Inference on epidemic models with time-varying parameters: methodology and preliminary applications

Joseph Dureau and Konstantinos Kalogeropoulos

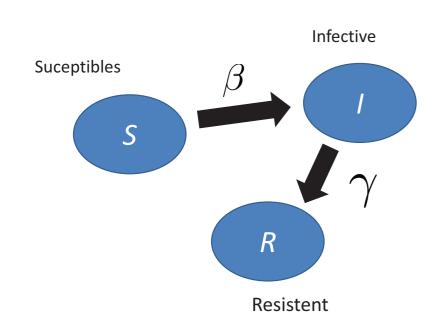
Department of Statistics, London School of Economics, UK

Email: j.dureau@lse.ac.uk

Why have time-varying parameters?

Inference on epidemic models is an active topic of research. Motivations are multiple: exploring mechanisms, testing theories, monitoring control interventions, surveilling upcoming epidemics.

A very typical compartmental model would be:



Whith the following definitions:

 S_t : proportion of the population that is susceptible, that can be in-

 I_t : proportion of the population that is infected and infective

 R_t : proportion of the population that is resistent, that is not infective any more and cannot be infected again

 β : transmission rate

 γ : recovery rate

Usually, inference is made for constant values of β and γ .

However, there are many reasons for β to be time-varying:

- Climate forcing is likely to have an impact on immunity and virus transmission
- Contact patterns evolve according to holidays, school/work periods, seasonal migrations,...
- Individual awareness to an epidemic can spontaneously decrease, or at the contrary increase under the influence of preventive measures

• etc...

How to model these time variations?

Fully parametric models for time-varying transmission rates have been explored:

- sinusoidal
- low-dimensional polynoms, splines,...
- + tractable inference with classic MCMC algorithms
- limiting and arbitrary model choice

"Semi-parametric" models, on the other hand, have been used:

- random walk diffusion (Cazelles and Chau 1997, Mathematical Biosciences)
- + very flexible model
- inference implied gaussian approximations (Extended Kalman Filter)

Our proposition

- use a diffusion process for β_t 's trajectory, typically a geometric Brownian motion to preserve positivity
- apply novel MCMC algorithms to solve the inference problem, with low-informative priors on the diffusion coefficients

Time-varying β model

Classic SIR model:

 $= -\beta_t S_t I_t dt$

$$\begin{cases} dS_t &= -\beta S_t I_t dt \\ dI_t &= (\beta S_t I_t - \gamma I_t) dt \\ dR_t &= \gamma I_t dt \end{cases} \Rightarrow \Rightarrow \Rightarrow \begin{cases} dI_t &= (\beta_t S_t I_t - \gamma I_t) dt \\ dR_t &= \gamma I_t dt \\ d\log \beta_t &= \sigma_\beta dB_t \end{cases}$$

Going further...

- Try other diffusion processes (Ornstein-Uhlenbeck processes, integrated random walks, ...)
- Chose model from expert knowledge and/or indicators as the Bayes factor and the DIC.

A challenging inference problem

Objective

We want, under the following notations,

 X_t : dynamic vector of compartments populations

 θ : static parameters

 β_t : dynamic parameters

g(.|y): observation process model

n: number of observations $(y_1,..,y_n)$

N: number of particles

to explore the **posterior density** $p((\mathbf{X}_t, \beta_t, t \in [0, T]), \theta|y_{1:n}).$

Difficulties

- it is a high-dimensional density
- the posterior density and the Kolmogorov forward equation are intractable

Estimating time-varying parameters with a Particle MCMC algorithm

(Andrieu et al. 2010, JRSS.B)

Initialize θ

Set $W_1^j = \frac{1}{N}$

for IndIt = 1 to NbIterations do

Sample θ^* from $Q(\theta, .)$

 $L(\theta^*) = 1$

for i = 1 to n - 1 **do**

for j = 1 to N do

Sample $(X_{i+1}^j, \beta_{i+1}^{\theta^*, j})$ from $p(., .|X_i^j, \theta^*, \beta_i^{\theta^*, j})$

Noting $Y_{i+1}^{j} = h((X_t^j, t \in [0, t_{i+1}])),$

set $\alpha^j = g(Y_{i+1}^j | y_t)$ and $W_{i+1}^j \propto \alpha^j$

end for

 $L(\theta^*) = L(\theta^*) * \left(\sum_{j=1}^N W_i^j \alpha^j\right)$

Resample $(X_{i+1}^j, \beta_{i+1}^{\theta^*,j})$ according to (W_{i+1}^j) , set $W_{i+1}^j = \frac{1}{m}$

end for

Accept θ^* with probability $1 \wedge \frac{L(\theta^*)Q(\theta^*,\theta)}{L(\theta)Q(\theta,\theta^*)}$

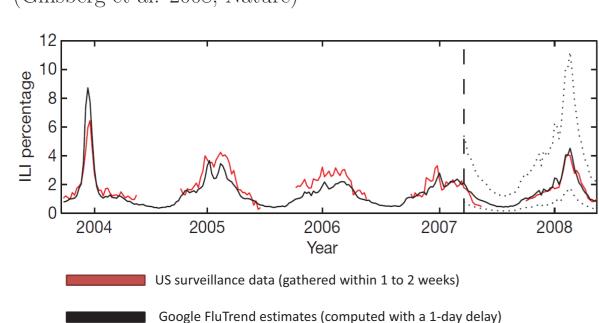
Sample j^{rand} from 1, .., NbParticules

Keep θ and $\beta_{1:n}^{\theta,j^{rand}}$

end for

Preliminary application: surveilling Influenza outbreaks from Google's FluTrend data

Google FluTrend Data: Estimates of Influenza-Like Illnesses cases (Ginsberg et al. 2008, Nature)



A simple model for Influenza:

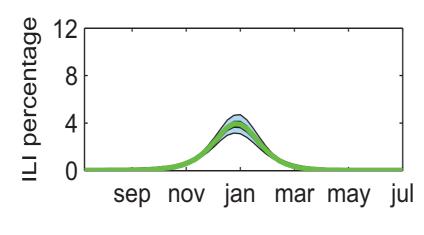
$$\begin{cases} dS_t &= -\beta_t S_t I_t dt \\ dE_t &= (\beta_t S_t I_t dt - kE_t) dt \\ dI_t &= (kE_t - \gamma I_t) dt \\ dR_t &= \gamma I_t dt \\ d\log \beta_t &= \sigma_\beta dB_t \\ g(.|y) &= \mathcal{N}(y, \sigma_{obs} y) \end{cases}$$

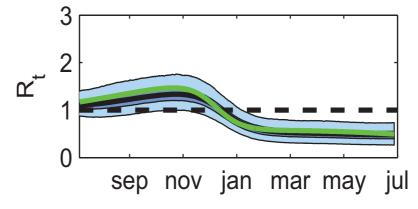
Note: E is the group of individuals who were infected but are not infectious yet. k^{-1} is the referred to as the latency period. Informative priors were taken for k and γ , based on bibliography.

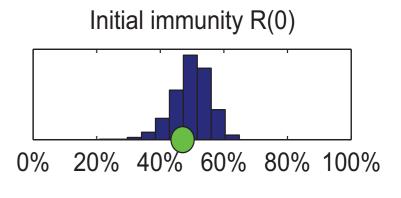
Questions:

- How transmittable is the upcoming strain of influenza?
- Does the effective reproduction rate $R_t = \frac{\beta_t S_t}{\gamma Tot Pop}$ vary along time?
- What is the population immunity to the upcoming strain of influenza?

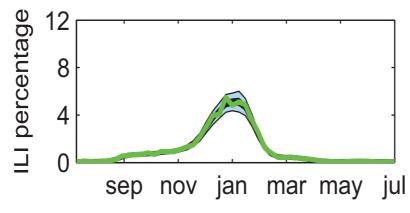
a) Validating the algorithm on simulated data

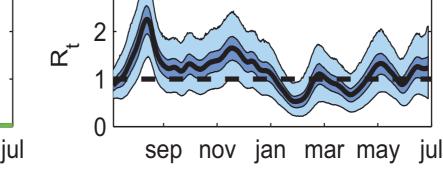


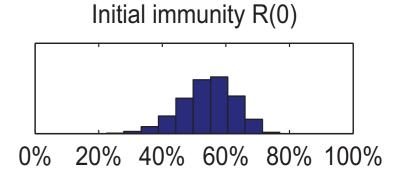




b) 2008-2009 epidemic in France, a "classic" seasonal epidemic







2009-2010 epidemic in France, the H1N1 pandemic

