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ABSTRACT
We use a two-temperature hydrodynamical formulation to determine the temperature and den-
sity structures of the post-shock accretion flows in magnetic cataclysmic variables (mCVs) and
calculate the corresponding X-ray spectra. The effects of two-temperature flows are significant
for systems with a massive white dwarf and a strong white-dwarf magnetic field. Our calcula-
tions show that two-temperature flows predict harder keV spectra than one-temperature flows
for the same white-dwarf mass and magnetic field. This result is insensitive to whether the elec-
trons and ions have equal temperature at the shock, but depends on the electron–ion exchange
rate, relative to the rate of radiative loss along the flow. White-dwarf masses obtained by fitting
the X-ray spectra of mCVs using hydrodynamic models including the two-temperature effects
will be lower than those obtained using single-temperature models. The bias is more severe
for systems with a massive white dwarf.

Key words: accretion, accretion discs – hydrodynamics – shock waves – stars: binaries:
close – stars: white dwarfs – X-rays: binaries.

1 I N T RO D U C T I O N

Magnetic cataclysmic variables (mCVs) are close binaries contain-
ing a magnetic white-dwarf accreting material from a Roche-lobe
filling low-mass companion star (see, e.g., Cropper 1990; Warner
1995). The material flow is supersonic when it leaves the inner
Lagrangian point of the binary. It becomes subsonic near the white-
dwarf surface, and a shock is formed, heating up the accreting ma-
terial to temperatures T ≈ 3GMwmH/8kRw ∼ 10–50 keV (where G
is the gravitational constant, k is the Boltzmann constant, mH is the
hydrogen-atomic mass, Mw is the white-dwarf mass and Rw is the
white-dwarf radius). The accreting material in the pre-shock flow is
thereby photoionized. The post-shock flow is cooled by the emis-
sion of bremsstrahlung X-rays and cyclotron optical/infrared (IR)
radiation, as the material settles on to the white-dwarf atmosphere.
The X-ray emission from an mCV depends on the temperature and
density structures of the post-shock region, which in turn depends
on the properties, mainly the temperature, of the accretion shock.
As the shock temperature is determined by the mass and radius of
the accreting white dwarf, we can infer the mass of the white dwarf
from the X-ray spectra (Rothschild et al. 1981; Ishida et al. 1991;
Wu, Chanmugam & Shaviv 1995; Fujimoto & Ishida 1997; Ezuka
& Ishida 1999).

The X-ray spectra of mCVs, in particular the subclass interme-
diate polars (IPs), are well fitted by model spectra generated by the

�E-mail: cjs2@mssl.ucl.ac.uk

Aizu-type shock models (Aizu 1973), such as those in Chevalier
& Imamura (1982), Wu (1994), Wu, Chanmugam & Shaviv (1994)
and Cropper et al. (1999). In these models, the electrons and ions
have the same temperature locally (here termed a one-temperature
model), but the temperature and density change along the flow in the
post-shock region. It has been noticed that the white-dwarf masses
obtained by the X-ray spectral fits using these models tend to be
systematically larger than those derived from some other methods,
e.g. optical spectroscopy (see Ramsay et al. 1998; Ramsay 2000).

The discrepancies could be due to inaccuracies in these other
determinations. Alternatively, they may arise when the assumed ab-
sorption column density in fitting the X-ray data is uncertain. They
could also be due to the fact that some relevant processes have not
been considered in deriving the temperature and density structures
of the post-shock emission region. In the one-temperature model,
the electrons (the radiating particles) and the ions (the major energy–
momentum carriers) are strongly thermally coupled and share the
same temperatures. The coupling is maintained by electron–ion col-
lisions. However, if the radiative cooling time-scale of the accretion
flow is shorter than the electron–ion collision time-scale, the elec-
trons will lose their energy rapidly while their energy gains via col-
lisions are unable to keep up radiative loss. The two charged species
then have unequal temperatures, and the accretion flow becomes a
two-temperature flow (see Wu 2000 and Beuermann 2004 for recent
reviews of accreting shocks in mCVs).

Two-temperature flows are expected to occur in mCVs containing
a white dwarf with a very strong magnetic field (B � 30 MG):
Lamb & Masters (1979, see also Imamura 1981; Imamura et al.
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1987, 1996; Woelk & Beuermann 1996; Saxton & Wu 1999, 2001;
Fischer & Beuermann 2001). Cyclotron cooling is efficient in these
systems, and two-temperature effects are most significant in the
down-stream region just beneath the accretion shock. The electron
temperature and density structures of a two-temperature accretion
flow can be very different from those of a one-temperature flow.
Moreover, the thicknesses of the high-density X-ray emitting region
in the two flow models are expected to differ as well. Thus, the mass
estimates obtained from a one-temperature post-shock model and a
two-temperature post-shock model could be different.

Here we investigate the X-ray spectral properties of two-
temperature accretion flows in mCVs. We consider a semi-analytical
approach, in which the hydrodynamic models are constructed fol-
lowing the prescriptions of Imamura et al. (1987) and Saxton &
Wu (2001). The thermal coupling between the ions and electrons
is parametrized by the Coulomb collision rate. The radiative loss
is due to the emission of bremsstrahlung X-rays, which is opti-
cally thin, and optical/IR cyclotron radiation, which could have
substantial optical depths. The total radiative loss is approximated
by a composite cooling function as in the previous studies of one-
temperature flows by Wu (1994), Wu et al. (1994) and Saxton
(1999). We calculate the temperature and density structures of
the two-temperature post-shock emission regions and generate
the X-ray line and continuum spectra (Section 4) by convolv-
ing the MEKAL optically thin thermal plasmas model (Mewe,
Gronenschild & van den Oord 1985; Kaastra & Mewe 1993) in
the XSPEC package. The results of the two-temperature calculations
are compared with the results of one-temperature calculations (see,
e.g., Cropper, Ramsay & Wu 1998; Tennant et al. 1998; Cropper
et al. 1999).

2 P O S T- S H O C K AC C R E T I O N F L OW: A
T WO - T E M P E R AT U R E F O R M U L AT I O N

Our hydrodynamic formulation assumes that the gas in the post-
shock region is completely ionized. The flow is along the magnetic
field lines. We omit the gravitational force and the curvature of the
field lines. These effects could be important when the thickness of
post-shock region is significant in comparison with the white-dwarf
radius (see, e.g., Cropper et al. 1999; Canalle et al. 2005). Thus, the
flow is perpendicular to the white-dwarf surface and is practically
one dimensional. Furthermore, we only consider the stationary sit-
uation. Hence, the hydrodynamic equations governing the flow are
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where v is the flow velocity, ρ is the density, Pe is the electron
partial pressure, Pi is the ion partial pressure, �ei is the rate of the
electron–ion energy exchange, � is the electron cooling function
and γ is the adiabatic index. The total gas pressure P is the sum of
the electron and ion partial pressures.

We assume an ideal gas law for both the electron and ion gases,
i.e. γ = 5/3 and P {e,i} = n {e,i} kT {e,i}, where ne is the electron number
density, ni is the ion number density, T e is the electron temperature

and T i is the ion temperature. The rate of energy exchange due to
electron–ion collision is �ei ≈ 3n ik(T i − T e)/2t ei, where tei is the
equipartition time, given by

tei = 3mem ic3

8 (2π)1/2 Z 2
i nee4 ln C

(θe + θi)
3/2 (5)

(Spitzer 1962), where me is the electron mass, mi is the ion mass,
c is the speed of light, e is the electron charge, θ e = kT e/m ec2,
θ i = kT i/m ic2 and ln C is the Coulomb logarithm. We have
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}
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The composite cooling function � consists of a bremsstrahlung
cooling term �br and a cyclotron cooling term �cy (Wu et al. 1994),
i.e.

� ≡ �br + �cy

≈ �br

[
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(
Te
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)2.0(
ne,s

ne

)1.85
]
, (7)

where ε ≡ t br/t cy is the ratio of the bremsstrahlung-cooling time-
scale to the cyclotron-cooling time-scale. (Here and elsewhere,
the subscript s denotes the value evaluated at the shock surface.)
The derivation of the expression of ε s is given in Appendix A3. The
explicit form of the bremsstrahlung cooling function is

�br = 16

(
2π

3

)3/2
e6

mec2h
Z 2

i neni θ 1/2
e gB (8)

(Rybicki & Lightman 1979), where h is the Planck constant and gB

is the Gaunt factor.
We note that our calculations depend on the functional form of

�cy in addition to the parameter ε s. In (7) we have assumed a power-
law-type function to approximate the cyclotron radiative loss term. A
key ingredient in constructing the cooling function is to estimate the
frequency ω∗ at which the local cyclotron spectrum peaks (see Wada
et al. 1980; Saxton 1999). How well the assumed power-law function
approximates the cyclotron radiative loss depends on the accuracy of
determining ω∗ in a given geometrical and hydrodynamic setting.
Here we follow the approach of Wada et al. (1980) and Saxton
(1999), but the technique would be improved if we could construct a
local cyclotron cooling function more self-consistently, say by using
an iterative scheme that calculates the cyclotron emission spectrum
of each stratum and uses it to readjust the local parameters of the
cyclotron cooling function.

We ignore electron conduction, Compton scattering and nuclear
burning in the energy transport. These processes are unimportant in
the accretion flows of mCVs, unless the situation is very extreme,
e.g. the white dwarf is unusually massive (∼1.2–1.4 M�) and the
accretion rate is very high (Ṁ > 0.1ṀE, where ṀE is the Eddington
accretion rate) (Imamura et al. 1987). We do not include line cooling
in our calculation of �. However, line cooling may not be negligible
at the very bottom of the post-shock region where the temperature
is low. For systems with low white-dwarf masses, the shock tem-
perature and the post-shock gas temperature are low enough that
the Fe L lines can actually contribute a significant fraction of the
total cooling (see Mukai 2003). A fully consistent treatment of line
cooling in the hydrodynamic calculation is non-trivial, and we will
leave this for future studies.

To simplify the hydrodynamic equations, we consider the dimen-
sionless variables ξ ≡ x/x s, τ ≡ −v/v ff, ζ ≡ ρ/ρ a, π i ≡ P i/ρ av

2
ff

and π e ≡ P e/ρ av
2
ff, where v ff = (2GMw/Rw)1/2 is the free-fall
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velocity at the white-dwarf surface, ρa = ṁ/vff is the density of
the pre-shock flow and ṁ is the specific accretion rate. Substituting
these variables into equations (1)–(4) yields
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where we define expressions for the non-dimensional energy ex-
change and cooling functions, �̃ei = (γ − 1)(xs/ρav

3
ff) �ei and

�̃ = (γ − 1)(xs/ρav
3
ff) �.

The boundary values for electron and ion pressures (π e,s and
π i,s) are determined by the efficiency of the electron–ion coupling
through the shock transition region. Their ratio, σ s ≡ π e,s/π i,s, can
take values between m e/m i (the ratio of the electron mass to the ion
mass) and µi/µe (the ratio of the molecular weight of the ions to
that of the electrons), depending on the assumed coupling processes
(Imamura et al. 1996). The physics of how the electrons couple
with the ions at the shock is not well understood. The value of σ s is
really a dependent property of the pre-shock flow, but its derivation
would require solving a comprehensive model of pre- and post-
shock regions, with explicit radiative transfer and hydrodynamics:
a complex task beyond the scope of the present work. We therefore
treat σ s as a free parameter and consider a few sensible values in
our calculations to see what difference it will make to the density
and temperature structures of the flows and the associated X-ray
spectral properties.

For the other boundary conditions, we assume a strong-shock
condition: at the shock surface (ξ = 1), τ s = 1/4, ζ s = 4 and
for the (unitless) total gas pressure (π 0 ≡ π e + π i) we have
π 0,s = 3/4. At the bottom of the flow, we consider a ‘stationary
wall’ condition: τ = 0 at the white-dwarf surface (ξ = 0). We omit
the transfer of energy from beneath the white-dwarf atmosphere (see
Wu & Cropper 2001).

3 T E M P E R AT U R E A N D D E N S I T Y
S T RU C T U R E S O F T H E P O S T- S H O C K R E G I O N

We integrate the mass continuity and the momentum equations,
yielding

τζ = 1, (13)

π0 = 1 − τ. (14)

Substituting these into the energy equations and eliminating π i, we
obtain two differential equations:
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the constants A and X depend on the composition of the plasma (see
Appendices A1 and A2).

f (τ, πe) = 4α+β

3α

(
1 + σs

σs

)α

πα
e τβ (19)

describes the efficiency of the secondary cooling process (e.g. cy-
clotron cooling) relative to thermal bremsstrahlung cooling. The
constant χ = (Z +1)/Z depends on the abundance-weighted mean
charge of the ions. We define a parameter ψ ei = X/Av2

ff to express
the efficiency of ion–electron energy exchange compared with the
radiative cooling.

The velocity, density, temperature and pressure profiles of the ions
and electrons in the post-shock flow can be obtained by integrating
equations (15) and (16).

Assuming a neutral balance of electron and ion charges within the
plasma, the one-temperature condition, T e = T i, implies a particular
ratio of the partial pressures, πe = Zπi. By setting γ = 5/3, σs =
Z (see equation A7 in the appendices) and π e = (1 − τ )/χ in
equation (15), we recover equation (2) in Wu (1994) (with α =
2.0 and β = 3.85) for the one-temperature flows with a power-
law approximation to cyclotron cooling. If we assume the same
expression for �, σ s and π e in equation (16), we will obtain an
equation differing from equation (15) by a factor of 1/χ in the
terms at the left-hand side. This is because the assumptions of charge
neutrality and equipartition between the electron and ion energy (i.e.
πe = Zπi) in the entire shock-heated region requires the exchange
term to be determined by the electron cooling rate. An additional
assumption of the energy-exchange rate depending on the difference
between the ion and the electron temperatures will inevitably lead
to inconsistency. If we replace the energy-exchange term in equa-
tion (16) by 1/χ of the cooling term, then equations (15) and (16)
are identical for γ = 5/3, σs = Z and π e = (1 − τ )/χ .

3.1 Quasi-one-temperature flows

When the electron–ion coupling is strong (i.e. the value of ψ ei is
sufficiently large), we expect the flow to be quasi-one-temperature.
In Fig. 1 we show the examples of flows that are effectively one-
temperature (with σs = Z and ψ ei = 10) and then how the flows
deviate from the one-temperature limit when we increase the cy-
clotron cooling rate. The cases shown are those of bremsstrahlung-
only cooling (ε s = 0), equally efficient bremsstrahlung and cy-
clotron cooling at the shock (ε s = 1) and dominant cyclotron cooling
throughout much of the post-shock region (ε s = 100).

For flows with small ε s, the electron and ion pressures have the
same profiles throughout the post-shock region. The temperatures
of the electrons and ions are indistinguishable and the flows are
one-temperature. When ε s is large (i.e. very efficient cyclotron cool-
ing), the electron and ion pressure have different profiles and the
electron temperature deviates from the ion temperature in a small
region near the shock. The flow velocity also deviates from the one-
temperature model near the shock. However, the temperatures of the
electrons and ions eventually become the same further downstream,
and the flow is effectively one-temperature in the base region of
the two-temperature cases. Bremsstrahlung X-rays are emitted at
the high-density regions at the bottom, where the flow is practically
one-temperature. We would therefore expect the X-ray properties to
be similar to those of the corresponding one-temperature cases. The
optical/IR radiation from these flows would be somewhat different
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Figure 1. Stationary structures of accretion shocks with (σs, ψei) = (Z , 10) and solar metallicity (Z = Z�). The parameter that sets the relative efficiency
of cyclotron cooling to bremsstrahlung cooling is ε s = 0, 1, 100, from top to bottom. The first column shows the flow velocity τ . The second column shows
the electron pressure π e (black) and the ion pressure π i (grey). The third column shows the electron temperature ϑ e ≡ τπ e (black) and the ion temperature
ϑi ≡ Zτπi (grey). The fourth column shows the local values of the normalized bremsstrahlung cooling rate (black), the normalized cyclotron cooling rate (grey)
and the electron–ion exchange rate (dotted). These flows are quasi-one-temperature and the two-temperature cases with small ε s are practically indistinguishable
from the one-temperature flows.

from those of their one-temperature correspondences, as cyclotron
radiation (which occurs in the optical/IR wavelengths and has a sub-
stantial optical depth), is emitted mainly from the hotter, less dense
upper region of the post-shock flow.

3.2 Two-temperature flows

In general, where electron–ion exchange is inefficient compared
with radiative cooling (i.e. small ψ ei), two-temperature effects be-
come significant. Two-temperature flows can also occur for mod-
erately large ψ ei, if the initial difference between the electron and

ion pressures at the shock is substantial, i.e. small σ s. In Figs 2–4
we show three examples of the two-temperature flows with various
combinations of the values for the parameters σ s and ψ ei.

For (σs, ψei) = (Z , 0.2), the collisional energy exchange with the
ions does not keep pace with the radiative loss of the electrons in
the flow. Even though the electrons and ions are set to have equal
temperatures at the shock, a strong disequilibrium (T e < T i) prevails
throughout most of the post-shock region. Moreover, while the ions
are shock-heated, the electron temperature does not rise accordingly
due to efficient radiative cooling and thermal decoupling with the
ions. The difference between the electron and ion temperatures is
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Figure 2. Stationary structures of two-temperature accretion shock. The system parameters are the same as those in Fig. 1 except (σs, ψei) = (Z , 0.2), i.e. the
electron–ion collisional coupling are weaker.

obvious for all three of the cases (with different ε s = 1) that we
consider and so is the difference between their electron and ion
pressure. When cyclotron cooling is weak (ε s � 1), the velocity
profiles of the two-temperature and the one-temperature flows are
indistinguishable, but when cyclotron cooling is sufficiently strong
(say ε s = 100) the velocity profile deviates substantially from that
of the one-temperature model.

In all cases, the density is high at the base of the post-shock
region and collisional energy exchanges are more efficient than cy-
clotron loss. The collisional exchanges tend to bring the electrons
and ions towards thermal equilibrium here. The bremsstrahlung
X-rays are emitted copiously from the base of the post-shock flow. In
a two-temperature flow, the electrons and the ions gradually attain
thermal equilibrium near the base because the electron–ion colli-
sion rates increases with density and the flow become practically

one-temperature again. In spite of this, the electron temperature
gradients near the white-dwarf surface differ between the one- and
two-temperature flow models. These differences are, in some cases,
sufficient to affect the line and continuum X-ray spectra (see Sec-
tion 4 and discussions in later sections).

We note that the situation can be more complicated in the regions
near the shock. In the prescription that we consider, the electron–ion
exchange depends on the difference between the electron and ion
temperatures. Thus, the efficiency of the energy exchanges between
the electrons and ions is implicitly determined by the parameter σ s.
Moreover, the cyclotron cooling rate, which depends mainly on the
electron temperature and is most effective in the hot region near
the accretion shock, is also limited by the efficiency of electron–
ion exchange and hence σ s. The differences in properties of cy-
clotron emission for the one- and two-temperature flows should be

C© 2005 RAS, MNRAS 360, 1091–1104
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Figure 3. Stationary structures of two-temperature accretion shock. The system parameters are the same as those in Figs 1 and 2 except (σ s, ψ ei) = (0.2, 0.2).

noticeable. We can clearly see these effects in Figs 3 and 4 (cf. Figs 1
and 2). The difference are more prominent when the radiative cy-
clotron cooling rate at the shock, ε s, is large.

3.3 Total radiative loss and X-ray luminosity

In the hydrodynamic formulation that we consider and the boundary
conditions that we adopt, all the kinetic energy of the accreting gas
will be liberated via emitting bremsstrahlung X-rays and optical/IR
cyclotron radiation. We now show that our prescription of the cool-
ing function ensures energy conservation and hence self-consistency
in the hydrodynamic calculations.

The energy conservation requirement that the total power radiated
from the post-shock region equals the kinetic energy of the pre-
shock flow, which is (1/2)ρ av

2
ff, if no energy is transported across

the white-dwarf surface. We can obtain the total power of radiation

directly by integrating the total cooling function over the whole
post-shock structure. In an explicit representation (with normalized
density and velocity at the shock),

L =
∫ 1

0

dξ
�̃

γ − 1
=

∫ 1/4

0

dτ

[
γ (1 − τ ) − τ

γ − 1

]

= 7γ − 1

32(γ − 1)
. (20)

Setting γ = 5/3 yields the total power radiated via all processes

L = 1/2, the result expected for exact energy conservation.
The power of the bremsstrahlung X-rays is

Lbr =
∫ 1/4

0

dτ

[
γ (1 − τ ) − τ

γ − 1

](
1

1 + �̃cy/�̃br

)
(21)
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Figure 4. Stationary structures of two-temperature accretion shock. The system parameters are the same as those in Figs 1 and 2 except (σ s, ψ ei) = (0.2, 1).

and the power of cyclotron radiation is simply

Lcy = L − Lbr. (22)

Values of Lbr and Lcy for different choices of the dimensionless
system parameters are shown in Table 1. Values for representative
choices of white-dwarf mass, magnetic field and specific accretion
rate are given in Table 2.

4 X - R AY S P E C T RO S C O P Y

We now calculate the X-ray spectra of two-temperature flow models
and compare them with the spectra obtained by the canonical one-
temperature flow models. The question that we intend to answer is:
how different are the spectral properties of two models for a given
set of mCV parameters? More specifically, will the two-temperature
flows produce harder X-ray spectra than the one-temperature flows?

We use the hydrodynamic formulation described in the previ-
ous sections to generate the density and temperature structures of
the post-shock emission regions, assuming appropriate mCV sys-
tem parameters. In the spectral calculations we adopt the same
procedures as in Cropper et al. (1999). We divide the post-shock
emission region into a number of strata. The strata are each as-
sumed to have constant density and electron temperature, which
take the corresponding mean values in the stratum. The radiative
processes in the plasma are collisional-ionization dominated (we ig-
nore photoionization). Each stratum is assumed to be optically thin
to the keV X-ray lines and continuum (however, see Wu, Cropper &
Ramsay 2001) and we may use the MEKAL optically thin ther-
mal plasma model (Mewe et al. 1985; Kaastra & Mewe 1993) in
XSPEC to calculate the local X-ray spectrum. The total spectrum is
the sum of the contributions from all the strata in the post-shock
region (with the implicit, simplified assumption that line transfer
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Table 1. The total power of bremsstrahlung radiation Lbr, and cyclotron radiation Lcy (normalized to ρ av
3
ff/x s, the kinetic energy of

the pre-shock flow) for different (σ s, ψ ei, ε s). In any case with ε s = 0, i.e. cyclotron cooling absent, we have L br = 0.5 and L cy = 0
trivially.

σ s ψei ε s Lbr Lcy σ s ψei ε s Lbr Lcy σ s ψei ε s Lbr Lcy

0.2 0.1 0.1 0.459 0.041 0.5 0.1 0.1 0.486 0.014 1.0 0.1 0.1 0.492 0.008
0.2 0.1 1.0 0.346 0.154 0.5 0.1 1.0 0.419 0.081 1.0 0.1 1.0 0.446 0.054
0.2 0.1 10.0 0.216 0.284 0.5 0.1 10.0 0.288 0.212 1.0 0.1 10.0 0.326 0.174
0.2 0.1 100.0 0.123 0.377 0.5 0.1 100.0 0.171 0.329 1.0 0.1 100.0 0.203 0.297

0.2 0.2 0.1 0.451 0.049 0.5 0.2 0.1 0.484 0.016 1.0 0.2 0.1 0.491 0.009
0.2 0.2 1.0 0.330 0.170 0.5 0.2 1.0 0.408 0.092 1.0 0.2 1.0 0.441 0.059
0.2 0.2 10.0 0.202 0.298 0.5 0.2 10.0 0.273 0.227 1.0 0.2 10.0 0.315 0.185
0.2 0.2 100.0 0.114 0.386 0.5 0.2 100.0 0.161 0.339 1.0 0.2 100.0 0.192 0.308

0.2 0.5 0.1 0.443 0.057 0.5 0.5 0.1 0.481 0.019 1.0 0.5 0.1 0.491 0.009
0.2 0.5 1.0 0.316 0.184 0.5 0.5 1.0 0.398 0.102 1.0 0.5 1.0 0.436 0.064
0.2 0.5 10.0 0.190 0.310 0.5 0.5 10.0 0.260 0.240 1.0 0.5 10.0 0.305 0.195
0.2 0.5 100.0 0.108 0.392 0.5 0.5 100.0 0.152 0.348 1.0 0.5 100.0 0.183 0.317

0.2 1.0 0.1 0.440 0.060 0.5 1.0 0.1 0.480 0.020 1.0 1.0 0.1 0.490 0.010
0.2 1.0 1.0 0.309 0.191 0.5 1.0 1.0 0.393 0.107 1.0 1.0 1.0 0.434 0.066
0.2 1.0 10.0 0.185 0.315 0.5 1.0 10.0 0.254 0.246 1.0 1.0 10.0 0.300 0.200
0.2 1.0 100.0 0.104 0.396 0.5 1.0 100.0 0.147 0.353 1.0 1.0 100.0 0.178 0.322

Table 2. Parameters of representative accretion shock models, specified in terms of white-dwarf mass, magnetic field
strength and the election–ion pressure ratio at the shock, σ s. We consider cases with σs = 0.2, σs = Z (Te = Ti at the
shock), and a one-temperature model (1T) throughout the flow (Wu 1994). The following columns show corresponding
values of the parameters ψei and ε s, the bremsstrahlung and cyclotron luminosities (in units of ṁv2

ff/xs), the shock height
xs and the electron temperature at the shock, T e,s. The plasma composition is approximately solar and the mass flux is
set to ṁ = 1 g cm−2 s−1 and the stream has a cross-section of 1015 cm2.

M/M� B/10 MG σ s ψei ε s L br L cy x s/cm T e,s/keV

0.5 1 0.2 2.83 0.0528 0.461 0.039 2.08 × 107 5.21
0.5 3 0.2 2.83 1.21 0.292 0.208 7.72 × 106 5.21
0.5 5 0.2 2.83 5.18 0.210 0.290 3.74 × 106 5.21
0.5 1 Z 2.83 0.521 0.461 0.039 2.06 × 107 16.4
0.5 3 Z 2.83 11.9 0.291 0.209 7.48 × 106 16.4
0.5 5 Z 2.83 51.2 0.209 0.291 3.54 × 106 16.4
0.5 1 1T 1T 0.521 0.460 0.040 2.05 × 107 16.4
0.5 3 1T 1T 11.9 0.288 0.212 7.20 × 106 16.4
0.5 5 1T 1T 51.2 0.206 0.293 3.28 × 106 16.4

0.7 1 0.2 1.64 0.262 0.389 0.111 3.32 × 107 9.01
0.7 3 0.2 1.64 6.00 0.205 0.294 8.43 × 106 9.01
0.7 5 0.2 1.64 25.7 0.144 0.356 3.99 × 106 9.01
0.7 1 Z 1.64 2.59 0.387 0.113 3.24 × 107 28.3
0.7 3 Z 1.64 59.2 0.204 0.296 7.75 × 106 28.3
0.7 5 Z 1.64 254 0.143 0.357 3.53 × 106 28.3
0.7 1 1T 1T 2.47 0.384 0.115 3.15 × 107 28.3
0.7 3 1T 1T 56.5 0.199 0.301 6.85 × 106 28.3
0.7 5 1T 1T 242 0.139 0.361 2.87 × 106 28.3

1.0 1 0.2 0.808 2.06 0.267 0.233 4.50 × 107 18.3
1.0 3 0.2 0.808 47.3 0.127 0.373 9.96 × 106 18.3
1.0 5 0.2 0.808 203 0.088 0.412 4.84 × 106 18.3
1.0 1 Z 0.808 20.4 0.264 0.236 4.08 × 107 57.4
1.0 3 Z 0.808 467 0.126 0.374 8.16 × 106 57.4
1.0 5 Z 0.808 2002 0.087 0.413 3.77 × 106 57.4
1.0 1 1T 1T 20.4 0.256 0.244 3.58 × 107 57.4
1.0 3 1T 1T 467 0.120 0.380 5.67 × 106 57.4
1.0 5 1T 1T 2002 0.083 0.417 2.26 × 106 57.4

and scattering effects are unimportant, cf. Kuncic, Wu & Cullen
2005).

We consider white-dwarf masses of 0.5, 0.7 and 1.0 M�, and
magnetic-field strengths of 10, 30 and 50 MG. The specific mass

accretion rate ṁ is fixed to be 1.0 erg cm−2 s−1. The electron and
ion temperatures are set to be equal at the shock, i.e. σs = Z , and
a solar composition is used in determining Z and in generating the
MEKAL spectra in XSPEC.
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Figure 5. The quotient X-ray spectra in the 0.1–10 keV band for various mCV parameters. Each panel presents the ratio of the spectrum of the one-temperature
flow model to the spectrum of the corresponding two-temperature flow model. In all cases we set σs = Z and assume a solar metallicity. The specific mass
accretion rate is fixed to be 1.0 g cm−2 s−1. The white-dwarf masses are 0.5, 0.7 and 1.0 M� (from the top to the bottom row). The white-dwarf magnetic fields
are 10, 30 and 50 MG (from the left-hand to the right-hand column). In all cases, the two-temperature flow predicts a harder spectrum than the one-temperature
flow. The hardness is more severe when the white-dwarf mass and magnetic field increase.

Given the complexity of the lines and the power-law-like contin-
uum, the spectra of the two-temperature flows are not always easy
to distinguish visually from those of the one-temperature flows,
We therefore consider the quotient spectra, which are the ratios of
the spectra of the one-temperature flows to the spectra of the two-
temperature flows.

Fig. 5 shows the quotient spectra (in the 0.1–10.0 keV band) for
various combinations of system parameters. These spectra demon-
strate that the competition between the radiative cooling of the elec-
trons and the electron–ion energy exchange affects the post-shock
structure enough to influence the spectral properties, and the effects
are quite significant in some cases. Generally, the one-temperature
model predicts a softer X-ray spectrum for a given white-dwarf
mass. It also produces stronger emission lines, especially the Fe
L lines. These effects are more significant for greater white-dwarf
masses.

The softer X-ray emission of a one-temperature flow could be
due to the fact that the one-temperature flow tends to have a steep
velocity gradient in the mid-section of the post-shock region, leading
to a rapid increase in the electron and ion densities. As the X-ray
emissivities are proportional to the square of matter density (for
neutral plasmas), this increases the relative contribution of the base
region to the total the emission. The more realistic two-temperature
model predicts a more gentle velocity gradient and hence density

gradient, and substantial X-ray lines and continuum are therefore
emitted in the hotter strata of the post-shock region. When compared
with a two-temperature flow, the effective temperature of a one-
temperature flow is biased toward the cooler temperatures and, as
a consequence, a softer spectrum results. The excess of the Fe L
lines in the one-temperature flow can also be explained in the same
manner.

These differences imply that if we fit the observed spec-
trum of an mCV to both models assuming the same magnetic
field and specific mass accretion rate, then the one-temperature
model (Cropper et al. 1999) will give a higher white-dwarf mass
than the two-temperature model. Thus, using the one-temperature
model will overestimate the white-dwarf mass, and the bias is
more severe for systems with a strongly magnetized, massive
white dwarf. (We defer the estimation of the masses of observed
systems for future work; at some level of detail the results may
be sensitive to the power-law approximation for cyclotron cooling,
Section 2.)

Now an important question is: how robust are the results, given
that we have assumed a specific σ s? While the value ψ ei is de-
termined by Z and Mw (see Appendix A2), we treat σ s as a free
parameter. We carry out calculations for two-temperature models
with σ s = 0.2 and find that they produce spectra that differ by less
than 2 per cent from those where σs = Z (see Fig. 6).
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Figure 6. The quotient X-ray spectra in the 0.1–10 keV band: the ratio of the two-temperature models with σ s = 0.2 to that of σs = Z . The mCV parameters
are equivalent to those in Fig. 5. Only the hard part of the spectrum is affected appreciably, with the case of σ s = 0.2 yielding harder results. The difference at
10 keV is at a level of less than 2 per cent for the case with greatest white-dwarf mass and magnetic field intensity.

This result can be understood as follows: although σ s can force
the electrons and ions to have unequal temperatures at the shock,
it has weak effects on the flow in the base region. This can be
seen by comparing the structure profiles in the corresponding panels
of Figs 2 and 3, which represent models that differ only in their
values of σ s. The density and temperature profiles approach the
same values, with nearly the same spatial gradients, near the white-
dwarf surface. Thus, the flow structure at the base is insensitive to
the electron–ion pressure ratio at the shock. As the majority of the
X-ray lines and continuum originate from the bottom region near the
white-dwarf surface, the X-ray properties of the two cases should be
very similar. Although we cannot use the observed X-ray spectrum
to infer the value of σ s at the shock, we can be certain that the
mass estimate depends on the effective shock temperature and is
less affected by the choice of σ s in the spectral modelling.

Inspection of Fig. 5 reveals a ‘downward’ spike near the energy of
Fe Kα lines, which we identify as the emission from the H-like
ions. This implies that the two-temperature and the one-temperature
flows predict very different ratios of the H-like (6.97 keV), He-like
(6.7 keV) and neutral Fe Kα (6.4 keV) lines. The H-like Fe Kα

line is weaker for the two-temperature flows than for the corre-
sponding one-temperature flows, in the systems with a strongly
magnetized white dwarf. This effect is stronger for more massive
white dwarfs. The emission of H-like Fe Kα line requires a high
plasma temperature (∼10 keV). The H-like Fe Kα lines is expected

to originate from regions closer to the shock, which have higher
temperatures than the region that produces the He-like and neutral
Fe Kα lines (see, e.g., Wu et al. 2001). Thus, the H-like line does not
share the characteristics of the lower ionized Fe lines. Nor, for the
same reasons, does it share the characteristics of lines of the lighter
metals, such as Si, S, Ar and O in the keV spectrum. Moreover, as
the emission region of the Fe Kα line is relatively near to the shock
(where the difference between the electron and ion temperatures is
greatest), the properties of the lines are sensitive to the assumed
value of σ s in the model (see Fig. 6).

5 C O N C L U S I O N S

We have presented a two-temperature hydrodynamical formulation
for accretion flows in mCVs and used it to calculate the tempera-
ture and density structures of the post-shock emission region. Two-
temperature effects are significant when the radiative loss is very
efficient such that electrons cannot acquire energy fast enough from
the ions via collisions. We expect two-temperature flows to occur
in systems in which the white dwarf is massive and has a strong
magnetic field. The magnetic field has less influence on the two-
temperature effects if the white-dwarf mass is small, but a relatively
large effect for more massive white dwarfs. (For example, contrast
the flow structures in Figs 1 and 2; or in Fig. 5 consider the greater
sensitivity of the spectra in the bottom row where M = 1.0 M�.)
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In high-mass, strong-field systems, cyclotron cooling is more
efficient than bremsstrahlung cooling. In all cases, the flows eventu-
ally become one-temperature near the base of the post-shock region,
where most of the X-rays are emitted.

In spite of this, two-temperature and one-temperature flows have
distinguishable X-ray properties because of the differences in the
density and temperature gradients between the two flows. Our cal-
culations show that the X-ray spectra of one-temperature flows are
softer than the two-temperature flows, if we assume the same system
parameters, such as white-dwarf mass, magnetic field and specific
mass accretion rate. This result is insensitive to the initial difference
between the electron and ion temperatures at the shock. White-dwarf
masses of mCVs obtained by fitting the X-ray spectra using a one-
temperature flow model will lead to overestimates, especially for
the systems with high white-dwarf masses and magnetic fields.
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A P P E N D I X : S Y S T E M PA R A M E T E R S

A1 Hydrodynamic variables

The gas is composed of electrons with mass me plus species of ions
with masses mi and charges Z i. If the ionic species have fractional
abundances f i by particle number then the weighted mean ionic
mass, charge and squared charge are m ≡ ∑

i fim i, Z ≡ ∑
i fi Z i

and Z 2 ≡ ∑
i fi Z 2

i . For example, in the specific case of a completely
ionized, purely hydrogen plasma these constants are m = mp, Z =
1 and Z 2 = 1.

In these terms, the number density of electrons is

ne =
(

Z

m/me + Z

)
ρ

me
(A1)

and the number density of each ionic species is

ni =
(

fi

m/me + Z

)
ρ

me
= fi

Z
ne, (A2)

ensuring a balance of electric charge, ne = ∑
i ni Z i.

For a two-temperature shock, the electron and ion pressures are
unequal. The thermal variables, θ {e,i}, are given by

θe ≡ kTe

mec2
= Pe

nemec2
= Pe

ρc2

(
m/me + Z

Z

)
(A3)

and

θi ≡ kTi

m ic2
= Pi

nim ic2
= Pi

ρc2

(
m/me + Z

fim i/me

)
. (A4)

At the shock surface we define a parameter for the ratio of electron
and ion partial pressures, σs ≡ Pe,s/

∑
i Pi,s, with summation over

ion species i. For a strong shock, the total post-shock pressure equals
P = Pe + ∑

i Pi = (3/4)ρav
2
ff. As the partial pressures are P e =

n ekT e and P i = n ikT i, the temperatures of electrons and ions are
related at the shock,

ne,sTe,s = σs

∑
i

ni,sTi,s. (A5)

The post-shock electron temperature is

Te,s = 3

16

mev
2
ff

kB

(
σs

σs + 1

)
Z + m/me

Z
(A6)

and the ion temperature (assumed to be the same for all i) is

Ti,s = Z

σs
Te,s. (A7)

The upstream pre-shock velocity is assumed to be the free-fall
velocity at the white-dwarf surface. We use the white-dwarf mass–
radius relation of Nauenberg (1972). The mass flux of the accretion
column ṁ gives the pre-shock density ρa = ṁ/vff. The shock height
xs is calculated by equating the bremsstrahlung cooling function at
the shock with the realistic bremsstrahlung luminosity (involving ρ a

and v ff) and substituting the numerically determined normalization
constant ψ c.
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A2 Electron–ion exchange efficiency ψei

When (A1)–(A4) are substituted into equation (6) and the �ei func-
tions are summed over ion species i then it can be shown that the
total electron–ion energy exchange is

� = Xρ5/2 P−3/2
e (P − χ Pe), (A8)

where we define χ ≡ (Z + 1)/Z and

X = 4
√

2πe4

m3
e

ln C

(
Z

m/me + Z

)5/2 (
me Z 2/m

)

≈ 9.65 × 1018 ln C

15

(
Z

m/me + Z

)5/2

Z 2/m
(A9)

in c.g.s. units. Equivalent substitutions in equation (8) and sum-
mation over ion species i leads to the total bremsstrahlung cooling
function

�br = Aρ2(Pe/ρ)1/2, (A10)

where

A = 16

(
2π

3

)3/2
e6

m3
ec3h

gB
Z 2

Z

(
Z

m/me + Z

)3/2

≈ 5.61 × 1016gB Z 2 Z
1/2

(
m + Zme

mp

)−3/2 (A11)

in c.g.s. units.
In a pure hydrogen plasma with equal electron and ion partial pres-

sures (P e = P/2), the bremsstrahlung cooling rate is �br ≈ 3.97 ×
1016 erg cm−3 s−1(ρ/g cm−3)3/2(P/dyn cm−2)1/2. For solar plasma
composition (i.e. Z = Z�), we have Z − 1 = 0.099 87, Z 2 =
1.391, Z 2/m = 6.007 × 1023 g−1, m/me = 2366. It follows that
A = 6.99 × 1016 and X = 2.70 × 1034 in c.g.s. units. Thus the gen-
eral effect of increasing metallicity is to increase the efficiency of
bremsstrahlung cooling, which reduces the shock height if all else
is equal.

The unitless form of the energy exchange function is

�̃ ≡ (γ − 1)
xs

ρav
3
ff

� = (γ − 1)ψcψei
(1 − τ − χπe)

τ 5/2π
3/2
e

(A12)

and the equivalent unitless function for the bremsstrahlung cooling
is

�̃br ≡ (γ − 1)
xs

ρav
3
ff

�br = (γ − 1)ψcτ
−3/2π1/2

e . (A13)

The dimensionless parameters ψ c and ψ ei (defined in Imamura et al.
1996) are constants of each accreting white-dwarf system in its par-
ticular accretion state. Their values are, in terms of the characteristics
of the accretion flow and universal physical constants, given by:

ψeiψc = X xsρav
−4
ff (A14)

and

ψc = Axsρav
−2
ff , (A15)

implying that

ψei = X

Av2
ff

, (A16)

which is purely a function of the white-dwarf mass and composition
of the accreting gas. The model parameter ψ ei roughly describes
the rate of electron–ion energy exchange compared with the rate of
radiative cooling. Upon substitution of (A9) and (A11) we have

ψei = 71.2

gBv8
2

(
ln C

15

)
(Z )2

Z 2

mp

m + Zme

Z 2mp/m, (A17)

Figure A1. Electron–ion exchange efficiency parameter ψ ei versus white-
dwarf mass. We assume approximately solar abundances. This parameter is
independent of the magnetic field strength and σ s.

where v8 = v ff/108 cm s−1. For accreting magnetic white dwarfs
ln C ≈ 15 typically, and we take the Gaunt factor as gB ≈ 1.25. The
factors that depend on gas composition tend to lower the value of ψ ei

for accretion flows of higher metallicity. Solar abundances imply a
value of ψ ei roughly 32 per cent smaller than for pure hydrogen.

Using our assumption of solar abundances, the free-fall velocity
must be greater than v ff > 6.21 × 108 cm s−1 in order to make
ψ ei < 1, i.e. radiative cooling comparable to, or more efficient than
the exchange of thermal energy between electrons and ions. For
white dwarfs with masses �0.9 M�, the values of ψ ei are below
1, and become as low as 0.3 for very massive white dwarfs with
v ff = 1.13 × 109 cm s−1. To obtain an extreme value of ψ ei = 0.1,
a free-fall velocity of v ff = 1.96 × 109 cm s−1 is required. In this
paper we consider values of orders ψ ei ∼ 0.1–10, as calculated in
Fig. A1, using the white-dwarf mass–radius relation of Nauenberg
(1972) and mean molecular weight µw = 2.00. In Imamura et al.
(1996), values of ψ ei ranging from 0.01 to 1.0 were, however, used.
We note that for white dwarfs in mCVs, values of ψ ei much greater
than 0.01 are necessary.

A3 Cyclotron cooling efficiency εs

The time-scales of the bremsstrahlung and cyclotron cooling pro-
cesses are, respectively,

tbr = 3

2

(ne + ni)kBTe

�br
(A18)

tcy = 3

2

(ne + ni)kBTe

�cy
. (A19)
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It is useful to compare the cooling time-scales to express the local
efficiency of cyclotron cooling with respect to bremsstrahlung cool-
ing. The ratio of time-scales at any given position in the post-shock
flow will be written as

ε(x) ≡ tbr

tcy
= �cy

�br
. (A20)

This leads to the construction of ε s, the relative efficiency of
the cyclotron cooling as evaluated at the shock surface, which is
an important dimensionless physical parameter used for the de-
scription and analysis of cooling accretion flows in which both
bremsstrahlung and cyclotron processes are present. Assuming
that the cross-section of the flow is circular, ε s is obtained in re-
alistic terms by substituting appropriate system parameters and
shock conditions into the equations for the � cooling functions
and (A20).

In general, the efficiency of cyclotron cooling relative to
bremsstrahlung cooling, in terms of electron temperatures and num-
ber densities, is

ε = 0.0762
Z

gB Z 2
a−0.425

15 B2.85
7 n−1.85

e16 T 2
8 . (A21)

Since a circle is the two-dimensional geometric shape with the min-
imum ratio of perimeter to internal area, the above expression for
ε is actually a lower limit. For more realistic cross-sections, the
numerical factor 0.0762 would become larger.

By substituting expressions relating n e16 and temperature (A6) to
the pre-shock density ρ a and free-fall velocity v ff, the efficiency ε s

can be re-expressed in terms of the properties of the white-dwarf

Figure A2. Cyclotron efficiency parameter ε s as a function of white-dwarf
mass, given for five choices of magnetic field strength. Here we set the
ratio of pressures at the shock as σs = Z ; the mass accretion rate is ṁ =
1g cm−2 s−1; the pole area is a = 1.0 × 1015 cm2. The flow cross-section is
assumed to be circular, and the composition is solar.

Figure A3. Same as in Fig. A2, but with σ s = 0.2.

accretion flow. In the general case with multiple species of ions

εs = 2.13 × 10−16(Z + m/me)3.85

gB Z
2.85

Z 2
(

1 + σ−1
s

)2 a−0.425
15 B2.85

7 ρ−1.85
a−8 v4

8, (A22)

where ρ a−8 ≡ ρ a/10−8 g cm−3 and v8 ≡ v ff/108 cm s−1. This ex-
pression is slightly different from the cyclotron/bremsstrahlung ef-
ficiency ratio given in Langer, Chanmugam & Shaviv (1982) where
the emission region is semi-infinite but without a specific geometry.
Assuming a circular flow cross-section and parameters appropri-
ate for accretion shocks in AM Herculis systems, with a15 = 1
and ṁ = 1g cm−2 s−1, the cyclotron-cooling efficiency parameter
varies with white-dwarf mass and magnetic field as shown in Figs A2
and A3.

A4 System geometry

The geometry of the accretion stream could be important as opti-
cally thick cyclotron cooling depends on the emitting surface area.
Under our approximation, equation (A21), the efficiency param-
eter ε s is proportional to the ratio of perimeter to cross-sectional
area.

A circular cross-section for the accretion column gives the min-
imum value of ε s. All else being equal, flows with cross-sections
departing from a circle cannot have lower values of ε s than those
given by (A22). The greater the non-circularity, the greater ε s

must be. There is observational evidence that in AM Herculis-
type systems (polars) the cross-section of the accretion column
near the white-dwarf surface is a banana-like arc (Cropper 1985;
Wickramasinghe & Ferrario 1988; Potter, Hakala & Cropper 1998).
This geometry ought to give an ε s value several times higher.
Whether the real banana-shaped cross-sections have more crenu-
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lated or convoluted edges at finer spatial scales is unknown. If they
do, then the equivalent ε s values may be considerably greater than
the lower limit of the circular approximation. Because of the ef-
fect of the surface area to volume ratio in a system radiating via
an optically thick process, real effective values of ε s may be less
sensitive to the magnitude of the polar magnetic field than to other
influences determining the flow structure, e.g. the geometric rela-
tionship between the magnetosphere and the companion star, and
the condition of the flow where it threads on to the magnetic field. If

flow geometries are sufficiently diverse among mCV systems then
there may exist some strong-field systems that have lower ε s rather
than weaker-field systems that have more circular flow sections. The
magnetic field strength is measurable, implying a lower limit on ε s

in each system, but unfortunately the value of ε s is not a directly
observable quantity.
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