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Abstract 
The study of water movement in soils is of fundamental importance in hydrologic science. It is 

generally accepted that in most soils, water and solutes flow through unsaturated zones via 

preferential paths. This paper combines magnetic resonance imaging (MRI) with multifractal 

theory and the invasion percolation model (IPMod) in order to characterize and simulate 

preferential flow. A cubic double-layer column filled with fine and coarse texture sand was placed 

into a MRI system. Water infiltration through the column was recorded in both dynamic and 

steady state conditions. Twelve sections were obtained and characterized using multifractal 

theory. An algorithm code for a 3-D model, based on the IPMod, was developed and validated 

with the MRI images. The MRI system provided a detailed description of the preferential flow 

under steady state conditions and was also useful in understanding the dynamics of the 

formation of the fingers. The calculated fractal dimension was not adequate for making an 

inference about the spatial distribution of water along the column profile. The f(a)-a spectrum 

was very sensitive to the variation encountered at each coronal slice of the column providing a 

suitable characterization of the dynamics of the process. 3-D modeling with the improved IPMod 

produced images similar to the ones obtained with MRI. In conclusion, MRI could adequately 

characterize preferential flow, and the fingering process was adequately simulated by combining 

multifractal analysis with 3-D modeling techniques.  

 

Abbreviations: MRI, magnetic resonance image; IPM, invasion percolation model 
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C H A R A C T E R I Z I N G  A N D  M O D E L I N G  P R E F E R E N T I A L  F L O W  1 

Characterizing and modeling preferential  
flow using magnetic resonance imaging  
and multifractal theory 
 
 

INTRODUCTION 

Fluid flow through preferential paths, or fingers, is extremely important in agricultural processes 

such as infiltration of water and transport of agrochemicals through the soil profile. The role that 

the preferential flow plays is of particular interest in the transport of pesticides, heavy metals, 

radioactive waste and other contaminants. The probability of contaminating ground water and 

therefore compromising the quality of water resources increases with the existence of 

preferential paths.  

 

In order to understand this extremely complex problem, some researchers concentrate their 

efforts on studying fluid transport in connection with the geometry of porous media (Lu et al., 

1994). Many experiments have shown that fluid transport-porous medium coupling has auto-

similarity or fractal characteristics in a range of defined scales (Katz and Thompson, 1985). The 

fingering phenomenon in soils, which is basically of capillary character, also presents fractal 

characteristics (Chang et al., 1994; Posadas and Crestana, 1993). These fractal characteristics have 

led to the creation of simulation models such as the Diffusion Limited Aggregation-DLA (Chen 

and Wilkinson, 1985) that simulates the viscous fingering phenomenon and the invasion 

percolation model (Wilkinson and Willemsen, 1983), which in turn simulates the capillary 

fingering phenomenon.  

 

Recently, Steenhuis and Parlange (1996) have published a review of the principal theories of the 

fingering phenomena, both in the laboratory and in the field. In this review, a model using a 

modification of the invasion percolation model was introduced (Glass and Yarrington, 1996). 

Other researchers have confirmed the suitability of fractal and multifractal theory to describe and 

simulate preferential flow, as shown in the few examples that follow. Ogawa et al. (2002) used 

fractal analysis to study preferential flow in field soils. They evidenced a good correlation 

between the surface fractal dimension and the exponent of a Van Genuchten expression applied 

to the particle size distribution of the soil. A multifractal analysis was successfully employed by 

Nittmann et al. (1987) and Måløy et al. (1987) on viscous fingering structures observed in Hele-

Shaw cells and in a mono-layer of glass beads, respectively. Recent literature suggests that the 

multifractal formalism is applicable to three-dimensional systems, for example, Held and 
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Illangasekare (1995) showed that the width (internal energy or ∆α) of the f(α) curve (multifractal 

spectrum), in the range of positive moments, quantifies displacement instability.  

 

This paper proposes an innovation in the characterization of preferential flow by combining MRI 

(Posadas et al., 1996; Crestana and Posadas, 1997) with multifractal theory (Chhabra et al., 1989, 

Posadas et al., 2001, 2003) for a three dimensional description of the dynamic of fingers in sandy 

soils. The results were also used to extend the modified invasion percolation model as described 

by Onody et al. (1995), to simulate the morphology of the fingers in three dimensions. 

 

MATERIALS AND METHODS  

Experiment 

In order to visualize, characterize and simulate the fingering phenomenon in three dimensions, 

magnetic resonance imaging (MRI) technique (CNPDIA/EMBRAPA Laboratory, Brazil), multifractal 

theory and a modified invasion percolation model were employed, both in dynamic and in static 

conditions (Posadas, 1994; Onody et al., 1995; Posadas et al., 1996). A cubic 15x15x15 cm double-

layer sand column was built. The top layer was 2.5 cm high, consisting of fine texture soil sand 

(particle size diameter in mm: , 0.106 < d < 0.149 porosity in %, φ = 44.8, saturated hydraulic 

conductivity in cm/s: Ks = 6.3x10-3 and bulk density in g/cm3: ρb = 1.6) and the lower 12.0 cm layer 

was filled with coarse sand (particle size diameter in mm: 0.212 < d < 0.500, porosity in %, φ = 

31.2, saturated hydraulic conductivity in cm/s: Ks = 26.7x10-3 and bulk density in g/cm3: ρb = 1.6). 

On the surface of the top layer, an acrylic plate of 15x15x0.3 cm with 1.0 mm diameter holes was 

placed, in order to spread water uniformly over the surface. The top 0.2 cm section of the column 

remained free for water application. This column was placed into the head coils of the 500 Gauss 

MRI systems (Figure 1). The infiltration of water through the cubic column was studied under 

hydrodynamic steady state conditions. It was also possible to follow the spatial dynamics of the 

wetting front by means of a MRI system measuring the spin echo signal (Posadas et al., 1996). 

 

 

 

 

 

 

 

 

 

Fig. 1.
a) 500 Gauss MRI
system (IFSC-USP

Laboratory, Brazil)
showing the cubic

column used
b) Sketch of the

cubic column.

a) 
b)
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THEORY 

Multifractal 

It is now widely accepted that physical systems that exhibit chaotic behavior are generic in 

nature. Since these systems lose information exponentially fast it is possible to follow and predict 

their motion in any detail only for short time scales (Chhabra et al., 1989). To describe their long-

term dynamical behavior, one must resort to suitable statistical descriptions. One such 

description is multifractal formalism (Chhabra, et al., 1989; Hentschel and Procaccia, 1983; Halsey 

et al., 1986; Chhabra and Jensen, 1989). Multifractal theory permits the characterization of 

complex phenomena in a fully quantitative fashion, for both temporal and spatial variations. 

Multifractal techniques and notions are increasingly widely recognized as the most appropriate 

and straightforward framework within which to analyze and simulate not only the scale 

dependency of the geophysical observables, but also their extreme variability over a wide range 

of scales (Schertzer and Lovejoy, 1994). 

 

The basic equation of fractal theory expresses the relationship between the number and the size 

of the objects (Feder, 1988): 

 

 0-~)( DN εε , [1] 

 

where N(ε) is the number of objects, ε is the scale and D0 is the fractal dimension. The box-

counting technique is used to estimate the scaling properties of a set by covering the set with 

boxes of size ε and counting the number of boxes containing at least one pixel representing the 

object under study: 

 

.
)(
)(

00 ε
ε

ε Log
LogNLimD

→
−=

 [2] 

 

Provided the limit exists, the infinitum of N(ε) is approximated by varying the origin of the grid 

until the smallest number is found. Using equation [2], the box-counting dimension D0 can be 

determined as the negative slope of log N(ε) versus log(ε), measured over a range of box widths.  

In a homogeneous system, the probability (P) of a measured quantity (measure) varies with scale 

ε as (Chhabra et al., 1989; Evertsz and Mandelbrot, 1992, and Vicsek, 1992): 
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,~)( DP εε

 [3] 

 

where D is a fractal dimension. For heterogeneous or non-uniform systems the probability within 

the i-th region Pi varies as: 

 

 
,~)( i

iP αεε
 [4] 

 

where αi is the Lipschitz-Hölder exponent or singularity strength, characterizing scaling in the i-th 

region or spatial location (Feder, 1988). The parameter αi quantifies the degree of regularity in 

point x i. Loosely speaking, any measure µ of an interval [x i, x i +∆x], behaves as (∆x)αi (Halsey et 

al., 1986). For a uniform distribution one finds αi (x) = 1 for all x. More generally, for any real value 

a > 0 the distribution with density xa-1 on [0,1] has αi(0) = a and αi(x) = 1 for all x∈ [0,1]. Values 

αi(x) < 1 indicate, thus, a burst of the event around x “on all levels”, while αi(x) > 1 is found in 

regions where events occur sparsely (Riedi, 1999). Similar αi values might be found at different 

positions in the space. The number of boxes N(α) where the probability Pi has singularity 

strengths between α and α+dα is found to scale as (Chhabra et al., 1989; Halsey et al., 1986): 

 

 
,~)( )(αεα fN −

 [5] 

 

where f(α) can be considered as the generalized fractal dimension of the set of boxes with 

singularities α (Kohmoto, 1988). The exponent α can take on values from the interval [α-∞,α+∞], 

and f(α) is usually a function with a single maximum at df(α(q))/dα(q) = 0 (where q is the order 

moment of a statistic distribution). Thus, when q = 0, fmax is equal to the box-counting 

dimension, D0 (Gouyet, 1996; Vicsek, 1992).   

 

Multifractal sets can also be characterized on the basis of the generalized dimensions of the q-th 

order moment of a distribution, Dq, defined as (Hentschel and Procaccia, 1983):  
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where µ(q, ε) is the partition function (Chhabra et al., 1989): 
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The generalized dimension Dq is a monotonic decreasing function for all real q’s within the 

interval [-∞, +∞]. When q < 0, µ emphasizes regions in the distribution with less concentration of 

a measure, whereas the opposite is true for q > 0 (Chhabra and Jensen, 1989).  

 

Also, the partition function scales as: 

 

 
,~),( )(qq τεεµ

 [8] 

 

where τ(q) is the correlation exponent of the q-th order moment defined as (Halsey et al., 1986; 

Vicsek, 1992): 

 

 
.)1-()( qDqq =τ

 [9] 

The connection between the power exponents f(α) (Equation [5]) and τ(q) (Equation [9]) is made 

via the Legendre transformation (Callen, 1985; Chhabra and Jensen, 1989; Halsey et al., 1986): 

 

and 

.)()(

)()())((

dq
qdq

qqqqf

τα

ταα
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−=
 [10] 

 

f(α) is a concave downward function with a maximum at q = 0. When q takes the values of q = 0, 1 

or 2, equation [6] is reduced to: 
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respectively, with C(ε) being the correlation function.  

 

The values D0, D1 and D2 are known as the capacity dimension, the entropy dimension and the 

correlation dimension, respectively. The capacity dimension provides global (or average) 

information about a system (Voss, 1988). The entropy dimension is related to the information (or 

Shannon) entropy (Shannon and Weaver, 1949). The correlation dimension D2 is mathematically 

associated with the correlation function (Grassberger and Procaccia, 1983) and computes the 

correlation of measures contained in a box of size ε.  The relationship between  

 

D0, D1, and D2 is, 

 D2 ≤ D1 ≤ D0, [12] 

 

where the equality D0 = D1 = D2 occurs only if the fractal is statistically or exactly self-similar and 

homogeneous (Korvin, 1992). 

 

Following the methodology used in Posadas et al. (2001, 2003), multifractal theory was applied to 

the MR images of the fingering phenomena. Twelve slices of coronal sections, following the 

gravitational force, were analyzed using the multifractal analysis and scaling system algorithm 

(MASS –downloadable after subscription at http://inrm.cip.cgiar.org/vlab) 

 

Invasion Percolation 

Onody et al. (1995) developed the 2-D site invasion percolation model to simulate the fingering 

phenomena. The model uses four parameters: G1: hydraulic pressure, G2: proportional to the 

numbers of fingers, G3: surface tension, and G4: proportional to the wet area of the experiment. 

The authors showed that with these four parameters the fingering phenomenon in 2-D events 

could be successfully simulated for three types of soils with different textures. 

 

To extend the 2-D model of the physical processes of the fingering phenomenon to a 3-D 

representation, certain similarities were assumed. In both cases, hydraulic pressure and gravity 

force constitute the main forces producing a downward movement. The 3-D model conserved all 



C I P  •  N A T U R A L  R E S O U R C E S  M A N A G E M E N T  W O R K I N G  P A P E R  2 0 0 7 - 4  

 

C H A R A C T E R I Z I N G  A N D  M O D E L I N G  P R E F E R E N T I A L  F L O W  

 
7

four G parameters describing the 2-D model. The only difference was that the parameters G3 and 

G4 had spatial components (x, y, z). The 3-D model was tested using the same soil types reported 

by Onody et al. (1995), with the following input values: G1=-0.020, G2=0.75, G3=0.35, and G4=0.15. 

 

RESULTS AND DISCUSSION  

The results obtained with the MRI system are depicted in Figures 2 and 3. Figure 2 shows three 

acquisitions of the transverse plane of the cubic sand column at steady-state flow. In these three 

images it is possible to observe the three-dimensional character of the fingering phenomena and 

its spatial variability. The accumulation of water at the bottom of the column can be seen in panel 

A. Since there is no evidence of water flow except through preferential paths it can be inferred 

that, if the experiments replicate the process occurring in real systems, the movement of water 

and the solutes conveyed within it could reach shallow or deep water pools in the soil faster than 

in conditions where preferential flow is absent. 

 

The column under steady-state flow was “dissected” into 12 horizontal (coronal) slices of 1.0 cm 

thick, as shown in Figure 3. In the figure, the gray scale depicts the concentration of water in the 

cross section. It can be seen that the water concentration throughout the profile follows a fixed 

path. Areas outside this fixed path remained dry. These findings support the existence of 

preferential flow under the conditions studied (Posadas et al., 1996).  

 

The dynamic of the fingering process is evidenced in the graphics shown in Figure 4. Panel A 

evidences that the first finger advanced nearly half way through the column, some 36 s after the 

onset of the run whereas a second finger is just being initiated. At the end of the run, after 137 s 

(Panel C), two fingers are clearly formed and constitute the only means by which the water 

reaches the bottom of the column. It can thus be stated that water movement in sandy soils 

presents spatial and temporal variability that must be understood in order to adequately simulate 

the process. 
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Fig. 2.
 Images obtained

by MRI showing
twelve coronal

sections (slices 1.0
mm thick) of the
cubic soil column

following the
direction of the

infiltration.

Fig. 3.
a) Saturated section

near the surface of the
column (first layer),

l) section corresponding
to the bottom of the soil

column; and
b) through

k) represent
intermediate situations.

Gray levels represent
water content.
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Figures 5, 6, and 7 summarize the fractal analysis. The capacity or fractal dimension (D0, Figure 5) 

evidences differences in the spatial distribution among the twelve layers of the columns depicted 

in Figure 3. The top layer in the system seems to be more heterogeneous and the heterogeneity 

of the distribution of water is reducing towards the bottom of the column. This seems to be a 

good descriptor of the steady state conditions at which the images were taken.  

 

A multifractal analysis was also used to describe the heterogeneity of the spatial variability of the 

water in each cross section throughout the profile of the column (Figure 6). A quick inspection 

along the column indicates how dynamic the system is, even though the analysis was made 

when the system reached a steady-state flow. It goes from the wetting instability—the first 

condition of the coarse texture substrate (Panel B in Figure 3)—to a hydrodynamic stability at the 

Fig. 4.  
Wetting front along 
the cubic column 
through time. The 
panels show the 
spatial distribution 
of fluid 
displacement profile 
front, following 
gravity; t = 36.2, 
81.0 and 137.0 (end)
seconds. 
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bottom (Panel L in Figure 3), passing though chaotic sections in the intermediate portion (Panels 

C through K in Figure 3).  

 

 

 

 

The spatial variations in all these conditions seem to be well characterized with the f(α)-α 

spectrum shown on the right panels in Figure 6. For instance, the cross section labeled MRI11 

represents the wetting instability conditions in the column. This hydrodynamic instability is 

attributed to the change produced when the water flows from the fine to the coarse texture. The 

multifractal spectrum is characteristic of a heterogeneous system with variations on both sides of 

the maximum value. From the maximal fractal dimension (D0) to the left, the spectrum describes 

the behavior of the areas where water is present (positive q’s). The asymmetry toward the right 

from α=2 indicates domination of small or extremely small values of water. This is an indication of 

the existence of preference paths. The condition prevails, with small variations, down to the sixth 

coronal section (half way through the column along the gravitational force). Inspection of the 

variation in internal energy (∆α) shows that the ∆α value for MRI11 is 1.36. Compared to the near-

saturation condition presented in the layer with fine texture (∆α=0.21) one can contrast how this 

multifractal parameter changes when the condition changes from a quasi-homogeneous (MRI12) 

to a heterogeneous wetting instability. The coronal section labeled MRI05 seems to represent the 

zone within the column where the transition from instability to hydrodynamic stability initiates. 

The corresponding ∆α is around 0.3. The bottom three coronal sections correspond to 

hydrodynamic stability, behaving as a pure fractal with a ∆α < 0.07. 

 

Fig. 5. 
Fractal dimension, 

of the fingers, 
measured along 

the vertical depth.
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An interesting feature of the multifractal analysis is that in spite of the fact that the image was 

taken under steady-state flow, the dynamic characteristic present in the profile can be described 

by the f(α)-α spectrum and its parameters. As an example, Figure 7 shows how the changes in 

one of the multifractal parameters, associated with the internal energy (∆α), seems to describe 

the dynamics of water along the column depth. Three stages are clearly evidenced in this figure, 

the instability zone, the transition zone, and the equilibrium zone or the depth at which 

Fig. 6.  
Magnetic Resonance 
Images from a three-
dimensional fingering 
phenomena and 
multifractal spectrums 
following the gravitational 
direction (from top MRI12 
to bottom MRI01).  
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hydrodynamical stability has been achieved. This variation could not be addressed if the 

conventional fractal analysis (using the capacity dimension only) is used, as shown above 

(Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simulation results, using the 3-D extended model from Onody et al. (1995) are shown in 

Figure 8. Panels A and B show different transversal sections of the simulated column. The 

similarity between observed and simulated fingers evidence the capability of the 3-D model to 

Fig. 7. 
Variation of 

internal energy 
of the system as 

a function of 
depth along the 

cubic column. 

Fig. 8.
Traversal sections 

showing the 
simulated fingering 

phenomena using 
the extended 3-D 

invasion percolation 
model.

y = 6.1186x -0.2662

R2  = 0.739 
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depict preferential flow process in sandy soils. This tool could become useful in hydrology and 

environmental studies where preferential flow plays an important role.   

 

CONCLUSIONS 

Both the percolation model and the MRI system were shown to be good tools to characterize and 

simulate preferential flow in soils. The MRI system is useful in visualizing the phenomenon for a 

better understanding of the process. However, very few research groups have access to this type 

of equipment. The 3-D invasion percolation model combined with the use of multifractal theory 

could facilitate the study of the dynamics of preferential flow and can be used to predict 

outcomes under real conditions. The combination of these techniques open a new set of 

alternatives that must be further tested for different soil types and management conditions. 
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