifolds

2.1. Invariant D-complex structures on solvmanifolds. Let X :=: Γ\G be a
2n-dimensional solvmanifold (respectively, nilmanifold), that is, a compact quotient
of a connected simply-connected solvable (respectively, nilpotent) Lie group G by
a co-compact discrete subgroup Γ. Set (g, [·, ··]) the Lie algebra that is naturally
associated to the Lie group G; given a basis {e1, . . . , e2n} of g, the Lie algebra
structure of g is characterized by the structure constants

{
ckℓm
}

ℓ,m,k∈{1,...,2n}
⊂ R

such that, for any k ∈ {1, . . . , 2n},

dg e
k =:

∑

ℓ,m

ckℓm eℓ ∧ em ,

where
{
e1, . . . , e2n

}
is the dual basis of g∗ of {e1, . . . , e2n} and dg :=: d: g∗ → ∧2

g
∗

is defined by
g
∗ ∋ α 7→ dg α(·, ··) := −α ([·, ··]) ∈ ∧2

g
∗ .

Recall that a linear almost D-complex structure on g is given by an endomor-
phism K ∈ End(g) such that K2 = Idg and the eigenspaces g

+ and g
− corre-

sponding to the eigenvalues 1 and −1 respectively of K are equi-dimensional, i.e.,
dimR g

+ = dimR g
− = 1

2 dimR g.
Moreover, recall that a linear almost D-complex structure on g is said to be inte-
grable (and hence it is called a linear D-complex structure on g) if g+ and g

− are
Lie-subalgebras of g, i.e.

[
g
+, g+

]
⊆ g

+ and
[
g
−, g−

]
⊆ g

− .

Note that a G-invariant almost D-complex structure on X (that is, a D-complex
structure on X induced by a D-complex structure on G which is invariant under
the left-action of G on itself given by translations) is determined by a linear almost
D-complex structure on g, equivalently, it is defined by the datum of two subspaces
g
+ and g

− of g such that

g = g
+ ⊕ g

− and dimR g
+ = dimR g

− =
1

2
dimR g ;

indeed, one can define K ∈ End(g) as K⌊g+= Id and K⌊g−= − Id and then K ∈
End(TX) by translations. Note that the almost D-complex structure K on X is
integrable if and only if the linear almost D-complex structure K on g is integrable.

Notation. To shorten the notation, we will refer to a given solvmanifold X :=: Γ\G
writing the structure equations of its Lie algebra: for example, writing

X :=
(
04, 12 + 34

)
,

we mean that there exists a basis of the naturally associated Lie algebra g, let us
say {e1, . . . , e6}, whose dual will be denoted by

{
e1, . . . , e6

}
and with respect to

which the structure equations are






d e1 = d e2 = d e3 = d e4 = 0

d e5 = e1 ∧ e2 =: e12

d e6 = e1 ∧ e3 =: e13

,

where we also shorten eAB := eA ∧ eB. Recall that, by [21], given a nilpotent Lie
algebra g with rational structure constants, then the connected simply-connected
Lie group G naturally associated to g admits a co-compact discrete subgroup Γ,
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and hence there exists a nilmanifold X := Γ\G whose Lie algebra is g.
With respect to the given basis {ej}j , writing that the (almost) D-complex struc-

ture K is defined as
K := (− + + − − +)

we mean that

g
+ := R 〈e2, e3, e6〉 and g

− := R 〈e1, e4, e5〉 .

Moreover, in writing the cohomology of X (which is isomorphic to the cohomology
of the complex (∧•

g
∗, dg) if X is completely-solvable, see [16]), we list the harmonic

representatives with respect to the invariant metric g :=
∑

ℓ e
ℓ ⊙ eℓ instead of their

classes.
Dealing with invariant objects on a X , we mean objects induced by objects on G

which are invariant under the left-action of G on itself given by translations.

2.2. The cohomology of completely-solvable solvmanifolds and its D-
complex subgroups. Recall that the translation induces an isomorphism of dif-
ferential algebras between the space of forms on g

∗ and the space ∧•
invX of invariant

differential forms on X :

(∧•
g
∗, dg)

≃
−→

(
∧•
invX, d⌊∧•

inv
X

)
;

moreover, by Nomizu’s and Hattori’s theorems (see [24, 16]), if X is a nilmanifold
or, more in general, a completely-solvable solvmanifold, then the natural inclusion

(
∧•
invX, d⌊∧•

inv
X

)
→֒ (∧•X, d)

is a quasi-isomorphism, hence

H• (∧•
g
∗, dg) ≃ H•

(
∧•
invX, d⌊∧•

inv
X

)
=: H•

inv(X ;R)
≃
−→ H•

dR(X ;R) .

In this section, we study D-complex decomposition in cohomology at the level of
H• (g;R) := H• (∧•

g
∗, dg).

Recall that the linear almost D-complex structure K on g defines a splitting
g = g

+ ⊕ g
− into eigenspaces and hence, for every ℓ ∈ N, one gets also the splitting

∧ℓ
g
∗ =

⊕

p+q=ℓ

∧p
(
g
+
)∗

⊗ ∧q
(
g
−
)∗

=:
⊕

p+q=ℓ

∧p, q
+− g

∗ ,

where, for any p, q ∈ N, one has K⌊∧p, q

+−
g∗= (+1)p (−1)q Id; we introduce also

the splitting of the differential forms into their K-invariant and K-anti-invariant
components:

∧•
g
∗ = ∧•+

K g
∗ ⊕ ∧•−

K g
∗

where
∧•+
K g

∗ :=
⊕

q even

∧•, q
+− g

∗ and ∧•−
K g

∗ :=
⊕

q odd

∧•, q
+− g

∗ .

As already done for manifolds, for any p, q, ℓ ∈ N, we define

H
(p,q)
K (g;R) :=

{
[α] ∈ Hp+q (g;R) : α ∈ ∧p, q

+− g
∗
}

and

Hℓ+
K (g;R) :=

{
[α] ∈ Hℓ (g;R) : Kα = α

}
,

Hℓ−
K (g;R) :=

{
[α] ∈ Hℓ (g;R) : Kα = −α

}
.

We give the following definition.
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Definition 2.1. For ℓ ∈ N, a linear almost D-complex structure on the Lie algebra
g is said to be

• linear C∞-pure at the ℓ-th stage if

Hℓ+
K (g;R) ∩ Hℓ−

K (g;R) = {0} ;

• linear C∞-full at the ℓ-th stage if

Hℓ+
K (g;R) + Hℓ−

K (g;R) = Hℓ (g;R) ;

• linear C∞-pure-and-full at the ℓ-th stage if it is both C∞-pure at the ℓ-th
stage and C∞-full at the ℓ-th stage, or, in other words, if it satisfies the
cohomological decomposition

Hℓ (g;R) = Hℓ+
K (g;R) ⊕ Hℓ−

K (g;R) .

Given a completely-solvable solvmanifold, we want now to make clear the connec-
tion between the C∞-pure-and-fullness of an invariant almost D-complex structure
and the linear C∞-pure-and-fullness of the corresponding linear almost D-complex
structure on the associated Lie algebra.
We need the following result by J. Milnor.

Lemma 2.2 ([23, Lemma 6.2]). Any connected Lie group that admits a discrete sub-
group with compact quotient is unimodular and in particular admits a bi-invariant
volume form η.

The previous Lemma is used to prove the following result, for which we refer to [12]
by A. Fino and G. Grantcharov.

Lemma 2.3 (see [12, Theorem 2.1]). Let X :=: Γ\G be a solvmanifold and call
g the Lie algebra that is naturally associated to the connected simply-connected
Lie group G. Denote by K an invariant almost D-complex structure on X or
equivalently the associated linear almost D-complex structure on g. Let η be the
bi-invariant volume form on G given by Lemma 2.2 and suppose that

∫

X
η = 1.

Define the map

µ : ∧• X → ∧•
inv

X , µ(α) :=

∫

X

α⌊m η(m) .

One has that
µ⌊∧•

inv
X = Id⌊∧•

inv
X

and that
d (µ(·)) = µ (d ·) and K (µ(·)) = µ (K·) .

Then we can prove the following result. Note that, with slight and obvious
modifications, it holds also for almost complex structures: a similar result for almost
complex structures has been obtained also by A. Tomassini and A. Fino in [13,
Theorem 3.4].

Proposition 2.4. Let X :=: Γ\G be a completely-solvable solvmanifold and call
g the Lie algebra that is naturally associated to the connected simply-connected
Lie group G. Denote by K an invariant almost D-complex structure on X or
equivalently the associated linear almost D-complex structure on g. Then, for every
ℓ ∈ N and for ± ∈ {+, −}, the injective map

Hℓ±
K (g;R) → Hℓ±

K (X ;R)
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induced by translations is an isomorphism.
Furthermore, for every ℓ ∈ N, the linear D-complex structure K ∈ End(g) is linear
C∞-pure (respectively, linear C∞-full) at the ℓ-th stage if and only if the D-complex
structure K ∈ End(TX) is C∞-pure (respectively, C∞-full) at the ℓ-th stage.

Proof. Consider the map µ : ∧• X → ∧•
invX defined in Lemma 2.3. The thesis

follows from the following three observations.
Since d (µ(·)) = µ (d ·), one has that µ sends d-closed (respectively, d-exact) forms
to d-closed (respectively, d-exact) invariant forms and so it induces a map

µ : H•
dR(X ;R) → H•

inv(X ;R) ≃ H• (g;R) .

Since K (µ(·)) = µ (K·), for ± ∈ {+, −}, one has

µ
(
∧•±
K X

)
⊆ ∧•±

K invX ,

where ∧•±
K invX := ∧•±

K X ∩ ∧•
invX ≃ ∧•±

K g
∗, hence

µ
(
H•±

K (X ;R)
)

⊆ H•±
K (g;R) .

Lastly, since X is a completely-solvable solvmanifold, its cohomology is isomorphic
to the invariant one (see [16]) and hence the condition µ⌊∧•

inv
X= Id⌊∧•

inv
X gives that

µ is the identity in cohomology. �

3. C∞-pure-and-fullness of invariant D-complex structures on

solvmanifolds

3.1. Some examples of non-C∞-pure-and-full (almost) D-complex nilman-
ifolds. In this section, we use the notation and the results in Section 2 to provide
examples of invariant (almost) D-complex structures on nilmanifolds.

Firstly, we give two examples of non-C∞-pure or non-C∞-full nilmanifolds ad-
mitting D-Kähler structures.

Example 3.1. There exists a 6-dimensional D-complex nilmanifold that is C∞-
pure at the 2-nd stage and non-C∞-full at the 2-nd stage and admits a D-Kähler
structure.
Indeed, take the nilmanifold

X :=
(
04, 12, 13

)

and define the invariant D-complex structure K setting

K := (− + + − −+) .

By Nomizu’s theorem (see [24]), the de Rham cohomology of X is given by

H2
dR(X ;R) ≃ H2

dR(g;R) = R
〈
e14, e15, e16, e23, e24, e25, e34, e36, e26 + e35

〉
.

Note that
H2+

K (g;R) = R
〈
e14, e15, e23, e36

〉

and

H2−
K (g;R) = R

〈
e16, e24, e25, e34

〉
,

since no invariant representative in the class
[
e26 + e35

]
is of pure type with respect

to K (indeed, the space of invariant d-exact 2-forms is R
〈
e12, e13

〉
). It follows that

K ∈ End (g) is linear C∞-pure at the 2-nd stage and linear non-C∞-full at the 2-nd
stage and hence, by Proposition 2.4, K ∈ End(TX) is C∞-pure at the 2-nd stage
(being K Abelian, see Definition 3.8, one can also argue using Corollary 3.13) and
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non-C∞-full at the 2-nd stage.
Moreover, we observe that

ω := e16 + e25 + e34

is a symplectic form compatible with K, hence (X, K, ω) is a D-Kähler manifold.

Example 3.2. There exists a 6-dimensional D-complex nilmanifold that is non-
C∞-pure at the 2-nd stage (and hence non-C∞-full at the 4-th stage) and admitting
a D-Kähler structure.
Indeed, take the nilmanifold X defined by

X :=
(
03, 12, 13 + 14, 24

)

and define the invariant D-complex structure K as

K := (+ − + − + −) .

(Note that, since [e2, e4] = −e6, one has that [g−, g−] 6= {0} and hence K is not
Abelian, see Definition 3.8.)
We have

H2+
K (g;R) ∋

[
e13
]
=
[
e13 − d e5

]
= −

[
e14
]
∈ H2−

K (g;R)

and therefore we get that

0 6=
[
e13
]
∈ H2+

K (g;R) ∩ H2−
K (g;R) ,

namely, K ∈ End(g) is not linear C∞-pure at the 2-nd stage, hence K ∈ End(TX)
is not C∞-pure at the 2-nd stage; furthermore, by Proposition 1.4, we have also
that K is not C∞-full at the 4-th stage.
Moreover, we observe that

ω := e16 + e25 + e34

is a symplectic form compatible with K, hence (X, K, ω) is a D-Kähler manifold.

The previous two examples prove the following result, in contrast with the com-
plex case (see, e.g., [20]). (Note that higher-dimensional examples of D-Kähler
non-C∞-full, respectively non-C∞-pure, at the 2-nd stage structures can be ob-
tained taking products with standard D-complex tori.)

Proposition 3.3. Admitting a D-Kähler structure does not imply neither being
C∞-pure at the 2-nd stage nor being C∞-full at the 2-nd stage.

The following example shows that [10, Theorem 2.3] by T. Drǎghici, T.-J. Li and
W. Zhang (saying that every almost complex structure on a 4-dimensional compact
manifold induces an almost complex decomposition at the level of the real second
de Rham cohomology group) does not hold, in general, in the almost D-complex
case.

Example 3.4. There exists a 4-dimensional almost D-complex nilmanifold which
is non-C∞-pure-and-full at the 2-nd stage.
Indeed, take the nilmanifold X defined by

X := (0, 0, 12, 13)

(namely, the product of the Heisenberg group and R) and define the invariant
almost D-complex structure by the eigenspaces

g
+ := R 〈e1, e4 − e2〉 and g

− := R 〈e2, e3〉 .
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Note that K is not integrable, since [e1, e4 − e2] = e3.
Note that we have

H2+
K (g;R) ∋

[
e14
]
=
[
e14 + d e3

]
=
[
e14 + e12

]
=
[
e1 ∧ (e4 + e2)

]
∈ H2−

K (g;R)

and therefore we get that

0 6=
[
e14
]
∈ H2+

K (g;R) ∩ H2−
K (g;R) ,

Then, K is not C∞-pure at the 2-nd stage and, by Proposition 1.4, is not C∞-full
at the 2-nd stage.

3.2. C∞-pure-and-fullness of low-dimensional D-complex solvmanifolds.
Let (a, [·, ··]) be a Lie algebra and consider the lower central series {an}n∈N

defined,
by induction on n ∈ N, as

{

a
0 := a

a
n+1 := [an, a] for n ∈ N

;

note that {an}n∈N
is a descending sequence of Lie algebras:

a = a
0 ⊇ a

1 ⊇ · · · ⊇ a
j−1 ⊇ a

j ⊇ · · · .

Recall that the nilpotent step of a is defined as

s (a) := inf {n ∈ N : a
n = 0} ,

so s (a) < +∞ means that a is nilpotent.
In particular, if the linear D-complex structure K on the Lie algebra g induces

the decomposition g = g
+ ⊕ g

−, we consider

s+ := s
(
g
+
)

and s− := s
(
g
−
)
;

since g
+ ⊂ g and g

− ⊂ g, we have obviously that

s+ ≤ s (g) and s− ≤ s (g) .

We start with the following easy lemma.

Lemma 3.5. Let g be a 2n-dimensional nilpotent Lie algebra, that is, s (g) < +∞.
Let K be a linear D-complex structure on g, inducing the decomposition g = g

+⊕g
−.

Then, setting s± := s (g±) for ± ∈ {+, −}, we have

1 ≤ s+ ≤ n− 1 and 1 ≤ s− ≤ n− 1 .

Proof. The proof follows easily observing that, for ± ∈ {+, −}, we have






dimR (g±)
0

= n

dimR (g±)
k

≤ max {n− k − 1, 0} for k ≥ 1
,

as a consequence of the nilpotent condition and of the integrability property. �

We start with the following result, to be compared with Theorem 1.6.

Proposition 3.6. Let g be a Lie algebra. If K is a linear D-complex structure on
g with eigenspaces g

+ and g
− such that [g+, g−] = {0}, then K is linear C∞-pure-

and-full at every stage.

Proof. Since [g+, g−] = {0}, one can write g = g
+×g

− and, using Künneth formula
as in Theorem 1.6, one gets the thesis. �
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Therefore, from Proposition 2.4, one gets the following corollary.

Corollary 3.7. Let X :=: Γ\G be a completely-solvable solvmanifold endowed with
an invariant D-complex structure K. Call g the Lie algebra naturally associated to
the Lie group G and consider the linear D-complex structure K ∈ End(g) induced
by K ∈ End(TX). Suppose that the eigenspaces g

+ and g
− of K ∈ End(g) satisfy

[g+, g−] = {0}. Then K is C∞-pure-and-full at every stage and pure-and-full at
every stage.

Recall the following definition.

Definition 3.8. A linear D-complex structure on a Lie algebra g is said to be
Abelian if the induced decomposition g = g

+ ⊕ g
− satisfies [g+, g+] = {0} =

[g−, g−], namely, s+ = 1 = s−.

Remark 3.9. Note that every linearD-complex structure on a 4-dimensional nilpo-
tent Lie algebra is Abelian, as a consequence of Lemma 3.5.

Theorem 3.10. Let g be a Lie algebra and K be a linear Abelian D-complex
structure on g. Then K is linear C∞-pure at the 2-nd stage.

Proof. Denote by π+ : ∧•
g
∗ → ∧•+

K g
∗ the map that gives the K-invariant compo-

nent of a given form. Recall that d η := −η ([·, ··]) for every η ∈ ∧1
g
∗; therefore,

since [g+, g+] = 0 and [g−, g−] = 0, we have that

π+
K

(
im
(
d: ∧1

g
∗ → ∧2

g
∗
))

= {0} .

Suppose that there exists [γ+] = [γ−] ∈ H2+
K (g; R) ∩ H2−

K (g; R), where γ+ ∈

∧2+
K g

∗ and γ− ∈ ∧2−
K g

∗; let α ∈ ∧1
g
∗ be such that γ+ = γ−+dα. Since π+

K (dα) =
0, we have that γ+ = 0 and hence [γ+] = 0, so K is linear C∞-pure at the 2-nd
stage. �

Remark 3.11. We note that the condition ofK being Abelian in Theorem 3.10 can
not be dropped, not even partially. In fact, Example 4.1 shows that the Abelian
assumption just on g

− is not sufficient to have C∞-pureness at the 2-nd stage.
Another example on a (non-unimodular) solvable Lie algebra is given below.

Example 3.12. There exists a 4-dimensional (non-unimodular) solvable Lie alge-
bra with a non-Abelian D-complex structure that is not linear C∞-pure at the 2-nd
stage.
Consider the 4-dimensional solvable Lie algebra defined by

g := (0, 0, 0, 13 + 34) ;

note that g is not unimodular, since d e124 = e1234, see Lemma 3.15.
Set the linear D-complex structure

K := (+ + − −) ;

note that K is not Abelian, since [g+, g+] = 0 but [g−, g−] = R 〈e3〉 6= {0}.
A straightforward computation yields that g is linear C∞-full (in fact, H2 (g;R) =
R
〈
e12, e34

〉
⊕
〈
e23
〉
and H+

K (g;R) = R
〈
e12, e34

〉
, H−

K (g;R) = R
〈
e23
〉
) but linear

non-C∞-pure, since

H2+
K (g;R) ∋

[
e34
]
=
[
e34 − d e4

]
= −

[
e13
]
∈ H2−

K (g;R)

and
[
e34
]
6= 0.
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Saying that a D-complex structure on a solvmanifold is Abelian, we will mean
that the associated linear D-complex structure on the corresponding Lie algebra is
Abelian.
As a corollary of Theorem 3.10 and using Proposition 2.4, we get the following
result.

Corollary 3.13. Let X :=: Γ\G be a completely-solvable solvmanifold endowed
with an invariant Abelian D-complex structure K. Then K is C∞-pure at the 2-nd
stage.

Remark 3.14. For a D-complex structure on a compact manifold, being Abelian
or being C∞-pure at the 2-nd stage is not a sufficient condition to have C∞-fullness
at the 2-nd stage. Indeed, Example 3.1 provides a D-complex structure on a 6-
dimensional solvmanifold that is Abelian, C∞-pure at the 2-nd stage and non-C∞-
full at the 2-nd stage.

In particular, recalling Remark 3.9, invariant D-complex structures on 4-dimen-
sional nilmanifolds are C∞-pure at the 2-nd stage. While for invariant Abelian
D-complex structures on higher-dimensional nilmanifolds we can not hope to have,
in general, C∞-fullness at the 2-nd stage (see Example 3.1), for 4-dimensional nil-
manifolds we can prove that every invariant D-complex structure is in fact also
C∞-full at the 2-nd stage, see Theorem 3.17: to prove this fact, we need the follow-
ing lemmata. The first one is a classical result.

Lemma 3.15. (see, e.g., [14]) Let g be a unimodular Lie algebra of dimension n.
Then

d⌊∧n−1g∗ = 0 .

Lemma 3.16. Let g be a unimodular Lie algebra of dimension 2n endowed with
an Abelian linear D-complex structure K. Then

d⌊∧n, 0

+−
g∗ ⊕∧0, n

+−
g∗ = 0 .

Proof. Consider the bases
(
g
+
)∗

= R
〈
e1, . . . , en

〉
and

(
g
−
)∗

= R
〈
f1, . . . , fn

〉

where g = g
+ ⊕ g

− is the decomposition into eigenspaces induced by K. Being K

Abelian, the general structure equations are of the form
{

d ej =:
∑n

h, k=1 a
j
hk e

h ∧ fk

d f j =:
∑n

h, k=1 b
j
hk e

h ∧ fk

varying j ∈ {1, . . . , n} and where
{

a
j
hk, b

j
hk

}

j,h,k
⊂ R.

A straightforward computation yields

d
(
e1 ∧ · · · ∧ en

)
= (−1)

n
n∑

k=1

(
n∑

ℓ=1

aℓℓk

)

e1 ∧ · · · ∧ en ∧ fk

where, for any k ∈ {1, . . . , n},
n∑

ℓ=1

aℓℓk = 0 ,
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since it is the coefficient of

d
(
e1 ∧ · · · ∧ en ∧ f1 ∧ · · · ∧ fk−1 ∧ fk+1 ∧ · · · ∧ fn

)
= 0 ,

by Lemma 3.15. �

We can now prove the following result.

Theorem 3.17. Every invariant D-complex structure on a 4-dimensional nilman-
ifold is C∞-pure-and-full at the 2-nd stage and hence also pure-and-full at the 2-nd
stage.

Proof. The C∞-pureness at the 2-nd stage follows from Remark 3.9 and Corollary
3.13. From Lemma 3.16 one gets that, on every 4-dimensional D-complex nilmani-
fold, the D-complex invariant component of an invariant 2-form is closed and hence
also the D-complex anti-invariant component of a closed invariant 2-form is closed,
hence the linear D-complex structure is linear C∞-full at the 2-nd stage; by Propo-
sition 2.4, the D-complex structure is hence C∞-full at the 2-nd stage. Lastly, the
pure-and-fullness at the 2-nd stage follows from Proposition 1.4. �

Remark 3.18. We note that Theorem 3.17 is optimal. Indeed, we can not grow
dimension (see Example 3.1 and Example 3.2), nor change the nilpotent hypothesis
with solvable condition (see Example 4.1), nor drop the integrability condition on
the D-complex structure (see Example 3.4).

4. Small deformations of D-complex structures

In this section, we study explicit examples of deformations of D-complex struc-
tures on nilmanifolds and solvmanifolds. We refer to [22, 25] for more results about
deformations of D-complex structures.

The following example shows a curve {Kt}t∈R
of D-complex structure on a 4-

dimensional solvmanifold; while K0 is linear C∞-pure-and-full at the 2-nd stage
and admits a D-Kähler structure, for t 6= 0 one proves that Kt is neither C

∞-pure
at the 2-nd stage nor C∞-full at the 2-nd stage and it does not admit a D-Kähler
structure. In particular, this curve provides an example of the instability of D-
Kählerness under small deformations of the D-complex structure and it proves also
that the nilpotency condition in Theorem 3.17 can not be dropped out.

Example 4.1. There exists a 4-dimensional solvmanifold endowed with an invari-
ant D-complex structure such that it is C∞-pure-and-full at the 2-nd stage, it admits
a D-Kähler structure and it has small deformations that are neither D-Kähler nor
C∞-pure-and-full at the 2-nd stage.
Consider the 4-dimensional solvmanifold defined by

X := (0, 0, 23, −24)

(see, e.g., [6]).
By Hattori’s theorem (see [16]), it is straightforward to compute

H2
dR(X ;R) = R

〈
e12, e34

〉
.

For every t ∈ R, consider the invariant D-complex structure

Kt :=







−1 0 0 0
0 1 0 −2t
0 0 1 0
0 0 0 −1







.
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In particular, for t = 0, we have

K0 = (− + +−) .

It is straightforward to check that K0 is C∞-pure-and-full at the 2-nd stage (note
however that K0 is not Abelian): in fact,

H2+
K0

(X ;R) = {0} and H2−
K0

(X ;R) = H2
dR(X ;R) ;

in particular, we have

dimR H2+
K0

(X ;R) = 0 , dimR H2−
K0

(X ;R) = 2.

For every t ∈ R, we have that

g
+
Kt

= R 〈e2, e3〉 and g
−
Kt

= R 〈e1, e4 + t e2〉 :

in particular,
[
g
+
Kt

, g+Kt

]
= R 〈e3〉 ⊆ g

+
Kt

and
[
g
−
Kt

, g−Kt

]
= {0}, which proves the

integrability of Kt, for every t ∈ R.
Furthermore, for t 6= 0, we get

H2−
Kt

(X ;R) ∋
[
e34
]

=

[

e34 +
1

t
d e3

]

=

[

e34 +
1

t
(e23 + t e43 − t e43)

]

=

[
1

t
(e2 − t e4) ∧ e3

]

∈ H2+
Kt

(X ;R)

and therefore we have that

0 6=
[
e34
]
∈ H2−

Kt
(X ;R) ∩ H2+

Kt
(X ;R) .

In particular, for t 6= 0, it follows that Kt is not C∞-pure at the 2-nd stage and
hence it is not C∞-full at the 2-nd stage, as a consequence of Proposition 1.4
(in fact, no invariant representative in the class

[
e12
]
=
[
e1 ∧ (e2 − te4) + te14

]

is of pure type with respect to Kt, the space of invariant d-exact 2-forms being
R
〈
(e2 − t e4) ∧ e3 − t e34, (e2 − t e4) ∧ e4

〉
). Therefore, for t 6= 0, we have

dimR H2+
Kt

(X ;R) = 1 , dimR H2−
Kt

(X ;R) = 1.

Note that, in this example, for every t ∈ R one has s
(
g
−
Kt

)
= 0 and s

(
g
+
Kt

)
= 1 but

for t 6= 0 the D-complex structureKt is not C
∞-pure at the 2-nd stage, therefore the

Abelian condition on just g− in Theorem 3.10 is not sufficient to have C∞-pureness
at the 2-nd stage, as announced in Remark 3.11.
Note moreover that, in this example, the functions

R ∋ t 7→ dimRH
2+
Kt

(X ;R) ∈ N and R ∋ t 7→ dimR H2−
Kt

(X ;R) ∈ N

are, respectively, lower-semi-continuous and upper-semi-continuous.
Furthermore, we note that X admits a symplectic form ω := e12 + e34 which is
compatible with the D-complex structure K0: therefore, (X, K0, ω) is a D-Kähler
manifold. Instead, for t 6= 0, one has H−

Kt
(X ;R) = R

〈
e34
〉
and therefore, if a

Kt-compatible symplectic form ωt existed, it should be in the same cohomology
class as e34 and then it should satisfy

Vol(X) =

∫

X

ωt ∧ ωt =

∫

X

e34 ∧ e34 = 0 ,

which is not possible; therefore, for t 6= 0, there is no symplectic structure compat-
ible with the D-complex structure Kt: in particular, (X, Kt) admits no D-Kähler
structure.
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The previous example proves the following result, giving a strong difference be-
tween the D-complex and the complex cases (compare with the stability result of
Kählerness proved by K. Kodaira and D. C. Spencer in [18]).

Theorem 4.2. The property of being D-Kähler is not stable under small deforma-
tions of the D-complex structure.

Furthermore, Example 4.1 proves also the following instability result (a similar
result holds also in the complex case, see [4, Theorem 3.2]).

Proposition 4.3. The property of being C∞-pure at the 2-nd stage or C∞-full at
the 2-nd stage is not stable under small deformations of the D-complex structure.

We recall that T. Drǎghici, T.-J. Li and W. Zhang proved in [10, Theorem 5.4]
that, given a curve of almost complex structures on a 4-dimensional compact mani-
fold, the dimension of the almost complex anti-invariant subgroup of the real second
de Rham cohomology group is upper-semi-continuous and hence (as a consequence
of [10, Theorem 2.3]) the dimension of the almost complex invariant subgroup of
the real second de Rham cohomology group is lower-semi-continuous. This result
holds no more true in dimension greater than 4 (see [5]).
We provide two examples showing that the dimensions of the D-complex invari-
ant and anti-invariant subgroups of the cohomology can jump along a curve of
D-complex structures.

Example 4.4. There exists a curve of D-complex structures on a 6-dimensional
nilmanifold such that the dimensions of the D-complex invariant and anti-invariant
subgroups of the real second de Rham cohomology group jump (lower-semi-conti-
nuously) along the curve.
Consider the 6-dimensional nilmanifold

X := (0, 0, 0, 12, 13, 24) .

By Nomizu’s theorem (see [24]), it is straightforward to compute

H2
dR(X ;R) = R

〈
e14, e15, e23, e26, e35, e25 + e34

〉
.

For every t ∈ [0, 1], consider the invariant D-complex structure

Kt :=












1
−1

(1−t)2−t2

(1−t)2+t2
2t(1−t)

(1−t)2+t2

2t(1−t)
(1−t)2+t2

− (1−t)2−t2

(1−t)2+t2

1
−1












.

For 0 ≤ t ≤ 1, one checks that

g
+
Kt

= R 〈e1, (1− t) e3 + t e4, e5〉 and g
−
Kt

= R 〈e2, t e3 − (1− t) e4, e6〉 ;

one can straightforwardly check that the integrability condition of Kt is satisfied
for every t ∈ [0, 1].
In particular, for t ∈ {0, 1}, one has

K0 = (+ − + − +−) and K1 = (+ − − + +−) .
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It is straightforward to check that K0 and K1 are C∞-pure-and-full at the 2-nd
stage and

H2
dR(X ;R) = R

〈
e15, e26, e35

〉

︸ ︷︷ ︸

= H
2 +

K0
(X;R)

⊕ R
〈
e14, e23, e25 + e34

〉

︸ ︷︷ ︸

= H
2 −

K0
(X;R)

= R
〈
e14, e15, e23, e26

〉

︸ ︷︷ ︸

= H
2 +

K1
(X;R)

⊕ R
〈
e35, e25 + e34

〉

︸ ︷︷ ︸

= H
2 −

K1
(X;R)

;

therefore

dimR H2+
K0

(X ;R) = 3 and dimH2−
K0

(X ;R) = 3

and

dimR H2+
K1

(X ;R) = 4 and dimH2−
K1

(X ;R) = 2 .

Instead, for 0 < t < 1, one has

H2+
Kt

(X ;R) = R
〈
e14, e15, e23, e26

〉

and

H2−
Kt

(X ;R) = R
〈
e14, e23, e25 + e34

〉
;

it follows that, for 0 < t < 1, the D-complex structure Kt is neither C∞-pure at
the 2-nd stage nor C∞-full at the 2-nd stage; moreover, for 0 < t < 1, one gets

dimR H2+
Kt

(X ;R) = 4 and dimH2−
Kt

(X ;R) = 3 :

in particular, the functions

[0, 1] ∋ t 7→ dimR H2+
Kt

(X ;R) ∈ N and [0, 1] ∋ t 7→ dimR H2−
Kt

(X ;R) ∈ N

are non-constant and both lower-semi-continuous.

The previous examples show that the dimension of the D-complex anti-invariant
subgroup of the de Rham cohomology in general is not upper-semi-continuous
(it is such in Example 4.1) or lower-semi-continuous (it is such in Example 4.4).
We end this section with an example showing that also the dimension of the D-
complex invariant subgroup of the de Rham cohomology in general is not lower-
semi-continuous (it is such in Example 4.1 and in Example 4.4).

Example 4.5. There exists a curve of D-complex structures on a 6-dimensional
nilmanifold such that the dimensions of the D-complex invariant and anti-invariant
subgroups of the real second de Rham cohomology group jump (upper-semi-conti-
nuously) along the curve.
Consider the 6-dimensional nilmanifold

X := (0, 0, 0, 12, 13, 24) .

By Nomizu’s theorem (see [24]), it is straightforward to compute

H2
dR(X ;R) = R

〈
e14, e15, e23, e26, e35, e25 + e34

〉
.
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For every t ∈ [0, 1], consider the invariant D-complex structure

Kt :=












1
−1

−1
1

(1−t)2−t2

(1−t)2+t2
2t(1−t)

(1−t)2+t2

2t(1−t)
(1−t)2+t2

− (1−t)2−t2

(1−t)2+t2












.

For 0 ≤ t ≤ 1, one checks that

g
+
Kt

= R 〈e1, e4, (1− t) e5 + t e6〉 and g
−
Kt

= R 〈e2, e3, t e5 − (1− t) e6〉 ;

one can straightforwardly check that the integrability condition of Kt is satisfied for
every t ∈ [0, 1]. Furthermore, one can prove that Kt is Abelian for every t ∈ [0, 1],
hence it is in particular C∞-pure at the 2-nd stage by Corollary 3.13.
In particular, for t ∈ {0, 1}, one has

K0 = (+ − − + +−) and K1 = (+ − − + −+) .

It is straightforward to check that K0 is C∞-pure-and-full at the 2-nd stage and

H2
dR(X ;R) = R

〈
e14, e15, e23, e26

〉

︸ ︷︷ ︸

= H
2 +

K0
(X;R)

⊕ R
〈
e35, e25 + e34

〉

︸ ︷︷ ︸

= H
2 −

K0
(X;R)

while K1 is C∞-pure at the 2-nd stage, non-C∞-full at the 2-nd stage and

H2
dR(X ;R) = R

〈
e14, e23, e35

〉

︸ ︷︷ ︸

= H
2 +

K1
(X;R)

⊕ R
〈
e15, e26

〉

︸ ︷︷ ︸

= H
2 −

K1
(X;R)

⊕R
〈
e25 + e34

〉
,

where

R
〈
e25 + e34

〉
∩
(
H2+

K1
(X ;R)⊕H2−

K1
(X ;R)

)
= {0} ;

therefore

dimR H2+
K0

(X ;R) = 4 and dimH2−
K0

(X ;R) = 2

and

dimR H2+
K1

(X ;R) = 3 and dimH2−
K1

(X ;R) = 2 .

Instead, for 0 < t < 1, one has

H2+
Kt

(X ;R) = R
〈
e14, e23

〉

and

H2−
Kt

(X ;R) = R
〈
t e26 + (1− t) e25 + (1− t) e34

〉
,

while

R
〈
e15, e35, e26

〉
∩
(
H2+

Kt
(X ;R)⊕H2−

Kt
(X ;R)

)
= {0} ;

it follows that, for 0 < t < 1, the D-complex structure Kt is C∞-pure at the 2-nd
stage and non-C∞-full at the 2-nd stage; moreover, for 0 < t < 1, one gets

dimR H2+
Kt

(X ;R) = 2 and dimH2−
Kt

(X ;R) = 1 :

in particular, the functions

[0, 1] ∋ t 7→ dimR H2+
Kt

(X ;R) ∈ N and [0, 1] ∋ t 7→ dimR H2−
Kt

(X ;R) ∈ N

are non-constant and both upper-semi-continuous.
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We resume the contents of Example 4.4 and Example 4.5 in the following propo-
sition.

Proposition 4.6. Let X be a compact manifold and let {Kt}t∈I be a curve of
D-complex structures on X, where I ⊆ R. Then, in general, the functions

I ∋ t 7→ dimR H2+
Kt

(X ;R) ∈ N and I ∋ t 7→ dimR H2−
Kt

(X ;R) ∈ N

are not upper-semi-continuous or lower-semi-continuous.
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