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1 Why have time-varying parameters? 2 How to model these time variations?

Inference on epidemic models is an active topic of research. Moti-
vations are multiple: exploring mechanisms, testing theories, monitoring

control interventions, surveilling upcoming epidemics.

A very typical compartmental model would be:

Fully parametric models for time-varying transmission rates have

been explored:
e sinusoidal
e low-dimensional polynoms, splines,...

+ tractable inference with classic MCMC algorithms

3 A challenging inference problem

Objective

We want, under the following notations,
Xt dynamic vector of compartments populations
6 : static parameters

(B¢ : dynamic parameters

— limiting and arbitrary model choice g(.]ly) : observation process model

Infective

Suceptibles ﬁ n : number of observations (y1, .., yn)

@~
a

Resistent

”Semi-parametric” models, on the other hand, have been used: N : number of particles

l e random walk diffusion (Cazelles and Chau 1997, Mathematical Bio- to explore the posterior density p((Xy¢, 8, t € [0,T7), 0|y1.5)-
”}/ sciences)

Difficulties

+ very flexible model
Y e it is a high-dimensional density

— inference implied gaussian approximations (Extended Kalman Filter)
e the posterior density and the Kolmogorov forward equation are in-

tractable

Our proposition
Estimating time-varying parameters

with a Particle MCMC algorithm
(Andrieu et al. 2010, JRSS.B)

Whith the following definitions: e use a diffusion process for (4's trajectory, typically a geometric Brow-

St + proportion of the population that is susceptible, that can be in-
fected

nian motion to preserve positivity

e apply novel MCMC algorithms to solve the inference problem, with o
Initialize 6

Set W/ = 4
for IndIt =1 to Nblterations do
Sample 0* from Q(6, .)

I+ : proportion of the population that is infected and infective low-informative priors on the diffusion coefficients

R; : proportion of the population that is resistent, that is not infective . .
Time-varying  model

any more and cannot be infected again Classic SIR model:

[ : transmission rate ) (dSt — — B34S, L;dt L) =1
_ Becomes
~ : recovery rate dSy = —[5i1dt - dl = (BeSi Iy — Iy dt fori=1ton—1do
=== < _
§ dly = (8BSl — vI)dt IR Lt for j =1to N do
¢ = 71y . oy . o
_ Sample (X7, ., 3.7) from p(.,.| X7, 6%, 3
Usually, inference is made for constant values of 3 and +. \th Vit \dlog Bt = opdBy ple { o Uit ) pl.,-1X; e

Noting Y7, | = h((X{,t € [0,¢;41])),
However, there are many reasons for 3 to be time-varying: set o = 9(3/%11’3/16) and VVZJJrl x o
end for

L(0%) = L0¥) » (S0, Wad)

. 9*7 . ) ) 1
Resample (Xi?Jrl’ 6Z+‘17) according to (Wi7+1)’ set VVZ-JJrl = =

e Climate forcing is likely to have an impact on immunity and virus Going further...

transmission e Try other diffusion processes (Ornstein-Uhlenbeck processes, inte-

e Contact patterns evolve according to holidays, school /work periods, grated random walks, ...)

end for
Accept 6 with probability 1 A LL((QQ*))S(%%%)
Sample jmnd from 1, .., NbParticules

‘rand

Keep 0 and 5?;’]

n

e Chose model from expert knowledge and/or indicators as the Bayes
factor and the DIC.

seasonal migrations,...

e Individual awareness to an epidemic can spontaneously decrease, or

at the contrary increase under the influence of preventive measures

e ctc...

end for

4 Preliminary application: surveilling Influenza outbreaks from Google’s FluTrend data

Google FluTrend Data:
Estimates of Influenza-Like Illnesses cases

a) Validating the algorithm on simulated data
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A simple model for Influenza: o 4 -JA_
( Q i
d.St = — B¢ Sldt ; 0 : ~ . 0 . . ~ . . . .
dEy = (B4 SpIydt — kEy)dt sep nov jan mar may jul sep nov jan mar may jul 0% 20% 40% 60% 80% 100%
) dl; = (kEy — vIp)dt
ARy = y1ydt c) 2009-2010 epidemic in France, the HIN1 pandemic
dl = opdB
o=t % 12 ] | Initial immunity R(0)
9y =N, o) g gl )l e ey e
Note: FE is the group of individuals who were infected but are g vl
not infectious yet. k=1 is the referred to as the latency period. 2 41 1 .
Informative priors were taken for k and ~y, based on bibliography. 1 0 0
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Questions:
e How transmittable is the upcoming strain of influenza?
. . S , Legend:
e Does the effective reproduction rate Ry = —2226 — vary along time?
b t = 3TotPop VMY & I Data / simulation values 95% Confidence interval

e What is the population immunity to the upcoming strain of in-

I Vean estimate I 50% Confidence interval

fluenza?
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