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Abstract 18 
 19 

Estuaries around the world are often degraded and subject to issues surrounding 20 

effective management and governance. Without substantial changes in the overall 21 

management of many catchments, there is a risk that estuarine health will further decline, 22 

causing serious social and economic impacts. The Peel region is one of Australia’s fastest 23 

growing residential areas and the social and economic wellbeing of the local community is 24 

tied to the health of the Peel–Harvey estuary. This estuary is the largest in south western 25 

Australia and has for decades incurred considerable anthropogenic impacts. This study uses 26 

the Peel–Harvey estuary as a case study for the assessment of governance structures and 27 

ecosystem dynamics using qualitative models. Each model highlights drivers that impact the 28 

most important assets, water quality and general environmental quality. Potential 29 

management strategies are identified to tackle ineffective monitoring and regulation of 30 

impacts, overlapping responsibilities between different public infrastructure providers, and a 31 

lack of accountability. Incorporating ‘ideal’ management strategies into ‘future’ models 32 

clarified paths of governance and provided better delivery of outcomes. Strong environmental 33 

and nutrient management were integral to effective environmental governance, as was the 34 
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need for whole-of-government environmental decisions to be made in the context of 35 

predicted longer-term benefits for all sectors, including the general community. The 36 

assessment of social-ecological structures, issues and potential management strategies using 37 

qualitative models identified mechanisms to achieve effective management and resulted in 38 

predictions of increased environmental quality, as well as increased social and economic 39 

values. 40 

 41 

Keywords: catchment, integrated management, Peel–Harvey estuary, qualitative modelling 42 

 43 

1. Introduction 44 

 Catchments worldwide are subject to multiple and interrelated impacts that typically 45 

require remedial management intervention, but are often managed by quite disconnected 46 

agencies. Ensuring appropriate governance structures for the facilitation of improvements in 47 

catchments and estuaries is critical and can be achieved by creating linkages for cooperation 48 

and mutual accountability at both local and higher levels. Furthermore, effective links 49 

between resource users and public infrastructure providers are critical to increase the 50 

robustness of these social-ecological systems (Anderies et al. 2004). However, the initial 51 

alteration of governance structures may be a turbulent and arduous process (Mitchell and 52 

Hollick 1993). Some successful examples include the management of Chesapeake Bay 53 

(Hennessey 1994) and the Johnston River catchment in Queensland (Margerum 1999), where 54 

steps towards integrated adaptive management, including alterations to governance, have 55 

been achieved. Similarly, because the majority of rivers in south-west Western Australia are 56 

in poor condition (Halse et al. 2002), these also require substantial long-term alterations to 57 

management if their health, as well as reliant social and economic systems, are to be 58 

improved. This study uses a qualitative modelling approach to identify key drivers of ongoing 59 
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anthropogenic impacts and governance dynamics that, if modified, could shift these systems 60 

away from being dysfunctional and maladaptive to being functional and effective.  61 

The Peel–Harvey estuarine system (Figure 1) has been formally recognised as the 62 

most at-risk estuary (excluding freshwater environments) in Western Australia (Department 63 

of Fisheries 2011). The surrounding area is one of the fastest growing regions in Australia 64 

(Department of Environment and Heritage 2006). The rate of population growth and 65 

degradation for this estuary has similarities with many others globally (e.g., Lotze et al. 66 

2006); we have therefore used it as a case study for the modelling and identification of 67 

mechanisms for improving governance. Residential land-use in the area is replacing 68 

agricultural and industrial land-use and recreational uses and the visual amenity of the estuary 69 

is highly valued for maintaining real estate values and tourism. In addition, wetlands of 70 

international importance, as recognised by the Ramsar Convention on Wetlands, are located 71 

within the Peel–Harvey region and international agreements include an obligation for their 72 

protection. For these reasons, the ecological health of the estuary is of high social and 73 

economic importance. 74 

Estuarine health is an issue in the Peel–Harvey region as increased macroalgal volume 75 

and toxic algal growth (Department of Water 2011) has lead to suggestions that the estuary 76 

may be shifting to a eutrophic state (Rogers et al. 2010). This is concerning given issues 77 

caused by eutrophication between 1960 and 1994; extreme levels of macroalgal growth, toxic 78 

algal blooms (Nodularia spp.) and large accumulations of algal wrack were observed around 79 

the estuary which stimulated public complaints to local councils (Atkins et al. 1993) and was 80 

partly responsible for a depression of real estate values (McComb and Davis 1993). In 81 

response to these concerns, the state government constructed an artificial entrance, the 82 

Dawseville Cut (Figure 1), to increase tidal flushing of the estuary in 1994 (Brearley 2005). 83 
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After the opening of the Dawseville Cut in 1994, residential development in the 84 

region increased dramatically. Real estate speculation was high (Gilles et al. 2004) and 85 

greatly increased property values. Strategies to reduce nutrient input from the catchment were 86 

intended to be implemented when the Dawseville Cut was opened; however, there has been 87 

no evidence that nutrient inputs have declined (Hale and Butcher 2007). There has also been 88 

a gradual loss of wetlands from the estuary as a result of land reclamation, clearing for 89 

livestock and other developments (van Gool et al. 2000). Moreover, there is evidence that 90 

fish communities are returning to the status observed when the estuary was highly eutrophied, 91 

prior to the Dawseville Cut (S. Hoeksema and P. Coulson, pers. comm.). While these issues 92 

regarding the health of the estuary have been widely recognised (Rogers et al. 2010, Peel–93 

Harvey Catchment Council 2011), there have been no management interventions to 94 

effectively address them.  95 

Similar to the theory behind mechanism design in economics (Maskin 2008), a central 96 

aim of this project is to identify the desired goal for the management of the system using 97 

stakeholder input, followed by an assessment of the mechanisms through which the goal can 98 

be achieved. The use of scenarios to assess different mechanisms is undertaken as they can 99 

cope with the complexity and uncertainty associated with social-ecological systems and 100 

multiple potential adaptation strategies (Berkhout and Hertin 2000). An additional aim is to 101 

identify the key issues and drivers of governance contributing to the current inability to 102 

achieve the goal as well as to develop an holistic understanding of governance structures. As 103 

suggested, to be relevant to the assessment of governance in social-ecological systems 104 

(Anderies 2004), we have incorporated both resource-users and public infrastructure 105 

providers into the models. Their inclusion allows the integrated assessment of dynamics, flow 106 

between different components of the system and barriers to effective governance. In order to 107 

cope with a lack of quantitative data and to allow the assessment of multiple scenarios, 108 
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qualitative models (Levins 1974, Puccia and Levins 1985) were developed based on 109 

stakeholder knowledge and perceptions of the whole system. Stakeholders were used to assist 110 

in the identification of information previously unknown to researchers (Kalaugher et al. 111 

2012) and the scale of complexity most relevant for applied management (Berkhout et al. 112 

2001). Furthermore, stakeholder involvement increases the likelihood of uptake of 113 

conclusions given participation and agreement on model structure (Phillipson et al. 2012).    114 

The representation of governance can be problematic in models as it may involve 115 

numerous ‘actors’ such as different government departments and agencies, community 116 

groups and the general public, all of which usually have their own objectives and mandates. 117 

Analysing the dynamics of resource users and public infrastructure providers in cohesive 118 

models is essential for the assessment of social-ecological systems such as catchments and 119 

estuaries (Anderies et al. 2004). Hence, the models developed in this study incorporate both 120 

groups and assess the likely effectiveness of strategies to improve the sustainability of 121 

ecological, social and economic assets that are reliant on the health of the Peel–Harvey 122 

estuary.  123 

 124 

2. Methods 125 

 We used qualitative models initially to ‘map’ stakeholder perceptions of the 126 

governance structure for the Peel–Harvey system. This technique does not require precise 127 

quantitative data and can therefore be used in data-limited situations to include non-128 

quantifiable components. Following this, the technique was used to provide predictions of 129 

response to perturbations which can be calculated by using feedbacks between system 130 

components (Dambacher et al. 2002). In contrast to quantitative models that predict the 131 

magnitude of change, these models are designed to predict the direction of change, increase 132 

the understanding of current and future dynamics, and identify key factors impacting system 133 
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stability (Bodini et al. 2000). They are particularly useful in adaptation planning in various 134 

fields including natural resource management or social (including governance) and economic 135 

problems (Dambacher et al. 2007, Metcalf et al. 2010). For instance, issues or barriers to 136 

future goals can be highlighted through qualitative model production and analysis. Potential 137 

adaptation strategies or ‘ideal’ management scenarios can then be identified by removing 138 

barriers within the model structure (i.e., removing links or variables contributing to the 139 

undesired response). Finally, the reliability of predictions and the likelihood of the system 140 

shifting to an alternate state can be assessed using qualitative model stability (Dambacher et 141 

al. 2003). This is important because stable systems offer greater predictability and therefore 142 

reliability of management interventions. 143 

 144 

2.1 Stakeholder workshops and model production 145 

Two stakeholder workshops were undertaken involving a total of 42 participants from 146 

a range of backgrounds and agencies (e.g., government departments, local conservation 147 

group, fishing interest groups and universities). During these workshops, stakeholders 148 

provided information to link ecological, management and governance components within the 149 

Peel–Harvey system. High priority assets were first identified which resulted in a range of 150 

different assets according to stakeholder background and knowledge. The stakeholders were 151 

then asked to rank all identified assets and determine the highest priorities. As stakeholders 152 

were from a range of backgrounds and all were encouraged to participate, the final ranking of 153 

assets was deemed to be valid. Water quality, defined as water of a condition suitable for 154 

recreational activities such as swimming, fishing and boating, was identified as one of the 155 

highest priorities. General environmental quality and ecosystem health were also identified as 156 

high priorities. The improvement of these assets through management and governance was 157 

identified as the goal to be achieved through qualitative modelling. 158 
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Qualitative models were elicited by drawing interactions between aspects of the 159 

ecological system, its physical and economic drivers, and associated management and 160 

governance structures. Variables and their interactions, which form the basis of the 161 

qualitative models, were determined during the workshops using expert (stakeholder) opinion 162 

and knowledge. For example, questions such as “What affects water quality in the Peel 163 

Harvey estuary”, “How is water quality affected by X” and “What actions are undertaken to 164 

manage and improve water/environmental quality” were asked. Responses were immediately 165 

translated into models (or signed digraphs, see below) on a whiteboard and stakeholders were 166 

encouraged to comment and alter the digraphs as they were being drawn to ensure they 167 

accurately represented their opinions of the system. Digraphs were refined through an 168 

iterative process of repeated workshops and comments from representatives of management 169 

agencies to ensure that the views obtained were representative of the broader stakeholder 170 

community. 171 

Qualitative models are produced using sign directed graphs, or signed digraphs, which 172 

are constructed according to the signs (positive or negative) of interactions between variables 173 

(e.g., Levins 1974, Puccia and Levins 1985, Dambacher et al. 2002). Sign digraphs can be 174 

used to represent systems with diverse types of components, including biological, physical, 175 

economic and governance. For instance, in Figure 2a variable X has a positive direct effect 176 

on variable Y ( ), which in turn has a negative direct effect on X ( ). This basic 177 

interaction describes a negative feedback system that can be used to represent the dynamics 178 

of predators and their prey, consumer demand and product price, or the regulation of resource 179 

use by a management agency. Negative self-effects ( ) are used to represent intraspecific 180 

limitations to population growth, or reliance on factors that are external to the modelled 181 

system, such as density dependent growth, or the statutory obligations of an agency. 182 
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While signed digraphs provide a convenient means to describe the interactions in a 183 

system and elicit expert knowledge, there is also a corresponding formalization through a 184 

system of equations 185 

( )mni
i pppNNNg

t
N

 ,,;,,
d

d
2121= ,    (1) 186 

where there are n number of variables Ni, and pm are constant parameters. At equilibrium the 187 

growth function gi = 0 for all variables. By differentiating Eq. (1) with respect to each 188 

variable, 189 

ij
j

i a
N
g

=
∂
∂       (2) 190 

we obtain the elements of the Jacobian matrix A, which details the direct interactions 191 

between variables (i.e., where aij represents the direct effect of variable Nj on variable Ni). 192 

The Jacobian matrix for the model of Figure 2a 193 









−
−−

=
YYYX

XYXX

aa
aa

A ,      (3) 194 

is an equivalent representation of the sign digraph, where matrix elements correspond to the 195 

individual graph links. For example, the only positive element in equation 3 equates to the 196 

positive link to Y from X. 197 

A signed digraph, and its corresponding Jacobian matrix can be used to assess a 198 

system’s stability (i.e., can a system return to a former equilibrium following a short-term 199 

shock or disturbance), and predict how its variables will respond to a sustained perturbation 200 

or input due to a change in a parameter (i.e., will variables increase or decrease if the system 201 

is pushed to a new equilibrium). Qualitative assessments of stability and perturbation 202 

response both rely on examination of system feedback, and proceed either by analysis of 203 

signed digraphs (Puccia and Levins 1985) or mathematical operations on the matrix A 204 

(Dambacher et al. 2002, 2003). In this work we use the methods of Dambacher et al. to 205 
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analyse parameters for model stability (Section 2.2) and calculate predictions of response to 206 

perturbation (Section 2.3). We present a general overview of qualitative modelling methods, 207 

which can be supplemented with more detailed and technical presentations in the above cited 208 

references, http://www.ent.orst.edu/loop/default.aspx, and Supplement 1 of Dambacher et al. 209 

(2002) in Ecological Archives E083-022-S1 at http://www.esapubs.org/archive/. 210 

 211 

2.2 Assessment of model stability 212 

Stability generally depends on a system being adequately regulated by negative 213 

feedback cycles, such that any perturbation to the system results in a return to its previous 214 

state or equilibrium. Qualitative model stability is formally assessed according to the Routh–215 

Hurwitz criteria, which determines whether the eigenvalues of A all have negative real parts 216 

(Puccia and Levins 1985, Dambacher et al. 2003). In a qualitative analysis, it is possible to 217 

determine whether a model is stable given any possible combination of interaction strengths 218 

in A (i.e., sign stable model), or, if there are conditions by which it could be unstable (i.e., 219 

conditionally stable model), whether these conditions make it prone to having excessive 220 

positive feedback (i.e., class I model) or excessive higher-level feedback (i.e., class II model) 221 

(Dambacher et al. 2003). 222 

The relative stability of class I models requires that the overall feedback, or 223 

determinant (det) of A, is negative—i.e., –1n+1det(A) < 0, where n is number of variables in 224 

the system or size of A, and the multiplier –1n+1 maintains a sign convention for even and odd 225 

sized systems. The model in Figure 2b is a class I model with overall feedback equal to 226 

aXYaYX–aXXaYY, thus the system will be unstable when the positive feedback cycle is too 227 

strong, such that aXYaYX >aXXaYY. When a class I system that is unstable is perturbed, the 228 

strong positive feedback tends to amplify the perturbation and move the system away from its 229 

former state. This departure can eventually lead to the demise or extinction of a variable, and 230 

http://www.ent.orst.edu/loop/default.aspx
http://www.esapubs.org/archive/
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possibly the attainment of a new and different equilibrium. The potential stability of class I 231 

models can be scaled by the relative number of positive and negative cycles in its overall or 232 

highest level of feedback. Weighted feedback, wFn, is calculated as a ratio of the net to total 233 

number of terms in the overall feedback of a system. For the overall feedback of the model in 234 

Figure 2b, a single positive and a single negative feedback cycle sum to zero with a divisor of 235 

two, giving a weighted feedback value of zero. The model in Figure 2c is also a class I model 236 

with overall feedback having five negative cycles and one positive cycle (i.e., –237 

aWWaXXaYYaZZ–aWWaXXaYZaZY–aWWaZXaXZaYY–aXWaYXaWYaZZ–238 

aXWaZXaWYaYZ+aWWaYXaXZaZY), giving it a weighted feedback value of –0.67. 239 

Values of wFn can range between –1 and +1, where a value near +1 describes a 240 

system where nearly all feedback cycles are positive, a value near –1 indicates nearly all 241 

feedback cycles are negative, and a value near 0 indicates a nearly equal balance of positive 242 

and negative cycles. Simulation studies by Dambacher et al. 2003 tested wFn as a means to 243 

assess potential model stability, and found class I models with wFn > 0 to have a low 244 

potential for stability (i.e., less than 50% chance of being stable), and wFn < –0.5 to have a 245 

relatively high potential for stability (i.e., greater than 90% chance of stability).  246 

Stability of class II models depends on a balance between long and short feedback 247 

cycles, such that feedback at lower levels of the system is greater than feedback at higher 248 

levels. A system that is dominated by higher-level feedback has the tendency to overcorrect, 249 

and will amplify a disturbance through oscillations with increasing amplitude. Assessing this 250 

balance between lower and higher levels of feedback first requires an accounting of feedback, 251 

Fn, at each of the n levels of the system; stability is then analyzed through a series of Routh–252 

Hurwitz inequalities, the first of which is 253 

F1F2+F3 > 0,      (4) 254 
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where stability depends on a positive value. For the system of Figure 2d, there are three levels 255 

of feedback, F1 = –aZZ, F2 = –aXYaYX, and F3 = –aXZaZYaYX–aZZaXYaYX, all of which are 256 

negative. The product of F1 and F2, however, creates a term that is repeated with the opposite 257 

sign in F3 and thus cancelled in the inequality of Eq. (4), giving it a negative value. Thus, 258 

despite an absence of positive feedback in this system, there is excessive higher-level 259 

feedback in F3, and no combination of interaction strengths in A can produce a stable system. 260 

Similar to the above described metric of weighted feedback, one can calculate the ratio of the 261 

net to total number of terms in the Routh–Hurwitz inequalities, which provides the means to 262 

scale the relative stability of class II models. Systems with small or negative weighted values 263 

for the Routh–Hurwitz inequalities have a very low potential for stability and large positive 264 

values have a high potential for stability (Dambacher et al. 2003). 265 

A signed digraph can be categorized as a class I or class II model based on 266 

consideration of two above described weighted metrics, which separately address the amount 267 

of positive overall feedback, and the balance between lower and higher levels of feedback. 268 

Class I models (e.g., Figure 2b,c) generally have small negative values or positive values for 269 

wFn and large positive values for Routh–Hurwitz inequalities, and their relative potential for 270 

stability can be assessed by the metric of wFn. Conversely, class II models (e.g., Figure 2d) 271 

generally have large negative wFn values, and small positive values or negative values for the 272 

Routh–Hurwitz inequalities, and thus are prone to instability from excessive higher-level 273 

feedback. The stability properties of the models produced in this study are reported using the 274 

class of model and, if Class I, the wFn.   275 

  276 
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2.3 Assessment of perturbation response 277 

A qualitative model can also be analysed to predict how a system will respond to a 278 

perturbation that enters the system by way of a change in a parameter that regulates the 279 

growth or level of activity of a variable. As a perturbation emanates from the affected 280 

variable it is transmitted along the direct and indirect pathways leading to the response 281 

variable. Predicting the qualitative direction of change (i.e., +, –, 0) in the response variable 282 

requires an accounting of the total number of positive and negative effects transmitted 283 

through the system. For relatively small systems (i.e., < 7 variables), this can easily be 284 

accomplished through analysis of the signed digraph (Puccia and Levins 1985). For instance, 285 

in the model of Figure 2a, a positive input to variable X, say through a technological change 286 

that increases the rate of resource use, is transmitted along the positive link to Y, resulting in 287 

a heightened intensity of resource management. Conversely, an increase in public concern for 288 

the conservation of a resource will act as a positive input to Y that is transmitted along a 289 

negatively signed pathway to X, resulting in a decrease in resource use.  290 

In larger and more complex systems, there can be a large number of direct and 291 

indirect pathways between input and response variables that transmit both positive and 292 

negative effects, which can make graphical analyses difficult. In such circumstances, one can 293 

calculate response predictions from mathematical operations on A. Here we are interested in 294 

the direction of change in the equilibrium level of each of the system variables (N*) due to a 295 

change in a parameter ph, which is obtained by  296 

h

i

h pp ∂
∂

−= −
∗ gAN 1

d
d .     (5) 297 

Given the matrix equality 298 

( )
( )A

AA
−
−

=− −

det
adj1 ,      (6) 299 

where “adj” is the classical adjoint, or adjoint matrix, Eq. (5) can be rewritten as 300 
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( ) ( )
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(Dambacher et al. 2005). The adjoint matrix summarizes the total number of direct and 302 

indirect effects transmitted between the input and response variables. As we are only 303 

interested in predicting the direction or sign of a response, the strength of the input can be 304 

ignored. Also, for stable systems, det(–A) is always positive, and thus the sign of predicted 305 

responses to a perturbation can be derived from the signs of the adjoint matrix elements. The 306 

predictions obtained from the adjoint matrix form a large part of the results reported in this 307 

study.  308 

For the model system of Figure 2c, 309 

( )( )










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


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=−

??
?

?
?

Z
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X
W

adjsgn

ZYXW                              

A
,     (8) 310 

the sign (sgn) of eleven of the response predictions is completely determined, while five are 311 

ambiguous (?). Inputs to the system are read down the columns and responses along the rows. 312 

Thus a positive input to variable X is predicted to decrease the level of W and increase Y, 313 

while the response of Z is qualitatively ambiguous due to both a positive and negative 314 

pathway connecting it to X. 315 

 316 

2.4 Modelling scenarios  317 

Here we report the digraph (model) structure produced by stakeholders during the 318 

workshops which focus on the management and governance of water and environmental 319 

quality in the Peel–Harvey estuary. Following initial model construction and subsequent 320 

digraph iterations with stakeholders, perturbations to the modelled systems were analysed 321 
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using the matrix operations described above. Predictions of the response to perturbation and 322 

model stability were assessed to determine adaptation strategies that may improve the 323 

management of water and environmental quality.  324 

Current governance structures are described at an operational or localised level (Local 325 

Governance Model) and at a higher level (High Level Governance Model). Both models 326 

include resource users and public infrastructure providers such as Government departments 327 

and agencies that manage different aspects of the Peel–Harvey system. Direct and indirect 328 

impacts on water and environmental quality are identified and linked to departments and 329 

agencies according to their management and regulatory roles. Workshop participants offered 330 

differing perceptions on the effectiveness of current management and governance structures 331 

and, in order to represent these differences, two versions of both the Local Governance and 332 

the High Level Governance Model are reported (Table 1). Strong-link models represent the 333 

scenario where expected (i.e., legislated) management actions are highly effective, 334 

collaboration between and accountability of departments and agencies is high, and 335 

government decisions that result in beneficial outcomes for water quality and the 336 

environment are strong. That is, decisions persist regardless of external pressure to remove 337 

them. Weak-link models represent the opposite scenario, where expected management 338 

actions, collaborations and accountability are nonexistent, inconsistent or ineffective. 339 

The investigation of various management issues and ‘ideal’ management strategies 340 

that improve water or environmental quality is undertaken through the analysis of the 341 

qualitative models. ‘Ideal’ scenarios are considered to be those that improve model stability 342 

(see description of qualitative modelling methods) and achieve a desirable outcome (i.e., an 343 

improvement in water quality or environmental quality). These ‘ideal’ strategies are 344 

essentially models of a putative ‘future’ and are incorporated into future models (Table 1) to 345 
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assess the impact of removing issues and structural barriers to achieving improved water and 346 

environmental quality. All variable names are shown in italics for clarity. 347 

 348 

2.4.1 Local governance structure 349 

i) Current models 350 

Impacts on water quality, including management actions, are included in both the 351 

strong- and weak-link local governance models (Figure 3). Definitions and roles of variables 352 

are reported in Table 2. 353 

The link from Public water management to Water allocation can be either positive or 354 

negative depending on the situation at hand. Approvals for the sale of water by the Water 355 

allocation variable may be given, renegotiated (positive links), or declined (negative link) by 356 

Public water management. A positive link between agencies or departments represents 357 

approvals or assistance (+) from one department to facilitate work in another department (+) 358 

and can also represent the alignment of policies regarding management of the estuary. In 359 

contrast, a negative link between agencies or departments represents the situation where 360 

increased action (+) by one government department reduces activities occurring in a related 361 

agency (-) or vice versa. 362 

ii) Future model 363 

Issues with stability, overlapping jurisdictions, mutual accountability and the need to 364 

improve water quality (see Results for evidence) are addressed through alterations to model 365 

structure in the future model (Figure 4a). Specific structural changes include the removal of 366 

links representing nutrient input and the use of water by agriculture and industry (orange 367 

dashed lines, Figure 4a). This does not signify that nutrient input and use of base flow no 368 

longer occurs, rather that the placement of additional regulations determine that nutrient input 369 

and use of base flow cannot increase. In addition, the links from Water quality to the Local 370 
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planning agency, and those between the Local planning agency and Reserves/wetlands no 371 

longer exist.  372 

New links in the future model are from the Local estuarine conservation group to 373 

Environmental management & Conservation, Agricultural regulation and Waterways 374 

management (blue dashed lines, Figure 4a). The negative link from Public water 375 

management to Water allocation is retained. 376 

 377 

2.4.2 High level governance structure 378 

i) Current models 379 

 The High level governance models (Figure 5) are used to assess the dynamics 380 

associated with broad-scale estuarine (environmental) management rather than direct 381 

management of water quality as in the Local governance models. Descriptions, definitions 382 

and roles of variables are reported in Table 3. The strong-link high level governance model 383 

contains links between Eco-Government decisions (commitment to improve the environment) 384 

and the Resource management/protection agencies. In contrast, the weak-link model does not 385 

possess these links to represent the alternative perception, that these relationships are 386 

ineffective for the overall management of the Peel–Harvey estuary. 387 

ii) Future model 388 

  A number of alterations are included in the future models (dashed blue lines, Figure 389 

6) in response to issues identified in the current models. First, links to represent the strong 390 

and consistent monitoring and rehabilitation of Environmental quality by Resource 391 

management/protection agencies are included. Second, a negative link from the Economic 392 

value of the environment to Eco-Government decisions is included to represent actions by 393 

Government to improve the environment, in response to a decline in economic value. Third, a 394 
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negative link from Eco-Government decisions to Total resource use is used to represent 395 

actions such as the implementation of new legislation, to reduce resource use. 396 

 In addition, to increase the stability of the model, the link to Resource management/ 397 

protection agencies from Eco-Government decisions and other links to Eco-Government 398 

decisions are changed to remove the perceived direct influence of the development sectors on 399 

environmental decisions (orange lines, Figure 6). 400 

 401 

3. Results 402 

3.1 Local governance structure 403 

i) Current models 404 

The weak-links model is a class II system with a very low potential for stability, 405 

which is caused by high-level (i.e., long) feedback cycles, and must be addressed in the future 406 

model to ensure reliability of results and stability of management actions. The instability is 407 

caused by the weak and non-existent management of nutrient inputs and water quality. For 408 

example, no link exists between Public water management and Water quality as stakeholders 409 

suggested there are no effective management actions undertaken by this agency to improve 410 

estuarine water quality. 411 

The strong-link model is also class II system with a very low potential for stability, 412 

regardless of the link from Public water management to Water allocation (Figure 3). The 413 

presence of a positive or negative link between these variables determines the effectiveness 414 

of water quality management. The model with a positive link predicted Water quality will 415 

decline following an increase in activity by Public water management. This result is non-416 

intuitive and occurs due to multiple indirect paths including variables that increase Drain 417 

flow, Residential land use and Nutrients/general pollutants. In contrast, when Water 418 
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allocation is negatively impacted by Public water management, Water quality was predicted 419 

to increase. 420 

Both current (strong- and weak-link) local governance models (Figure 3) have 421 

departments and agencies with overlapping jurisdictions for the management of water quality, 422 

according to stakeholder input during model production. Overlapping variables include the 423 

Local planning agency, Public water management and Waterways management. This overlap 424 

is seen in Figure 3 through negative links from Water quality to these departments/ agencies 425 

to represent monitoring, in addition to links from these agencies to other variables 426 

representing direct actions to improve water quality, such as a reduction in nutrients entering 427 

the estuary. The Local estuarine conservation group is also linked to Water quality, however, 428 

this interaction is in the form of water quality monitoring alone as this group does not have 429 

the authority to remediate water quality. 430 

Issues with accountability can be seen through the comparison of departmental and 431 

management agency actions in both models. For example, Waterways management is 432 

included in both models and represents actions to protect and conserve freshwater and 433 

estuarine environments. Waterways management is expected by stakeholders to have a direct 434 

influence on Public water management where planning and use of water are determined. 435 

However, the diversity of views on the effectiveness of existing interactions with Waterways 436 

management and of the management influence of Public water management on Water 437 

allocation determine that Public water management is only included in the strong-link model. 438 

If accountability was obvious, as in the Strong links model, there would be no diversity of 439 

views on the existence of links between Public water management and Waterways 440 

management or the actions taken regarding the allocation of water resources.  441 

 442 

ii) Future model 443 
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In the future models, there was a small increase in the potential stability of the system 444 

due to the removal of links from Agricultural land use and Industrial land use to Nutrients, 445 

and the link from this agricultural variable to Base flow/water resource (Figure 4) (class I, 446 

wFn = -0.38). In this situation, agriculture and industry may still input nutrients into 447 

waterways and the estuary; however, these new regulations ensure there is no increase in the 448 

amount of nutrients entering the system. The same situation applied for the use of base flow 449 

by agriculture; base flow can still be used but its use cannot increase. 450 

Stability increases to a high level following the clarification of overlapping 451 

jurisdictions, as identified during model building, to leave only one agency responsible for 452 

managing water quality. This occurs through two mechanisms. Firstly, the removal of the link 453 

from Water quality to the Local planning agency and secondly, the removal of the links 454 

between the Local planning agency and Reserves/wetlands (class I, wFn = -1.00). New links 455 

in the future model are from the Local estuarine conservation group to Agricultural 456 

regulation, Waterways management and Environmental management & conservation, to help 457 

ensure management is effective by providing additional backups in case the strength of any 458 

management links declines. For instance, the extra links from Local estuarine conservation 459 

group are predicted to reduce the actions by Water allocation that negatively impact Water 460 

quality, such as increased Nutrients/general pollutants through Drain flow. These links are 461 

also predicted to increase action by Agricultural regulation, Waterways management and 462 

Public water management, allowing more effective management of impacts on the estuary. 463 

 464 

3.2 High level governance structure 465 

i) Current models 466 

 The weak-link high level governance model has a relatively low potential for stability 467 

(class I, wFn = -0.33) and is ineffective, similar to the local governance model, because there 468 
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are no management agencies or other variables that improve Environmental quality. The 469 

strong-links model is even less stable (class I, wFn = -0.17) despite Resource 470 

management/protection agencies, the Sustainable development industry (i.e., ‘green’ 471 

developments), Eco-government decisions and Urban land use all being predicted to 472 

positively impact the environment. Instability is higher in the strong-links model due to 473 

reciprocal positive links between Resource management/protection agencies and Eco-474 

Government decisions. This feedback is problematic in that a decline in one variable will 475 

stimulate a continual decline in both variables. For example, a decline in Resource 476 

management/protection agencies would cause a decline in ‘Eco-government’ decisions, 477 

which would, in turn, cause a further decline in Resource management/protection agencies 478 

and so on until neither the agencies nor environmentally-based decisions existed. This issue is 479 

addressed in the future high level governance model.  480 

 An issue in the weak-links model is the predicted decline or lack of change in 481 

Environmental quality following inputs to all management variables. This lack of 482 

management success is therefore addressed in the future model. Total resource use also plays 483 

an important role in the response of Environmental quality in the strong-links model. This 484 

was identified as the response of Environmental quality to increases in itself is ambiguous, 485 

meaning that an increase in Environmental quality could actually cause it to decline. This 486 

response exists due to the counteracting feedback cycles involved in the direct relationships 487 

between Total resource use and Environmental quality, and the indirect relationship between 488 

Total resource use and Resource management/protection agencies (Figure 5).  Essentially, if 489 

Total resource use is high, Resource management/protection agencies are perceived to have a 490 

minimal impact and Environmental quality will decline. However, if it is low, remedial 491 

actions taken by Resource management/protection agencies may be sufficient to improve 492 

Environmental quality. 493 
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 An additional issue identified in the current High level governance models is the 494 

presence of ineffective feedback between Eco-government decisions and Environmental 495 

quality. An increase in Eco-government decisions is not predicted to have any effect on 496 

Environmental quality or any other variable without strong links from the government to 497 

ensure appropriate monitoring and management of the environment. In addition, in the weak-498 

links model an increase in Environmental quality is predicted to increase both Real estate 499 

values and the Economic value of the environment.  500 

 501 

ii) Future model 502 

Altering the high level governance model to include links that would increase 503 

environmental quality, through effective management and monitoring, resulted in a model 504 

with a high potential for stability (Figure 6) (class I, wFn = -0.85). To achieve this, negative 505 

links from the development variables (i.e., Raw and Urban development agencies) to Eco-506 

government decisions are removed. In addition, the links between Environmental quality and 507 

Resource management/protection agencies that exist in the strong-links current model, are 508 

retained to represent strong and effective monitoring and management. As a result, action 509 

taken by Eco-government decisions, Resource management/protection agencies, Sustainable 510 

development agencies and NGOs are all predicted to positively impact Environmental quality. 511 

The positive feedback that contributes to instability is removed through the deletion of 512 

the link from Eco-government decisions to Resource management/protection agencies. This 513 

determines that, while these agencies are still influenced by government decisions, their main 514 

role is in the management and monitoring of environmental quality regardless of any political 515 

debate.   516 

Issues identified with the strength of Total resource use are diminished through the 517 

inclusion of a negative link from Eco-government decisions to Total resource use to represent 518 
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new legislation for impacts from existing and new developments in the region. This 519 

relationship, if strong, can counteract the negative influence that already exists between Total 520 

resource use and Environmental quality. 521 

In conjunction with previously mentioned changes, the negative link from the 522 

Economic value of the environment to Eco-government decisions provides the government 523 

with the opportunity to effectively improve the quality of the environment, and in doing so 524 

improve real estate values and the local economy. It is important to note that without direct 525 

effective regulations to improve or remediate environmental quality, the stimulation of 526 

additional development in the region by increased real estate values and a strong local 527 

economy is still predicted to cause environmental decline. 528 

 529 

4. Discussion 530 

The health of the Peel–Harvey estuary (Hale and Butcher 2007), and many estuaries 531 

globally (e.g., Glaser 2003, Meybeck 2003, Mallin et al. 2007), is at a critical juncture for a 532 

range of ecological as well as social and economic reasons (Rapport et al. 1998, Rogers et al. 533 

2010). Water and environmental quality were the most important assets identified by 534 

stakeholders and are generally in poor condition with algal blooms, deoxygenation and 535 

undesirable changes to the aquatic communities commonplace. Action is necessary to 536 

circumvent further environmental decline and the discontent of local communities as a result 537 

of a return to a hyper-eutrophied state. Impacts on water and environmental quality occur 538 

throughout the catchment and qualitative modelling of the governance structure of this 539 

system highlighted that management must focus on the root cause, not simply the observed 540 

effects. In addition, gaining an understanding of key drivers and dynamics associated with the 541 

social-ecological system through processes such as stakeholder-informed qualitative 542 

modelling is important as a prerequisite for genuine action to occur. 543 
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Ostrom’s (1990) eight design principles for governance mechanisms in long-lasting 544 

commons are relevant when assessing issues in systems such as that represented by the Peel–545 

Harvey governance models. For instance, Ostrom’s first two design principles were: 1) 546 

clearly defined boundaries of the commons; and 2) rules for the appropriation and provision 547 

of common resources. We can think of these principles as the requirement for departments 548 

and agencies to have a clear understanding of resource users and their rights as well as the 549 

responsibilities and public expectations for management. In the Peel–Harvey estuary, 550 

different stakeholder perceptions of the existence and strength of links was the result of 551 

unclear roles and responsibilities. Furthermore, the effectiveness of catchment-level policy 552 

interventions is frequently limited by overlapping jurisdictions and fragmented administrative 553 

structures. In some cases this resulted in weak or non-existent monitoring of assets – another 554 

key principle for the design of governance structures (Ostrom 1990). In order to determine 555 

the most appropriate management strategies, clear lines of responsibility were incorporated 556 

into the future models. Problems with overlapping responsibilities are also apparent with the 557 

urbanisation of wetlands around the world, which are often prime waterfront real estate. 558 

Wetlands are critical habitat for wading birds, and act as a natural filter to reduce pollutants 559 

entering the estuary (EPA 1993). Such issues are commonplace, and a sustainable approach 560 

to land and water management has proved difficult to achieve in other locations (Franks 561 

2010).  562 

The need for sanctions for those that violate rules was also identified by Ostrom as a 563 

key principle that should be addressed in governance systems. In some cases, the Peel–564 

Harvey system lacks a means of ensuring compliance with rules. For instance, agricultural 565 

and industrial inputs reduce water quality in the estuary, yet they cannot be regulated by the 566 

government department mandated to manage public water resources and there is no 567 

consistently effective strategy to deal with non-compliance. In the Philippines, irrigation 568 
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systems were found to work more effectively when compliance was controlled by the farmers 569 

themselves rather than by the government (Araral 2009). However, such situations are likely 570 

influenced by the social networks of the farmers including the widespread integration of 571 

infrastructure providers within the community of irrigators (Anderies et al. 2004). At a larger 572 

scale, such as in developing countries where foreign aid is often provided to public agencies 573 

that are not always dedicated to the swift improvement of public welfare (Araral 2008), 574 

ineffective governance structures can result in widespread non-compliance that may take 575 

decades to recover from. While this is not the case for governance in the Peel–Harvey 576 

estuary, the transfer of compliance control to the public is also not likely to be an effective 577 

option. This is because the resource users (i.e., the general public) are a disparate entity. That 578 

is, they do not know each other and are totally removed from any decision-making except 579 

through local and state elections. Similarly, in order for the rules to be complied with there is 580 

a need for legislation to support the regulator.  581 

Many governance systems around the world could benefit from mutual accountability, 582 

either through the integration of effective approaches to management by different 583 

departments (i.e., the Peel–Harvey estuary) or the confirmation that funds provided have 584 

actually resulted in effective remedial actions (Mookherjee 1997). A lack of accountability 585 

was identified as a critical issue for the success of environmental strategies when strong 586 

environmental management and monitoring alone were found to be insufficient to improve 587 

water quality and socio-economic assets. Mutual accountability occurred in the models as 588 

feedback between the responsible agencies and departments and the environment, and is 589 

critical to ensure each aspect of the system is performing successfully. Feedback essentially 590 

allows for ‘self-correction’ and adaptability, and was found to be nonexistent in the weak-link 591 

local governance model and ineffective in the strong-link local governance model. The 592 

effectiveness of management improved when direct measures were incorporated into the 593 
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future models to monitor and regulate the processes indirectly affecting water quality. This 594 

result showed the value of governance structures that are expanded from merely water and 595 

estuarine management to broader, more integrated frameworks (Memon et al. 2010). In 596 

Europe, a suggested reason for the inability to achieve sustainable approaches to estuarine 597 

management was a lack of accepted trade-offs between agricultural or industrial land-use, 598 

and a scarcity of land required for the preservation of water quality and the environment 599 

(Franks 2010). 600 

A net gain in social, economic or environmental benefits (i.e., beneficial outcomes for 601 

the environment, increased real estate values, etc.) was predicted in all models following an 602 

improvement in the environment. Thus, it would appear that a transaction cost (e.g., 603 

Williamson 1981, Araral 2013) or trade-off between the resource sector, conservation and 604 

business interests should not be a major concern in the Peel–Harvey system. Unfortunately, 605 

altering perceptions as to the holistic benefits of improving environmental health while also 606 

maintaining business and resource interests may not be easy to achieve. In addition, the 607 

adoption of new ideas or techniques for environmental management is often perceived to be 608 

difficult (Guerin 1999) and therefore slow to gain traction. This is particularly the case if the 609 

change requires integration with existing management or if the process is difficult to 610 

understand. Effective communication may be the critical factor in driving the adoption and 611 

success of environmental strategies. 612 

Effective communication will be valuable for the adoption of any new idea or 613 

governance strategy. Effectiveness may be dependent on whether a direct or indirect process 614 

for improvement is involved. For instance, Guerin (1999) suggested that a land-owner would 615 

be more likely to alter land-management practices when the current practice directly impacts 616 

the productivity of their land, such as grazing on contaminated land, than for indirect 617 

measures that increase productivity, such as reducing pollution on nearby farms. In addition, 618 
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the adoption of new environmental strategies is dependent on the trade-off between 619 

immediate and long-term benefits. For example, it can be argued that reversing a decline in 620 

environmental quality is in the best interests of the community as it increases real estate 621 

values and benefits the local economy. However, in the relatively short political time-frames 622 

that exist today, there may be little perceived benefit in immediate expenditure to observe a 623 

benefit in five to ten years. Growing public awareness of environmental issues may combat 624 

this to some extent if environmental management is also seen as political sustainability (Levy 625 

1997).  626 

Qualitative modelling proved to be a valuable technique to focus stakeholders on core 627 

variables and drivers of change for the assessment of strategies for improvement in the Peel–628 

Harvey estuary. We suggest this technique will have similar effectiveness in guiding research 629 

and focussing management on key issues in other fields dealing with complex systems. The 630 

theory behind the technique was first implemented in economics in the mid 1960s (Quirk and 631 

Ruppert 1965) and has also been used in fisheries management (Metcalf et al. 2010, 2011), 632 

assessment of mining impacts (Dambacher et al. 2007) and the identification of climate 633 

change and coastal governance issues (Stocker 2011). The method is relatively quick to use, 634 

in comparison to other data-intensive models, cost-efficient and easily incorporates 635 

stakeholder input. The ability to produce models during workshops is beneficial to ensure 636 

stakeholder agreement on model structure, and to identify new links and variables of 637 

importance. One limit of the approach is that the models apply to equilibrium systems (Justus 638 

2006); however, where thresholds for shifts between states are known, multiple alternative 639 

models can be used to represent alternative states (Marzloff et al. 2011). The inability to 640 

precisely predict the magnitude of a perturbation response is another limitation of the 641 

technique. In addition, qualitative models are limited by size and complexity. For example, a 642 

large (> 20 variables) model that is also very complex (i.e., variables with numerous 643 
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reciprocal links) will tend to be highly ambiguous and may therefore be relatively unreliable 644 

(Dambacher et al. 2003). This limitation may be overcome by ensuring models focus on a 645 

relevant subsystem of a size and complexity that will allow high predictability while also 646 

ensuring inclusion of key variables, or through the integration with quantitative modelling 647 

techniques (Metcalf 2010). 648 

The Peel–Harvey estuary is returning to a highly eutrophied state; qualitative models 649 

suggest that, as they stand, the management structures are insufficient to halt this decline, let 650 

alone rehabilitate the system. While scientists and managers are aware of the severe 651 

ecological problems in the Peel–Harvey estuary, the critical point (here and in many other 652 

places globally) is that stakeholders and the general public lack an effective means to 653 

rehabilitate and manage the system due to ineffective governance structures, or policies that 654 

are only weakly implemented. These governance problems are seen as a common theme 655 

through the six different models elicited in this study. Alterations to governance structures are 656 

likely to be aided by the consideration of Ostrom’s (1990) design principles for robust 657 

governance systems. In addition, the use of qualitative modelling to identify strategies for 658 

improved governance or management can be used broadly across different social, economic 659 

or ecological problems and locations.  660 
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Figure 1.  Peel–Harvey estuarine region, which includes Peel Inlet and the Harvey estuary. 808 
 809 
Figure 2. Example signed digraphs of (a) a sign stable system, class I systems with (b) two 810 
and (c) four variables, and (d) a three variable class II system. Links between variables 811 
denote the sign of negative ( ) and positive ( ) direct effects. Links starting and 812 
ending in the same variable denote self-effects, which represent a reliance on factors external 813 
to the modelled system or density dependent growth; see text for additional explanation. 814 
 815 
Figure 3. Structure of the two Local governance models (current situation). Model structures 816 
have been shown on one figure to easily display differences between the Strong-link model 817 
(includes dashed blue lines and black lines) and those included in the Weak-link model (black 818 
lines only). Strong- and weak-link models were analysed separately. Two possible links have 819 
been assessed between Public water management and Water allocation. 820 
 821 

Figure 4.  Future local governance model where (a) highlights links that were included (blue 822 
dashed links) and removed (orange dashed links) from Figure 3 while (b) shows the final 823 
future local governance model.  824 

Figure 5.  High level governance model (current situation) including links used in the strong-825 
links model (blue dashed lines). The dashed links were removed for the weak-links model. 826 
 827 

Figure 6.  Future high-level governance model with links to be included (dashed blue lines) 828 
and links to be removed (dashed orange lines) to improve stability, management and 829 
governance. 830 
 831 
 832 
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Figure 1 834 
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Figure 2 839 
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Figure 3 844 
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Figure 4 848 
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Figure 4 855 
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Figure 5 862 
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Figure 6 867 
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Table 1.  The level of governance assessed and the different versions of the models 871 
produced in the study. Different levels of governance (local and high level) were assessed to 872 
allow the investigation of processes occurring at all levels.  Different versions of models were 873 
produced to ensure all workshop participants’ perceptions were represented and that future 874 
management strategies could be identified.  875 
Governance 
level 

Model versions Participant perceptions represented 

Local level 
(operational 
level) 

• Strong-link local 
level model 
(Current situation) 

• Strong and effective management actions, 
collaboration, accountability and eco-
government decisions. 

 • Weak-link local 
level model  

      (Current situation) 

• Weak and ineffective management actions, 
collaboration, accountability and eco-
government decisions.  

 • Future local level 
model 

• Perceptions and management strategies that 
provided the most ideal outcome for stability 
and asset management.  

High level 
(broader 
community and 
governmental 
level) 

• Strong-link high 
level model 

      (Current situation) 

• Strong and effective management actions, 
collaboration, accountability and eco-
government decisions. 

 • Weak-link high 
level model 

      (Current situation) 

• Weak and ineffective management actions, 
collaboration, accountability and eco-
government decisions.  

 • Future high level 
model 

• Perceptions and management strategies that 
provided the best outcome for stability and 
asset management. 

  876 

  877 



43 
 

Table 2.  Variable description, definition and role for the Local governance models. The 878 
role of variables in the Strong link model (dashed lines, Fig. 3) has been described as this 879 
includes links from both the Strong and Weak link models.  880 
Variable name Definition Role (Strong link models) 
Water quality Quality of estuarine water for 

ecological and recreational (i.e. 
boating, fishing) use. 

Good water quality increases residential land values. 
 

Nutrients/general 
pollutants 

Waste products from run-off as 
well as residential, agricultural 
and industrial land use. 

Reduces water quality. 

Base flow water 
resource 

Freshwater inflow from rainfall 
and aquifers. 

Flows into the estuary and reduces nutrient 
concentrations.  

Reserves/wetlands Conservation areas and 
undeveloped land adjacent to the 
estuary. 

Reduces nutrient concentrations by filtering and storing 
nutrients.  

Drain flow Engineered drainage and flow of 
water and waste from various 
inputs. 

Increases nutrient concentrations in estuarine waters, 
and reducing flooding which reduces wetland 
sustainability and allows industrial land use.  

Public water 
management 

Responsible for planning and 
allocation of water use to private 
businesses. 

Increases or decreases allocation, depending on advice 
from various parties including Waterways 
management. 

Waterways 
management 

Responsible for water quality 
management. 

Monitors estuarine water quality, acts to reduce 
nutrient input and provides advice on appropriate water 
allocations. 

Local estuarine 
conservation group 

Small group working to improve 
estuarine health.  

Monitors water quality and informs Environmental 
management & conservation if water quality declines.  

Environmental 
management & 
conservation 

Management agency responsible 
for managing the environment. 

Improves and maintains effective reserves, wetlands 
and conservation areas around the estuary. 

Agricultural 
regulation 

Agency responsible for managing 
agricultural waste products.  

Monitors and reduces agricultural nutrient inputs 

Water allocation Amount of water available for all 
usage types. 

Reduces base flow while increasing drain flow and 
capacity for residential and agricultural land use.  

Local planning 
agency 

Agency responsible for 
development and management of 
land use in local area. 

Monitors water quality and wetlands and enables 
increased development and residential land use. 

State planning 
agency 

Responsible for statewide 
development. 

Allows agricultural and industrial land use and 
encourages local development approvals. 

Agricultural land 
use 

Use of land for agricultural 
purposes. 

Uses base flow for irrigation etc. and inputs estuarine 
nutrients into waters flowing into the estuary.  

Residential land 
use/value 

Use of land for residential 
purposes. 

Is allocated water and increases estuarine nutrient input 
through runoff from impervious surfaces, fertiliser use 
etc. 

Industrial land use Use of land for industrial 
purposes. 

Increases estuarine nutrient input through waste 
products. 
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Table 3.  Variable description, definition and role for the High level governance models. 883 
The role of variables in the Strong link model (dashed lines, Fig. 5) has been described as this 884 
includes links from both the Strong and Weak link models. 885 
Variable name Definition Role (Strong link models) 
Environmental quality Environmental quality for 

supporting biodiversity, 
ecosystem structure and 
function. 

Good environmental quality improves real estate 
values and the economic value of the environment, 
therefore also increases population size. 

Economic value of the 
environment 

Monetary value placed on a 
healthy estuary as well as the 
value proffered to businesses 
and the community through 
regional tourism. 

Is increased by higher real estate values and good 
environmental quality, however, change in the 
economic value of the environment does not impact 
any other variable. 

‘Eco-government’ 
decisions 

Decisions that improve 
Environmental quality 

Increases actions by resources management/protection 
agencies and is influenced by development agencies. 

Resource 
management/protection 
agencies 

Agencies mandated and 
resourced to enact the required 
level of regulation for 
environmental/resource use . 

Monitors and manages environmental quality and is 
influences by ‘Eco-government’ decisions, NGOs and 
urban development agencies. 

Real estate values Value of housing, land and 
property for businesses.  

Increased by population size and environmental quality 
and influences the economic value of the environment. 

Population size Number of people residing in 
the area. 

Influences by transport accessibility, available housing 
(i.e. urban development agencies) and environmental 
quality. 

Urban land use Land used for residential, 
retail purposes and provision 
of services. 

Increased by population size and impacts Total 
resource use. Reduces agricultural and industrial land 
use through competition for land. 

Agricultural/industrial 
land use 

Use of land for agriculture and 
industry. 

Increases Total resource use in the area. 

Total resource use Overall impact of population 
size and urban development in 
the region. 

Reduces environmental quality and stimulates ‘eco-
friendly’ developments. 

Raw development 
industry  

Use and development of land 
for heavy industry such as 
mining.  

Reduces ‘Eco-government’ decisions through lobbying 
and pressure to maintain heavy industry in the region. 

Urban development 
agencies 

Responsible for developing 
land into urban 
centres/housing estates. 

Reduces ‘Eco-government’ decisions and management 
actions by Resource management/protection agencies 
through political pressure for housing developments. 

Sustainable 
development industry 

Encourage and implement 
‘eco-friendly’ urbanisation. 

Acts to reduce Total resource use through ‘eco-
friendly’ developments and encourages ‘Eco-
government’ decisions. 

Non-government 
organisations 

Independent groups 
encouraging and assessing 
environmental management.  

Monitor environmental quality and encourage remedial 
action by Resource management/protection agencies. 

Regional transport Ease of access to the area. Increased by urbanisation (i.e. housing availability) 
and enables easy transport to Perth or industrial areas 
for employment. 

 886 
 887 
 888 
 889 


	Cover page author's version
	structures for successful ecological management
	Cover page author's version
	structures for successful ecological management
	1. Introduction
	2. Methods
	2.4.1 Local governance structure
	i) Current models
	ii) Future model

	i) Current models
	ii) Future model





