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Abstract  
 

Molluscs are a morphologically highly diverse animal phylum, they are ubiquitous, and have 

a formidable fossil record. Although there is little doubt about the monophyly of the eight 

extant classes, relationships between these groups are controversial. We analyzed a 

comprehensive multi-locus molecular data set for molluscs, the first to include multiple 

species from all classes, including five monoplacophorans in both extant families. Our 

analyses based on five standard molecular markers resolve two major clades: the first includes 

gastropods and bivalves sister to Serialia (monoplacophorans and chitons), and the second 

comprises scaphopods sister to aplacophorans and cephalopods. All traditional groupings such 

as Testaria, Aculifera and Conchifera are rejected by our data with highly significant 

Approximately Unbiased (AU) test values. A new molecular clock for Mollusca indicates 

molluscs had a terminal Precambrian origin with rapid divergence of all eight extant classes in 

the Cambrian. The recovery of Serialia as a derived, Late Cambrian clade is potentially in line 

with the stratigraphic chronology of morphologically heterogeneous early mollusc fossils. 

Serialia is in conflict with traditional molluscan classifications and recent phylogenomic data. 

Yet our hypothesis, as others from molecular data, implies frequent molluscan shell and body 

transformations by heterochronic shifts in development and multiple convergent adaptations, 

led to the variable shells and body plans in extant lineages.  
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Introduction  

Molluscs are a morphologically mega-diverse group of animals with expansive body plan 

modifications. There is no doubt about the monophyly of Mollusca as a whole or of any of the 

eight extant molluscan classes, based on strong morpho-anatomical evidence and the 

consensus of molecular studies [1]. Despite a number of important recent studies, resolving 

ingroup molluscan topology remains contentious (Fig. 1A), and a major challenge of 

invertebrate evolution [2].  

Other studies have not had access to suitable material for broad taxon sampling, in particular 

for monoplacophorans, a class of small deep-sea molluscs that still remain rare and largely 

inaccessible [3,4]. Among several recent studies on molluscan phylogeny, most use a subset 

of classes [5-7]; only one phylogenomic study so far has included all eight classes [8].  

Multi-gene studies on ribosomal proteins [6] and housekeeping genes [7] and two broad 

phylogenomic (EST-based) data sets [5,8] supported a monophyletic clade Aculifera. This 

clade comprises those molluscs with a partial or entire body covered by a cuticle with 

calcareous spicules or scales, and is composed of shell-less vermiform molluscs 

(aplacophoran) and shell-plate bearing Polyplacophora (chitons). The opposing clade 

Conchifera (incorporating the five classes with a ‘true’ shell) remains controversial; 

phylogenomic studies recovered a monophyletic clade Conchifera [5,8]; but ribosomal protein 

multi-gene and housekeeping gene analyses showed paraphyletic Conchifera [6,7].  

A contradictory alternative hypothesis was proposed by earlier ribosomal RNA-dominated 

multi-locus studies that included Monoplacophora and recovered this class as the sister to 

Polyplacophora [4,9,10]. This clade ‘Serialia’ combines conchiferan and aculiferan members 

and is thus incompatible with results of recent molecular studies, or the morphological 

Testaria (i.e. Conchifera + Polyplacophora) hypothesis (Fig. 1). This result was widely 
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criticised in the literature [e.g. 11]. Yet methodological deficiencies [12] of the study by 

Giribet et al. [9] were addressed by Wilson et al. [10], and recovered again in a partially 

overlapping dataset by Meyer et al. [13] and independently by Kano et al. [4].  

The single phylogenomic data set with a monoplacophoran species also indicated some signal 

for Serialia, though weaker than that supporting a relationship of cephalopods and 

monoplacophorans within Conchifera [8]. Phylogenomic data sets cannot yet cover the same 

density of taxon sampling  relative to targeted gene approaches, and while systematic errors of 

phylogenomic analyses have been explored recently [e.g. 14-16], there is already a suite of 

tools available for addressing well-known pitfalls of ribosomal RNA-based sequences [e.g. 

17-20]. All datasets may still contribute to ongoing investigations of phylogeny if used and 

interpreted with care. 

Where published topologies differ radically from concepts born from morpho-anatomical 

hypotheses, these results have often been dismissed as artefacts even by the studies’ own 

authors. In addition to the ‘Serialia’ concept, several studies over the last decade have 

repeatedly recovered Caudofoveata sister to Cephalopoda [e.g. 6,9,10,21-23]. But this pattern 

has low support values [6,12]. The position of scaphopods is also highly variable, sometimes 

in a clade with gastropods and bivalves [5,7,8] or sister to aplacophorans and cephalopods 

[9,10,21]. With only eight major clades to rearrange, it could be a serious handicap that many 

studies exploring molluscan topology have had to exclude one [e.g. 5,7,21] to three [e.g. 4,6] 

classes, and all but one previous study [10] used single-taxon exemplars for at least one [9] to 

as many as three [7,8] of those clades.  

More and better quality data from the monoplacophorans are necessary to resolve molluscan 

relationships, and particularly the two mutually exclusive hypotheses Serialia and Aculifera. 

We assembled a large multi-locus data set for molluscs, including novel sequences of four 

monoplacophoran species added to the known ones of Laevipilina hyalina. To determine the 
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plausibility of this new topology, we applied several tests for phylogenetic informativity, 

saturation of sites, and compositional heterogeneity within the molecular datasets, and have 

also considered our results against other molecular, morphological and fossil evidence. 

Finally we calculated a new time tree via a relaxed molecular clock approach, using multiple 

sets of fossil calibration points. 

Applying carefully calibrated molecular clocks on broad extant taxon sets and reconstructing 

characters on dated ancient lineages is indispensable for interpretation of enigmatic key 

fossils such as Halkieria or Nectocaris that may form part of the early evolutionary history of 

the group [e.g. 24-27]. We present an alternative view on molluscan evolution that supports 

the Serialia hypothesis, and demonstrates that the debate on pan-Molluscan relationships is 

still in progress. 

 

Material & Methods 

DNA Extraction, PCR and sequencing 

DNA from 12 previously unsampled molluscan taxa, including 3 monoplacophoran species, 

was extracted using the Qiagen Blood and Tissue Kit by following the manufacturer’s 

instructions. Amplifications of the four standard marker fragments, partial 16S, partial 18S, 

partial 28S and complete H3 were carried out under PCR conditions and with primer pairs 

shown (Suppl. Tab. 1). Sequencing reactions were operated on an ABI 3730 48 capillary 

sequencer of the Sequencing Service of the Department of Biology of the LMU Munich by 

using the amplification primers. Newly generated sequences were edited in Sequencher® 

version 4.7 (Gene Codes Inc., Ann Arbor, MI, USA). 
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Taxon and gene sampling 

To compile a comprehensive and dense taxon sampling for resolving deep molluscan 

relationships, we expanded earlier published data sets [9,10] by our own and archived 

(Genbank) data, including a broad selection of outgroups and initially including any molluscs 

with substantial sequence information available for five standard marker fragments (partial 

16S rRNA, partial or complete 18S rRNA, partial or complete 28S rRNA, complete H3 and 

partial COI). In some poorly sampled but significant ingroup clades we also included species 

with fragmentary sequence data. Previously unpublished, partial 16S, complete 18S and 28S, 

complete H3 and partial COI sequences of Veleropilina seisuimaruae were provided 

separately by one of the authors (YK). The total initial data set comprised 158 taxa (141 

molluscan and 17 outgroup taxa; Suppl. Tab. 2).  

Data cleaning and alignment 

All the downloaded and new single sequences, including all 28S sequences, and all individual 

amplicons for 18S sequences in Solenogastres, were cross-checked against the nucleotide 

database of BLAST [28] by using the blastn algorithm. Potentially aberrant or problematic 

fragments were removed from the data sets (Suppl. Tab. 3A).  

In some bivalve 28S sequences a dubious part of ca. 500 bp was detected in an otherwise 

homogeneous molluscan alignment. This portion differed substantially in most bivalve taxa 

but not in all, and was highly heterogeneous also in closely related species. No pattern could 

be observed so we removed the dubious region (Suppl. Tab. 3B). 

The 18S sequences of Solenogastres were partially excluded due to contamination. Retained 

sequences of Epimenia species (E. sp., E. australis, E. babai) were aligned separately with the 

first uncontaminated sequences of Meyer et al. [13] and resulting large gaps were cut by hand 
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according to the template sequences of Micromenia fodiens, Simrothiella margaritacea and 

Wirenia argentea (Meyer sequences in [13]). 

Patellogastropoda have aberrant 18S and 28S sequences with many indels causing highly 

incongruent alignments (own observations), leading to long branches and attraction artefacts 

in previous [13] and our own analyses. Patellogastropoda clustered with long branched 

Cephalopoda and Solenogastres under different regimes (Tab. 1). To verify the correct 

position of Patellogastropoda within or outside other Gastropoda a more focused data set was 

generated comprising only gastropod taxa plus some selected, short-branched outgroup taxa, 

i.e. two bivalves, two polyplacophorans, one annelid and one kamptozoan. This alignment is 

more homogeneous, and patellogastropods appear as a moderately long branch in a rather 

derived position within the Gastropoda (Suppl. Fig. 2). So we confirm that patellogastropods 

show aberrant evolution leading to long branch attraction artefacts in broader datasets [13]; 

therefore we excluded this clade from the main analyses. 

Single alignments (per fragment) were created with Mafft version 6.847b [29] with the 

implemented E-INS-i algorithm. Alignments of 16S, 18S and 28S rRNA were masked with 

Aliscore version 5.1 [18,30] by running 10,000,000,000 replicates. All ambiguous positions 

were automatically cut with Alicut version 2.0 [18,30], to remove highly variable positions 

that could lead to aberrant phylogenetic signals. The alignments of protein coding genes H3 

and COI were manually checked for stop codons using MEGA5 [31]. The single data sets 

were concatenated automatically using FASconCAT version 1.0 [32]. This procedure resulted 

in a total alignment of 142 taxa with 8721bp in length and a proportion of 60% gaps (Suppl. 

Tab. 5). Where taxon sampling had to be modified, for example removing taxa or dubious 

gene fragments, this was done in the initial single data sets and the complete procedure of 

alignment, masking and concatenation was carried out again. 
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Final analyses were computed with the large data set excluding Patellogastropoda (142-taxon 

set), and a targeted taxon subset (81-taxon set, alignment length 8367bp, proportion of gaps 

57%) after pruning fast-evolving species or derived members of densely sampled undisputed 

clades, and the gastropod data set (all gastropods including Patellogastropoda plus selected 

slowly-evolving outgroups). Moreover, we generated and analysed diverse data sets for 

control reasons to test interclass topologies: the 142- and 81-taxon sets without Aplacophora, 

the 142-taxon set without long-branched Cephalopoda and Solenogastres, the 142-taxon set 

with COI and H3 coded as amino acids (142-taxon set amino acid) and one data set that 

comprises only 18S, 28S and H3 fragments of the 142-taxon set (Suppl. Tab. 5). The 

concatenated sequence matrices of the two main analyses (142-taxon set and 81-taxon set) 

were deposited at TreeBase (http://www.treebase.org). New sequences generated herein were 

deposited at Genbank (Suppl. Tab. 2). 

Pre-analyses of the data 

Since saturated sequences have minimal or no phylogenetic signal and could even lead to 

anomalous results, we measured substitution saturation of the protein coding genes, namely 

H3 and COI, with Xia’s method implemented in DAMBE version 5.2.31 [33]. We used 

default parameters and the proportion of invariable sites was specified. The method was 

executed for all three codon positions together, for combined first and second codon positions 

and for third codon position separately. In both cases, H3 and COI, the Iss (Index of 

substitution saturation) values of all three codon positions in combination, were significantly 

smaller than Iss.c (critical Index of substitution saturation) values. This was also true for the 

alignments of first and second codon positions. This assumes those positions conserve 

phylogenetic signal and are useful for further analyses. In the case of third codon positions 

only, substantial saturation could be observed (Iss significantly higher than Iss.c). All results 

http://www.treebase.org/
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are shown in Supplementary Table 6. Although substitution saturation was observed in third 

codon positions of H3 and COI, we ran additional analyses with the complete sequence 

information (1
st
, 2

nd
, 3

rd
 codon positions) to implement potential phylogenetic signal for lower 

taxonomic levels. 

To crosscheck the phylogenetic results of the data sets with and without excluded third codon 

positions of protein coding genes we conducted the same analyses with all three codon 

positions included, using distinct models of evolution for the three different codon positions 

and without third codon positions of H3 and COI.  

Testing the evolutionary models for all genes and in case of COI and H3 for every single 

codon position and for codon positions one and two versus position three was carried out with 

the programs Modeltest version 3.7 [34] (for complete alignments) and MrModeltest version 

2.3 [35] (for codon positions) by the help of PAUP* version 4b10 for Windows [36]. With the 

amino acid alignments of H3 and COI we additionally tested for the best fitting amino acid 

model of evolution using ProtTest version 2.4 [37]. As RAxML provides only a part of the 

models that can potentially be tested by ProtTest we only selected those models in our 

ProtTest analysis (DAYHOFF, DCMUT, JTT, MTREV, WAG, RTREV, CPREV, VT, 

BLOSUM62, and MTMAM). The resulting best models for all genes (16S, 18S, 28S, H3, 

COI), distinct codon positions of H3 and COI and amino acid alignments of H3 and COI as 

well as the corresponding proportions of invariant sites and the gamma distribution shape 

parameters are shown in Supplementary Table 4. 

Phylogenetic analyses 

Maximum Likelihood (ML) analyses for all data sets were executed using RAxML-HPC for 

Windows [38] and RAxML version 7.2.6 [38] on the Linux cluster of the Leibniz computer 

centre. Parameters for the initial rearrangement settings and the rate categories were optimised 
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under the GTRCAT model of evolution and a partition by genes (16S, 18S, 28S) and codon 

positions (COI, H3) by conducting the hardway analysis described by Stamatakis [39].  

First, a set of 10 randomised Maximum Parsimony (MP) starting trees was generated. Second, 

based on this set of starting trees, the ML trees with a specified setting of initial 

rearrangements (-i 10) and with an automatically determined initial rearrangement setting had 

to be inferred. Third, the number of rate categories was adjusted. Initial setting –c 10 was 

augmented by increments of 10 up to –c 50 for all MP starting trees. The fourth step was to 

execute 200 inferences on the original alignments. Finally, values of 1000 bootstrap 

topologies were mapped on the best-scoring ML tree. 

Bayesian analyses for selected data sets were conducted with MrBayes v. 3.1.2 [40]. 

Partitioning with corresponding models of evolution, substitution rates and nucleotide 

frequencies were applied according to the results of Modeltest [34], MrModeltest [35] and 

ProtTest [37]. If the average standard deviation of split frequencies declined 0.01 after 5 

million generations the analysis was stopped. If not, analysis was continued with another 5 

million generations. If the average standard deviation of split frequencies still did not 

decrease, the log likelihood values were examined with Tracer version 1.5 [41]. If the run 

reached stationarity the analysis was stopped. Burn-in was set to 2500 after 5 million 

generations and to 5000 after 10 million generations. 

Molecular clock analyses 

Time estimations were performed with the software package BEAST version 1.6.1 [42]. The 

program is based on the Bayesian Markov Chain Monte Carlo (MCMC) method and therefore 

can take into account prior knowledge of the data. That is used when nodes in the topology 

are calibrated and the rate of molecular evolution along the branches are estimated.  
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We used nine fossil calibration points (Suppl. Tab. 7) with their corresponding prior 

distributions and assumed a relaxed clock with a lognormal distribution [43] of the rates for 

each branch (Suppl. Tab. 7). This setting is recommended because it additionally gives an 

indication of how clock-like the data are [44]. Calibration points were set with a minimum 

bound according to Jörger et al. [45].To reduce computing time we used the targeted (81-taxa) 

data set for time estimations. The topology was constrained according to the resulting tree of 

the phylogenetic analyses.  

An xml-file with all information on data, calibration points, priors and the settings for the 

MCMC options was created with BEAUti version 1.4.7 [42]. Gamma shaped priors for all 

nine calibration points were used (Suppl. Tab. 7). We assumed that the lower bound of each 

calibration point is not more than 10% of its maximum age. In case that the next older fossil is 

within these 10% boundary we used the maximum age of that fossil as lower bound for the 

younger fossil [46]. 

Detailed partitioning of genes (16S, 18S, 28S) and codon positions of COI and H3 and the 

constraint tree topology were added by hand to the xml-file. The analysis was executed for 30 

million generations, sampling one tree every 1000 generations on the Linux cluster of the 

Leibniz computer centre. The implemented program Tracer version 1.5 [41] was used to 

confirm that posterior probabilities had reached stationarity. Burn-in was set to 25% (7500) so 

22,500 trees were effectively analyzed with TreeAnnotator version 1.6.1 [42] to form the 

summary tree. Further, to check the reliability of our fossils, we repeated the same analysis 

several times and always omitted one calibration point (Tab. 2; Suppl. Tab. 7). 

Testing hypotheses 

Several existing hypotheses about the molluscan interrelationships (Tab. 3) were tested by 

executing Approximately Unbiased tests (AU tests) implemented in Treefinder version of 
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October 2008 [47]. Therefore the input constraint trees were computed with RAxML-HPC 

[38] by using the –g-option and the associated partition by genes and codon positions. Those 

input tree topologies were tested in Treefinder with maximum number of replicates under the 

GTR model.  

 

Results and Discussion 

Analyses 

Analyzing traditional multi-locus markers for several large taxon sets with Maximum 

Likelihood and Bayesian methods under different alignment and masking regimes (Tab. 1, 

Suppl. Tab. 5), we recovered consistent phylogenetic trees (Fig. 1C) with monophyletic 

Mollusca in contrast to other studies with similar markers [9,10,20,21] and strong support for 

the monophyly of all molluscan classes, including Bivalvia (also in contrast to some earlier 

studies [9,20,21]).  

Our approach included rigorously testing of all amplicons before and after alignment, which 

led to the exclusion of aberrant or problematic, previously published sequences from the data 

set (Suppl. Tab. 3). Criticism of previous accounts using the same set of markers has included 

the incomplete representation of taxa and the varying extant of missing data [12,48]. Missing 

data is a common burden of multi-locus studies and will be more severe for phylogenomic 

approaches [15,16]. Our pre-analyses showed that dubious sequences or ambiguous parts of 

alignments had much greater effect on the outcome than selecting taxa with highest amount of 

data available. Rather than maximizing sequences per species, we concentrated on increasing 

taxon sampling to minimize potential branch lengths. Our quality controlled 158-taxon set 

includes 17 lophotrochozoan outgroups. Analytical trials on different subsets of non-
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molluscan outgroups altered outgroup topology and support values of some basal ingroup 

nodes, but did not change the ingroup topology (Fig. 1).  

Alignment issues involved in ribosomal RNA data were addressed by an array of measures 

proven to be beneficial ([17]; see Material and Methods). Potential homoplasy in protein 

coding genes (especially the third codon positions) in our preferred multilocus analysis was 

addressed by additionally running the analysis with those fragments (COI and H3) encoded as 

amino acids. This had little effect on the topology but supported monophyletic Aplacophora. 

We applied a variety of alignment tools, including masking (Aliscore [18]) and refinement 

algorithms based on secondary structures (RNAsalsa [19]), and applied compartmentalized 

analyses of taxon clusters causing obvious alignment problems. Excluding patellogastropods 

(large 142-taxon set, Suppl. Fig. 1; see Material and Methods) did not change our molluscan 

backbone topology (Fig. 1C), but improved alignments. Separately analyzing gastropods plus 

some slowly evolving outgroup taxa shows patellogastropods cluster with vetigastropods 

(Suppl. Fig. 2). Our main aim was to elucidate molluscan relationships at the class level; thus 

we further pruned outgroups and fast evolving members from more densely sampled ingroups 

(such as heterobranch gastropods) and used an 81-taxon set presented here in our main 

analyses (Fig. 2).  

 

The basal molluscan dichotomy 

In our new tree, the phylum Mollusca is divided into two clades (Fig. 1C, Fig. 2, Suppl. Fig. 

1). The first clade is composed of Gastropoda sister to a clade of Bivalvia and Serialia 

(Monoplacophora + Polyplacophora). For convenience we will refer to this clade as 

‘Dorsoconcha’; the name refers to the (plesiomorphic) presence of a dorsal shell for members 
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of this clade, though modified to two lateral valves in bivalves and to (7-)8 dorsal plates in 

chitons, and the shell internalised or lost multiple times especially among gastropods.  

Gastropods, bivalves, and monoplacophorans are commonly considered to be united by their 

single shell (secondarily split in bivalves) built by a shell gland at the mantle border (and by 

the entire mantle roof secreting organic matrix and calcareous layers letting the shell grow 

thicker, or repair damage). Chitons are traditionally excluded from the hypothetical clade 

‘Conchifera’ on the basis of their eight shell plates. The chiton girdle is also covered by a 

cuticle with embedded calcareous and organic sclerites, similar to the body cuticle of the 

shell-less aplacophorans, but according to our results this is convergent and may reflect the 

different, single versus multicellular spicule formation in these taxa [49]. That chitons cluster 

with monoplacophorans rather than aplacophorans is congruent to previous molecular 

approaches that included monoplacophoran exemplars [4,9,10,13]. The exception is the 

phylogenomic study by Smith et al. [8] in which a single monoplacophoran Laevipilina 

hyalina robustly clustered with cephalopods in the main analyses, though parts of the genes 

used also showed signal supporting an association with chitons.  

In the second major molluscan clade, Scaphopoda are sister to a clade of vermiform 

Caudofoveata and Solenogastres, plus Cephalopoda. Herein we will call this clade 

‘Variopoda’, referring to the various derived foot attributes of its members: the digging foot in 

Scaphopoda, reduced narrow gliding sole or completely lost in (adult) aplacophorans, and 

transformed in cephalopods possibly building parts of tentacles and funnel. Dorsoconcha 

appears as a monophyletic group although bootstrap support is low (60%), the Variopoda is 

strongly supported in all Maximum Likelihood analyses; Bayesian posterior probabilities are 

maximal for both nodes (Fig. 2, Suppl. Fig. 1). 

The placement of aplacophorans within Variopoda is unconventional, but a sister relationship 

between Scaphopoda and Cephalopoda has been previously put forward [50,51]. Previous 
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multi-locus approaches with broad taxon sampling (i.e. more than one exemplar of each 

aplacophoran class) are actually not in general disagreement with Variopoda, since 

contaminated aplacophoran sequences may account for occasionally aberrant topologies 

[9,10,13]. Inner scaphopod topology resolves the two currently recognised groups Dentaliida 

and Gadilida, as does Cephalopoda splitting into modern Nautilida and Coleoidea, and is 

congruent with previous classifications [52]. 

We calculated time trees with a Bayesian molecular clock approach (Fig. 3) using a mix of 

younger and older calibration points (Suppl. Tab. 7). We also tested sets of calibrations 

successively excluding each single calibration point used (Tab. 2), to minimise circularity 

involved by calculating individual node times [53]. All our time trees confirm a Precambrian 

origin of Mollusca (Tab. 2, Suppl. Tab. 8) in agreement with previous studies [7], and 95% 

confidence time bars of all our time trees allow for a Cambrian origin of those classes with a 

reliable fossil record (Fig. 3). As a further sensitivity test we also calculated a time tree from a 

data set excluding aplacophorans; the topologies are congruent, and node ages almost 

identical, confirming general time estimates (not shown). 

Molluscan diversification occurred at an extremely rapid pace after the initial origination of 

the shell (Fig. 3). Short branches at the base of the ingroup can be artefacts of signal erosion 

in deep nodes [54] but as we discuss below, the rapid early evolution of Mollusca is also 

supported by the fossil record. Our molecular clock indicates a potential time frame of only 

around 20-40 million years from the first shelled molluscs (ca. 560-540 Ma) to the presence 

of differentiated variopod, dorsoconch, gastropod, bivalve and serialian stem lineages (ca. 520 

Ma). The shell was central for rapid evolutionary success of molluscs, and shell modification 

and divergence are correlated with adaptive radiations during this early period. 
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Evaluating molecular data sets  

All recent multi-gene and phylogenomic studies [5-8] have tested the effects of gene 

sampling, analytical methods, and inference programs; like our results, their topologies were 

more or less robust, also against varying outgroup selection. Sensitivity analyses do not 

attribute the major split into Variopoda (or parts thereof) and Dorsoconcha, or the recovery of 

Serialia to LBA effects. Yet our multi-locus study uses fewer markers and nucleotides than 

‘next-generation sequencing’ studies [5-8], so it may be more prone to inadequate signal of 

certain markers or stochastic errors.  

Split decomposition analyses of an earlier multi-locus set [9] usually recovered the single 

monoplacophoran species among bivalves [12], consistent with a Dorsoconcha clade. 

Splitstree analyses of our improved data set (not shown) still show overall polytomy and some 

individual taxa are clearly misplaced in the network (e.g. the gastropod Crepidula clusters 

with cephalopods). Overall, most dorsoconch terminals are separated from variopods. Within 

Dorsoconcha, monoplacophorans cluster with chitons and bivalves. A lack of tree-like 

structure and a priori split support, especially in a large and heterogeneous taxon set, may not 

necessarily mean that there is too little signal for phylogenetic analyses; it just means there is 

conflict that may or may not be resolved applying current models of sequence evolution.  

Nuclear ribosomal RNA genes were shown to be informative even on deeper levels than basal 

molluscs, if treated adequately [17]. Other, supposedly faster-evolving mitochondrial markers 

(partial COI, 16S) were stringently masked herein, partitioned when necessary, or excluded 

when saturated (Suppl. Tabs 4-6). Combined analysis incorporates multiple tempos of 

evolution experienced by the different loci, and is therefore more representative of deep 

evolutionary patterns. Our backbone topology is robust against varying the taxon and marker 

sets, masking and partitioning regimes, models of evolution, and methods of analyses (Tab. 1, 

Suppl. Tab. 4 and 5).  
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Evaluating alternative morphological and molecular concepts 

We directly evaluated the statistical fit of major competing morphology- or molecular-based 

concepts constraining our topologies and calculating their likeliness according to our data set. 

Using our preferred 81-taxon set with all markers, but also under most other schemes, the AU 

test rejects all the higher molluscan textbook concepts [1]: the Testaria, Aculifera, Conchifera, 

Cyrtosoma and Diasoma hypotheses, with highest possible statistical support; the same AU 

tests do not reject Dorsoconcha nor Variopoda (Tab. 3). We also tested our data against three 

new molecular concepts (Fig. 1B): Pleistomollusca (Bivalvia + Gastropoda) established by 

Kocot et al. [5], and the clades of Monoplacophora and Cephalopoda [8] versus other 

conchiferans (Scaphopoda, Gastropoda and Bivalvia) [5,8]. Only the latter was rejected with 

significant support in all main analyses, but all these groups received much lower AU values 

than our unconstrained topology.  

While several recent phylogenomic studies recover Aculifera [5,7,8], the Serialia concept has 

been tested only by Smith et al. [8], by inclusion of a single monoplacophoran species. 

Though association with cephalopods is preferred, there is a weaker signal also for Serialia 

[8]. Kano et al. [4] recovered Serialia but did not include any aplacophoran taxa in their 

dataset. The Serialia as a concept cannot be dismissed yet, and our dense taxon sampling 

herein, though based on far fewer sequences than recent phylogenomic approaches [5,8], still 

may allow for a more differentiated and perhaps more correct view on molluscan interclass 

relationships.  

The association of cephalopods and aplacophorans has been recovered previously but 

dismissed as an artefact of high substitution rates in rRNA genes [6,13,21]. But our results 

cannot easily be explained by long branch attraction (LBA) effects [contra 13]. Branch 
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lengths of scaphopods and caudofoveates are moderate, and the variopod node is stable 

against removal of putative long branch taxa showing accelerated evolutionary rates or biased 

base compositions [13], such as the branches of Solenogastres or Cephalopoda, or both (trees 

not shown).  

Molluscan evolution, whatever the underlying tree, is known to be laden with convergence at 

all taxon levels, including morphological features previously suspected to be informative for 

deep phylogeny [e.g. 55,56,57]. Conclusions derived from single organ systems, or the shell 

alone, are not able to exclude alternative interpretations. Coding hypothetical bauplans rather 

than existing representatives has been criticised [58,59], and may lead to erroneous 

assumptions especially in groups with uncertain internal topology such as gastropods or 

aplacophorans. Morphocladistic approaches to date [e.g. 60-62] all recovered Testaria, but 

this hypothesis is not supported by any molecular approaches.  

Our proposed topology and any other non-testarian hypothesis imply that ancestral molluscs 

were complex rather than simple. This means that many anatomical characters inherited by 

descendants may be plesiomorphic and thus not informative, or could have been reduced or 

lost repeatedly, implying a high level of homoplasy. In fact, early molluscan phylogeny may 

have been shaped by habitat-induced selective pressure combined with heterochronic 

processes [e.g. 63]. This combination may lead to concerted morphological parallelisms 

powerful enough to obfuscate any phylogenetic signal, which has been found to be the case in 

heterobranch gastropods [e.g. 45,64,65]. It is possible to disentangle even highly homoplastic 

and heterochronic groups [e.g. 66-68] if detailed and reliable microanatomical data are 

available on a dense ingroup taxon sampling, which is, however, not yet available for most 

molluscs. Unfortunately none of the many competing morphology-based hypotheses on 

molluscan class interrelationships available at present appears to represent a reliable 

benchmark for evaluating molecular topologies.  
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Topologies tested against the fossil record 

Molluscan diversification has been widely assumed to originate from a basal 

‘monoplacophoran’ bauplan [58], although early single shelled molluscs cannot be reliable 

separated from gastropods or any non-monoplacophoran univalve [69]. The earliest 

calcareous molluscan-like shells, including undisputed molluscs, appear in the uppermost 

Precambrian, in the late Nemakit-Daldynian ca. 543 Ma [69]. Polyplacophoran shell plates 

first appear in the Late Cambrian, almost 50 My later [7,70]. This does not support the 

Testaria hypothesis that would suggest chitons evolved before the invention of a true 

‘conchiferan’ shell. There are dubious disarticulated microscopic chiton-like plates [71] from 

the early Meishuchunian (likely Early Tommotian) of China, but these still appeared later 

rather than earlier than the very first undisputed conchiferan shells. The Aculifera concept 

with monoplacophorans sister to other members of Conchifera or our molecular basal 

dichotomy are both fully compatible with the origin of molluscan shells latest at the 

Precambrian/Cambrian boundary.  

The earliest tryblidian monoplacophorans are recorded from the Late Cambrian [72]. Older, 

non-tryblidian ‘monoplacophorans’ do not show serialised muscle scars and thus cannot be 

considered part of the crown-group. Yet the earliest reliable bivalves with elaborated hinge 

and ligament (Fordilla, Pojetaia) appear earlier, in the Early Tommotian ([73]; ca. 535 Ma). 

Both Aculifera and our basal dichotomy are not contradicted by the early appearance of 

bivalves. Under an Aculifera topology, chiton-like stem members could appear soon after a 

terminal Precambrian split separating Aculifera and Conchifera. Interpreting Early to Middle 

Cambrian sachitids (halwaxiids) as stem aculiferans would help fill this gap [7], but these taxa 

show a chronological sequence of shell plate loss rather than acquisition, which may be 
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contrary to a progressive transition to chitons. The mosaic taxon Phthipodochiton, which has 

been proposed as a stem aplacophoran, does not appear until the Ordovician [74,75]; other 

fossils from the Silurian, combining aplacophoran and polyplacophoran features with some 

soft tissue preservation, have also been used to support the Aculifera hypothesis [76]. These 

could also simply represent further disparity in extinct Polyplacophora. Regardless, there is 

compelling evidence from molecular systematics as well as fossil evidence that aplacophorans 

lost their ancestral shell (or shell plates) secondarily, and many other groups show repeated 

shell-loss or evolution to a vermiform body plan.  

The topologies recovered by Vinther et al. [7] and Kocot et al. [5] support Aculifera, but also 

imply that cephalopods are sister to Aculifera [7] or represent the earliest-diverging 

conchiferans [5] (excluding monoplacophorans from the analysis). However, there is no 

evidence for cephalopod-like fossils appearing earlier than e.g. bivalves. Similarly, bivalves 

are derived within Conchifera in the topology of Smith et al. [8], which is contradicted by the 

early fossil record of bivalves. In contrast, our basal dichotomy could fit with the many 

univalve small shelly fossils occurring earlier in the fossil record than bivalves, and both 

monoplacophorans and polyplacophorans appearing later, actually at a similar time in the 

Latest Cambrian, and as predicted by a split of Serialia into Monoplacophora and 

Polyplacophora.  

 

The timing of early molluscan evolution 

The molluscan stem is Precambrian according to all our molecular time trees. The Vendian 

(555 Ma) body fossil Kimberella was discussed as a mollusc [77], but not widely accepted as 

such, and rather treated as lophotrochozoan stem member, or ‘no more specifically than as a 

bilaterian’ [78]. According to previous constrained [e.g. 7] and our less constrained time trees 
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(Tab. 2, Suppl. Tab. 8), however, Kimberella appears late enough in the fossil record to be 

considered as a potential stem mollusc. The other recent molecular clock for Mollusca puts 

the stem Mollusca even deeper [4] but Kimberella is within the 95% HPD interval for the split 

of the basal dichotomy also recovered herein. Having confirmed the conceptual basis of our 

proposed topology is not rejected by evidence in the fossil record, we further consider the 

timing of the radiation of specific clades proposed by our molecular clock analyses (Fig. 3).  

Cap-shaped Helcionellidae from the terminal Precambrian (e.g. Latouchella) are putative 

monoplacophorans according to the seminal study by Runnegar and Pojeta [79], or a separate 

molluscan class [80], or, based on non-serial muscle scars, gastropods [69]. Our time tree 

suggests that Nemakit-Daldynian and Earliest Tommotian molluscs with symmetrical cap-

shaped shells with large openings are stem molluscs (or in the stem of one part of the basal 

dichotomy). In contrast, helicoid shells from the same period such as Aldanellidae [e.g. 81] 

could well be gastropods, whether or not the animal was torted [69,81]. 

Early Tommotian Watsonella, formerly known as Heraultipegma (the putatively earliest 

rostroconch) is a laterally compressed, bivalve-like univalve [69], possibly with dorso-

medially decalcified or even bivalved shell [82]. This and other laterally compressed 

Watsonellidae may predate the first reliable Bivalvia (Early to Middle Tommotian Fordilla; 

[73] vs. [69]) by some million years and thus could well be stem bivalves (or offshoots of the 

dorsoconch stem) according to our time tree (Fig. 3).  

It is important to note that neither reliable Monoplacophora (sensu Tryblidia) nor reliable 

Polyplacophora (i.e. Paleoloricata) are known before Late Cambrian, and this is confirmed in 

our chronograms (Fig. 3). Yu [83] interpreted the Early Cambrian Merismoconchia as having 

eight pairs of muscles on a pseudometameric shell, linking 8-plated chitons with single 

shelled monoplacophorans in a transitional row of shell fusion. The similarity of 
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merismoconchs with both serialian classes is curious, and their early occurrence in the pre-

trilobite Meishucun Stage suggests they could be early stem Serialia. The microscopic 

merismoconchs with their ventrally still connected shell segments and seven observed pairs of 

muscle scars may have been a transitional stage in how to make a foot efficient for sucking 

and a shell more flexible to adapt to uneven hard substrates. According to our time tree (Fig. 

3), chiton-like shell ‘fragmentation’ into fully separated plates occurred much later, after 

splitting from single-shelled monoplacophoran-like ancestors.  

The Cambrian (Atdabanian) Halkieria and related, Middle Cambrian halwaxiids could also be 

interpreted as stem Serialia (Fig. 3). A role as ancestral lophotrochozoans for halwaxiids as 

suggested by Edgecombe et al. [78] is not supported by our analysis. 

According to our time tree (Fig. 3), Yochelcionellidae, conspicuous Tommotian to Middle 

Cambrian shells that have a ‘snorkel’, could be part of the gastropod radiation as suggested by 

Parkhaev [69], or members of the dorsoconch stem lineage, or variopod stem members. The 

latter possibility is especially intriguing, since Yochelcionellidae evolved a ‘flow-through’ 

water system with two shell openings; a dorsal shell elongates laterally and fuses ventrally, 

and the body axis shifts towards anterior growth extending head and foot out of a now tube-

like shell. This condition is displayed by living and fossil variopods (i.e. scaphopods, 

cephalopods, and non-watsonellid Rostroconchia). 

Our results show that scaphopods could have split off from the variopod stem earlier, i.e. in 

the Early Cambrian, but the oldest potential scaphopods in the familiar modern tusk-like 

shape are from the Ordovician [84] or even post-Devonian [85]. There is a vast record of 

Middle Cambrian tube-like shells that may be unrecognised parts of the early scaphopod 

diversification that started much earlier and morphologically less constrained than previously 

expected [86].  
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Knightoconus, a Middle to Late Cambrian large ‘monoplacophoran’ conical shell with 

internal septa but no siphuncle [87] was described as a stem cephalopod [79], but 

subsequently questioned [e.g. 88], and ultimately suspected to be a brachiopod [89]. 

Knightoconus could fit stratigraphically with stem cephalopods based on our evidence (Fig. 

3), but its morphological interpretation remains in doubt. The earliest reliable cephalopod 

fossils are the small bodied, septate, siphuncle-bearing Plectronoceras from the Late 

Cambrian. Some versions of our analysis used Plectronoceras as a soft bound calibration 

point; by not using Plectronoceras, the origin of cephalopods shifts considerably towards the 

Silurian (Tab. 2). 

Recently, shell-less and coleoid-shaped Lower Cambrian Nectocaris pteryx was regarded as a 

cephalopod [27], but this was immediately rejected on several lines of argument [90,91].  

Other putative Early Cambrian nectocaridids such as Vetustovermis [92] are superficially 

similar to Nectocaris in having a pair of long cephalic tentacles and stalked eyes, but show a 

ventral foot separated from the supposedly wing-like mantle. Interpreting Nectocaris as 

having an axial cavity with gills and a funnel would provide synapomorphies for interpreting 

Nectocarididae as stem cephalopods [27,93]. Molecular clock estimates can provide further 

insight to such contentious interpretations; according to our time estimates (which excluded 

nectocaridids as potential calibration points), Nectocaris is too ancient to be a cephalopod 

(Fig. 3). If Nectocaris could be accepted as molluscan based on its contentious morphological 

interpretation, our time trees would be compatible with the idea that nectocaridids are stem 

variopods, or within the stem of an aplacophoran/cephalopod or aplacophoran clade. 

Nectocaridid features with superficial similarities to coleoid cephalopods [27,93] instead 

could be ancestral attributes of variopods: an anteriorly elongated body with head, long and 

flexible head tentacles, putative preoral hood, and a more or less reduced foot.  
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The fossil record offers shells and body fossils which, by their occurrence and morphology, at 

least hypothetically fill our time tree with life. The topology and timing of our hypothesis of 

early molluscan evolution is not rejected by fossil evidence.  

 

Dorsoconcha 

Molecular, morphological, and palaeontological evidence support (or fail to reject) our basal 

molluscan dichotomy. The clade Dorsoconcha includes most shelled molluscs, and 98% of 

living species in four classes: Gastropoda, Bivalvia, Polyplacophora, and Monoplacophora.  

We note two inferred potential morphological synapomorphies of Dorsoconcha, both relating 

to the digestive system and both somewhat ambiguous: the intestine is surrounded by the 

pericardium in basal lineages of gastropods, bivalves and in monoplacophorans, and may be 

positionally homologous in chitons (Fig 1C character 7); and a rotating enzymatic crystalline 

style (or protostyle; Fig 1C  character 9). Many basal, non-carnivorous molluscs have a more 

or less well-developed stomach separated into sorting zones, but only dorsoconchs (and a 

family of caudofoveates [60]) have the complex style; this was secondarily lost in chitons, 

which have a derived position in our proposed topology. 

Most previous studies on the phylogeny of molluscs have been driven by the Conchifera 

concept [1,94] and emphasised the opinion that Serialia violates putative conchiferan 

synapomorphies [12]. Such features all are plesiomorphic for dorsoconchs in our topology 

(Fig. 1C). We note several potential apomorphies for Serialia (Fig. 1C): the serial (seven or) 

eight-fold (octoserial) dorso-ventral pairs of muscle bundles, with two pairs of intertwined 

muscle bundles in chitons and also partly present in large Neopilina [94,95]; serial gills in a 

circumpedal mantle cavity; a highly similar cerebral nerve cord; and a longitudinal elongation 

of the dorso-ventrally flattened body, to mention just some (Fig. 1C). The most prominent 
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feature of Serialia, serial paired foot retractors, is also present in bivalves, but octoserial 

retractors appear in Ordovician Babinka and not in the earliest known bivalves in the 

Cambrian [96] (Fig 1C character 10). While head and buccal apparatus are reduced almost 

completely in bivalves, Serialia elaborated the buccal mass evolving highly similar 

stereoglossate radulae and the radula bolster. Similar foot and radula structures in 

patellogastropod limpets [60] could be either plesiomorphic or convergent, because 

Patellogastropoda are either an isolated early-diverging gastropod group or relatively recently 

derived within Vetigastropoda [97,98].  

From this topological result and the available fossil evidence, we propose that the last 

common ancestor of monoplacophorans and chitons was cap-shelled and adapted to 

epibenthic life in shallow waters, rasping algae or other microorganisms from rocky substrates 

(Fig. 1). In this scenario, chitons are not primitive molluscs but rather a derived group, 

potentially adapted to high-energy marine shores. Monoplacophorans initially also were 

shallow water dwellers [72] but could have colonised deeper waters during the Palaeozoic, 

where modern monoplacophorans still occur [99]. The Cenozoic or Late Cretaceous 

molecular dating of the diversification of living monoplacophorans and their short inner 

branches [4, Fig. 3] are compatible with earlier assumptions of pronounced anagenetic 

changes in the long stem line of these so-called ‘living fossils’ [4,99].  

 

Variopoda 

The clade Variopoda (Fig. 1C) groups the scaphopods, aplacophorans and cephalopods 

together in all our analyses and it is very well supported. We infer several features of 

variopods, including an apparent propensity for habitat-induced transformations (noted in the 

taxon epithet; Fig 1C character 2). Some other roughly hypothesised apomorphies may refer 
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to a clade of scaphopods and cephalopods only, that is, to variopods only under the 

assumption that aplacophorans represent highly paedomorphic and thus aberrant offshoots 

(see below): lateral extension of a primitively dorsal cap-like shell forming a tube; twisting 

the growth axis during ontogeny from initial dorso-ventral to an anterior body extension, 

translocating head foot and mantle cavity with anal opening anteriorly; formation of a ring-

like dorso-ventral muscle insertion; multiplication of cephalic tentacles into prey-capturing 

feeding tentacles, and at least partly using muscle antagonist rather than merely hydrostatic 

systems in these tentacles (convergently in gastropod cephalic sensory tentacles); a hood is 

formed anterior to the mouth; and muscular retraction of the foot is used to pump water, waste 

and gametes through/out of the mantle cavity.  

A clade of scaphopods and cephalopods repeatedly has been proposed based on 

morphological data, sometimes with one or the other or both together allied with gastropods 

[1], and was recovered by molecular data [51], and broadly within some pan-Molluscan 

molecular phylogenies [10,21]. In contrast, morphocladistic neontological [100] and 

palaeontological studies [e.g. 79,101] advocated the Diasoma concept suggesting scaphopods 

as sister to bivalves with a rostroconch ancestor. Developmental data showing different 

ontogeny of shells have not supported the latter opinion [102]. Diasoma has been equivocally 

recovered within one mitogenomic analysis ([103], but see [104] for limitations of protein 

coding mitochondrial genes), and in one supplementary analysis of transcriptome data [8]. 

Similar features such as a digging foot could be interpreted as convergent adaptations to 

infaunal life.  

The two aplacophoran classes Caudofoveata and Solenogastres have never been associated 

with either scaphopods or cephalopods in morphological studies. In our analyses 

aplacophorans are usually paraphyletic, but some permutations, in particular when excluding 

(the faster-evolving, but stringently masked) COI and 16S markers, recover a clade 
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Aplacophora sister to Cephalopoda. Aplacophora as a clade is not rejected by AU analyses of 

the combined 5-marker set either (Tab. 3). A single origin of vermiform body plans in the 

cephalopod stem lineage could arguably be more parsimonious than arising twice 

independently. Monophyly of Aplacophora is indicated by all recent studies using multiple 

nuclear protein coding genes and phylogenomic data sets ([5,7,8]; Fig. 1B) but not 

neuroanatomy [105]. 

Aplacophorans may share an inferred tendency of modifying the ancestral foot, they have an 

elongated body with a foot (or head) shield with strong retractor muscle in caudofoveates, and 

the atrial cavity especially in Solenogastres could be interpreted as a modified preoral hood, 

as remnants of a hypothesised variopod body plan. Yet there is no morphological indication 

for a specifically aplacophoran-cephalopod clade. Interpretation of the vermiform molluscan 

morphology as progenetically derived rather than reflecting a basal molluscan condition (also 

assumed under the Aculifera concept) actually allows for hypotheses that resolve them at any 

position in the molluscan tree (or makes their position impossible to recover using currently 

available anatomical data). Assuming that aplacophorans (once, or twice independently) 

initially evolved into interstitial secondary worms could be correlated with precerebral ganglia 

present in caudofoveates [105]; these transformations have evolved many times independently 

in interstitial worm-like gastropod groups, which are likely progenetic [45]. Calcareous 

spicules also evolved many times convergently in different interstitial shell-less gastropod 

lineages [45] and a protective dorsal cuticle covering the body evolved within progenetic 

corambid sea slugs [67,68]. ‘Regressive’ [sensu 106] traits in aplacophorans such as 

miniaturisation, losses of shell, tentacles and cephalization have been attributed to progenesis 

[63]. The serial dorso-ventral muscle grid of aplacophorans resembles early ontogenetic 

stages observed in other molluscs [107] and could be paedomorphic, but it is still an adaptive 

innovation for non-larval stages. The narrow bipartite radulae of aplacophorans are 
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specialised tools for microcarnivory, but also resemble some stem molluscan radula types 

[55]; evidence from Cambrian fossils is more congruent with an ancestral unipartite radula 

[108]. 

Our topology places aplacophorans in an unconvential position; however, there is consensus 

among all recent molecular studies that aplacophorans represent derived rather than 

plesiomorphic members of Mollusca (Figure 1). These notes on the specific feature of 

aplacophorans therefore are of general interest to resolving the pattern and tempo of 

molluscan evolution, regardless of differences between our new topology and other studies. 

 

Molluscan ancestors 

The origin of molluscs is a long-standing question and speculations on the ‘hypothetical 

ancestral mollusc’ depend on character-polarity and even topological assumptions [1,58]. 

Broad genomic analyses [e.g. 14-16,22] recovered molluscs as an early-derived offshoot of 

Lophoptrochozoa (Spiralia), as had been proposed on morphological grounds [109]. Modern 

morphological studies suggest entoprocts as sister to molluscs [1], a view supported by 

mitochondrial genomics [104]. MicroRNA data [110] suggest Annelida is the sister to 

Mollusca, as recovered (but never robustly supported) by most of our analyses with a large 

outgroup taxon set (Suppl. Fig. 1A). Our analyses did not resolve a consistent sister group to 

Mollusca. Yet, permutations and pruning of our outgroup sampling did not affect ingroup 

topologies. We regard the molluscan sister-group as an unanswered question, but not 

necessarily problematic to the question of internal molluscan phylogeny (if ingroup taxon 

sampling is sufficiently dense).  

Our initial morphological character mapping (Fig. 1C) suggest that the last common ancestor 

of living molluscs (‘LAM’) was a single-shelled conchiferan with a complex body, single (or 
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few) paired shell retractors, single paired gills in a circumpedal mantle cavity, and an 

elaborated (cephalised) anterior body portion. There is little reason to assume that this 

hypothetical LAM resembled a chiton or monoplacophoran [e.g. 25], or to suspect a 

segmented body organisation [e.g. 111]. Instead, the LAM may have resembled an untorted 

gastropod with a cap-like shell, perhaps similar to Latouchella, as assumed by morphologists 

before the discovery of the supposedly ‘living fossil’ Neopilina and still advocated by some 

palaeontologists [69].  

Our assessment of potential morphological apomorphies (Fig. 1C) and the molecular clock 

results (Fig. 3) would suggest that the Vendian (555 Ma) Kimberella
 
[77] is a candidate stem-

group mollusc appearing before the evolution of a dorsal shell field. The interpretation of 

Kimberella is controversial [112]; but the true stem molluscs probably did have a large, 

bilaterally symmetrical body with subapical mouth on a snout with a likely bipartite radula 

[113], a broad ventral foot, many dorso-ventral muscle bundles and a dorsal mantle covered 

with a resistant dorsal cuticle with mineralised spicules, which are all molluscan features, but 

lacking a shell [114,115]. During the latest Precambrian rise of predators and successive 

development of sediment bottoms [25], molluscan larvae or early juveniles may have calcified 

their plesiomorphic cap-shaped mantle cuticle for protective reasons. Answering Yochelson 

[116], the mollusc made a shell, but then the shell made the molluscs. 

 

Conclusions  

Only one (if any) of the dozens of proposed hypotheses on molluscan phylogeny reflects the 

true tree. Both the traditional palaeontological concept, with monoplacophorans giving rise to 

all other molluscan lineages , and the widely accepted morphocladistic Testaria hypothesis, 

with progressive evolution from vermiform molluscs to chitons and conchiferans [62,117], are 
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not supported by molecular evidence and are apparently incompatible with the chronological 

appearance of reliable fossils representing major molluscan lineages.  

The Aculifera concept has been supported by phylogenomic results [2,118], which dichotomy 

is not inherently contradicted by the available fossil record if the last common molluscan 

ancestor was small, complex and had a shell (i.e. was conchiferan rather than chiton-like). Yet 

the branching patterns of living clades in available phylogenomic topologies appear to be 

incongruent with stratigraphic evidence. The debate on molluscan phylogeny can only be 

progressed using all available evidence, integrating morphological, fossil and molecular data. 

To provide meaningful insights, molecular approaches must include all eight molluscan 

classes, and cover the well-known diversity of living taxa.  

Our results, though using traditional markers that cover arguably less data than next-

generation approaches, are based on a comprehensive taxon set with data quality checked 

exhaustively at all levels. Topologies recovered still may suffer from poor sampling especially 

of aplacophoran lineages, and from heterogeneous evolution of ingroup clades such as 

cephalopods or patellogastropods. The data available, while extensive and of high quality, are 

small in comparison to the total genetic diversity of the phylum under study.  

Nevertheless, our data sets, regimes and analyses support and refine the Serialia hypothesis 

[9]. The topological results inferred herein cannot be refuted by recent research on shell 

building gene expression and mollusc palaeontology. In many well-studied molluscan taxa, 

shells are reduced or duplicated, bodies adapted to different environments and life styles such 

as benthic, interstitial, or pelagic realms, and features such as mantle cavities and radulae 

repeatedly were transformed, often drastically and rapidly. Heterochronic processes could 

already have occurred in the Palaeozoic, which would be consistent with the disparity known 

in living molluscs but which could also obscure deeper phylogenetic signal in morphological 

analyses. Ultimately, such complex diversification could have led to the fossil and extant 
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molluscs that stand apart from other (non-insect) animals in terms of species diversity, body 

disparity, and variation of life traits. The true reconstruction of the early radiation of molluscs 

still is one of the major unresolved issues in evolutionary biology. Independent molecular 

evidence, such as microRNAs or phylogenomic data on a similarly comprehensive and dense 

taxon sampling as used herein, will be needed to further test these hypotheses.  
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Figures 

Figure 1. Schematic trees of molluscan relationships. A, showing traditional proposed 

subdivisions. B, consensus tree of two recent molluscan phylogenies inferred from large scale 

genomic data by Kocot et al. [5] and Smith et al. [8]. The traditional concepts of Aculifera 

and Conchifera are supported but with differing positions of scaphopods. Monoplacophora are 

missing in the data set of Kocot et al. [5] (dotted line reflects the position of Monoplacophora 

in Smith et al. [8]). C, the preferred multi-locus tree with morphological features indicated 

numerically on branches. Unfilled dots indicate maximum Bayesian node support, filled dots 

additional high (>75%) bootstrap support in ML analyses. The Ediacaran fossil genus 

Kimberella corresponds to the description of molluscan stem-group features (1-4, below); 

crown group taxa originating in the Cambrian and later are united by additional features. 
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Black boxes indicate first appearance of features; grey boxes indicate significant adaptive 

change; unfilled boxes indicate trait reversals:  

1, Radula; bipartite in stem molluscs and paedomorphic aplacophorans; broadened, on 

cartilages and specialised in crown molluscs, stereoglossate in Serialia (and distant 

patellogastropods); lost in Bivalvia (and several gastropods); 2, foot with broad gliding sole; 

transformed into digging foot in variopods (and derived bivalves), narrowed and reduced in 

aplacophorans, and forming the funnel in cephalopods; 3, circumpedal mantle cavity, 

miniaturised and anteriorly dislocated in torted gastropods, while placed posteriorly in 

vermiform molluscs; 4, separate mantle covered with cuticula (with calcareous spicules in 

chitons, aplacophorans, and probably Kimberella,); 5, dorsal shell; duplicated/fragmented in 

bivalves and chitons, lost in aplacophorans (and members of most other classes); 6, head with 

paired appendages; multiplied into feeding tentacles in variopods; trait for head reduction in 

bivalves plus Serialia and aplacophorans; 7, pericardium; heart fused around intestine in 

Dorsoconcha; 8, paired ctenidia; expanded to serially repeating gills in Serialia (and nautiloid 

cephalopods) and reduced in Solenogastres and some gastropod lineages; 9, complex stomach 

with style (reduced in carnivorous subgroups and chitons; convergently (?) present in a 

caudofoveate family); 10, paired eight-fold dorsoventral muscles; 11 (not shown), statocysts 

(lost convergently in chitons and aplacophorans); 12 (not shown), suprarectal visceral 

commissure (subrectal convergently in chitons and aplacophorans). 

 

Figure 2. Preferred molluscan tree. Maximum Likelihood analysis (RAxML [38], hardway) 

of pruned 81-taxon set; values at nodes refer to bootstrap support (1000 pseudoreplicates). 

 

Figure 3. Chronogram of molluscan evolution. Divergence times (million years before 

present, Ma) estimated from BEAST version 1.6.1 [42] under an uncorrelated lognormal 
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relaxed clock model; bars refer to 95% highest posterior density. All nodes show maximum 

posterior probabilities (1.0, not indicated) from a run with 10
8
 generations (25% burn-in). 

Numbers at nodes refer to bootstrap support values (> 50%; asterisks are 100%) obtained 

from separate Maximum Likelihood analysis (RAxML [38], hardway, 1000 pseudoreplicates) 

of the same data set. Circled digits indicate calibrated nodes. Details of calibration can be 

found in Supplementary Table 7. Omitting Cambrian calibrations shifts molluscan 

diversification deeper into the Precambrian (for sensitivity analyses see Table 2). 

 

Supplementary Figures 

Supplementary Figure 1. Total Tree. Maximum Likelihood analysis (RAxML [38], 

hardway) of 142-taxon set (excluding patellogastropods); values at nodes refer to bootstrap 

support (1000 pseudoreplicates). A. Tree with Gastropoda collapsed for illustrative purposes. 

B. Showing the expanded gastropod clade.  

 

Supplementary Figure 2. Phylogeny of Gastropoda. Maximum Likelihood analysis of total 

gastropod taxon set (RAxML [38], hardway); values at nodes refer to bootstrap support (1000 

pseudoreplicates). 

 

Tables 

Table 1. Preanalyses comparing different taxon sampling and masking strategies; Mafft [29] 

and RNAsalsa [19] are alignment methods, Aliscore [18,30] and Gblocks [119] are masking 

methods. 
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Table 2. Sensitivity tests of individual calibration nodes used for relaxed molecular clock 

time estimates of major molluscan groups. Table shows influence of single calibration points 

on node ages of all other calibration points. Bold ages marked with an asterisk (*) indicate 

time estimations without calibration of this node. 

 

Table 3. Testing alternative topologies against various data sets. Results of Approximately 

Unbiased (AU) tests with Treefinder [47], various schemes. P-values of AU Test executed on 

selected taxon and data sets. Tested tree topologies were constrained in RAxML [38]. Only 

meaningful tests have been executed. P-value > 0.05: constrained topology is not rejected; P-

value < 0.05: constrained topology is rejected significantly; P-value = 0:  constrained 

topology is rejected with high significance. 

 

Supplementary Tables 

Supplementary Table 1. Primer sequences and PCR conditions used in this study; primers 

follow Okusu et al. [120] and Giribet et al. [9]. 

 

Supplementary Table 2. Taxa and markers used in the initial total analyses (158-taxon data 

set). Fragments marked with an asterisk (*) are novel sequences generated during this study.  

 

Supplementary Table 3. Sequences that were not considered in the analyses. A. Ambiguous 

BLAST results. B. Bivalve taxa with 2
nd

 amplicon of 28S showing aberrant features to 

molluscan alignments. 
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Supplementary Table 4. Models of evolution used for main analyses. Values for the large 

142-taxon set (142 taxa), and targeted 81-taxon set (81 taxa), and the Gastropoda taxon set 

(Gastropods) were obtained with Modeltest [34] and MrModeltest [35] for nucleic acid 

alignments and ProtTest [37] in case of amino acid alignments. Alignments of protein coding 

genes (H3, COI) were tested all in one and separately according to codon positions. 

 

Supplementary Table 5. Data and taxon partitions used in different iterations of the core 

analyses, including gene regions, total dataset length (bp) and gaps. 

 

Supplementary Table 6. Substitution saturation tested with DAMBE [33]. Iss < Iss.c shows 

no saturation, whereas Iss > Iss.c indicates full substitution saturation. 

 

Supplementary Table 7. Fossil calibration points and settings for prior distribution of 

calibrated nodes. References refer to first reported description of the fossil material, or report 

of the specific dating used for calibration. Numbers in the first column represent the 

placement of the calibrated node in the time tree in Fig. 2. 

 

Supplementary Table 8. Time estimates of calibration points and major molluscan groups. 

Ages are Million years ago (Ma); dates in parentheses show the 95% higher probability 

distribution. 
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Table 1 

 

Dataset Alignment treatment Alignment length (bp) Major changes in tree topology, compared to main topology (Fig. 2, 

Suppl. Fig. 1) 

Total set (158 taxa) Maff t – cut and paste inconsistent blocks in 18S and 
28S fragments – Aliscore 

10318 Annelida s.l. sister to Mollusca; Aplacophora monophyletic (Caudofoveata 
sister to Solenogastres); Patellogastropoda clusters with Cephalopoda 

Total set (158 taxa) Maff t – RNAsalsa – Aliscore 7597 Mollusca non-monophyletic; Caudofoveata, Solenogastres, Cephalopoda and 

Scaphopoda cluster with Annelida s.l.; Neritomorpha basal sister to 

remaining Gastropoda; Patellogastropoda sister to partial Vetigastropoda 

(Lepetelloida + Vetigastropoda s.s.) 

Total set (158 taxa) Maff t – RNAsalsa – Gblocks 4083 Nemertea + Entoprocta + Cycliophora is sister to Mollusca; Heterobranchia 
is sister to remaining Mollusca; Patellogastropoda clusters with 

Solenogastres and Cephalopoda 

 
Large set (142 taxa, excluding Patellogastropoda) Maff t –Gblocks 5550 Annelida s.l. + Entoprocta + Cycliophora is sister to Mollusca 

 

Large set (142 taxa, excluding Patellogastropoda) Maff t – Aliscore 8721 Main analysis (Fig. 2, Suppl. Fig. 1)  
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Table 2 

  excluded calibration point 

  

none 
Split 

Astarte/Cardita 

Diversification 

of Scaphopoda 

Origin of 

Caenogastropoda 

Origin of 

Pteriomorpha 

Split 
Polyplacophora/

Monoplacophora 

Diversification of 

Polyplacophora 

Split 

Serialia/Bivalvia 

Diversification 

of Mollusca 

Origin of 

Cephalopoda 

ca
li

b
ra

te
d

 p
o
in

ts
 

Split 
Polyplacophora/   

Monoplacophora 

493.06 493.79 493.47 493.13 493.47 431.68* 493.14 491.79 493.44 493.68 

Diversification of 
Polyplacophora 

233.44 232.71 233.57 233.63 233.42 233.75 243.67* 233.37 233.49 233.18 

Split 

Serialia/Bivalvia 
530.93 530.82 531.01 530.82 530.36 530.88 531.01 523.58* 533.98 530.8 

Split 

Astarte/Cardita 
325.43 44.34* 325.09 325.37 324.55 325.45 325.63 325.20 325.4 324.98 

Origin of 

Pteriomorpha 
475.06 474.16 475.20 474.56 376.65* 474.97 474.82 474.20 474.81 474.43 

Diversification of 

Mollusca 
551.02 552.10 551.68 551.59 551.55 551.52 551.72 550.58 683.50* 549.76 

Origin of 

Caenogastropoda 
421.49 420.85 421.95 326.50* 421.54 422.61 421.61 421.77 422.82 421.91 

Diversification of 
Scaphopoda 

359.95 359.19 382.50* 359.37 359.59 360.12 359.60 359.97 360.02 359.55 

Origin of 

Cephalopoda 
504.92 504.16 503.96 504.75 504.85 504.26 504.35 504.40 511.40 431.05* 
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Table 3 

constrained topology 
142 taxon-set. all 

markers 

81-taxon-set. all 

markers 

142 taxon-set. 

18S+28S+H3 

Aplacophora removed 

from 142-taxon set. all 

markers  

Sinusoida 

0.4244 not tested 0.2652 0.0383 

Mollusca+Kamptozoa 

0.0 not tested 0.0 0.0 

Mollusca+Annelida 

0.7421 0.7097 0.4090 0.3876 

Testaria 

0.0 0.0 0.0 not tested 

Aculifera 

0.0 0.0 0.0 not tested 

Aplacophora 

0.6908 0.3651 0.7730 not tested 

Conchifera 

0.0 0.0 0.0 0.0333 

Pleistomollusca 

0.6665 0.0 0.0863 0.1927 

Monoplacophora+Cephalopoda 

0.1389 0.0632 0.0 0.2779 

Scaphopoda+Gastropoda+Bivalvia 

0.0154 0.0 0.0 0.1065 

Scaphopoda+Cephalopoda 

0.1913 0.0 0.2527 0.6914 

Scaphopoda+Cephalopoda+Gastropoda 

0.0 0.0 0.0 0.7232 

Scaphopoda+Gastropoda 

0.8850 0.9452 0.0573 0.8271 

Diasoma (Scaphopoda + Bivalvia) 

0.0 0.0 0.0 0.0 

Monophyletic Protobranchia 

0.0219 0.0 0.1085 0.0188 

Dorsoconcha 

0.6830 0.1097 0.3503 0.4048 

Variopoda 

0.3170 0.8903 0.6497 0.5952 
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