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1 Why have time-varying parameters?

Inference on epidemic models is an active topic of research. Moti-

vations are multiple: exploring mechanisms, testing theories, monitoring

control interventions, surveilling upcoming epidemics.

A very typical compartmental model would be:
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Whith the following definitions:

St : proportion of the population that is susceptible, that can be in-

fected

It : proportion of the population that is infected and infective

Rt : proportion of the population that is resistent, that is not infective

any more and cannot be infected again

β : transmission rate

γ : recovery rate

Usually, inference is made for constant values of β and γ.

However, there are many reasons for β to be time-varying:

• Climate forcing is likely to have an impact on immunity and virus

transmission

• Contact patterns evolve according to holidays, school/work periods,

seasonal migrations,...

• Individual awareness to an epidemic can spontaneously decrease, or

at the contrary increase under the influence of preventive measures

• etc...

2 How to model these time variations?

Fully parametric models for time-varying transmission rates have

been explored:

• sinusoidal

• low-dimensional polynoms, splines,...

+ tractable inference with classic MCMC algorithms

− limiting and arbitrary model choice

”Semi-parametric” models, on the other hand, have been used:

• random walk diffusion (Cazelles and Chau 1997, Mathematical Bio-

sciences)

+ very flexible model

− inference implied gaussian approximations (Extended Kalman Filter)

Our proposition

• use a diffusion process for βt’s trajectory, typically a geometric Brow-

nian motion to preserve positivity

• apply novel MCMC algorithms to solve the inference problem, with

low-informative priors on the diffusion coefficients

Classic SIR model:



















dSt = −βStItdt

dIt = (βStIt − γIt)dt

dRt = γItdt

Becomes

⇒⇒⇒

Time-varying β model































dSt = −βtStItdt

dIt = (βtStIt − γIt)dt

dRt = γItdt

d log βt = σβdBt

Going further...

• Try other diffusion processes (Ornstein-Uhlenbeck processes, inte-

grated random walks, ...)

• Chose model from expert knowledge and/or indicators as the Bayes

factor and the DIC.

3 A challenging inference problem

Objective

We want, under the following notations,

Xt : dynamic vector of compartments populations

θ : static parameters

βt : dynamic parameters

g(.|y) : observation process model

n : number of observations (y1, .., yn)

N : number of particles

to explore the posterior density p((Xt, βt, t ∈ [0, T ]), θ|y1:n).

Difficulties

• it is a high-dimensional density

• the posterior density and the Kolmogorov forward equation are in-

tractable

Estimating time-varying parameters

with a Particle MCMC algorithm

(Andrieu et al. 2010, JRSS.B)

Initialize θ

Set W
j
1 = 1

N

for IndIt = 1 to NbIterations do

Sample θ∗ from Q(θ, .)

L(θ∗) = 1

for i = 1 to n− 1 do

for j = 1 to N do

Sample (X
j
i+1, β

θ∗,j
i+1 ) from p(., .|Xj

i , θ
∗, β

θ∗,j
i )

Noting Y
j
i+1 = h((X

j
t , t ∈ [0, ti+1])),

set αj = g(Y
j
i+1|yt) and W

j
i+1 ∝ αj

end for

L(θ∗) = L(θ∗) ∗ (
∑N

j=1 W
j
i αj)

Resample (X
j
i+1, β

θ∗,j
i+1 ) according to (W

j
i+1), set W

j
i+1 = 1

m

end for

Accept θ∗ with probability 1 ∧
L(θ∗)Q(θ∗,θ)
L(θ)Q(θ,θ∗)

Sample jrand from 1, .., NbParticules

Keep θ and β
θ,jrand

1:n

end for

4 Preliminary application: surveilling Influenza outbreaks from Google’s FluTrend data

Google FluTrend Data:

Estimates of Influenza-Like Illnesses cases

(Ginsberg et al. 2008, Nature)

Google FluTrend estimates (computed with a 1-day delay) 

US surveillance data (gathered within 1 to 2 weeks) 

A simple model for Influenza:






















































dSt = −βtStItdt

dEt = (βtStItdt− kEt)dt

dIt = (kEt − γIt)dt

dRt = γItdt

d log βt = σβdBt

g(.|y) = N (y, σobsy)

Note: E is the group of individuals who were infected but are

not infectious yet. k−1 is the referred to as the latency period.

Informative priors were taken for k and γ, based on bibliography.

Questions:

•How transmittable is the upcoming strain of influenza?

•Does the effective reproduction rate Rt = βtSt

γTotPop vary along time?

•What is the population immunity to the upcoming strain of in-

fluenza?

a) Validating the algorithm on simulated data
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b) 2008-2009 epidemic in France, a ”classic” seasonal epidemic
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c) 2009-2010 epidemic in France, the H1N1 pandemic
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Data / simulation values 

Mean estimate 

95% Confidence interval 

50% Confidence interval 

Legend: 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by LSE Research Online

https://core.ac.uk/display/17063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

