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Incremental Refinement of Image Salient-point Detection
Yiannis Andreopoulos* and Ioannis Patras

ABSTRACT

Low-level image analysis systems typically detect “points of interest”, i.e. areas of natural images that contain

corners or edges. Most of the robust and computationally efficient detectors proposed for this task use the

autocorrelation matrix of the localized image derivatives. Although the performance of such detectors and their

suitability for particular applications has been studied in relevant literature, their behavior under limited input source

(image) precision or limited computational or energy resources is largely unknown. All existing frameworks assume

that the input image is readily available for processing and that sufficient computational and energy resources exist for

the completion of the result. Nevertheless, recent advances in incremental image sensors or compressed sensing, as

well as the demand for low-complexity scene analysis in sensor networks now challenge these assumptions.

In this paper, we investigate an approach to compute salient points of images incrementally, i.e. the salient point

detector can operate with a coarsely-quantized input image representation and successively refine the result (the

derived salient points) as the image precision is successively refined by the sensor. This has the advantage that the

image sensing and the salient point detection can be terminated at any input image precision (e.g. bound set by the

sensory equipment or by computation, or by the salient point accuracy required by the application) and the obtained

salient points under this precision are readily available. We focus on the popular detector proposed by Harris and

Stephens and demonstrate how such an approach can operate when the image samples are refined in a bitwise manner,

i.e. the image bitplanes are received one-by-one from the image sensor. We estimate the required energy for image

sensing as well as the computation required for the salient point detection based on stochastic source modeling. The

computation and energy required by the proposed incremental refinement approach is compared against the

conventional salient-point detector realization that operates directly on each source precision and cannot refine the

result. Our experiments demonstrate the feasibility of incremental approaches for salient point detection in various

classes of natural images. In addition, a first comparison between the results obtained by the intermediate detectors is

presented and a novel application for adaptive low-energy image sensing based on points of saliency is presented.

Index Terms— salient point detection, incremental refinement of computation, low-level feature detection,
progressive image sensing EDICS CODE: SRE-LOWR, FLT-OTHR

Yiannis Andreopoulos is with the University College London, Dept. of Electronic & Electrical Engineering, Torrington Place, WC1E 7JE,
London, UK; Tel: +44-20-76797303; fax: +44-20-73889325; email: iandreop@ee.ucl.ac.uk.

Ioannis Patras is with the Queen Mary University of London, Dept. of Electronic Engineering, Mile End Road, E1 4NS, London, UK; Tel:
+44-20-7882-5345; fax: +44-20-7882-7997; e-mail: i.patras@elec.qmul.ac.uk.

*Corresponding author. Address and contact information: see above.
Parts of this paper were presented in the 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Y.

Andreopoulos acknowledges the support of the EPSRC, grant EP/F020015/1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1714758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TIP-03171-2007 IEEE Transactions on Image Processing 2

I. INTRODUCTION

Low-level feature detectors attempt to isolate image areas that contain visually important data, such as edges or

corners. Many such approaches have been proposed within the last 30 years [1]-[3] and they are generally termed as

detectors of points of interest or salient point detectors (SPDs). Some approaches are stand-alone systems for low-level

image analysis [4]; others feed the results into systems performing higher-level image understanding tasks [5].

Comparative tests carried out amongst different approaches demonstrated that detectors that combine the smoothed

image derivates via the autocorrelation matrix are robust and achieve some of the best results [6]. Perhaps the most

prominent candidate in this category is the edge and corner detector proposed by Harris and Stephens [2].

Initial research in the area (e.g. Moravec’s work) begun because low-level real-time image analysis is extremely

useful for various applications in robotics [1], real-time surveillance and monitoring [7], etc. Computational and

sensing energy requirements are very important for these applications. Today, even though computing systems have

evolved to the extent where derivative-based approaches can be executed fast, the image processing needs have also

increased dramatically since image resolutions are higher and there is a significant demand for processing high

frame-rate videos or images and views derived from multiple cameras in systems with limited computational and

energy resources, e.g. in video sensor networks [8]. Hence, the required computational and energy resources remain an

important concern. Finally, most modern realization platforms utilize dynamic task scheduling [9], and low-power task

scheduling, e.g. via the use of dynamic voltage scaling [10]. Hence, multimedia applications need to be able to produce

the best-possible result under rapidly-changing system resources [10].

Besides the computational aspects, new trends have also emerged in the image sensor arena. Approaches for

compressed sensing [11] are assuming the use of limited sensory equipment (even up to single-pixel sensors [12]) to

derive a resolution and quality-refinable approximation of the input visual data. A more straightforward and already

fully-functional approach is based on CMOS image sensors capturing the input source incrementally from the

most-significant bits (MSBs) to the least-significant bits (LSBs) using successive analog-to-digital conversion [13].

In this paper, we are considering the derivative-based detector of Harris and Stevens and extend it to support

incremental derivation of image salient points with increased input-image precision. This complies with the

incremental CMOS-based image sensing approach proposed by Yang et al [13] that produces image bitplanes

hierarchically, from the MSBs to the LSBs, as shown in Figure 1. We reformulate the detector for incremental

refinement and thereby create a hierarchical computation framework for the derivation of image salient points for each

new input image bitplane. We exploit the fact that the salient points of the previous input are known when new input

bitplanes are processed and localize the computation and image sensing in a window surrounding the position of each

previously-found salient point. This is expected to reduce the energy and computational requirements in comparison to
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the straightforward approach that senses the entire image and then computes the salient points. We investigate the

computational requirements for a variety of input images in comparison to the conventional approach and perform a

detailed study to demonstrate the conditions under which the processing and sensing power of the proposed approach

is reduced versus the conventional approach that is not refinable and requires sensing and processing the entire input

image.

Figure 1. Overall framework for successive bitplane-based image sensing and incremental salient-point detection. The
visual sensor captures the input source incrementally from the most-significant bits (MSBs) to the least-significant bits
(LSBs). The output results are produced incrementally from MSB to LSB. Incremental production of the results leads
to progressive improvement of quality under increased computation (operations per pixel) and increased sensing
energy (in multiples of the basic sensing energy per bit – bitE ).

This paper is structured as follows. Section II presents the proposed formulation enabling incremental refinement

for the computation of image salient points. Section III analyzes the computational and energy requirements for

incremental salient-point detection in comparison to the conventional approach where the salient point detector (SPD)

operates under fixed source precision. Section IV presents experiments deriving the performance of the incremental

detector versus the conventional approach. Several aspects and possible extensions are discussed and a new

application of salient-point driven image sensing is presented. Finally, Section V draws our conclusions.

II. FORMULATION OF INCREMENTAL REFINEMENT OF SALIENT POINT DETECTION

A. Salient Point Matrix Derived using the Harris Algorithm

The basic algorithm of Harris and Stephens [2] for image salient-point detection begins by calculating an

approximation for the horizontal and vertical first-order derivatives of the input image. For an image I consisting of

R C pixels, if we define the difference matrix:

1 0 1

1 0 1

1 0 1

  
 

  
 
   

D ,

the approximation of the horizontal and vertical first-order derivatives of the image is:

 X I D , T Y I D , (1)
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where operator  denotes two-dimensional (2D) convolution.

In order to reduce the influence of noise, smoothing with a Gaussian window is used [2]:

  A X X G (2)

  B Y Y G (3)

  C X Y G (4)

where operator  denotes the Hadamard (element-wise) matrix product and G denotes the two-dimensional Gaussian

window formed by:

 2 2 21
[ , ] exp ( )/2r c r c

f
  

G

G (5)

with fG the normalization factor that ensures that the 2D Gaussian filter has unitary gain. The typical size of the

window is: 20 , 6r c      . The autocorrelation matrix of the image derivatives can be defined as the 2 2 matrix:

 
   
  

A C
M

C B
(6)

with elements defined in (2)-(4). In the salient-point detection process, following the original paper of Harris and

Stephens [2], we use the “trace matrix” of M , as well as its “determinant matrix”:

Tr( ) M A + B (7)

   det( )  M A B C C  . (8)

The formulation proposed by Harris and Stephens for the salient point matrix is:

det( ) Tr( ) Tr( )k  R M M M , (9)

with k a scaling factor which is a parameter of the detection algorithm. The second term of (9) is used to eliminate

contour points with one strong eigenvalue in M [6]. Positive values of R occur in the corner regions, negative values

in the edge regions, and small values in the flat regions. Consequently, thresholding R gives the areas containing

salient points.

B. Selection of Salient Points using R

There exists a variety of methods to derive the location of salient points, depending on the application of interest. In

this paper we follow the common approach [2] [6] of comparing the local maximum and the local minimum of R

(within a neighborhood of 3 3 pixels) with a certain threshold  . The local maxima of R that are larger than  are

labeled “corner” points. The local minima that are smaller than  are labeled “edge” points. Typically,  is set to a

certain percentage  of the maximum observed value of R [6]. In this way we end up with a disjoint set of salient

points, as shown in the illustration examples of Figure 1. The junction completion algorithm that merges the derived

salient points (e.g. in order to derive continuous edge profiles from the salient points representing edges) can be a

separate part of the system depending on the application of interest [2]-[5]. Hence, any further processing of the salient
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points, such as extraction of descriptors for higher-level reasoning or linkage for edge detection, is beyond the scope of

the current paper.

C. Incremental Derivation of the Salient Point Matrix under Increased Image Sensing Accuracy

We now consider the computation of the algorithm of the previous section under the assumption that the image is

sensed incrementally, i.e. from the most-significant to the least-significant bitplane, as seen in the framework of Figure 1.

There, the image is sensed in a bitplane-by-bitplane fashion, which means that each pixel of image I is represented by:

bit

1
[ , ]0

sensed bit
0

[ , ] ( 1) [ , ] 2
N

N
i r c n n

n

i r c i r c




   (10)

where bit[ , ]ni r c is the n th bit of sensed pixel 0
sensed[ , ]i r c , with 0

bit[ , ]i r c being the LSB, 1
bit [ , ]Ni r c the MSB, and bit[ , ]Ni r c

reserved for the sign bit (zero for positive values, one for negative values). For typical 8-bit grayscale R C -pixel

images we have 8N  and for every 0 r R  , 0 c C  : 8
bit[ , ] 0i r c  , i.e. all pixel values are positive. In the

following part of this section, we describe the steps for the incremental computation of the salient point detector of

Subsection II.A assuming that we are operating on any bitplane n , from 1n N  to 0n  .

We begin by extending the notation presented above to cover the remaining parts of the SPD. This is performed by

the following definitions.

Definition 1: For any quantity a used in the SPD algorithm, sensed
na , 0 1n N   , is the computed value of a

when the input image I is sensed from bitplane 1N  up to (and including) bitplane n .  □ 

Definition 2: For any quantity a used in the SPD algorithm, bit
na , 0 1n N   , is the computed value of a when

using only bitplane n of the input image I .  □ 

The notational conventions of Definition 1 and Definition 2 are extended for matrices, e.g. bit
nA is the matrix

containing the computed coefficients of A when only bitplane n of the input image is used. In the following we

derive an algorithm for incrementing the computation of the final result of the SPD (salient point matrix) when the

image is sensed bitplane-by-bitplane starting with the most-significant bits.

Starting with the computations for the image derivatives seen in (1), we notice that they can be performed separately

for each new bitplane bit
nI since the multiply-accumulate process performed during convolution is a linear operation

that can be broken into separate multiply-accumulate processes for each bit that are summed afterwards. Hence, for

input image bitplane bit
nI we obtain  1

sensed bitsensed
n n n  X I I D . This can be expressed as 1

sensed bitsensed
n n n X X X

with:

bit bit
n n X I D . (11)

Similarly, we obtain 1
sensed bitsensed
n n n Y Y Y , with:

bit bit
n n T Y I D . (12)
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In (11), (12), bit
nX , bit

nY contain the output of bitplane n . We remark that these matrices will have slightly increased

dynamic range in comparison to bit
nI , i.e. they will not contain only binary values, due to the accumulation performed

in the convolution operations.

The next step involves filtering with the Gaussian window, as shown in (2)-(4). Due to the non-linearity introduced

by the Hadamard products prior to the convolution operations, we break the computation as follows:

    1 1
sensed bit bitsensed sensed
n n n n n    A X X X X G (13)

which, by expanding the Hadamard product, can be written as:

     1 1 1
sensed bit bit bitsensed sensed sensed

1
bitsensed

2n n n n n n n

n n

  



     

 

A X X G X X G X X G

A A

  
(14)

with:

   1
bit bit bit bitsensed2n n n n n   A X X G X X G  . (15)

The last equation shows that the non-linearity introduces the additional term  1
bitsensed2 n n X X G in the increment of

the computation for sensed
nA . In the same manner, we derive the increment for the computation of sensed

nB , as:

   1
bit bit bit bitsensed2n n n n n   B Y Y G Y Y G  (16)

and for sensed
nC :

     1 1
bit bit bit bit bitsensed sensed
n n n n n n n      C X Y G X Y G Y X G   . (17)

The following step of the algorithm involves the computation of the increment of (7) and (8) which, similarly as

before, can be derived as:

   bit bitbitTr n n n M A B (18)

            1 1 1
bit bit bit bit bit bit bitsensed sensed sensedbitdet( ) 2n n n n n n n n n n n      M A B A B B A C C C C     . (19)

Finally, similarly as before, the derivation of bit
nR [increment for (9)] is:

           1
bit bit bit bit sensed bitdet( ) Tr( ) Tr( ) 2 Tr( ) Tr( )n n n n nn k     R M M M M M  . (20)

Notice that (15)-(20) provide an incremental computation framework for the results needed in order to derive the

increment bit
nR of the output salient point matrix sensed

nR . The remaining step in order to complete the derivation of the

salient points for the input image sensed
nI (i.e. the results from the image sensed up to, and including, bitplane n ) is the

addition of the increment of the results to their previous counterparts, i.e.:

1
sensed bitsensed
n n n Q Q Q (21)

with { , , , , ,Tr( ),det( ), }Q X Y A B C M M R . This process can then proceed to the final salient point selection in order to

derive the salient points when the image is sensed up to (and including) bitplane n . This selection occurs following the

technique used in the original algorithm, i.e. as described in Subsection II.B.

The process can be continued in the same manner for each subsequent bitplane 1, 2, , 0n n   captured by the
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image sensor. If the computation or energy resources provided by the realization platform are exhausted, or when the

derived salient points are considered sufficient for the particular application, the salient point detection can be

terminated. For each bitplane n the incremental approach derives the same results as the conventional approach that

processes all N n bitplanes simultaneously.

The derivation of (15)-(20) involves several calculations that are repeated for each input bitplane n . However, the

dynamic range of the inputs is considerably smaller than the inputs of the conventional approach that consist of

samples with N n bits (for terminating bitplane n ). Still, this process can require considerable computational

overhead compared to the original algorithm.

By observing the indicative results of Figure 1, one notices that the derived salient points for each bitplane tend to be

clustered around the areas of previously-derived salient points from the higher bitplanes. This is to be expected as

strong salient points are likely to be detected early on during the sensing process and then remain localized within a

certain region as additional bitplanes are added to the input image. For this reason, we introduce an adaptive image

scanning mask which focuses the image sensing and the processing around the areas of previously-derived salient

points. Specifically, once the set:

   1 2 1 1 2 2( ) ( ) ( )(r , c ) (r , c ) (r , c )n n n n n n n n n n
T n T n T ns s s  s (22)

of ( )T n total salient points is derived for bitplane n (with each element (r , c )n n
t t , 1 ( )t T n  , representing the

coordinates of salient point n
ts ), we create a binary mask 1nW with elements initially set to “false,” i.e. for each

element 1[ , ]nw r c of 1nW : 1[ , ] 0nw r c  . Then we set to “true” all the elements of 1nW in the window of Z Z

pixels around each salient point n
ts , 1 ( )t T n  , of bitplane n . This is done using the following rule:

 1

1 1
1

[ , ] 1, : r 2 c 2
[ , ] :

[ , ] 0, otherwise

n n
n k k

n n
n

w r c iff k r Z and c Z
w r c

w r c



 


        
 

W . (23)

The selection of the window-size parameter Z will be discussed in the experimental section of the paper. Prior to

sensing or processing any bit 1
bit [ , ]ni r c contained in the input bitplane 1

bit
nI with (11) or (12), we test whether

1[ , ] 1nw r c  , i.e. whether the point lays in an area around a previously-found salient point. The steps to perform the

sensing and computation with the proposed approach are summarized in the pseudocode of Table 1.
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1. For each bitplane n , 1, 2, , 0n N N   

2. For each point ( , )r c , 0 r R  , 0 c C 

3. If 1n N  // highest bitplane: sense all bits and the sign bit

4. Sense bit[ , ]Ni r c (sign bit) and 1
bit [ , ]Ni r c

5. Else if [ , ] 1nw r c  // sensing occurs only within the scanning mask

6. Sense bit[ , ]ni r c

7. Else

8. Set bit[ , ] 0ni r c 

9. Calculate    bit bit bit bit bit bitbit bit, , , , , Tr( ) , det( ) ,n nn n n n n nX Y A B C M M R using eq. (11)-(20)

10. If 1n N  // if not at the maximum bitplane, create the sensed results

11. Apply the update process of eq. (21)

12. Derive the salient point set ns corresponding to image sensed
nI (Subsection II.B)

13. If 0n  // create the scanning mask to be used for the next bitplane

14. For each point ( , )r c , 0 r R  , 0 c C 

15. Apply the rule of eq. (22) to derive 1[ , ]nw r c

Table 1. Pseudocode for the proposed adaptive sensing and processing for the salient point detection for each input
bitplane n .

III. COMPUTATIONAL AND SENSING CHARACTERISTICS

In this section we first present the metrics used for quantification of the required computation and sensing energy

for each configuration of the SPD (Subsection III.A and III.B). We then propose stochastic source models

encapsulating the statistics of the input and output of the SPD (Subsection III.C). These models are used in order to

derive the final estimates for the expected computation and energy requirements for incremental salient point detection

in images (Subsection III.D).

A. Implementation Complexity of Variable Bit-width Arithmetic Operations

We are quantifying the differences of the conventional computation of the salient-point detection algorithm of

Subsection II.A and II.B versus the proposed approach of Subsection II.C. These differences will be studied in terms of

the computational effort required to complete the detection task, whether it is for a single bitplane or for the entire set

of bitplanes. In this respect, a metric used commonly in the literature is the required number of additions and

multiplications. However, arithmetic operations in the proposed incremental refinement approaches deal with data

with significantly-reduced bitwidth in comparison to the conventional computation of the salient-point detection

algorithm that processes all bitplanes at once. To distinguish this effect, we follow the approach proposed in our

previous work [14] and utilize the following metrics inspired by classic research work in the area-time complexity of

binary multiplication and addition [15] [16].

Definition 3 (from [14]): Addition of two numbers represented with 1N and 2N bits, each having an additional bit

as the sign bit as in (10), requires the following number of operations:

1 2

add

max{ , } 1
Cost

0

N N  


, if both numbers are nonzero

, otherwise
(24)
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□ 

Definition 4 (from [14]): Multiplication of two numbers represented with 1N and 2N bits, each having an

additional bit as the sign bit as in (10), requires the following number of operations:

   11 2 1 2
mult

max{ , } 1 min{ , }
Cost

0

N N N N    


, if both numbers are nonzero

, otherwise
(25)

with 0   a system parameter indicating how “hard” is binary multiplication in comparison to binary addition.          □  

As discussed in our previous work [14], they can be intuitively viewed as follows: Assume a virtual processing

element (PE) able to perform signed addition between two bits and the carry information. Starting from the LSB,

addition is (maximally) requiring 1 2max{ , } 1N N  activations of the PE for two numbers with 1N and 2N bits.

Similarly, by viewing multiplication as cumulative additions, the number of activations of the PE is given by (25), with

the system parameter  indicating the cost of accumulating the intermediate results. If any of the two operands is zero,

no operations are required (apart from a minimal “zero detection” effort), since the result is trivial.

B. Energy Requirements for Adaptive Image Sensing following the Binary Mask nW

If we assume that sensing an individual bit using successive analog-to-digital sensors (e.g. the CMOS-based image

sensor of Yang et al [13]) consumes bitE Joules, we can derive the overall energy consumption of the conventional

approach for the computation of the detector up to (and including) bitplane n as:

conventional bitEnergy ( ) ( 1 )n R C N n E      Joules. (26)

The last equation shows a linear increase with the number of bitplanes. Notice that the assumption of constant bitE

means that the information requirements (number of image bits retrieved from the sensor) are linearly related to the

energy consumption of the sensing process.

On the other hand, the proposed approach involves adaptive sensing for each individual bitplane n based on the

binary mask nW . The sensing requirements are:
2

incremental bit
1 1

Energy ( ) [ , ]
N R C

i
i n r c

n R C w r c E


  

        
 Joules (27)

since we sense all bits of bitplane 1N  and then sense bitplanes 2, ,N n  according to binary masks

2, ,N nW W . If the binary mask iW does not cover the entire input bitplane of the image for each 2n i N   , we

expect the energy requirements of the proposed approach to be less than the energy required by the conventional

approach. We explore the energy performance of both approaches in the experimental section of the paper.

C. Stochastic Source Models for Matrices A ,B ,C , and Output Salient Matrix R

Having defined the computational and energy metrics used in this paper, in this subsection we complete the

description by considering the source statistics. These are important in the proposed framework because the input

source “drives” the system operation by appropriately activating the sensor and the computation engine. Hence, based
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on appropriate source models, we can estimate the computational and energy requirements for the proposed framework

as well as for the conventional realization of the SPD that senses the image up to a certain bitplane and then derives the

salient points corresponding to this accuracy.

Starting with the distribution of the coefficients a , b , c of A , B , C (respectively), there is a variety of stochastic

image models in the related literature that could be investigated [17]. Most models analyzing filtered input images with

derivative-based filters assume some form of joint distribution of pixels [17], or a doubly-stochastic model [18], in

order to represent the correlation of neighboring coefficients. Lam and Goodman [18] assume that transform

coefficients are independently Gaussian distributed conditional to their variances. Assuming an exponential

distribution of the coefficient variances within a localized area of 8 8 coefficients, the resulting marginal

distribution turns out to be Laplacian. Figure 2 shows the fitted Laplacian distribution to the experimental probability

mass function (PMF) of the coefficients of C . This distribution fails to model the sharp peak of the PMF. At the same

time, the tail of the distribution decays too quickly in comparison to the PMF data. Similar results were obtained for the

coefficients of matrices A and B , with the difference that the Laplacian distribution becomes an exponential

distribution since the coefficients of these matrices are non negative. All 215 images of the USC test-set [19] were used

for the derivation of the PMFs corresponding to the coefficients { , , }h a b c of { , , }H A B C .
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Figure 2. Left: experimental probability mass function and Laplacian distribution for the coefficients of C . KLdiv is
the obtained Kullback-Leibler divergence [20]. Right: Log plot of the tail approximation indicating the failure of the
approximation.

In order to capture the statistics of the coefficients of { , , }H A B C more accurately, in this paper we extend the

Laplacian model by using a mixture of LH distributions:

 
1

P( ) exp
L

i i

i ii

w h
H h

f



 


 

H
H H

H H H

 (28)

with:

1, for { , }
and : 0

2, for
if i 

   
 

H H

H A B

H C
, (29)

where iH and iH are the parameters of the i th component of the mixture. Finally, the weights iwH are forming the
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final mixture of the LH distributions. The factors set in (29) ensure that P( )a , P( )b become a mixture of exponential

distributions. Instead of deriving the distributions of (28) simply by curve fitting, we used the expectation

maximization (EM) algorithm to obtain the maximum likelihood estimate for the parameters of (28). The results are

presented in Figure 3, while the corresponding parameters are given in Table 2. For the generation of the PMFs using

(2)-(4), a Gaussian window of 12 12 pixels was used [derived by (5) with 2 2  (recommended parameter for the

Harris detector [2])]. The derived mixture model fits the data much more accurately than the single Laplacian

distribution. This is also demonstrated for the coefficients of C by the significantly-reduced Kullback-Leibler

divergence reported in Figure 3 in comparison to the one reported in Figure 2.
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Figure 3. Experimental probability mass functions and Laplacian mixture fit for the coefficients of matrices A , B ,
and C . KLdiv is the obtained Kullback-Leibler divergence for each case [20].

i iA iA iwA iB iB iwB iC iC iwC

1 0.000 16422.636 0.305 0.000 13411.619 0.315 0.000 3316.214 0.317

2 0.000 2801.561 0.368 0.000 2634.697 0.361 0.000 432.324 0.366

3 0.000 267.208 0.327 0.000 287.747 0.324 0.000 26.993 0.317

Table 2. Parameters for the distribution of coefficients in A , B , and C corresponding to 3L L L  A B C .

By expanding (9) we can derive the final salient point matrix R parametrical to matrices A , B , and C as:

sensed sensed sensed sensed sensed sensed sensed sensed sensed(1 2 ) ( )n n n n n n n n nk k    R A B C C A A B B    . (30)

The last equation indicates that the distribution of the random variables R corresponding to the final coefficients r of

R is derived based on the individual distributions of the coefficients in A , B , and C . However, since the individual

probability distributions are co-dependent and the combination of their random variables corresponding to (30) will

lead to a very complicated expression, we opt to experimentally fit the probability mass function of the resulting

coefficients of R derived by a variety of natural images [19]. Following the same model as in (28) and by using the

EM algorithm we derived the result seen in Figure 4. The corresponding parameters are presented in Table 3. The use

of the mixture model of 4L R Laplacian distribution ensures we capture the tail of the PMF accurately. This is

exhibited in Figure 5 where we display the fit of the derived mixture models for the tail of the distribution of the

coefficients of C and R . The comparison of the fit for the tail of C presented in Figure 5 with the one shown in the
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right side of Figure 2 demonstrates the superiority of the mixture model in comparison to the conventional single

Laplacian distribution.
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Figure 4. Experimental probability mass function and Laplacian mixture fit for the coefficients of matrix R . KLdiv is
the obtained Kullback-Leibler divergence [20].

i iR iR iwR

1 -21775.500 785703.000 0.555

2 4692442.500 3761440.475 0.167

3 21977908.500 20878192.930 0.177

4 174404290.500 49684133552.171 0.101

Table 3. Parameters for the distribution of the coefficients in R corresponding to 4L R .
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Figure 5. Log plot of the tail of the distribution of C and R .

D. Expected Sensing Energy and Computational Requirements

We complete this section by estimating the number of required activations for both the conventional and the

proposed approach using the stochastic source models proposed in the previous subsection.

Starting with the proposed approach, we produce the results incrementally following (11)-(20). For each input

bitplane n , the probability of activation of the sensor and the computational units is dependent on two factors:

i) the probability of having non-zero inputs within one or more of the bit,
nA bit,

nB bit
nC matrices for each sensed

bitplane n ;

ii) the probability of having non-zero binary mask nW .
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Part (i) expresses the probability of activation of the computational units due to the non-zero input. Part (ii) on the

other hand expresses the percentage of the sensed bitplane n .

Starting with part (i), the probability of a coefficient bit bit bit bit{ , , }n n n nh a b c of bit
nH ( { , , }H A B C ) being zero is:

1 2

bit
1

9 2 3 2
Pr[ 0] exp

N n nL
n

i
ii

h w


 



           
   


H

H
H

(31)

The proof of (31) is contained in Appendix I.

Concerning part (ii), we determine the probability of a coefficient sensed
nr of sensed

nR being above the detector

threshold  or below  as:

   sensed
1

1
Pr[ ] exp exp

2

L
i in

i
i ii

r w
 

 

             
R

R R
R

R R

(32)

The proof of (32) is given in Appendix II with the threshold  given by (41).

The derivations of (31) and (32) allow for a theoretical characterization of the required computational and energy

requirements for the proposed approach. The expected computation for the proposed incremental approach up to (and

including) bitplane n is:

 bit bit bit bit

1
model 1
incremental bit opssensed

, ,

Cost ( ) 1 Pr[ 0] Pr[ ] Cost
i i i i

N
i i

i n h a b c

n R C h r




 

               
  (33)

where opsCost represents the average cost in terms of arithmetic operations for each non-zero input. In (33), for each

bitplane i we combine the probability of having non-zero mask, i.e. 1
sensedPr[ ]ir    (for the previously-derived result

of bitplane 1i  ), and the probability that the coefficients bit
ia , bit

ib , bit
ic are not zero. These are the conditions that

will activate the computational engine for each bitplane i ( 1n i N   ), according to part (i) and part (ii) presented

before. We remark that since for the MSBs of the image we are scanning the entire bitplane, we set:

sensedPr[ ] 1Nr    .

Similarly, concerning the expected sensing energy we have:
1

model 1
incremental bitsensedEnergy ( ) Pr[ ]

N
i

i n

n R C r E






      Joules (34)

Finally, concerning the conventional approach, the probability of activation of the computational units is dependent

on the probability of a coefficient sensed sensed sensed sensed{ , , }n n n nh a b c of sensed
nH ( { , , }H A B C ) being zero. This can be

derived as:

 
2

sensed
1

9 2 2
Pr[ 0] exp

L N n
n

i
ii

h w


        
    


H

H
H

(35)

The proof of (35) is presented in Appendix III. If we assume that the terminating bitplane is n , the expected

computational cost for the conventional approach is:

 sensed sensed sensed sensed

model
conventional sensed ops

, ,

Cost ( ) 1 Pr[ 0] Cost
n n n n

n

h a b c

n R C h


          
 (36)
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where opsCost represents the average cost in terms of arithmetic operations for each non-zero input. In general we

expect that ops opsCost Cost  because the conventional approach has inputs with higher dynamic range than the

proposed incremental approach. The derived models for the expected computation and energy are validated in the

following section, where we present experimental results with the conventional and incremental SPD.

IV. EXPERIMENTS

We first present the utilized settings for our experimental validation (Subsection IV.A). In order to demonstrate the

results of the intermediate detectors when sensing from the MSBs to the LSBs, Subsection IV.B presents indicative

results with four selected images from our experimental test-set that are representative of a variety of content.

Subsection IV.C shows computational and sensing-energy results corresponding to the presented SPD results and

finally Subsection IV.D presents a new application for salient-point driven sensing of images. Supplementary results to

the ones presented in this paper are available on-line [27].

A. Experimental Settings

We experimented with a variety of natural images including human faces, pictures of scenery and objects as well as

surveillance pictures. The utilized test-set is presented in Figure 6. All images are grayscale images with 256 intensity

levels. The experimental settings for the utilized SPD were set as suggested by Schmid et al [6] in their evaluation of

the Harris detector against other approaches, i.e. 0.06k  , 2 2  , sensed0.01 max{ }n   R . The setting chosen for

the detector threshold  for each terminating bitplane n will select the points with magnitude surpassing 1%  of

the maximum salient point strength for that bitplane. In general, the SPD derived with these settings is seldom optimal

for any given image, but it is reported to perform well on average on collections of different images [6]. Concerning

parameters specific for the proposed incremental approach, we set the size of the window parameter for the sensing

mask around each salient point to: 80Z  pixels for 7n  , 60Z  pixels for 6n  , 50Z  pixels for 5n  ,

and 30Z  for 0 4n  . These settings were chosen such that identical results between the proposed incremental

approach and the conventional algorithm were obtained for all our experiments. We observed that for each bitplane n

this occurs when the size of the window for this bitplane is at least eight times larger than the maximum Chamfer

distance1 between the detected salient points of bitplane n and the detected salient points of the minimum bitplane.

1 measured over all the images in the test set – the explicit definition of this distance is given in the next subsection
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Image 01 Image 02 Image 03

Image 05 Image 07Image 06

Image 04

Image 10 Image 11Image 09 Image 12

Image 08

Image 14 Image 15Image 13 Image 16

Image 01 Image 02 Image 03

Image 05 Image 07Image 06

Image 04

Image 10 Image 11Image 09 Image 12

Image 08

Image 14 Image 15Image 13 Image 16

Figure 6. Sample images selected for our simulations.

With the utilized settings, the derived points stay constant for all bitplanes below 3n  . In some images, we

observed that a small number of salient points is displaced by one pixel when sensing and processing below 3n  or

a small number of points (1~3) may not surpass the threshold and hence be removed. However, these minor

discrepancies do not justify the additional cost of sensing and processing additional bitplanes below 3n  for the

SPD process. Finally, concerning the arithmetic operations in the SPD, we set the precision for fixed-point software

implementation to 14 bits for the fractional part and 50 bits for the integer part (including the sign bit) for both the

proposed incremental approach and the conventional algorithm. Under this accuracy, we obtained complete agreement

of the derived salient points with the floating-point Matlab simulation of the Harris detector for all our experiments.

We remark that not all of the bits of the integer part were used (since the dynamic range does not reach 492 ). This

does not affect the computation results measured based on Definition 3 and Definition 4 since the number of bits used

for each fixed-point addition or multiplication of two operands is extracted based on the operands’ values.

B. Results with Incremental Salient-point Detection

Figure 7 and Figure 8 present indicative results for bitplanes: 7n  , 6n  , 5n  , 3n  , i.e. with the
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intermediate detectors when subsets of the input source are used. For each bitplane, the detected salient points

(corners: square marks; edges: cross marks) that correspond to the final salient points detected for the maximum source

precision (when all image bitplanes are produced by the sensor) are indicated by green-colored marks. All other

detected points are indicated by red-colored marks. Amongst the latter, we notice that most tend to remain in similar

positions but certain points shift according to the new source information obtained from each input bitplane and may

become final salient points. In some cases, groups of new salient points may appear from one bitplane to the next due

to the appearance of new shades of illumination. These points usually do not correspond to final salient points. An

evident example of this is given in Figure 8 (“Image 12”) by comparing the result for 7n  with the result for 6n  .

This is the reason that an appropriately large window must be set for the sensing mask around each salient point

[parameter Z of (23)].

n=7 n=6

n=5 n=3

Figure 7. Incremental refinement of salient point detection for “Image 01” when terminating the sensing and SPD
computation at 7,6,5, 3n  . Square marks represent corner points while cross marks represent edge points.
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The quality and quantity of the obtained points depends on the image content. Overall, we observe that the number

of salient points tends to decrease as edges and corners of the image are refined by sensing additional bitplanes of the

image. Most points tend to gradually move towards the “final” salient points as the source precision is increased. This

is visually indicated in Figure 7 and Figure 8 by the reduction of red-colored marks as the terminating bitplane is

decreased. As mentioned previously, changing the threshold adaptively per image will make the SPD better suited for

each particular image. However, we opted for constant settings in our experiments in order to present a unified first

evaluation of the intermediate detectors for various bitplanes versus the SPD of the final terminating bitplane ( 3n  ).

We summarize two important aspects of the presented results:

 Both the original SPD that processes all input bitplanes simultaneously as well as the proposed incremental SPD

that processes the source incrementally obtain the same points for corners and edges for all utilized source

accuracies.

 The incremental approach derives these points progressively for each new input image bitplane by refining the

results of the previous bitplanes. This means that the proposed incremental algorithm can terminate at any input

image accuracy and provide the best results obtained for this accuracy level. In fact, all the results presented for

each image were computed by executing the incremental algorithm once and extracting the output salient points

after each input bitplane is processed. To the contrary, the conventional approach needs to be executed multiple

times in order to produce the same results for each bitplane.

Apart from the visual inspection of the results, in order to quantitatively test the accuracy of each intermediate SPD

result we use the Chamfer distance between the set of points derived for the lowest bitplane ( 3n  ) and the set of

points of each individual bitplane. We define this distance for the results of each terminating bitplane n as follows.

For each salient point 3 3
is  s of the lowest bitplane, 1 (3)i T  , we first establish the salient point

i

n n
js   s with

the minimum Euclidean distance:

3

1, , ( )
arg min

i
i

n
i i j

j T n
j s s


 


. (37)

We remark that for each salient point we are only searching amongst the points of the corresponding type (edge or

corner). Then the Chamfer distance for each terminating bitplane n is defined as:

3

1, , (3)
( ) mean

i

n
i ji T

n s s 


 


 . (38)

In the same manner we also define the median distance for the salient points of terminating bitplane n as:

3

1, , (3)
( ) median

i

n
i ji T

n s s 


 


 . (39)

The derived distances for each bitplane n for the examples of Figure 7 and Figure 8 are presented in Figure 9. The

corresponding results averaged for all the images of the utilized test-set are presented in Figure 10.



TIP-03171-2007 IEEE Transactions on Image Processing 18

n=7 n=6

n=5 n=3

Figure 8. Incremental refinement of salient point detection for “Image 12” when terminating the sensing and SPD
computation at 7,6,5, 3n  . Square marks represent corner points while cross marks represent edge points.

Overall, the distances of (38), (39) present how “different” are the selected points of each intermediate detector as

compared to the final selected point. We observe that the distances between the intermediate SPDs of the various

bitplanes and the final SPD of the minimum bitplane tend to decrease according to how many bitplanes are sensed and

processed. There are however some notable exceptions for the Chamfer distance, as for example in the case of

“Image 12” where the Chamfer distance is increasing for 6n  due to the appearance of the new, temporary, corner

points (see Figure 8). The median distance was found to be always non-increasing for decreasing bitplanes n . This is

because the median distance is not affected by outlier distances.

Overall, we conclude that incremental refinement of salient points tends to provide results which are relevant to the

final salient points selected by the detector. In addition, this relevance tends to improve with increased sensing and

processing. This is a positive first step that may motivate further research in this area.
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Figure 9. Chamfer and median distance (in pixels) per terminating bitplane n for the examples of Figure 7 and Figure 8.
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Figure 10. Chamfer and median distance (in pixels) for all the images of the test-set of Figure 6.

C. Computational and Sensing-Energy Requirements of Incremental SPD versus the Conventional SPD

We present the corresponding results for the computation and energy estimates of the proposed approach versus the

conventional approach that performs the salient point detection utilizing the entire set of image bitplanes and is not

refinable. This is performed by utilizing the metrics of Definition 3 and Definition 4 (where we selected 0.5  as a

representative case) in order to measure the required computation for the proposed incremental approach and the

conventional approach that processes all sensed bitplanes simultaneously and is not refinable. We also report the

required sensing energy based on (26)-(27). The results are presented in Figure 11 and Figure 12. The theoretical

results based on the modeling approach of Subsection III.D are presented in dashed lines for each figure. Since the

proposed models utilize scaling factors (i.e. opsCost , opsCost ), they were fitted to the experimental points by linear

least squares.
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Figure 11. Computational and energy requirements corresponding to “Image 01”. Left: Operations per pixel for
terminating the processing at any bitplane 7,6,5, 4, 3n  . Right: Estimated energy requirements. The dashed lines
represent model estimates.
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Figure 12. Computational and energy requirements corresponding to “Image 12”. Left: Operations per pixel for
terminating the processing at any bitplane 7,6,5, 4, 3n  . Right: Estimated energy requirements. The dashed lines
represent model estimates.

For terminating bitplanes 5,6n  , the results of Figure 11 and Figure 12 demonstrate that the proposed incremental

approach requires increased computational resources in comparison to the conventional realization of the SPD.

However, for the cases of low terminating bitplanes ( 3,4n  ), comparable computation to the conventional approach

is required. This is especially true for smooth images with low texture characteristics, such as “Image 06” or

“Image 12”, where the incremental SPD also appears to provide very relevant results to the final detector for 3n 

(see the visual results of Figure 8). In addition, we remark that the conventional approach would require significantly

higher computational resources if it were to derive all the intermediate results that the incremental approach derives,

since the conventional detector has to process the entire source for each newly-obtained bitplane. Concerning the

sensing energy, the experimental results demonstrate that the proposed approach offers significant reductions for

images with low texture characteristics (in the order of 20 ~ 50% ), especially for the low terminating bitplanes. Only
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small reductions in the sensing energy are observed for images that contain textures or a large number of small scene

features, such as “Image 08” (in the order of 5 ~ 10% ).

D. A New Application: Adaptive Image Sensing based on Salient Points

Areas of an image around points of saliency are important for a variety of high-level object detection algorithms as

well as for scene analysis applications. In recent years, sparse descriptors localized around salient points (and utilizing

image information only around them) have been used for image retrieval [21], stereoscopic analysis [22], object

detection and recognition [5] [23] and event recognition in dynamic scenes [24]. Significant work has also been

conducted in the area of perceptual coding [25] as human viewers also tend to focus on areas around salient points

(corners, edges). Motivated by this observation, we present an interesting application of the proposed framework by

using the incremental salient-point detection process as the guide for adaptive low-energy image sensing. This is

performed by changing the threshold of the SPD (from 1% up to 50% of the maximum salient-point strength) and

deriving the salient points of each bitplane n followed by the binary mask 1nW which restricts the sensing of

bitplane 1n  . In this way, we focus the sensor to the incrementally-detected points of saliency. We present indicative

results in Figure 13 and Figure 14 based on the proposed approach that uses the algorithm of Table 1. The derived

sensing energy percentage reported in the figures is calculated by the ratio incremental conventionalEnergy (0) Energy (0) as

derived by (26), (27) for terminating bitplane 0n  (i.e. until the entire image is scanned by the sensor).

Figure 13. Adaptive image sensing results for “Image 06”.



TIP-03171-2007 IEEE Transactions on Image Processing 22

Figure 14. Adaptive image sensing results for “Image 08”.

By increasing the detector threshold, the sensing energy is decreased significantly. At the same time, the sensor

tends to obtain only the image areas that have significant points of saliency, which typically correspond to areas of

human faces, or texture and objects. Overall, many improvements could be envisaged for this scheme, for example

experimenting with different window sizes for the binary mask 1nW or adaptively changing the detector threshold

(percentage of maximum point strength) and the parameter Z of the binary mask for each bitplane.

V. CONCLUSIONS

Salient points represent areas of “interest” for natural images. We investigated an approach for deriving salient

points incrementally by increasing the number of bits sensed from the input image. The inherent advantage of the

proposed approach is that intermediate salient-point detectors can be derived by increasing the source precision. We

have analyzed the results of these detectors experimentally for a variety of images and presented initial evidence that

incremental salient-point detection can successively refine the quality of the derived output. In order to quantify the

computational and sensing-energy characteristics of the proposed approach versus the conventional salient point

detector that processes all the input bits simultaneously and is not refinable, we proposed an approach that estimates

the expected computation and sensing energy based on stochastic source models. This provides some initial analytical

understanding behind the computational and energy requirements of incremental salient point detection. Finally, a

novel application of adaptive image sensing based on salient points (which are derived incrementally) is proposed.

This reduces the required sensing energy by adaptively activating the sensor only on the areas that higher-level scene

analysis systems or human viewers find important.

Future investigations could explore the properties of other salient point detectors proposed in the literature when

modified to operate in incremental mode. An interesting case would be the Lucas-Kanade detector used for feature

tracking in image sequences, as proposed by Tomasi and Kanade [26]. A link with a higher-level vision system that

could also operate incrementally is of high importance. Extended studies of the behavior of the detector under different

parameter sets could help in creating further understanding of the properties of incremental refinement of salient point

detection in various images. Moreover, we are currently investigating how information-theoretic criteria, such as the

mutual information between sets of salient points detected for successive bitplanes, could be combined with the

provided Chamfer distance to better characterize how the extra computation and sensing required when going from one

bitplane to the next increases the detector performance. Finally, improvements in the adaptive sensing based on salient

points could be envisaged in order to fine-tune such a system to human viewers or automatic scene-analysis systems.
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APPENDIX I: PROOF OF (31)

The dynamic range  0,2n of bit
nI is enlarged to  1 20,9 2 3 2N n n     for the coefficients of bit

nA and bit
nB due

to the convolution of bit
nI with D in (11), (12) and the addition of the Hadamard products in (15)-(16). Similarly, the

dynamic range of the coefficients of bit
nC is    1 2 1 29 2 3 2 ,9 2 3 2N n n N n n          . The probability of a

coefficient bit bit bit bit{ , , }n n n nh a b c of bit
nH ( { , , }H A B C ) being zero is then:

 
 1 2

1 2

9 2 3 2

bit
bit bit

19(1 ) 2 3 2

Pr[ 0] 1 exp

N n n

N n n

L n
in n

i iif

w h
h dh

f  

 

 

 

    

   
H

H

H

H H H

(40)

where we have replaced : 0ii  H  based on the values of Table 2. We obtain (31) by solving the integral of (40).   ■ 

APPENDIX II: PROOF OF (32)

Since the threshold of the detector is set according to the maximum value of sensed
nR for each bitplane (see

Subsection II.B), we need to establish the dynamic range of the coefficients of matrix sensed
nR . This can be done by

tracking the increase in the dynamic range for each of the operations performed in (30). The dynamic range

 0, 2 ,2 2n N n   of sensed
nI is enlarged to  

2
0,9 2 2N n   

for the coefficients of sensed
nA and sensed

nB and to

   
2 2

9 2 2 ,9 2 2N n N n     
for the coefficients of sensed

nC . This is due to the convolution of sensed
nI with D and the

Hadamard product in (13). For the coefficients of each of the Hadamard products sensed sensed
n n

1 2H H seen in (30) (with

, { , , }1 2H H A B C ), the range is  
4

0, 81 2 2N n   
. The range of the coefficients corresponding to the term

sensed sensed sensed sensed( )n n n nk A A B B  in (30) is  
4

162 2 2 , 0N nk    
. We can similarly derive the ranges for the

coefficients corresponding to the terms sensed sensed
n nC C and   sensed sensed1 2 n nk A B . The final additions to complete

sensed
nR lead to dynamic range     

4 4
81 2 2 ,81 1 2 2 2N n N nk      

. The probability of any coefficient sensed
nr of

sensed
nR being above the threshold:

    
4

100 81 1 2 2 2N nk     (41)

(with  the percentage set by the salient point selection algorithm of Subsection II.B) or below  is:
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sensed sensed

1

Pr[ ] 1 exp
2

L n
i in n

i ii

w r
r dr



 






    

R
R R

R R

(42)

We obtain (32) by solving the integral of (42).                                ■ 

APPENDIX III: PROOF OF (35)

In Appendix II we derived the dynamic range of the coefficients sensed
na and sensed

nb of sensed
nA and sensed

nB as

 
2

0,9 2 2N n   
. The dynamic range of coefficients sensed

nc of sensed
nC was derived as    

2 2
9 2 2 ,9 2 2N n N n     

.

The probability of a coefficient sensed sensed sensed sensed{ , , }n n n nh a b c of sensed
nH ( { , , }H A B C ) being zero is then:
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(43)
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where we have replaced : 0ii  H based on the values of Table 2. We obtain (35) by solving the integral of (43).      ■ 
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