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Neural Ensemble Decoding Reveals a Correlate of Viewer- to
Object-Centered Spatial Transformation in Monkey Parietal
Cortex
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The parietal cortex contains representations of space in multiple coordinate systems including retina-, head-, body-, and world-based
systems. Previously, we found that when monkeys are required to perform spatial computations on objects, many neurons in parietal area
7a represent position in an object-centered coordinate system as well. Because visual information enters the brain in a retina-centered
reference frame, generation of an object-centered reference requires the brain to perform computation on the visual input. We provide
evidence that area 7a contains a correlate of that computation. Specifically, area 7a contains neurons that code information in retina- and
object-centered coordinate systems. The information in retina-centered coordinates emerges first, followed by the information in object-
centered coordinates. We found that the strength and accuracy of these representations is correlated across trials. Finally, we found that
retina-centered information could be used to predict subsequent object-centered signals, but not vice versa. These results are consistent
with the hypothesis that either area 7a, or an area that precedes area 7a in the visual processing hierarchy, is performing the retina- to

object-centered transformation.
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Introduction

We have a singular and seamless perception of space suggesting a
similarly singular neural representation of space within the brain.
However, previous neurophysiological investigation in posterior
parietal cortex has suggested that the brain constructs several
representations of space concurrently. During visually guided eye
movements, for example, different populations of posterior pa-
rietal neurons represent the direction of a saccade and/or the
position of a saccade target in eye-centered (Mountcastle et al.,
1981), head-centered (Andersen et al., 1985), body-, and world-
centered (Snyder et al., 1998) spatial coordinates, demonstrating
a multiplicity of spatial representation by parietal neurons. Pari-
etal neurons can also represent spatial variables that are associ-
ated with spatial cognitive as opposed to sensorimotor function.
For example, when monkeys are required to covertly traverse a
path through a visual maze, the activity of parietal neurons mod-
ulates in time as the direction of the mental traversal changes in
the absence of any physical movement or concurrent change in
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the visual stimulus (Crowe et al., 2004, 2005). We found that
parietal neurons represented spatial variables related to cognitive
and not to sensorimotor function in the context of an object
construction task as well. When monkeys were required to eval-
uate the position of one part of an object relative to others, largely
distinct populations of posterior parietal neurons represented the
spatial position of object parts in two reference frames. One pop-
ulation coded viewer-centered position defined relative to the
midline of the viewer, and another population coded object-
centered position defined relative to the midline of the reference
object (Chafee et al., 2007).

The present study is motivated by the hypothesis that object-
centered signals, like those we found during object construction,
reflect a transformation of viewer-centered neural signals, be-
cause visual information enters the brain in a retina-centered
coordinate system. We test the following predictions based on the
above hypothesis. First, neural activity should code viewer-
centered position before object-centered position. Second, the
strength of viewer- and object-centered signals should be corre-
lated across trials. Third, because object-centered representations
depend on viewer-centered representations, viewer-centered
information should predict subsequent object-centered
information.

To test these predictions, we applied time-resolved linear dis-
criminant analysis (LDA) to extract viewer- and object-centered
positions from the activity of simultaneously recorded parietal
neurons in monkeys performing the object construction task
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The object construction task. A, Task timeline. Objects were comprised of a variable configuration of squares. In each trial, two objects were shown in sequence, a model and a copy,

separated by a delay. Monkeys localized the one critical square missing from the copy object and replaced it by selecting the closer of two flanking choice squares at the end of the trial. B, C, In
different experimental series, the position of the model or copy object was offset randomly to the left or right of the fixation target, dissociating the horizontal position of the critical square in object-
and viewer-referenced coordinates. B, Model object locations in series A were offset to the left or right randomly. €, Copy object locations in series B were offset to the left or right randomly.

(Chafeeetal., 2005, 2007). LDA provides a concise measure of the
information coded by neural activity. We took advantage of this
to generate separate time courses of representation strength of
viewer- and object-based positions. That, in turn, allowed us to
assess the statistical dependence between these time courses.
These analyses provided evidence consistent with the predictions
above. We found that (1) neural activity represented viewer-
centered spatial information before object-centered information,
(2) the strength and accuracy of spatial representation in the two
spatial frameworks was correlated across trials, and (3) that
viewer-centered information predicted subsequent object-
centered signals, but not vice versa.

Materials and Methods

Neural recording. We recorded the electrical activity of single neurons
from area 7a in the posterior parietal cortex of two male rhesus macaques
(4 and 6 kg) performing the object construction task. Neural activity was
recorded using a 16 microelectrode Eckhorn Microdrive (Thomas Re-
cording, Giessen, Germany). We advanced each electrode in the parietal
cortex independently under computer control until we isolated the ac-
tion potentials of ~20-30 neurons. This group of neurons constituted a
neuronal ensemble, and we recorded the electrical activity of the neurons
in the ensemble concurrently as monkeys performed a set of trials of the
object construction task (below). As such, neural ensembles in this study
are defined by sampling and not functional considerations, and in this
sense are unlike the “cell assemblies” that Hebb (1949) defined as groups
of synaptically connected and functionally synergistic neurons.

Action potentials were isolated on-line by a combination of waveform
discriminators (MultiSpike detector; Alpha Omega Engineering, Naz-
areth, Israel) and time-amplitude window discriminators (DDIS-1; Bak
Electronics, Mount Airy, MD). Two operators monitored the fidelity and
stability of the action potential isolations during the experiment. Details
of surgery, recording technique, and the locations of neural recording in
area 7a of parietal cortex have been reported previously (Chafee et al.,
2005, 2007). Care and treatment of the animals conformed to the Prin-

ciples of Laboratory Animal Care of the National Institutes of Health
(NIH publication 8623, revised in 1995). The Internal Animal Care and
Use Committees of the University of Minnesota and the Minneapolis
Veterans Affairs Medical Center approved all experimental protocols.
Object construction task. Two monkeys performed the object construc-
tion task (Fig. 1A). The monkeys were required to maintain their gaze
fixated on a central target (within 1.5°) throughout each trial. Two ob-
jects were presented in sequence. Each object consisted of a collection of
blue squares placed at various positions within a 5 by 5 grid. The first
object constituted a model whose structure monkeys were required to
reproduce. All model objects included, at a minimum, squares within the
base row and central column of the grid, forming an inverted T-shaped
frame. Unique model objects were constructed by the addition of either
one or two squares at various locations in addition to the frame. The
model object was visible for 750 ms (Fig. 1 A, model period). After a delay
(750 ms), a copy object was displayed, identical to the preceding model
on that trial except that one square was missing. We refer to square that
would be removed from the model object to produce the copy as the
“critical square.” In the copy object, we refer to the location where a
square was absent relative to the preceding model as the “missing critical
square.” After the copy object was visible for 750 ms, a pair of choice
squares was presented flanking the copy object. Choice squares were
either located on opposite sides of the copy object at the same vertical
position (horizontal choice array), or on the same side of the copy object
in different vertical positions (vertical choice array), at random across
trials. A short time after the two choice squares appeared (300—600 ms),
one of them brightened for a period of 700-1000 ms (Fig. 1A, first
choice). If the monkey pressed a response key during this interval, the
brightly illuminated choice was animated to translate smoothly to the
copy object (Fig. 1A, completion). If it did not press the response key
during this time, the first choice returned to its original illumination and
the second choice was made bright for 700-1000 ms. If the monkey
pressed the response key when the second choice was brightly illumi-
nated, it translated to the copy object. Monkeys were rewarded with a
drop of juice if the completed object matched the configuration of the
model object. The choice sequence was randomized across trials with
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respect to whether the first or second choice was correct. The task re-
quired monkeys to perform spatial computations on objects without
producing spatially variable motor output to report the result of those
computations.

In two different experimental series, the horizontal position of either
the model object (series A) (Fig. 1B) or the copy object (series B) (Fig.
1C) varied randomly across trials. The respective object was presented
offset from the fixation target either to the left or right, at random. The
offset was of a distance that displaced the object entirely into either the
left or right visual hemifields (objects were 8° wide, and the center of the
object was offset from the gaze fixation target by 4.2°).

Dividing ensembles into viewer-coding and object-coding subsets. We
analyzed neuronal ensemble activity to decode a dichotomous spatial
variable, side, relevant to the successful performance of the object con-
struction task. Side refers to the position of the critical square present
within the model or missing from the copy object, and is a factor with two
levels, left and right. Side is defined in two spatial frames of reference
concurrently. Viewer-centered side specifies whether the critical square
was located to the left or right of the gaze fixation target. Object-centered
side specifies whether the critical square was located to the left or right of
the midline of the reference object. The critical square was located on the
left and right side of the reference object at random across trials. The
reference object was positioned to the left and right side of the gaze
fixation target at random across trials. Therefore viewer-centered side
and object-centered side were statistically independent variables.

As a preprocessing step in the decoding analysis, we performed a two-
way ANCOVA to select subsets of neurons within each ensemble in
which activity varied significantly as a function of the viewer-centered
side and object-centered side of the critical square. Object-coding neu-
rons were identified as those in which activity related significantly ( p <
0.01) to the object-centered side, and not to the viewer-centered side or
their interaction. Viewer-coding neurons were similarly identified as
those in which activity related significantly to the viewer-centered side
(p<0.01), and not to the object-centered side or their interaction. Thus
defined, object- and viewer-coding neurons comprised nonoverlapping
populations. In the series A data, we used the firing rate within the entire
model period as the dependent variable in the ANCOVA (in series A, the
position of the model object varied). In the series B data, we used the
firing rate within the entire copy period as the dependent variable (in
series B, the position of the copy object varied). Two covariates were
included in the ANCOVA model: baseline firing rate in the fixation pe-
riod (before model onset) and the start time of the trial within the re-
cording session. The above definitions of object- and viewer-coding neu-
rons ensured that the two sets of neurons were nonoverlapping. We
define a group of simultaneously recorded neurons with viewer- or
object-related activity as a subset.

Decoding viewer-centered and object-centered sides (left or right) from
viewer-coding and object-coding neurons. We decoded the time course
with which neuronal subset activity represented viewer-centered side
and object-centered side, to determine whether the strength of these two
signals covaried in time. For that purpose, we applied LDA to the firing
rates of each neuron in a subset measured within successive 100 ms bins
throughout the construction trial (Johnson and Wichern, 1998; Aver-
beck et al., 2003; Chafee et al., 2005). In each time bin, LDA indicated the
probability that neural subset activity coded either left or right relative to
the viewer and also relative to the object. The results of the LDA analyses
provided two concurrent decoding time series. One time series provided
a quantitative measure of the strength with which subset activity repre-
sented the viewer-centered side of the critical square. The other time
series provided a quantitative measure of the strength with which subset
activity represented the object-centered side of the critical square.

LDA is a multivariate statistical technique. It classifies observations
that are defined by a set of simultaneous measurements to one of a set of
predefined categories. In our case, observations are 100 ms time bins
within trials, each of which is defined by the set of firing rates observed in
a group of simultaneously recorded neurons. Our analysis involved two
categories, left and right, defined relative to the viewer or the object. We
performed the classification with the Classify function in the Matlab
Statistical Toolbox (The MathWorks, Natick, MA) using fivefold cross-
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validation. Classify requires training and test data as input. We used a
successive one-fifth of the trials as test data, and the remaining four-fifths
of trials as training data, repeating the classification five times until all
trials were included in the test data and were classified. LDA uses training
data to compute the parameters of a set of discriminant functions, each
defining one of the categories in the analysis. Each category is defined by
a mean vector containing the average value of each discriminating vari-
able across all observations in that category. In our case, the mean vector
contained the mean firing rate in each viewer-coding or object-coding
neuron within a given subset when the critical square was located left or
right in the respective spatial framework. Categories are also defined by
the covariance matrix of the discriminating variables, averaged across
categories. The mean vector and covariance matrix provide the free pa-
rameters of a multidimensional Gaussian probability density function
defining each category. Because the categories left and right were bal-
anced in the design, equal prior probabilities for the categories were
assumed in the analysis.

The training data were used to define the discriminant functions, and
the classification was performed on the test data. For each test trial, we
measured the firing rates of viewer- or object-coding neurons within a
subset, and Classify compared this vector of firing rates to the mean
vectors computed from the same subset defining the categories left and
right in the training data, computing the posterior probability that the
new (test) observation belonged to each category. The posterior proba-
bility is calculated by first computing the likelihood that either left or
right was being represented by the neural activity, in the respective coor-
dinate frame, and then dividing this value by the sum of the likelihoods
for the two possibilities. This converts the two likelihoods to values that
sum to one, which are the posterior probabilities. We classified the test
trial as left or right depending on which category yielded the higher
posterior probability. We tallied the number of times the classification
was correct (across trials and across subsets) in decoding the side of the
critical square relative to the viewer and relative to the object, within each
time bin. The number of times the classification was correct provided a
measure of the strength with which subset activity represented each vari-
able. Treating viewer-coding and object-coding neurons as separate, si-
multaneously recorded subsets, and repeating the classification proce-
dure in 100 ms bins in each subset produced the concurrent
representation time courses for the object- and viewer-centered sides on
which the subsequent analyses were based.

Figure 2 shows performance of the LDA analysis applied to a neuronal
ensemble of 25 neurons, containing a subset of four viewer-coding cells
and a subset of five object-coding cells, during the model period of an
example trial in which the critical square was located to the right of the
fixation point, but is on the left side of the object. Figure 2 B shows the
decoding time series for viewer-centered position and Figure 2C shows
the decoding time series for object-centered position.

Correlating viewer- and object-coding signals. We measured the corre-
lation between the two decoding time series representing the viewer-
centered and object-centered sides of the critical square, using several
methods. First, we computed the correlation coefficient between the
maximum posterior probabilities for the correct object- and viewer-
centered sides of the critical square obtained in each trial (across bins).
Next, we performed a x> test to assess the significance of the association
of success or failure in correctly decoding the side of the critical square in
the two coordinate frames on each trial (interpreting each trial as coding
left or right in each framework based on the highest posterior probability
across bins). Finally, we used a linear time-series regression analysis to
quantify the degree to which the viewer-centered decoding time series
could be used to predict the object-centered decoding time series, as
described below.

In the regression analysis, we predicted the strength of object-centered
signals using lagged viewer-centered signals. To do this, we assessed the
variance of the residuals of two linear regression models. In the first,
object-centered posterior probability was predicted by a five-lag autore-
gressive model:

O; = B0y + B0, + B30, 5 + B4O,4 + B5O, 5 + € (1)
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Figure 2.  Performance of the LDA analysis on a single trial. A, An ensemble of simultaneously
recorded cells, four of which were significantly related to the viewer-centered position of the critical
square (black circles; viewer subset), and five of which were related to the object-centered position
(gray circles; object subset). B, Posterior probability of classifying the critical square as right in viewer-
centered coordinates (the correct classification). The line indicates a decoding time course. Each point
represents the posterior probability, evaluated from a 100 ms bin of subset activity, that the critical
square was located in the right half of viewer-centered space. In the LDA, a case is classified as the
category with the highest posterior probability. Because there were two possible categories, and
because posterior probabilities over all categories sum to one, if the posterior probability for right is
>(.5, the binis dlassified as right. On this trial, the LDA consistently classifies the trial correctly begin-
ning 200 ms after the model object is shown (model on). G, Here, the subset activity of five object-
centered cellsis used to classify the location of the critical square relative to the object (in this case, left).
The line indicates the posterior probability that the critical square was located on the left side of the
object.

where O, is the object-centered posterior probability in the current bin,
and O, _; sarethe posterior probabilities in the preceding five bins. In
the second regression, we added the viewer-centered posterior probabil-
ities of the preceding five lags:

O0,=B1.50 1.5+ BsVier + B;Via + BsVis + BoViy
+ BuViste (2)

where V, _ ;5 are the viewer-centered posterior probabilities in the
preceding five bins. We tested the significance of the addition of the
viewer-centered bins by comparing the variances of the residuals ob-
tained from the two models, using an F test, evaluated using k and n-2k
degrees of freedom, where k is the number of lags and # is the number of
observations. Before the regressions, the time-series data were differ-
enced to improve stationarity. Thus, the model we fit was an ARIX model
(Ljung, 1999). This above analysis was repeated on a bin-by-bin basis
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Table 1. Numbers of subsets and significant neurons included in time-course and
correlation analyses using subsets defined by less-restrictive and more-restrictive
criteria

Model period (series A) Copy period (series B)
Subsets Neurons Subsets Neurons
Less-restrictive criterion
Time-course analysis 45 140 18 146
Correlation analyses 29 19 14 18
More-restrictive criterion
Time-course analysis 14 64 23 130
Correlation analyses 4 27 3 28

In the time-course analysis, subsets were restricted to those containing one (less restrictive) or three (more restric-
tive) significant viewer- or object-coding neurons. In the correlation analysis, subsets were restricted to those
containing at least one significant viewer- and one significant object-coding neuron (less restrictive), or at least
three significant viewer- and three significant object-coding neurons (more restrictive).

throughout the trial, providing us with a time-varying estimate of the
linkage between viewer- and object-centered signals, as measured by the
ability of one signal to predict the other. We repeated the above analysis
with two additional variations. We assessed association in the opposite
direction, i.e., evaluating the ability of object-centered signals to predict
viewer-centered signals, and we also performed the analysis using only
one instead of five lagged bins.

Selection of neurons and subsets. Decoding accuracy generally scaled
with the number of neurons in each subset significantly related to viewer-
and object-centered sides (see Fig. 4). The number of neurons with
viewer- and object-centered signals that we could record simultaneously
was limited by the size of the neural ensembles we could study at one time
using the 16 electrode recording matrix (ensembles usually included
20-30 neurons). Typically, we encountered ensembles containing a
small number of significant neurons. More rarely we encountered en-
sembles containing many significant neurons. In considering which en-
sembles to include in the decoding analysis, there was therefore a trade-
off between the number of ensembles included and the number of
significant neurons contained within each ensemble. In light of this
trade-off, we performed two analyses. In the first, we included all ensem-
bles containing a subset of at least 1 significant viewer- or object-coding
neuron. This included a large fraction of the ensembles we recorded, and
so provided a better estimate of the information coded by the “average
ensemble” we were able to record. The information coded by these en-
sembles was necessarily noisier than obtained in our second analysis,
which was restricted to a smaller number of ensembles in our database
that included a subset of a minimum of three viewer- or object-coding
neurons. We refer to these two criteria (at least one or at least three
significant viewer- or object-coding neurons) as being less and more
restrictive, respectively, and report the decoding results obtained using
both criteria.

Neuronal database. We recorded the activity of 51 neural ensembles in
series A (in which we varied the position of the model object), including
atotal of 1013 neurons. We recorded the activity of 18 ensembles in series
B (in which we varied the position of the copy object), including a total of
504 neurons. These sets were nonoverlapping, so therefore our dataset
includes electrophysiological recordings from a total of 1517 neurons. In
series A, we analyzed neural activity during the model period. We varied
the position of the model object in this series, and this allowed us to
dissociate the viewer- and object-based sides of the critical square during
the model period. In series B, we varied the position of the copy object,
and so analyzed neural activity during the copy period to dissociate
viewer- and object-based coding of the critical square missing from the
copy object. Neural ensemble activity was recorded as the monkeys per-
formed either 128 trials in series A or 160 trials in series B.

The numbers of subsets and neurons in them which met the more- and
less-restrictive statistical criteria used to screen subsets for both the time
course and correlation analyses (described above) are listed in Table 1.
Using the less-restrictive criterion in the time course analysis, 33 of the
subsets were recorded in monkey 1, and 30 were recorded in monkey 2.
Using the less-restrictive criterion in the correlation analyses, 23 subsets
were recorded in monkey 1, and 20 subsets were recorded in monkey 2.



5222 - ). Neurosci., May 14, 2008 - 28(20):5218 -5228

Using the more-restrictive criterion in the time course analysis, 13 of the
subsets were recorded from monkey 1 and 19 were recorded from mon-
key 2. Under this criterion in the correlation analyses, we recorded four
subsets from monkey 1 and three from monkey 2.

Using ensembles to estimate network dynamics: testing significance of
simultaneous activity using a bootstrap analysis. To determine the extent
to which the results of the correlation analyses depended on the simul-
taneity of recording object- and viewer-centered signals, we randomly
paired viewer- and object-centered decoding time series from different
ensembles, recorded at different times (frequently on different days).
This shuffling procedure broke the simultaneity between the activity of
subsets of viewer- and object-coding neurons in each ensemble used to
derive the viewer-centered and object-centered decoding time series.
However, the shuffling did not alter the viewer- or object-centered de-
coding time series themselves or the firing rates of neurons on which
these were based. We repeated this shuffling procedure 1000 times, and
after each shuffling we computed the correlation between viewer- and
object-centered signals, as well as the degree to which one could be used
to predict the other, using the regression method, above. This provided a
set of R? values obtained from the correlation or regression analyses,
under conditions in which the two-signals could not influence one an-
other because they were recorded at different times. We could then eval-
uate the proportion of R? values obtained by shuffling that was as large as
or larger than the value we obtained from the original, unshuffled data.
This percentage quantified the probability that the linkage we detected in
the original analysis was spurious, because of either a sample of ensem-
bles that was too small, variations in firing rate and neural representation
that were time-locked to the behavioral events of the trial and therefore
repeatable across experiments and days, or to other factors of the analysis
that may have overestimated the degree of temporal correlation in
viewer- and object-centered representation.

Results

In the construction task, monkeys had to localize and replace a
critical square within a reference object. We randomly varied
whether the critical square was located on the left or right side of
the reference object, and whether the reference object was located
to the left or right of the viewer. Therefore, object-centered left
and right and viewer-centered left and right varied independently
across trials, allowing us to decode the neural representation of
the position of a single locus (corresponding to critical square) in
these two spatial coordinate systems concurrently at each time
point in the trial.

Figure 3 illustrates the activity of two parietal neurons in
which firing rate varied as a function of the side of the critical
square in viewer-centered (Fig. 3A-D) and object-centered
(E-H) coordinates, respectively. Activity of the viewer-coding
neuron was elevated during the model period when the critical
square and model object were located to the left of the fixation
target, regardless of whether the critical square was located on the
left (Fig. 3A) or right ( B) side of the model object with respect to
its central, vertical axis (activity during model period of series A
shown). Activity of the object-coding neuron, in contrast, was
greater when the missing critical square was located on the right
side of the copy object (Fig. 3 F, H; arrow points to location of the
missing critical square), regardless of whether the missing critical
square was located in the left (Fig. 3F) or right (H) visual hemi-
fields, and therefore, regardless of whether the critical square was
located in the left and right halves of viewer-centered space (ac-
tivity during copy period of series B shown).

Temporal order of spatial representation

By decoding the strength of neural representation of viewer- and
object-based positions across a succession of time bins throughout
each trial, we obtained evidence that neurons in parietal cortex
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represented viewer-centered position before object-centered posi-
tion (Fig. 4). The decoding time series in Figure 4 illustrate the per-
centage of trials (averaged across subsets and trials) in which the side
of the critical square was classified correctly, referenced to the viewer
(solid lines) or the object (dashed lines) within each bin. Regardless
of whether we used subsets of at least one significant neuron (Fig.
4A), subsets of at least three significant neurons (Fig. 4B), or all
significant neurons not recorded simultaneously (Fig. 4C), we found
that during the model period the strength of the neural representa-
tion of viewer-centered position increased before the neural repre-
sentation of object-centered position, immediately after the presen-
tation of the model object.

Decoding accuracy increased with the inclusion of the activity of
increasing numbers of neurons in which firing rate related signifi-
cantly to the decoded parameter. For example, the mean posterior
probability obtained by LDA decoding for critical square position
increased when comparing the results of the analysis applied to sub-
sets of one or more significant neurons (Fig. 4A), subsets of three or
more significant neurons (Fig. 4 B), or the entire population of sig-
nificant neurons (Fig. 4C). Viewer-centered signals tended to decay
after presentation of the model object, whereas object-centered sig-
nals tended to persist throughout most of the trial (Fig. 4A—C). This
is relevant because the object-centered information was critical for
task performance during the copy and choice periods, whereas the
viewer-centered information was not.

We also decoded the viewer- and object-centered sides of the
critical square missing from the copy object during the copy pe-
riod in series B. Neurons included in this analysis were selected by
virtue of exhibiting a significant relation in firing rate to critical
square position during the copy period. In this analysis, we found
that the representation of object-centered side persisted from the
model period, and was stronger at all time points relative to the
representation of viewer-centered side (Fig. 4 D—F). This suggests
that early in the trial, viewer-centered representation is earlier
and stronger, whereas later in the trial this pattern is reversed.

The lag between viewer- and object-centered signals was present
in the spike-rate time courses as well as the decoding time courses.
We averaged spike-density functions from neurons with the stron-
gest object- and viewer-centered signals ( p < 0.001 for each factor in
a two-way ANCOVA) across trials and neurons (Fig. 5A). Popula-
tion activity coded the position of the critical square in viewer-
centered coordinates first (at the divergence between thick solid and
thick broken lines) before it coded position in object-centered coor-
dinates (divergence between thin solid and thin broken lines). To
compare the relative timing of viewer- and object-centered repre-
sentation as measured by LDA decoding, we also cross-correlated
the object and viewer posterior probability time series obtained from
simultaneously recorded activity during the model period. The pos-
terior probability is related to the information about the critical
square in each coordinate system, and as such shows us when infor-
mation about each coordinate system increased. The average (across
trials and subsets) cross-correlation function (Fig. 5B) peaks when
the object-centered decoding time course is shifted —100 ms relative
to the viewer-centered decoding time course, indicating that the rep-
resentation of viewer-centered position precedes that of object-
centered position.

Correlation of viewer- and object-centered

spatial representations

In addition to being offset in time, viewer- and object-centered
signals were correlated in strength across trials. To reveal this, we
examined the posterior probabilities obtained from the LDA
analysis. Posterior probabilities are related to the strength of rep-
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Two forms of spatial coding during the object construction task. A-D, Neural activity of an area 7a neuron was elevated during the model period when the critical square and model

object were located to the left of the fixation target (viewer-centered coding). E~H, The firing rate of another area 7a neuron was greater when the missing critical square was located on the right
side of the copy object, regardless of whether this object was presented to the right or left of the fixation target (object-centered coding). Arrows represent the position of the critical square (4-D)
or missing critical square (E=H). A, B, E, F, Critical square on viewer left. €, D, G, H, Critical square on viewer right. 4, (, E, G, Critical square on object left. B, D, F, H, Critical square on object right.

resentation. The higher the posterior probability, the more
strongly the neural subset represents the side of the critical square
in the chosen framework. For each trial, we found the maximum
posterior probabilities for correct classifications: one indicating
the certainty with which viewer-centered position was decoded,
and the other indicating the certainty with which object-centered
position was decoded. These probabilities in the two spatial ref-
erence frames were significantly positively correlated (Fig. 6).
This was true during both the model period (Fig. 6 A,C) and the
copy period (Fig. 6 B, D) of the trial, and it was true regardless of
whether the analysis was based on subsets selected using either
the less-restrictive (Fig. 6A,B) (36 subsets, 237 significant
neurons) or more-restrictive (Fig. 6C,D) (7 subsets, 55 signif-
icant neurons) criterion. Using subsets defined by the less-
restrictive criterion, the strengths of viewer-centered and
object-centered representations were significantly correlated
across trials in both the model period (Fig. 6A) (r = 0.08; p <
10 ~°) and the copy period (Fig. 6 B) (r = 0.13; p < 10 ). The
linear relation between the average viewer-centered and
object-centered posterior probability was strongest using

fewer subsets each containing more (minimum three) signif-
icant neurons (Fig. 6 B, D). In this case, the correlation coeffi-
cient between the two posterior probabilities was 0.14 during
the model period (Fig. 6C) (p = 0.001) and 0.26 during the
copy period (Fig. 6 D) (p < 10 ~?). Therefore, the correlation
in strength between viewer- and object-centered representa-
tions was significant regardless of how the subsets were de-
fined or the number of subsets included in the analysis.

We also assessed the association between overall success and
failure in classification on a trial-by-trial basis in the two coordi-
nate frames. In the less-restrictive case, we found that these mea-
sures were significantly associated during the model period (x* =
3.0; p < 0.05), but not during the copy period. Similarly, when
basing the decoding on subsets defined with the more-restrictive
criterion, we found that the outcomes (success/failure) of decod-
ing viewer-centered and object-centered sides were significantly
associated across trials (x> = 5.90; p < 0.01) during the model
period, but not the copy period. Thus during the model period, in
the case that LDA decoding yielded the incorrect answer for the
viewer-centered side of the critical square on a given trial, it
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tended to yield the incorrect answer for the
object-centered side as well, regardless of
whether subsets were defined by the less-
or more-restrictive criterion.

Using the viewer-centered decoding

time series to predict the object-centered
decoding time series

We were interested in determining
whether object-centered signals could be
predicted from viewer-centered signals.
Therefore, we performed a linear regres-
sion analysis that modeled the posterior
probability in each bin of the object-
centered time series as a linear function of
the posterior probabilities in the preceding
five bins of the viewer-centered time series.
We controlled for the autocorrelation in
the object-centered decoding time series
by including the posterior probabilities in
the preceding five bins of the object-
centered time series in the model. First, we
fit an autoregressive model that predicted
the object-centered posterior probability
in each bin of the decoding time series us-
ing the preceding five bins in the object-
centered series only. We then tested the hy-
pothesis that the addition of viewer-
centered posterior probabilities in the
same previous five bins would significantly
improve our estimate of the object-
centered representation beyond the esti-
mate obtained with just the autoregressive
terms. We did this analysis for each bin,
starting at the first bin after the onset of the
model object (where the five preceding
bins were contained within the 500 ms pre-
trial fixation period). In Figure 7, we plot
the significance ( p value) of the increase in
variance in the object-centered posterior
probability time series explained by the ad-
dition of the viewer-centered terms in the
model, as a function of time throughout
the trial (Fig. 7, thick lines). We found that
during the model period, inclusion of the
lagged bins of the viewer-centered decoding
time series improved the fit by explaining a
significantly larger proportion of variance in
the object-centered time series, relative to the
linear model excluding these terms (Fig. 7A)
(note that thick line drops below the level of
significance at p < 0.05 during the model
period). In contrast, when this analysis
was reversed, lagged object-centered in-
formation did not significantly predict
viewer-centered signals (Fig. 7A) (thin

line). This was true regardless of whether we used the less-
restrictive criterion for subset inclusion (Fig. 7A) or more-
restrictive criterion (Fig. 7C). These results were maintained
when we included only one lagged bin in the analysis, allowing
us to test whether the interaction between object- and viewer-
centered time series was still evident when a shorter time win-

dow was examined (Fig. 7B, D).
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Figure4. Time course of spatial representation in alternative frameworks. A-F, LDA was applied to 100 ms bins of subset (4,

B, D, E) or population (C, F) activity in parietal cortex to classify each bin as representing right or left in viewer-centered (solid
lines) or object-centered (dashed lines) space. The ordinate represents the percentage of bins correctly classified to these cate-
gories as defined by the positions and configurations of the objects presented. Neurons were included if their activity related
significantly to horizontal position in one of the two reference frames during either the model period (4-C) or copy period (D—F)
of the trial. A, Model period, less restrictive (viewer: 40 subsets with 86 cells; object: 34 subsets with 54 cells). B, Model period,
more restrictive (viewer: 12 subsets with 50 cells; object: 4 subsets with 14 cells). ¢, Model period, total population (viewer: 86
cells; object: 54 cells). D, Copy period, less restrictive (viewer: 12 subsets with 26 cells; object: 18 subsets with 120 cells). £, Copy
period, more restrictive (viewer: 3 subsets with 10 cells; object: 18 subsets with 120 cells). F, Copy period, total population
(viewer: 26 cells; object: 120 cells). Note that for this analysis, the sum of viewer and object subsets is more than the total listed
inTable 1, because a single ensemble often contained both object- and viewer- centered cells. Because the cells were selected as
nonoverlapping groups, the total number of cells is the sum of the number of cells in the viewer and object groups.
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Figure 5.  Confirmation of the order of spatial representation. A4, Lines illustrate the average firing rate time course (spike-

density functions; o- = 20 ms) of neural populations coding critical square side in either viewer-centered (thick lines; 30 neurons)
or object-centered (thin lines; 50 neurons) space. Activity is plotted separately when the critical square was located on the
preferred side (solid lines) or nonpreferred sides (dashed lines) of each spatial reference frame. The point in time at which
population activity resolved the position of the critical square is indicated by the point at which population activity diverged on
preferred versus nonpreferred trials. B, Average cross-correlation function of posterior probabilities of classifications in object-
and viewer-centered space during the model period.

Correlation of viewer and object representation depends on
simultaneous activity

Our hypothesis that viewer- and object-centered spatial repre-
sentations are functionally linked is supported by the finding that
fluctuations in the strengths of these representations are corre-
lated over time, and that one decoding time series can be used to
predict the other. If in fact the object-centered representation is
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across trials. Posterior probability associated with classification of the viewer-centered position
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probability associated with classification of object-centered position is represented along the
ordinate. The mean object-centered probability is computed within each bin of viewer-
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restrictive criterion (29 subsets of at least 1viewerand 1 object cell, 119 cells). B, Representation
during copy period, less-restrictive criterion (14 subsets of at least 1 viewerand 1 object cell, 118
cells). C, Representation during model period, more-restrictive criterion (4 subsets of at least 3
viewer and 3 object cells, 4 subsets of 27 cells). D, Representation during copy period, more-
restrictive criterion (3 subsets of at least 3 viewer and 3 object cells, 28 cells).

produced by a transform applied to the viewer-centered repre-
sentation, these correlations should only be present in the case
that the two representations were decoded from the activities of
simultaneously recorded neurons. We tested this prediction us-
ing a bootstrap analysis in which we compared the results of our
correlation and regression analyses using both the original data in
which the two time series were derived from simultaneously re-
corded neural activity, and shuffled data, in which the two time
series were derived from neural activity recorded at different
times.

We randomly paired viewer-centered and object-centered
decoding time series from neural ensembles recorded at dif-
ferent times, and duplicated the analysis above quantifying the
correlation of the strength of viewer- and object-based signals.
We repeated this procedure 1000 times, noting the R* value
obtained at each iteration. In this way, we used the same set of
neural data, the same firing rates, and the same subsets of
neurons in each ensemble used to generate the viewer- and
object-centered decoding time series used in the analysis illus-
trated in Figure 6, but the condition of simultaneous record-
ing across the neural subsets generating viewer- and object-
centered decoding time series was broken. We found that in no
iteration of this bootstrap analysis did the R? value in the
nonsimultaneous case exceed that obtained in the simulta-
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neous case (p < 0.001), either in the copy or model period,
using either selection criterion.

We repeated this bootstrap procedure with the regression
analysis, computing the increase in R* associated with inclusion
of the viewer-centered independent terms in the linear model
(Eq. 2). We compared R? values obtained in the nonsimulta-
neous recording bootstrap iterations to those obtained from the
original data. We first performed this analysis using the less-
restrictive criterion. We found that <5% of R* values from ran-
domized sets were greater than those obtained with the original
data set (p < 0.05), at each significant time point, using either
one or five lagged bins. Furthermore, when we summed R values
over all significant bins, 0 and 0.5% of the randomized R? values
surpassed the original ( p < 0.001; p < 0.01) when we used one
and five lagged bins, respectively. Finally, we repeated this anal-
ysis using the more-restrictive criterion. In this case, no R* values
from randomized sets were greater than those obtained with the
original data set, at each significant time point in the original
data. These data show that the linkage of neural representations
we observed required that viewer- and object-centered decoding
time series were derived from simultaneously recorded neural
activity.

Interaction between object- and viewer-centered
representation

It is possible that neural activity relating significantly to the inter-
action between viewer- and object-centered positions may par-
ticipate in the transformation of one to the other spatial repre-
sentation. If neurons coding the interaction between the two
spatial frameworks represent an intermediate representation, we
would predict that neural activity should represent the viewer-
centered position first, then the interaction between viewer- and
object-centered positions, followed finally by the object-centered
position. That order of representation can be seen in Figure 8.
The representation time course of the interaction between
viewer- and object-centered positions (green line) falls between
the time courses of viewer- (blue) and object-centered (red) rep-
resentation. Using the regression analysis above, we found that
the viewer-centered time course significantly predicted the inter-
action time course, and that the interaction time course predicted
the object-centered time course during the model period. Be-
cause interaction effects were much less prevalent in area 7a, this
regression analysis was performed using the less-restrictive crite-
ria above (subsets containing at least one interaction cell and one
viewer- or object-centered cell, depending on the analysis). The
decoding from this data set was more noisy than those reported
for our main findings above, so we square-root transformed the
posterior probabilities and then converted them to Z scores
(means calculated within subsets). We found that these transfor-
mations had little effect when applied to the data set used to
produce our main findings above.

Discussion

The hypothesis examined in this study is that object-centered
spatial representation emerges within parietal cortex as the prod-
uct of a transformation from a more fundamental, retinocentric
representation of spatial position. We provide several pieces of
evidence that are consistent with this model.

Functional relation between viewer- and object-centered
signals

The primary findings we report are that (1) neural signals coding
viewer-centered position lead signals coding object-centered po-
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equivalent. For example, Figure 5A shows
that after presentation of the model object,
the firing rate of object-coding neurons in-
creases ~100 ms before the activity of this
population begins to carry information
about the object-centered position of the
critical square (as reflected in the delayed
separation in the firing rate of the popula-
tion on preferred and nonpreferred trials).
Second, LDA provides a concise measure of the representation of
the neuronal subset taken as a whole (the posterior probability).
This is in contrast to, for example, a group of measures obtained
for each subset quantifying the correlation in firing rate between
neurons taken two at a time.

Figure 7.

sizes are as in Figure 6.

Interaction between viewer- and object-centered
representation

In parietal visual neurons that possess gain fields, firing rate varies
as a multiplicative interaction between eye position and retinal
stimulus position (Andersen et al., 1990). Artificial neural net-
work models have demonstrated that hidden units that are sen-
sitive to the interaction between eye position and retinal stimulus
position are capable of transforming retina-centered representa-
tions of space in the input layer into head-centered representa-
tions of space in the output layer of the network (Zipser and
Andersen, 1988). We were interested in whether neurons coding
the interaction between the two spatial signals we studied
(viewer- and object-centered positions) participate in the trans-
formation of one signal into the other. Consistent with this pos-

= \/iewer to object
---- Object to viewer
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Predicting object representation using viewer representation. p values of the significance of predicting posterior
probabilities of one reference frame using lagged information from the other reference frame. Solid lines are viewer signals
predicting object signals. Dashed lines are object signals predicting viewer signals. A, B, Less-restrictive subsets. C, D, More-
restrictive subsets. 4, C, Five lagged bins (100 ms each) used in the prediction. B, D, One lagged bin used in the prediction. Subset

sibility, we found that neurons coding the interaction between
the two factors were activated at a time point intermediate be-
tween the representation of viewer-centered and object-centered
positions (Fig. 8). Furthermore, we found that the interaction
posterior probability time course could be predicted by the
viewer-centered time course and, in turn, could predict the
object-centered time course.

Ability of subset activity to accurately capture network
representation

Because we correlate temporal variation in the results of two
parallel subset decoding analyses, our data quantify the correla-
tion in the information coded by two neural populations over
time. Our data do not (for the most part) quantify the temporal
correlation in the spike trains of neurons. Our conclusions relate
instead to the temporal interrelationship between two dynamic
neural representations that coexist in posterior parietal cortex:
coding position relative to the viewer and relative to a reference
object. We consider that the neurons we happened to encounter
during recording belonged to much larger populations engaged
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Figure 8.  Time course of interaction between object- and viewer-centered representation. LDA

was applied to 50 ms of population activity to classify each bin as representing right or left in viewer-
centered (blue lines) or object-centered (red lines) space. The green line is the performance of LDA
dlassification of the representation of the interaction between viewer- and object-centered positions.
The left ordinate represents the percentage of trials correctly classified as left or right in these reference
frames. In this case, chance classification was 50% (represented by the dashed line). Theright ordinate
represents the percentage of trials correctly classified to one of the four possible horizontal critical
square locations (a result of the interaction of viewer- and object-centered square positions). In this
case, chance dlassification was 25%. Neurons were included if their activity related significantly to
horizontal position in viewer-centered space (blue line), object-centered space (red line), or their
interaction (green line).

to sustain these neural representations. An important question
therefore is the degree to which the few neurons we could record
at one time could suffice to accurately capture temporal variabil-
ity in the information coded by these larger populations. We
found that decoding accuracy scaled with the number of neurons
in which firing rate varied significantly with viewer- and object-
centered positions that were included in the analysis (Fig. 4). The
minimum number of neurons in a subset required to address
the temporal relationship between the representation of
viewer- and object-centered sides is two: one object-coding
and one viewer-coding neuron recorded simultaneously. Al-
though decoding accuracy for the side of the critical square in
each spatial frame of reference was limited in this case, it was
still above chance and sufficient to detect significant covaria-
tion in the representation of the two distinct spatial variables
by the brain over time. The ability to detect a significant rela-
tionship between viewer- and object-centered representations
over time when only one neuron of each type was present
argues for (and not against) the strength of the relationship
between these neural representations (as our estimate of
viewer- and object-centered positions at each time point was
noisier when a given ensemble contained fewer neurons cod-
ing in each framework).

Previous studies of object-centered spatial representation

The activity of neurons in the supplementary eye field (SEF) rep-
resents the object-centered direction of planned saccades (Olson
and Gettner, 1995, 1999; Olson and Tremblay, 2000; Tremblay et
al., 2002). Furthermore, the activity of single SEF neurons is often
influenced by both eye- and object-centered saccade direction
(Moorman and Olson, 2007); however, the temporal correlation
in the neural signals coding direction in these alternative coordi-
nate systems has not been assessed. A previous investigation of
the neuronal representation of saccade direction in the lateral
intraparietal area has indicated that parietal neurons code sac-
cade direction in eye-centered and not object-centered coordi-
nates, in a task dissociating these coordinate systems (Sabes et al.,
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2002). Using a different task and recording in a different parietal
area, we found that neurons in parietal area 7a code position
relative to a reference object during the object construction task
(Chafee et al., 2007), enabling the present examination of the
functional relationship between simultaneously recorded viewer-
and object-centered signals in parietal cortex.

Dependence of functional relation on simultaneity of
recording

If viewer- and object-coding representations are functionally re-
lated, such that the object-centered representation is computed
by a transform applied to the viewer-centered representation mo-
ment to moment, one would predict that the correlation between
these two representations should only exist when viewer- and
object-centered sides were decoded from simultaneously re-
corded activity. We compared the ability to predict the object-
centered representation using viewer-centered representation
under two conditions, one in which the two decoding time series
were derived from simultaneously recorded activity, and one in
which they were derived from activities recorded at different
times. We found that the viewer-centered representation pre-
dicted the object-centered representation only when derived
from the activity of simultaneously recorded neurons. This pro-
vides evidence in support of the hypothesis that the object-
centered representation derives from a transform of the viewer-
centered representation on a moment to moment basis. The
directionality of this transform (viewer to object) is indicated by
the finding that viewer signals predicted object signals but not the
converse (Fig. 7). Other, potentially spurious sources of this link-
age would not account for its dependence on simultaneity of
neural activity and its directionality.

We have shown a neural correlate of a viewer- to object-
centered spatial transformation in area 7a of the posterior parietal
cortex. Considerable evidence from neuropsychology suggests
that damage to parietal cortex causes a loss of object-centered
representations, in the form of object-centered neglect (Farah et
al., 1990; Driver and Halligan, 1991). In this case, patients often
neglect information on the side of the object contralateral to their
lesion, relatively independent of the location of the object in
world-centered coordinate systems. The coexistence of viewer-
and object-centered signals within parietal area 7a (Chafee et al.,
2007), along with the lag and correlation in these signals we pres-
ently report, are consistent with parietal cortex playing an impor-
tant role in transforming one spatial representation into the
other.
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