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Abstract

This thesis deals with the challenge of autonomous navigation of the ExoMars rover.
The absence of global positioning systems (GPS) in space, added to the limitations
of wheel odometry makes autonomous navigation based on these two techniques - as
done in the literature - an inviable solution and necessitates the use of other approaches.
That, among other reasons, motivates this work to use solely visual data to solve the
robot’s Egomotion problem.

The homogeneity of Mars’ terrain makes the robustness of the low level image
processing technique a critical requirement. In the first part of the thesis, novel solu-
tions are presented to tackle this specific problem. Detection of robust features against
illumination changes and unique matching and association of features is a sought after
capability. A solution for robustness of features against illumination variation is pro-
posed combining Harris corner detection together with moment image representation.
Whereas the first provides a technique for efficient feature detection, the moment im-
ages add the necessary brightness invariance. Moreover, a bucketing strategy is used
to guarantee that features are homogeneously distributed within the images. Then, the
addition of local feature descriptors guarantees the unique identification of image cues.

In the second part, reliable and precise motion estimation for the Mars’s robot is
studied. A number of successful approaches are thoroughly analysed. Visual Simulta-
neous Localisation And Mapping (VSLAM) is investigated, proposing enhancements
and integrating it with the robust feature methodology. Then, linear and nonlinear op-
timisation techniques are explored. Alternative photogrammetry reprojection concepts
are tested. Lastly, data fusion techniques are proposed to deal with the integration of
multiple stereo view data.

Our robust visual scheme allows good feature repeatability. Because of this,
dimensionality reduction of the feature data can be used without compromising the
overall performance of the proposed solutions for motion estimation. Also, the devel-
oped Egomotion techniques have been extensively validated using both simulated and
real data collected at ESA-ESTEC facilities. Multiple stereo view solutions for robot
motion estimation are introduced, presenting interesting benefits. The obtained results
prove the innovative methods presented here to be accurate and reliable approaches
capable to solve the Egomotion problem in a Mars environment.
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Contents

List of Figures vi

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Thesis contributions and organisation . . . . . . . . . . . . . . . . . 8

2 Stereo Imaging 11
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Intrinsic parameters . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Extrinsic parameters . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Stereo Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Extracting information of a 3D world . . . . . . . . . . . . . 23

3 Visual detection and image illumination 25
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Harris Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Advantages and Disadvantages . . . . . . . . . . . . . . . . . 28
3.2.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Kanade-Lucas-Tomasi Tracker (KLT) . . . . . . . . . . . . . . . . . 34
3.3.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Advantages and disadvantages . . . . . . . . . . . . . . . . . 35

3.4 Local descriptor matching . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Scale Invariant Feature Transform (SIFT) . . . . . . . . . . . . . . . 38

3.5.1 Process summary . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Advantages and disadvantages . . . . . . . . . . . . . . . . . 39

ii



CONTENTS

3.6 Speeded Up Robust Features (SURF) . . . . . . . . . . . . . . . . . 41
3.6.1 Differences with respect to SIFT . . . . . . . . . . . . . . . . 41

3.7 Moment image representation . . . . . . . . . . . . . . . . . . . . . 43
3.7.1 Harris corners and moment images . . . . . . . . . . . . . . . 45

3.8 Harris over Moment images with SURF (HMSURF) . . . . . . . . . 49
3.9 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9.1 Comparison of existing methods . . . . . . . . . . . . . . . . 51
3.9.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . 54
3.9.1.2 Time performance . . . . . . . . . . . . . . . . . . 54
3.9.1.3 Matching performance . . . . . . . . . . . . . . . . 58

3.9.2 Comparison between HMSURF and SURF . . . . . . . . . . 59
3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Enhancing Visual SLAM techniques 62
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 VSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 State vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Observation model . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2.1 Polar measurements: range and bearing . . . . . . . 74
4.4.2.2 Radial measurements . . . . . . . . . . . . . . . . 74
4.4.2.3 Stereo image obsevation . . . . . . . . . . . . . . . 75

4.4.3 Association process . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.4 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.5 Map management . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.6 Observation model enhancements . . . . . . . . . . . . . . . 86

4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 HMSURF as a VSLAM improvement 95
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 HMSURF characterisation . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Influence of the matching threshold . . . . . . . . . . . . . . 98
5.2.2 Influence of the detection threshold . . . . . . . . . . . . . . 103
5.2.3 Influence of the covariance matrix initialisation . . . . . . . . 107

5.3 Comparison of VSLAM using SURF and HMSURF . . . . . . . . . . 109
5.3.1 Harris corners with SURF (HSURF) . . . . . . . . . . . . . . 112

5.4 HMSURF based VSLAM for long range outdoor trajectory . . . . . . 115
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

iii



CONTENTS

6 Robust Egomotion by Least Squares 118
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Feature detection and tracking . . . . . . . . . . . . . . . . . 120
6.2.2 Motion estimation . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.2.1 Singular Value Decomposition (SVD) . . . . . . . 121
6.2.2.2 Quaternion motion estimation . . . . . . . . . . . . 124
6.2.2.3 Random Sample Consensus algorithm . . . . . . . 127

6.3 Egomotion analysis from synthetic data . . . . . . . . . . . . . . . . 129
6.4 Egomotion results for real data . . . . . . . . . . . . . . . . . . . . . 132
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Robust Egomotion by Nonlinear Optimisation 137
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Detection and tracking . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3 Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3.1 Stereo camera projection function . . . . . . . . . . . . . . . 143
7.3.2 Transformation model . . . . . . . . . . . . . . . . . . . . . 144
7.3.3 Gauss-Newton . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.3.4 Cost function: reprojection possibilities . . . . . . . . . . . . 146

7.3.4.1 Forward-backward reprojection . . . . . . . . . . . 146
7.3.4.2 Backward-forward reprojection . . . . . . . . . . . 147
7.3.4.3 Dual reprojection . . . . . . . . . . . . . . . . . . 148

7.3.5 Outlier rejection . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Multiple view based egomotion 158
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2 Data acquisition and ground truth . . . . . . . . . . . . . . . . . . . . 159
8.3 Visual scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.4 Multiple stereo view motion estimation . . . . . . . . . . . . . . . . 167

8.4.1 Multiple stereo views optimisation . . . . . . . . . . . . . . . 168
8.5 Fusing multiple stereo views: A filtering approach . . . . . . . . . . . 172

8.5.1 Covariance intersection for fusing estimations . . . . . . . . . 172
8.6 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.7 Advanced use of multiple stereo views . . . . . . . . . . . . . . . . . 179

8.7.1 Covariance propagation . . . . . . . . . . . . . . . . . . . . 179
8.7.1.1 Covariance propagation on 3D reconstruction . . . 180
8.7.1.2 Covariance propagation on a transformation model . 181
8.7.1.3 Covariance propagation on the projective model . . 184

iv



CONTENTS

8.7.2 Multiple stereo view image registration on Egomotion . . . . 186
8.7.2.1 Brute Force . . . . . . . . . . . . . . . . . . . . . 186
8.7.2.2 Covariance Guided Association . . . . . . . . . . . 186

8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9 Conclusions and Future work 191

Bibliography 194

v



List of Figures

1.1 ExoMars exploration robot . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Reference frames on the camera. . . . . . . . . . . . . . . . . . . . . 13
2.2 Camera to global reference frame transformation . . . . . . . . . . . 18
2.3 Sample of calibration images . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Exomader’s stereo camera and stereo disparity . . . . . . . . . . . . . 23
2.5 Ambiguity in the depth estimation using stereo cameras. . . . . . . . 24

3.1 Harris Corners, Boat sequence . . . . . . . . . . . . . . . . . . . . . 30
3.2 Harris Corners, Bikes sequence . . . . . . . . . . . . . . . . . . . . . 30
3.3 Harris Corners, Graffiti sequence . . . . . . . . . . . . . . . . . . . . 31
3.4 Harris Corners, Leuven sequence . . . . . . . . . . . . . . . . . . . . 31
3.5 Harris Corners matching using cross correlation . . . . . . . . . . . . 33
3.6 KLT features over PANGU images . . . . . . . . . . . . . . . . . . . 36
3.7 SIFT keypoints, Graffiti sequence . . . . . . . . . . . . . . . . . . . 40
3.8 SIFT keypoints, Boat sequence . . . . . . . . . . . . . . . . . . . . . 40
3.9 SURF keypoints, PANGU image . . . . . . . . . . . . . . . . . . . . 42
3.10 SURF keypoints matching, PANGU images . . . . . . . . . . . . . . 43
3.11 Moment image representation, Leuven sequence . . . . . . . . . . . . 44
3.12 Constant threshold features detection . . . . . . . . . . . . . . . . . . 47
3.13 Detection of a fixed number of features . . . . . . . . . . . . . . . . 48
3.14 Cross correlation matching . . . . . . . . . . . . . . . . . . . . . . . 50
3.15 Sample from Corridor 2.2 dataset . . . . . . . . . . . . . . . . . . . . 56
3.16 KLT tracked points, Corridor 2.2 dataset . . . . . . . . . . . . . . . . 56
3.17 SIFT matching, Corridor 2.2 dataset . . . . . . . . . . . . . . . . . . 57
3.18 SURF matching, Corridor 2.2 dataset . . . . . . . . . . . . . . . . . . 57

4.1 Three wheeled robot model. . . . . . . . . . . . . . . . . . . . . . . 70
4.2 World and robot reference frames for VSLAM . . . . . . . . . . . . . 72
4.3 Inverse Model and new features addition. . . . . . . . . . . . . . . . 77
4.4 VSLAM update process . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Flowchart of the implemented VSLAM . . . . . . . . . . . . . . . . 82

vi



LIST OF FIGURES

4.6 Association results, original SURF-VSLAM . . . . . . . . . . . . . . 89
4.7 Association results, outlier rejection . . . . . . . . . . . . . . . . . . 90
4.8 Association results, limited association . . . . . . . . . . . . . . . . . 91
4.9 Coordinates estimation for enhanced SURF-VSLAM strategies . . . . 92
4.10 Estimation results for enhanced SURF-VSLAM strategies . . . . . . 93

5.1 Sample images extracted from the experimental sequence . . . . . . . 97
5.2 Pose and attitude errors varying matching threshold . . . . . . . . . . 100
5.3 Time consumption varying matching threshold . . . . . . . . . . . . 100
5.4 Pose error for optimal matching threshold conditions . . . . . . . . . 101
5.5 Pose error for suboptimal matching threshold conditions . . . . . . . 101
5.6 Influence of the matching threshold on the attitude estimates . . . . . 101
5.7 Pose and attitude errors varying the number of detected features . . . 104
5.8 Estimates of the robot states varying the number of detected features . 104
5.9 Pose error varying landmarks initialisation . . . . . . . . . . . . . . . 109
5.10 Trajectory estimates using SURF & HMSURF . . . . . . . . . . . . . 112
5.11 Trajectory estimates using SURF, HSURF & HMSURF . . . . . . . . 114
5.12 Pose and attitude errors using SURF, HSURF & HMSURF . . . . . . 114
5.13 Sample of images used from large outdoor sequence, Karlsruhe . . . . 115
5.14 Trajectory estimates for large outdoor sequence . . . . . . . . . . . . 116

6.1 Singular Value Decomposition for motion estimation . . . . . . . . . 123
6.2 Quaternion motion estimation . . . . . . . . . . . . . . . . . . . . . 126
6.3 Sample of synthetic stereo images . . . . . . . . . . . . . . . . . . . 129
6.4 Trajectory estimation for different levels of precision . . . . . . . . . 130
6.5 Pose estimation error for different levels of precision . . . . . . . . . 131
6.6 Heading angle error for different levels of precision . . . . . . . . . . 131
6.7 Image samples, Karlsruhe dataset . . . . . . . . . . . . . . . . . . . . 133
6.8 Trajectory estimation using Unit Quaternions and RANSAC . . . . . 134
6.9 Pose estimation errors using Unit Quaternions and RANSAC . . . . . 134
6.10 Variation of the third coordinate along the trajectory . . . . . . . . . . 135
6.11 Pose estimation error for long range trajectory . . . . . . . . . . . . . 136

7.1 Bucketed and normal detection . . . . . . . . . . . . . . . . . . . . . 140
7.2 Front camera’s field of view evolution . . . . . . . . . . . . . . . . . 142
7.3 Outlier rejection samples, Karlsruhe sequence . . . . . . . . . . . . . 150
7.4 Estimated trajectory and travelled error . . . . . . . . . . . . . . . . . 153
7.5 Additional estimated trajectories and travelled errors . . . . . . . . . 154
7.6 Additional estimated trajectories and travelled errors . . . . . . . . . 155
7.7 Estimated trajectories, zoomed detail and travelled errors . . . . . . . 156

8.1 Pan and Tilt Unit, ExoMader . . . . . . . . . . . . . . . . . . . . . . 160

vii



LIST OF FIGURES

8.2 Exomader and positioning system model . . . . . . . . . . . . . . . . 161
8.3 Multiple camera’s field of views evolution . . . . . . . . . . . . . . . 162
8.4 Reference data: detail on markers evolution . . . . . . . . . . . . . . 163
8.5 Reference data (Vicon positioning) and wheel odometry . . . . . . . . 164
8.6 Sample of multiple stereo view sequence (I) . . . . . . . . . . . . . . 165
8.7 Sample of multiple stereo view sequence (II) . . . . . . . . . . . . . 166
8.8 Planetary Test-bed Unit . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.9 Estimation for single and multiple stereo view optimisation (I) . . . . 176
8.10 Estimation for single and multiple stereo view optimisation (II) . . . . 177
8.11 Estimation for single and multiple stereo view fusion . . . . . . . . . 178
8.12 Propagation of the covariance in multiple stereo views . . . . . . . . 185
8.13 Association candidates on Covariance Guided Association . . . . . . 187
8.14 Association for multiple stereo view images . . . . . . . . . . . . . . 188
8.15 Propagation of the covariance for multiple stereo view images . . . . 189

viii



List of Tables

2.1 ExoMader camera calibration parameters . . . . . . . . . . . . . . . 21

3.1 Detection comparison results, by matching. . . . . . . . . . . . . . . 46
3.2 KLT feature tracking and time consumption . . . . . . . . . . . . . . 52
3.3 SIFT detected keypoints . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 SIFT time consumptions . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 SURF detected keypoints . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 SURF time consumptions . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Time consumptions for existing methods . . . . . . . . . . . . . . . . 55
3.8 HMSURF vs SURF . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Matching threshold experimental conditions . . . . . . . . . . . . . . 98
5.2 Summary of estimation results varying the matching threshold . . . . 99
5.3 Influence of the number of detected features experimental conditions . 103
5.4 Summary of estimation results varying the number of features. . . . . 105
5.5 Time expenses varying the number of detected features . . . . . . . . 105
5.6 Influence of landmarks initialisation experiment conditions . . . . . . 108
5.7 SURF vs. HMSURF system experimental conditions . . . . . . . . . 110
5.8 SURF vs. HMSURF visual module experimental conditions . . . . . 110
5.9 Summary of results for SURF and HMSURF comparison . . . . . . . 111
5.10 Time expenses for SURF and HMSURF . . . . . . . . . . . . . . . . 111
5.11 SURF, HSURF & HMSURF system experimental conditions . . . . . 113
5.12 SURF, HSURF & HMSURF visual module experimental conditions . 113

ix



Nomenclature

Conventions

a Lower case letters indicate scalars

b Bold face letters indicate vectors

bi ith element of the vector b

bx, by, bz Cartesian components of the vector b

bT ,CT Superscript T indicates transposition

b∗,C∗ Superscript ∗ indicates hermitian transformation

bH Subscript H indicates homogeneous coordinates of the vector b

C Upper case bold letters indicate matrices

ci ith row of the matrix C

ci j Component of matrix C at row i and column j

aL, bL, CL Subscript L indicates left camera of the stereo pair

aR, bR, CR Subscript R indicates right camera of the stereo pair
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Chapter 1
Introduction

Evolution of science has been such that nobody can question an autonomous robot’s

ability in performing certain challenging tasks with efficiency and reliability. Au-

tonomous robotics is a multidisciplinary science that lays close to many fields of

knowledge and which has also empowered the origin of many others. Mechatronics,

computer science, machine vision and Artificial Intelligence (AI) are to name a few.

The integration of all these disciplines has made possible higher levels of autonomy

for robots in the last decade.

Nowadays, autonomous robots are also used to extend the possibilities of manned

machines and vehicles. Benefits range from low costs to safe and security of person-

nel. Among many others, autonomous robots present advantages derived from their

ability to overcome spatial or environmental restraints, reaching places which human

beings cannot safely access such as mine exploration, deep underwater environments

and even outer space. In all of these contexts, the risk reduction with respect to human

expeditions makes autonomous robots a viable option.
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One of the main challenges related to autonomous robots is the problem of self-

localisation. To tackle this issue, Simultaneous Localisation And Mapping (SLAM) is

maybe the most extended solution found in the literature. Since its first appearance in

1986, this solution and many beneficial variations have been used by researchers all

across the world to address the problem of autonomous navigation [1, 2, 3].

Two types of problems can be formulated in the context of SLAM. When the

robot has prior information about its surroundings, normally in the form of a map

and the goal is to recognise the environment characteristics to locate itself within this

map. This problem is referred in the literature as the kidnapped robot problem. The

second possibility is for the robot not to have any previous knowledge of the surround-

ings where it has been placed. This is known as the wake-up robot problem. The

robot’s goal in this case is to analyse its surrounding to make a map, defining reference

landmarks, while defining its own position with respect to the map. The process of

extending a map of the surroundings is called mapping.

In the context of a robot waking up in an unknown environment, the SLAM

solution necessitates a set of onboard sensors. These devices, which measure physical

proprieties of the surrounding, are responsible for data acquisition used by SLAM.

There are a variety of sensors that can be used to allow interaction between the robot

and its environment. These include RADAR, SONAR, LASER and CCD cameras

which are used as sensing strategies for localisation and mapping in submarine, aerial

and land applications [4, 5, 6, 7, 8].

Many SLAM solutions have been developed using the Kalman Filter (KF) and

its variations i.e. Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF)

[9, 10]. The Kalman Filter is optimal for linear systems which makes it very useful to

process information from the onboard sensors under certain noise assumptions.
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Other alternative filters like H∞ or the FastSLAM are proposed to cope with the non-

linearities arising in the SLAM problem [11, 12]. One of the advantages of these

methods based on filtering is the possibility of data fusion provided by different sen-

sors.

Contributions relevant to improving SLAM solutions have appeared over the

years. Some of these contributions are oriented to alleviate the computational expense

of the solution [12, 13, 14, 15]. Another important aspect that has motivated the evo-

lution of the algorithms is the need for robustness of the results [16, 17]. Advanced

solutions as iSAM have been proposed tackling both of the issues [18, 19].

With regards to being able to sense the environment a number of alternatives to

provide robots with visual perception have been studied. Whereas the most common

solutions are based on mono camera or stereo camera designs [11, 20] other options

as trinocular solutions or custom solutions with multiple cameras have been presented

[21, 22]. However, solutions based on stereo cameras present certain advantages with

respect to monocular vision, as the complexity of the photogrammetry is reasonably

narrowed for this.

There are some reasons that make cameras an appealing sensing solution. The

first reason is the cost effectiveness, not only in terms of price but also in terms of

power consumption. The passive nature of majority of the cameras makes them a low

consuming sensor. This is specially useful for autonomous robot applications, where

energy efficiency is desirable. Moreover, images are meaningful for a human end user.

In this sense, imagery data can be exploited not only onboard an unmanned robot, but

also be used for other scientific purposes. For instance, in case of planetary exploration

by means of an autonomous robot, images of the landscape can be of further use, as

opposed to inertial measurements which are of limited use.
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Another approach to solve the localisation problem is via Visual Odometry. This

solution is not based on filtering algorithms like the KF, but on optimisation techniques

applied to the 3D reconstructed information of reference points perceived from trav-

elled areas. Surveys of these techniques are found in the literature [23, 24, 25].

Both Visual Simultaneous Localisation and Mapping (VSLAM) and Visual Odom-

etry approaches are highly dependant on the visual information. Although vision solu-

tions are effective they however also present certain limitations and challenges. When

perception is carried out through visual systems, making a robot autonomous requires

that images should be processed to extract useful information in an automatic fash-

ion. This information is usually extracted at the low level by detecting geometrical

elements as feature points on the images. One of the classic methods to achieve this

is the Kanade Lucas Tracker (KLT) technique used for feature tracking [26]. The

evolution detection techniques from KLT has been remarkable, moving to advanced

feature detection and sophisticated description that allow the unique identification of

features. The first important step in this evolution is the Scale Invariant Feature Trans-

form (SIFT) developed by David Lowe et al.[27]. More recent strategies have looked

at making detection and description more cost efficient in terms of computation. For

example Speed Up Robust Features (SURF) is easier to implement and faster while

retaining the performance [28]. These techniques have found application in different

fields such as face recognition [29] and action recognition where a 3D SIFT alternative

is proposed [30].

The continuous need for image processing techniques to be ever more reliable is

a driving force for new detection and description techniques. The goal for these new

techniques is to augment the robustness, repeatability or invariance to illumination

changes of the detected features, while providing efficient solutions [31, 32, 33, 34].

4



Some studies conducted to analyse and evaluate the available approaches used for

VSLAM are contained in [35, 36].

Previously mentioned merits of VSLAM and Visual Odometry applied to au-

tonomous robots constitute two suitable solutions for planetary rovers. Stereo solu-

tions have been widely studied in reputed places as NASA JPL [37, 38, 39], whereas

some other solutions as omnidirectional vision solutions are also explored [40].

Figure 1.1: ExoMars exploration robot.
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High degrees of autonomy are required for planetary exploration robots, partially

due to restricted communication between the Earth and other planets. Computer vision

is now able to provide that level of autonomy. Nevertheless, robustness, reliability and

efficiency of visual processes is still a challenging and fruitful field of investigation.

The homogeneity of an alien terrain - as the one on Mars - makes a planetary sce-

nario a much more challenging environment compared to an urban one, where colour

distinctiveness or object recognition can be employed. At the same time, the frame rate

is an important parameter in the context of planetary missions, where power supplies

have more constraints than in other autonomous robots applications. In this context,

large amounts of data are cumbersome and ineffective and have high energy cost im-

plications.

In this context, the use of multiple stereo cameras views for increasing the

robot navigation reliability is an appealing way of extending the capabilities of an

autonomous robot equipped with an orientable stereo camera. This solution, proposed

in this thesis, entails fusing visual information in a new unexplored way.

Real time performance is a requirement for planetary missions, where the degree

of autonomy is high. The implementations of the solutions presented here, written in

C and C++, have been tested and are capable of running in real time conditions.
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1.1 Research Motivation

1.1 Research Motivation

The main motivation behind this research is the autonomous navigation for planetary

rovers. More specifically, it is the utilisation of stereo cameras to provide unmanned

mobile robots with accurate and reliable tools to perform self-localisation and naviga-

tion tasks within unexplored planetary terrains.

Part of the complexity resides on the homogeneity of the observed scene. Whereas

distinctive and characteristic colours, shapes and objects are observed in urban-like

environments, other sort of visual traits have to be sought as visual references for plan-

etary imagery, where all the objects or features may look extraordinarily similar.

The described working conditions motivate solutions where the use of raw im-

age data is processed to give meaningful information. In this manner, the visual in-

formation perceived and analysed from exploration rovers is used to provide accurate

measurements of the environment’s dimensions and layout. In subsequent process-

ing stages, those measurements can be utilised to estimate how the robot moves and

changes its orientation in space. The ground where the robot lays cannot be assumed

to be planar makes the estimation of 6 degrees of freedom (DOFs) a requirement and

also a challenge.

Moved by the willingness of exploiting a stereo camera header to solve visual

navigation problems, solutions based on multiple stereo images constitute a new ap-

proach. As opposed to the mainstream effort of the scientific community to fuse the

information gathered from different sensors, the interest here is to benefit from a mod-

est yet reliable system, based mostly or even uniquely on imagery obtained from a

single stereo rig. High levels of accuracy on the motion estimation results and versa-

tility of the solutions are priorities of this study.
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1.2 Thesis contributions and organisation

1.2 Thesis contributions and organisation

This thesis focuses on developing a set of methods for ground robot visual naviga-

tion. The goal has been to improve the solutions that allow autonomous vehicles to

operate in unknown environments without compromising the efficiency. The investi-

gated topics are related to feature detection and description, photogrammetry, feature

matching and tracking, localisation, motion estimation, Map building and management

and VSLAM. In addition, data fusion methods are developed to take advantage of the

information contained in multiple view stereo sequences.

The contents of this work have been either published or are being prepared for

publication at reputed conferences and journals. The following summarises the contri-

butions of the thesis while highlighting the pieces that have been written in a form of a

separate manuscript - all of which are listed below.

A brief summary of the contributions presented in this thesis are as follows:

• Robust visual scheme (HMSURF) (paper3, paper4)

In Chapter 3 a novel visual processing technique to extract and describe features

is presented. The first goal of this technique is to provide robust feature detection

for mobile robots imagery, where lighting conditions vary along the acquired

sequence. Secondly, the ability for the detected features to be uniquely identified

is incorporated by adding Speeded Up Robust Features (SURF). The technique

is compared to most relevant solutions in the field and proved to represent a

reliable visual module solution.

• VSLAM map management

Chapter 4 presents a solution for the map management growth that takes place

on VSLAM approaches. By introducing the concept of rate of usability for the
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1.2 Thesis contributions and organisation

mapped landmarks, the VSLAM is added the capability of recognising what is

the likelihood for a landmark to be useful. The derivation of our VSLAM solu-

tion is developed in detail and some other minor contributions are also presented.

• Robust visual scheme on VSLAM (paper5)

In Chapter 5 the concepts presented in the two previous chapters are combined

together to provide a novel robust VSLAM approach. An extensive analysis

of the most influencing parameters of the VSLAM system is conducted over

real data to determine how to make the system provide the best solution. To

conclude the chapter, results obtained for a long range trajectory sequence are

shown demonstrating the capacities of the system.

• Linear Robust Egomotion (paper1)

Chapter 6 presents a family of solutions oriented to solve the mobile robot self

localisation. The first part of the Chapter analyses the simulation results obtained

when the robust visual module is combined with different motion estimation

approaches. The second part presents the results obtained when the solution is

applied on real data when the quaternion motion estimation method is combined

with our visual scheme.

• Nonlinear Robust Egomotion (paper2)

In Chapter 7 a novel Egomotion solution based on robust features and a dual

reprojection scheme is derived. Combining the advantages of nonlinear motion

estimation techniques, based on a Gauss Newton optimisation algorithm, dif-

ferent possibilities on the cost function are proposed and analysed. Experimen-

tal results obtained from long range trajectories are presented in the end of the

Chapter showing the accuracy of this solution on real data urban environments.
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1.2 Thesis contributions and organisation

•Multiple Stereo Views Egomotion (paper6)

Chapter 8 presents two innovative imagery data fusion techniques oriented to

improve Egomotion for mobile robots. The first part of the Chapter summarises

the experimental data collection designed to acquire the datasets employed for

the latter validation process. Then, a solution based on Kalman Filter (KF) and

Covariance Intersection (CI) and an alternative solution based on simultaneous

optimisation of motion estimation for multiple stereo views are presented.

(1) Diego Rodriguez, Nabil Aouf and Mark Richardson “Moments-based stereo cam-

era egomotion analysis and results for long-range trajectories,” in The Imaging

Science Journal, published.

(2) Diego Rodriguez and Nabil Aouf “Robust EgoMotion for Large-Scale Trajec-

tories,” in IEEE International Conference on Multisensor Fusion and Integration for

Intelligent Systems (MFI), 2012, Sept. 2012.

(3) Diego Rodriguez and Nabil Aouf “Robust Harris-SURF features for robotic vi-

sion based navigation,” in 13th International IEEE Conference on Intelligent Trans-

portation Systems (ITSC), 2010, pages 1160 1165, Sept. 2010.

(4) Diego Rodriguez and Nabil Aouf “Robust features detection for autonomous

guidance,” in 8th Electro-Optics & Infrared Conference, Shrivenham, UK Defence

Academy, Jul. 2010.

(5) Diego Rodriguez, Nabil Aouf and Abdelkrim Nemra “Robust Moment Stereo

Based Visual SLAM for Rovers: Experiments and Analysis,” to be submitted.

(6) Diego Rodriguez and Nabil Aouf “Multiple Stereo Views Visual Egomotion for

Mobile Robots,” to be submitted.
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Chapter 2
Stereo Imaging

2.1 Overview

Human beings, as with animals, perceive their environment through a collection of

senses. Perception is then the first stage for a living being to interact with its surround-

ings. Following a similar reasoning the evolution of machines into today’s robots has

been motivated by these ideas. Whereas the first machines were capable of helping

humans they were also very dependant, given their lack of means to know their states.

The wish for machines to reach higher levels of autonomy lead to the appearance of

sensors. The objective of sensors is providing machines with the necessary tools to

perceive their internal and external states, but the later enable further interaction with

the environment.

There are many sensor-based solutions to perceive the information of the envi-

ronment surrounding a mobile robot. Among a vast number of possible choices there

are some devices which stand out because of their accuracy, reliability or cost.
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2.2 Pinhole Camera Model

Sound navigation and ranging (SONAR) [41], radio detection and ranging (RADAR)

[42], light amplification by stimulated emission of radiation (LASER) [6, 43, 44] and

digital cameras are some of the possibilities available for these purposes [45]. Nonethe-

less, each sensing choice has its associated benefits along with its shortcomings.

While the two former possibilities are considered cheap sensing solutions, they

normally present precision and reliability issues. The LASER alternative is the most

accurate of the mentioned sensors, but is also the most expensive. Camera based solu-

tions on the other hand represent a good tradeoff between accuracy and price.

The wide range of camera devices available for equipping mobile robots makes

this approach a flexible solution. Furthermore, the variety of feasible setups using

cameras is enormous. Solutions based on single, omnidirectional, stereo and multiple

stereo cameras are found in the literature. This thesis focuses on the later two.

This Chapter introduces the basic concepts of image formation that serve as a

foundation for the main contributions of this text. The most commonly used model

for digital cameras devices is the so-called pinhole camera model [46, 47]. Using this

model the stereo camera fundamentals are derived at the end of the chapter.

2.2 Pinhole Camera Model

In this model every point in 3D space will be projected onto a plane, known as the

image plane. For this geometrical model there are four important reference frames that

have to be taken into account to express the position of any 3D point P in the field of

view and its projected 3D point Q contained on the image plane.
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2.2 Pinhole Camera Model

P

Q

c
OC

O

Optical axis

π

Pixel frame

Image frame

Camera frame

World frame

Figure 2.1: Reference frames on the camera.

a - Pixel frame: The origin of this frame is conventionally located on the upper-left

corner of the image plane π . Coordinates on this frame are measured in pixels

and take only integer values x= (u,v)T . It is normal convention to use u as the

horizontal coordinate and v as the vertical coordinate. The axis directions are

left-right and top-bottom for u and v respectively as in a matrix.

This frame is not used to express 3D coordinates, but only the planar coordinates

of the projected point Q on the image plane.

b - Image plane frame: The principal point, roughly located on the centre of the im-

age plane, is the origin of this frame. This point, located at pixel frame coor-

dinates c = (u0, v0)
T , corresponds to the projection of the centre of perspective

projection of the camera, OC, on the image plane. It also belongs to the optical

axis of the camera. Coordinates on this frame take real values x̃= (x̃, ỹ)T .

As for the previous frame, this one is not used to express the 3D position of a

point P, but its projection on the image plane, Q.
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2.2 Pinhole Camera Model

c - Camera frame: The origin of the frame is located on the centre of perspective

projection of the camera. The 3D coordinates of the point P in space are noted as

xP
C = (xP

C ,y
P
C ,z

P
C)

T in this frame. The distance between the origin of this system

and the image plane π is the focal length, f , of the camera. The depth coordinate,

zQ
C , for any projected point Q is equal to the focal length.

The optical axis is the perpendicular line to the image plane that passes through

the centre of perspective projection of the camera OC. The intersection between

the optical axis and the image plane corresponds to the principal point, c.

d - World frame The world reference frame, or simply global reference frame, is a

reference frame external to the camera used for the global positioning. The 3D

coordinates of a point P are xP = (xP,yP,zP)T on this frame.

Figure 2.1 depicts the described reference frames with the conventions used here.

It is important emphasising that the two first reference frames, pixel frame and

image plane frame, can be considered as 2D reference frames, while the camera and

world reference frames express the position of the point in the 3D euclidean space.

The relationship of the coordinates between the different frames are expressed by

the camera parameters [48, 49]. On a perspective projection model these parameters

can be classified as intrinsic parameters and extrinsic parameters. The point P is

projected onto the image plane through a projection matrix M , that can be written in

terms of the augmented intrinsic calibration matrix, K̃, and the extrinsic calibration

matrix, T , as in (2.1).

xH =M ·xH = K̃ ·T ·xH (2.1)

where the subscript H indicates that homogeneous coordinates are used.
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2.2 Pinhole Camera Model

2.2.1 Intrinsic parameters

The intrinsic camera parameters are necessary to link the pixel coordinates of an image

point with the corresponding coordinates in the camera reference frame. These are

parameters that characterise the optical, geometric, and digital characteristics of the

camera:

I Perspective projection.

I Transformation from the pixel frame to the image frame.

I Geometric distortion due to the optics.

The transformation from the pixel frame to the image frame is expressed as:


u

v

1

=


1/sx 0 u0

0 1/sy v0

0 0 1




x̃

ỹ

1

 (2.2)

where c= (u0,v0) are the coordinates of the principal point and sx, sy are scale factors

that correspond to the effective size of the pixels in the horizontal and vertical direc-

tions respectively. For image frame coordinates expressed in [mm] the scaling factors

dimensions are
[

mm
pixel

]
.

Observing coordinates of P and its projection Q expressed in the camera frame,

we have (2.3) and (2.4).

xP
C = ( xP

C yP
C zP

C )T (2.3)

xQ
C = ( xQ

C yQ
C zQ

C
)T = ( x̃ ỹ f )T (2.4)
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2.2 Pinhole Camera Model

Establishing the equations for the similar triangles for both right-angled trian-

gles, the first composed by the segment OC P with the optical axis and the second one

composed by the segment OC Q with the optical axis, it is obtained:

x̃P = f
xP

C

zP
C
, ỹP = f

yP
C

zP
C

(2.5)

Then, from (2.2) and (2.5), the coordinates in the camera frame can relate to the

coordinates on the pixel frame as:


uP

H

vP
H

ω

=


f/sx 0 u0

0 f/sy v0

0 0 1




xP
C

yP
C

zP
C

 (2.6)

where the vectorxP
H =(uP

H ,v
P
H ,ω)T are the homogeneous coordinates of Q in the image

frame such that:

uP =
uP

H

ω
, vP =

vP
H

ω
, ω = zP

C (2.7)

where ω ∈ R is the scaling factor in homogeneous coordinates.

The intrinsic calibration matrix is written in (2.8) to express the transformation

that relates the pixel frame coordinates of Q with the camera frame coordinates of P.

K =


f/sx γ u0

0 f/sy v0

0 0 1

=


αu γ u0

0 αv v0

0 0 1

 (2.8)
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2.2 Pinhole Camera Model

As it is seen on the right-hand side of (2.8), the terms of the intrinsic calibration

matrix are grouped into αu and αv to reduce the notation.

To alleviate the formulation for the cases when the points are expressed in ho-

mogeneous coordinates, the intrinsic calibration matrix,K ∈R3×3, is written using its

augmented version K̃ ∈ R3×4 by adding a column of zeros to the right to make the

dimensions agree.

K̃ =


αu γ u0 0

0 αv v0 0

0 0 1 0

 (2.9)

The skewing factor, that we will omit hereinafter, should be taken into account

for those cases when its influence on the projection model is not negligible. This

antisymmetric element of the intrinsic calibration matrix is used to represent the angle

between u and v, when these two cannot be considered perpendicular.

Likewise, the optical distortion of the camera lens can be modelled under the

assumption of radial distortion as:

x̃P = x̃P
d (1+ k1 r2 + k2 r4) (2.10)

ỹP = ỹP
d (1+ k1 r2 + k2 r4)

where (x̃P
d , ỹ

P
d )

T are the distorted coordinates in the image frame, k1 and k2 are radial

distortion parameters and r2 = ‖x̃P
d‖ is the square of the distance to the principal point

[47]. Tangential parameters, not shown here for the sake of simplicity, can also be

modelled.
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2.2 Pinhole Camera Model

2.2.2 Extrinsic parameters

The camera’s extrinsic parameters identify uniquely the transformation between the

world reference frame and the camera reference frame. This transformation usually

consists of:

I Translation vector between the origin of the camera frame and the origin of the

established world reference frame.

I Rotation matrix that brings the corresponding axes of the two camera frames into

alignment.

The transformation to move from coordinates in world reference frame x to

coordinates in camera reference frame xC is mathematically written as follows:

xC =R · (x− t) (2.11)

where the rotation matrixR ∈ R3×3, and the translation vector t ∈ R3.

OC

Camera frame

O

World frame

P

xCx

t

R

Figure 2.2: Transformation from the camera to the global reference frame.
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2.2 Pinhole Camera Model

t= ( tx ty tz )T (2.12)

R=


r1

r2

r3

=


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.13)

where ri j are the components of the rotation matrix and ri ∈ R1×3 is the ith row of the

matrix.

The extrinsic calibration matrix, T ∈ R4×4 is a homogeneous transformation

matrix that represents the translation and the rotation as in (2.14).

T =



r1 −r1 t

r2 −r2 t

r3 −r3 t

0T
3 1


(2.14)

Multiplying the intrinsic calibration matrix and the extrinsic calibration matrix,

the projection matrix is obtained to represent the transformation from the pixel frame

to the world frame [46]. Using homogeneous coordinates we obtain:


uH

vH

ω

=


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 ·


x

y

z

1


(2.15)
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2.3 Stereo Cameras

Equations like (4.32) and (4.33) result from computing the previous product,

that can be achieved through the move from the homogeneous coordinates to the non-

homogeneous coordinates.

2.3 Stereo Cameras

The previous section explains the required notions to understand the projective camera

model. However, the solutions presented here are based on stereo cameras devices.

The stereo systems discussed in this section are composed of two single cameras

mounted on a common frame and separated by horizontal distance from each other.

This horizontal distance is known as the baseline, Bl, of the stereo rig.

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Example of unrectified/distorted images from calibration sequence (a), (b), (c), and
their rectified/undistorted resulting images prior to being cropped (d), (e), (f).
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2.3 Stereo Cameras

Both the cameras composing the stereo pair are ideally identical. However, we

have to take into account that when looking for accurate solutions, we have to consider

that the cameras are not exactly the same.

Table 2.1: Stereo Camera calibration used for the uEye cameras composing the stereo rig on the
ExoMader rover.

Name Parameter Value Std. Deviation Units
width 1280 px

Resolution
height 1024 px
αu,L 830.44 132.50 ·10−3 px
αv,L 831.12 129.80 ·10−3 px
αu,R 829.85 149.50 ·10−3 px

Focal
length

αv,R 830.44 146.10 ·10−3 px
u0,L 674.25 163.00 ·10−3 px
v0,L 508.21 122.10 ·10−3 px
u0,R 643.52 185.70 ·10−3 px

Principal
point

v0,R 504.53 136.80 ·10−3 px
k1,L −248.81 ·10−3 178.40 ·10−6 -
k2,L 85.64 ·10−3 237.90 ·10−6 -
k3,L −20.00 ·10−6 17.30 ·10−6 -
k4,L −120.00 ·10−6 17.30 ·10−6 -
k1,R −245.20 ·10−3 187.20 ·10−6 -
k2,R 81.40 ·10−3 231.40 ·10−6 -
k3,R 100.00 ·10−6 19.00 ·10−6 -

In
tr

in
si

c

Distortion
coefficients

k4,R 0.00 20.50 ·10−6 -
tx −99.60 24.10 ·10−3 mm
ty 651.40 ·10−3 23.50 ·10−3 mmTranslation
tz 156.40 ·10−3 72.90 ·10−3 mm
rx −7.30 ·10−3 78.70 ·10−6 rad
ry 1.60 ·10−3 139.10 ·10−6 rad

E
xt

ri
ns

ic

Rotation
rz −3.10 ·10−3 8.80 ·10−6 rad
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2.3 Stereo Cameras

The calibration is an accurate estimation process to determine the camera’s in-

trinsic and extrinsic parameters. It is accomplished by taking pictures of standard

calibration targets of well-known dimensions from different viewpoints. Then with

this collected data, the estimation of the camera parameters is numerically computed.

Figure 2.3 shows a sample of three images extracted from the calibration set

and the rectified and undistorted resulting images. The calibration and rectification

processes have been conducted using the Matlab toolbox developed by Bouguet et al.

and OpenCV Libraries [50, 51].

If the two cameras of the stereo pair are assumed to be equal, the estimation of

the parameters for only one camera can be considered as a calibration approach. How-

ever, this will not allow the accurate estimation of the extrinsic parameters, responsible

for representing the transformation from one imager to the other.

Table 2.1 shows the calibration results for a real stereo camera system used in

our experiments, composed of the two USB 2.0 uEye cameras that constitute the stereo

set mounted on the Exomader rover at European Space Technology Centre (ESTEC).

The extrinsic parameters shown in the table, represent the position of the left camera

centre of projection with respect to the the right camera centre of projection, so that:

xR =R ·xL + t (2.16)

The rotation matrixR is the responsible for aligning the image planes of the two

cameras. This alignment process, called rectification, guaranties the collinearity of the

conjugate epipolar lines and their parallelism to the horizontal image axis.

It is important emphasising that the calibration parameters are assumed to be

constant throughout the thesis. Hence, deformations on the stereo camera frame due

to landing and/or significant changes in temperature will be neglected.
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2.3 Stereo Cameras

2.3.1 Extracting information of a 3D world

The approach that we use for our stereo odometry solution is based on the depth esti-

mation by horizontal binocular disparity.

A fact in stereo vision is that the majority of the information appearing in the left

image will appear for the same time-step in the right image. Nevertheless, not every

point in space will be seen in both the images at the same time, due to the effect of

occlusions and non-overlapping areas on the field of view. However, there will be a

set of 3D points visible from both the cameras that will let us estimate the depth by

triangulation.

For an ideal pair of stereo cameras perfectly aligned or more generally a pair of

rectified cameras, where the camera planes OLXLYL and ORXRYR are coincident, we can

draw the projection in the plane OXZ as shown in the Figure 2.4b.

(a)

OR

OL

P

QR

QL

Bl

x̃L

zL

πL

πR

x̃R

(b)

Figure 2.4: Exomader’s Stereo Camera (a) and geometrical explanation for the disparity (b).
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2.3 Stereo Cameras

Considering similar triangles, the horizontal disparity can be easily derived as

follows:

d(QL, QR ) = x̃L− x̃R = f
Bl
zC

(2.17)

where Bl is the baseline of the stereo system, which is the segment between both

camera frames origins. This equation gives the depth of corresponding points within

the pairs of stereo images.

We want briefly discuss the problem of ambiguous depth estimation due to the

pixel resolution, Figure 2.5. The finite resolution of digital images is the cause of depth

estimation errors that grow quadratically with respect to the distance between the point

and stereo camera baseline. It is seen from the top-bottom view in Figure 2.5, how all

the points contained within big areas, comprising wide ranges of depth values, can only

be represented by the same pair of pixels xL and xR on the respective stereo images.

OR

OL

Figure 2.5: Ambiguity in the depth estimation using stereo cameras.

Effects as blurring or smearing do commonly appear when rolling shutter camera

devices are employed to acquire images while in motion. To avoid these and similar

effects, images are assumed to be acquired at stationary poses of the robot. Likewise,

stereo images are assumed to be perfectly synchronous.
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Chapter 3
Visual detection and image

illumination

3.1 Overview

One may not realise the complexity of distinguishing different objects perceived using

sight. This is by no means a simple task to be conducted by unsupervised machines

and a very active research field.

Once raw data is acquired, either from a charge coupled device (CCD) or from

a complementary metal oxide semiconductor (CMOS) image sensor, it has to be pro-

cessed in order to extract meaningful information. A possible way to analyse the im-

age information consists in recognising different objects appearing on the scenario. To

achieve this, points within the images can be specially chosen so that a reduced number

of data can contain the most important information. These points are normally referred

to as features, keypoints or interest points.
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3.1 Overview

There are several ways to select interest points from images. The most common

and efficient of which are corner detection techniques [52, 53].

Finding discrete points contained within images is not sufficient to understand

them. Extracted features would be useless themselves. Nonetheless, if the features are

grouped or labelled they can be used for processes like matching, registration, tracking

or recognition among others [54, 55, 56].

Over the last decades numerous techniques have been developed towards achiev-

ing and improving these processes. An important pioneering method precursor to later

feature tracking techniques is the well known Lucas-Kanade iterative registration al-

gorithm [57]. It would inspire the conceptualisation of current tracking techniques

specially the Kanade-Lucas-Tomasi (KLT) tracker [26]. However, tracking and regis-

tration processes are only the tip of the iceberg of what can be achieved through image

processing techniques for which KLT cannot be employed.

Some of the most advanced techniques that can be used for tracking and other

different tasks are SIFT (Scale Invariant Feature Transform) and SURF (Speeded Up

Robust Features) [28, 58]. These are robust methods that can be used for interest point

extraction and identification by the introduction of local histograms called descriptors.

Among the advantages of these later techniques is the reduction of constraints derived

from the descriptors invariance to scale, rotation, contrast and brightness.

This Chapter explains how some of the most important methods found in the

literature are used to detect, track and match image features, section 3.2 to section 3.6.

The Chapter ends on an experimental section, section 3.9, where a new proposed tech-

nique, Harris-Moments-SURF subsection 3.8, is presented and examined justifying the

need for it to be considered [59].
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3.2 Harris Corners

3.2 Harris Corners

This popular interest point detector can distinguish if the points of an image are cor-

ners, parts of an edge or are just part of a flat area. This classification is done by

examining the intensity variation in the region surrounding each point in the image.

3.2.1 Method

Harris corner detector algorithm defines an auto-correlation function [60] for each

point within an image (3.1).

c(u,v) = ∑
W

[
I(u(i),v(i))− I(u(i)+∆v,v(i)+∆v)

]2 (3.1)

where (∆u,∆v) is a given shift and (u(i),v(i)) are the points in the window W . Approx-

imating by a first order Taylor series expansion of the shifted image:

I(u(i)+∆u,v(i)+∆v)≈ I(u(i),v(i))+
[

Iu(u(i),v(i)) Iv(u(i),v(i))

] ∆u

∆v

 (3.2)

where ∇I = [Iu Iv]
T is the spatial gradient of the image. Substituting this approximation

we can derive that

c(u,v) =
[

∆u ∆v

] ∑W I2
u ∑W IuIv

∑W IuIv ∑W I2
v


 ∆u

∆v

 (3.3)
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3.2 Harris Corners

This matrix representation gives an idea of the local structure surrounding each

point in the image, which can be classified depending on the matrix eigenvalues:

I If both eigenvalues are small the area is flat.

I If one of the eigenvalues has a low value while the another one has a high value

the area corresponds to an edge.

I If both eigenvalues are high the area is a corner.

One of the main innovation proposed by Harris to complement Moravec’s previ-

ous studies [61], is the introduction of the cornerness function, ζ , used to classify the

image points at lower computational expenses (3.4).

ζ (x) = det(W )− k · tr2(W ) (3.4)

where the x is and image pixel, W is the window surrounding the pixel x and k is a

user-defined parameter, recommended to be chosen on the interval [0.04−0.15] [62].

3.2.2 Advantages and Disadvantages

Repeatability Harris corner detector is defined as a robust method, in terms of invari-

ant detection, for rotation, translation and image noise [60]. In spite of this, its

robustness to scale changes may require additional enhancements.

Time Harris corner is light enough to be implemented on low resources systems.

Descriptors This corner extractor is earlier to the introduction of descriptors, thus raw

intensity is used for tracking and matching purposes. This entails decrease on

the computational and the memory expenses but also on the robustness.
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3.2 Harris Corners

Matching The absence of descriptors makes it difficult to achieve good matchings in

order to establish correspondence between points in the image sequence.

Colour The colour information is not used in this method.

Figure 3.1, Figure 3.2, Figure 3.3 and Figure 3.4, show the interest points de-

tected using this method over 4 sequences where there are rotation in the boat sequence,

perspective changes in graffiti sequence, blurred images in the bikes sequence and il-

lumination changes in the Leuven sequence.

Two important conclusions can be withdrawn from the detection images, where

the feature detection takes place using a k parameter value of 0.04 and the pixels with

a cornerness η value higher than the values specified on the figures. The first conclu-

sion is that recurrent detected corners appear independently of the transformation or

effect that takes place from one image to another. This confirms the robustness of the

detector, that is able to detect the same point even when important image changes takes

place.

Secondly, it is seen how the number of detected corners varies noticeably from

one image to another when fixed tuning parameters are used. It is seen that the number

of corners detected decreases dramatically when blurring effects are intense and when

illumination - darkened images from the Leuven sequence in the case presented here -

appear on the images.
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3.2 Harris Corners

Figure 3.1: Harris Corners detection, Boat sequence. Sequence to test invariance against rotation.
Green dots represent the detected corners, namely, the pixels with a cornerness value higher than
109, for k = 0.04. A total of 466, 538, 336 and 245 corners are respectively detected.

Figure 3.2: Harris Corners detection, Bikes sequence. Sequence to test invariance against blurring.
Green dots represent the detected corners, namely, the pixels with a cornerness value higher than
107, for k = 0.04. A total of 846, 254, 147 and 35 corners are respectively detected.
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3.2 Harris Corners

Figure 3.3: Harris Corners detection, Graffiti sequence. Sequence to test invariance against 3D
projective viewpoint changes. Green dots represent the detected corners, namely, the pixels with
a cornerness value higher than 108, for k = 0.04. A total of 338, 442, 511 and 456 corners are
respectively detected.

Figure 3.4: Harris Corners detection, Leuven sequence.Sequence to test invariance against illumina-
tion changes. Green dots represent the detected corners, namely, the pixels with a cornerness value
higher than 108, for k = 0.04.
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3.2 Harris Corners

3.2.3 Feature matching

Mathematical feature detection methods like the Harris corner detector are very useful

in finding image features but do not provide information about their identity. This

means that keypoints do not have any associated labels to be recognised along different

images in a sequence.

Corresponding features are identified by the process of matching. The simplest

way to do the matching of the features from image I to the features from image J is

identifying each feature from I to its closest feature in the image J.

For spatial matching, the Euclidean distance between two features is computed

as follows:

ri, j =

√(
u(i)

1 −u( j)
2

)2
+
(
v(i)1 − v( j)

2

)2 (3.5)

Then, the ith feature from I, (u(i)
1 ,v(i)1 ), is matched to the jth feature from J, (u( j)

2 ,v( j)
2 ),

if ri, j < rT H , where rT H is a user-defined threshold.

The shortcoming of this technique is that features do not always remain on sim-

ilar positions from an image to the next. This implies that the association of a feature

to its closest one in the next image is simply not enough.

Other ways to do the matching is by comparing the respective neighbourhoods

of the detected features. A suitable method developed to conduct this neighbourhood

comparison is based on cross correlation scores (3.15) explained in section 3.7.1. Al-

though this is a better matching strategy to the one mentioned before, there are certain

situations where this technique will not be robust enough [27]. Among the possible

reasons scale changes and rotations can lead to robustness related issues. Figure 3.5

displays the behaviour of cross correlation matching for the detected corners extracted

using the Harris corner detection on the boat sequence, where the rotation is the main
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3.2 Harris Corners

transformation from one image to another. A total of only 38 corners is matched from

one image to another. The computation of the homography transformation that defines

the transformation from one image to another using the 38 corners lets us determine

that only 5 of them are valid matches, showing the limitations of this matching tech-

nique.

A suitable solution for this matching problem are then the region based local

descriptors. These descriptor vectors containing information of the feature’s neigh-

bourhood, not necessarily intensity information only, can be used to obtain high and

reliable matching rates. SIFT and SURF are the principal methods using this descrip-

tion strategy.

Within the present research project we have developed a possible solution for

Harris Corner matching, using the SURF region based descriptors as the providers of a

robust environment information for each interest point. The results of the experiments

performed can be seen in section 3.9.2

Figure 3.5: Harris Corners matching using cross correlation for the boat sequence. Only 5 out of a
total of 38 matched corners are identified as correct matches when a homography transformation is
computed using a Ransac algorithm. A total of 466 and 538 features are originally detected from
left and right images respectively. Detection settings as in Figure 3.1
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3.3 Kanade-Lucas-Tomasi Tracker (KLT)

3.3 Kanade-Lucas-Tomasi Tracker (KLT)

This method was initially dedicated to tracking applications in successively aligned

images from the same sequence [26, 63]. The procedure’s objective is to find the

displacement d, usually called optical flow vector, that minimises the difference in

apparent motion between two consecutive images taken from the same sequence.

3.3.1 Feature detection

As in the Harris corner detector method, KLT selects interest points as a function of

the eigenvalues of a matrix related to each point [26].

G =
∫

W
ggT wdA (3.6)

where g is the spatial gradient of the image I and W is the window around the point

of the image. Then the selected points are just the ones, which corresponding to lower

eigenvalue of G is higher than a specified threshold:

min(λ1,λ2)> λT H (3.7)

Both eigenvalues must be large to represent a corner area. Expression (3.7) is

sufficient condition to select pairs of large eigenvalues when the appropriated threshold

is set.
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3.3 Kanade-Lucas-Tomasi Tracker (KLT)

3.3.2 Alignment

The method is looking for the optical flow d such that consecutive images I(x) and

J(x) satisfy the equation:

J(x) = I(x−d)+n(x) (3.8)

where n(x) is noise. The iterative algorithm that calculates the optimal displacement

d to satisfy (3.9) minimises the residue error:

ε =
∫∫

W

[
I(x−d)− J(x)

]2 w(x)dx (3.9)

where w(x) is a function to weight the image points.

The vector d is calculated by a steepest gradient descent iterative method. It is

necessary to clarify that d does not have to be a unique vector for every point of the

image, but for a region of it. For example, if a scene includes several objects, each

object in the image can have its own independent movement, so d will be different

depending on the point, or to be more precise on the point and its neighbourhood,

which varies the size of the window W .

3.3.3 Advantages and disadvantages

Assumption The method is considering that the difference from an image to the next

one in the sequence is small. Otherwise, it does not guarantee a successful track-

ing. This is due to the fact that the displacement vector is calculated in an itera-

tive process which could not converge if the variations are big.

Iterative The optical flow d is obtained by performing an iterative process. This iter-

ative nature means that divergence or non convergence.

35



3.3 Kanade-Lucas-Tomasi Tracker (KLT)

Brightness The method is not robust to illumination variations as it is just considering

the values of the intensities of nearby points.

Descriptors There are no defined descriptors for the tracked points on the images.

This is a complete method, that calculates the alignment between the points con-

secutive images, so it is not necessary to use matching algorithms. This entails a

lack of robustness with respect to methods as SIFT or SURF, but leads to a better

time performance.

Scale The method is not robust to scale changes.

Colour The colour information is not used in this method.

Figure 3.6 show the keypoints that are detected applying the KLT over a set of

images generated by the Planet and Asteroid Natural-scene Generation Utility (PANGU),

which was implemented to produce representative imagery of Mars-like surfaces suit-

able for testing image based navigation approaches [64, 65, 66]. No further informa-

tion about the generation of these images is available, however, PANGU allows tuning

a number of settings to reproduce different orography and lighting conditions.

Figure 3.6: Detected interest points (red dots) over a PANGU set of images using the default
parameters of Stan Birchfield’s KLT implementation.
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3.4 Local descriptor matching

3.4 Local descriptor matching

The matching process is the task responsible of associating the features detected in

one image with their equivalents features present in the same or, more generally, in

any other image. Although some advanced techniques can be found in the literature,

a rather reduced matching technique is presented here for the sake of clarity [67].

Among the possible uses of matching processes two of them are specially relevant

here: matching for pairs of stereo images and matching for tracking.

In order to formulate a general feature matching technique based on local de-

scriptors, let I and J be two images. Let us consider two sets of detected features

{F(i)
I } and {F( j)

J } extracted from the images I and J respectively, where i = 1 ,2, . . . ,nI

for the features in I and j = 1 ,2, . . . ,nJ for the features in J.

Let us now consider that for every feature (i) in {F(i)
I } and for every other fea-

ture ( j) in {F( j)
J } it exists a descriptor vector δ(i)I ∈ Rm and δ( j)

J ∈ Rm. Under these

assumptions, the following matching scheme can be used to match any feature F
(P)
I :

I Compute the Euclidean distance between descriptors δ(P)I and δ( j)
J :

εP = (εP
1 , ε

P
2 , . . . ,ε

P
nJ
) (3.10)

ε
P
j = ‖δ

(P)
I − δ

( j)
J ‖ for j = 1 ,2, . . . ,nJ (3.11)

I Ascending arrangement of the distances vector εP into the vector ξ:

ξ = (ξ1, ξ2, . . . ,ξnJ) (3.12)

Such that ξ1 = min(εP) and ξnJ = max(εP).

The feature F(P)
I is matched to the feature F(Q)

J if ξ1 = κ ·ξ2, being ξ1 = min(εP) = δQ.

The factor κ is known as the matching threshold.
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3.5 Scale Invariant Feature Transform (SIFT)

3.5 Scale Invariant Feature Transform (SIFT)

SIFT is a complete method to locate interest points within regions in an image and

to describe them on a distinctive manner. SIFT interest point descriptors are invariant

enough to scale changes, to partial illumination changes, to affine changes and some

3D projective changes and to additive noises.

3.5.1 Process summary

Scale-space extrema detection The first set of keypoint candidates are calculated tak-

ing the local space extrema points found through several scales. For the scaling

process the images are blurred using a Gaussian filter, such that two consecutive

Gaussian images are subtracted to find the extrema. A pixel is considered as

local scale-space extrema if its value is the highest or the lowest compared to its

neighbour pixel values. Keypoints are found in different scales.

Keypoint localisation From the set of points obtained in the previous step, the ones

smaller than a threshold value are discarded in order to keep only stable key-

points. The locations of these keypoints are recomputed more precisely and the

edge responses are eliminated by analysing the curvature of the area surrounding

each keypoint.

Orientation assignment An orientation is assigned to each detected keypoint based

on the orientation histogram formed from the gradient orientations of a Gaussian-

weighted circular window that depends on the scale where the keypoint is de-

tected. This step is the most important in order to guarantee the rotation invari-

ance of each keypoint.
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3.5 Scale Invariant Feature Transform (SIFT)

Keypoint descriptors SIFT descriptor is a vector δ ∈ R128, that contains information

about the orientation and gradient magnitude of the keypoint neighbourhood.

These keypoint descriptors are used to do the matching between two image fea-

tures using a matching strategy as the one explained in section 3.4.

3.5.2 Advantages and disadvantages

Scale The method is robust to scale changes as the points are detected as extrema

through several scales.

Rotation The method is robust to rotation changes as each key-point has an associated

distinct orientation.

Brightness The method is only partially robust to illumination variations because key-

points correspondence between two images is not based on the brightness of the

keypoints only but based on the structure of the image gradient around the inter-

est points.

Descriptors The descriptors are generated to summarise the distinctive information

that let a keypoint of an image be identified.

Time Detection and description represent a significant computational effort, mostly

due to scale-space feature search and descriptor matching of 128 elements vec-

tors. Hence SIFT is expensive in a computational time sense and cannot be used

for real time systems with low resources.

Colour The colour information is not used in this method.

Figure 3.7 and Figure 3.8, show the detected keypoints over 2 sequences where

there are rotation and scale changes in boat sequence, perspective and illumination
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3.5 Scale Invariant Feature Transform (SIFT)

changes in the graffiti sequence. Squares in green and blue indicate the curvature of the

neighbourhood of a keypoint whereas red lines indicate edge-like features. Detection

is performed with the default parameters of Scott Ettinger’s Matlab implementation.

Figure 3.7: SIFT keypoints detected in Graffiti sequence images. Squares in green and blue indicate
the curvature of the neighbourhood of a keypoint whereas red lines indicate edge-like features.
Detection is performed with the default parameters of Scott Ettinger’s Matlab implementation.

Figure 3.8: SIFT keypoints detected in Boat sequence images. Squares in green and blue indicate
the curvature of the neighbourhood of a keypoint whereas red lines indicate edge-like features.
Detection is performed with the default parameters of Scott Ettinger’s Matlab implementation.
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3.6 Speeded Up Robust Features (SURF)

3.6 Speeded Up Robust Features (SURF)

SURF like SIFT is a technique to locate features within an image and to describe them.

This technique was proposed after SIFT as an alternative and fast feature extraction and

description method.

Detection SURF Keypoints are detected using the fast-hessian detector, which uses

integral images to find local scale-space extrema locations. An Integral image

IΣ of an image I is calculated as IΣ(x) = ∑
i<u
i=0 ∑

j<v
j=0 I(u,v), where x= (u,v)T are

the pixel coordinates [28].

Orientation assignment Haar wavelet responses are used to estimate the dominant

orientation of keypoints over a circular Gaussian-weighted window.

Description Keypoint neighbourhood is split up in four subregions structure. Then

its contained information is collected in a vector composed of the vertical and

horizontal Haar wavelet responses of the closest points to the keypoint.

3.6.1 Differences with respect to SIFT

Descriptors SURF descriptor is a vector δ ∈ R64, in for standard SURF. The dimen-

sionality reduction with respect to SIFT make SURF matching noticeably faster

than the former.

Scale Instead of computing different Gaussian images as in SIFT, SURF uses integral

images and their proprieties, which increases the speed.

Rotation Instead of performing extensive gradient orientation histograms, rotation ro-

bustness on SURF is due to Haar wavelet responses.

41



3.6 Speeded Up Robust Features (SURF)

Figure 3.9 shows the detected keypoints with their descriptors obtained using

SURF over a sample image. Green segments indicate the main orientation of the key-

points. Red circles indicate light blobs on dark backgrounds and blue circles indicate

dark blobs on light backgrounds. The OpenSURF implementation from Chris Evans

was used to generate this results.

In Figure 3.10 the matching between two images extracted from the same se-

quence is displayed. Matched features are shown drawing the segment that joins the

matching pairs, whereas for detected points leading to wrong matching the segment is

omitted.

Figure 3.9: SURF keypoints detected in PANGU images. Green segments indicate the main orienta-
tion of the keypoints. Red circles indicate light blobs on dark backgrounds and blue circles indicate
dark blobs on light backgrounds.
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3.7 Moment image representation

Figure 3.10: SURF keypoints matching, PANGU images. A horizontal motion of the camera takes
place from the image in the left to the image in the right.

3.7 Moment image representation

On-board camera systems are exposed to illumination changes along time and space.

As a robot equipped with a stereo camera rig moves, the relative position of the cameras

with respect to the light sources will change. This induces differences not only between

the left and right images of the stereo pair, but also between pairs of images acquired

at different times.

To address this, certain measures are taken to diminish the effect of brightness

changes on the imagery. One way to mitigate the effects of illumination changes is

based on image moment representation.

The geometric moment of the image pixel I(u,v) with respect to a square neigh-

bourhood of size (2N +1), is computed in (3.13), as shown in [68].

mpq
(
I(u,v)

)
=

N

∑
i=−N

N

∑
j=−N

ip jq I(u− i,v− j) (3.13)

where p and q are the orders of the moments in the corresponding axis. Let us point

to the reader that a square window of size (2N + 1)× (2N + 1) around the pixel of

coordinates (u,v) is used on this computation.
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3.7 Moment image representation

Due to the additional invariance to illumination provided by image moments [59,

69, 70], an alternative representation of the scene images is constructed, namely mo-

ment images. A moment image J(u,v) is expressed as a combination of different image

moments of the original image I(u,v). Equation (3.14) shows the function chosen to

compute the moment images.

J(u,v) =
m01
(
I(u,v)

)
m20
(
I(u,v)

) (3.14)

The parameters p and q used in (3.14) for the computation of moments in numer-

ator and denominator have been empirically selected for our purposes here. However,

these values could be further investigated in future research.

(a) (b)

(c) (d)

Figure 3.11: Original images (a), (b) and moment images (c), (d), on the dataset “Leuven”, where
illumination conditions dramatically change. Moment images are computed for a window of side 5.
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3.7 Moment image representation

One of the benefits of the moment images is the reduced computational cost

obtained through composition of simple image filtering. Given the above definitions,

it is possible to prove computational complexity is O(mn), where n is the number of

image pixels and m is the number of elements on the convolution kernel used on the

filtering stage, equal to (2N +1)2 according to the definition given in (3.13).

The expectation is to increase the feature matching rates when illumination ef-

fects are non-negligible on a dataset, as it often happens on robotic navigation applica-

tions.

Figure 3.11 presents an example of moment images calculated for two of the

images from “Leuven” series , used by Mikolajczyk et al. [69] to test robustness of

features against light changes.

3.7.1 Harris corners and moment images

Experiments have been conducted to compare what happens when feature detection is

done over images of a sequence and what changes if detection is done over moment

images of the same sequence. This section tries to objectively answer to the questions

“is it better to detect the features over moment images rather than real images when

there are illumination changes?”, “is it better when there is also motion added to the

illumination changes?”

The maximum number of good matches that can be obtained using Harris corner

detector over the images and over the moment images is a good criterion to compare

both type of detections. A cross correlation model is used (3.15) to calculate the match-

ing error between every detected corner neighbourhood in the first image with respect

to every corner neighbourhood in the subsequent image.
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3.7 Moment image representation

ε =

√√√√ N

∑
i=−N

N

∑
j=−N

(
I(u+ i,v+ j)− J(u+ i,v+ j)

)2 (3.15)

where (2N +1)× (2N +1) is the size of the neighbourhood compared, and I(i, j) and

J(i, j) are the value of its contained pixels.

For the self–matching tests, Test 1 and Test 2, image pairs with no motion be-

tween them were used as pair of images. These either formed by an image and the

same one again, or an image and its illuminated image version. Therefore, the position

of every feature F(i), found in the first image I, whose coordinates are x(i) =(u(i),v(i))T ,

has to be matched with the feature j, found in the second image, J, whose coordinates

are, x( j) = (u( j),v( j))T , if and only if x( j) =x(i). The rest of matches will be considered

as false matches.

For cases when there is motion, Test 3, every feature i, found in the first image

I, whose coordinates are x(i) = (u(i),v(i))T , is considered matching with the feature j,

found in the second image, J, whose coordinates are, x( j) = (u( j),v( j))T , if and only if

x( j) = x(i)+(∆u,∆v)T , where (∆u,∆v)T is the vector used to represent the motion of

the image points from image I to image J. The rest of matches will be discarded.

Table 3.1: Detection comparison results, by matching.

Test 1 Test 2 Test 3Units
Original Moments Original Moments Original Moments

n [#] 163 161.5 163 161.5 165 162
t p [#] 161 160.25 66.5 132 4 6
ρ [−] 1.00 1.00 0.83 0.99 0.02 0.04
σ [−] 0.99 0.99 0.41 0.82 0.02 0.04
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3.7 Moment image representation

Table 3.1 shows the results obtained for this experiment, where n is the number

of detected corners, t p is the number of good matches or true positives, ρ is the pre-

cision of the matching process, given as the rate ρ = t p/(t p+ f p), being f p the false

positives. The matching rate σ has been computed as: σ = t p/n, dividing the number

of total good matches over the number of features that were found. All the displayed

values are averages obtained for the different tests. The values on the left side are for

the detection over the images while the values on the right side have been obtained for

the detection over the moment images.

(a) (b)

(c) (d)

Figure 3.12: Constant threshold features detection. Original images (a) and (b), 53 and 329 features
are respectively found. Moment images (c) and (b), 50 and 57 features are respectively detected.
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3.7 Moment image representation

(a) (b)

(c) (d)

Figure 3.13: Detection of 50 features, over original images, (a) and (b), and over moment images,
(c) and (d). Detection results are only represented over the original images here.

By analysing these results, we can confirm that matching using Sum of Square

Differences (SSD) technique of features found over the moment images is better for

all experimental Tests since the rates ρ and σ are always higher. Indeed, for Test 2,

which includes illumination effects, the matching rate increases to twice as much as

when the detection is performed over moment images and the rate of good matches

increases with around 15%. When there is motion in addition to illumination changes

as for Test 3, the results are slightly better as well.

The images in Figure 3.12 show, how the number, and location, of features found

over original images changes when there is an illumination effect altering the image (a)
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3.8 Harris over Moment images with SURF (HMSURF)

and (b), while the number, and location, of detected of features found over moments

images remains similar (a) and (b) . I addition, the number of features detected in

illumination altered real images gets lower in comparison with the original non altered

real image. This number keeps similar when we process detection on moment images.

Figure 3.13 shows the detected features obtained using each type of images,

when only the 50 features with higher cornerness function response are kept. Note that

the keypoints are located in similar areas when detection takes place over the moment

images, but on the contrary it changes considerably because of the illumination effect

when detection is performed over the original images.

The images in Figure 3.14 display the matches obtained for a self-matching pair

with illumination changes. Matches are obtained using a cross correlation matching

strategy for the features obtained with a Harris corner detector over original images (a),

and over moment images (b). The red coloured features are discarded false matches.

These illuminated images are artificially generated adding 15 units of brightness

and a brightness increment proportional to the pixel distance to the top left corner times

300. These setting make the images to be illuminated as if a light focus was added on

the right bottom corner.

3.8 Harris over Moment images with SURF (HMSURF)

Harris corner detector presents many advantages for the feature detection task [60], it is

easy to implement and a fast technique. However, it is necessary to use additional tools

to carry on with the matching and identification tasks as it has not got any descriptor

associated to it. The lack of descriptors makes Harris corner detector be less complete

than SIFT or SURF and also less robust against affine and scale changes in the scene.
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3.8 Harris over Moment images with SURF (HMSURF)

(a)

(b)

Figure 3.14: Cross correlation matching results of features detected over original images (a) and
features detected over moment images (a). Features in red colour indicate rejected false matches.
Detection results are only represented over the original images here.

We present an alternative to augment Harris detector with a robust descriptor in

order to achieve better matching than matching Harris corners using correlation based

on Sum of Squared Differences (SSD). Thus based on our initial feature experimen-

tal analysis, subsection 3.9.1, we have decided to integrate the SURF description and

matching process with the detection process carried out by Harris detector. SURF has

been selected because of the similarly performance achieved in less time, in compari-

son to SIFT. In case of pseudo-planar motion the reduced version of SURF description,

U-SURF, where the main orientation does not have to be computed, is used.
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3.9 Experimental results

The alternative representation based on the moment images, presented in sec-

tion 3.7, is used in the Harris detection step in order to improve invariance to illumi-

nation changes, as it is a way to emphasise corners. The description and matching

processes are run over the original images containing the corners detected in the pre-

vious step.

3.9 Experimental results

This section presents some results comparing the methods exposed in this chapter,

in order to justify the decisions taken for the implementation of HMSURF. The later

experiments are meant to analyse the proficiency of the new presented technique and

to compare it with SURF.

3.9.1 Comparison of existing methods

In order to compare the different methods for tracking and feature detection, it is nec-

essary to establish some criteria to perform a realistic comparison. In this way, for

comparison between KLT, SIFT and SURF we have used codes programmed in C/

C++ languages, all of them implemented using OpenCV libraries for image process-

ing in order to have comparable time scale measurements [51, 71, 72, 73]. Harris

corner detector results are not shown in this section because of the low quality results

obtained for this method. This is a consequence of the reliability limitations of cross

correlation matching using raw intensity vectors.
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3.9 Experimental results

We have considered for the experiment a set of 6 images generated through

PANGU [64, 65, 66]. This set of images contain different problems that can be studied

in the tracking problems:

I Translation

I 3D projective changes

I Out-of-plane changes

I Brightness variations

According to the obtained results for this set of comparisons, we can present

some conclusions, section 3.9.1.1, based on the study of the next tables of results.

Table 3.2 shows the number of tracked features obtained for consecutive images

and time expenses involved in the computation. The system is set to detect 2500 fea-

tures to track. Table 3.3 and Table 3.5 show the number of detected features using

SIFT and SURF respectively, while Table 3.4 and Table 3.6 show time consumptions

for these methods. These time consumptions were obtained on a laptop with an Intel

Centrino CPU (1.6GHz), single core, on Ubuntu linux (9.10).

Table 3.2: KLT time consumption on 1 core CPU 1.6GHz.

Tracked Features Total time
[#] [106 clocks]
280 1.66
340 1.64
283 1.70
260 1.67
257 1.65
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3.9 Experimental results

Table 3.3: Keypoints detection using SIFT.

Image Features
[#] [#]
1 2596
2 2553
3 2672
4 2672
5 2559
6 2665

Table 3.4: Time consumptions using SIFT on 1 core CPU 1.6GHz.

Matches Detection Description Matching Total time
[#] [106 clocks] [106 clocks] [106 clocks] [106 clocks]
650 3.44 3.38 0.64 7.46
767 3.37 3.48 0.63 7.52
704 3.49 3.48 0.67 7.64
766 3.50 3.44 0.68 7.62
771 3.45 3.44 0.68 7.57

Table 3.5: Keypoints detection using SURF.

Image Features
[#] [#]
1 2315
2 2271
3 2342
4 2441
5 2405
6 2555
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3.9 Experimental results

Table 3.6: Time consumptions using SURF on 1 core CPU 1.6GHz.

Matches Detection Description Matching Total time
[#] [106 clocks] [106 clocks] [106 clocks] [106 clocks]

1109 1.80 1.77 1.26 4.83
1262 1.83 1.83 1.29 4.95
1129 1.82 1.85 1.34 5.01
1282 1.87 1.84 1.38 5.09
1309 1.92 1.96 1.47 5.35

3.9.1.1 Analysis

Similar to experiments used by Mikolajczyk et al. [74], our results prove that SURF is

more robust than SIFT or previous methods as mentioned in [28].

Next subsections are written to set the performance differences in terms of time

and proficiency of SIFT, SURF and KLT methods, using the results, subsection 3.9.1.

3.9.1.2 Time performance

Looking at the tables of the times obtained from the experiments done with each im-

plementation, it can be concluded that:

Best time Because of the lack of descriptors, and according to the results exposed in

the previous tables, KLT method could be thought to be faster than the other two

method. Nonetheless, note that the number of tracked features in KLT is two

to four times lower than the number of matched interest points obtained using

SIFT and SURF respectively. Considering that relationship between the number

of tracked features behave on a linear fashion for the three of the methods, it

is easy to see that SURF is the fastest method, followed by KLT and finally by

SIFT.
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3.9 Experimental results

Detection Looking at the average of the feature detection, which is actually added

to the descriptors generation time, we can conclude that the detection time of

SURF is almost a half of the time for SIFT execution.

Matching SIFT Matching is around a half of the time needed for the SURF matching.

This is because the matching methods are different in the used implementations

and the number of matches obtained are different (more than double for SURF).

We also know that SURF descriptor are half size of SIFT descriptor, 64 elements

with respect to the 128 for SIFT.

Total time The calculations done in our experiments show that SURF is at least a 30%

faster than SIFT, using a very similar number of Keypoints for the matching. In

the literature [28], we find that SURF just takes the 30% of the whole time used

by SIFT.

A second experiment was conducted using the three methods for a sequence of

images acquired from an on-board camera mounted on a mobile robot in the University

of Malaga, Moreno et al. [75].

Table 3.7: Average time consumptions for the different techniques on 1 core CPU 1.6GHz. The
number of detected point is similar for all the techniques.

Method Detection Description Matching Total time
[106 clocks] [106 clocks] [106 clocks] [106 clocks]

KLT - - - 2.69
SIFT 7.70 7.57 0.51 15.77
SURF 2.03 2.03 0.01 4.01
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(a) (b)

(c) (d)

Figure 3.15: Sample from Corridor 2.2 dataset, University of Málaga, ETSI Telecomunicación.

(a) (b)

Figure 3.16: KLT tracked points, Corridor 2.2 dataset, University of Málaga, ETSI Telecomuni-
cación.
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(a)

(b)

Figure 3.17: SIFT matching, Corridor 2.2 dataset, University of Málaga, ETSI Telecomunicación.

(a)

(b)

Figure 3.18: SURF matching, Corridor 2.2 dataset, University of Málaga, ETSI Telecomunicación.
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The frame rate on this later sequence guarantees small differences between sub-

sequent images, which makes the sequence conditions more favourable for KLT to

perform correctly. The figure Figure 3.15 shows 4 consecutive images extracted from

the sequence.

Figure 3.17 and Figure 3.18, show the matching using SIFT and SURF methods

respectively, while Figure 3.16 shows just the detected keypoints using KLT.

As in the previous experiment Table 3.7 shows that KLT and SURF are faster

techniques than SIFT for a similar number of detected features. This is normally at-

tributable to the size of the descriptor used by SIFT, that entails higher time consump-

tions, specially at description and matching stages.

3.9.1.3 Matching performance

Looking at Table 3.2, Table 3.4 and Table 3.6 obtained as result of the performed

experiments with each studied technique, it can be concluded that:

KLT The number of tracked features using this method is very low, reaching values

just around the 10% of the initial interest points detected, which was fixed to

be about 2500 for every technique. The violation of the assumption of small

differences between consecutive images necessary for KLT to perform rightly

is a suitable explanation for the small rate of tracked features presented here.

Indeed, in the original experiments performed by Tomasi et al. translations of

only one pixel from an image to the subsequent image in the sequence were

considered [26]. It is visible to the eye that the translation applied to the images

on the set of tested images is always greater than one pixel.
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3.9 Experimental results

SIFT This method has a matching rate of about a 25% with respect to the interest

points detected for each picture. This result is not realistic without taking into

account that some of those matches are false.

The usage of descriptors means performing a better tracking from one image to

the next one in the sequence.

SURF The matching rate for SURF was around a 50%, with the lowest rate of false

matches. This is due to the nature of the images and SURF which was developed

to outperform SIFT using descriptors based on Haar wavelets responses.

It is shown by the results obtained that even considering a lower number of

keypoints, SURF matches from one image to the subsequent one presents high

numbers.

3.9.2 Comparison between HMSURF and SURF

This experiment that has been carried out to study the performance of the proposed

robust HMSURF technique concentrates in comparing it with the original SURF tech-

nique.

For this experiment, several tests have been conducted in order to study the time

consumption required for the HMSURF and for the original SURF. As important as

time consumption, the matching and reliability performances between a pair of images

using HMSURF and SURF need to be evaluated. As explained above, in this work

we focused more on the robustness an invariance against illumination changes. This

matching performance is compared by looking at the maximum number of features

that can be matched and by looking at other relevant matching rates as well.
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Table 3.8: HMSURF vs SURF.

Test 1 Test 2 Test 3Units
SURF HMSURF SURF HMSURF SURF HMSURF

n [#] 351 488 366 488 327 305
t p [#] 351 488 110 349 67 79
m [−] 0.00 0.00 0.30 0.16 0.81 0.75
ηρ [−] 0.72 1.00 0.32 1.00 0.85 1.00
τ [105 clocks] 3.72 4.51 3.73 4.51 3.72 3.94
ητ [−] 1.00 1.21 1.00 1.21 1.00 1.06

Table 3.8 presents the results obtained running both SURF and HMSURF tech-

niques. As in Table 3.1, t p is the number of the good matches found from the of n

detected features, m = (1−ρ) is the mismatching ratio computed as m = (1−ρ) =

f p/(t p+ f p), the rate ηρ is calculated as: ηρ = t p/max(t p), τ is the total time re-

quired for the whole process, detection, description and matching, in computer clocks

multiplied by 10−5 and the rate ητ is computed as: ητ = τ/min(τ). It seems impor-

tant to the author emphasising on the importance of the mismatching ratio m. This

rate evaluates the reliability of matches. From Table 3.8 it can be seen that for the

cases without motion, Test 1 and 2, the proposed technique gives the same or even

better results than the achieved by the original SURF method. For Test 3 case a slight

enhancement can be seen, as well.

Time requirements seem to be a slightly higher to similar for the proposed tech-

nique on the image test used. Nevertheless, if results in Table 3.8 are meticulously

studied we will see that the number of good matches obtained using the proposed is

always bigger. Assuming the relationship between the time expenses and the num-

ber good matches to be linear, both for SURF and HMSURF, it is easy to empirically

demonstrate that SURF and HMSURF computational complexities are comparable.
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3.10 Conclusions

In this chapter, a new solution to cope with illumination changes and feature matching

problem related to Harris corners has been presented. The proposed robust Harris-

Moments-SURF detector/descriptor provides an alternative that fuses the advantages

of Harris corner detector over moment images and SURF descriptor. It has been shown

that this alternative performs better than some other state-of-the-art methods. Cer-

tain conditions that adversely affect the visual guided navigation, such as illumination

changes, can be dealt with using this proposed solution.
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Chapter 4
Enhancing Visual SLAM techniques

4.1 Overview

For missions similar to the ExoMars mission, the ability to autonomously navigate in

an environment about which the rover has no prior knowledge is a desired capability.

This permits to the robots to accurately determine their own position and orientation

and to plan paths towards their goals.

As Global Positioning System (GPS) data is unavailable on the planet Mars and

because robot odometry data is not fully reliable for long term navigation, other ex-

teroceptive solutions are required [76, 77]. A possible approach is the Simultaneous

Localisation and Mapping (SLAM) technique. SLAM is the process by which a mo-

bile robot can incrementally build a consistent map of its environment and at the same

time use this map to compute its location. A variety of sensors such as laser scan-

ning systems have been used in SLAM for robotic platforms [6, 43]. SLAM has also

been used in both indoor and outdoor for ground, underwater and airborne applications
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[4, 78, 79].

As vision is one of the main means of exteroceptive sensing, VSLAM based

on monocular camera approaches have been investigated previously [45, 80, 81, 82].

On the other hand VSLAM solutions based on stereo cameras have also been looked

at [8, 83]. As the rover is meant to be equipped with a stereo head, our interest was

naturally oriented to investigate stereo based VSLAM approaches.

Different filtering based approaches have been adopted in SLAM [14, 84] and

VSLAM solutions [75, 85]. Most of the suggested estimation filters used are nonlinear.

This is necessary mainly because image variations along a sequence cannot be consid-

ered as linear variations, making VSLAM observation models highly nonlinear. The

question of which filtering technique is recommended for VSLAM has been addressed

in the past [11, 20]. However, only little care was given to the visual processing and

the detection of visual natural landmarks to build the VSLAM and more specifically

stereo based VSLAM solutions [86, 87].

In this chapter, we propose an EKF-VSLAM solution relying on a tight stereo

observation model and an innovative feature extraction technique based on Harris

Moment Speed Up Robust Features (HMSURF), explained in the previous chapter.

Section 4.2 and section 4.3 introduce the filtering techniques used. All the visual

processing including feature detection, feature matching and landmark management

is addressed in section 4.4. At the end of this section, in subsection 4.4.5 and sub-

section 4.4.6 contributions to the VSLAM visual module are proposed. Experiments

shown in section 4.5 demonstrates the advantages of the proposed enhancements.
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4.2 Kalman Filter

4.2 Kalman Filter

The Kalman Filter (KF) is a recursive algorithm used to estimate the state of a timely-

controlled dynamic system. It is proved an optimal filter for linear systems [9], where

sensor measurements are corrupted by white noises. The discrete version of this fa-

mous filter has been the subject of extensive research and applications in the area of

autonomous systems.

One of the main advantages of the Kalman filter is that the noisy data acquired

from different sensors can be joined taking into account the reliability and uncertainty

of each.

The system’s dynamic process is governed by the stochastic difference equation:

xk+1 = Fk ·xk +Gk ·uk +wk (4.1)

where:

I xk ∈ Rn is the state vector that represents the system at the discrete time-step k

I uk ∈ Rm is the input vector

I Fk ∈ Rn×n is the state transition or process matrix of the system

I Gk ∈ Rn×m is the input matrix

I wk ∈ Rn is a random variable w ∼ N(0, Qk) that represents the process noise.

Furthermore the evolution of the system is observed through the measurements

vector z.

zk+1 =Hk+1 ·xk +vk+1 (4.2)
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4.2 Kalman Filter

where:

I zk ∈ Rm is the measurements vector at time-step k

I Hk+1 ∈ Rm×n is the observation matrix

I vk ∈ Rm is the measurement noise v ∼ N(0,Rk).

The covariance matrices Qk ∈ Rn×n and Rk ∈ Rm×m represent the uncertainties

of the process model and the observation model respectively.

The measurement noise vk+1 and the process noise wk are independent. The

matrix Pk+1 ∈ Rn×n is the covariance of the state and Sk+1 ∈ Rm×m is known as the

innovation predictions matrix. These matrices propagate as follow:

Pk+1|k = Fk ·Pk|k ·F T
k +QT

k (4.3)

Sk+1 =Hk+1 ·Pk+1|k ·HT
k+1 +Rk+1 (4.4)

Since vk+1 and wk are zero-mean noises, the state xk+1 and the measurements

zk+1 vectors are predicted by the prediction equations:

x̂k+1|k = Fk · x̂k|k +Gk ·uk (4.5)

ẑk+1|k =Hk · x̂k+1|k (4.6)

Then νk = zk+1|k− ẑk+1|k and it is known as the innovation of the process. The

state vector x̂k|k+1 is call the a posteriori estimation of the state, as it contains the

information of the measurements till the time-step k+1.
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4.3 Extended Kalman Filter

x̂k|k+1 = x̂k+1|k +Kk+1 ·vk+1 (4.7)

whereKk+1 is the Kalman gain:

Kk+1 = Pk+1|k ·HT
k+1 ·S−1

k+1 (4.8)

The covariance of the system is updated at each time-step according to the equa-

tion:

Pk|k+1 = (I−Kk+1 ·Hk+1) ·Pk+1|k (4.9)

where I is the identity matrix.

Under the assumption that all the noises entering into the system are white

noises, the Kalman filter minimises the square error of the estimates of the system

states.

4.3 Extended Kalman Filter

The Extended Kalman Filter (EKF) is the nonlinear version of the Kalman Filter. The

SLAM problem is usually formulated in the literature as a nonlinear system, expressed

as the differentiable equations as (4.10) and (4.11), where EKF is a suitable method

to obtain a solution [9]. Other nonlinear filtering solutions based on the Unscented

Kalman Filter (UKF) and the Particle Filter (PF) are discarded here due to their com-

putational complexities base on multiple space variation hypothesis. This makes them

less suitable than EKF even with its linearisation step.
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4.3 Extended Kalman Filter

xk+1 = f(xk,uk,wk) (4.10)

zk+1 = h(xk,vk+1) (4.11)

where xk is the state vector of the system containing the position of the robot and the

position of the mapped landmarks, and zk are the visual measurements that will be

used to estimate the state evolution through on the EKF.

The process function, also known as the transition function, f depends on the

state and on the input vector uk and represents the robot’s kinematic behaviour. The

variables wk and vk are random variables used to model the process and the measure-

ment noises as in the previous section. The EKF as the Kalman Filter, assumes that the

probability distributions of the noises are modelled as Gaussian functions.

Therefore, to find a solution for the system given in (4.10) and (4.11) using the

Kalman Filter methodology it is necessary to linearise it first. A suitable possibility is

using the first order Taylor series expansion around the current estimate at each time-

step.

Fk+1 =

(
∂f

∂x

)
x̂k|k+1

Jacobian of the transition model function (4.12)

Hk+1 =

(
∂h

∂x

)
x̂k+1|k

Jacobian of the observation function (4.13)

The prediction equations for EKF are rewritten as follow:

x̂k+1|k = f(xk|k,uk) (4.14)

ẑk+1 = h(xk+1|k) (4.15)
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4.4 VSLAM

EKF is not an optimal nonlinear estimator, but can cope with nonlinear systems

and with non-Gaussian distributed noises giving a reasonable performance. Badly

modelled systems or wrong initial estimates of the state can lead to divergence issues.

It is also important to state that the estimated covariance matrix for EKF tends to

underestimate the real covariance matrix.

4.4 VSLAM

As a contribution to the thesis, we have developed a VSLAM solution based on an

observation model later explained in this section, (4.32). Through tests conducted

using a Matlab implementation we show a comparison between the performance of

VSLAM versus the robot odometry data.

The visual extraction and matching of keypoints is based on the concepts ex-

plained earlier in this text, chapter 3, where we justify the use of Speeded Up Robust

Features (SURF).

4.4.1 State vector

When a robot is placed in an unknown location, it should use its surrounding selecting

landmarks to localise itself with respect to them. For a three wheeled mobile robot,

Figure 4.1, the kinematic model is shown in (4.16) (4.17) (4.18), where subscript M

refers to the mobile robot.
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4.4 VSLAM

ẋM =V · cosψ (4.16)

ẏM =V · sinψ (4.17)

ψ̇M =
V
D
· sinγ (4.18)

The transition matrix for the discrete system then is:


xM,k+1

yM,k+1

ψM,k+1

=


xM,k + ∆T ·Vk · cosψM,k

yM,k + ∆T ·Vk · sinψM,k

ψM,k + ∆T · Vk

D
· sinγk

 + wk (4.19)

where:

I xM,k and yM,k are cartesian coordinates of the robot

I ψM,k is the bearing angle of the robot

I Vk is the velocity of the robot

I γk is the bearing angle of the front robot wheel

I D is the distance from the rear axis to steering wheel.

Since the transition model function contains trigonometric functions, the KF

cannot be applied to solve the problem. Thus, the EKF is used instead. Here, the

mapping problem is dealt with by selecting landmarks that will be assumed to be sta-

tionary. These landmarks are physical reference points that will be detected using

on-board sensors.
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ψ

O

OM

γ

D

V

Figure 4.1: Three wheeled robot model

The equations of the landmarks in the state vector are written as follows:

l
(i)
k+1 = l

(i)
k = l(i) (4.20)

x(i)k+1 = x(i)k = x(i)

y(i)k+1 = y(i)k = y(i)

z(i)k+1 = z(i)k = z(i)

where:

I l
(i)
k ∈ R3 is the position vector of the ith landmark at timestep k

I x(i),y(i),z(i) ∈ R are cartesian coordinates of the landmark l(i).

The ground robot used here is a two wheeled robot and is represented by a simple

tricycle kinematics model, where the state vector is composed of two coordinates that

define the 2D position on the plane and an additional state for the bearing angle of the

robot. These states complete the definition of the robot pose. The transition model

function f of the robot correspond to the one illustrated in (4.19).
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4.4 VSLAM

For any time-step, the first three elements of the state vector of the VSLAM

are the ones corresponding to the pose of the robot, while the rest of them contain the

information concerning to the position of the p landmarks expressed in world reference

frame coordinates (4.21).

Based on the state vector in (4.21) and on the definition of the Jacobian of the

transition model function given in (4.12) the linearised version of the transition matrix

is derived as in (4.22). The input matrix is analogously obtained (4.23).



xM,k

yM,k

ψM,k

l
(1)
k

...

l
(p)
k



=



x position

y position

bearing angle

3D position o f 1st landmark
...

3D position o f last landmark



(4.21)

Fk =

 FM,k 0

0 I3p

−→ FM,k =


1 0 −∆T ·Vk · cosψM,k

0 1 −∆T ·Vk · sinψM,k

0 0 1

 (4.22)

Gk =

 GM,k 0

0 03p

−→GM,k =

 ∆T · cosψM,k −∆T ·Vk · sinψM,k

∆T · sinψM,k ∆T ·Vk · cosψM,k

 (4.23)

The landmarks {L(i)} for i= 1,2, . . . , p are considered stationary, hence invariant

with respect to the world reference frame. The 3D position vector of the ith landmark

is expressed in (4.24) and (4.25) in world and mobile reference frames respectively.
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ψM,k

L(i)

OM,k

OM,0 ≡ O

y(i)k

yM,k

xM,k x(i)k

l
(i) ≡

l
(i)

M,0

l
(i)
M,k

Figure 4.2: World and robot reference frames for VSLAM.

l
(i)
= l

(i)
k

=
(

x(i)k y(i)k z(i)k

)T (4.24)

l
(i)
M,k

=
(

x(i)M,k y(i)M,k z(i)M,k

)T (4.25)

Our implementation performs stereo matching and feature tracking using SURF

local descriptors of the detected landmarks, as discussed in section 3.4. Thus, in order

to make possible the landmark identification from one frame to another one the local

descriptors of the features are stored.

Figure 4.2, represents the world and the robot reference frames, as the coordi-

nates of an observed landmark L(i) from these reference frames. The stationary posi-

tion vector of the landmark with respect to the world reference frame appears as l(i),

whereas the relative position with respect to the robot appears as l(i)M,k for two robot

positions k = 1,2.

72



4.4 VSLAM

4.4.2 Observation model

The EKF, an more generally the Kalman filter, take into consideration the measure-

ments acquired from the robot through the system observations. These are later used

to conduct the system update.

The observation model, presented in (4.11), and repeated here (4.26) for the

reader’s convenience, represents the measurements that are shaped differently depend-

ing on the type of sensor employed.

zk+1 = h(xk,vk+1) (4.26)

where zk+1 ∈ Rm is the measurement vector xk is the state vector, and vk+1 ∈ Rm is a

random variable that represents the error due to the measurement process.

The inverse observation model, (4.27), is used to initialise the landmarks added

into the state vector. Given that features are considered stationary with a fixed position

in space, their position has to be estimated from the measurements only once.

lk(i) = h
−1(zk, vk) (4.27)

This subsection shows three observation models normally used for the most

common perception alternatives used on VSLAM. Firstly, an approach written in po-

lar coordinates specially useful when range and bearing sensors are used is presented.

Secondly, an observation model in radial coordinates and suitable for 3D perceptive

sensors is shown. Finally, two common approaches for the observation model used on

imaging sensors are introduced.
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4.4 VSLAM

4.4.2.1 Polar measurements: range and bearing

For a range and bearing laser equipped robot, the measurements can be written in polar

coordinates as the following observation model:

z
(i)
k =


ρ
(i)
k

θ
(i)
k

 + vk =



√(
xM− x(i))2 +(yM− y(i)

)2
+ vρ,k

arctan
(

y(i)− yM,k

x(i)− xM,k

)
− ψM,k + vθ ,k

 (4.28)

where:

I θ
(i)
k is the angle between the robot and the ith landmark i

I ρ
(i)
k is the radius from the robot to the landmark in polar coordinates.

4.4.2.2 Radial measurements

Radial coordinates are more convenient in certain circumstances, for instance when 3D

LASER scanners are used. Some solutions represent the landmark measurements in

radial coordinates, in terms of the distance r(i), azimuth α (i) and elevation β (i), instead

of representing them in polar coordinates or as image frame pixel locations [88].

z(i) =


r(i)

α (i)

β (i)

 + vk =



√(
xM− x(i))2 +(yM− y(i)

)2
+(zM− z(i)

)2
+ vr,k

arctan
(

yM− y(i)

xM− x(i)

)
+ vα,k

−arctan


(
zM− z(i)

)√(
xM− x(i))2 +(yM− y(i)

)2

 + vβ ,k



(4.29)
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4.4.2.3 Stereo image obsevation

For a robot equipped with on-board cameras, the observation model relates the 2D

position of the features in the images to their 3D equivalent landmarks. In this manner,

features expressed in terms of
(
uL, vL

)
and

(
uR, vR

)
will compose the observations of

the stereo camera system. This is mathematicaly written in (4.30) and (4.31).

zk =
(
z
(1)
k

T
z
(2)
k

T
. . . z

(p)
k

T )T (4.30)

z
(i)
k =

(
u(i)

L,k v(i)L,k u(i)
R,k v(i)R,k

)T (4.31)

where:

I zk ∈ R4p is the vector of measurements at time-step k

I z
(i)
k ∈ R4 is the measurement of the ith visual landmark.

For systems based on stereo vision setups consisting of two on-board cameras,

mathematical solutions to the VSLAM problem can be found as described in [11],

where the observation model is derived as follows and is the approach used here.



u(i)
L

v(i)L

u(i)
R

v(i)R


=



m11,L · x(i)+m12,L · y(i)+m13,L · z(i)+m14,L

m31,L · x(i)+m32,L · y(i)+m33,L · z(i)+m34,L

m21,L · x(i)+m22,L · y(i)+m23,L · z(i)+m24,L

m31,L · x(i)+m32,L · y(i)+m33,L · z(i)+m34,L

m11,R · x(i)+m12,R · y(i)+m13,R · z(i)+m14,R

m31,R · x(i)+m32,R · y(i)+m33,R · z(i)+m34,R

m21,R · x(i)+m22,R · y(i)+m23,R · z(i)+m24,R

m31,R · x(i)+m32,R · y(i)+m33,R · z(i)+m34,R



(4.32)
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where:

I u,v are the pixel coordinates of a feature

I mi j,C is the component of the projection matrix of the camera C, for C = {L,R}

at ith row and jth column. Cameras left and right are labeled using L and R

I
(
x(i),y(i),z(i)

)T is the position vector of the ith landmark.

Another observation model, similar to the one above, is the stereo alike visual

concept based on a pan-tilt monocular camera proposed in [81]. The way this works

is using a couple of images acquired in consecutive time-steps to emulate a stereo

capture. The equation for the observation is written as:



u(i)
k

v(i)
k

u(i)
k+1

v(i)
k+1


=



αu ·

(
m11,k · x

(i)
k +m12,k · y

(i)
k +m13,k · z

(i)
k +m14,k

m31,k · x
(i)
k +m32,k · y

(i)
k +m33,k · z

(i)
k +m34,k

)
+u0

αv ·

(
m21,k · x

(i)
k +m22,k · y

(i)
k +m23,k · z

(i)
k +m24,k

m31,k · x
(i)
k +m32,k · y

(i)
k +m33,k · z

(i)
k +m34,k

)
+ v0

αu ·

(
m11,k+1 · x

(i)
k+1 +m12,k+1 · y

(i)
k+1 +m13,k+1 · z

(i)
k+1 +m14,k+1

m31,k+1 · x
(i)
k+1 +m32,k+1 · y

(i)
k+1 +m33,k+1 · z

(i)
k+1 +m34,k+1

)
+u0

αv ·

(
m21,k+1 · x

(i)
k+1 +m22,k+1 · y

(i)
k+1 +m23,k+1 · z

(i)
k+1 +m24,k+1

m31,k+1 · x
(i)
k+1 +m32,k+1 · y

(i)
k+1 +m33,k+1 · z

(i)
k+1 +m34,k+1

)
+ v0



(4.33)

where:

I uk,vk are the pixel coordinates, of a feature at time k

I mi j,k is the component of the projection matrix of the camera at ith row and jth

column at time k .

I
(
x(i)k ,y(i)k ,z(i)k

)T is the position vector of the ith landmark.
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Note that as this is a stereo-like example based on a unique camera, we can omit

the subscript k that indicates time-step, under the assumption that the parameters are

time independent so that:

αu = αu,k = αu,k+1 (4.34)

αv = αv,k = αv,k+1 (4.35)

u0 = u0,k = u0,k+1 (4.36)

v0 = v0,k = v0,k+1 (4.37)

Figure 4.3 shows how landmark positions are reconstructed from pairs of stereo

matches, in order to add a new landmark position into the state vector of the system.

Inverse

Detection

h−1(z(i),vk
) l

(i)
k =

(
x(i)k , y(i)k , z(i)k

)T

Observation
Model

(
u(i)R,k, u(i)R,k

)T(
u(i)R,k, u(i)R,k

)T

Acquisition

Left Right

Figure 4.3: Inverse Model and new features addition
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4.4.3 Association process

In order for an EKF-VSLAM solution to update the system, it is necessary to iden-

tify which landmark does correspond to each measurement. This step is part of the

observation process and, although it may look trivial, it is a challenging stage to be

tackled.

Between the suitable alternatives available to solve this problem three of them

can be highlighted: registration , tracking and association techniques. The first is the

simplest. What registration algorithms do is essentially fitting sets of points. Hence,

the way of applying a registration technique to VSLAM consists on fitting sets of 3D

points so that the best closest point once the sets have fitted is considered to be the

corresponding landmark. Iterative Closes Point must be mentioned here as a represen-

tative technique for this family of solutions. The second alternative consists of em-

ploying a visual tracker as KLT or any alternative optical flow solution. In this manner,

the features are identified along time, so that the tracks correspond to the same land-

mark. Finally, we want to emphasise on the possibility selected here, that consists on

a landmark association process based on local descriptors matching, section 3.4.

One of the benefits of the selected association strategy used here is that the same

visual descriptors that are used for stereo matching, are also used to identify the land-

marks along time. For every detected feature F
(i)
C,k a descriptor δ(i)C,k is computed and

stored for left and right cameras, C = {L,R}. We user SURF local descriptors, because

of the advantages explained in chapter 3,

The association process is responsible for identifying which of the detected land-

marks are new landmarks to be initialise and which are known landmarks already seen

in prior time-steps.
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At every time-step, the set of stored descriptors corresponding to previously as-

sociated landmarks is matched against the descriptors of the currently detected fea-

tures. If a descriptor does not correspond to anyone of the existing landmarks it corre-

sponds to a new landmark hence the inverse observation model is used to add it into the

state vector Figure 4.3. On the contrary, when a match is found for the descriptor the

state vector is updated using the visual observation, as explained in subsection 4.4.4.

Only landmarks that have been already stereo matched are considered at this stage.

4.4.4 Updates

Associated landmarks are used to update the VSLAM state vector. Within the pre-

diction step of the EKF, the positions in the current time-step of previously associated

landmarks are computed. Using the a priori state vector through the observation model

(4.26) the difference between the predicted positions and the positions of the associated

features in the image frames yield to the innovation vector νk, .

ẑk+1 = h(xk+1|k) (4.38)

νk = zk+1|k− ẑk+1|k (4.39)

Then, the Kalman gains are computed for each associated landmark in the set

{L(i)}, for i = 1, 2, . . . , p, as in (4.41), using the Jacobian matrix of the observation

model with respect to the landmark,Hl(i) , (4.40). The Kalman gainKl(i) , is multiplied

by the innovation vector, (4.42), to update the state vector.
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Hl(i) =

(
∂h

∂ l(i)

)
x̂k+1|k

(4.40)

Kl(i) = Pk+1|k ·HT
l(i)
·
(
Hl(i) ·Pk+1|k ·HT

l(i)
+R

)−1 (4.41)

Note that the Jacobian of the observation model with respect to the landmark

position is not time invariant, but it has not been noted with the subindex (k+1|k) just

to reduce the notation and make (4.41) clear to the reader.

x̂k+1|l( j) = x̂k+1|l( j−1) +Kl( j) ·
(
zk+1|k− ẑk+1|k

)
(4.42)

where the state vector x̂k+1|l( j) is the a posteriori estimation obtained after using the

first j landmark observations.

For the first landmark the equation takes the form shown in (4.43).

x̂k+1|l(1) = x̂k+1|k +Kl(1) ·
(
zk+1|k− ẑk+1|k

)
(4.43)

where x̂k+1|k is the a priori estimate of the state vector, obtained from the evolution of

the system through the transition model, (4.44).

x̂k+1|k = f(xk|k, wk) (4.44)

The covariance of the state is updated as shown in (4.45), (4.46) and (4.47).
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Pk+1|l(i) =
(
I−Kl(i) ·Hl(i)

)
·Pk+1|m(i−1)

(4.45)

Pk+1|l(1) = Pk+1|k (4.46)

Pk|k+1 = Pk+1|l(p) (4.47)

The flowchart in Figure 4.4 summarises how the state vector is sequentially up-

dated using the information obtained from the visual measurements. The flowchart in

Figure 4.5 schematises the whole VSLAM process for the developed implementation.
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(4.46)
(4.44)
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Completed

(4.42)
(4.45)

x̂k+1|k+1 = x̂

Pk+1|k+1 = Pk+1|l(p)

First
Landmark

Figure 4.4: VSLAM update process
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Figure 4.5: Flowchart of the implemented VSLAM
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4.4.5 Map management

One of the important aspects of VSLAM is the map management. The observed land-

marks that a mobile robot perceives through the on-board sensors correspond to physi-

cal references on the environment. In this manner the landmarks compose the map that

the robot uses to self-locate, checking what is its relative position with respect those

landmarks in the map.

Hence, map management is the VSLAM process responsible for either adding

or removing landmarks from the map. Thus, this process involves modifying both

the state vector, where the position of the landmarks is stored, and the covariance of

the system, that contains the information relative to the uncertainty of the landmarks

location.

The landmark addition process is conducted every time a new landmark is ob-

served. Because of the matching and association strategy selected in our VSLAM is

based on local SURF descriptors (section 4.4.3) features that have a stereo pair and

are not associated with any landmark contained in the state vector will be considered

as new landmarks and added into the system. Notwithstanding, landmark addition can

lead to an uncontrolled growth of the state vector and the covariance of the system

when no further actions are considered.

For the case study here, only visual features are considered as system observa-

tions. Therefore, it has to be pointed that not every visual feature has the same usability.

This is due to different factors. Two sources of landmarks usability reduction are as

follows:

I Features detection and description limitations

I Perspective conditions.
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Firstly, because of repeatability of the features through which landmarks are

observed, it is noted that not all the features observed at certain time-step will neces-

sarily be detected on later images. This problem is intimately related to the detection

technique used, although every detection techniques will present its own flaws under

unfavourable circumstances that will lead to feature detection instabilities. Further-

more, even in cases of features that reappear along the sequence it happens that the

description process does not guarantee successful stereo matching or association.

Secondly, it happens that landmarks observed at certain time-step might end up

lying out of the camera’s field of view (FOV) as the robot moves. But this is not the

only consequence of perspective changes between the camera and the landmarks. The

second issue due to perspective changes is the occlusion problem that occurs when

mapped landmarks are hidden from the camera due to intermediate objects. Whereas

the consequences derived from the second of the effects cannot be tackled, as they just

depend on the physical layout the robot’s environment, some improvements alleviate

the former. For instance, reducing the detection threshold is a straightforward possi-

bility that can be employed to reduce any excess of detected features. Nevertheless, it

would not only affect the system growth, by dismissing features with low repeatability,

it would also induce a reduction on the number of detected and associated landmarks.

For the reasons explained above, we introduce the landmark rate of usability

η (i) as the quotient of the number of times that the landmark has been observed with

respect to the number of times that the landmark could have been observed.

η
(i) =

n(i)

t(i)
(4.48)
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where:

I η (i) rate of usability of a landmark L(i)

I n(i) number of appearances of the landmark L(i)

I t(i) time-steps since the landmark’s first appearance.

Using the proposed rate, we can avoid the uncontrolled growth of the system

due to the limitations on visual processes robustness, by classifying the landmarks as

usable and non-usable. In this way, those features whose rate of usability is under a

minimum value are classified as non-usable and made inactive. We have empirically

set the minimum of usability rate to 0.2.

To illustrate how the rate of usability is used let us consider two landmarks: LA

and LB observed for the first time at time-step k. Now let us consider that at time-step

k + 5 the landmark LA has been observed five times, whereas the landmark LB has

only been observed once. Then nA = 5 and nB = 1 while tA = tB = 6 according to their

definitions. In this case the rates of usability will take values ηA = 0.83 and ηB = 0.17,

thus LA will remain active feature whereas LB will become inactive.

The elements of the state vector corresponding to the position of non-usable

landmarks are removed. Likewise, rows and columns corresponding to non-usable

landmarks are removed from the covariance matrix . But one may think of a possible

issue derived from this solution: it could lead to an excessive shrinking of the sys-

tem. In order to prevent this and guarantee that a minimum of landmarks are kept, the

proposed removal scheme is disabled when there are less that 20 or 30 landmarks.

85



4.4 VSLAM

4.4.6 Observation model enhancements

In this subsection we present two post-processing procedures oriented to improve

VSLAM solutions. These enhancements are specially focused to improve:

I Association outliers removal

I Computational expenses reduction.

Although ambiguous matches are detected and dismissed, both at stereo match-

ing and at association stage using the matching procedure explained in section 3.4,

additional post-processing is required to improve the system’s performance. In order

to handle this common situation, we propose a statistical outlier rejection scheme based

on the histograms of length and orientation of the matching segments. Considering that

there are no mobile objects in the scene in front of the robot and based on the fact that

the projective visual change will be small enough between two consecutive time-steps,

it seems reasonable to think that the matching segments that join associated landmarks

will be similar in terms of length and orientation. The similarity between association

segments is checked building histograms of length and orientation, so that, only land-

marks whose segments length and orientation are among the p closes elements with

respect to the corresponding mode are kept as inliers.

The second issue we deal with is the influence on the time consumption of the

number of managed features. This problem is partially tackled by the enhancement

explained above and by the map management strategy explained in the previous sub-

section. However, further actions are proposed to alleviate the computational burden.

The first measure to alleviate the time consumption of the VSLAM strategy consists

of approximating the computation of the Euclidean distance calculated to check the

distance between pair of descriptors, as explained in subsection 3.4, to the arccosine
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of the dot product of the descriptors. This approach is valid for unit vectors as the

distance is approximated as the angle between the vectors.

dist(δ(i),δ( j)) =

√
∑

k

(
δ
(i)
k −δ

( j)
k

)2
≈ arccos

(
〈δ(i), δ( j)〉

)
(4.49)

where 〈δ(i), δ( j)〉 is the dot product between the descriptors δ(i) and δ( j).

As an alternative to the statistical selection solution proposed above, a second

measure has been studied to reduce the dimensionality of the set of associated land-

marks. For this, a randomised selection of elements extracted from the set associated

landmarks is considered to update the VSLAM system.

4.5 Experimental results

This section shows and analyses results for pose estimation obtained using our SURF-

VSLAM implementation with and without the enhancements proposed in the previous

section. Three strategies are considered here:

I Strategy A: Original SURF-VSLAM algorithm

I Strategy B: Outlier rejector based on matching lengths

I Strategy C: Reduced number of associated landmarks.

For all of these strategies, the map management enhancement that reduces the

number of landmarks based on the rate of usability has been considered.

Figure 4.6 shows the association results obtained when no other enhancement

than the rate of usability map management scheme is used. These sample pictures

extracted from a sequence of 100 images, show the predicted (red) and detected (green)
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pixel positions corresponding to the features used to extract the associated landmarks

at three subsequent time-steps. The blue segments are the association segments that

represent associated pairs. In this figure, it is easy to reliase that there are a number

of segments corresponding to association outliers. This is the case of the association

segments where the association segment is clearly visible.

The fact is that most of the association segments are hidden by the features.

This is because when there are no convergence issues the predicted position and the

observed position of the landmark lie sufficiently close and the represented features

are superimposed on each other.

Figure 4.7 shows the association results obtained when our statistical outlier

rejector based on the length and orientation of the association segments is used. It

is noted from the analysis of the figure how a number of associated landmarks are

reduced. Moreover, it is seen how the long blue segments, corresponding to association

outliers, do no appear here which show the suitability of the technique.

Figure 4.8 shows the landmark association results for the third strategy, where

only a reduced randomised subset of associations is considered for system updates.

Here, the reader can see how the number of associated landmarks decreases consider-

ably with respect to the two previous cases.

Figure 4.9, shows the robot pose estimations obtained for the original SURF-

VSLAM implementation and the two other enhanced strategies analysed here. Results

for odometry estimation (red) and SURF-VSLAM (cyan) are superimposed together

with the ground truth data (blue). Figure 4.10 shows the top-bottom view of the tra-

jectory estimation (first row) and the location and orientation absolute errors from the

different strategies (second and third rows). Odometry results (red) are displayed to-

gether with the proposed strategies (cyan/black) and the ground truth (blue).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Association results for Strategy A.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Association results for Strategy B.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Association results for Strategy C.
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Figure 4.9: SURF-VSLAM estimated coordinates of the robot (cyan), reference data (blue) and
odometry results (red). Original solution results are shown in (a), (b) and (c), results for the
solution enhanced with the outlier rejection strategy are shown in (d), (e) and (f), results for the
solution where the number of associated landmarks is reduced are shown in (g), (h) and (i).
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Figure 4.10: Estimation results of enhanced SURF-VSLAM strategies. Strategy A (Original imple-
mentation), Strategy B (False matches rejection) and Strategy C (Limited number of associations
per time-step).
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From the analysis of the figures, it is seen that the estimation using Strategy B

entails an appreciable error decrease. The trajectory obtained using Strategy B lies

closer to the ground truth compared to the other two strategies.

4.6 Conclusions

In this section an EKF-VSLAM solution based on SURF local descriptors for stereo

matching and landmark association has been derived. System limitations have been

identified and overcome by enhancing the VSLAM system using three specific strate-

gies.

Firstly, an uncontrolled growth of the system due to the limitations of current

feature detection techniques has been solved enhancing the map management proce-

dure. This classifies the landmarks in two groups: usable and non-usable. The later are

considered unreliable or unstable landmarks, hence removed from the EKF structures.

Secondly, further enhancements have been proposed to reduce the computational

expenses and improve the performance of the VSLAM system. In order to tackle the

first of these two, a randomised reduction on the number of observations is considered.

For the later an statistical outlier rejection scheme based on the association segments

joining tracked landmarks has been presented.

The proposed solutions have shown to reduce the system limitations and improve

the results based on experimental results obtained from applying the techniques on a

real sequence acquired from a mobile robot. We have seen that a strategy based on our

statistical outlier rejector comes out on top.
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Chapter 5
HMSURF as a VSLAM improvement

5.1 Overview

A VSLAM technique was presented in the previous Chapter as a suitable solution for

the autonomous mobile robots navigation problem. The presented solution accom-

plishes the visual processing tasks by means of SURF local descriptors.

This Chapter presents an innovative VSLAM solution based on our Harris Mo-

ments Speed Up Robust Feature (HMSURF) visual scheme. Furthermore another vi-

sual module alternative Harris Speeded Up Robust Features (HSURF) is also analysed.

HSURF and HMSURF are studied as visual module candidate alternatives, where we

call visual module in the subsystem of the VSLAM solution responsible for all the vi-

sual processing tasks. The main goal of this study is finding a visual solution capable

of overcoming the limitations of SURF description due to illumination changes.

Extensive experiments were conducted to provide a deep analysis on the visual

processing stages involved in the proposed VSLAM solution. Thus, feature detec-
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tion and feature matching and also landmark management are topics in the scope of

this chapter. The best tradeoff between accuracy of VSLAM and execution time is

achieved.

The analysis in this Chapter has two distinct parts. The first emphasises on

studying the influence on VSLAM of the most important visual parameters, section 5.2.

The second part consists of a comparison of the navigation results obtained using tested

techniques both for indoor and outdoor sequences, section 5.3 and section 5.4. It is

showed that HMSURF based VSLAM is the best alternative in comparison to the other

tested possibilities. Section 5.5 concludes with final discussions and remarks.

5.2 HMSURF characterisation

This section presents a thorough characterisation of our HMSURF-VSLAM imple-

mentation. Using an indoor dataset composed of 100 pairs of stereo images and the

ground truth robot odometry corresponding to the travelled distance, the system is

tested for different test conditions. The trajectory of the studied sequence corresponds

to an arc that takes place on a flat indoor surface. These conditions allow us to consider

the estimation of planar motion only, where two degrees x, y of freedom (DOF) are

used to determine the position in the plane and a third ψ is used for the attitude. The

data was collected from a Pioneer3 AT equipped with a Bumblebee stereo camera [89].

Figure 5.1 shows a few images extracted from the sequence.

A black-box testing technique has been chosen to analyse the system. Using

the same input sequence of images one visual module parameter is changed at a time,

while the rest of the systems parameters remain fixed, for the results generated here.

In addition, the robustness of the system has been studied by corrupting the
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Figure 5.1: Sample images extracted from the experimental sequence.

system’s input with noise of different intensity and nature. The noises used correspond

to zero mean Gaussians, whose standard deviations are generated as percentages of the

nominal input values. These percentages that determine the levels of noise are specified

on the tables that summarise the experiment conditions for each of the experiment.

The three following parameters have been considered to be most influential:

I Matching threshold: Is the parameter responsible for the stereo matching of

features detected in left and right images.

I Number of detected features: Is the parameter that determines the amount of

information from the images that will be used.

I Covariance matrix initialisation for new landmarks: Is how the system to

model the uncertainty of the new landmarks added to the system.

The rest of the influencing parameters have been tuned to optimise the visual

module used in our VSLAM solution. However, we have decided that the parameters

mentioned above are the most relevant and influential. This means excluding tuning

the association threshold due to the large number of tuneable parameters.
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5.2.1 Influence of the matching threshold

The importance of the matching threshold resides in the fact that it is responsible for

rejecting the ambiguous matches caused by the similarity of more than one descriptor

of the features in the same image. When two or more descriptors of the features in the

right image are not different enough, their distances with respect to the descriptor of

the feature to be matched in the left image will be similar. This is one of the causes of

false matching that can be avoided by tuning the value of the matching threshold.

Here we test different values for the matching threshold for VSLAM based on

proposed HMSURF, and show computational costs and estimation performance.

For this test 7 different threshold values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} have

been considered. Note that the value of the matching threshold has to be contained be-

tween [0,1]. Although at first sight the reader could consider the possibility of testing

a bigger set of values, the fact that the optimal value for this threshold can differ de-

pending on the nature of the images sequence, makes the sharpening of this dependant

on the training sequences. Table 5.1 summarises other relevant experiment conditions.

The extreme values of the matching threshold have important implications.

Table 5.1: Matching threshold experimental conditions.

Experiment condition Value Units
Features 80 [#]
max. landmarks 20 [#]
Association threshold 0.15 [-]
Matching threshold {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} [-]
Velocity 120 [mm/s]
Angular rate 5 [deg/s]
Velocity noise std. 10 [%]
Angular rate noise std. 5 [%]
Error type unbiased [-]
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Table 5.2: Summary of results varying the matching threshold.

Threshold [-] 0.1 0.2 0.3 0.4 0.5 0.6 0.7
avg(e) [mm] 38 41 21 25 14 14 48
max(e) [mm] 85 80 50 70 32 43 90
avg(eψ) [deg] 2.2 1.2 1.3 0.8 0.3 0.4 0.4
max(eψ) [deg] 5.5 2.9 3.2 2.0 0.9 1.2 0.9

Let us recall that the matching threshold κ is utilised as in ξ1 = κ ·ξ2, where ξ1 and ξ2

are the distances from the descriptor that is intended to be matched with respect to the

two best matches found for this among a set of candidates, section 3.4. Then when the

matching threshold is set to be equal to zero it means that only exact correspondences

between descriptor vectors are accepted as valid matches. On the contrary when the

matching threshold is chosen to be equal to one it means that two descriptor can be

equal, thus ambiguous matches are allowed.

Table 5.2, summarises the pose and attitude estimation errors computed as ab-

solute values with respect to the real pose. The table shows averages in time of the

location error avg(e) and yaw angle error avg(eψ), and the maximum values of the

location error max(e) and the yaw angle error max(eψ). As it is seen from the table,

the minimum errors are obtained for 0.5.

Figure 5.2 displays the pose and attitude errors versus matching threshold. Al-

though the attitude error seems to decrease as the threshold is augmented, it is seen

that the location errors look like a convex function, where values either too low or too

high make the error increase.

Figure 5.3 summarises the time consumption corresponding to a full EKF itera-

tion obtained for different threshold values. Displayed values are average values of the

time expenses per time-steps.
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Figure 5.2: Pose and attitude errors varying matching threshold.
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Figure 5.3: Time consumption per time-step [s] varying matching threshold.

Note then the time consumption increases by augmenting the value of the thresh-

old. This is caused by the relaxation on the acceptance condition that allow a higher

number of valid matches. The higher the threshold the more the number of accepted

features.

Figure 5.4 shows the best pose estimation results obtained from this test. The

reduction of the error in the pose estimation with respect to the odometry is at least

8cm. Similar improvement is observed on the angle estimation in Figure 5.6b.
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Figure 5.5: Pose error for suboptimal matching threshold conditions.
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Figure 5.6: Influence of the matching threshold on the attitude estimates.
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When suboptimal matching thresholds are used accuracy losses can be observed

on the estimation results as shown in Figure 5.5. The plot on the left-hand side of the

figure was obtained using a low matching threshold (0.2). Conversely the plot on the

right-hand side was obtained for a high matching threshold (0.7). It is seen that both

cases are cause of pose estimation accuracy losses.

Similar results are obtained for the attitude estimation. Figure 5.6 presents the

attitude estimation results obtained for an optimal matching threshold value (0.5) and

a suboptimal value (0.2).

The matching threshold used for the stereo pair matching operation has impor-

tant effects over the whole VSLAM process. Although for the shown cases there is not

a case of divergence in the pose estimation, this could be an emerging problem caused

by the selection of unappropriated matching threshold.

Low threshold values make the system less sensitive to the visual information.

In this case, a number of correct features pairs will be rejected, entailing the loss of

information usable for the VSLAM system updates. High matching thresholds allow

matching of incorrect feature pairs in ambiguous environments where the feature char-

acterisation and description is not strong enough.

Under these considerations, we recommend the use of intermediate values of

matching threshold. The fact that the best results are achieved using a matching thresh-

old of 0.5 for our batch of experiments does not mean that this value will perform well

for all cases.

We also want also to emphasise that use of high matching threshold values aided

by additional outlier rejection methods to guarantee a unique and reliable matching

process should not be discarded for future research.
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5.2.2 Influence of the detection threshold

A second experiment has been conducted to analyse the influence of the number of

detected features on our HMSURF-VSLAM in terms of performance and time con-

sumption.

The developed implementation allows us to decide the number of features ex-

tracted in the detection step. Indeed, the proposed method uses Harris detector for

feature extraction and our implementation is able to select any number of features, N,

whose cornerness value is the greatest.

For the test here, the number of detected features have been given the values

{20, 40, 80, 150, 200}. Figures presented here show series of results named after the

number of detected features as HMSURF #, where # is the number of detected points

used for the corresponding series. Table 5.3 summarises other experiment conditions.

The VSLAM system has been tested adding different magnitude input perturba-

tions. Two types of noises have been considered: biased and unbiased. The unbiased

noises are just added to the input signals, while the biased also add an offset equal to

the value of the noise standard deviation.

Table 5.3: Influence of the number of detected features, experimental conditions.

Experiment condition Value Units
Features {20,40,80,150,200} [#]
max. landmarks 20 [#]
Association threshold 0.15 [-]
Matching threshold 0.5 [-]
Velocity 120 [mm/s]
Angular rate 5 [deg/s]
Velocity noise std. {5,10,35} [%]
Angular rate noise std. {2,5,20} [%]
Error type biased / unbiased [-]
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5.2 HMSURF characterisation
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Figure 5.7: Pose and attitude errors varying the number of detected features.
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Figure 5.8: Estimates of the robot states varying the number of detected features.
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5.2 HMSURF characterisation

Table 5.4: Summary of estimation results varying the number of features.

Noise type [-] unbiased biased
Features [#] 20 40 80 150 200 20 40 80 150 200

avg(e) [mm] 50 45 23 20 20 45 50 28 25 21
max(e) [mm] 130 90 40 35 50 132 92 43 40 50
avg(eψ) [deg] 1.4 2.2 1.3 1.3 1.5 1.5 2.3 1.4 1.3 1.7L

ow

max(eψ) [deg] 3.4 3.0 2.0 1.9 2.3 3.4 3.0 2.0 2.1 2.3
avg(e) [mm] 32 20 15 16 22 32 18 12 15 25
max(e) [mm] 105 60 35 53 70 113 68 31 36 52
avg(eψ) [deg] 0.8 0.7 0.3 0.6 0.5 0.7 0.8 0.4 0.7 0.6M

ed
iu

m

max(eψ) [deg] 1.7 1.3 0.8 1.7 1.5 1.7 1.3 1.2 2.0 1.7
avg(e) [mm] 32 48 50 65 85 18 30 38 45 72
max(e) [mm] 90 120 140 240 205 50 70 105 190 170
avg(eψ) [deg] 0.3 0.6 0.6 0.7 0.8 0.5 0.8 0.7 0.9 0.9

N
oi

se
le

ve
l

H
ig

h

max(eψ) [deg] 1.0 2.3 1.7 2.8 2.7 1.6 3.2 2.3 3.2 3.1

Table 5.5: Time expenses varying the number of detected features.

Noise type [-] unbiased biased
Features [#] 20 40 80 150 200 20 40 80 150 200
Low [s] 0.25 0.40 0.70 1.20 1.60 0.26 0.46 0.75 1.28 1.70
Medium [s] 0.22 0.40 0.73 1.25 1.65 0.27 0.42 0.76 1.32 1.75

N
oi

se
le

ve
l

High [s] 0.25 0.42 0.75 1.30 1.72 0.26 0.43 0.74 1.26 1.68

For the first noise level (Low), deviations with respect to the nominal values of

5% and 2% of the velocity and angular rate are considered respectively. This means

that, for a scenario where the robot moves with a constant velocity of 120 [mm/s], the

perturbed velocity values will be contained in the interval [102, 138] [mm/s] for an

unbiased noise and in the interval [138, 156] [mm/s] for a biased noise. These values

are computed considering that the 99.7% of the values are within three standard devia-

tions. Analogously, the medium noise corresponds to standard deviations of 10% and

5% of the nominal values of the velocity and angular rate. High noises are generated

from standard deviations of 35% and 20% of the velocity and the angular rate nominal

values.
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5.2 HMSURF characterisation

Figure 5.7 shows the pose and attitude estimation results obtained for the dif-

ferent feature detection settings. These results are obtained for a medium size biased

input perturbation. The right-hand side figures represent the average of the errors, that

allows as to see the trend of the errors.

Figure 5.8 shows one of the obtained estimation results for each cartesian coor-

dinate and the bearing angle of the robot of the different possibilities studied in this

section.

Table 5.4 summarises estimation errors of the different series, both for pose and

for attitude with respect to the real pose. Average in time of the pose estimation error

avg(e) and average in time of the yaw angle estimated error avg(eψ) as maximum

pose error max(e) and maximum yaw angle error max(eψ) are given. Best results are

displayed in green, whereas weakest results are shown in red.

Table 5.5 summarises the computational cost of our HMSURF-VSLAM per

EKF iteration. As expected, we can see that the more features are detected the higher

the time consumption is. Despite the fact that it cannot be considered as a linear de-

pendency, there is a clear trend that allows us to consider that the time expenses on the

VSLAM based on HMSURF is proportional to the number of features acquired in the

detection step. These time expenses are not only due to the time required for detection

and description but also for the landmark association process. Taking into account this

proportionality between the time expenses and the number of features used, it seems

reasonable to think that a trade-off between both of them should be found to satisfy the

accuracy requirements for the pose estimation without exceeding the available time.
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5.2 HMSURF characterisation

From the experimental results the following can be added:

I For extremely intense noise perturbations, both biased and unbiased, HSURF-

VSLAM performs better with a lower number of features, 20 in our experiments.

I For low to medium noise perturbations, both biased and unbiased, the estimation

errors are reduced, or contained within reasonable boundaries, as the number of

detected features augments.

For a trade-off solution, suitable in case of previously unknown noise perturba-

tions, an intermediate number of features have to be used. The case of 80 features in

our experimentation would be in this category.

For further analysis the direct effects of the variation of the number of features

on the number of associated landmarks can be studied as part of future research.

5.2.3 Influence of the covariance matrix initialisation

When the descriptor of a pair of matched features is not associated with any of the

existing landmarks in the VSLAM state vector, it is considered a new landmark that

has to be added into the system. This entails modifications both on the state vector and

on the process covariance matrix of the system.

The addition of a landmark to the state vector does not imply any difficulty. It

consists in reconstructing the landmark from the pair of associated features through the

inverse of the observation model and appending the values to the state vector.

The state covariance matrix is augmented by adding m lines and m columns to it,

where m are the dimensions of the landmark, normally three. These lines and columns

contain the information relative to the covariances between the landmark location and
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5.2 HMSURF characterisation

Table 5.6: Influence of landmarks initialisation experiment conditions.

Experiment condition Value Units
Features {40,80} [#]
max. landmarks 20 [#]
Association threshold 0.15 [-]
Matching threshold 0.5 [-]
Velocity 120 [mm/s]
Angular rate 5 [deg/s]
Velocity noise std. 10 [%]
Angular rate noise std. 5 [%]
Error type unbiased [-]

the rest of the system’s states. The cross covariance terms that link the landmark

position to the other states used to be set to zero, whereas the box corresponding to

the terms of the landmark itself are conveniently initialised.

Some implementations initialise this covariance matrix box to using the identity

matrix, which means that the 3D landmark position is considered to be exactly known.

However, the landmark position is an estimation obtained through the inverse obser-

vation model which due to the nonlinearities will not be exact. Then initialising the

covariance matrix box for the new landmark using an identity matrix will cause esti-

mation errors. One reason to initialise this matrix to the identity is that the landmarks

are considered stationary.

This section shows the benefits of modelling the uncertainties of the added land-

marks by initialising the covariance matrix boxes for new landmarks as scalar matrix

boxes. This alternative initialisation allows the system to cope with the measurement

uncertainties present on the first estimation of the landmark position.

The experimental conditions for HMSURF-EKF VSLAM, used to test the dif-

ferent possibilities for the state covariance initialisation for new landmarks are sum-

marised in Table 5.6.

108



5.3 Comparison of VSLAM using SURF and HMSURF

Time-step

Po
se

E
rr

or
[m

m
]

0 10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

HMSURF
Odometry

Scalar matrix initialization
Time-step

Po
se

E
rr

or
[m

m
]

0 10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

HMSURF
Odometry

Identity matrix initialisation

Figure 5.9: Pose error varying landmarks initialisation.

Figure 5.9 shows the type of results obtained using the proposed initialisation

that adds a scalar matrix box into the covariance matrix and the results obtained when

an identity matrix box is used instead. The examples correspond to a series for which

the number of detected features is 40.

From the results shown here, it is clear that the trend as the peak of the errors

using the identity matrix for the initialisation of new landmarks are worse than the ones

obtained using the proposed strategy. For this test uncertainty on the feature position

of 30mm is considered, this means that a scalar matrix containing 900 on the diagonal

is used for the initialisation of the new landmarks.

5.3 Comparison of VSLAM using SURF and HMSURF

The previous subsection has shown some of the considerations that have to be taken

into account in order for our HMSURF-VSLAM to behave as expected. In this sec-

tion, two experiments are presented to compare the results obtained using the our new

strategy as opposed to a SURF-VSLAM solution.
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5.3 Comparison of VSLAM using SURF and HMSURF

Table 5.7: SURF vs. HMSURF system experimental conditions.

Parameter Value Units
Velocity 120 [mm/s]
Angular rate 5 [deg/s]
Velocity noise std. {10,20,30} [%]
Angular rate noise std. {5,20,30} [%]
Error type unbiased [-]

Table 5.8: SURF vs. HMSURF visual module experimental conditions.

Parameter SURF HMSURF Units
Features 80 40 [#]
max. landmarks {10,20,40} {10,20,40} [#]
Association threshold 0.05 0.15 [-]
Matching threshold 0.5 0.5 [-]

For the experiment here, both SURF and HMSURF methods have been tuned to

run in optimal conditions over the same sequence of stereo images. In order to compare

the accuracy of the results fairly the input noises are exactly the same for both visual

module possibilities. The motivation for this experiment is the collection of enough

information to conjecture which of the visual processes is more likely to give better

results for general VSLAM cases.

As in previous experiments in this chapter, the visual methods have been tested

under different perturbation conditions. Likewise the maximum number of landmarks

used for the mapping process has been given different values to test its influence here.

The most relevant system settings and configurations of the visual models are sum-

marised in Table 5.7 and in Table 5.8.

Table 5.9 shows values of the average pose estimation error avg(e) and average

of attitude estimation error avg(eψ). Likewise, peak values of the pose and attitude

estimation errors are also summarised in the table.
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5.3 Comparison of VSLAM using SURF and HMSURF

Table 5.9: Summary of results for SURF and HMSURF comparison.

Method [-] SURF HMSURF
Landmarks [#] 10 20 40 10 20 40

avg(e) [mm] 26 25 21 26 19 21
max(e) [mm] 50 48 43 68 65 58
avg(eψ) [deg] 1.3 1.2 1.2 0.6 0.7 0.7L

ow

max(eψ) [deg] 2.4 2.2 2.1 1.4 1.5 1.4
avg(e) [mm] 34 36 34 23 25 22
max(e) [mm] 73 70 60 47 55 40
avg(eψ) [deg] 1.3 1.3 1.2 0.5 0.7 0.9M

ed
iu

m

max(eψ) [deg] 3.7 3.8 3.6 2.1 2.6 3.1
avg(e) [mm] 45 46 42 15 24 18
max(e) [mm] 99 93 82 43 55 38
avg(eψ) [deg] 1.5 1.5 2.7 0.6 0.9 2.5

N
oi

se
L

ev
el

H
ig

h

max(eψ) [deg] 4.4 4.5 2.7 2.8 3.8 2.8

Table 5.10: Time expenses for SURF and HMSURF.

Method [-] SURF HMSURF
Landmarks [#] 10 20 40 10 20 40
Low [s] 0.58 0.72 0.54 0.44 0.53 0.42
Medium [s] 0.68 0.69 0.54 0.52 0.51 0.43

N
oi

se
le

ve
l

High [s] 0.64 0.62 0.53 0.47 0.48 0.42

Table 5.10 summarises the time expenses per EKF iteration using SURF and

HMSURF as visual modules together with our VSLAM solution. One of the derived

advantages of HMSURF with respect to SURF is time consumption. The results shown

in this section show that the HMSURF-VSLAM system is able to perform better than

the SURF-VSLAM system with a lower computational cost. Note that the number of

detected features is twice as much for SURF than it is for HMSURF.

At the light of the results we can say that the HMSURF visual module leads to

better results for the pose and attitude estimation than SURF when integrated into an

EKF-VSLAM algorithm.
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Figure 5.10: Trajectory estimates using SURF and HMSURF.

Figure 5.10 shows the trajectory estimation results obtained when medium in-

tensity noise corrupts the system’s input.

There is only one case where HMSURF solution seems to perform slightly worse

than SURF. This case corresponds to an extreme scenario where the lack of balance

between the number of landmarks used for the map and the number of features de-

tected on the stereo image leads to atypical results. In the rest of scenarios HMSURF

performs comparably or even better than SURF.

5.3.1 Harris corners with SURF (HSURF)

At this point it may look reasonable thinking that there is a possible development

that has been under-considered or skimmed over when HMSURF was presented, sec-

tion 3.8. A reader would wonder why Harris corners are not simply detected from

original images and combined together with SURF descriptors without need for mo-

ment images to be computed.

Although the main reason for the moment images to be incorporated is the addi-

tional invariance to illumination changes that they induce, we consider that this Chapter

is the right place to add the results obtained using Harris corners with SURF descrip-

tors (HSURF) for the sake of completeness.

112



5.3 Comparison of VSLAM using SURF and HMSURF

Table 5.11: SURF, HSURF & HMSURF system experimental conditions.

Parameter Value Units
Velocity 120 [mm/s]
Angular rate 5 [deg/s]
Velocity noise std. 10 [%]
Angular rate noise std. 5 [%]
Error type unbiased [-]

Table 5.12: SURF, HSURF & HMSURF visual module experimental conditions.

Parameter SURF HSURF HMSURF Units
Features 80 40 40 [#]
max. landmarks 20 20 20 [#]
Association threshold 0.05 0.15 0.15 [-]
Matching threshold 0.5 0.5 0.5 [-]

It is important recalling that both HSURF and HMSURF perform feature de-

scription over the original images.

This subsection presents a simultaneous comparison of the results obtained us-

ing the algorithms HMSURF, HSURF and SURF with our VSLAM implementation.

Table 5.11 and Table 5.12 present the experiment conditions used for the test conducted

to compare the three VSLAM visual modules.

As it is seen in Figure 5.11 the most accurate estimate for the robot’s pose is

obtained using HMSURF. This is also supported by the errors shown in Figure 5.12

where the error for HMSURF is lower that the error when SURF or HSURF are used.

Looking at the left-hand side plots of this figure, we can say that HMSURF is the visual

module that yields to the best VSLAM estimation from the 50th time-step.

Time consumptions using HSURF and HMSURF have been observed to be

lower than using SURF. HMSURF provides the lowest time consumption due to the

association time reduction that makes up even for the moment images computation.

113



5.3 Comparison of VSLAM using SURF and HMSURF

x [mm]

y
[m

m
]

40

60

80

100

120

HSURF
HMSURF
Odometry
Real

140

0 100 200 300 400 500

0

20

600

SURF

Figure 5.11: Trajectory estimates using SURF, HSURF & HMSURF.
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Figure 5.12: Pose and attitude errors using SURF, HSURF & HMSURF.
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5.4 HMSURF based VSLAM for long range outdoor trajectory

5.4 HMSURF based VSLAM for long range outdoor

trajectory

This experiment used a challenging navigation dataset presenting a long enough tra-

jectory of a ground vehicle equipped with a high quality stereo setup system and a

high accuracy inertial navigation system [90, 91]. With this dataset the validation of

our HMSURF-VSLAM is done and compared to the ground truth data and the system

odometry data. Figure 5.13 shows some images extracted from the dataset used.

Figure 5.13: Sample of images used from large outdoor sequence.
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5.4 HMSURF based VSLAM for long range outdoor trajectory

Figure 5.14 shows the HMSURF-VSLAM estimates for the long vehicle tra-

jectory in comparison to the odometry data. Furthermore, our HMSURF-VSLAM

approach has shown good capabilities in coping with orientation changes that is one

of the main reasons of the inertial navigation data drifts. The VSLAM solutions using

HMSURF preforms better that the odometry results as seen in the figure.
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Figure 5.14: Trajectory estimates for large outdoor sequence.
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5.5 Conclusion

In this Chapter we have developed an extensive testing of a new solution for VSLAM

problem based on stereo cameras and HMSURF.

The visual processing of this solution was based on the integration of the Harris

corner detector and the robust SURF descriptor run over moment images instead of

the acquired intensity images. Analysis of the results from the experiments conducted,

provided a good tool for evaluating how the visual processing is affecting the estima-

tion obtained through VSLAM solutions. These analysis permit us to best tune the

visual module parameters to improve results of the VSLAM solutions.

Finally it was shown that the stereo VSLAM solution proposed based on the

HMSURF visual processing is efficient and reliable as a VSLAM alternative compar-

ing with SURF-VSLAM.
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Chapter 6
Robust Egomotion by Least Squares

6.1 Overview

Visual Odometry has been widely studied over the past decades. This is an alternative

solution for autonomous navigation systems to the vision-based filtering approaches,

explained in chapter 4 and chapter 5. As opposed to the solution presented before, this

family of solutions does not model the state of the systems and its dynamics, relying

on the system observations rather than on a transition model.

There are a significant number of applications oriented to assist manned vehicles,

including on road vehicles [92, 93]. However, there are other applications were these

vehicles are required to operate unmanned and autonomously because of security and

safety requirements [94] or due to limited size of the platforms, e.g. an unmanned

helicopter [95].
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6.1 Overview

A recent example is the Mars exploration mission part of the European AURORA

program which is a current challenging engineering problem where an unmanned robot

known as “Rover” is proposed to traverse the terrain of Mars and collect samples in

order to analyse the geochemical environment of the red planet.

The absence of GPS on the planet requires the localisation process of the vehicle

to be highly dependent on its on-board sensors, one of which will be a stereo camera.

Natural features can be detected by such sensors and processed to produce a 3D recon-

struction of the environment which can be subsequently used by the robot to compute

its relative location. This process is generally known as Structure From Motion (SFM)

or egomotion. Some solutions on real time Structure From Motion also called monoc-

ular SLAM are available in the literature [45, 96]. These methods are often based on

Kalman filtering that do not always provide the desired level of accuracy for motion

estimation. The work in this instance is motivated by a robot equipped with a stereo

camera set, where the rate of image acquisition is restricted as previously discussed by

Johnson et al. [97], where a scheme similar to the Visual Odometry (VO) proposed by

Nister et al. [98] is the chosen solution.

A desire to exploit the available hardware on a reduced size platform free of

filtering approaches has motivated the work shown in this chapter. Furthermore we

want to quantify the constraints of stereo visual odometry techniques on long range

trajectories.

The Chapter is organised as follows: section 6.2 is a review of the visual and

motion estimation techniques used in our least square solution. Section 6.3 presents

theoretical analysis of the selected techniques on synthetic data scenarios. Section 6.4

shows the effectiveness of our stereo egomotion over a long-range trajectory. Finally,

section 6.5 highlights main findings of the work [99].
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6.2 Methodology

This section aims to recall the basis of some of the used techniques, while the reasons

for taken for our implementations are conveniently justified and explained. Firstly, the

management of the visual information is briefly treated in the subsection “Features de-

tection and tracking”, subsection 6.2.1, recalling some ideas from chapter 3. Secondly,

singular value decomposition (SVD) and Quaternion motion estimation approaches

are reviewed here as suitable least square solutions for the stated problem, subsec-

tion 6.2.2. A brief introduction to the random sample consensus (RANSAC) algorithm

and its specific application in our work is presented at the end of this section.

6.2.1 Feature detection and tracking

Feature detection and tracking is used in this Chapter only when we adapted the motion

estimation techniques for real image data. In spite of that, for all the experimental

results of this work the need for descriptors is present.

Indeed, the detection step is assumed to be done when synthetic data are used.

Nonetheless, a way to do the landmarks tracking is indispensable. In order to resolve

this, artificial descriptors of 64 elements have been created and uniquely assigned to

each synthetic landmark to label them and allow its recognition at every time.

On the other hand, for real images and based on the positive results achieved

when combining Harris corners with SURF descriptors [59] (chapter 3), the selected

solution consists of a combination of the good features to track explained in [63] by J.

Shi et al. and SURF descriptors [28] to characterise the detected features. The reliabil-

ity of the SURF matching combined with the robust corners detection has previously

shown us to give better results than the whole SURF method itself [59].
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Two different detection possibilities have been tested for the real data experi-

ments. The first one is HSURF while the second one is HMSURF. These two detection

alternatives are introduced and analysed in chapter 3 and chapter 5 respectvely.

6.2.2 Motion estimation

Many solutions can be found to solve the egomotion problem [23]. Some of these

solutions are only based on numerical methods for over constrained systems, while

other approaches are oriented to the rejection of the data that is not reliable, the out-

liers. This section shows two approaches to estimate the motion of the robot using the

information of a set of 3D points in its environment.

The first approach for the motion estimation from the 3D information provided

by the stereo imaging system originates from the Singular Value Decomposition (SVD)

factorisation method.

The second approach, used in the present work, to calculate an estimated robot

motion is the so-called “Quaternion motion estimation” technique.

6.2.2.1 Singular Value Decomposition (SVD)

For every linear system of the formAz = b whereA ∈Rm×n (m≥ n) , there exists an

SVD factorisation of the system matrix A, (6.1), such that the pseudo-inverse matrix

A+ can be obtained as in (6.1). On these conditions, the solution of the system can be

computed as shown in (6.3). Hence, the SVD factorisation is a way of calculating a

least square solution for over constraint systems. The rectangular matrix Σ ∈ Rm×n is

a nonnegative and diagonal matrix, containing the singular values of the matrixA.
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6.2 Methodology

A =U Σ V ∗ (6.1)

A+ = V Σ+ U ∗ (6.2)

z =A+b (6.3)

where the matrix Σ+ is the pseudo inverse of the matrix Σ. The matrices U ∈ Rm×m

and V ∈Rn×n are unitary matrices formed by the sets of orthonormal input and output

basis vectors respectively. The index * indicates conjugated and transposed.

In the case of a moving robot the rotation matrix,R, and the displacement vector,

t, are the unknowns on the motion estimation problem. Under the assumption of a

rigid solid environment, where the position of a known set of landmarks with respect

to the mobile reference system is {x(i)
k }, and after the motion, {x(i)

k+1}, we can write the

following equation for every landmark (i):

x
(i)
k =Rk→k+1 ·x(i)

k+1 + tk→k+1 (6.4)

where Rk→k+1 represents the rotation from k to k+1 and tk→k+1 represents the trans-

lation. In order to alleviate the notation they are commonly written asR and t.

To solve the system composed of the equations for every landmark through the

SVD factorisation, the equations must be recast writing the elements of the unknowns,

R and t, into a vector z. We will normally set a vector z ∈ R12 composed of nine

elements that define a rotation matrix R ∈ R3×3 and three for the displacement vector

t ∈R3, although its dimension can be reduced when less Degrees Of Freedom (DOFs)

are required.
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Figure 6.1: Singular Value Decomposition for motion estimation.

Figure 6.1 illustrates how motion can be estimated using SVD. On this example,

a set of 4 points (red) originally contained in the ground plane OXY , are transformed

by applying the translation vector t and the rotation matrix R into a new set (green).

White noise wi ∼ N(0, 0.025 ∗ ti) is added into each of the coordinates of the trans-

formed points. From the set of resulting points (cyan) SVD is applied to obtain R̂ and

t̂. The estimate of the transformation is ultimately used to compute the approximated

points (blue).

It can observed from the example shown in Figure 6.1 that SVD does not guar-

antee the orthogonality of the estimated rotation matrix R̂. Likewise, this example at

Figure 6.1 shows that, nonetheless the approximation of the points (blue) lie very close

to the actual transformed points (green), the estimates of the rotation and translation

are dramatically distorted for small perturbations on the input. The root mean square

error (RMS) induced by the perturbation here is as low as 0.01.
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6.2 Methodology

6.2.2.2 Quaternion motion estimation

This technique, proposed in 1987 by Berthold K. P. Horn [100] is a closed-form solu-

tion to the least square problem and a suitable solution for over-constrained systems.

This statistical method uses the properties of the quaternion representation to find an

approximation for the rotation and translation of the robot.

For two corresponding landmark sets, {x(i)
k } before motion and {x(i)

k+1} after the

motion, under the assumption that the environment behaves as a rigid solid, as shown

in (6.4), the mean vectors and the cross-covariance matrix of the sets are computed as:

µk =
1
n

n

∑
i=1

x
(i)
k (6.5)

µk+1 =
1
n

n

∑
i=1

x
(i)
k+1 (6.6)

Σk,k+1 =
1
n

n

∑
i=1
〈x(i)

k+1,x
(i)
k 〉−〈µk+1,µk〉 (6.7)

where 〈x,y〉 denotes the dot product of any pair of vectors x,y ∈ Rm.

From the calculated cross-covariance, the matrixQ is computed:

A= Σk,k+1−
[
Σk,k+1

]T (6.8)

∆ = ( a23 a31 a21 )T (6.9)

Q(Σpx) =

 tr(Σk,k+1) ∆T

∆ Σk,k+1 +
[
Σk,k+1

]T
+ tr(Σk,k+1) ·I3

 (6.10)

where tr(Σk,k+1) is trace of the matrix Σk,k+1 and I3 ∈ R3×3 is the identity matrix.
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6.2 Methodology

It is given that the eigenvector associated to the largest eigenvalue of this ma-

trix Q is the quaternion qR = ( q0 q1 q2 q3 )T corresponding to the least squares

solution for a rotation transformation from {x(i)
k } to {x(i)

k+1}. Thus, the rotation matrix

associated to the quaternion qR is written as seen in (6.11). The translation vector is

computed based on the rotation matrix.

R=


q2

0 +q2
1−q2

2−q2
3 2(q1 q2−q0 q3) 2(q1 q3 +q0 q2)

2(q1 q2 +q0 q3) q2
0 +q2

2−q2
1−q2

3 2(q2 q3−q0 q1)

2(q1 q3−q0 q2) 2(q2 q3 +q0 q1) q2
0 +q2

3−q2
1−q2

2

 (6.11)

t= µk−Rµk+1 (6.12)

Figure 6.2 shows some motion estimates using the method presented in this sec-

tion. The original transformation composed of the rotation R and the translation t,

shown at the bottom of the page, is applied to the original set of points (blue). After

that, the results are perturbed adding some white noise into the values (green). This

perturbation emulates the observation error on landmark positions.

The approximated position of the landmarks obtained from the original set using

the estimated motion are displayed in red. Estimation results are shown for different

sizes of observed landmark sets, 3, 4 and 5 points.

R=


0.94 −0.34 −0.09

0.32 0.93 −0.17

0.14 0.13 0.98

 t=


0

0

1


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Figure 6.2: Quaternion motion estimation.
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6.2.2.3 Random Sample Consensus algorithm

RANSAC, on abbreviation of “Random Sample Consensus”, is a well-known iterative

algorithm used to estimate parameters of a mathematical model. Based on the idea that

not all the observed data is reliable, this method classifies them in two different sets,

inliers and outliers.

The target of this iterative method is to obtain, in a reduced number of attempts,

a good estimation of the model that describes the dominant transformation of the input-

output pairs. However, the algorithm does not guarantee the correctness of the solution.

What is guaranteed is obtaining a solution biased to the trend of the data. For a math-

ematical model with n parameters to be determined the process comprises the next

steps:

(1) A random set of n inputs with theirs respective n outputs is used to calculate the

first estimation of the transformation.

(2) All the inputs are transformed using the estimation computed at step 1. The

distance from the estimated outputs to the real outputs is computed.

(3) A fixed distance threshold is the decision parameter to split the data into two

sets: the support group and the non-support group. If the support group is big

enough step 4 is computed, otherwise one of the following options apply:

(a) If the attempt is the last one allowed, step 4 is computed from the support

group containing more members.

(b) If it is not the last attempt the algorithm resumes from step 1, adding one

to the attempts counter.
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6.2 Methodology

(4) All the members in the support group are used to compute the final estimation

of the parameters. This is an over-constrained system where SVD or any other

least square solution can be used.

The RANSAC algorithm is commonly applied in the literature [91, 101] to reject

mismatches coming from the stereo matching or from landmarks tracking. Despite of

that this is not the only reason why we are using the algorithm in this chapter. Some

of the results that we show were obtained using synthetic data. In this case, there are

no outliers to be rejected coming from mismatching of features or wrong association

of landmarks. However, when the value of the synthetic feature location is truncated

to certain precision, reprojection errors appear as a consequence. Then, RANSAC can

still be useful as a technique to refine the rotation and translation estimations. Indeed,

to generate the synthetic data used in this chapter, a stereo camera set was modelled.

This allowed us to test the influence of the precision loss occurred in the digitisation

step preformed in the cameras in the projection process. This precision loss that takes

place at image level implies quality losses on the accuracy of the 3D reconstructed

coordinates.

Hence, RANSAC is not only used for the rejection of outliers appearing in real

images sequences, but also over the synthetic data as it has shown to improve results

because of the mitigation of the influence of the poorly located landmarks due to re-

projection errors.
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6.3 Egomotion analysis from synthetic data

6.3 Egomotion analysis from synthetic data

This section shows a few egomotion results obtained over synthetic data using the

previously explained techniques.

To evaluate motion estimation independently from other aspects influencing the

visual navigation performance, i.e. feature extraction and matching, data has been

generated such that detection and description of features has been dropped out of this

analysis. Instead, information of the features is inputed in the system to perform 3D

reconstruction and motion estimation. We made this possible by creating synthetic 3D

scenarios composed of nearly one thousand points A model of a camera stereo set,

composed of two low-resolution cameras 320×240 [pixels] with 12 [cm] of baseline,

has been used to project scenario points in the camera frames. This has allowed us to

study the influence on the estimators caused by variations in the sub-pixel precision

of the feature locations. Figure 6.3 shows an example image of what the cameras

on-board of the virtual robot would capture from the created 3D scenario.

Figure 6.3: Sample of synthetic stereo images
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Figure 6.4: Trajectory estimation for different levels of precision.

Generated data corresponds with every kind of planar motions: pure rotation,

pure translation and their combinations. The 3D position of the points is available at

every time, thus the ground truth can be compared with the estimation results.

Features are labelled with artificial created descriptors, which allow their unique

recognition for stereo matching and tracking.

Figure 6.4 shows the results of the trajectory estimation. The series correspond

to estimations carried out by SVD and quaternion method, both computing 6 DOF and

a DOF-reduced SVD where only 3 DOF are compute. Determining only plane rotation

and both plane displacements. There are three series for each of the quaternion + 3-

DOF-SVD method. Each of these series corresponds with a different level of precision

on the feature locations. The number appended to each series name represents the

number of decimal places (1, 2 or 0) to which the feature location value is truncated.

For the SVD with 6 DOF only a series corresponding to two decimals places is shown

because results obtained with lower degrees of precision were significantly worse.

Figure 6.5 corresponds to the 3D location errors of the robot, computed as the

Euclidean distance between the estimated locations and the ground truth location. Fig-

ure 6.6 corresponds to the heading angle errors, computed as the absolute difference

between the ground-truth heading angle of the robot and its estimations.
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Figure 6.6: Heading angle error for different estimators and levels of precision.

According to the results for trajectory estimation, we see that both methods 3-

DOF-SVD and quaternion behave similarly for every level of precision on the input

feature locations following closely the ground truth trajectory. It is seen that all the

presented methods are able to behave correctly in a qualitative way.

As expected, it is seen that the higher the precision in the features locations the

better the results are. This is due to the improvement on the features location, that

makes the 3D reconstruction error to diminish as the 2D uncertainty is reduced.

It is also seen from the results, that both quaternion method and 3-DOF-SVD

method give similar results, for those series where the location of the features is pro-

vided with precision up to the first decimal on the sub-pixel position. However, when

the sub-pixel accuracy of the feature location is removed, the case of zero decimals,

the 3-DOF-SVD method fails in the heading angle estimation, whereas the quaternion

method gives worse results for the positioning.

131



6.4 Egomotion results for real data

The 6-DOF-SVD method rarely converges and it only happens after a exhaustive

tuning process by varying the RANSAC parameters. Even in the best case, when

it converges, the highest level of accuracy in the sub-pixel position of the features

is required. In spite of that, the results obtained are worse for this method than the

ones for 3-DOF-SVD method or the quaternion method in the cases where only pixel

precision is provided.

Although 3-DOF-SVD gives, in every case, comparable results to the ones ob-

tained by the quaternion method, the constraint on the number of DOF will limit its

usability for those cases where only the plane motion estimation is required.

6.4 Egomotion results for real data

This section shows navigation results for the previously described motion estimation

techniques applied to a vehicle traveling through an urban environment.

This outdoor vehicle sequence collected in Karlsruhe consists of pairs of high

quality images, with a resolution of 1344× 372 pixels after rectification [90]. The

stereo set setup is composed of two independent cameras with a baseline of 57 cm.

The picture in Figure 6.7 shows a sample image extracted from the sequence.

The positioning information acquired from an OXTS RT 3000 GPS/IMU is con-

sidered ground truth odometry, labelled as GPS/INS in this chapter, and considered as

the ground truth reference due to its high accuracy. In Figure 6.8, the projection in

horizontal plane of the vehicle trajectory from the GPS/INS information is superim-

posed with our egomotion estimation results. Motion starts from the leftmost point of

the figure, where a traversed distance of about 300 metres is shown.
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6.4 Egomotion results for real data

(a)

(b)

Figure 6.7: Image examples: (a) example image from the sequence used (b) example moment
image, where detected features (red), disparities of stereo matched points (green) and landmark
association segments (blue) are displayed.

Figure 6.8 shows a series of trajectory estimation results labelled as HMSUF

(Harris Moment SURF), Harris SURF (HSURF), and KLT. This later presents the mo-

tion estimation results based upon applying KLT as a detection/matching prior apply-

ing quaternion motion estimation scheme. Indeed, KLT was used to compute the stereo

matching between left and right images required for 3D reconstruction step and also

for sequential association. Although there are not major issues when KLT is deployed

for stereo matching, the nature of the algorithm, that assumes small differences be-

tween the pair of images where the optical flow is computed, makes it less suitable

for sequential tracking and provides a more important number of outliers comparing

to HSURF and HSURF techniques. As it can be seen from the figure, the best perfor-

mance obtained is achieved by HMSURF based motion estimation technique.
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Figure 6.9: Estimation error using Quaternion-RANSAC (x, y, z) w.r.t. GPS/INS vs. time-step, (a)
for HSURF and (b) for HMSURF.

For a detailed analysis of error results obtained for each coordinate, Figure 6.9

shows the error values vs time. In this graphic it is seen that the error is lower than 12

metres for HMSURF and lower than 30 metres for HSURF. It is also observed for the

HMSURF, that during the main part of the travel the error in x, y and z below 6 metres,

only reaching a higher error in y at the end of the test.

The evolution of the z location of the vehicle is shown in Figure 6.10. This is

important as it implies that 6 DOF are required for the estimation, therefore, results

obtained by SVD for 3 DOF is not a suitable technique due to its limitation to compute

only plane motions. The SVD method with 6 DOF is likewise discarded because of

the convergence problems related in the previous section.
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Figure 6.10: z coordinate (GPS/INS data) evolution along the sequence.

Looking at the variation in z, Figure 6.10, it is seen that the vehicle travels up-

slope twice. The first one starts around the time-step 125 till the time-step 190, while

the second one takes place from the time-step 225 to the end of the sequence. In spite

of that, the estimation of the z coordinate, according to the errors shown in Figure 6.9,

does not appear to be related to those slopes, neither for HSURF nor for HMSURF

detection methods.

In Figure 6.11 the location error as Euclidean distance from the estimation to

the GPS/INS location is shown for the 3D positioning. From these results we can say

that the studied methods are suitable to estimate and distinguish the different nature of

motions: rotation, translation and a combination of them along long range trajectories.

In this real context application Quaternion-RANSAC method shows a maximum error

below 12 metres when combined with HMSURF and below 28 metres when combined

with HSURF, after travelling around 270 metres. From this analysis, it is seen that

the combination of HMSURF for detection/description and Quaternion-RANSAC for

motion estimation leads to the best results.

The fact that the Quaternion-RANSAC method is not constrained in DOF makes

it the appropriate method for previously unknown motions or simply for egomotion

systems in unknown environments
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Figure 6.11: Pose estimation error of the vehicle estimation w.r.t. the GPS/INS information.

The implementation used to generate the results shown in this section is written

in C/C++ language. This allows real time computation of the results. Currently, visual

processing on the images of two consecutive time-steps and motion estimation are

computed in about one second when 500 features are detected per image.

6.5 Conclusions

In this chapter, a platform-independent solution for egomotion systems has been pre-

sented. The used detector/descriptor technique based on good features to track, de-

tecting either over original images (HSURF) or over moment images (HMSURF), and

SURF descriptors provides reliable visual information, which allows adequate mo-

tion estimation for large sequences without need for filtering techniques or necessity

of constraining the DOF of the mobile system. The quaternion method shows better

performance results than SVD for 6 DOF applications, although the SVD computes

similar result to the ones got by the former method in cases for 2D motion whether the

number of DOF is reduced.

The fact that the proposed techniques work well in dynamic and unknown envi-

ronments makes them suitable for a range of autonomous navigation systems even for

long range trajectories including turnings and slop changes.
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Chapter 7
Robust Egomotion by Nonlinear

Optimisation

7.1 Overview

Egomotion solutions based on least squares, as done in chapter 6, are known to misbe-

have and present convergence issues when nonlinearities and unmodeled noises occur.

This reasoning motivated us to move from the egomotion solutions presented in the

previous Chapter to the nonlinear optimisation solutions shown hereinafter, for which

higher levels of accuracy are possible [102, 103].

The family of solutions introduced present two distinctive traits that differentiate

them from the other approaches presented before. The first important difference distin-

guishing these solutions from VSLAM solutions, common to the least square solutions

presented in the previous chapter, is the independence with respect to the vehicle in-

frastructure. This means that whereas for VSLAM the inputs into the system have
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to be known, in order to predict the system’s state through the kinematic model, the

optimisation solutions introduced here are capable of removing such an assumption.

Secondly, the mathematical nature of the optimisation methods will allow refined so-

lutions closer to the real behaviour of the system, which redound to alleviation of the

nonlinearities influence.

This Chapter emphasises on developing a robust egomotion solution. The pro-

posed improvements discussed here take place at two different levels: detection and

motion estimation. Moment image representation has served us to upgrade detection

performance, providing our design with more robust features. For the optimisation

of motion estimation, we propose a dual reprojection strategy as opposed to single

reprojection strategies, which allows a more stable and general solution.

In this chapter, a novel approach to the stereo egomotion problem is detailed.

Constrained by the absence of GPS, we present a solely vision based motion esti-

mation technique as opposed to INS-assisted solutions as purposed by Konolige et

al. [104]. Detection of image features via Good Features To Track [63] enhanced with

robust local description provided by SURF [28] is proposed. The robot motion estima-

tion is computed via a Gauss-Newton (GN) bundle adjustment (BA) algorithm. The

whole system is capable of estimating its own position without the addition of filtering

strategies and it is demonstrated to behave accurately in real environments.

The Chapter is organised as follows: section 7.2 reviews the utilised visual de-

tection and tracking schemes and explains the considerations taken into account for the

current solution. Section 7.3 serves as an overview of the bundle adjustment technique

employed on the motion estimation process. Results obtained using our implemen-

tation are shown and discussed in section 7.4. Following on from this, section 7.5

highlights main findings of the work.
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7.2 Detection and tracking

Feature detection methods are important computer vision tools, useful to extract mean-

ingful and lightweight information from images. They allow us to represent an image

through a reduced set of characteristic points. Although this process entails inherent

rejection of the available data, it is used as a base for most real time applications. The

Good Features To Track proposed by J. Shi et al. respond to the need for the de-

tected features to be feasibly trackable [63]. On the other hand Harris SURF (HSURF)

and Harris Moments SURF (HMSURF) techniques have been shown in chapter 3,

[59, 105], as successful combinations of the classic and fast feature detector from Har-

ris et al. [60] and the robust local descriptors based on Haar wavelet responses from

SURF [28]. Similar to this we propose a combination of Good Features To Track

together with the robust local SURF descriptor as an appropriate detection scheme.

Here, where the camera system is composed of a stereo camera, the need for

matching corresponding features takes place at two different levels. At the stereo pair

level, each detected feature F
(i)
L,k of pixel coordinates x(i)

L,k on the left camera at times k

needs to be associated with its corresponding feature F
(i)
R,k of pixel coordinates x(i)

R,k on

the right side camera at times k for the later triangulation of its 3D position. Conversely,

at the sequence level, each feature x(i)
L,k is meant to be matched with its corresponding

x
(i)
L,k+1 at the next timestep k + 1, in case it exists. In order to tackle both of these

matching problems our solution utilises the local SURF descriptor.

Despite the need for retrieving 6 degrees of freedom (DoF) on ensuing mo-

tion estimation stages, we consider that the motion between two consecutive frames

is roughly planar such that the upright version of the SURF method U-SURF is ade-

quate for this study [28]. Nonetheless pyramidal scaling processes could be combined
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Figure 7.1: Images above show the feature detection (a) when 400 features are selected from the
whole image and (b) when 16 features are detected from each of the 25 plotted subregions.
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with the used detection algorithm as a means of preserving scale invariance of SURF.

It has been seen that the solution is appropriate for our design conditions for either high

rate image acquisition or slow moving platforms, where the scale change between two

consecutive pairs of images is sufficiently small.

Subsequent outlier rejection steps conducted at bundle adjustment motion esti-

mation permit our solution to skim over epipolar geometry constraint checks.

Because detection takes place at a small scale, where only the observed pixel and

its neighbours are involved in the process, it is a common finding that some image areas

are over populated with features while others remain empty. This is the case for images

containing very spotted-like areas, where plenty of detected features are condensed.

However, one way to alleviate this effect consists of increasing the minimum distance

allowed for adjacent features. Alternatively, in our work images are evenly divided in

a grid of subregions such that for each of them the same number of features is selected

Figure 7.1.

7.3 Bundle adjustment

Bundle adjustment (BA) is an optimisation technique that is used for 3D reconstruction

and other vision problems. Between the broad variety of strategies for BA, extensively

detailed on the survey performed by Triggs et al.[106], the sliding window version

is an appealing version for real time implementation and embedded systems. Instead

of opting for a batched version of the algorithm, we decided on adapting a reduced

version, where solely two adjacent pairs of stereo images from the sequence are used

for motion estimation.
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Figure 7.2: Field of view for a single stereo camera system along robot’s trajectory.

The following sections review the formulae used for BA based on the Gauss-

Newton optimisation technique, revisiting the models used for the camera and trans-

formation representation.

Figure 7.2 displays how the field of view (grey) of the robot (blue) evolves as

it moves. In the solution derived here, where optimisation takes place using only the

observations from two consecutive poses, only the first order overlaps between consec-

utive fields of view (red) correspond to- the areas where the useful visual landmarks

for the motion estimation will be contained.
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7.3 Bundle adjustment

7.3.1 Stereo camera projection function

Let us consider a stereo rig composed of two identical perspective cameras, where

intrinsic and extrinsic calibration parameters are known (7.2). Then the projection of a

3D feature with coordinates x = (x,y,z)T ∈ R3, with respect to the left camera, which

is considered as the reference camera, is computed as (7.1).

s ·xH,L = KL ·x (7.1)

K =KL =KR =


αu 0 u0

0 αv v0

0 0 1

 (7.2)

s ·xH,R =KR ·xR =KR ·
(
x− (0,0,Bl)T) (7.3)

where xH,L = (uL,vL,1) ∈R3 and xH,R = (uR,vR,1) ∈R3 are the projected coordinates

of the 3D feature x, expressed in homogeneous coordinates on the left and right image

frames respectively. xR represents the 3D coordinates of feature x on the right camera.

K ∈ R3×3 is the matrix of intrinsic parameters that contains the focal lengths αu, αv,

principal point coordinates u0, v0 and depth factor s. BL is the stereo rig baseline. Note

that the feature detection provides 2D features of coordinates xL and xR from which x

is obtained via triangulation.

Then, under the assumption that the calibration parameters of the camera remain

fixed, so that the BA does not have to recompute them again, it is convenient to define

the reduced vector y of projected coordinates on the stereo set as the result of applying

the projection function f to the 3D feature coordinates x:
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y = f(x) =


uL

vL

uR

=



αu ·
(

x
z

)
−u0

αv ·
(

y
z

)
− v0

αu ·
(

x−Bl
z

)
−u0


(7.4)

Notice that the element vR from xR is not included in the vector y ∈ R3 of pro-

jected coordinates. This is because it is identical to the coordinate vL. Hence the

application f corresponds to a nonlinear application f : R3→ R3.

7.3.2 Transformation model

The robot’s motion is the result of a concatenation of translations and rotations repre-

sented by the parameters vector p = (α,β ,γ, tx, ty, tz)
T ∈ R6. This collects the 6DoF

applied to the robot, α , β , γ are the applied rotations and t= (tx, ty, tz)
T is the transla-

tion vector. These parameters allow the definition of the homogeneous transformation

matrix T (p) ∈ R4×4, which can be written as a composition of a pure translation Txyz

followed by three pure rotations,Rx(α),Ry(β ) andRz(γ).

T (p) = Txyz(t) ·Rx(α) ·Ry(β ) ·Rz(γ) =

=



Cβ Cγ −Cβ Sγ Sβ tx

Cα Sγ +Cγ Sα Sβ Cα Cγ −Sα Sβ Sγ −Cβ Sα ty

Sα Sγ −Cα Cγ Sβ Cγ Sα +Cα Sβ Sγ Cα Cβ tz

0 0 0 1


(7.5)

where Cθ = cos(θ) and Sθ = sin(θ) for any angle θ .
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A transformation applied to a 3D feature, expressed in homogeneous coordinates

xH = (xT ,1)T ∈ R4 is:

T (p) · x̃H = xH (7.6)

where x̃H are the homogeneous coordinates of the feature xH after the motion.

7.3.3 Gauss-Newton

Errors in the estimate of distortion coefficients for camera lens and projective deforma-

tion effects are cause for visual data to behave nonlinearly. This makes Gauss-Newton

a suitable method for bundle adjustment optimisation.

Consider minimisation of the nonlinear cost function:

S(p) =
1
2

n

∑
i=1

q

∑
j=1

r j
(
p,x(i))2 (7.7)

where r j are the nonlinear residual functions dependent on the vector of parameters

p ∈ Rm and x(i) are the system observations. The Gauss-Newton optimisation method

states that the vector p, the optimal solution for the cost function (7.7), can be itera-

tively computed by calculating the increment vector ∆p as:

(JT ·J) ·∆p=−JT ·r (7.8)

where r = (r1,r2, . . . ,rq)
T ∈Rq is the vector of residuals and J ∈Rq×m is the Jacobian

matrix of the vector of residuals with respect to the vector of parameters and (JT ·J)

is an approximation of the Hessian matrix.

Letting the vector of parameters p model the 6DoF motion through T (p) (7.5)

and reprojecting the features x through the projection function f (7.4), different vec-

tors of residuals can be constructed to define the cost function to be optimised.
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7.3.4 Cost function: reprojection possibilities

The vector of residuals r has an important role in the minimisation process due to

its influence on the Jacobian matrix. At the same time, the residual functions are

responsible for capturing the representation of the transformation and the reprojection.

Consider the estimated transformation Tk(p̂), representing the evolution a mo-

bile agent from timesteps k to (k+1), defined throught the estimation of the vector of

parameters p̂. According to the convention used (7.6):

Tk(p̂) ·xH|k+1 = x̂H|k (7.9)

T −1
k (p̂) ·xH|k = x̂H|k+1 (7.10)

where T −1
k (p̂) is the inverse of the transformation, Tk(p̂), x̂H|k is the 3D estimate of the

landmark from a later observation while x̂H|k+1 is an estimate of a later position from

a previous observation. These equations are the basis for the following reprojection

strategies.

7.3.4.1 Forward-backward reprojection

Is the first of the two possible single reprojection strategies. We refer to forward-

backward reprojection, or simply forward, as the process of reprojecting (later) ob-

served features into previous camera frames. The vector of residuals is then computed

from the estimated position of the feature xk+1 on the camera frame at timestep k, x̂k.

Equation (7.9) combined with (7.4) yields:

ŷk = f(x̂k) = f
(
Tk(p̂) ·xH|k+1

)
(7.11)

where ŷk are the estimated coordinates of the feature on the prior camera frame.
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Using forward reprojection the cost function to be minimised is calculated from

the vector of residuals:

r f w = yk− ŷk (7.12)

where r f w ∈ R3 is the vector of residuals based on forward reprojection.

7.3.4.2 Backward-forward reprojection

We refer to backward-forward reprojection, or simply backward, as the process of

reprojecting priorly observed features into later camera frames. The vector of residuals

is then computed by reprojecting the estimation of the feature xk on the camera frame

at (k+1), x̂k. Equation (7.10) combined with (7.4) yields:

ŷk+1 = f(x̂k+1) = f(T−1
k (p̂) ·xH|k) (7.13)

where ŷk+1 are the estimated coordinates of the feature on the previous camera frame.

Using backward reprojection the cost function to be minimised is composed of

the elements contained in the vector of residuals computed as follows:

rbw = yk+1− ŷk+1 (7.14)

where rbw ∈ R3 is the vector of residuals used to compute the cost function based on

backward reprojection.
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7.3.4.3 Dual reprojection

Both of the shown possibilities for the computation of the vector of residuals, forward

and backward reprojection, allow the computation of efficient cost functions for the BA

optimisation algorithm. Nevertheless they are intrinsically making certain assumptions

about the validity of feature positions. In the forward reprojection scheme, the feature

coordinates on the previous frame yk are used as reference and hence not reprojected.

On the other hand, when the backward reprojection is used the feature coordinates yk+1

are the ones utilised as reference. These are reasons for both of the presented schemes

to behave differently depending on the different nature of the feature error.

In order to attenuate the effect on the optimisation of unhandled errors due to

non-reprojected feature coordinates used as reference, we present an approach based

on a combination of both vectors of residuals:

rdual =
(
rT

f w , r
T
bw

)T (7.15)

where rdual ∈R6 is the vector of residuals used for computation of the cost function on

the dual reprojection scheme. The dual reprojection approach is in some way closer to

the original cost function used for BA, in the sense that it discards less terms from the

summation.
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7.3.5 Outlier rejection

For a solution like the one proposed here, an outlier rejection scheme is of vital impor-

tance for improving accuracy. Although the matching process of SURF descriptors is

robust and provides a number of good tracked features appropriate for motion estima-

tion, there is still a group of tracked features that must be excluded in order to optimise

egomotion results. This group of undesired features is generally composed of:

I False matches

I Matches on moving objects

The former subgroup contains wrong matches (matches of non-corresponding

points) that SURF descriptors fail to distinguish and discard. Notice that although

some of these matches could be removed applying epipolar constraints, some others

will pass as true matches. The second group collects the good tracked features which

actually belong to moving objects or entities on relative motion, e.g. self-shadow,

pedestrians and cars on urban environment.

Figure 7.3 shows the outputs of the outlier rejection stage. The images have been

extracted from the different sequences composing the datasets used for the experiments

presented on the latter section and display different types of outliers, including outliers

contained in moving vehicles, pedestrians and moving bicycles.

For these reasons, a RANSAC algorithm is used together with the GN-BA op-

timisation technique. Through a user defined threshold value ε , the summation of the

residuals for each feature x(i) evaluates as (7.16).

(
q

∑
j=1

r j
(
p,x(i))2

)
< ε (7.16)
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(a)

(b)

(c)

(d)

Figure 7.3: The outlier rejection process limits the valid reprojection error via the threshold ε,
which allows discarding false matches and features contained on moving objects. Detected points
(red), traces corresponding to accepted tracked features (blue) and traces corresponding to rejected
outliers (orange) are shown. An outlier rejection threshold ε of value 4 was used here.
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Other statistical techniques as Q test or the Peirce’s criterion among other, and

learning machines, specially unsupervised learning machines, can be employed to de-

tect outliers, but these are computationally expensive and hard to implement. However,

RANSAC’s performance for data sets where the ratio of inliers with respect to the size

of the sample is high make from this an advantageous solution for removing spurious

data.

Features not within the constraints are rejected according to (7.16). However,

there is a tradeoff for selecting the outlier threshold, since high values let wrong

matches pass while smaller values can lead to rejection of valid matches. This means

that the threshold ε has to be tuned to limit the outliers acceptance, while keeping a

low ratio of inliers rejection. User-end visual assessment of the association rejection

has been employed to choose a reasonable range for this threshold. We empirically

found the threshold to provide a good performance results when ε ∈ [2,8].

Using these outlier rejection settings we normally find that a percentage ranging

form 75 to 95 of the association matches are identified as inliers in the motion estima-

tion computation, whereas the rest of the association matches are discarded as outliers,

for the tested datasets.

7.4 Experiment results

This section presents the results for motion estimation obtained using only the visual

odometry techniques described in this chapter. The data we employed to test and

validate our solution consists of a series of outdoor datasets collected from a vehicle

travelling in urban environment in the city of Karlsruhe previously mentioned [90, 91].
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7.4 Experiment results

Each dataset is composed of a set of high quality rectified stereo images.

A total of 19 datasets summing a travelled distance of over 10km were put under

the microscope, to generate these results. Previously explained backward, forward and

dual reprojection strategies have been tested for accuracy and stability analysis.

For the conducted experiments 200 features were detected on each of the stereo

pair images. Likewise, two different outlier rejection threshold values were used to

generate the result series, ε = {2.5,3.5}. These conditions allowed the implemented

solution to converge in majority of the cases, finding only convergence issues when

unhandled situations occur, e.g. moving objects occupying all the field of view. It

was noted that on a number of cases the dual reprojection method demonstrated more

stable behaviour presenting no local error issues (seen as error bumps on the figure)

that the forward reprojection and backward reprojection strategies presented.

Achieved results are successful, reaching errors smaller than 1% and normally

bounded by 5−10% in terms of travelled error, defined as:

travelled error = 100 · abs(error)
travelled distance

(7.17)

The implementation used to generate the results shown in this section is written

in C/C++ language. This allows real time performance. Currently, visual processing

on the images of two consecutive time-steps and motion estimation are computed in

about one second when 500 features are detected per image.
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Figure 7.4: Estimated trajectory (a) and travelled error (b) results for the dataset
‘2010 03 04 drive 0033’, Karlsruhe Institute of Technology.
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Figure 7.5: Trajectory estimation (a), (c) and errors (b), (d) for datasets ‘2009 09 08 drive 0015’
and ‘2009 09 08 drive 0016’.

Figure 7.4, Figure 7.5 and Figure 7.6 show the estimation results obtained for

some of the sequences contained in the dataset for the strategies and thresholds previ-

ously described. Figure 7.4 displays a clear example of how the dual reprojection strat-

egy outperforms both the forward reprojection and the backward reprojection strate-

gies. Indeed, it is seen from this figure, as from the other figures that the dual reprojec-

tion scheme always produces one of the two best achieved results. Thus representing

the best trade-off solution.
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Figure 7.6: Trajectory estimation (a), (c), (e) and errors (b), (d), (f) for datasets
‘2010 03 05 drive 0023’, ‘2010 03 09 drive 0081’ and ‘2009 09 08 drive 0010’.
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Figure 7.7: Trajectory estimation (a), (b), (c) and errors (d) for dataset ‘2009 09 08 drive 21’.

Figure 7.7 shows the trajectory estimation results and the travelled error obtained

for the sequence of the dataset labeled as ‘2009 09 08 drive 21’. Figure 7.7c and Fig-

ure 7.7d correspond to a zoomed view of the most relevant portion of the sequence

where a series of sharp turnings take place. Figure 7.7c plots only one series of re-

sults for the sake of clarity, while Figure 7.7d shows the results obtained for all the

tested strategies. It is observed the ground truth, obtained using a highly precise GPS-

assisted-INS system, presents some irregularities that do not appear on the trajectory

estimates. This invites to reconsider the possibility of the estimations to be of higher

quality than the ground truth itself, due to INS drift and internal filtering and GPS

imprecision.
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7.5 Conclusions

In this chapter, a platform-independent solution for egomotion systems has been pre-

sented. The used detector/descriptor technique based on Good Features To Track and

SURF descriptors is robust against illumination changes via moment image represen-

tation. The reliability of the retrieved visual information allows adequate motion es-

timation for large sequences without need for filtering techniques or necessity of con-

straining the DoF of the mobile system.

An extensive experimental validation has been conducted. The analysis of the

results shows that the most stable version for the cost function used for bundle ad-

justment is the one proposed as a dual reprojection scheme in majority of the cases.

Conversely, accuracy is similar for all reprojection strategies, unless the cost function

leads to error instability, which is avoided by the dual reprojection scheme.

The fact that the proposed techniques work satisfactorily in dynamic and pre-

viously unknown environments makes them suitable for a range of autonomous navi-

gation systems, even for long range trajectories including turnings and slope changes.
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Chapter 8
Multiple view based egomotion

8.1 Overview

Visual motion estimation is a very active field of research [24, 25]. Notwithstanding,

there is a family of solutions that has been, from the author’s point of view, undervalued

and not appropriately taken into consideration. Namely the case for use of multiple

stereo views.

Photogrammetry techniques, as bundle adjustment techniques, do not restrain

the motion estimation problem to single stereo view approaches for mobile robot’s

motion estimation. However, solutions are mostly based on either mono-camera or

single stereo camera techniques [91, 107, 108, 109].

Multiple stereo view sequences can be easily obtained from planetary rovers,

either equipping them with several stereo cameras or just mounting a single stereo

camera together with a pan and tilt mechanism as in [110, 111]. This latter addition

allows the rover to augment its sensory capabilities, at a very low price.
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The absence of multiple stereo view datasets in the literature, moved us to ac-

quire our own experimental data. Edge technology systems have been used to generate

accurate ground truth data together with the imagery data and other sensor’s data. This

allows rigorous validation of the results.

This Chapter presents two novel approaches to exploit the capabilities of mul-

tiple stereo view imagery. The first solution is based on optimisation techniques. It

works generating a single estimation result from the multiple views data. The second

solution is based on Covariance Intersection. Starting the motion estimates obtained

for the single stereo view subsequences, this second solution leads with the problem of

fusing those estimations together.

The Chapter is organised as follows: section 8.2 describes the data collection set

up used to acquire the datasets presented for the validation of results. Section 8.4 ex-

plains the fundamentals used for motion estimation, when a multiple stereo view opti-

misation process is used. Section 8.5 explains the second data fusion method proposed

to use the multiple stereo view data, by Covariance Intersection. Lastly, section 8.8

highlights main findings of the work.

8.2 Data acquisition and ground truth

The data collection strategy designed for the series of experiments presented here em-

phasises on the acquisition of not only a complete set of sensor’s data from the on-

board devices mounted on the rover (inertial measurement unit, wheel odometers and

stereo cameras), but also on the acquisition of reliable ground truth data, suitable for

high accuracy validation purposes.
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Figure 8.1: Pan and Tilt Unit, ExoMader.

This reliable reference data is provided by indoor Vicon MX Positioning Sys-

tem composed of eight to eleven, depending on the dataset, Infra Red (IR) cameras

[112].These IR cameras, acquire images that the Vicon system’s core processes to re-

trieve the 3D location of a series of markers placed on the robot and its camera header.

Such markers are spheric pieces whose surface is highly reflective on the IR spectrum,

for easy detection. In this manner the markers are tracked at frame rates of up to 100

Frames Per Second (FPS) with high levels of accuracy.

The Vicon Nexus software allows the creation of 3D user-defined models that

are defined by grouping several markers. The interaction between the markers of a

model can also be defined, so that the tracking process does not only take place at

a discrete 3D point level, where each marker behaves as an independent entity, but

also as solid rigid structures. This tracking mode allows attitude tracking as well as

global positioning. These capabilities make the Vicon system a powerful solution to

track objects moving within the 3D control volume in real time and a useful tool for

generating precise reference data [112, 113].
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Figure 8.2: Experimental setup in the ExoMaDeR rover (a) and positioning system model (b).

Given that in our experimental setup the camera header sits over a pan-tilt unit

(PTU) mounted on the top of a mast of 75 [cm] of height, Figure 8.1, it seems reason-

able defining two different solid bodies to be tracked independently. In this manner pan

and tilt rotations of the camera rig are also available data stored with the ground truth

information, as opposed to storing the robot pose only. Figure 8.2 shows a sketch and

photo of the used setup. In order for the odometry and imagery timeframe to be con-

sistent with the reference information, positioning data is wirelessly retrieved online

from the rover platform at 20 FPS (Frames Per Second), Figure 8.5.

Imagery is the main piece of information acquired from the robot sensing sys-

tems for our experimental purposes. The robot is equipped with a stereo camera com-

posed of two identical uEye USB cameras mounted on a rigid frame. The acquired

images are taken on a resolution of 1280 × 1024 [pixels]. In order for multiple stereo
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Figure 8.3: Fields of view on a multiple view and multiple camera setups.

views images to be taken taken, the PTU is actioned moving the stereo rig to each

view position. Images are taken at evenly distributed distances along the trajectory, for

poses spaced 15 [cm] at most. Figure 8.6 and Figure 8.7 display some image samples

of the left images of the stereo pairs for datasets where three and four different views

are acquired.

There are two acquisition scenarios that can be distinguished when multiple

stereo view images are collected. In a first scenario, all the stereo images for the

different views are acquired while the robot remains on the same location and attitude.

When this happens the fields of view of each stereo view evolve as shown in Figure 8.3.

This schematic example shows the fields of view of four different views (or cameras)

for two different poses 0 and 1. The first letter denominates the view, (L)eft, (F)ront,
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Figure 8.4: Reference data: detail on markers evolution.

(R)ight and (B)ack, the second letter {A,B,C} labels the vertices of the field of view

and the subscripted number references the pose. In this scenario, the markers on the

camera header will move describing the arc of a circumference, unless contained in the

instant centre of rotations of the camera header, Figure 8.4a. A second scenario occurs

when the rover moves while the images are being acquired. In this case the PTU is

actioned while the robot moves, so that the markers in the camera header evolve as in

Figure 8.4b. Note that in this scenario each view is acquired from a different pose.

A positive tilt angle was applied to the camera rig, for all the datasets, so that the

cameras could face areas closet to the robot.

The dataset generation presented here contributes to the construction of reliable

datasets for indoor experiments. Furthermore, it fulfils the need for generating datasets

containing multiple stereo view image sequences. Finally, it is important noting that

the rover travelling conditions on the Planetary Test Best are comparable to rough

terrain navigation conditions where planar motion cannot be assumed.
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Figure 8.5: Experimental datasets.
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Left view, ψ=30 [deg] Front view, ψ=0 [deg] Right view, ψ=-30 [deg]

Back view, ψ=180 [deg]

Left view, ψ=30 [deg] Front view, ψ=0 [deg] Right view, ψ=-30 [deg]

Back view, ψ=180 [deg]

Figure 8.6: Left images from the stereo pairs taken at different pan settings whilst in a common
pose. Tilt angle for all displayed images is -28.286 [deg]
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Left view, ψ=30 [deg] Front view, ψ=0 [deg] Right view, ψ=-30 [deg]

Left view, ψ=30 [deg] Front view, ψ=0 [deg] Right view, ψ=-30 [deg]

Left view, ψ=30 [deg] Front view, ψ=0 [deg] Right view, ψ=-30 [deg]

Left view, ψ=30 [deg] Front view, ψ=0 [deg] Right view, ψ=-30 [deg]

Figure 8.7: Left images from the stereo pairs taken at different pan settings whilst robot remains
in the same pose. Tilt angle for all displayed images is -43.714 [deg]
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8.3 Visual scheme

The egomotion approach developed here is uniquely based on calibrated and already

rectified input images. Therefore the importance for the image processing module to

extract reliable and meaningful information from the perceived scene is crucial.

A reduced detection solution, based on the Good Features To Track from J. Shi

et al [60, 63], has shown to cope with the responsibility of providing stable and robust

features against illumination changes when detection is conducted over moment im-

ages [59, 68, 70]. After detection is performed on the images of the stereo pairs, stereo

matching and tracking are required steps. In order to solve both of the problems at a

time, feature descriptors are normally used at this stage. Based on previous successful

experiences, local SURF descriptors are used here [28, 105].

Note that the multiple view system hereby analysed is only composed by a single

stereo camera rig, which attached to a pan and tilt unit, allows the rover to acquire

images whilst oriented at different attitudes.

8.4 Multiple stereo view motion estimation

Optimisation techniques, and more specifically non-linear optimisation techniques, are

usually employed to solve the motion estimation problem.

Among the wide range of alternatives in which solutions like bundle adjustment

can be developed, we have considered the study of a Gauss Newton based approach

similar to the one proposed in the previous chapter. Even though batch versions of

the algorithm can improve the accuracy of the solution, they also entail additional

computational expenses. For this reason, the version of bundle adjustment algorithm
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derived here consists on the sliding window formulation for a system where solely the

two adjacent time-step images are used for the estimation.

The following section review the used formulae for the implemented BA based

on Gauss-Newton, revisiting the models used for the camera and transformation rep-

resentation and also the cases of single and multiple camera systems.

8.4.1 Multiple stereo views optimisation

While the projection model for the camera remains modestly simple in the case of

single camera systems where both intrinsic and extrinsic parameters can be expressed

as coupled terms, via (7.1) and (7.4), without need for these sets of parameters to be

independently known, cases as the one presented for the mobile robot here where the

stereo rig is mounted over a pan and tilt unit (PTU), the knowledge of the extrinsic

parameters is rather necessary not only for clarity purposes, but also to develop the full

kinematic model of the system.

In our specific setup, where there is only one stereo camera set, the calibration

of the system reduces to the estimation of the intrinsic calibration for the stereo set

plus an extrinsic calibration to relate the camera position with respect to the pan and

tilt unit. An additional set of extrinsic parameters relating the position of the PTU with

respect to the robot body can be also modelled. This latest set of extrinsic parameters

is necessary when measurements from every sensor are required to be expressed in a

common reference frame for fusion purposes.

The kinematic model that represents the transformations from any stereo camera

view to the upright position of the camera in the robot, where no roll β , tilt α and pan γ

are applied, depends only on the pan and tilt (variable parameters) and the geometry of
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the pan and tilt stereo system. Then the extrinsic transformation T (p(k)) for the stereo

view (k) is computed as:

T (p) =Rz(γ) ·Rx(α) ·Txyz(t1) ·Ry(β ) ·Txyz(t2) (8.1)

where:

I Rx(α),Ry(β ),Rz(γ) are the transformations defined by the pure rotations due

to tilt, roll (fixed) and pan respectively.

I Txyz(t1) is a transformation defining the pure translation that represents the po-

sition of the centre of the stereo camera with respect to the Instant Centre of

Rotation where pan and tilt are applied.

I Txyz(t2) is a transformation defining the pure translation that represents the po-

sition of the left camera with respect to the centre of stereo camera.

When a BA technique is employed to compute the mobile platform motion for

the case when a single stereo camera is on-board, the cloud of 3D points that is re-

constructed from the stereo images and then inputed into the system can relate to any

reference frame so that the motion is expressed in such a reference frame. Conversely,

when multiple stereo views are utilised on BA to compute the motion, all the input 3D

points have to be expressed in a common reference frame in order be fused to com-

pute the common and unique motion that takes place in the robot. The selection of a

reference frame to express the observations acquired from a unique on-board sensor

can be trivially chosen. This does not mean that any reference frame can be conve-

nient, neither that any reference frame will lead to the same results on later processing

stages, but only that there is a wide range of possibilities, for instance the case of a

169



8.4 Multiple stereo view motion estimation

local reference frame attached to the device. One of the reference frames in which

the 3D coordinates are most naturally and intuitively represented for stereo cameras

is normally placed on the left camera of the pair. Nonetheless, the left camera frame

is a convenient frame to represent points in terms of formulation, because it reduces

the complexity associated to a robot centred representation where extrinsic models are

required, it is also insufficient when information gathered from different sensors is

intended to be fused.

A case as the one presented in this work, where a stereo camera changes its

orientation actioned by a PTU can also be conceptualised as a system equipped with

several cameras. In this manner, each camera configuration (or equivalently each view)

is considered as a different stereo camera that relates to the main system through its

own set of extrinsic parameters. We can rewrite the cost function to minimise as fol-

lows:

S(p) =
1
2

K

∑
k=1

nk

∑
i=1

q

∑
j=1

r (k)j

(
p,x

(i)
k

)2 (8.2)

where K represents the number of cameras ( or number of views ) utilised to compute

the estimation, nk represents the number of points that where detected and associated

for two consecutive poses in the stereo camera (view) k, and r(k)j are the j = 1,2, . . .q

residual functions.

Let us rewrite (7.4) here, where the reduced vector of projected coordinates is

defined, (8.3).

y = f(x) =
(

uL vL uR

)T (8.3)

The vectors of residuals r(k) depend on the corresponding projection functions

f (k), for each of the cameras, that embedds both the intrinsic and extrinsic parameters.
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yk = f
(k)(xk) = f

(
T −1(p(k)) ·xk

)
(8.4)

r(k) = yk− ŷk (8.5)

where yk corresponds to the reduced vector of projected coordinates in the view k,

ŷk are estimates, and the vectors of parameters p(k) are used to represent the extrinsic

transformation from the camera k to a common frame. In this manner, every feature ob-

served from any of the different views is represented in the same reference frame prior

to the computation of motion estimates. It is important emphasising that the different

vectors of residuals can be constructed to define the cost function to be optimised, as

previously explained in section 7.3.4 [114].

Note that the cost function used here is not as general as the proposed on the

bundle adjustment complete formulation, but conversely it only takes into account the

evolution of points observed always from the same cameras. In this manner points that

at time-step t where, for instance, on the FOV of the front camera and at t +1 appear

on one of the side views are not considered by the cost function (8.2).

Figure 8.3 shows the fields of view of four different camera view of a system

like the one used for this work. In this graphic example, overlap between front view

(green) and side views (red, blue) is not shown for the sake of clarity. However, the

pan angles used on our experiments produce overlap between front and side views.

The implementation used to compute multiple stereo view egomotion results is

written in C/C++ language. This allows calculation of motion estimates every four

second when 500 features are detected per image. In a rover’s mission, where images

are obtained at 0.2 [Hz], this can be considered real time computation.

171



8.5 Fusing multiple stereo views: A filtering approach

8.5 Fusing multiple stereo views: A filtering approach

Another data fusion alternative for mobile robot systems equipped with several sen-

sors can be developed using filtering techniques. Kalman Filter (KF), or more gener-

ally Extended Kalman Filter (EKF), techniques are commonly used to integrate the

information acquired from different sensors as it is the case for GPS/INS systems

[115, 116, 117].

However, our solution points to another different direction. Instead of fusing raw

visual data by means of filtering techniques, our approach focuses on fusing several

estimations into a common one. This is, given a multiple stereo view sequence of

images it is possible to compute several the motion estimations, one per stereo view.

For instance, for the case of the robot obtaining stereo images at two different views

(left view, where the pan angle is such that the camera header faces left, and right

view), two estimations of the robot’s motion can be calculated using only the subset

of images that correspond to each side. Nonetheless, there is only one robot, so that a

unique estimation can be computed as a result of combining the different estimates.

8.5.1 Covariance intersection for fusing estimations

Covariance intersection (CI) is a commonly used technique to fuse estimations [118,

119]. Let us consider a and b be two estimations of the vector of parameters p. Then,

the CI methods allows the computation of c, as a combination of a and b, as follows:
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c=C ·
[
ω ·A−1 ·a+(1−ω) ·B−1 ·b

]
(8.6)

C−1 = ω ·A−1 +(1−ω) ·B−1 (8.7)

where the free parameter ω is the weighting coefficient that leads to the minimisation

of either the determinant or the trace of the covariance matrix C, associated to the

estimate c. Matrices A and B are the covariance matrices associated to the estimates

a and b respectively [120].

Then, a Kalman filter scheme is added to model the evolution of the parameters

that estimate the robot motion, so that the acceleration of the parameters is supposed

to be constant [121]: vt+1

at+1

=

 I6 I6 ·∆T

06 I6

 ·
 vt

at

 + wt (8.8)

pt+1 =

[
I6 ·∆T 06

]
·

 vt

at

 + vt (8.9)

where vt+1 represents the velocity of the parameters pt+1, computed dividing this by

the increment of time ∆T , and at+1 is the acceleration of the parameters. Matrices

I6 and 06 are the identity and zero matrices of size six. The process noise and the

measurements noise are wt and vt respectively.

In this manner, vectors of parameters p(k)t are computed for each stereo view k

according to the KF defined in (8.8) and (8.9). Then, equations (8.6) and (8.7) are

applied sequentially for as many estimates as available views the system is configured

to acquire. This means that the CI method is used K−1 times when K views are fused.
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8.6 Experiment results

This section shows the robot egomotion results obtained by the data fusion methods

presented in this chapter. The datasets utilised here were acquired in the Planetary Util-

isation Testbed at the European Space Technology Center (ESTEC) of the European

Space Agency (ESA).

Using a validation approach of a similar nature to the one presented by [122],

where 6 points along the trajectory are taken as reference to compare the similarity

between the reference data and the pose estimates. However, for this validation we

opted for using as much ground truth data as we had available, this is up to 70k sam-

ples per dataset. In order to do this the estimated data is upsampled interpolating the

missing estimation values using the timing data available for both image acquisition

and positioning data. Nevertheless, this interpolation process produces results with

low estimation errors.

Figure 8.9a shows the trajectory estimates obtained with a multiple stereo view

approach and the estimates obtained using a single stereo view approach, superimposed

with the ground truth data. Absolute 3D errors between these series and reference data

are shown in Figure 8.9b. Figure 8.9c, corresponds to the averaged of travelled error,

computed as the percentage obtained from the ratio between the average of the absolute

3D error and the total travelled distance.

It is seen from the results how a multiple stereo view solution is able to accu-

rately estimate the robot evolution for a sequence corresponding to 20 [m] of travelled

distance, where images taken at a total of 56 different poses are used. The figures show

how the multiple camera solution provides convergent results while the single camera

solution fails in at least two occasions along the trajectory.
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Figure 8.8: Planetary Test-bed Unit, ESTEC, The Netherlands.

It can be observed from Figure 8.9c that the averaged travelled error decreases

monotonically along the trajectory reaching a final value of 0.38%. This decreasing

behaviour derived from the fact that the error remains contained within the same range

whereas the travelled distance increases.

Figure 8.10 shows similar results for a sequence composed of three views were

images are taken at a higher frame rate. As it can be seen from these figures, the

estimation computed using only the Front stereo view images presents convergence

issues. Note that the single stereo view estimations are generated using sets of 200

points, whereas the estimation based on multiple stereo view optimisation is computed

using only 50 points from each of the three views. This means that even for a smaller

amount of input data, the multiple stereo estimation can provide more accurate results

that also guarantee a better convergence.

Figure 8.11 presents the estimation results obtained for single stereo view opti-

misation and also the multiple stereo view estimation obtained from fusing the three

solutions obtained from each of the different views. It is seen from the figures how the

error of the fused estimation is smaller than estimation errors obtained for each of the

estimations independently.
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Figure 8.9: Estimation results for single stereo and multiple stereo views approaches. Multiple stereo
view estimations are computed using multiple stereo view optimisation.
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Figure 8.10: Estimation results for single stereo and multiple stereo views approaches, multiple
stereo view estimations are computed using multiple stereo view optimisation with a reduced size
input set.
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Figure 8.11: Estimation results for single and multiple stereo view fusion approaches.
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8.7 Advanced use of multiple stereo views

This section explores new ideas based on the usage of multiple stereo view images and

the propagation of the error. When a robot able to acquire multiple view images moves

it is easy to think that certain overlaps will occur between the images obtained at the

different views, Figure 8.3. This is not a new concept itself, as it is indeed basis for

photogrammetry, mosaicing and egomotion. However, this section does not focus on

the use of the information due to overlap of the field of view that takes place on the

images collected from a single camera view, instead, it focuses on how the overlap of

the field of view of different stereo views can be exploited to improve egomotion.

Furthermore, this section studies a new way of incorporating covariance propa-

gation techniques to the egomotion solutions previously presented in this work, without

need of formulating a full SLAM problem.

8.7.1 Covariance propagation

The use of covariance propagation is widely employed in different fields of science and

engineering. This allows modelling the uncertainty of the system’s measurements and

how that uncertainty propagates through to other states and variables of the system.

The application of covariance propagation to algorithms and computer vision has been

studied in the literature along the last decades [123, 124, 125].

Here, the intention is propagating the position of the 3D points observed from the

robot at a certain pose to a later pose reference frame. In order to do that, the propaga-

tion of the covariance of the detected 2D features through the image projective model,

the propagation of the covariance through the 3D reconstruction model, the propaga-

tion of the covariance through the transformation that defines relative poses and the
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propagation of the covariance through the reprojection algorithm of the estimated new

position of the 3D points are necessary.

8.7.1.1 Covariance propagation on 3D reconstruction

Assuming that error level of the position of the detected features used to compute the

3D points observed through a stereo camera, the following can expressions can be

written to model the covariance propagation:

g1(x,w) = g1({uL,vL,uR},{Bl, f ,u0,v0}) =



Bl
(u0−uL)

uL−uR

Bl
(v0− vL)

uL−uR

−Bl
f

uL−uR


(8.10)

Jx =



−Bl
(u0−uR)

(uL−uR)
2 0 Bl

(u0−uL)

(uL−uR)
2

−Bl
(v0− vL)

(uL−uR)
2 − Bl

uL−uR
Bl

(v0− vL)

(uL−uR)
2

Bl
f

(uL−uR)
2 0 −Bl

f

(uL−uR)
2


(8.11)

Jw =



u0−uL

uL−uR
0

Bl
uL−uR

0

v0− vL

uL−uR
0 0

Bl
uL−uR

− f
uL−uR

− Bl
uL−uR

0 0


(8.12)

Cxyz,0 = Jw ·Cst · Jw
T + Jx ·Cuv,0 · Jx

T (8.13)
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where

I x is the reduced vector of projected coordinates

I w is the vector of parameters for the calibration of the stereo pair

I g1(x,w) is the reconstruction function

I Bl is the baseline

I u0,v0 are the coordinated of the principal point of the camera

I f is the focal length

I (uL,vL) and (uR,vR) are pixel coordinates on cameras (L)eft and (R)ight

I Cst is the covariance of the calibration parameters of the stereo camera

I Cuv,0 is the covariance a the 2D feature

I Cxyz,0 is the covariance of the reconstructed point x = g1(x,w)

I Jx and Jw are the Jacobian matrices of g1(x,w) with respect to x and w re-

spectively

8.7.1.2 Covariance propagation on a transformation model

As for the propagation of the covariance on the algorithm used for the 3D reconstruc-

tion, the covariance propagation is also applied to the transformation that describes

position and attitude transition from one pose to another.

g2(x,p) = g2({x,y,z},{α,β ,γ, tx, ty, tz}) =
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=


Cβ Cγ −Cβ Sγ Sβ(

Cα Sγ +Cγ Sα Sβ

) (
Cα Cγ −Sα Sβ Sγ

)
−Cβ Sα(

Sα Sγ −Cα Cγ Sβ

) (
Cγ Sα +Cα Sβ Sγ

)
Cα Cβ

 · {x0− t} (8.14)

Jx = Rxyz =


Cβ Cγ −Cβ Sγ Sβ

Cα Sγ +Cγ Sα Sβ Cα Cγ −Sα Sβ Sγ −Cβ Sα

Sα Sγ −Cα Cγ Sβ Cγ Sα +Cα Sβ Sγ Cα Cβ

 (8.15)

Jp =

[
Jα Jβ Jγ Jtx Jty Jtz

]
(8.16)

Jα =


(
Sα Sγ −Cα Cγ Sβ

)
(ty− y)−

(
Cα Sγ +Cγ Sα Sβ

)
(tx− z)(

Cγ Sα +Cα Sβ Sγ

)
(ty− y)−

(
Cα Cγ −Sα Sβ Sγ

)
(tx− z)

Cα Cβ (ty− y)+Cβ Sα (tx− z)

 (8.17)

Jβ =


Cγ Sβ (tx− x)+Cα Cβ Cγ (tx− z)−Cβ Cγ Sα (ty− y)

Cβ Sα Sγ (ty− y)−Cα Cβ Sγ (tx− z)−Sβ Sγ (tx− x)

Cα Sβ (tx− z)−Cβ (tx− x)−Sα Sβ (ty− y)

 (8.18)

Jγ =


Cβ Sγ (tx− x)−

(
Cγ Sα +Cα Sβ Sγ

)
(tx− z)−

(
Cα Cγ −Sα Sβ Sγ

)
(ty− y)(

Cα Sγ +Cγ Sα Sβ

)
(ty− y)+

(
Sα Sγ −Cα Cγ Sβ

)
(tx− z)+Cβ Cγ (tx− x)

0

 (8.19)

182



8.7 Advanced use of multiple stereo views

Jtx =


−Cβ Cγ

Cβ Sγ

−Sβ

 (8.20)

Jty =


−Cα Sγ −Cγ Sα Sβ

Sα Sβ Sγ −Cα Cγ

Cβ Sα

 (8.21)

Jtz =


Cα Cγ Sβ −Sα Sγ

−Cγ Sα −Cα Sβ Sγ

−Cα Cβ

 (8.22)

Cxyz,1 = Jx ·Cxyz,0 ·Jx
T +Jp ·Cp ·Jp

T (8.23)

where

I x is the vector 3D coordinates

I p is the vector of parameters a transformation

I g2(x,p) is the transformation function

I tx, ty and tz are translation of the transformation

I α , β and γ are Euler angles of the transformation

I Sθ and Cθ are the sin and cos functions for any angle θ

I Cp is the covariance of the transformation parameters

I Cxyz,0 is the covariance of the position before the transformation
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I Cxyz,1 is the covariance of the position after the transformation

I Jx and Jp are the Jacobian matrices of g2(x,p) with respect to x and p respec-

tively

8.7.1.3 Covariance propagation on the projective model

Similar to the previous, the propagation of the covariance is applied to the transforma-

tion that takes places on the stereo header.

g3(x,w) = g3(x,y,z,Bl, f ,u0,v0) =

g3({x,y,z},{Bl, f ,u0,v0)}=

 u0 + f
x
z

v0 + f
y
z

 (8.24)

Jx =

 f
z

0 − f
x
z2

0
f
z
− f

y
z2

 (8.25)

Jw =

 0
x
z

1 0

0
y
z

0 1

 (8.26)

Cuv,1 = Jx ·Cxyz,1 ·Jx
T +Jw ·Cst ·Jw

T (8.27)

where

I x is the vector 3D coordinates to project

I w is the vector of parameters for the calibration of the stereo pair

I g3(x,p) is the reprojection function
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I Sθ and Cθ are the sin and cos functions for any angle θ

I Cst is the covariance of the calibration parameters of the stereo camera

I Cxyz,1 is the covariance of the position

I Cuv,1 is the covariance of the reprojected coordinates

Applying the propagation of the covariance on the 2D features observed on the

cameras at the pose k and the estimation of rover’s motion between poses k and k+n,

for any number of transitions n, the position of the features at k can be propagated to

the reference frame. This leads to ellipsoids of confidence, where the points observed

at k propagate, Figure 8.12.

Figure 8.12: Propagation of the covariance of the points detected on a Right stereo view pose (pan
angle of 30 [deg]) to a later reference frame the rear stereo view (pan angle of 180 [deg]).
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8.7.2 Multiple stereo view image registration on Egomotion

Image registration or image alignment is the process by which the geometrical rela-

tionship between two images is determined. Many alternative models can be applied

to solve this problem, as affine transformations and projective transformation. But the

later is the most versatile.

Here, we propose using the rear stereo views combined with the frontal stereo

views to close the visual loop online from the robot. This task is performed through the

association of the features that appear first in frontal views and that are reobserved after

on the rear stereo view. When that happens, a registration algorithm can be applied to

guarantee the validity of the results of the mobile system online.

A prior task to the image registration when discrete features are used, as opposed

to using the whole image information, is the association of equivalent features

8.7.2.1 Brute Force

A brute force process, in terms of matching of association, consists of making all the

possible comparisons of the descriptors of the two sets of features to be associated.

This task is entails a minimum of n×m comparisons, where n and m are the sizes of

the sets of features to associate.

8.7.2.2 Covariance Guided Association

Using the concepts previously explained in this section, it is possible to reduce the

number of candidates used to compute the association pairs. This is possible due to

the calculation of the confidence ellipses where the 2D features should propagate from

one image to another.
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Figure 8.13: Association candidates on Covariance Guided Association. The features from another
view propagate as ellipses. Association of the previous features with the ones on the previous frame
is only possible is the new features lay within the ellipse of trust.

Figure 8.13 shows how the candidates are computed using the ellipses of trust

obtained by means of the propagation of the covariance.

Figure 8.14 shows the associated features found using Brute Force (magenta)

and Covariance Guided Association (cyan). For this case, a number associations of

41 was obtained using Covariance Guided Association, whereas only 15 associations

could be found using Brute Force. Then Ransac registration algorithm was applied to

compute the homography given by those matches. A number of 15 inliers out of 41

associated pairs were found using Guided Association strategy, whereas only 7 inliers

out of 15 were found Brute Force.

This allows us to consider that the Covariance Guided Association process is

the best solution to identify the associated features. Which can then be applied to

image registration of multiple stereo view sequences to check online the validity of the

results.
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Figure 8.14: Association for multiple view image registration. Lines in cyan represent the associated
features using descriptor matching aided by propagation of the covariance, whereas the magenta
lines correspond to the matches obtained through a brute force process.
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Figure 8.15: Propagation of the covariance for multiple stereo view images. The ellipses represent
the area where the features propagate to with a confidence of 97%. These areas are used on the
Covariance Guided Association process
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8.8 Conclusions

8.8 Conclusions

As a continuation of the motion estimation work that we presented in the previous

chapters, two different approaches based on our robust visual scheme have been pro-

posed here to improve the accuracy of motion estimations when multiple stereo views

are available.

Although solutions to the motion estimation problem based on single stereo cam-

eras are eligible to provide accurate results, they present limitations that a system based

on multiple stereo views is able to overcome. Multiple stereo view systems can be

easily implemented by adding extra pairs of stereo cameras or just by incorporating

pan-tilt mechanisms to the camera header.

A first solution is proposed to deal with the data fusion problem derived from us-

ing imagery from different stereo camera views. This solution, based on optimisation

techniques, has been proved to provide accurate results and to present better conver-

gence proprieties that single stereo based solutions. One of the hypothesis to formulate

this approach is that all the views are acquired from a static pose of the robot. Never-

theless, the results show that, although desirable, this is not a strong requirement for

the solution to work. A second solution to fuse the multiple motion estimations, ob-

tained from single stereo view sequences, through the Covariance Intersection method

has also been proved to be an successful technique to add accuracy to the end estima-

tion results when multiple stereo views are obtainable. Conversely to the other solution

presented here, this filtering approach assumes that all the motion estimations obtained

from the multiple views are valid.

The proposed approaches have been validated representative datasets, for which

the latest techniques to generate ground truth data were used.
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Chapter 9
Conclusions and Future work

This thesis has studied various vision based techniques targeting the robustness and

applicability of stereo imagery solutions. After thorough analysis and investigations,

solutions have been provided where it was thought necessary and challenging.

In Chapter 3 low level image processing is tackled. With the goal of providing

reliable and useful image characterisation image moments techniques are combined

with robust local image descriptors. This innovative combination results in a reliable,

yet efficient, method that can be later used for higher processing levels. It solves

problems of robustness against illumination changes and robust feature identification.

Chapter 4 and Chapter 5 study the integration of the presented visual methods

to VSLAM, as well as some map management enhancements introduced into the al-

gorithms. First, the introduction of the concept rate of usability allows the VSLAM

determining which landmarks are less likely to be later used, in order to alleviate the

system’s growth. Then, the addition of HMSURF as a visual module shows to provide

promising results.
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In Chapter 6 motion estimation techniques based on linear methods are put under

the microscope to investigate robust methodologies eligible for long range Egomotion.

Along with the different visual techniques an alternative based on optical flow is also

analysed. The combination of a RANSAC algorithm together with a quaternion motion

estimation technique is shown to produce precise results.

Chapter 7 reviews the optimisation methods used for robust Egomotion. Differ-

ent feature reprojection alternatives are analysed to determine what is the best recourse.

Extensive experimental results are presented to decide which photogrammetry option

leads to lower levels of error. Our dual reprojection method for a single inter-frame

sliding window is highlighted as the best alternative, providing more stable and accu-

rate results.

Chapter 8 studies the possibility of exploiting multiple stereo view sequences,

used in order to improve the reliability of visual Egomotion. Two methods are pro-

posed by the author to cope with the data fusion problem derived from using imagery

acquired at different views. The proposed methods have shown to provide even higher

levels of accuracy and robustness. A thorough experimental validation has been un-

dertaken to guarantee the quality of the analysis.

Future work

As every research work, this thesis has had to be limited by time and funds. Nonethe-

less, new implications are derived from the investigated topics and proposed solutions

that can be starting points or basis for further research projects.
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In chapter 3, it would be interesting testing the illumination robustness of fea-

tures, when moment images are combined with other sort of feature descriptors. New

solutions to the feature detection and description problems are continuously appearing

in the literature to guarantee higher levels of invariance. Also, the possibility of gen-

erating local descriptors using image moment representation is a topic that could be

further investigated.

Chapter 4 and chapter 5 and other alternative implementations for the VSLAM

algorithm, as the graph-SLAM solutions, could be adapted to integrate the visual mod-

ules presented here. Also, the integration of our VSLAM solutions with other sort of

emerging devices, as active camera devices for motion sensing (Kinect sensor), could

be analysed.

In chapter 6 linear estimation techniques were proved to be a suitable vehicle to

compute the motion estimation, that could be later used as preemptive data for nonlin-

ear optimisation techniques.

Chapter 7 some alternatives to the used feature reprojection strategies could be

analysed, in order to determine improved trade-offs, for different sizes of the sliding

window. Other optimisation techniques can be adapted for the motion estimation, as

particle swarm optimisation or convex optimisation.

Methods developed in chapter 8 could be extended to use the multiple stereo

view images for a new variety of purposes. If multiple stereo views are obtained so

that their fields of view overlap, visual processing techniques can be investigated for

online camera re-calibration. Likewise, frontal stereo views can be combined with rear

stereo to perform visual loop-closure and guided covariance association. This could

lead in later studies to subsequent incremental re-estimation of the motion estimates,

using the backward view.
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