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ABSTRACT

Context. In the linear, β = 0 MHD regime, the transient properties of magnetohydrodynamic (MHD) waves in the vicinity of 2D null
points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate
at the null point; whereas Alfvén waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at
regions of inhomogeneous Alfvén speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime.
Aims. We investigate the behaviour of low-amplitude Alfvén waves about a 2D magnetic null point in nonlinear, β = 0 MHD.
Methods. We numerically simulate the introduction of low-amplitude Alfvén waves into the vicinity of a magnetic null point using
the nonlinear LARE2D code.
Results. Unlike in the linear regime, we find that the Alfvén wave sustains cospatial daughter disturbances, manifest in the transverse
and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. the ponderomotive force). These
disturbances are dependent on the Alfvén wave and do not interact with the medium to excite magnetoacoustic waves, although
the transverse daughter becomes focused at the null point. Additionally, an independently propagating fast magnetoacoustic wave
is generated during the early stages, which transports some of the initial Alfvén wave energy towards the null point. Subsequently,
despite undergoing dispersion and phase-mixing due to gradients in the Alfvén-speed profile (∇cA � 0) there is no further nonlinear
generation of fast waves.
Conclusions. We find that Alfvén waves at 2D cold null points behave largely as in the linear regime, however they sustain transverse
and longitudinal disturbances – effects absent in the linear regime – due to nonlinear magnetic pressure gradients.
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1. Introduction

Since the launch of solar satellites such as SDO, TRACE,
Hinode, and STEREO, equipped with sufficiently high-
resolution and high-cadence instrumentation, it has become es-
tablished that magnetohydrodynamic (MHD) waves and oscil-
lations are abundant throughout the coronal plasma (see, e.g.,
Nakariakov & Verwichte 2005; De Moortel 2005; Banerjee
et al. 2007; Ruderman & Erdélyi 2009; Goosens et al. 2011;
McLaughlin et al. 2012b). Consequently, it is clear that a well-
developed theory of MHD waves is required to understand many
ongoing coronal processes and dynamics. Due to the high degree
of magnetic structuring in the atmospheric plasma, the medium
in which these waves propagate is fundamentally inhomoge-
neous, leading to complex wave dynamics.

Magnetic null points, which are locations where magnetic
induction (hence Alfvén speed) is zero, occur naturally in the
corona as a consequence of the distribution of isolated magnetic
flux sources on the photospheric surface, and are predicted by
magnetic field extrapolations such as Brown & Priest (2001) and
Beveridge et al. (2002). These null points are, like wave motions,
prolific throughout the corona (Close et al. 2004; Longscope &
Parnell 2009; and Régnier et al. 2008, give rough estimates of
1.0−4.0×104 null points) and as such are a prime example of the
extreme inhomogeneity that propagating MHD waves encounter
in the corona. Null points have been implicated at the heart of
many dynamic processes, such as in coronal mass ejections (the
magnetic breakout model, e.g., Antichos 1998; Antichos et al.
1999) and in oscillatory reconnection (e.g., McLaughlin et al.
2009, 2012a). Study of MHD wave theory about null points

therefore directly contributes to our understanding of wave prop-
agation in realistic coronal plasmas.

The transient behaviour of linear waves about null points,
and its consequences for solar physics, has been extensively
studied (see the review by McLaughlin et al. 2011b). A series of
investigations into linear MHD wave propagation in the vicin-
ity of 2D β = 0 null points was carried out by McLaughlin &
Hood (2004, 2005, 2006a). These studies give two key results
for the linear regime: i) the fast and Alfvén waves accumulate at
predictable regions of the null point topology, regardless of ini-
tial configuration; and ii) these wave modes remain distinct and
decoupled, and do not interact.

Fast magnetoacoustic waves are focused towards the null
point due to refraction, resulting in the accumulation of current
density and ohmic heating at the null point. Linear 2D, β = 0
null points are thus predicted as locations of preferential heating
due to passing fast magnetoacoustic waves. The Alfvén wave
is found to accumulate along the separatricies, which it cannot
cross.

Various studies that extend the 2D theory to β � 0 and/or
3D (for example, McLaughlin & Hood 2006b; Galsgaard et al.
2003; McLaughlin et al. 2008; Thurgood & McLaughlin 2012)
all confirm that these two key features carry over. These exten-
sions also add further dynamics; for example, considering β � 0
introduces the slow mode which interacts with the fast wave.

In nonlinear MHD, the nonlinear Lorentz force (sometimes
referred to as the “ponderomotive force”) is known to facilitate
interaction between the MHD modes in certain inhomogeneous
scenarios. A large body of work regarding the ponderomotive
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effects of waves in various MHD scenarios has demonstrated that
nonlinear Alfvén waves can generate magnetoacoustic waves as
they propagate through regions of inhomogeneous Alfvén speed
(such as, e.g., Nakariakov et al. 1997, 1998; Verwichte et al.
1999; Botha et al. 2000; Tsiklauri et al. 2001; McLaughlin et al.
2011a; Thurgood & McLaughlin 2013). The specific nature of
ponderomotive mode conversion is dependent upon the gradi-
ents in the amplitude of the pulse and gradients in the Alfvén-
speed profile. As such, in inhomogeneous magnetic topologies
such as around null points, ponderomotive effects have the po-
tential to make a significant impact upon the wave dynamics,
energy transport, and dissipation.

The behaviour of the nonlinear fast wave at a 2D magnetic
null point was investigated by McLaughlin et al. (2009). The au-
thors found that, for sufficiently large driving amplitudes, mag-
netoacoustic shock waves develop, deform the null point and
cause magnetic reconnection. The authors reported that in the
nonlinear regime, some current can escape the null point, yet ac-
cumulation/heating still occurs (the shocks waves also heat the
plasma). This process of oscillatory reconnection has been sub-
sequently studied by Threlfall et al. (2012) and McLaughlin et al.
(2012a).

Galsgaard et al. (2003) considered weakly nonlinear simula-
tions of twisting motions about an azimuthally symmetric 2.5D
null point and observed a small amount of current accumulation
at the null point (relative to larger current accumulation along
the spine/fan, which is associated with the Alfvén wave in the
linear regime). The authors suggest that this is due to nonlinear
mode conversion from the Alfvén to fast magnetoacoustic mode;
however, their study did not consider the transient dynamics of
waves and their interaction, but rather the current accumulation
over time subject to an initial condition (i.e. they do not track
the wave motions). Whilst the work of Thurgood & McLaughlin
(2013) suggests that such nonlinear conversion could indeed be
the explanation, it is unclear whether this is the case.

In this paper we address the question: how does the weakly
nonlinear Alfvén wave behave in the vicinity of a 2D null point?
To do so, we numerically solve the cold-plasma MHD equations
to simulate the nonlinear wave dynamics at a null point where a
pure linear Alfvén wave is driven at the boundary, i.e. initially we
ensure there is no fast wave present. The paper is structured as
follows. In Sect. 2.1 we describe the governing equations of the
model, and in Sect. 2.2 we discuss the coordinate system used to
distinguish between different MHD modes. In Sect. 3 we detail
the numerical method and present the results of our simulations
in Sect. 3.1. We discuss the nonlinear effects observed in our
experiments in Sect. 4, and summarise in Sect. 5.

2. Mathematical model

2.1. Governing equations

We consider a plasma with dynamics described by ideal, 2.5D
β = 0 MHD, with translational invariance in the ẑ-direction;
thus ∂/∂z = 0. The governing nonlinear MHD equations are

ρ

[
∂u

∂t
+ (u · ∇)u

]
=

(∇ × B
μ

)
× B

∂B
∂t
= ∇ × (u × B)

∂ρ

∂t
= −∇ · (ρu) (1)

where the standard MHD notation applies: u is plasma velocity,
ρ is density, B is the magnetic field/induction, γ = 5/3 is the

adiabatic index, and μ is the magnetic permeability. We consider
an equilibrium state of ρ = ρ0, (where ρ0 is constant), u = 0
and equilibrium magnetic field B = B0. Finite perturbations are
considered in the form ρ = ρ0 + ρ1(r, t), u = 0 + u(r, t) and
B = B0 + b(r, t) and a subsequent nondimensionalisation us-
ing the substitution u = v u∗,∇ = ∇∗/L, B0 = B0B∗0, b = B0b∗,
t = t t∗, p1 = p0 p∗1 and ρ1 = ρ0ρ

∗
1 is performed, with the ad-

ditional choices v = L/t and v = B0/
√
μρ0. The resulting nondi-

mensionalised, governing equations of the perturbed system are

∂u

∂t
= (∇ × b) × B0 + N1

∂b
∂t
= ∇ × (u × B0) + N2

∂ρ1

∂t
= −∇ · u + N3

N1 = (∇ × b) × b − ρ1
∂u

∂t
− (1 + ρ1) (u · ∇) u

N2 = ∇ × (u × b)

N3 = −∇ · (ρ1u) (2)

where terms Ni are the nonlinear components. The star indices
have been dropped, henceforth all equations are presented in a
nondimensional form. The equations are merged into one gov-
erning PDE

∂2u

∂t2
= {∇ × [∇ × (u × B0)]} × B0 + N

N = {∇ × [∇ × (u × b)]} × (B0 + b)

+ (∇ × b) × [∇ × (u × B0)]

+ (∇ · u − u · ∇) (∇ × b) × B0

−ρ1 {∇ × [∇ × (u × B0)]} × B0

− [(∇ × b) × B0 · ∇] u. (3)

The first term describes the linear regime of the system and the
terms N are the nonlinear terms, displayed here to the second or-
der for brevity (N.B. our solution solves the full system of equa-
tions, with all nonlinear terms, see Sect. 3 and Arber et al. 2001).

2.2. Isolating MHD modes

Thurgood & McLaughlin (2012) developed a magnetic-flux-
based coordinate system that allows the decomposition of
MHD waves into constituent modes and the construction of ini-
tial conditions that correspond to single linear modes of oscil-
lation. This approach is suitable for any MHD scenario that is
capable of sustaining true Alfvén waves – i.e. where the equi-
librium configuration permits some invariant direction (see their
Sect. 2.3.1).

The projected perturbations corresponding to the wave
modes according to this coordinate system are

Alfvén wave u-perturbation: vz
Fast wave u-perturbation: v⊥ = u · ẑ × B0 = −Byvx + Bxvy

Longitudinal u-perturbation: v‖ = u · B0 = Bxvx + Byvy.

Perturbations in the invariant direction elicit magnetic tension
only and thus correspond to the Alfvén wave. Perturbations in
the direction transverse to both the equilibrium field and the in-
variant direction (here the xy-plane) correspond to the fast wave,
and perturbations in the longitudinal direction are static as there
is no longitudinal force to transport the disturbance in our β = 0
scenario (and would correspond to the slow wave in β � 0).
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Fig. 1. Indicative lines of the equilibrium magnetic field structure B0

(black lines) and contours of the Alfvén-speed profile cA =
√

x2 + y2

(ρ0 is constant).

Note that this corresponds to the coordinate system used in
McLaughlin & Hood (2004) which is a specific implementation
of the flux-based coordinate system appropriate for 2D magnetic
null points.

3. Numerical simulation

We solve the full set of the nonlinear, nondimensionalised MHD
Eq. (2) with the (nondimensionalised) equilibrium magnetic
field

B0 =
[
x,−y, 0] (4)

using the fully nonlinear, shock-capturing LARE2D code (Arber
et al. 2001). Equation (4) corresponds to a 2D null point with
two key topological features, the null point itself where magnetic
induction is zero at the origin, and the separatrices at x = 0 and
y = 0 lines (see Fig. 1 and McLaughlin et al. 2011b). We drive
planar, sinusoidal pulses in vz and bz at the upper y-boundary
to introduce a linear Alfvén wave as per Sect. 2.2. To do so we
drive

vz(x, 4) = A sin(2πt), vx = vy = v⊥ = v‖ = 0, b = −√μρ0 u

(5)

for 0 ≤ t ≤ 0.5, and we consider a driving amplitude A = 0.001.
This amplitude is small with respect to the characteristic velocity
of the non-dimensionalisation used in Sect. 2.1 (v = L/t, i.e. a
typical Alfvén crossing time over the length scale of interest) and
thus we consider the weakly nonlinear scenario. Simple zero-
gradient conditions are employed on the other boundaries, and
the simulations are performed over the domain x ∈ [−4, 4], y ∈
[−4, 4] with 2400 × 2400 grid points.

3.1. Results

In Fig. 2, we plot the propagating Alfvén wave in the veloc-
ity component vz. We have computed the bz perturbation which
shows a qualitatively identical result. It is known that the lin-
ear Alfvén wave propagates along the magnetic field lines at
the Alfvén speed cA (here cA =

√
x2 + y2), causing spreading

of pulses along field lines and is unable to cross the separa-
tricies (McLaughlin & Hood 2004). Given that our driving im-
poses a planar profile, this spreading effect is not obvious in our
simulation, instead we see the planar pulse that propagates to-
wards the y = 0 separatrix at a speed which is equivalent to the
Alfvén speed evaluated at x = 0. It cannot cross the separatrix,
as cA|x= 0 → 0 as y → 0, and it accumulates nearby with ever
increasing gradients, hence resistive dissipation will eventually
become an important consideration (McLaughlin & Hood 2004).
Thus, vz behaves as in the linear regime.

We now consider the other orthogonal velocity components
(v⊥ and v‖) which remain zero throughout linear simulations, to
investigate possible nonlinear effects. We first consider the lon-
gitudinal velocity component v‖, shown in Fig. 3. Here, we find
a nonlinear disturbance of O(0.5A2 = 5 × 10−7), which is cospa-
tial to the Alfvén wave pulse in time (the front and rear position
of the Alfvén pulse is marked by green lines). The pulse ap-
pears similar in profile to that of the Alfvén wave, however is
more compressed and steep, i.e. the profile is approximately as
a squared sine wave, whereas vz is sinusoidal. This disturbance
is not an independently propagating wave (in β = 0 such motion
is prohibited), but a direct consequence of the longitudinal com-
ponent of the ponderomotive force, which is induced, sustained
and carried by the propagating Alfvén wave. This is the specific
manifestation of the longitudinal daughter disturbance, a general
feature of nonlinear Alfvén waves and a common manifestation
of the ponderomotive force (see Thurgood & McLaughlin 2013
for a detailed discussion).

Now we consider the fast-mode velocity component v⊥,
shown in Fig. 4, which consists of two features: a wave that
propagates independently of the Alfvén wave and a cospatial
disturbance, both nonlinear of order O(0.5A2 = 5 × 10−7). The
independently propagating wave is generated during the driving
stage of the simulation, and propagates with the transient charac-
teristics of a linear fast wave at a single null point, namely that it
undergoes refraction due to the Alfvén-speed profile, crosses the
separatricies and accumulates at the null point. Hence, driving a
linear Alfvén wave according to Eq. (5) has nonlinearly excited
a fast wave.

We also find a disturbance in v⊥ which does not appear to
correspond to a fast wave (qualitatively, in terms of transient be-
haviour), and is cospatial to the Alfvén wave pulse (again, the
position of which is shown by the green envelope in Fig. 4).
This is the transverse daughter disturbance, detailed for general
MHD in Thurgood & McLaughlin (2013). This disturbance is
not an independently propagating wave. Within the cospatial re-
gion, the disturbance becomes increasing focused towards the
separatrix and ultimately to the vicinity of the null point.

4. Nonlinear effects

Here, due to the choice of small driving amplitude A, vz behaves
as in the linear regime (Fig. 2). Whilst the choice of a low driv-
ing amplitude makes the nonlinear effects small, it is nonetheless
sufficient to demonstrate in what ways the (shock-free) nonlin-
ear system differs from the linear, in particular its interaction
with the transverse and longitudinal fluid variables and between
differing modes of oscillation. Here we see two types of nonlin-
ear effects which are absent in the linear study of McLaughlin
& Hood (2004), both of which are generated or sustained at
O(A2/2): daughter disturbances and independently propagating
fast waves.
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Fig. 2. The evolution of vz (the Alfvén wave) over
time. The Alfvén wave propagates along fieldlines
at the Alfvén speed, hence we see a narrowing pla-
nar pulse propagating towards the y = 0 separa-
trix (the separatricies are marked by dashed white
lines).

Fig. 3. The longitudinal component v‖ over time.
We find that the ponderomotive force of the prop-
agating Alfvén wave (position marked by green
lines) sustains a cospatial disturbance in velocity
along the background magnetic field. This longitu-
dinal daughter disturbance is a ponderomotive ef-
fect which in this case does not facilitate any con-
version to the slow mode.

4.1. Daughter disturbances

In the simulations, we observe disturbances in v⊥ and v‖ which
develop immediately and remain cospatial to the wave observed
in vz throughout the simulations. The Alfvén wave exerts a non-
linear magnetic pressure gradient (viz. ponderomotive force)
upon the medium, resulting in these transverse and longitudi-
nal daughter disturbances. Thurgood & McLaughlin (2013) dis-
cuss the MHD-ponderomotive effects of Alfvén waves in de-
tail, and show that such daughters will be sustained anywhere
there are non-zero gradients in the pulse amplitude relative to the

equilibrium magnetic field. At any given instant, the ponderomo-
tive force of an Alfvén wave manifest in ẑ across and along the
field is (Thurgood & McLaughlin 2013, Sect. 3, Eqs. (12)−(13))

∂v⊥
∂t
= − 1
μρ0
∇⊥

(
b2

z

2

)
−→ O (v⊥) ∼ O

(
A2

2

)
(6)

∂v‖
∂t
= − 1
μρ0
∇‖

(
b2

z

2

)
−→ O (

v‖
) ∼ O

(
A2

2

)
· (7)

Here, ∇⊥ ≡ ẑ × B0 · ∇ and ∇‖ ≡ B0 · ∇ (these terms are the
gradients transverse and longitudinal relative to the equilibrium
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Fig. 4. The evolution of v⊥ over time. We find two pronounced nonlinear effects: a transverse daughter disturbance which is cospatial to the Alfvén
wave (indicated by dashed green lines) and an independently propagating fast wave.

magnetic field) and bz = ±√μρ0vz. Where the net ponderomo-
tive force over a wave period is non-zero, excitation of mag-
netoacoustic modes occurs. Where the action of the force of
the leading pulse edge is consistently nullified by the trailing
edge, disturbances arise in the transverse and longitudinal fluid-
variables that do not excite wave motions but remain confined to
a region cospatial to the Alfvén wave, referred to as the pon-
deromotive envelope (see discussion of, e.g., “ponderomotive
wings” in Verwichte et al. 1999; and “daughter disturbances”
in Thurgood & McLaughlin 2013).

In Sect. 3, the spatial distribution of the amplitude of these
two disturbances differs; the longitudinal daughter (v‖) varies
uniformly in ŷ with a similar profile to that of the Alfvén wave
in vz (as the disturbance is generated at amplitude A2, the profile
is more akin to that of the squared sine wave, i.e. more com-
pressed and steep). However, the transverse daughter (v⊥) varies
in both x̂ and ŷ, is of opposite sign either side of the x = 0
separatrix, and appears to become increasingly focused towards
the x = 0 separatrix as time evolves. By considering (6) and (7)
with the equilibrium field (4) and given that in the simulation
the pulse remains planar in x̂ (i.e. has ∂/∂x = 0 throughout), the
transverse and longitudinal nonlinear magnetic pressure gradi-
ents (ponderomotive force) assume profiles such that

F⊥ ∼ x
∂

∂y

(
b2

z

2

)
, F‖ ∼ y ∂

∂y

(
b2

z

2

)
(8)

where we know, from the numerical results where the leading
edge propagates slower than the trailing (hence length scales

decrease and gradients grow), that the derivative value becomes
larger in time and the pulse profile changes in y, but that in x does
not. Transversely, within the ponderomotive envelope, there is
an applied pressure gradient which overall becomes stronger as
the Alfvén wave tends towards the y = 0 separatrix (as the
gradient increases) yet maintains the same profile proportional
to |x| throughout, with zero magnetic pressure along x = 0. In
the simulation, we see that the transverse daughter becomes in-
creasingly focused towards x = 0. Hence, a possible explanation
is that the applied magnetic pressure gradient acts to acceler-
ate the fluid within the envelope towards x = 0. Longitudinally,
as the leading edge of the Alfvén wave undergoes steepening
the derivative value will be larger at the lead than that towards
the trailing edge, however the value of y is smaller. Since in the
simulations we see no static perturbations in v‖ or b‖, the net
force must be zero and thus the change in y must be propor-
tional to the increasing steepness of the leading edge throughout
the simulation (this is intuitive, as net speed of the pulse in the
ŷ-direction also decreases proportional to y). Hence, we are con-
fident that the observed phenomena are ponderomotive daughter
disturbances, as they are generated at a nonlinear order and are
consistent with Eq. (8).

4.2. Independently propagating fast wave

In Sect. 3 we have seen that a wave in v⊥ is generated during the
driving phase (0 ≤ t < 0.5). This wave subsequently propagates
with all of the transient features of a linear fast magnetoacoustic
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wave (refracting about the Alfvén speed profile and accumulat-
ing at the null point). As the nonlinear magnetic pressure is the
only facilitator of coupling between vz and v⊥ in cold, 2.5D MHD
systems, the generation of such a wave is due to the exertion of a
transverse ponderomotive force (Eq. (6)) such that the net force
over the period is non-zero. After the driving phase, no further
excitation of fast waves occurs, thus the net ponderomotive force
must be zero (and thus is only manifest in the aforementioned
daughters). Hence, after this driving period gradients in the trail-
ing edge nullify the fluid acceleration caused by the gradients in
the leading edge.

The value of the net ponderomotive force can only change
if the pulse geometry is altered. This requires a change in the
Alfvén speed. Here, gradients in the Alfvén speed are non-zero

∇⊥cA =
2xy√
x2 + y2

, ∇‖cA =
x2 − y2√
x2 + y2

generally permitting such changes in the pulse geometry (i.e. our
system is inhomogeneous). However since we impose a planar
profile, the effective speed of the wave is cA|x=0 = y, and its
derivative in the direction of propagation is constant. Thus, as
the Alfvén wave propagates its geometry is not altered such that
there should be a change from a non-zero to zero net pondero-
motive force.

This raises the question that, since the net force cannot
change, why do we observe the generation of fast waves only
during the driving phase, rather than continuously? There are
two possible explanations

(i) Physical Effect: the net force is initially non-zero and re-
mains so, i.e. there is a physical mechanism which sup-
presses the further generation of independently propagating
fast waves.

(ii) Mathematical Artefact: the net force is actually zero, thus
no ponderomotive excitation of the fast mode should occur.
The excitation of the fast wave is a consequence of linearly
driving a nonlinear system.

4.2.1. Physical effect

If the net-force of the wave is always non-zero, in the absence
of continuous fast wave generation a mechanism must act to op-
pose further wave excitation. Botha et al. (2000) considered the
case of a harmonic Alfvén wave propagating in a homogeneous
field stratified by a transverse density profile. They reported that
the transverse gradients caused the nonlinear excitation of fast
waves. However, these waves eventually saturated and did not
continue to develop in time. This saturation was also later re-
ported to occur for pulse-type Alfvén waves in the same equi-
librium set-up by Tsiklauri et al. (2001). Botha et al. (2000)
proposed that the saturation occurs due to wave interference be-
tween the generated fast waves. It is possible that in our system a
level of saturation sufficient to oppose further mode conversion
is reached so rapidly that only a single independent fast wave is
generated.

4.2.2. Mathematical artefact

If the net ponderomotive force is zero throughout, then the inde-
pendent fast wave has been introduced as a mathematical conse-
quence of our driving condition. We have used the driving con-
dition (5) so we can directly compare our nonlinear experiment
to the linear results of McLaughlin & Hood (2004). However,

in nonlinear MHD, driving the ẑ-components of the fluid vari-
ables and holding the transverse and longitudinal components
at zero corresponds to an Alfvén wave with no instantaneous
ponderomotive force. The driven Alfvén wave subsequently en-
ters an inhomogeneous region which alters the pulse profile and
contributes to the nonlinear magnetic pressure perturbation, un-
opposed by other factors (which are specified as zero). Thus a
non-zero ponderomotive force acts across the field, resulting in
the fast wave, and along the field, resulting in a static longitudi-
nal perturbation, as β = 0 (this is subsequently removed by our
boundary post-driving boundary conditions, hence absent from
our discussion in Sect. 3).

If this is indeed the case, then physically boundary condi-
tion (5) is inappropriate as it corresponds to an incoming wave
with no ponderomotive daughters, and hence no ponderomo-
tive force. At the bare minimum, longitudinal daughters are
present for Alfvén wave pulses in straight-field, homogeneous
MHD (see Verwichte et al. 1999). From the perspective of wave-
stability the driving conditions used are entirely appropriate in
the linear regime, as they correspond to a pure linear Alfvén
wave (i.e. a wave driven solely by magnetic tension, as per
Alfvén 1942) that does not interact with other modes of oscil-
lation (see Parker 1991). This can be be confirmed by consid-
ering Eq. (3) with N = 0 in the flux-based coordinate system,
which yields three separate and decoupled equations for invari-
ant, transverse and longitudinal variables, i.e. for the Alfvén, fast
and (absent) slow modes of oscillation. As perturbations in ẑ do
not elicit responses in other directions in the linear regime, such
a wave could be considered linearly stable. However, in the full
nonlinear system, disturbances to vz do not exist independently
to perturbations in v⊥ and v‖ due to the action of the ponderomo-
tive force. The driving conditions still successfully introduce an
Alfvén wave (in the nonlinear regime the motion of an Alfvén
wave is still primarily due to linear magnetic tension), yet spec-
ify values of transverse and longitudinal fluid variables that are
inconsistent with those specified by the equations for a single
Alfvén wave (these values should correspond to those implied
by Eqs. (6) and (7)).

In the absence of a physical saturation mechanism such as
that described in Sect. 4.2.1, the independent fast wave is a con-
sequence of linearly driving a nonlinear system; the solution is
mathematically consistent with the equations, which introduce a
small fast wave via a boundary-ponderomotive effect.

5. Summary

In this paper we have addressed the question, how does the
weakly nonlinear Alfvén wave behave in the vicinity of a 2D
null point? The null point topology (4) and equilibrium variables
considered are identical to those considered in the linear study
of McLaughlin & Hood (2004), as is the method for introduc-
ing the Alfvén wave (i.e. driving the ẑ-components of the fluid
variables). Thus, we can directly compare the behaviour of the
waves in the linear and nonlinear regimes. Our three main results
are that

(i) In vz, the wave propagates along fieldlines at the background
Alfvén speed, cA, accumulating at the separatricies. The
wave does not steepen to form a shock (hence, we refer to
our choice of A as low amplitude).

(ii) The Alfvén wave sustains cospatial, nonlinear disturbances
that have transverse (v⊥, Fig. 4) and longitudinal (v‖, Fig. 3)
manifestations – phenomena not reported before in null point
simulations.
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(iii) During the driving phase, a wave develops in v⊥ and sub-
sequently propagates independently of the Alfvén wave. It
propagates with the transient properties of a linear fast wave,
crossing separatricies and accumulating at the null point.

We find that in the low-amplitude limit of the nonlinear solution
the majority of the Alfvén wave cannot cross separatricies as in
the linear solution of McLaughlin & Hood (2004). However, we
find two key results not seen in the linear case – the wave sus-
tains cospatial daughter disturbances and that an independently
propagating fast wave is generated via ponderomotive mode ex-
citation, results not seen in the linear case.

The longitudinal daughter, sustained by the Alfvén wave, ap-
pears to have no real impact upon the medium. The transverse
daughter appears to be focused towards x = 0 separatrix, and
thus the null point as the Alfvén wave carries it towards y = 0.
Since the amplitude here is small, such an effect has very lit-
tle impact on energy transport and dissipation in the vicinity of
the null, however the effect has the potential to be significant for
larger amplitude Alfvén waves.

A key feature of linear 2D nulls is that the Alfvén wave and
magnetoacoustic modes are decoupled, and that Alfvén wave
energy accumulates along the separatricies and not at the null.
However, in the nonlinear case we observe the ponderomotive
excitation of a fast magnetoacoustic wave which refracts about
and eventually accumulates at the null point. Thus, unlike in 2D,
some of the Alfvén wave’s energy is focused at the null point by
the fast wave.

After the initial generation of the fast magnetoacoustic wave,
we note that no further magnetoacoustic waves are generated,
despite the fact that the pulse is travelling through an inhomoge-
neous region – undergoing longitudinal dispersion (∇‖ cA � 0)
and phase mixing (∇⊥ cA � 0). The analysis of Thurgood &
McLaughlin (2013) demonstrated that when a pulse propagates
through an inhomogeneous medium, mode conversion can oc-
cur, but that it is dependent on the specific scenario (e.g., the
phase-mixing experiment of Nakariakov et al. 1997). As no con-
version occurs in our experiment after the initial excitation,∇ cA
in the vicinity of our 2D null point must not be sufficiently steep
or sharp enough to further excite magnetoacoustic waves. This
suggests that ponderomotive mode conversion due to inhomo-
geneity will only routinely occur where this profile is sharp or
discontinuous.
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