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ABSTRACT

The problem of applied mathematics is to account for the ’unreasonable effective-

ness’ of mathematics in empirical science. A related question is, are there mathemat-

ical explanations of scientific facts, in the same way there are empirical explanations

of scientific facts? Philosophers are interested in the problem of applied mathematics

for two main reasons. They are interested in whether the use of mathematics in em-

pirical science is sufficient to motivate ontological conclusions. The indispensability

argument suggests that the widespread application of mathematics obligates us to

accept mathematical entities into our ontology. The second primary philosophical

question concerns the details of the applications of mathematics. Philosophers are

interested in what sort of relationship between mathematics and the physical world

allows mathematics to play the role that it does.

In this thesis, I examine both areas of literature in detail. I begin by examining

the details of the indispensability argument as well as some significant critiques of

the argument and the methodological conclusions that it gives rise to. I then exam-

ine the work of those philosophers who debate whether the widespread application of

mathematics in science motivates accepting mathematical entities into our ontology.

This debate centers on whether there are mathematical explanations of scientific

facts, which is to say, scientific explanations which have an essential mathematical

component. Both sides agree that the existence of mathematical explanations would

motivate realism, and they debate the acceptability of various examples to this end.

I conclude that there is a strong case that there are mathematical explanations. Next

I examine the work of the philosophers who focus on the formal relationship between

mathematics and the physical world. Some philosophers argue that mathematical
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explanations obtain because of a structure preserving ’mapping’ between mathemat-

ical structures and the physical world. Others argue that mathematics can play its

role without such a relationship. I conclude that the mapping view is correct at its

core, but needs to be expanded to account for some contravening examples. In the

end, I conclude that this second area of literature represents a much more fruitful

and interesting approach to the problem of applied mathematics.
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1. INTRODUCTION

The problem of applied mathematics is the philosophical quandary concerning

the ’unreasonable effectiveness’ of mathematics in empirical science. Many scholars

have noticed that mathematics plays an important role in our best physical theories,

and philosophical questions naturally arise about what exactly mathematics is doing

when we use it in science, and what this tells us about mathematics. This issue is

called the problem of applied mathematics. This general interest in the effectiveness

of mathematics has led to more specific questions about the role of mathematics.

In particular, there has been much recent interest in the topic of mathematical ex-

planation. The literature surrounding mathematical explanation seeks to determine

whether the role that mathematics plays in science, its unreasonably effective role,

has to do with applied mathematics being explanatory.

There has been considerable attention paid recently to the problem of applied

mathematics and the related question of mathematical explanation. The literature

devoted to this problem divides rather neatly into two areas. For the purposes of

this thesis, I refer to these two areas as the ontological literature and the applica-

tions literature. The ontological literature pursues the question of mathematical

explanation with an eye towards the possible ontological consequences of accepting

the existence of mathematical explanations of scientific facts. This literature centers

around the indispensability argument for mathematical realism. The indispensability

argument states that the presence of mathematics in our best scientific theories en-

tails an ontological commitment to mathematical entities. The recent debate focuses

on the indispensability of mathematical entities, but specifically their explanatory

indispensability. Examples are brought forth from empirical science to support the
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contention that mathematics does feature in science in a genuinely explanatory way,

while others argue that the putative examples of mathematical explanation actually

indicate a less fundamental role for mathematics in science. The ultimate end of

both sides of the debate is to reach a conclusion related to the ontological status of

mathematical entities.

The applications literature takes a somewhat different focus. Whereas the onto-

logical literature debates the role of applied mathematics as a means to an ontological

end, the applications literature is more or less neutral on ontological issues, focusing

instead on the details of what mathematics is adding to scientific theories. Advocates

of the so-called mapping view argue that mathematics is useful in science because it

enables us to construct structure-preserving, representational models that are more

inferentially tractable than theories that do not use mathematics. Critics of this sort

of view argue that mathematical practice does not bear out the claim that mathe-

matics is useful because it faithfully represents the structure of the physical world.

There are examples from science that seem to indicate that mathematics is deployed

much more pragmatically than the mapping theorist might expect. Both sides of

this debate approach the problem of applied mathematics from a broadly naturalis-

tic perspective and seek to gain clarity regarding just what it is that our scientific

theories are getting from being couched in terms of non-causal abstract entities.

The goals of this thesis are to examine the details of these two bodies of literature,

comparing the approaches taken and conclusions reached by both. With this goal in

mind, the structure of the thesis breaks into three main sections. In chapter 2, I will

present an extended exposition and exploration of issues surrounding the indispens-

ability argument, because it features very centrally in the ontological literature. In

chapter 3, I will present the details of the main entries in the ontological literature. I

will give the details of the primary arguments on both the Platonist and nominalist
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sides of the debate, with some critical remarks. In chapter 4, I will discuss the appli-

cations literature, giving the details of two significant formulations of the mapping

view. To conclude chapter 4, I will present a significant challenge to the mapping

view. Chapter 5 will recap and offer some tentative conclusions about approaching

the problem of applied mathematics in light of the accounts that I examine.
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2. THE INDISPENSABILITY ARGUMENT

2.1 Colyvan’s Defense of Indispensability

Mark Colyvan has made many contributions to the literature on mathematical

explanation, including a very good exposition of the indispensability argument and

its role in this topic. The indispensability argument is derived, in its modern formu-

lation, from the work of Quine and Putnam. Colyvan reconstructs the argument as

follows:

1. We (ought to) have ontological commitment to all and only those

entities that are indispensable to our best scientific theories (Quinean

Ontic Thesis).1

2. Mathematical entities are indispensable to our best scientific theories.

From these we conclude that we (ought to) have ontological commitment

to mathematical entities. (Colyvan [1998], p. 40)

Premise two has been subjected to a well known critique by Hartry Field [1980],

and other significant criticisms have been made by other authors, e.g., Penelope

Maddy [1992]. The indispensability argument is, first and foremost, an argument

for realism. The conclusion of the argument can be taken in a couple of different

ways, according to Colyvan. One interpretation of the conclusion, which Colyvan

draws from Dummett and refers to as semantic realism, is that mathematical realism

commits us to the objective truth or falsity of mathematical statements. Whether

or not mathematical statements are true is an objective matter that is independent

of our ability to make this determination in any given case. The second way to

1I call this Quine’s Criterion of Ontological Commitment (from Azzouni [2004]).
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interpret the conclusion, called metaphysical realism by Colyvan (and often known

as Platonism), is as a thesis about the existence of mathematical objects: from the

indispensability of mathematics we are committed to the objective existence of the

mathematical objects that are the subject matter of mathematical statements.

Intuitively, metaphysical realism entails semantic realism; the properties of, and

relations among, objectively existing mathematical entities determine the truth value

of mathematical statements. Semantic realism, by contrast, is only concerned with

the objectivity of mathematical truths and stops short of affirming existence of math-

ematical entities which provide the objectivity. However, the converse does not hold,

as Colyvan indicates by quoting Dummett and Putnam. It is possible to accept

semantic realism without accepting metaphysical realism. For his part, Colyvan is

primarily concerned with metaphysical realism.

In contrast with realism of either variety is nominalism, which Colyvan uses as a

term for any view that denies the existence of mathematical entities. The challenge

for the proponent of nominalism is to account for the “wide and varied” applications

of mathematics.2 The nominalist might respond to this challenge with a nominalist

view called fictionalism. The fictionalist about mathematics holds that mathematical

truths are true by virtue of being a part of the system of mathematics, but it does

not follow from that fact that mathematical truths are truths simpliciter.

Colyvan’s primary concern is to examine the potency of the indispensability argu-

ment as an argument for metaphysical realism and against nominalism. As a starting

point for his discussion, Colyvan affirms that mathematics does inevitably feature

in scientific theory (contra Field). Given the theoretical indispensability of mathe-

matics, the primary concern is to explain the role that mathematics does play which

makes it indispensable. This is the one of the most perplexing issues in the philoso-

2Colyvan [2001], p.4
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phy of mathematics, Colyvan claims. I will refer to this problem as the problem of

applied mathematics.

The general structure of the indispensability argument leaves some ambiguity

that must be filled in for specific cases. Generally, an indispensability argument

simply says that a certain belief is necessary relative to certain purposes. A specific

formulation of the argument then spells out those purposes.3 Colyvan contends that

the indispensability argument has a particularly significant form relative to science,

which asserts the “certain purposes” to be explanatory purposes. As the next section

will make clear, this is the formulation that is up for debate in the recent literature

on mathematical explanation that I will be examining. But Colyvan’s exposition of

the original formulation by Quine and Putnam shows that this is not the only way

to take the argument with respect to mathematics.

Colyvan’s interest in the indispensability argument is to convince scientific realists

that to accept the indispensability argument and, hence, realism about mathematical

entities, is merely to accept a new instance of a form of argument that they regularly

deploy.4 The indispensability argument as formulated for science generally takes an

obvious form.

Scientific Indispensability Argument: If apparent reference to some entity

(or class of entities) [X] is indispensable to our best scientific theories,

then we ought to believe in the existence of [X]. (ibid., p. 7)

This pattern, Colyvan argues, is utilized frequently in the natural sciences, and it

can be seen as nothing more involved than an application of inference to the best

explanation. Furthermore this argument pattern is generally of the explanatory sort,

asserting that the indispensable entities are indispensable because of the explanatory

3ibid., p. 6
4ibid., p. 8
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benefit they offer. For example, dark matter is invoked in scientific theory (and its

existence is accepted) on the grounds that it helps to explain otherwise unexplainable

facts about the rotation curves of spiral galaxies.5 Colyvan admits that those who

are disposed to disapprove of inference to the best explanation may not find the

comparison with the indispensability argument to be a compelling case for accepting

the latter. Nevertheless, he notes that scientific realists are generally sympathetic to

the use of inference to the best explanation, and inference to the best explanation

is a kind of indispensability argument, so the comparison should have some traction

with realists.

Colyvan’s formulation of the indispensability argument is largely based on Quine’s

work, but he mentions historical precedent from Gödel and Frege that suggests that

some form of the indispensability argument for mathematics is quite independent of

the overall Quinean philosophical project.6 As is the case with many of Quine’s most

famous doctrines, there is not just one canonical reference for the indispensability

argument. As Colyvan documents, Quine’s view is that mathematics and its ontology

should be included in our overall theoretical apparatus for similar reasons as our

other theoretical posits. In keeping with his confirmation holism, the mathematical

posits that are included in the aforementioned apparatus are confirmed to the same

degree as the apparatus as a whole. On the basis of this sort of argument, Colyvan

contends that we can conclude that, whatever we take the purpose of science to be,

mathematics is indispensable for that purpose.7

Colyvan argues that Quine’s Criterion of Ontological Commitment — the crucial

first premise of the argument — follows from the combination of naturalism and a

5ibid., p. 8
6ibid., p. 9
7ibid., p. 11
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kind of holism, specifically confirmation holism.8 Quine’s interpretation of natural-

ism, which is that there is no ’supra-scientific tribunal’ to which scientific practice

must answer, suggests that our ontological questions can only be answered by looking

at science, which is of course a significant part of our overall theoretical apparatus.

Colyvan thinks that this sort of naturalism makes it reasonable to accept the exis-

tence of the entities posited by our best theories, but he does not think that this

alone is enough to compel belief in all of the posits of science. To make this leap,

we need confirmation holism. Confirmation holism provides the blanket support for

all of our posits that is needed to insulate individual posits against criticism. If we

adopt the naturalist respect for the methodological practices of our best theories,

along with confirmation holism,then it seems that all of our leading theories entail

ontological commitments, including our mathematical theories.9

2.2 Challenges to Indispensability

2.2.1 Maddy’s Objections to Indispensability

Penelope Maddy mounted a substantial challenge to the form of the indispensabil-

ity argument advocated by Colyvan in Indispensability and Practice (Maddy [1992]).

Her objection is multifarious, but the root of her objection to the argument is the

rejection of confirmation holism and a disagreement about the proper form of natu-

ralism with regard to mathematical practice. The basic form of the indispensability

argument links the ontological status of mathematical entities to their roles in sci-

entific theories and the solid confirmational foundation of those theories. Maddy’s

twofold objection to this indispensability argument is that it undermines the legiti-

macy of mathematical methods and that it is at odds with mathematical practice.10

8ibid., p. 12
9ibid., p. 13

10Maddy [1992]
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Mathematical practice contains innumerable instances of entities that do not find

application in science, and on a reading of the indispensability argument that does

not include confirmation holism, these entities are not supported by the argument.

Quine accounted for some of these sorts of cases by bringing them along with the ap-

plied portions of mathematics in the name of ’simplificatory rounding out,’ but this

only works up to a point, and anything beyond that point (for example, inaccessible

cardinals) is deemed mere “mathematical recreation...without ontological rights.”11

Maddy contends that Quine’s solution disregards mathematical practice, which

she argues is not sensitive to questions of applicability in the pursuit of new math-

ematical entities and truths. Set theorists who accept the existence of inaccessible

cardinals do so on the basis of mathematical methods, since they can be seen to fol-

low from certain non-canonical but nevertheless potentially attractive set-theoretic

axioms. The simple indispensability argument grants ontological status only to en-

tities that are made use of in science, and as few more as are needed to round things

out. On the other hand, it seems that mathematicians have an entirely different

mode of justification for their posits. This is important due to the sort of natu-

ralism that Maddy is committed to, which extends to mathematics the same way

that it does for science. She goes on to suggest that Quine is guilty of a sort of

inconsistency inasmuch as his naturalism draws a line between mathematics and

science that creates differing attitudes toward the two domains. A naturalism that

excludes mathematics does not support the myriad of entities that mathematicians

talk about, and it excludes purely mathematical methodologies for establishing our

mathematical knowledge.12

Maddy calls the above objection to the indispensability argument the scientific

11ibid., p. 278
12ibid., p. 279
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practice objection. She rejects the confirmation holism which underwrites the for-

mulations of the indispensability argument advanced by Quine and Colyvan on the

grounds that scientific practice shows anything but a uniform attitude towards theo-

retical posits in science. As she puts it: “...We find a wide range of attitudes toward

the components of well-confirmed theories, from belief to grudging tolerance to out-

right rejection.”13 Experimental success of a theory does not seem to have a uniform

effect on the attitudes toward the posits of the theory. Maddy raises the example of

atomic theory, which, while indispensable to the best theories available as early as

1860, was nevertheless subject to significant skepticism until the early 20th century

when more direct confirmation of the theory was available. This demonstrates that

indispensability is not the criterion for ontological commitment that is actually used

by scientists, at least in some cases.

Maddy rejects the response that philosophers may disregard the actual behavior

of scientists on the grounds that experimental confirmation is the methodological

principle on which we place significance. This response, she argues, is at odds with

naturalistic principles, which compel us to accept a distinction between useful and

true portions of theories. The naturalistic philosopher is not in a position to critique

scientific practice, according to Maddy. There are countless examples in science

where certain elements are understood not to be literally true, such as treatments

of matter that assume it to be continuous. Nevertheless, these elements are often

indispensable. Even if we assume such applications to be mere idealizations of a more

fundamental theory that we find useful, the problem still arises that theories which

are thought to be fundamental are often later revealed to contain false elements.14

This indeterminacy of the truth of various scientific theories casts doubt on at least

13ibid., p. 280
14ibid., p. 282
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some of the mathematical claims involved. We may not be able to determine which

mathematical posits we should accept because it may not be clear which ones are

involved in an idealization and which ones represent something that is literally true.

The second component of Maddy’s case against the indispensability argument

is what she calls the mathematical practice objection. According to this objection,

the methodology of mathematics is irreconcilable with the indispensability argument

and the ways that it would suggest that mathematics proceed. Taking set theory as

a mathematical theory and quantum physics as a scientific theory, we can clearly see

that mathematical practice diverges from indispensability. The continuum hypoth-

esis is independent of the canonical set-theoretic axioms, but on the grounds that

the continuum is a widely used structure in scientific theory, the indispensability

theorist should be inclined to accept the legitimacy of the continuum hypothesis as a

statement with a determinate truth value.15 The indispensability theorist may even

support the project of searching for new axioms that would settle the question, on

the grounds that such purely mathematical methods of set theory have been fruitful

in the past.

Suppose that there were a case in which previously endorsed mathematical entities

have their applications revealed to be false. Maddy considers a possible example of

this. The mathematics of quantum field theory sometimes generates invalid infinite

values for physical quantities. It has been suggested by physicists that this infelicity

is the result of using the continuum as a model for space-time.16 This could mean that

mathematics involving the continuum should be eliminated from our best theories.

If this were to come about, Maddy contends that the indispensability theorist would

have no choice but to recant her prior commitment to the determinate truth value

15ibid., p. 284
16ibid., p. 285
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of the continuum hypothesis.

Maddy contends that if set theorists took seriously the methodology suggested by

the indispensability argument, they should keep one eye on developments in science

which could undermine their projects. However, the fact is that set theorists are not

particularly interested in developments relating to the applications of the continuum

in science, and they would most likely maintain their interest in the continuum hy-

pothesis as a purely set theoretic matter, even in the face of disconfirming evidence

of the scientific theories which implicitly utilize it. Maddy’s strong contention is

that the pursuit of truth differs from the pursuit of mathematical correctness. Inde-

pendent mathematical questions are pursued that have no applied basis in empirical

science and this suggests to Maddy that mathematical methodology is guided by

internal rather than external concerns.

2.2.2 Colyvan’s Response to Maddy

In In Defence of Indispensability, Coylvan devotes considerable effort to address-

ing Maddy’s objections as they apply to his version of indispensability, which is in

large part derived from that of Quine. The main thrust of his defense is that Maddy’s

version of Naturalism is at odds with the one that he and Quine endorse, and since

that is the linchpin of her arguments, her objections are not strong. Furthermore,

he argues that her version of naturalism is inconsistent with the sort of naturalism

that she has argued for elsewhere. If we reject the methodological principle that

philosophy must always defer to the decisions of science, then Maddy’s arguments

have less force.

Colyvan’s position regarding Maddy’s naturalism is not the sort needed to sup-

port the objections raised in Indispensability and Practice. The important distinction

between the two forms of naturalism is that Quine’s naturalism rejects the notion of
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a philosophy to which scientific practice must answer, whereas Maddy’s formulation

of naturalism suggests that philosophy must defer to science. Quine’s formulation

positions philosophy and science on an equal footing, which Colyvan contends surely

does not entail Maddy’s naturalism. The view that philosophy and science are con-

tinuous and that there is no ’high court of appeal’ is surely a coherent one that does

not by any means entail the sort of relationship that Maddy suggests philosophers

must occupy with respect to science. Colyvan maintains that this is the form of

naturalism that Quine intends.

Other work by Maddy seems to suggest that the ’philosophy must give’ reading of

naturalism is not consistently her viewpoint. Colyvan draws quotations from other

works of Maddy’s which suggest a view much more in line with Quine’s naturalism.

He quotes Maddy as follows17 :

How...does the philosophical methodologist differ from any other scien-

tist? If she uses the same methods to speak to the same issues, what need

is there for philosophers at all? The answer, I think, is that philosophical

methodologists differ from ordinary scientists in training and perspective,

not in the evidential standards at their disposal.

Contrary to Colyvan, I think that these remarks are reconcilable with the form of

naturalism that drives Maddy’s objection to indispensability. It seems that Maddy’s

view is simply that philosophers cannot criticize scientific practice on the grounds of

methodological concerns grounded in philosophy, but that the philosopher is eligible,

like anyone, to challenge science on the basis of scientific methodology. The quotation

given by Colyvan seems to support this as she refers to philosophers who use the

same methodology (scientific methodology) as scientists, and not philosophers who

17(Colyvan [1998], p. 47)
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try to use philosophical methodology. This seems perfectly compatible with the

view that philosophical concerns cannot ground a criticism of scientific practice,

because philosophers can certainly join in the scientific process, even if the particular

methodologies of their discipline are impotent in this type of situation. Maddy’s use

of the term ’philosophical methodologists’ may be misleading, because she seems

to think that legitimate criticism of scientific practice cannot come from using the

methodological tools of philosophy, but rather scientifically acceptable evidence.

Colyvan’s response to the scientific practice objection is twofold. First, he ar-

gues that episodes of seemingly variable ontological commitment to scientific entities

drawn from the history of science can be viewed in light of the notion that skepticism

is a part of the scientific method and ontological commitment is not an all or nothing

proposition. When a new contender for best theory comes on to the scene, it is per-

fectly reasonable that some may choose to suspend judgment on some or all of the

new ontological commitments that it brings in tow.18 Second, Colyvan emphasizes

that Quine’s proposal is (in part) a normative one, so it is not inconsistent with

his notion of ontological commitment to observe historical episodes where scientists

provisionally disavow entities of newly indispensable scientific theories. Quine’s pic-

ture of science is certainly compatible with the possibility that science goes wrong,

although cases of skepticism are certainly not always instances of this.

The contention that Quine’s picture of scientific methodology is partially norma-

tive seems to be at odds with the form of naturalism that he espouses. If Quine’s

indispensability argument and the criterion of ontological commitment on which it is

based are taken to have a normative component, then they seem to violate the natu-

ralistic edict that there is no first philosophy that science must answer to. One may

respond that this normativity comes from scientific practice itself, and that some

18ibid., p. 49
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such normativity is necessary for science. This is a perfectly good response, but it

does seem to conflict with the use of this normativity to explain away instances of

scientific practice which deviate from Quine’s picture. If observations of scientific

practice give us Quine’s picture, and also cases which contradict it, neither set of

observations has priority. This is not to say that there is not faulty science, but as

I noted, Colyvan maintains that some instances of skepticism of novel entities are

not faulty. Quine’s picture should ideally jibe with every observation of non-faulty

science that we have, if it is to be thoroughly naturalistic, but at the very least, we

cannot use it to discredit those observations that it is inconsistent with.

Colyvan’s response to the mathematical practice objection is that we should con-

sider the speculative activities of mathematicians to be hypothetical.19 This objec-

tion runs along the lines of what Maddy calls the modified indispensability argument,

which separates the methodology of mathematics from its mode of ontological justifi-

cation. Colyvan argues that when mathematicians do work in mathematical domains

that outstrip applications, they are making hypothetical claims about what follows

from given axioms, and what would therefore be true if those axioms were true. The

attitude that the mathematicians take towards the mathematics thus derived is an

agnostic one, because the ontological question, being wrapped up in applications as it

is, is not answered until empirical science discovers an application.20 Colyvan agrees

that mathematicians should pursue their mathematical goals with little concern for

ontological questions, but he maintains that this does not mean that they have vi-

olated Quine’s criterion of ontological commitment, their area of specialization is

simply not the one that is most concerned with those questions.

Maddy’s concerns, as exemplified by the example of set theory and quantum grav-

19ibid., p. 55
20ibid., p. 54
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ity, rely on her unique formulation of naturalism which differs from Quine’s, Colyvan

argues. Furthermore, he contends that Maddy’s naturalism incorrectly distinguishes

itself as being uniquely concerned with mathematical practice. Quinean naturalism

respects mathematical practice and methodology, it simply requires a connection

to empirical science in order to justify that respect.21 Given that both approaches

to naturalism undergird a respect for mathematical methodology, Maddy cannot

cite this as a reason to prefer her formulation. The larger problem with Maddy’s

naturalism, according to Colyvan, is that it affords perhaps too much respect to

mathematical methodology. Maddy’s naturalism, in conjunction with the modified

indispensability argument, seems to entail ontological commitment to mathematical

entities by mere mathematical imagination. He finds this absurd, and he argues

that such activity should be considered, to use a term from Quine, ’mathematical

recreation.’22

This approach to speculative mathematics is the basis for Colyvan’s response to

the quantum gravity and set theory example. Colyvan contends that if the contin-

uum were found to have no application in empirical science, then the set theorist

who continued to work on questions related to the continuum would be engaging in

mathematical recreation, which is to say mathematics which entails no ontological

commitments.23 Set theorists do not keep apprised of the developments in physics

because this is not their area of specialization or focus, and there is no reason to imag-

ine that they should. Colyvan suggests that this is perhaps a job for the philosopher

of mathematics. The moral is, confirmation holism does not imply that all of the

posits of a theory have the same priority.24

21ibid., p. 55
22ibid., p. 56
23ibid., p. 58
24ibid., p. 60
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There are two main points of contention to raise with Colyvan’s response to

Maddy. The first is that his version of the indispensability argument relies to some

degree on confirmation holism, but his relegation of some mathematics to the sta-

tus of mathematical recreation seems at odds with this position. If we decouple

ontological justification from proper methodology in the way that the modified in-

dispensability argument suggests, and we divide mathematics into recreational and

ontologically significant mathematics, there needs to be an account of how we can

maintain this distinction in light of confirmation holism. The second, which I think

Maddy would agree with, is that mathematicians do not observe the distinction be-

tween ontologically significant mathematics and mathematical recreation. I do not

disagree with Colyvan’s contention that it is undesirable to suppose that any act of

mathematical imagination generates new ontological commitments, but if Colyvan is

right that set theorists focus on set theory and do not generally concern themselves

with matters external to their area of expertise, then there seems to be little reason

to suppose that they would maintain different attitudes towards different sets of their

posits. If mathematicians evince a uniform ontological attitude towards their posits,

there needs to be more said about why the mathematical methods used sometimes

produce truths and sometimes lead to mere recreation. It seems that the semantic

realist about mathematics, of which the metaphysical realist is a variety, would have

good reason to resist splitting mathematics into categories of different ontological

significance.

17



3. THE ONTOLOGICAL LITERATURE

The indispensability argument plays a central role in one large portion of the lit-

erature on mathematical explanation. The literature discussed in this chapter deals

with the ontological issue in mathematical explanation. To summarize, the ontolog-

ical issue concerns connecting the indispensability argument to examples of applied

mathematics taken from empirical science. The authors who debate this issue are

mostly sympathetic to the simple indispensability argument and do not argue for

the eliminability of mathematics from theories, but they nevertheless differ on what

ontology they are willing to accept. The debate thereby shifts to the question of

whether the mathematical entities that are indispensable to our best scientific theo-

ries indispensable in virtue of playing a genuinely explanatory role. The two opposing

positions then become 1) those who think that mathematics does play a genuinely

explanatory role in empirical science, and this fact mandates that we endorse the

ontological commitment to those entities required of us by the indispensability ar-

gument and 2) those who think mathematics does not play a genuinely explanatory

role in empirical science, because mathematics merely ’indexes’ physical quantities,

and therefore we do not need to accept ontological commitment to those entities

despite their indispensability. Mere indispensability is no longer taken to be suffi-

cient to entail ontological commitment to mathematical abstracta, and explanatory

power takes center stage as the characteristic of applied mathematics that entails

ontological commitments. Both sides of this debate generally agree that the use of

the indispensability argument as a basis for Platonism will stand or fall on finding

examples of genuinely explanatory applied mathematics.
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3.1 Nominalist Indexing View

3.1.1 Melia’s Views on Ontological Commitment

Joseph Melia is the primary author associated with the nominalistic view that

mathematics simply serves to index physical quantities and that the quantification

over mathematical entities does not entail ontological comittments. Although quan-

tification over mathematical abstracta is necessary in our scientific theories, we do

not need to accept any ontological commitments on this basis. Nevertheless, in

Weaseling Away the Indispensability Argument, Melia contends that we do need the-

ories quantifying over abstracta in order to say everything we wish to say about the

world. He examines the possibility, but ends up rejecting the position, that there

are nominalistically acceptable theories that generate all the same consequences as

platonistic ones. He calls this position the trivial strategy. To examine the trivial

strategy, he looks at nominalistic versus platonistic theories of mereology, eventually

concluding that the platonistic content is not a conservative extension of the nomi-

nalistic content, because the platonistic content generates new conclusions about the

nominalist components of the theory.

Despite the fact that the trivial strategy is not a promising one, Melia believes

that there is another way to avoid the ontological commitments that the indispens-

ability argument suggests that we must accept. His strategy is based on his rejection

of the Quinean Ontic Thesis as a methodological principle. He thinks that there

are theories that imply the existence of certain abstract entities, but he thinks that

disavowing ontological commitment to some of those entities is possible. Melia finds

it perfectly reasonable to accept a theory which seems to entail ontological commit-

ments, but then explicitly deny those commitments while keeping commitment to

the non-ontological consequences of the theory. Using the mereology example, he
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argues that one can accept the platonistic (non-conservative) extension of the theory

in order to derive all of the nominalistic consequences that one wants, but simply

add an addendum that there are no such things as sets.

Melia contends that such an approach to unwanted ontological commitments is

not only non-contradictory, but common practice among scientists.1 Melia’s natu-

ralistic position is that ontological disavowal is analogous to the practice of writing

in exceptions to universal claims. Sometimes we cannot express just what we mean

without resorting to such techniques, with the mereology example being one such

case. Some nominalistic facts about the spaces that exist only fall out as conse-

quences from a non-nominalistic theory. Scientists often engage in just this sort of

disavowal with regard to the mathematical entities quantified over in their theories.

But if we accept the Quinean Ontic Thesis, it would be inconsistent for scientists

to express the sorts of mathematics-laden theories that they do, while at the same

time denying that there are actually such things as mathematical objects. Thus, to

reconcile these two contradictory aspects of scientific practice, it seems like we need

to allow something along the lines of disavowing unwanted ontological commitments.

3.1.2 Daly and Langford: Amplification of Melia

Chris Daly and Simon Langford argue that mathematics does not play a genuinely

explanatory role when used in empirical science.2 Daly and Langford maintain,

along with Melia, that the role of mathematics in science is merely to index physical

quantities and is not an explanatory role.3 Given this, there is no reason to accept

the existence of mathematical entities. The main thrust of this position is that every

scientific fact which is expressible via mathematics supervenes on a more fundamental

1Melia [2000], p. 469
2Daly and Langford [2009]
3ibid., p. 645
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physical fact which does not involve mathematical entities. Whether we can purge

our actual scientific theories of reference mathematical entities is immaterial, because

Melia holds that mere reference does not entail ontological commitment.4 Daly and

Langford focus more on the question of whether the uses to which mathematics is

put can be called genuinely explanatory. They argue that a mere indexing role is

not a fundamental role, which they claim is necessary for the mathematics to be

considered explanatory.

Mark Colyvan is one of the two primary philosophers representing the opposing

side of this debate. In The Indispensability of Mathematics, he argues that mathe-

matical entities do sometimes play an indispensable and genuinely explanatory role

in scientific explanations, and he brings forth examples from science to build this

argument. Daly and Langford directly address three examples given by Colyvan.5

The three examples that Colyvan mentions are, the bending of light by massive bod-

ies, antipodal weather patterns and Lorentz contraction.6 Daly and Langford fairly

quickly write off the first and third examples as cases of indexing, claiming that

the mathematics involved serves only to pick out certain portions and features of

space-time, the features themselves doing the actual explanatory work.7

Daly and Langford contend that unless there is a case made for an instance of

applied mathematics being explanatory rather than indexing, the default position

should be that mathematics is indexing. The Platonist and the Nominalist both

agree that mathematics plays an indexing role, but only the Platonist thinks that

mathematics also plays an explanatory role, so it is the task for the Platonist to

build a case for this by producing examples of explanatory mathematics. Daly and

4Melia [1995], pp. 228-9
5The Indispensability of Mathematics
6Colyvan [2001], p. 47-51
7Daly and Langford [2009], p. 645
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Langford maintain that it does not simply follow from the fact that mathematics can

be used to pick out explanatory entities that the mathematical entities are themselves

explanatory.8

Colyvan maintains that the mathematics used in science contributes to the ex-

planatory power of theories by virtue of capturing the structure of the physical

system. Mathematics is particularly useful for science because the same mathemati-

cal machinery can be used to represent the structure of multiple structurally similar

systems. This portends the position taken by Pincock and others that will be dis-

cussed in the next section. Nevertheless, Daly and Langford reject this account on

the grounds that the notion of a structural similarity is ill-defined and potentially as

problematically abstract as mathematical entities themselves. Structural similarity

could mean either that there is an isomorphism between the entities of two different

domains, or it could mean that two different domains have all the same relational

properties between entities. Daly and Langford find either definition of structural

similarity insufficient on the grounds of the distinction between something being a

heuristic device for identifying a feature, and being responsible for the possession

of the feature. Similarly, we can distinguish between something being a heuristic

for identifying unification and something being responsible for the unification. They

hold that structural similarities between systems do not license the move whereby

we add the mathematical structure to our ontology and thereby increase the onto-

logical parsimony and unification of the theory. The fact that two systems might be

describable with the same mathematical structure does not indicate that there is any

ontology described in identifying a structural similarity. The mathematics points to

the similarity, but it is not responsible for it.9

8ibid., p. 648
9ibid., p. 647
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Colyvan’s second example is particularly interesting because the fact in question,

that there are antipodal points on the earth’s surface at any given time that have

the same temperature and pressure, is derived from a theorem in the mathematical

domain of algebraic topology. This is also the most relevant of the three because it

most closely accords with the mapping account of applied mathematics that I will

discuss in the next section. In this example, the proof of the mathematical theorem

becomes a proof of the physical fact by modeling the distribution of temperatures at

various points on the earth using algebraic topology. This seems to lend credence to

the notion that the mathematics involved is as explanatory as anything, given that

the explanandum cannot be explained without the reference to the mathematical

proof.

As I have indicated, the antipodal weather example is a bit trickier, and the

fact that Daly and Langford pay particular attention to this example supports this

contention. Daly and Langford attempt to categorize this example along with the

others as another case of mere indexing. The earth’s surface has spatial regions

and features which can be picked out and tracked by the mathematical entities of

algebraic topology. They argue that the mathematical theorem again supervenes on

a more fundamental fact about the world, and that the features of the world (the

actual physical regions of the earth’s surface) are the genuinely explanatory aspects of

this physical fact.10 The role of the mathematical proof is to justify acceptance of the

mathematical theorem, which in turn can be applied to the physical world. Perhaps,

they claim, the proof can be thought of as justifying our acceptance of the physical

fact, but the theorem itself is merely a fact about a model of the physical world,

not a fact about the physical world itself.11 Just like in the other two examples,

10ibid., p. 648
11ibid., pp. 648-9
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they contend that the role of the mathematics is to index or model the physical

world, and the physical world is what contains the genuinely explanatory things.

This shows merely that mathematics is very useful as a tool, but it does not show

that mathematics is explanatory or that we should accept that these entities exist.12

This divide between mathematical models and more fundamental physical facts

is of key importance to this debate. Daly and Langford’s objection to the antipodal

weather example seems to rely on the premise that only physical entities which can

rightly be considered causal, if only in the sense that a region of space can be causal,

can be considered explanatory. But as I’ve noted, it is clear to all parties to this

debate that explanation must be non-causal to accommodate mathematics. This

causal account of explanation is question-begging for evaluating potential examples

of mathematical explanations, and I think that one can still reject the explanatory

indispensability of mathematics without doing so on the mere basis that mathemat-

ical entities are not causal. Daly and Langford want to reject the explanatory value

of mathematics on the grounds that its role is to model the physical world. It seems

plausible that this is indeed the role of mathematics in science, but it also seems

inappropriate to reject mathematical explanations on this basis, because there are

no explanations or facts without modeling. This is the case whether or not math-

ematics involved. Any explanation involves representation, whether it be in terms

of mathematics or some other portion of our language. If some of our explanations

incorporated modeling whereas others did not, it might make sense to look askance

at model based explanations. But since all of our explanations inherently involve

representation of some sort, to reject mathematics from explanations on this basis

seems misguided.

12ibid.,
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3.2 Baker on Indispensability and Mathematical Explanation

Alan Baker is the second key author who enters this debate on the side of those

who contend that applied mathematics can be genuinely explanatory, but he takes

issues with the case that Colyvan makes for this position. In particular, he finds

Colyvan’s three examples unsatisfactory, and he also finds Colyvan’s formulation of

the indispensability argument, especially its concomitant commitment to Quinean

holism, to be unnecessary. Baker thinks that the indispensability argument which is

based on confirmation holism lacks the resources to deal with instances of applied

mathematics which involve idealizations and other falsehoods. Using whole theories

as the unit of confirmation, the indispensability motivated Platonist is unable to

account for the variety of roles that mathematics plays in science, some of which do

not seem to involve the literal description of reality using objects that we can there-

fore take to exist.13 This position anticipates some of the concerns that will become

central in the next section of this thesis. On the basis of these concerns, Baker opts

for a formulation of the indispensability argument which explicitly incorporates the

notion that the important theoretical virtue that indispensable instances of applied

mathematics must contribute is explanatory power. By specifying something beyond

mere indispensability of reference, it becomes possible to evaluate the posits of ap-

plied mathematics on an individual basis, and it enables an account of the various

roles that mathematics might play in science in the way that Baker wants.

Baker’s rejection of Colyvan’s examples, the antipodal weather example in par-

ticular, differs from that proffered by Daly and Langford. According to Colyvan,

the use of the mathematical theorem to explain the antipodal weather behavior is

essential and explanatory because only the mathematical theorem can explain the

13Baker [2005], p. 224
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coincidence of the antipodal points with the same temperature and pressure. If we

were to attempt the sort of causal description of this phenomenon that Daly and

Langford’s response to Colyvan suggests, we could explain why the individual points

have the temperature and pressure that they do, but we could not explain the fact

that there are these two points which mirror each other the way the mathematical

theorem predicts. The causal history cannot explain the coincidence, but the math-

ematics can. Colyvan says that to be an explanation, the explanans must make the

explanandum less mysterious, which is what he argues that only the mathematics

can do in this case.

Baker thinks that this example does not manage to be a genuine explanation,

because the existence of antipodal points with matching temperature and pressure

is not something that is of scientific interest apart from the fact that the mathe-

matical theorem was discovered that predicts the behavior. Meteorologists would

not search for this phenomenon, and they presumably did not know about it before

the mathematical result was discovered, and if they had, they likely would not have

ranked it as the sort of phenomenon that demands an explanation, argues Baker.14

Since the explanandum in this case is not the sort of thing that would occur to us in

the absence of the explanans, Baker does not consider this a case of mathematical

explanation, but rather a prediction.15

Melia’s indexing argument is also unacceptable to Baker on the grounds that it

seems question begging, at least prima facie. The possibility of genuine mathemati-

cal explanation of empirical phenomena is dependent on the possibility of non-causal

explanation. Baker thinks that Melia’s position appears to rely on the claim that

non-causal entities cannot be genuinely explanatory. In the end, he notes that Melia

14ibid., p. 226
15ibid.,
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hedges on this point a bit, claiming that empirical investigation will reveal the exis-

tence of non-causal explanations if there are such things. However, as Baker notes,

Melia does not give us any non-question begging reason to suppose that it is un-

likely that an empirical investigation would discover such explanations. Colyvan’s

examples do not demonstrate mathematical explanation, says Baker, but we have

no reason to think that there are not such examples, and Baker attempts to provide

one for the remainder of his paper.

Baker gives a particularly unique and compelling example from evolutionary bi-

ology which he claims is genuinely explanatory.16 The so-called periodical cicadas

are a type of insect that are dormant for long stretches of time at one stage of their

life cycle, before emerging in their adult form. There are two subspecies of this sort

of cicada, with a dormant period of 13 or 17 years. The explanatory question for

evolutionary biologists concerning periodical cicadas is why they have the particular

life cycle lengths that they do.17 Scientists are interested about the lengths of the life

cycle because they are unusually long and because they are very particular in length

for the different subspecies. In looking at the two distinct subspecies, one particular

question emerges from these general curiosities. Why do the periodical cicadas have

life cycles that are always a prime number of years long?

There are two main possible explanations for the the periodical cicada lifespans.

The first explanation is that, in its evolutionary past, the periodical cicada had to

contend with periodic predators, and it would be advantageous to minimize coex-

isting with these predators, so a cycle that intersected with that of predators as

seldom as possible would be very beneficial. A second explanation suggests that the

subspecies benefit from not hybridizing from one another, so intersecting with other

16ibid.,
17ibid., pp. 229-31
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subspecies would be detrimental. In both of these possible explanations, the utility

of a prime length life cycle comes from a simple number theoretic fact, namely, that

prime numbers maximize their lowest common multiple with other numbers.18 In

practical terms, it simply means that cicadas which develop a prime length life cycle

will run into predators and other subspecies less often that cicadas with a non-prime

life cycle. Baker’s contention is that the primeness of the life cycle explains the length

of the life cycle, because natural selection favored primeness for one of the reasons

given above.

The cicada example is a genuine case of mathematical explanation because, un-

like the antipodal weather example, the explanandum is considered independently

interesting and was discovered independently of the explanans. For these reasons

Baker argues that this is a genuine explanation, but someone like Melia might still

question whether the mathematics involved is essential to the explanation. To test

this, Baker evaluates the example in light of the major accounts of explanation

to evaluate whether the mathematics is serving in an explanatory capacity. He

looks at three prominent accounts of explanation: the causal account, the deductive-

nomological account, and the pragmatic account. The causal account automatically

rules out mathematical explanation because abstracta are non-causal, so Baker dis-

regards this account because to accept it is to beg the question against the Platonist.

The deductive-nomological account can incorporate the cicada example if we con-

sider mathematical theorems to be laws of nature, and given their universality and

necessity it seems plausible to do so. The pragmatic account can also incorporate

the cicada example because, in keeping with the pragmatic account, the involvement

of prime numbers makes the explanandum more likely than any alternatives.19 Fur-

18ibid., p. 231
19ibid., p. 235
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thermore, Baker contends that this example seems to mesh with what the biologists

who are interested in the cicadas think.

3.2.1 Daly and Langford’s Response to Baker

Daly and Langford argue that the periodical cicada example is not a case of

mathematics genuinely explaining a physical phenomenon. They acknowledge that

it would be question begging to reject the example on the grounds that numbers are

non-causal, and they grant that the cicada example is a genuine explanation and

that it involves reference to numbers, but they disagree that the reference to num-

bers is genuinely explanatory.20 Instead, they choose to pursue the argument that

the cicada example is not a case of mathematical explanation because the involve-

ment of the mathematical entities is arbitrary and it has no essential significance

to the explanation. Daly and Langford contend that because the primeness of the

life cycle depends on choosing years as the unit of measurement and Baker offers

us no plausible reason to choose years as the unit of measurement over something

like seasons, the supposedly explanatory mathematical entities (the prime numbers)

are not essentially involved in the explanation. They argue that the life cycle of

the periodical cicadas could just as well be measured in seasons or in months and

that there is, at least prima facie, no reason to suppose that years have a special

significance.21

I find this response to Baker inadequate for the following reasons. First, years are

significant in the life cycle of the cicada because the cycle is always the same whole

number of years. The emergence of the cicada is triggered by spring temperature

changes (a yearly event) in the year they emerge. Both of these facts seem to indicate

that years are particularly significant to the periodical cicada. Second, as Baker

20Daly and Langford [2009], p. 651
21ibid., p. 652
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argues elsewhere,22 years are the chosen unit of measure by the scientists who study

periodical cicadas, so clearly they believe that the 17 year length of the cycle has more

significance than the 204 month length. Third, the fact that a unit of measure has

equivalences (which of course they all do) has no bearing on the relevance of a unit

of measure in a particular application, especially when it comes to natural cycles.

Furthermore, the mathematical component of the explanations cannot be ignored

because without it the explanation is incomplete. There is no natural selection

explanation of the length of the life cycle of the periodical cicada that does not take

the explanandum to be the primeness of the length of the cycle in years.

Daly and Langford anticipate this response and reply that the fact that biolo-

gists use the year as the unit of measurement when studying this phenomenon does

not entail that the year is explanatorily privileged.23 Other units of measurement

are applicable to describe this phenomenon. They contend that this phenomenon

can be explained nominalistically, making reference only to the concrete phenomena,

namely, the durations of the life cycles. The duration of the cycle can be described

numerically using any one of a number of different units of duration, but it is the

duration itself, which is not essentially prime in length, and its property of mini-

mizing intersection with predators, that explains the duration of the life cycle that

we observe.24 This is merely another case where mathematics plays an indexing

role, picking out the concrete entities which do the real explanatory work. Daly and

Langford conclude that nothing Baker has said rules out a nominalistic reading and

account of the cicada example.

The literature just examined is a debate of the legitimacy of mathematics in

scientific explanations. As I have indicated, I agree with Baker that mathematics does

22Baker [2009], p. 617
23Daly and Langford [2009], p. 653
24ibid., p. 657
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play an ineliminable and genuinely explanatory role in scientific explanations, as his

example makes clear. In another body of literature, a number of philosophers take for

granted the affirmative answer to the question of the ineliminability and explanatory

necessity of applied mathematics, and debate some of the nuances concerning exactly

how mathematics plays the role that it does in scientific theory. Some philosophers,

such as Christopher Pincock, argue that mathematics figures in science by way of

a ’mapping’ between some mathematical structure, and empirical reality. Otavio

Bueno and Mark Colyvan expand upon Pincock’s account and try to define more

precisely what exactly is required in order to use mappings. By contrast, philosophers

like Robert Batterman use examples from scientific practice to raise questions about

the cogency of a mapping view.
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4. THE APPLICATIONS LITERATURE

4.1 Mapping Accounts of Applications

4.1.1 Pincock’s Mapping Account

The literature examined in the previous section concerns the ontological and

explanatory legitimacy of mathematics in scientific explanations. In another body

of literature, a number of philosophers take for granted the ineliminability and ex-

planatory necessity of applied mathematics, and instead debate some of the nuances

concerning exactly how mathematics plays the role that it does in scientific theory.

Some philosophers, such as Christopher Pincock, argue that mathematics figures in

science by virtue of a ’mapping’ relationship between mathematical structures and

empirical reality. Otavio Bueno and Mark Colyvan expand upon Pincock’s account

and try to define more precisely what exactly is required in order to use mappings.1

By contrast, philosophers like Robert Batterman use examples from scientific prac-

tice to raise questions about the cogency of a mapping view.

The initial impetus for Pincock’s version of the mapping account comes from the

so-called problem of ’mixed statements.’ Mixed statements are those that contain

both empirical and mathematical terms. Pincock begins with the simple example

’The satellite has a mass of 100 kg.’ Statements of this sort, he argues, depend

for their truth on a ’mapping’ between a mathematical object and empirical reality.

These mappings are intended to possess structural properties that correspond to

properties of empirical reality, so Pincock calls his account structuralist.2 For simple

physical properties, the mappings are straightforward. Points in space are mapped

1Bueno and Colyvan [2011], p. 1
2Pincock [2004], pp. 145-6
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on to a real number coordinate system, for example. The statement above involving

mass would require for its truth a mapping between a standard kilogram, the satellite,

and the natural number 100. For Pincock, mappings are relations, conceived as

intensional entities distinct from the tuples of objects that stand in those relations.3

For mappings more complicated than these, Pincock says that the structural relation

is not quite an isomorphism, because there is undoubtedly structure which is either

added or not preserved by the mathematics used.

In a later paper, Pincock expands on this rudimentary version of the mapping

account. In “A Role for Mathematics in Empirical Science,” Pincock gives a clearer

account of the notion of a mapping in a way that speaks to some of the concerns

raised by nominalists. This paper speaks to the ontological side of the debate more

than any of the literature than I am examining in this section, and it does so in a way

that anticipates my biggest conclusion, namely, the authors that focus on scientific

practice and mostly disregard the ontological issues discussed in the previous two

sections end up having the best line on the problem of applied mathematics.

In this paper Pincock takes it as his task to reconcile the theoretical indispensabil-

ity of mathematics with its metaphysical dispensability. The case for the theoretical

indispensability is just the various formulations of the indispensability argument,

which I have already covered at length. The metaphysical dispensability of mathe-

matics is associated with the mathematical anti-realist positions that I have looked

at, but for Pincock, who is not a nominalist, the case for the metaphysical dispens-

ability of mathematics is simply that it does not interact causally with other things

in the world. This by itself does not entail nominalism, of course, since all of the au-

thors I have examined so far would certainly agree that mathematical abstracta are

non-causal. Pincock contends that advocates of nominalism and platonism in this

3ibid., p. 151
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debate differ according to which of these two principles they prefer to emphasize.4

Pincock’s main conclusion about the role of mathematics in empirical science is

that applied mathematics allows scientists to make claims about the large-scale fea-

tures of physical systems while remaining neutral about the micro-scale features.5

Furthermore, theories which don’t use mathematics will not be as well confirmed as

those that do. As previously indicated however, Pincock does not advocate this po-

sition in order to vindicate Platonism. The role that he specifies for mathematics is

intended to be consistent with what he considers the guiding principles of nominalism

and Platonism, namely, metaphysical dispensability and theoretical indispensability.

Nevertheless, the account that Pincock gives presents problems for some of the ma-

jor nominalist and Platonist accounts. Mathematics is indispensable for scientific

theories, Pincock claims, but in order to play the role just described, it must be in

large part confirmed prior to being applied. This view of course runs counter to that

of the indispensability motivated Platonist.

The main addition to the mapping account that Pincock adds in this article is

the notion of an ’abstract explanation.’ An abstact explanation, as defined by Pin-

cock, is an “...explanation that appeals primarily to the formal relational features

of a physical system.”6 Pincock’s purpose in introducing abstract explanations is to

block the conclusions of those who deny theoretical indispensability. These sorts of

explanations have very different features, Pincock argues, than the sorts of mathe-

matical explantations involving mappings onto numerical coordinate systems which

can be called into question on the basis of arbitrariness in the choice of units. The

example he gives of an abstract explanation is the Euler example. The Euler example

concerns the bridges in Königsberg. There are seven bridges connecting four pieces of

4Pincock [2007a], p. 254
5ibid., p. 255
6ibid., p. 257
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land in Königsberg. The layout of the bridges makes it impossible to cross all of the

bridges once and only once in a continuous path. The explanation for this fact can

be given in terms of a mathematical representation of the bridges. The setup is as

follows: we treat the pieces of land as vertices and the bridges as edges, considering

the vertices in terms of their valence, or how many edges connect to them, under-

standing a path to be a series of edges that connect via common vertices, and finally,

we define a graph as Eulerian if and only if there is a path that begins and ends at

one vertex and contains each edge once and only once. Given this way of mapping

the bridges with a graph structure, we can explain the fact that it is impossible to

cross all of the bridges once and only once by virtue of the fact that the graph which

maps the structural relations between the bridges is non-Eulerian.7

The Euler example is intended to give a clear cut case of a mathematical expla-

nation of a physical fact which fits Pincocks picture of a mapping accounting for the

large scale features while disregarding the micro level ones. Importantly, it also does

not rely on a mapping of physical quantities onto a system involving arbitrarily cho-

sen units, which some have questioned (as seen in the previous section). Pincock’s

contention is that the Euler example clearly relates directly to the actual structural

properties of the bridges, and so truly gets at the fundamental features of the phys-

ical system. Pincock advances this concept for reasons that are tangential to this

thesis, but it addresses the indexing account discussed in the previous section as well.

Rather than merely indexing some physical quantities, as Daly and Langford would

likely argue, Pincock’s contention is that the graph structure used in this mapping

represents the important and fundamental features of the system.

7ibid., p. 258-9
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4.1.2 Bueno and Colyvan’s Inferential Account

Otavio Bueno and Mark Colyvan offer an account of applied mathematics that

is intended to address some shortcomings of Pincock’s account. They call this ac-

count the inferential conception of applied mathematics.8 They share with Pincock

the central intuition of the mapping account, that mathematics is a rich source of

structures, and the utility of mathematics in empirical science comes from the math-

ematics capturing and representing structural features of reality. The account they

offer differs from Pincock’s account because Bueno and Colyvan consider mapping to

be a part of the larger process of applying mathematics. The structural similarities

that the mapping relation identifies are only a part of what scientists are concerned

with when using mathematics, and Bueno and Colyvan’s broader account brings in

pragmatic and other considerations. This involves a less strict notion of a mapping,

but this leeway allows the inferential conception to deal much better with the prob-

lems surrounding idealization, which I will discuss in more detail in the following

section on Batterman’s objections to mapping.

The main point of contention between Pincock’s simple mapping account and

the inferential conception is the notion of a mapping. Bueno and Colyvan argue

that Pincock’s account leaves this key notion critically underdefined. They illustrate

the mapping intuition with the fitting example of a map. A map represents many

structural and relational features of the area that it maps, but some structure is

left out of even the best maps. The actual geography has more structure than

the map does. In the case of the mathematical maps used in science, the reverse

situation may obtain, where the mathematics may contain structure that is absent

from the situation that is being mapped.9 Given these different possibilities, Bueno

8Bueno & Colyvan [2011]
9ibid., p. 3
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and Colyvan raise the question of what sort of relationship a mapping should involve

(e.g. isomorphism, homomorphism). They note that Pincock does not offer much in

the way of an answer to this question. In some of the simpler examples discussed in

the foregoing section, Pincock refers to isomorphisms, but he also says that this is

far from necessary in many instances.10

One important feature of the inferential conception is that it takes a neutral

response to the ontological question. This account of applications does not require

commitment to mathematical entities, or the denial of those commitments, in order

to go through. To anticipate the final section of this thesis, this fact, along with

the strengths and richness of the account itself, suggests an approach to the problem

of applied mathematics that mostly disregards the ontological question. In this

respect the inferential account is similar to Pincock’s account11 as well as Batterman’s

account discussed below. For this reason, it seems that a focus on mathematics as

a resource which enables modeling and inference, whatever conclusions we might

reach on the details, offers a better approach than that taken by the indispensability

focused authors examined in the previous chapter of this thesis.

The centerpiece of the inferential conception is the immersion/interpretation

framework for applications. This framework breaks down the application process

into three steps. The first step, immersion, sets up the mapping relationship which

will be used for the relevant situation with a mathematical structure of some sort

that suits the purpose. The second step, derivation, involves using the mathemati-

cal structure to draw inferences about the system as it is modeled. The final step,

10ibid.,
11Pincock’s account does make use of potentially questionable intensional entities, as he himself

acknowledges, but regarding the nominalism/Platonism debate in particular, his view does not
seem to exclude either side. He is a mathematical realist in the semantic sense to be sure, but as
we discussed in section 2, semantic realism does not entail metaphysical realism despite what other
dubious entities he may invoke.
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interpretation, consists of the opposite operation as the immersion step. In this step

the consequences drawn within the mathematical formalism are interpreted as con-

sequences about the physical situation.12 A key distinction to understand between

this schema and Pincock’s account is that the immersion and interpretation steps

need not be simply inverses of one another. This may be the case, but the process

does not commit one to using the exact mapping relationship invoked in the immer-

sion step when re-physicalizing the inferences that have been drawn. Scientists enjoy

significantly more latitude in deducing what their mathematical inferences mean in

empirical terms on this account, whereas on Pincock’s account the mapping relation

is considerably more fixed.

In contrast with Pincock’s account, the inferential conception is not purely struc-

tural insofar as pragmatic concerns relating to the process of applying mathematics

are allowed to influence what mathematical model is chosen.13 Bueno and Colyvan’s

approach is intended to cover the role of applied mathematics as it is used in the

theorizing of working scientists. This role, they contend, is to enable inference about

empirical phenomena via mathematical structures. Or to put it another way, mathe-

matical modeling is used in science because it lets scientists draw inferences about the

empirical world via mathematical machinery that would otherwise be “extraordinar-

ily hard (if not impossible) to obtain.”14 Bueno and Colyvan acknowledge that there

are other roles which applied mathematics does play, such as unification of theories,

enabling prediction, and providing explanations. Nevertheless, the role of mathe-

matics in empirical science is to enable inference, which is necessary for generating

novel predictions and explanation as Bueno and Colyvan go on to argue.15

12ibid., p. 9
13ibid., p. 10
14ibid., p. 8
15ibid.,
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The differences between the inferential conception and Pincock’s mapping account

are subtle but significant. Bueno and Colyvan argue that the inferential conception

is not subject to two significant problems that beset the Pincock’s account. I’ll call

these two problems the problem of explanation and the problem of idealization. I

have already alluded to the problem of idealization and as I have indicated, it will

play a central role in the next section. Bueno and Colyvan characterize the problem

as an incompleteness in the mapping account; if there are some applications which

involve a mathematical structure that does not map on to the physical world, then

the mapping account at least owes us something to explain these examples.16 The

problem of explanation is more novel at this point. If mathematics is to be thought of

as a representation system for modeling the physical world, as the mapping account

recommends, Bueno and Colyvan find it hard to reconcile this with mathematical

explanations, for which there seems to be at least a prima facie case. Again, they

contend that the mapping account needs to account for mathematical explanations

if it is to be a complete account of applications.17

Bueno and Colyvan argue that the inferential conception is not subject to these

two problems.18 To solve the problem of idealization, they introduce the notion of

a partial mapping. As one might suspect, a partial mapping is a mapping between

a mathematical structure and some aspects of the physical situation. Even in cases

of idealizations, where there is no complete mapping of the physical world onto a

mathematical structure, it is still the case that some aspects of the physical situa-

tion map onto the mathematical structure. The existence of this partial mapping

explains why the idealization works to the extent that it does.19 Bueno and Colyvan

16ibid., p. 6
17ibid., p. 7
18ibid., p. 12
19ibid., p. 13
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provide a formalism for partial relations, where the partial structure that accounts

for an application contains the domain of relevant physical and mathematical ob-

jects, as well as a set of relations between some of the elements of the domain. The

incompleteness of a partial structure can be read ontologically or epistemically, and

Bueno and Colyvan take no stand on this. Given the notions partial stucture and

partial mapping, they suggest that in these cases the mapping relation is a partial

homomorphism or partial isomorphism.

The solution that Bueno and Colyvan offer to the problem of explanation is a

bit more sparse. They claim that mathematical explanations require that one draw

appropriate inferential relations between the mathematical structures used and the

empirical set up. To enable mathematical explanations, the immersion step and the

interpretation step must be mathematically sound and empirically significant.20 The

example they use is predator-prey pairs in cyclical populations. Briefly, populations

of organisms that exhibit certain cyclical behavior cannot be explained without stipu-

lating a predator-prey relationship. Bueno and Colyvan say that this fact is explained

as a mathematical explanation; the differential equations used to model population

do not admit of periodic solutions unless they are second order differential equa-

tions. These facts about the differential equations used to model the system become

an explanation for the empirical fact that emerges when we interpret the need for a

second order differential equation as a need for a predator-prey pair. This mathe-

matical explanation can only go through if suitable inferential relations between the

biological domain and the mathematical structure are drawn at the immersion and

interpretation stages. As Bueno and Colyvan put it:

In particular, one needs to establish a biologically significant interpre-

tation of periodic solutions, and a mathematically sound reading of the

20ibid., p. 20
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predator-prey pair. The latter is achieved in the immersion stage, and

the former in the interpretation step. In other words, attention is needed

both in the immersion and in the interpretation stages, so that the rele-

vant mathematical facts...can be invoked to yield the appropriate deriva-

tions.21

This is certainly an illustrative example, but problems still arise for Bueno and

Colyvan when it comes to accounting for explanations arising from idealizations, as

I will discuss in the next section.

4.2 Batterman’s Objections to Mapping Accounts

Robert Batterman has offered a thoroughgoing critique of the various mapping

views based on the problem of idealization. The particular issue that drives this

critique is that the mapping accounts fail to provide an adequate account of math-

ematical explanation. Batterman’s main thesis is that the mapping accounts are

unable to deal with a certain type of idealization that frequently occurs in science,

and this failure prevents them from being a full account of mathematical explanation.

Whereas the advocates of the mapping views attempt to mitigate the presence of

idealizations with additional theoretical constructs, Batterman’s contention is that

idealizations are often necessary for the theory with the greatest explanatory power.

Like the previously discussed authors in this section, Batterman largely leaves the

ontological question to the side. He works from the assumption that there are indeed

mathematical explanations, but he avoids ontological conclusions with the contention

that many instances of mathematical explanation do not require an accurate mapping

of reality onto mathematical entities, given a particular sort of idealization which he

discusses at length.

21ibid.,
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Batterman’s objection to mapping accounts starts from the seeming fact that the

presence of idealizations seems to indicate that the mathematics does not correspond

with the physical world.22 If a mathematical model contains structural features which

are known not to be representative of reality, then it seems that mathematics can

play the role it does without needing to map reality in a structure-preserving way.

Batterman’s critique of the accounts offered by Pincock and Bueno and Colyvan

centers around the emphasis put on explanatory value. The mapping accounts focus

their attention on representational accuracy, or how well the mapping preserves the

structure of reality, while neglecting to account for what aspects of mathematical

models (including idealizations) contribute to the explanatory power of theories.23

To quote Batterman: “How does having a representation or a partial representation

of a physical situation in mathematical terms provide an explanation of that physical

situation.”24

Batterman suggests that, in order to reconcile the mapping account with the

prevalence of idealizations, one would need to utilize what he calls a ’de-idealizing

story.’ A de-idealizing story is an account of how a theory which contains an idealized

use of mathematics can be corrected by removing the idealized portions.25 The idea

is that, despite the presence of known falsifications, there is no problem because

they can, in principle, be removed. This sort of solution seems compatible with

the sorts of idealizations that are the result of ignoring some structural elements of

the physical world when choosing a mathematical model, which were alluded to by

Bueno and Colyvan. While Batterman’s ultimate claim is that a de-idealizing story

will not work in come contexts, even this partial solution is at odds with the mapping

22Batterman [2010], p. 10
23ibid., p. 16
24ibid.,
25ibid.,
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accounts, because Batterman argues that the notion of a de-idealizing story requires

that one accept a global ranking of idealizations, which neither Pincock nor Bueno

and Colyvan seem to want to do.26

Pincock recognizes the problem posed for his account by idealizations and he

offers a schema for understanding instances of applied mathematics that involve

them.27 Pincock maintains that different idealized models can be evaluated and

ranked against one another, and more importantly, a fully accurate, perfectly exact

mapping. To this end, he posits so called ’equation models’ and ’matching mod-

els.’ Equation models are those used by scientists, which may or may not contain

idealizations. Matching models are the hypothetical models that perfectly character-

ize every aspect of the physical situation. Given this distinction, different equation

models for a particular situation can be evaluated or ranked on the basis of their

relationship with the matching model for the situation.28 It is important to note,

however, that Pincock’s ranking project is not a global measure, but rather one that

factors in context relevant thresholds of accuracy.29 This relationship is evaluated in

light of the goals of the scientists using the model: depending on what the model is

being used for, different margins of error will be appropriate. Pincock says that if

there is a mathematical transformation between the equation and matching models

which falls within the appropriate margin of error for the parameters of interest,

then the idealization is good or adequate. This sort of mathematical transformation

is essentially what Batterman intends when he talks about a de-idealizing story, but

since Pincock denies that this is a global ranking, it seems that his measure of the

goodness of an idealization does not allow us to compare different idealized models,

26ibid., p. 17
27Pincock [2007b]
28ibid., p. 962
29Batterman [2010], p. 12
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which Batterman sees as problematic.30

If Pincock’s solution is something like a de-idealizing story, then it does meet the

preliminary standard that Batterman gives for idealizations, at least in some cases.

The problem that Batterman has with this solution is that it does not account for

all of the idealizations in science. Mathematics gets used in science in ways where,

not only is there no mapping between the mathematics and reality, but there is no

way to connect the equation model to the matching model in the way that Pincock’s

solution suggests. Batterman calls such cases ’non-traditional idealizations’ and he

gives detailed treatment of a few different examples.31 Non-traditional idealizations

are characterized by what he calls ’asymptotic reasoning.’ The first thing to note

about asymptotic reasoning is that it is an operation, by means of which idealizations

are introduced which increase the explanatory power of a model. These sorts of

idealizations arise by taking a certain parameter of the system to a limit. This

does not quite square with the mapping account, which Batterman characterizes as

involving static mappings of empirical situations to mathematical structures.32

An example of a non-traditional idealization is the scientific description of rain-

bows. According to Batterman, the spacing of bows in rainbows is a structurally

stable property across rainbows, which cannot be explained in terms of light wave-

lengths of any finite length. To explain the structure of the rainbow, we must take

the limit of the wavelength as it approaches zero. In other words, we must leave a

wave account of light in favor of a ray account in order to successfully account for the

universal pattern found in rainbows.33 The key thing to notice about this example is

that the idealization is not the sort of simplification that can be de-idealized. There

30ibid.,
31ibid., p. 17
32ibid., p. 10
33ibid., p. 21
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is a discontinuity between the wave model of light, which we know to be more rep-

resentative of reality, and the ray model, which we must use in order to explain the

spacing of rainbows. This discontinuity is at odds with the matching model/equation

model schema given by Pincock. The description of the rainbows as given by the

ray model is incommensurate with the wave model, so it seems impossible to judge

how far this model is from the matching model involving waves. Put simply, ideal-

izations which are continuous with the matching model can potentially be evaluated

and de-idealized in the way that Pincock suggests, but these sorts of non-traditional

idealizations cannot be.

Batterman’s criticism of the inferential conception runs along similar lines to

his criticism of Pincock’s account. Despite the dissimilarities between the inferen-

tial conception and Pincock’s account, Batterman finds their attempted solution to

the problem of idealization, namely the notion of a partial mapping, insufficient

to account for the explanatory value of applied mathematics in idealized contexts.

Batterman finds partial mappings very similar to Pincock’s equation models.34 For

similar reasons he asks why we should think that a partial representation contributes

to the explanatory power of a theory. He looks at the account given by Bueno and

Colyvan and finds hints towards an answer to this question. It seems that Bueno

and Colyvan’s partial mappings rely for their explanatory usefulness on the implicit

assumption that the possibility exists of replacing them with less idealized models

that account for more details than the more idealized model.35 This type of solution

is very similar to what Pincock offered with the notion of ranking idealizations, and

Batterman finds it flawed for similar reasons. Before ending this section, I need

to note that ultimately neither Pincock nor Bueno and Colyvan want to pursue a

34ibid., p. 14
35ibid., p. 15
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solution to the problem of idealizations that implies that their explanatory value is

derivative of the greater explanatory value of less idealized models. Nevertheless,

Batterman finds their reluctance at odds with their desire to evaluate idealizations

in terms of representational accuracy.36

4.2.1 Pincock’s Response to Batterman

Pincock maintains that his mapping account can incorporate non-traditional ide-

alizations with the addition of a bit more machinery. He argues that Batterman’s

non-traditional idealizations are a species of abstract explanation.37 Non-traditional

idealizations will simply require an additional component to account for the explana-

tory power of the (non-representative) model. In addition to the matching model

(model A) and the idealized model (model B), non-traditional idealizations will also

require a third model (model C) which is given in terms of both models A and B.

Pincock calls this an intermediate model.38 Pincock thinks that the mapping account

is potent enough to construct models of the description of A, B, and C, and that this

accounts for the gap between a matching model and the idealized model in cases of

non-traditional idealizations.

I find this response flawed because the notion of an acceptable mathematical

transformation seems exactly like what Batterman calls a de-idealizing story, and

so the addition of an intermediate model remains subject to the same problems

relating to non-traditional idealizations that Batterman raises. It is not clear what an

intermediate model adds to Pincock’s account. Presumably he thinks an intermediate

model would bridge the gap between A and B, and allow us to account for the

mathematical transformation between the two, but constructing model C suffers

36ibid., p. 16
37Pincock [2011], p. 213
38ibid., pp. 213-6
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from the very difficulty that it is meant to overcome. If A and B are mathematically

incommensurate, the problem of constructing an intermediate model between the

two is essentially the same problem as that of giving a mathematical transformation

between the two. If this is right, intermediate models do not relieve the difficulty of

non-traditional idealizations. I agree with Batterman that any account of the role

of applied mathematics must be an adequate account of the explanatory power of

applied mathematics. The problem of applied mathematics is to give an account of

the role of applied mathematics, given that mathematics does not interact causally

with the non-mathematical portions of scientific theory. Applied mathematics seems

to make a unique contribution to scientific theory, and it appears that in our attempts

to elucidate just what this role is, we have to pay close attention to explanatory

practice.

Batterman’s proposal relies on the assumption that mathematical explanation

involves abstraction and unification. In his earlier work, Batterman identified two

types of explanatory questions that might be asked. One might ask why a particular

event occurred, but one might also ask why events of that sort tend to occur in

general. The latter question concerns the universality of phenomena, and this is the

type of explanatory reasoning that Batterman focuses on. In his discussion of the

critical behavior of fluids as an example of non-traditional idealization, Batterman

notes that the explanatory value of taking the limit of the number of particles comes

from the fact that by doing so, one can explain the critical behavior of a wide range

of fluids which display qualitatively similar behavior. We can explain the universal

behavior of a wide range of fluids via our limiting operation, but not without it. The

mathematical operation gives us an equation model which explains the structurally

stable properties of not only different instances of the same fluid, but many different

fluids. This account of fluid behavior is even applicable to magnets if we draw
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an appropriate analogy between net magnetization and our description of the fluid

systems. It seems implausible that the applicability of the mathematics to such a

broad range of empirical situations is due to the fact that there is an appropriate

mapping in each case.

Asymptotic reasoning plausibly demonstrates that the mapping accounts of Pin-

cock and Bueno and Colyvan cannot explain all idealization, since Pincock’s inter-

mediate model solution does not seem adequate for the reasons given above. Fur-

thermore, non-traditional idealizations often play a crucial role in unifying diverse

phenomena with a common mathematical description, as the fluid example makes

clear. Therefore, if we find Batterman’s arguments convincing, the overall lesson that

we should draw from his examples is that explanation is the primary goal of scientific

theory, not representation. Of the things that we think applied mathematics might

do in science, scientific practice shows us that scientists will purchase increased ex-

planatory value (i.e. increased unification and abstraction which generates tractable

mathematical descriptions) at the cost of representation. So, whatever we can say

about the representational content of scientific theories, scientific practice seems to

consider representation to be subservient to explanation.

4.3 Idealization: Epistemic Worries

In addition to the concerns raised above, Pincock’s account of idealized scientific

models is subject to a significant epistemic difficulty. His account of idealization

relies heavily on the notion of an (acceptable) mathematical transformation between

the matching model and the idealized equation model. In certain cases, we have

some notion of the way in which our accounts are idealized, and so an evaluation

of the equation model relative to the matching model seems at least plausible. But

if it is the case that the equation model that we are examining represents our best
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scientific account of the situation we are investigating, what can scientists have to

say about the distance of our equation model from the matching model? If this

situation occurs in science, I think this undermines Pincock’s attempt to reconcile

idealizations with the mapping account.

If our theories contain idealizations that we are ignorant of, this severs the match-

ing model-equation model connection which is key for Pincock’s account. His account

requires that the relevant scientists believe that there exists an acceptable (relative

to the context) mathematical transformation from the equation model to the match-

ing model. Pincock describes three possible epistemic situations the scientists might

occupy concerning these transformations, one of which seems similar to this sort

of ignorance. In this epistemic situation, Pincock argues that successful prediction

is sufficient evidence to convince us that our model is a good representation. The

possibility persists that we will discover the mathematical transformation between

our model and the matching model, but it may well never happen, and the matching

model may turn out to be very different than what we imagined. The plausibility

of such a situation seems like a problem for Pincock’s account. In such cases, what

could ground the belief that an appropriate transformation exists? If we can say

nothing about the matching model, then any predictively adequate model is equally

acceptable. This is not to say that predictive adequacy is not a good reason to ac-

cept a scientific theory, but merely that predictive adequacy is insufficient to infer

representational accuracy.
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5. CONCLUSION

I will close by suggesting some possibilities for conclusions to be drawn from the

literature that I have examined in the preceding chapters. I have examined a number

of approaches to the problem of applied mathematics under two broad themes. As I

have previously indicated, I think that my examination of the applications literature

suggests that approaching the problem of applied mathematics from an ontologically

neutral perspective is the more fruitful option. All three authors examined in chapter

4 approach applied mathematics without any substantial commitment to one side or

the other of the ontological debate. Bueno and Colyvan explicitly add the proviso

that their account is consistent with realist and anti-realist views. Pincock, in his

more ontological moments, positions himself as the mediator between Platonist and

nominalist concerns, and his view seems consistent with either ontological position

if the inferential conception is. Indeed, the indexing position seems like a primitive

precursor to a mapping type view in some respects, and a Platonist position could

be used easily to augment a mapping account. Batterman’s view seems likewise

consistent with either Platonism or nominalism. Platonism is not inconsistent with

his rejection of the mapping view because whether or not the mathematical models

used in science serve to accurately represent the physical world does not seem to

bear on the ontological status of the entities used in the modeling system.

In addition to being consistent with either ontological position, an applications-

focused approach seems to be a much better option for getting at the details of applied

mathematics. Whereas the debate in the ontological literature centered around (and

one might argue never moves past) examples drawn from science thought to pro-

vide examples of indispensable mathematics (and rejections of these examples), by
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taking for granted the explanatory indispensability of mathematics, Pincock, Bueno

& Colyvan and Batterman are able to shed light on details regarding mathematical

models that the ontological literature never approached. Even if the accounts of-

fered by all three of these authors end up being insufficient, they represent a better

general approach, because the ontological question seems to impede progress of our

understanding of the issues of modeling and representation in applied mathematics.

None of this is to deny the significance of the ontological question, but by linking

the answer to this question to applications the way the indispensability argument

does, some interesting questions about the explanatory significance of mathematical

models are clouded.

In the end, it seems like some amended version of the inferential conception is

the most promising way forward. If the account can be modified to address exam-

ples of explanatory idealizations of the sort that Batterman discusses, the inferential

conception seems like a promising direction for future work. The flexibility of the

inferential account with regards to the mapping relationship makes it an ideal start-

ing point for an account of applied mathematics that incorporates the core idea of

mapping, that mathematics provides structures that are ideal for modeling, with a

more nuanced understanding of the realities of scientific practice, which seems at

times to prize mathematical models for purposes other than accurately representing

reality.
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