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A TUNABLE APPROXIMATELY PIECEWISE 
LINEAR MODEL DERIVED FROM THE 
MODIFIED PROBABILISTIC NEURAL 
NETWORK 

Anthony Zaknich and Yianni Attikiouzel 

Centre for Intelligent Information Processing Systems (CIIPS), 
The University of Western Australia, Nedlands 6907, Western Australia 

A simple model which can be adjusted by a single smoothing parameter 
continuously from the best piecewise linear model in each linear subregion to 
the best approximately piecewise lmear model overall is developed for 
multivariate general nonlinear regression. The model provides an accurate, 
smooth approximately piecewise linear model to cover the entire data space. 
It provides a logical basis for extrapolation to regions not represented by 
training data, based on the closest piecewise linear model. This model has 
been developed by making relatively minor changes to the form of the 
Modified Probabilistic Neural Network, a network used for general 
nonlinear regression. The Modified Probabilistic Neural Network structure 
allows it to model data by weighting piecewise linear models associated with 
each of the network’s radial basis functions in the data space. 

1.0 INTRODUCTION 

Nonlinear regression, based on a limited set of training data, can have significant 
limitations. When the underlying function is unknown the regression can, at best, 
only accurately interpolate within the region of the training inputloutput pairs. 
Also, there is no guarantee that the regression will be able to adequately 
extrapolate outside the region of the training data. However, in many practical 
nonlinear problems the underlying function may be relatively smooth and have 
many regions that are close to linear. In those cases the function can be modeled 
with an approximately piecewise linear model. It may therefore be useful to have 
a simple model which can be adjusted by a single smoothing parameter 
continuously from the best piecewise linear model in each linear subregion to the 
best approximately piecewise linear model overall. 

This paper introduces a model which defines a multivariate scalar function over 
the whole data space and which can always be tuned to produce the best 
approximation in the region of the training data. The assumption is made that in 
the region where there is no training data it is best to extrapolate based on the 
closest piecewise linear model determined from the local training data. In the 
regions covered by training data the model interpolates to provide the most 
accurate representation of the underlying nonlinear function. As more training 
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data is acquired the model can be adjusted by adapting the appropriate piecewise 
linear models to maintain accurate representation in regions where training data 
does exist. In this way the model is as accurate as it can be within regions 
covered by training data. Also, the various piecewise linear models provide a 
logical basis for extrapolation to regions devoid of training data. This is a sensible 
strategy if a reasonable amount of representative training data is available in the 
first instance and if the underlying function is not grossly nonlinear. However, the 
method can work well for more nonlinear functions as well. 

A model as described above can be developed by making relatively minor 
changes to the form of the Modified Probabilistic Neural Network (MPNN). In  
this case The MPNN structure allows it to be used to model data by the weighted 
sum of piecewise linear models associated with each of the network’s Radial 
Basis Functions (RBFs) in the data space. The piecewise linear models associated 
with each RBF are computed using the same set of data points which are used to 
determine the RBF centre vector, being the mean of those points. 

2.0 REVIEW OF THE MODIFIED PROBABILISTIC 
NEURAL NETWORK 

The Modified Probabilistic Neural Network was initially introduced by Zaknich et 
al in 1991 [ 1,2] for application to general signal processing and pattern 
recogrution problems. I t  is a generalisation of Specht’s General Regression Neural 
Network (GRNN) [3] and is related to Specht’s Probabilistic Neural Network 
(PNN) [4] classifier. The MPNN and GRNN have similarities with the method of 
Moody and Darken [ 5 ] ;  the method of radial basis functions [6] ;  the Cerebellar 
Model Articulation Controller (CMAC) [ 7 ] ;  and a number of other nonparametric 
kernel based regression techniques stemming from the work of Nadaraya [SI and 
Watson [8]. If  it can be assumed that for each local region in the input space 
represented by a centre vector ci there is a corresponding scalar output y, that it 
maps into then a convenient general model to use for all forms of the MPNN and 
the GlWN is (I). 

.f,  (Ilx - ci 11, U )  is a suitable radial basis function. 

Ci 

Yi 
M 

z i  

0 

centre vector for class i in the input space. 
learning parameter chosen during training. 
output related to ci (real valued or quantised). 
number of unique centres ci. 
number of vectors x .  associated with centre ci. J 
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M 

i=l 
NS total number of training vectors ( NS = 2; ). 

Equation ( I )  represents the GRNN if all the +I ,  the y ,  are real valued, the centre 
vectors c i  are replaced with individual training vectors x i  and M=NS. A Gaussian 
radial basis function is often used for,fi(x) as defined by (2). 

Equation (2) can be more conveniently represented in the form defined by (3) 

where di = IIx -till = d(x -  c,  ) T ( x - c ,  ) , 

the Euclidean distance between vectors x and ci 

One simple way the MPNN set of training pairs (c i+yi  I [ = I ,  ..., M }  can be formed 
is to first partition the input space into uniform hypercubes. Then, make ci  to be 
the mean of all training input vectors, x,, in each hypercube that map to y i .  The 
value y i  is computed as the mean of the corresponding outputs y,. These outputs 
must be sufficiently close to each other to be adequately represented by their 
mean. In this way a local group of vectors in the input space can be replaced with 
a single centre vector whch maps to a single mean output value. The value Zi is 
simply the number of vectors xj  averaged to make centre c i .  A number of different 
hypercube sizes can be systematically tested to choose the best one. There is 
usually a wide range of acceptable hypercube sizes between small and large which 
can be found easily and relatively quickly. 

Training simply involves finding the single optimal learning parameter (5  giving 
the minimum Mean Squared Error (MSE) of the network output minus the desired 
output for a representative testing set of known sample vector pairs ( x k + y k  I 
k=l ,  ... NUM}. In most applications there is a unique o that produces the 
minimum MSE between the network output and the desired output for the testing 
set and can be found quite easily by trial and error. Since the relation between o 
and MSE is usually smooth with a broad minimal MSE section, o can often be 
found very quickly by a convergent optimisation algorithm based on recurrent 
parabolic curve fitting [IO]. 

3.0 THE NEW LINEAR MPNN MODEL 

The new approximately piecewise linear regression model can be formed by first 
partitioning the input space into uniform hypercubes as is done for the MPNN. 
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When the centre vectors ci are found use the Zi corresponding input vectors xi to 
create a set of best fit least squares linear regression models associated with each 
of the centres. The outputs y, in (1) are then replaced with the output of the linear 
model for all input vectors during operation instead of the previous fixed mean 
output values of the original MPNN.  When this is done the linear model outputs 
provide much more accurate mappings from the input to the output space than to 
the means y,. Consequently, the input space hypercubes can be made much larger 
and fewer (M), resulting in a much smaller network size for comparable accuracy. 

In this new model the adjustment of o during training will control the degree of 
weighting of each linear model associated with each centre. Input vectors closest 
to a centre will activate the associated linear model more than for those further 
away. For very small o the linear model associated with the centre closest to the 
current input point will dominate, resulting in a linear response in the local space 
of that centre. For very large o the network output will approach an unweighted 
biased average of all the linear models. Somewhere in between an optimal model 
will result which provides linear operation close to each centre and deviating from 
linearity close to centre boundaries. At the boundaries a smooth merging of 
neigbowing linear models occurs. 

4.0 EXAMPLE RESULTS 

To provide a visual demonstration of the new model’s features and operation a 
simple one-dimension nonlinear function regression has been chosen. The model 
works in a similar fashion for higher dimensional problems with no loss of 
generality. 

A third order polynomial function defined by (4) was used as the underlying 
reference function from which a set of training and testing vector pairs were 
derived in the x interval [0,10. I]. 

The training data was 70 pairs ( x , y )  from (4) for d . 1  to 2.0 at a regular x 
sampling interval of 0.1 plus x=5.1 to 10.0 also at a regular sampling internal of 
0.1. These training data are shown with asterisks in Figure I where it can be seen 
that there is a large gap in the x interval [2.1,5.0]. The thin solid line in Figure 1 
shows the entire function over the x interval [O. 1, IO]  and i t  represents the desired 
function output. Two sets of independent test data pairs (x ,y)  were also 
constructed. The first set was a 100 pairs from the x interval [0.005,9.995] at a 
regular sampling interval of 0.1. This first test set was chosen from in between 
the training set data to avoid duplication. The second testing set was a 100 pairs 
spread evenly over the x interval but with uniform zero mean random noise, 
having a variance of 0.0192, added to the x variable after the y was computed 
according to (4). The first test set is shown as the smooth curve in Figure 2 and 
the second noisy set is the other curve. 
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The first test shows how the original MPNN and the new Linear MPNN deal with 
interpolation between centres for regions devoid of training data. To achieve this 
a MPNN with M = 2 has been developed using the training data. There are two 
RBF centers, one for each set of training data either side of the gap in the x 
interval [2.1,5.0]. Figure 3 shows the function approximation for the standard 
MPNN. When the learning parameter sigma is small the MPNN approximation is 
a stair step with a discontinuity between the two centres. As sigma is increased to 
the optimal value of 1.9 there is a smooth connection between the centres and the 
MSE improves from 0.073 to 0.057. 
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Figure 1: Training Data and Desired Output 
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Figure 3: MPNN Regression 
using NoislessTest Data Set 1 

Figure 4 shows the function approximation for the new Linear MPNN. When the 
learning parameter sigma is small the Linear MPNN approximation consists of 
two linear sections in the two regions controlled by each centre. There is a 
discontinuity between the two linear sections. As sigma is increased to the optimal 
value of 2.4 a smooth connection is made between the linear sections and the 
MSE improves from 0.0082 to 0.0034. The function approximation achieved with 
the Linear MPNN is clearly better than the standard MPNN as can be seen by the 
MSE reduction by a factor of 16.76. 

The r1:maining tests were all conducted with the same training data but with the 
noisy test data set 2. Figure 5 shows the performance of the Linear MPNN for M 
= 5. As before the function approximation improves as sigma is increased from 
0.1 to the optimal value of 1.2 with corresponding reduction of the MSE from 
0.0022 to 0.0018 respectively. Here we see that as M is increased the choice of 
the sigma value is less sensitive since the MSE is less affected. 

Figure: 6 shows comparative standard and Linear MPNN results for M = 35 
respectively. .As M is increased the quality of the approximation is further 
improved for both networks but the network sizes are also increased. It can be 
seen from the plots that both networks reduce the effects of random noise as well 
as provide some interpolation in the x interval gap [2.1,5.0]. Once again the 
Linear MPNN achieves much better performance than the standard MPNN in 
terms of better interpolation as well as lower MSE. It can be clearly seen in 
Figure 6 how the Linear MPNN fills the gap region by extrapolation of the 
piecewise linear sections immediately to either side of the gap. The two linear 
extrapolations meet in a relatively smooth join. 

Figure 7 shows the standard and Linear MPNN plots of MSE versus sigma for the 
case of M = 5. This demonstrates some important properties of the Linear MPNN. 
Firstly, the Linear MPNN produces lower MSEs than the standard MPNN for the 
same network size. It also has a much lower sensitivity to sigma. There is a very 
wide range of sigma values between about 0.1 and 1.5 which produce very 
acceptable performance in terms of MSE. 
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Figure 4: MPNN Regression 
using Noiseless Test Data Set 1 
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Figure 5: MPNN Regression 
using Noisy Test Data Set 2 
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Figure 6: MPNN Regression 
using Noisy Test Data Set 2 
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5.0 CONCLUSIONS AND DISCUSSION 

This paper has introduced a new development of the MPNN, which provides 
some significant benefits for nonlinear regression based on a limited set of 
training data. The new Linear MPNN works in much the same way as the standard 
MPNN but i t  is more accurate for comparable network sizes. It is also much less 
sensitive to the selection of the single learning parameter, sigma. Another 
significant benefit is that the new Linear MPNN is much better able to extrapolate 
in regions outside of training data. 

In this study a linear model has been chosen to derive the training output values y ,  
but there is no reason why a quadratic or higher order polynomial can not be used 
if there is some reason to justify it. Higher order piecewise polynomial models 
would be expected to provide even more accuracy. The only drawback is that 
many more piecewise model parameters must be stored for each centre. This may 
not really be much of a drawback if it allows a function to be better approximated 
with much fewer centres, ie. smaller M. 

The Linear MPNN can easily be made to be adaptive by simple incremental 
improvement of the piecewise models for each centre as new data pertaining to 
that centre becomes available. Another very useful way to exploit this new MPNN 
structure is to use i t  to smoothly piece together and merge a set of Multi-Layer 
Perceptron (MLP) models throughout a data space. This provides a method of 
decoupling MLP models such that as data statistics change in a local region only 
the lwLP related to that region needs to be adapted. Not only does this allow the 
total model to adapt much faster but it also preserves the training of the unaffected 
MLPs and helps with the stability-plasticity dilemma. 
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