
REINFORCEMENT LEARNING CONTROL WITH APPROXIMATION OF

TIME-DEPENDENT AGENT DYNAMICS

A Dissertation

by

KENTON CONRAD KIRKPATRICK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, John Valasek
Committee Members, Raktim Bhattacharya

Suman Chakravorty
Thomas Ioerger

Department Head, Rodney Bowersox

May 2013

Major Subject: Aerospace Engineering

Copyright 2013 Kenton Conrad Kirkpatrick

ABSTRACT

Reinforcement Learning has received a lot of attention over the years for systems

ranging from static game playing to dynamic system control. Using Reinforcement

Learning for control of dynamical systems provides the benefit of learning a control

policy without needing a model of the dynamics. This opens the possibility of con-

trolling systems for which the dynamics are unknown, but Reinforcement Learning

methods like Q-learning do not explicitly account for time. In dynamical systems,

time-dependent characteristics can have a significant effect on the control of the sys-

tem, so it is necessary to account for system time dynamics while not having to rely

on a predetermined model for the system.

In this dissertation, algorithms are investigated for expanding the Q-learning

algorithm to account for the learning of sampling rates and dynamics approximations.

For determining a proper sampling rate, it is desired to find the largest sample time

that still allows the learning agent to control the system to goal achievement. An

algorithm called Sampled-Data Q-learning is introduced for determining both this

sample time and the control policy associated with that sampling rate. Results show

that the algorithm is capable of achieving a desired sampling rate that allows for

system control while not sampling “as fast as possible”.

Determining an approximation of an agent’s dynamics can be beneficial for the

control of hierarchical multiagent systems by allowing a high-level supervisor to use

the dynamics approximations for task allocation decisions. To this end, algorithms

are investigated for learning first- and second-order dynamics approximations. These

algorithms are respectively called First-Order Dynamics Learning and Second-Order

Dynamics Learning. The dynamics learning algorithms are evaluated on several

ii

examples that show their capability to learn accurate approximations of state dy-

namics. All of these algorithms are then evaluated on hierarchical multiagent systems

for determining task allocation. The results show that the algorithms successfully

determine appropriated sample times and accurate dynamics approximations for the

agents investigated.

iii

DEDICATION

This dissertation is dedicated to my loving family. Without their patience, un-

derstanding, and encouragement the completion of this research and writing of this

dissertation would not have been possible.

iv

ACKNOWLEDGEMENTS

I would like to acknowledge and express gratitude to my committee for their help

in the execution of this research. Dr. Thomas Ioerger, Dr. Suman Chakravorty,

and Dr. Raktim Bhattacharya provided valuable knowledge and expert advice in

the fields of machine learning, dynamics, and control. I am especially thankful for

the help of my committee chair, Dr. John Valasek, for his exceptional guidance and

instrumental help in both the determination of this thesis and the execution of the

research. His continuing support made this dissertation possible.

I would also like to acknowledge the sponsors who provided funding for this re-

search. This work was sponsored (in part) by the National Science Foundation Grad-

uate Research Fellowship Program, and the Air Force Office of Scientific Research,

USAF, under grant/contract number FA9550-08-1-0038. The technical monitor is

Dr. Fariba Fahroo. The views and conclusions contained herein are those of the

author and should not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of the National Science Foundation,

Air Force Office of Scientific Research, or the U.S. Government.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xiv

LIST OF ALGORITHMS . xvi

NOMENCLATURE . xvii

1. INTRODUCTION . 1

1.1 Motivation . 2

1.2 Scope and Contribution . 4

2. REINFORCEMENT LEARNING . 6

2.1 Q-learning . 6

2.2 ε-greedy . 8

2.3 Function Approximation . 10

2.3.1 Artificial Neural Networks . 11

2.3.2 Genetic Algorithms . 13

2.3.3 k-Nearest Neighbor . 14

2.4 Q-learning Control Example . 15

3. SAMPLED-DATA Q-LEARNING . 22

3.1 Sampled-Data Q-learning Algorithm 22

3.2 Markov Property . 24

3.3 Reward Shaping . 27

3.4 Sampled-Data Q-learning Examples 34

vi

3.4.1 Inverted Pendulum . 35

3.4.2 Rotating Robot . 45

4. DYNAMICS APPROXIMATION LEARNING 56

4.1 First-Order Dynamics Learning . 58

4.2 Second-Order Dynamics Learning . 65

4.3 Dynamics Learning Examples . 75

4.3.1 First-Order Examples . 78

4.3.2 Second-Order Examples . 88

4.3.3 Multiple States . 105

4.4 Sample Time Ranges . 110

5. MULTIAGENT SYSTEMS . 116

5.1 Learning in Multiagent Systems . 116

5.1.1 Single-Level Multiagent Learning 116

5.1.2 Hierarchical Multiagent Learning 120

5.2 Homogeneous Agents Examples . 122

5.2.1 Equal Number of Agents and Goals 124

5.2.2 Fewer Goals than Agents . 133

5.3 Heterogeneous Agents Examples . 140

5.3.1 Equal Number of Agents and Goals 143

5.3.2 Fewer Goals than Agents . 155

6. CONCLUSIONS AND RECOMMENDATIONS 162

6.1 Sampled-Data Q-learning . 162

6.2 Dynamics Learning . 163

6.3 Multiagent Systems . 163

6.4 Recommendations . 164

REFERENCES . 167

APPENDIX A. DERIVATION OF INVERTED PENDULUM EQUATIONS
OF MOTION . 174

APPENDIX B. PARTIAL FRACTION EXPANSION SOLUTIONS 181

B.1 No Damping . 181

vii

B.2 Underdamped . 183

B.3 Critically Damped . 186

B.4 Overdamped . 188

viii

LIST OF FIGURES

FIGURE Page

2.1 Perceptron . 11

2.2 Q-learning Simulation of Robot - Goal = [0,0] 18

2.3 Time History of Robot - Goal = [0,0] 19

2.4 Command History of Robot - Goal = [0,0] 19

2.5 Q-learning Simulation of Robot - Goal = [3,6] 20

2.6 Time History of Robot - Goal = [3,6] 20

2.7 Command History of Robot - Goal = [3,6] 21

3.1 Sampled-Data Q-learning Diagram 24

3.2 Inverted Pendulum . 35

3.3 Inverted Pendulum State Time History: Constant Reward 40

3.4 Inverted Pendulum Force Time History: Constant Reward 41

3.5 Inverted Pendulum Phase Diagram: Constant Reward 41

3.6 Inverted Pendulum State Time History: Quadratic Reward 43

3.7 Inverted Pendulum Force Time History: Quadratic Reward 44

3.8 Inverted Pendulum Phase Diagram: Quadratic Reward 45

3.9 Robot Simulation - Quadrant 1 . 48

3.10 State History of Robot - Quadrant 1 49

3.11 Command History of Robot - Quadrant 1 49

3.12 Robot Simulation - Quadrant 2 . 50

3.13 State History of Robot - Quadrant 2 50

3.14 Command History of Robot - Quadrant 2 51

3.15 Robot Simulation - Quadrant 3 . 51

3.16 State History of Robot - Quadrant 3 52

ix

3.17 Command History of Robot - Quadrant 3 52

3.18 Robot Simulation - Quadrant 4 . 53

3.19 State History of Robot - Quadrant 4 53

3.20 Command History of Robot - Quadrant 4 54

4.1 FODL Diagram . 63

4.2 Complex Plane - ζ = 0 . 69

4.3 Complex Plane - 0 < ζ < 1 . 69

4.4 Complex Plane - ζ = 1 . 70

4.5 Complex Plane - ζ > 1 . 70

4.6 SODL Diagram . 72

4.7 Multiagent System . 75

4.8 High-Level Agent Commands . 76

4.9 High-Level Agent Decision Making 77

4.10 1st Order Value Function for τ = 0.2: 0 Episodes 79

4.11 1st Order Value Function for τ = 0.2: 200 Episodes 79

4.12 1st Order Value Function for τ = 0.2: 1,000 Episodes 80

4.13 1st Order Value Function for τ = 0.2: 5,000 Episodes 80

4.14 1st Order Value Function for τ = 0.2: 10,000 Episodes 81

4.15 1st Order Value Function History for τ = 0.2 81

4.16 1st Order Value Function for τ = 1: 0 Episodes 83

4.17 1st Order Value Function for τ = 1: 200 Episodes 84

4.18 1st Order Value Function for τ = 1: 1,000 Episodes 84

4.19 1st Order Value Function for τ = 1: 5,000 Episodes 85

4.20 1st Order Value Function for τ = 1: 10,000 Episodes 85

4.21 1st Order Value Function History for τ = 1 86

4.22 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 0 Episodes 90

x

4.23 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 200 Episodes 90

4.24 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 1,000 Episodes 91

4.25 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 5,000 Episodes 91

4.26 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 10,000 Episodes . . . 92

4.27 Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 0 Episodes 93

4.28 Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 200 Episodes 94

4.29 Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 1,000 Episodes 94

4.30 Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 5,000 Episodes 95

4.31 Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 10,000 Episodes . . . 95

4.32 Average ωn Value History for (ωn, ζ) = (6, 0.8) 96

4.33 Average ζ Value History for (ωn, ζ) = (6, 0.8) 96

4.34 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 0 Episodes 98

4.35 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 200 Episodes 99

4.36 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 1,000 Episodes . . . 99

4.37 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 5,000 Episodes . . . 100

4.38 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 10,000 Episodes . . . 100

4.39 Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 0 Episodes 101

4.40 Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 200 Episodes 102

4.41 Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 1,000 Episodes . . . 102

4.42 Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 5,000 Episodes . . . 103

4.43 Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 10,000 Episodes . . . 103

4.44 Average ωn Value History for (ωn, ζ) = (10, 1.2) 104

4.45 Average ζ Value History for (ωn, ζ) = (10, 1.2) 104

4.46 V1 for Robot Speed Plot . 108

4.47 V2 for Robot Heading with Velocity Changes Plot 109

5.1 Hierarchical Multiagent System Diagram 122

xi

5.2 Hierarchical Multiagent System . 123

5.3 Homogeneous Multiagent Robot Paths - Sim 1 126

5.4 Homogeneous Multiagent Robot States - Sim 1 127

5.5 Homogeneous Multiagent Robot Command - Sim 1 127

5.6 Homogeneous Multiagent Robot Speed - Sim 1 128

5.7 Homogeneous Multiagent Robot Paths - Sim 2 130

5.8 Homogeneous Multiagent Robot States - Sim 2 131

5.9 Homogeneous Multiagent Robot Command - Sim 2 131

5.10 Homogeneous Multiagent Robot Speed - Sim 2 132

5.11 Homogeneous Multiagent Robot Paths - Sim 3 134

5.12 Homogeneous Multiagent Robot States - Sim 3 135

5.13 Homogeneous Multiagent Robot Command - Sim 3 135

5.14 Homogeneous Multiagent Robot Speed - Sim 3 136

5.15 Homogeneous Multiagent Robot Paths - Sim 4 138

5.16 Homogeneous Multiagent Robot States - Sim 4 138

5.17 Homogeneous Multiagent Robot Command - Sim 4 139

5.18 Homogeneous Multiagent Robot Speed - Sim 4 139

5.19 Heterogeneous Multiagent Robot Paths - Sim 1 145

5.20 Heterogeneous Multiagent Robot States - Sim 1 145

5.21 Heterogeneous Multiagent Robot Command - Sim 1 146

5.22 Heterogeneous Multiagent Robot Speed - Sim 1 146

5.23 Heterogeneous Robot Paths - Sim 1 (More Learning) 148

5.24 Heterogeneous Robot States - Sim 1 (More Learning) 149

5.25 Heterogeneous Robot Command - Sim 1 (More Learning) 149

5.26 Heterogeneous Robot Speed - Sim 1 (More Learning) 150

5.27 Heterogeneous Multiagent Robot Paths - Sim 2 152

xii

5.28 Heterogeneous Multiagent Robot States - Sim 2 153

5.29 Heterogeneous Multiagent Robot Command - Sim 2 153

5.30 Heterogeneous Multiagent Robot Speed - Sim 2 154

5.31 Heterogeneous Multiagent Robot Paths - Sim 3 156

5.32 Heterogeneous Multiagent Robot States - Sim 3 156

5.33 Heterogeneous Multiagent Robot Command - Sim 3 157

5.34 Heterogeneous Multiagent Robot Speed - Sim 3 157

5.35 Heterogeneous Multiagent Robot Paths - Sim 4 159

5.36 Heterogeneous Multiagent Robot States - Sim 4 159

5.37 Heterogeneous Multiagent Robot Command - Sim 4 160

5.38 Heterogeneous Multiagent Robot Speed - Sim 4 160

A.1 Inverted Pendulum on a Cart . 174

xiii

LIST OF TABLES

TABLE Page

3.1 Reward Function Success Rate . 34

3.2 SDQL Pendulum Result - Constant Reward 39

3.3 SDQL Pendulum Result - Quadratic Reward 42

3.4 SDQL Robot Result - Quadratic Reward 47

4.1 FODL Robot Value Function: τ = 0.2 82

4.2 FODL Robot Value Function: τ = 1 87

4.3 V2 after 10,000 Episodes: (ωn, ζ) = (6, 0.8) 97

4.4 V2 after 10,000 Episodes: (ωn, ζ) = (10, 1.2) 105

4.5 V1 for Robot Speed: τ = 1 . 107

4.6 V2 for Robot Heading with Velocity Changes: (ωn,ψ, ζψ) = (6, 0.8) . . 108

4.7 FODL with Sampling Ranges (Short) 111

4.8 FODL with Sampling Ranges (Medium) 112

4.9 FODL with Sampling Ranges (Long) 112

4.10 FODL with Sampling Ranges (Tiny) 113

4.11 SODL with Sampling Ranges (Short) 114

4.12 SODL with Sampling Ranges (Long) 115

5.1 Multiagent Goals . 125

5.2 Homogeneous Multiagent System ICs - Sim 1 125

5.3 Homogeneous Multiagent Goal Assignment - Sim 1 126

5.4 Homogeneous Multiagent System ICs - Sim 2 129

5.5 Homogeneous Multiagent Goal Assignment - Sim 2 129

5.6 Homogeneous Multiagent System ICs - Sim 3 133

xiv

5.7 Homogeneous Multiagent Goal Assignment - Sim 3 134

5.8 Homogeneous Multiagent System ICs - Sim 4 137

5.9 Homogeneous Multiagent Goal Assignment - Sim 4 137

5.10 Agent 1 Learned Dynamics . 143

5.11 Agent 2 Learned Dynamics . 143

5.12 Agent 3 Learned Dynamics . 143

5.13 Heterogeneous Multiagent System ICs - Sim 1 144

5.14 Heterogeneous Multiagent Goal Assignment - Sim 1 144

5.15 Heterogeneous Multiagent System ICs - Sim 2 151

5.16 Heterogeneous Multiagent Goal Assignment - Sim 2 151

5.17 Heterogeneous Multiagent System ICs - Sim 3 155

5.18 Heterogeneous Multiagent Goal Assignment - Sim 3 155

5.19 Heterogeneous Multiagent System ICs - Sim 4 158

5.20 Heterogeneous Multiagent Goal Assignment - Sim 4 158

xv

LIST OF ALGORITHMS

ALGORITHM Page

2.1 Q-learning . 8

2.2 ε-greedy . 10

2.3 k-Nearest Neighbor . 15

3.1 Sampled-Data Q-learning (SDQL) . 25

4.1 First-Order Dynamics Learning (FODL) 62

4.2 FODL with SDQL . 64

4.3 Second-Order Dynamics Learning (SODL) 73

4.4 SODL with SDQL . 74

xvi

NOMENCLATURE

α Step-Size Parameter

β Random Variable with Uniform Distribution

γ Discount Rate

∆ Change

δ Temporal-Difference

ε Exploration Probability

ζ Damping Ratio

ζψ Heading Angle Damping Ratio

θ Angle of Pendulum

λ Laplace Parameter

π Policy

τ Time Constant

τV Speed Time Constant

χ Instance

ψ Heading Angle

ψc Commanded Heading Angle

ωn Natural Frequency

ωn,ψ Heading Angle Natural Frequency

∇ Gradient

| Conditional Probability

, Logical And

A Action-Space

Ai Agent i, where i = 1,2,3...

xvii

As Supervisor Agent

a RL Action

a′ Next RL Action

DP Dynamic Programming

Ci Partial Fraction Expansion Constant i, where i = 1,2,3...

c Index

Cov[·] Covariance

d Euclidean Distance

E[·] Expected Value (Mean)

F Force

F Force Vector

f(T) Sample Time Function

FODL First-Order Dynamics Learning

g Gravity

Gi Goal i, where i = 1,2,3...

h Integration Time Step

I Network Inputs

i Index

j Index

j Imaginary Number

K Kinetic Energy

k Number of Nearest Neighbors

ki 4th-Order Runge-Kutta Increment Parameters, where i = 1,2,3,4

L Length

Lf Lagrangian Function

xviii

L{·} Laplace Transform

M Cart Mass

m Pendulum Mass

MDP Markov Decision Process

Mp % Overshoot

n Dimension of State-Space

ODE Ordinary Differential Equation

P State-Transition Probability Matrix

P Probability

Q Action-Value Function

Qi Generalized Forces

Q̂ Approximate Action-Value Function

qi Generalized Coordinates, where i = 1,2,3,...

R Expected Return

r Reward

r Displacement Vector

rc Constant Reward

RL Reinforcement Learning

s RL State

s′ Next RL State

s k-Nearest RL States

s̃ Augmented RL State Vector

sc Commanded State

SDQL Sampled-Data Q-learning

SMDP Semi-Markov Decision Process

xix

SODL Second-Order Dynamics Learning

steps(j) Number of Steps in Episode j

T Sample Time

t Current Timestep

tf Final Time

tp Peak Time

tr Rise Time

ts Settling Time

TD Temporal-Difference

U Potential Energy

V Speed

Vc Commanded Speed

Vmax Maximum Speed

VT Sample Time Value Function

V1 First-Order Dynamics Value Function

V2 Second-Order Dynamics Value Function

v Predicted Value of Next State-Action Pair

vc Velocity of Cart

vm Velocity of Mass

V ar[·] Variance

visits(·) Number of Times to Visit Parameter ·

Ẇ Work Rate

wi Weight i, where i = 1,2,3...

w Vector of Weights

x State

xx

ẋ State Velocity

ẍ State Acceleration

ẍest Estimated State Acceleration

xc Command in x-direction

X Weighted Input Sum

yc Command in y-direction

z1 Overdamped Solution Constant

z2 Overdamped Solution Constant

xxi

1. INTRODUCTION

Control of systems with unknown agent dynamics or in unknown environments

has received much attention over recent years. Solving the problem of determin-

ing how to plan paths for controlling agents in a previously unknown environment

has lead to the investigation of such methods as probability road maps and rapidly-

expanding random trees [5, 6]. Alternatively, learning to control agents whose dy-

namics are previously unknown has led to a variety of methods branched by model-

based or model-free methods. Model-based control methods require determining a

model of the system, which can be user-time consuming and complex. Methods of

system identification [48], reduced model control [3], uncertainty analysis [8], and

even artificial neural network-based modeling [38, 21] have been approached for re-

solving unknown models or complex models.

In recent years, Reinforcement Learning (RL) has been an extensively investi-

gated area of research in the field of machine learning. Machine learning covers a

wide variety of autonomous classification and control methods that have been uti-

lized for a number of tasks ranging from game playing [37] to protein modeling [16]

to aircraft control and navigation [52]. In particular, RL has been a popular tool for

solving problems such as dynamical system control, gain scheduling, maze navigation,

and game playing. There has been wide success in many of the applications, with the

most commonly explored being game playing scenarios such as TD-Gammon [46].

However, researchers have often encountered problems when casting the control of

dynamical systems as an RL problem. The state-to-action mapping provided by

RL techniques makes the idea of using them for control problems attractive, and

this is especially the case with Q-learning due to its proven convergence to optimal-

1

ity [20, 22, 23, 42, 24]. RL methods like Q-learning are appealing because they can

achieve this mapping experimentally without the need of a model [50]. Although this

is indeed the case, implementing these in real-world problems with time dynamics

has proven to be very difficult [45].

1.1 Motivation

In this dissertation, RL is studied for its use in dynamical system control due

to its model-free property for learning a behavioral mapping of states to control.

While more robust model-based methods of control may work better in many cases,

determining models for systems for which the dynamics are unknown can be dif-

ficult and time consuming. Studying the problems associated with implementing

RL methods in dynamical systems reveals that often the failures are not caused by

the basic approach of algorithms like Q-learning. Typically, the problem is either a

failure in properly representing the problem, inaccurate function approximation, or

both. When choosing to implement the popular Watkins’ Q-learning in a dynami-

cal system scenario, it is necessary to realize that the algorithm does not explicitly

account for time [50]. Time dependency is often either not accounted for during the

learning process or overlooked completely, but accounting for time in the selection

of actions (or control) is important. For instance, when handling sampled-data sys-

tems, small changes in sample time can cause drastic changes to the stability of the

control policy. Time is often abstracted out of the system, with dynamical system

control being treated like a static game of chess. Learning control policies in dynam-

ical systems will fail unless the dynamics are accounted for somehow in the learning

process [2],[1].

One research area that has recently received much attention has been the control

of cooperative multiagent systems through the use of Q-learning-based algorithms.

2

Learning to control multiple agents for the purpose of cooperatively achieving a spec-

ified goal is an appealing research topic with high complexity. Some research in this

area has involved comparing the effects of using Q-learning-based methods to deter-

mine joint action selection between different agents to the learning of agent actions

independently [7]. Other research has investigated stochastic game extensions to this

and treated the system as non-cooperative by having agents consider only themselves

with no knowledge of the existence of other agents [17]. Systems of agents that need

to coordinate their actions without knowledge of each other’s actions is an important

area of research for the general application to systems of agents that do not have the

ability to communicate with one another [29], [19]. Even so, other research has been

conducted involving the improvement of Q-learning approaches for determining joint

actions through the use of Bayesian inference to estimate strategies [47].

In most of the research discussed above, multiple agents are simulated in games

that have no dependence on time. Time-dependent agent dynamics cause a funda-

mental change to the system, and accounting for time dependencies in multiagent

systems has received little attention. This may be due to the fact that it is diffi-

cult to learn control policies for a single time-dependent agent using RL approaches.

To address this, a topic that needs to be investigated is the learning of the longest

sample time for a sampled-data system that can achieve a goal. Controlling real

continuous-time systems generally requires computer-based control, so sampling of

the continuous system is necessary. Problems arise in attempting to use a policy de-

rived in simulation on an actual hardware experiment without considering the sample

time used. In this case, if a model of the dynamics exists it is trivial to determine the

best sample time by classical methods. However, here we consider the case where

a model is not available and RL is being utilized for its model-free property. Thus

there is a need to determine the optimal sample time without the use of a model.

3

Another area of investigation that is needed for the learning of multiagent system

control policies is approximation of the dynamics. The learning process does not ex-

plicitly account for agent time dynamics, so that information is essentially abstracted

out of the learning. Since the main benefit of RL approaches like Q-learning is to

learn a control policy without the need for a model, the benefits of determining a

model have been overlooked. Having some knowledge of the time dynamics is needed

for determining the decisions to be made by the agents, and this is especially true in

heterogeneous multiagent systems. A full model may not be necessary, but some ap-

proximation of the individual agent dynamics can be very beneficial for determining

global behavior rules in time-to-goal command and control scenarios.

1.2 Scope and Contribution

In this dissertation, RL-based control approaches are extended to systems with

unknown time dynamics. The scope is limited to the cases of simulated examples

where the simulations have time dynamics but the RL agent learning to control the

system has no access to that information. The systems considered will have either

first- or second-order linear dynamics, and all systems considered will be sampled-

data systems. The dynamics of all agents involved are deterministic, so no noise or

uncertainty is considered. There is no available model for the system that can be

used for classic control methods or even for classic determination of an appropriate

sample time.

One unique contribution is an RL-based algorithm that is capable of determin-

ing the optimal sample time while simultaneously learning the control policy. This

requires maximizing a reward that is a function of the sample time itself. A second

major contribution of this research is the determination of an RL-based algorithm

capable of learning an approximation of agent dynamics. This involves learning

4

state-to-state time transitions, and the approximations learned include a time con-

stant for first-order systems and the proper combination of natural frequency and

damping ratio for second-order systems. The information learned is then used in the

scheme of a heterogeneous multiagent system. The full contribution of this research

is a methodology for learning optimal sample times for agents, approximations of

agents’ time dynamics, and individual agent control policies. This collective result

allows for the control of heterogeneous multiagent systems by means of hierarchi-

cal commands provided by a high-level automated supervisor agent with all of the

knowledge learned by these algorithms.

5

2. REINFORCEMENT LEARNING*

There are multiple classes of algorithms that fall within the definition of Rein-

forcement Learning. Currently, the RL algorithms that are most used in research are

Temporal-Difference (TD) methods. TD methods are actually a conceptual combi-

nation from two other classes of algorithms known as Dynamic Programming (DP)

and Monte Carlo [42]. Like Monte Carlo, TD methods use experience through in-

teraction with the system to update the quality of the value function without the

need of a model. Like DP, TD methods do not have to wait until the end to improve

the value function, but rather update it along the way. This improves convergence

time and also makes TD methods usable in online learning. In this chapter, the TD

algorithm known as Q-learning will be discussed, along with the limitations that led

to the development of extended Q-learning-based algorithms for the use of learning

in dynamical sampled-data systems [25].∗

2.1 Q-learning

Of the various formulations of RL algorithms, Watkins’ Q-learning has been the

most accepted and utilized algorithm for its proven convergence to the optimal action-

value function [50]. Q-learning is a TD method that learns the optimal action-value

function in an off-policy manner [42]. This means that the policy used during a

learning episode is not necessarily the same as the one that is updated at each

timestep. The Q-learning algorithm is based upon an action-value update rule that

uses a greedy policy to determine a predicted value for the state-action pair at the

∗Part of the material reported in this chapter is reproduced with permission of John Wiley
& Sons, Inc. from Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, eds. Frank L. Lewis and Derong Liu, 2012, John Wiley & Sons, Inc., Hoboken, NJ.
Copyright 2013 by The Institute of Electrical and Electronics Engineers, Inc.

6

next (future) timestep. The actual action selection may not be done using a greedy

policy, and in fact it is typically better for optimality to include some degree of

exploration in the policy. The rule used for updating the action-value function is as

follows.

Q(s, a)← Q(s, a) + αδ (2.1)

In Equation 2.1, Q is the action-value function, s is the state at the current

timestep, a is the action selected for the current timestep using the agent’s policy

(e.g., ε-greedy), α is the step-size parameter, and δ is the temporal-difference. The

value of α is always in the interval (0,1), and can either be held constant or varied

by some user-defined function. In some cases, α is designed to decrease within an

episode according to how often the agent revisits the same state, essentially punishing

the agent for repeating itself unnecessarily. The definition of δ is the main term that

distinguishes Q-learning from other TD algorithms, and it can be computed using

Equation 2.2.

δ = r + γmax
a′

Q(s′, a′)−Q(s, a) (2.2)

In Equation 2.2, r is the reward received from the system, s′ is the future state

(due to taking action a), a′ is the action that would be taken using a greedy policy

when in state s′, and γ is the weight for the future value. The selection of γ affects

convergence time, and it is always within the range (0,1). The value of γ can either be

kept constant throughout learning, or it can be chosen to vary episodically so that

later learning episodes value the future prediction differently than early episodes.

Combining Equations 2.1 and 2.2 leads to the full Q-learning update equation, shown

in Equation 2.3.

7

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (2.3)

This update rule is the backbone of the famous Watkins’ Q-learning algorithm.

It is an off-policy TD algorithm with a user-determined policy for selecting actions

at each timestep, but uses a fully-greedy policy with the action-value function when

updating the action-value function. Rather than utilizing past information to per-

form this update, this algorithm uses the predicted future state-action pair chosen

greedily. The Watkins’ Q-learning algorithm is displayed in Algorithm 2.1.

Algorithm 2.1 Q-learning

• Initialize Q(s,a) arbitrarily

• Repeat for each episode:

– Initialize s

– Repeat for each timestep:

∗ Choose a from s using policy derived from Q(s,a) (e.g., ε-Greedy)

∗ Take action a, observe r, s′

∗ Q(s,a) ← Q(s,a) + α [r + γ maxa′ Q(s′,a′) - Q(s,a)]

∗ s ← s′

– Until s is terminal

2.2 ε-greedy

When determining a policy for selecting actions during the learning process, there

are a number of possibilities from which to choose. The most commonly used poli-

cies for the Q-learning process are exploration [12], greedy [10], and ε-greedy meth-

ods [15]. An exploration policy simply means that at any given state and any given

timestep, an action is selected completely at random from the possible action-space.

8

This is demonstrated by Equation 2.4, where A represents the full action-space.

a ∼ U(0, 1) ∈ A (2.4)

Conversely, a fully greedy method requires that the action-value function be ex-

ploited for choosing an action at any given timestep. This is demonstrated by Equa-

tion 2.5.

a = max
a
Q(s, a) (2.5)

Both of these extremes have limitations that can inhibit the learning process due

to either slowing the convergence process or converging to paths that may not be

optimal. It is often necessary to find a middle ground, and the ε-greedy method

accomplishes just that [42].

An ε-greedy policy uses a user-defined probability, ε, that determines whether to

choose actions randomly or according to the action-value function each time a new

action must be taken. This speeds up the convergence time by reinforcing paths that

have already been designated either good or bad while still allowing for new paths to

be explored for optimality [51]. In the early episodes the agent is required to explore

due to lack of knowledge, regardless of the value assigned to ε. This method can be

implemented during the action selection portion of the learning process according to

Algorithm 2.2.

The chosen value of ε can have a drastic effect on the number of episodes required

to achieve convergence, and ε can either be chosen as a constant value or a variable.

It is usually of benefit to choose a high probability of exploration in early episodes,

and then anneal the value of ε in later episodes. Decreasing ε as more episodes

are completed leads to encouraging exploration in early episodes and exploitation in

9

Algorithm 2.2 ε-greedy

• Choose ε ∈ [0,1]

• Repeat for each action selection:

– Generate random value β ∼ U(0, 1)

– If β ≥ 1 - ε

∗ a ← random

– If β < 1 - ε

∗ a ← maxa Q(s, a)

later episodes. Maintaining a nonzero probability of exploration during late learning

(e.g., ε = 0.05) typically helps the learning process by allowing the agent to discover

a better path that may not have been discovered yet.

2.3 Function Approximation

When applying RL methods like Q-learning, a key issue that causes problems

with the final learned function is generalization [42]. The learning of an action-value

function, Q(s, a) results in a policy that requires a table look-up in order to be used.

Tables are by nature discrete, so encountering every possible combination of state-

action pairs is practically impossible when the system is continuous. Discretization

of the state- and action-spaces is a common way of handling this problem, but gener-

alization to state-action pairs not available in the final table must be addressed. It is

for this reason that function approximation methods have been used in conjunction

with RL.

Approximation of the action-value function can be accomplished through several

different methods. One option is a gradient descent approach for mapping the state-

action pairs to continuous weights [40, 18]. Least Squares methods have also been

10

explored for keeping the state-space continuous [44, 26]. Several other continuous

implementations have also been investigated, including kernel-based methods [44],

viscosity solution methods [33], online neural network approximations [11], and lo-

cally weighted regression [41]. A drawback of these continuous function approxima-

tors is the need to determine appropriate basis functions. While they have proven to

be successfully implemented in cases where there is an easily determined appropriate

basis function set, determining these basis functions is not always straightforward

and is very difficult in complex systems. Machine learning methods other than RL

are most often used for the approximation of value functions without the need of ba-

sis functions. This can include artificial neural networks [39], genetic algorithms [28],

and instance-based methods like k-Nearest Neighbor [22, 31].

2.3.1 Artificial Neural Networks

One of the most popular methods of machine learning today is the artificial neural

network (ANN). Artificial neural networks learn hidden behavioral patterns between

inputs and outputs by attempting to simulate the complex interactions of neurons

in the human brain. The basic unit of the ANN is called a perceptron (analogous to

neuron), and is represented in Figure 2.1.

Figure 2.1: Perceptron

11

X =
n∑
i=0

wiIi (2.6)

The various inputs, I0-In, are combined by a weighted sum, with I0=1 always

present to eliminate an inherent bias. The weighted sum, represented in Equa-

tion (2.6), is provided as an input to a normalizing function. This function is often

a step function (Output = +1 if X is positive, -1 if X is negative, 0 if X=0), but

many other functions have often been used in its place (e.g., sigmoid). Sometimes,

no normalizing function is present at all, and the output is simply the weighted sum

X. The choice of this function is entirely up to the user, and benefits vary depending

upon the problem.

An ANN is composed of a network of these perceptrons that are comprised of at

least two layers, but usually more. An input layer is necessary, where each input is

given a separate node, and a similar output layer is composed of a single node for each

output. The middle layers are called the “hidden layers”, and are chosen according

to user design. Once the structure of the network has been set, the network is trained

by feeding training data through the network and adjusting the weights to determine

the most appropriate relationship for minimizing the output error. There are several

different algorithms available for training a neural network, one of the most widely-

used of which is the backpropagation algorithm. This algorithm first propagates

a single training case through the network, and then uses the errors between the

training data output and the network output to work backward and adjust weights

accordingly [32]. ANNs have a reputation for being both highly accurate and fast

when compared to other complex machine learning methods, and so they have often

been considered for approximating the action-value function as a network of weights.

12

2.3.2 Genetic Algorithms

Genetic algorithms are a class of machine learning algorithms that attempt to

mimic the genetic behavior behind the theory of “survival of the fittest”. The idea is

to provide a “population” of hypotheses that are used to approximate an unknown

function, where the best hypothesis is initially unknown. The notion of which hy-

pothesis is best depends upon a fitness function that the user defines. This fitness

function is used to test individual hypotheses and provide a score based on its eval-

uated fitness [32].

In the first generation, hypotheses that make up the population are usually ran-

domly generated. A single hypothesis is typically represented as a binary string,

where different bit combinations represent different functions. The fitness function

is designed to check how well the hypothesis approximates the function, and then

generates a probability according to the following equation:

P (hi) =
F (hi)∑n
j=1 F (hj)

(2.7)

In Equation (2.7), P (hi) is the probability of selecting hypothesis hi, F (hi) is

the fitness function evaluated for hi, and n is the total number of hypotheses in the

population. This probability is used to determine which hypotheses are chosen for

repopulation, and then they either perform crossover operations (two hypotheses are

combined to form two new hypotheses), or they mutate (one hypothesis has a single

bit changed to make the new hypothesis). Once the new generation is completed,

the process continues until a single hypothesis is discovered that has a fitness greater

than the user-defined minimum. Using this method, it is possible to approximate the

action-value function as a string of bits that represent a set of functions and weights.

13

2.3.3 k-Nearest Neighbor

Of the various machine learning methods that have been implemented in practice

for action-value function approximation, the simplest and most often used has been

k-Nearest Neighbor. It is derived from the basic assumption that each instance has

the most in common with instances that are closest to it in Euclidean space [32]. In

Euclidean space, n-dimensional information instances are given ordinates for determi-

nation of distance. The distances between these instances are determined according

to the common distance formula for n-dimensional space, shown in Equation 2.8.

d(xi, xj) =

√√√√ n∑
c=1

(sc(χi)− sc(χj))2 (2.8)

In Equation 2.8 the distance is denoted as d, with χi and χj being the ith and

jth instances. The state dimension index is denoted by c, and the variables s and n

are the state and the dimension of the state-space, respectively. Using Equation 2.8,

the Euclidean distance can be determined between any two points in n-dimensional

space. The k-Nearest Neighbor algorithm then classifies an instance based upon

the average of the k-nearest points by Euclidean distance. This is an ideal way of

handling function approximation of the action-value function due to the fact that no

information is lost during the approximation. The Q-matrix holds a discrete table

of values representing the state-action pair values according to how the state- and

action-spaces were discretized. This learned function is retained, and the k-Nearest

Neighbor algorithm can be used to determine values for any states that fall between

the discrete states listed in the Q-matrix. The k-Nearest Neighbor algorithm as it

applies to action-value function approximation is shown in Algorithm 2.3.

These are just a few among many machine learning methods that can be used

14

Algorithm 2.3 k-Nearest Neighbor

• Choose value of k ∈ positive integers

• For the current state, st:

– Find the k states in Q(s,a) closest to st by Equation 2.8

– Create new set from the k-nearest states, denoted s̄

– Repeat for each possible action, a:

∗ Q(st,a) = 1
k

∑k
i=1Q(s̄i, a)

in conjunction with Temporal-Difference RL algorithms to approximate the action-

value function. In theory, any instance-based or pattern-learning method could be

used for function approximation. Examples of how these methods can be used for

function approximation are available in works by Kirkpatrick and Valasek [20, 22, 23,

24], Poggio and Girosi [36], and Lampton [27]. Due to the simplicity of implementa-

tion and accuracy of approximation, the approach used for function approximation

in all examples in this dissertation will be k-Nearest Neighbor.

2.4 Q-learning Control Example

To demonstrate the ability to control a dynamical system using Q-learning, a

bi-directional robot was simulated. This single agent was simulated with identical

dynamics in each of its states (x,y) with data sampling occurring at every T=0.05sec.

This agent was prescribed a single time constant, τ for simulating its dynamics in

both the x- and y-directions. The environment the robot is allowed to traverse is a

20m by 20m square with the origin at the center. The governing equations of motion

are shown in Equation 2.9, where the subscript c denotes the commanded value.

15

ẋ = (xc − x)τ−1

ẏ = (yc − y)τ−1
(2.9)

These agent dynamics were simulated using a 4th-order Runge-Kutta integration

scheme. Runge-Kutta methods are a commonly used method of numerically de-

termining approximate solutions to ordinary differential equations. Evaluating the

integration for a 4th-order Runge-Kutta solver involves determining 4 increment pa-

rameters at each integration instance. These 4 increments are based on the slope at

the beginning of the interval (k1), the slope at the midpoint of the interval (k2), the

adjusted slope at the interval midpoint (k3), and the slope at the end of the interval

(k4). So given some dynamics, ẋ = f(t, x), the solution at each time step can be

determined by Equations 2.10-2.15.

ẋ = f(t, x), x(t0) = x0 (2.10)

k1 = hf(t, xt) (2.11)

k2 = hf(t+
1

2
h, xt +

1

2
k1) (2.12)

k3 = hf(t+
1

2
h, xt +

1

2
k2) (2.13)

k4 = hf(t+ h, xt + k3) (2.14)

xt+h = xt +
1

6
(k1 + 2k2 + 2k3 + k4) (2.15)

16

This allows for simulation of integrated equations of motion for some small inte-

gration timestep, h. At each sampling timestep,T , the learner evaluates the current

state and chooses the appropriate action based on an ε-greedy policy in a Q-learning

scheme. The possible actions are up(+y), down(-y), left(-x), and right(+x). At each

T , the robot is required to take a new action, which corresponds to a new com-

manded next state. An example of how the action-space is created for a particular

discretization is shown in Equation 2.16, with the proper translation of action to

commanded value as shown in Equations 2.18 and 2.19.

a ∈ A =

[
↑ ↓ → ← stay

]
(2.16)

=

[
+1 −1 +1 −1 0

]
m (2.17)

xc =

 xc + a if a = A3, A4

xc else
(2.18)

yc =

 yc + a if a = A1, A2

yc else
(2.19)

After simulating this problem using Watkins’ Q-learning for determining the con-

trol policy, the result is the ability to control the robot to move from randomly

initialized points to a specified goal within a tolerance of ±1m. Figures 2.2-2.7

demonstrate this ability. The simulation was tested for two different discretization

levels and two different goals to demonstrate that the learning methodology is not

dependent on a particular discretization or goal. The first simulation uses a coarse

discretization of 5m steps with a goal of [x, y] = [0, 0]. The second simulation uses

17

a finer discretization of 1m steps with a goal of [x, y] = [3, 6]. In these figures, the

starting point is marked by ◦ and the final point is marked by *.

Figure 2.2: Q-learning Simulation of Robot - Goal = [0,0]

These results show that Q-learning is a capable method of learning to control an

agent without the need of a dynamical model in the control policy. However, the

determined control policy will be dependent upon the sampling rate, which is not

always set in stone in advance and classically needs a model to determine. Deter-

mining the best sampling rate using an RL framework is discussed in the following

chapter.

18

Figure 2.3: Time History of Robot - Goal = [0,0]

Figure 2.4: Command History of Robot - Goal = [0,0]

19

Figure 2.5: Q-learning Simulation of Robot - Goal = [3,6]

Figure 2.6: Time History of Robot - Goal = [3,6]

20

Figure 2.7: Command History of Robot - Goal = [3,6]

21

3. SAMPLED-DATA Q-LEARNING*

When Algorithm 2.1 is used in dynamical systems, the problem of handling time-

dependencies arises. It is often overlooked that using the learned computer-based

control policy on a hardware model results in a sampled-data system. The control

policy is implemented on a discrete device, but the policy is learned assuming con-

tinuous dynamics. In some cases, the user realizes this and assumes a sampled-data

system during the learning process, but the Q-learning algorithm will converge to

a policy that is useful solely for that sampling rate that may not be the best rate.

Here, an attempt to overcome this issue is addressed by wrapping the sample time

into the learning process [25].∗

3.1 Sampled-Data Q-learning Algorithm

Determining the best sample time depends on defining what is meant by “best”.

In general, the best sampling rate is the slowest rate that is still capable of the desired

performance. In many cases it is desired to recover the frequency signal, which as a

rule of thumb is achieved by sampling at twice the Nyquist frequency, or about 8-10

times the bandwidth frequency [9]. To guarantee recovery of amplitude, sampling

needs to be even faster. However, in this case all that is desired is to achieve proper

control authority. The goal of this algorithm is to determine the slowest sampling

rate that still allows the agent to reach the goal with a success rate that is comparable

to faster sample times.

Incorporating the sample time, denoted T , into the learning process requires

∗Part of the material reported in this chapter is reproduced with permission of John Wiley
& Sons, Inc. from Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, eds. Frank L. Lewis and Derong Liu, 2012, John Wiley & Sons, Inc., Hoboken, NJ.
Copyright 2013 by The Institute of Electrical and Electronics Engineers, Inc.

22

determining the value of individual sample times without adversely affecting the

stability of the system during an episode. It would therefore be wise to not allow

a sample time to change during a single episode. However, determining optimal

action-value functions for a range of sample times requires incorporating it into the

state-space. It is therefore necessary to append the state-space with T while not

allowing it to be affected by the action-space.

This gives rise to the question of how a particular sample time is to be selected

when it cannot be affected by the action-space. It is necessary that a value be

associated with each possible selection of T , but T must be held constant throughout

an episode. It is therefore proposed that a state-value function for T be determined

using Monte Carlo-based learning [42]. The value function can be updated according

to an every-visit Monte Carlo method, shown in Equation 3.1.

VT (T)← VT (T) + α(R− VT (T)) (3.1)

This update rule will be the basis for Sampled-Data Q-learning, which is illus-

trated in Figure 3.1. At the beginning of each episode, the sample time value-

function, VT , can be used to select T for the episode according to a user-defined

policy. The sample time is appended to the system state vector, s, so that the

normal Q-learning update rule will determine separate control policies according to

different values of T . When the reward for a given timestep is determined, it is used

to update both Q and the total rewards for the episode. At the end of the episode,

VT is updated by using the return, R. The return can be defined as some function

of the rewards received, commonly either the total rewards for the episode or the

average rewards for the episode. In this research, the average return was used in all

simulations so that shorter paths to the goal are favored over circuitous ones.

23

This update rule causes VT to evolve such that episodes that experience more

positive rewards than negative rewards result in the value associated with that par-

ticular T increasing. Likewise, when an episode experiences more negative rewards

than positive, the total value for T after the episode ends will have decreased. Using

this new sampled-data value function and update rule, the Sampled-Data Q-learning

algorithm takes the form shown in Algorithm 3.1.

Figure 3.1: Sampled-Data Q-learning Diagram

3.2 Markov Property

To maintain that RL is a reasonable approach for this scenario, it must be demon-

strated that the changes to the state-space do not affect the Markov Property. The

Markov Property states that predicting the probabilistic next state of the system

depends solely on the information of the current timestep, and not on any informa-

tion prior to the current timestep. For this system, the Markov Property is defined

according to Equation 3.2.

24

Algorithm 3.1 Sampled-Data Q-learning (SDQL)

• Initialize Q(s̃,a) arbitrarily

• Initialize VT (T) arbitrarily

• Repeat for each episode:

– Choose T using policy derived from VT (T) (e.g., ε-Greedy)

– Initialize R = 0

– Initialize s, initialize s̃ by appending T to s

– Repeat for each sample timestep, T :

∗ Choose a from s̃ using policy derived from Q(s̃,a) (e.g., ε-Greedy)

∗ Take action a, observe r, s̃′

∗ Q(s̃,a) ← Q(s̃,a) + α [r + γ maxa′ Q(s̃′,a′) - Q(s̃,a)]

∗ s̃ ← s̃′

– Until s̃ is terminal

– R = average(r)

– VT (T) ← VT (T) + α [R - VT (T)]

P (st+T |st, at, st−T , at−T , ..., s0, a0) = P (st+T |st, at) (3.2)

For Sampled-Data Q-learning, the state-space is adjusted by appending the sam-

ple time, T , to the state vector as shown in Equation 3.3.

s̃ = [s, T] (3.3)

To ensure that this addition of a temporal element to the state-space does not

change the Markovian behavior, it must shown that the definition of Equation 3.2 still

holds for the new state-space. So given that the original system without the sample

time appended is a Markov Process, the following question must be answered:

25

P (s̃t+T |s̃t, at, s̃t−T , at−T , ..., s̃0, a0)
?
= P (s̃t+T |s̃t, at) (3.4)

First, it is important to recognize that the conditional probability can be rewritten

according to Equation 3.5. Since the current (and past) state-action pairs are known

to have occurred, the probability of their occurrence is equal to 1.

P (st+T |st, at) =
P (st+T , st, at)

���
��: 1

P (st, at)
= P (st+T , st, at) (3.5)

This information can be used to reduce the full conditional probability as shown

in Equations 3.6-3.8.

P (s̃t+T |s̃t, at, s̃t−T , at−T , ..., s̃0, a0) = P (st+T , T |st, at, st−T , at−T , ..., s0, a0, T) (3.6)

=
P (st+T , st, at, st−T , at−T , ..., s0, a0, T)

���
���

���
���

���
��: 1

P (st, at, st−T , at−T , ..., s0, a0, T)

(3.7)

= P (st+T , st, at, st−T , at−T , ..., s0, a0, T) (3.8)

The sample time T is chosen prior to the process, and remains unchanged through-

out the process. Since the time between state measurements is known, the probability

of the sample time being T given the state and action information is equal to 1. By

the definition of conditional probability, Equation 3.8 can be reduced as shown in

Equations 3.9 and 3.10.

26

���
���

���
���

���
���

�:1

P (T |st+T , st, at, st−T , at−T , ..., s0, a0) =
P (st+T , st, at, st−T , at−T , ..., s0, a0, T)

P (st+T , st, at, st−T , at−T , ..., s0, a0)
(3.9)

P (st+T , st, at, st−T , at−T , ..., s0, a0, T) = P (st+T , st, at, st−T , at−T , ..., s0, a0,) (3.10)

Now, it can be seen that this is the original Markovian system, which reduces as

shown in Equations 3.11-3.13.

P (st+T , st, at, st−T , at−T , ..., s0, a0) = P (st+T |st, at, st−T , at−T , ..., s0, a0)

×
���

���
���

���
���

�:1

P (st, at, st−T , at−T , ..., s0, a0) (3.11)

= P (st+T |st, at, st−T , at−T , ..., s0, a0) (3.12)

= P (st+T |st, at) (3.13)

Since the full next-step conditional probability of the modified state-space results

in the same prediction probability of the unmodified state-space, it can be seen that

the Markov Property is preserved for a system that was originally Markovian and

has the sample time appended to the state-space.

3.3 Reward Shaping

An important consideration in forming the RL problem is the choice of reward

structure. Rewards are used to define the problem to be solved, guiding the learner

towards specific goals and away from undesirable states. Typically, constant positive

rewards are given for achieving a goal state, constant negative rewards are given for

27

ending up in bad states, and neutral (zero) rewards are given for all other states.

While this is the most commonly used system, rewards can be shaped in other

ways. Choosing a reward function can be dangerous since one must ensure that the

learner does not change the overall goal of convergence [34]. As demonstrated by ,

to maintain that the near-optimal policies remain unchanged it is necessary to shape

the rewards by adding a potential function to the original reward structure.

In Sampled-Data Q-learning, the reward is shaped by multiplying the reward by

a function of the sample time. In the case where the function multiplied is invariant

of the reward constant, it can be factored out of the online process and be multiplied

by the value function itself. If V
(0)
T (T) is the initial value function at sample time

T , V
(1)
T (T) is the value function after 1 episode at sample time T , and R(1)(T) is the

return received in episode 1 as a function of T , then by the Sampled-Data Q-learning

update rule the new value function is as shown in Equation 3.14.

V
(1)
T (T) = (1− α)V

(0)
T (T) + αR(1)(T) (3.14)

When the learning progresses to the second episode experienced at sample time

T , the value function is similarly updated. It can easily be seen that substituting

Equation 3.14 into Equation 3.15 results in the form shown in Equation 3.16

V
(2)
T (T) = (1− α)V

(1)
T (T) + αR(2)(T) (3.15)

= (1− α)2V
(0)
T (T) + (1− α)αR(1)(T) + αR(2)(T) (3.16)

In the same way, the value after 3 episodes can be expanded. If one considers the

value after i episodes, the expanded value function can be derived. This is shown in

28

Equation 3.20.

V
(3)
T (T) = (1− α)V

(2)
T (T) + αR(3)(T) (3.17)

= (1− α)3V
(0)
T (T) + (1− α)2αR(1)(T) + (1− α)αR(2)(T) + αR(3)(T)

(3.18)

= (1− α)3V
(0)
T (T) + α

3∑
j=1

(1− α)3−jR(j)(T) (3.19)

...

V
(i)
T (T) = (1− α)iV

(0)
T (T) + α

i∑
j=1

(1− α)i−jR(j)(T) (3.20)

The fully expanded form of the value function shown in Equation 3.20 shows that

because 0 < α < 1, as i → ∞ the initial value V
(0)
T (T) becomes a negligible term.

Because the initial value is arbitrary and negligible, it is simplest to choose an initial

value of V
(0)
T (T) = 0. This simplifies the value function to the form in Equation 3.21.

V
(i)
T (T) = α

i∑
j=1

(1− α)i−jR(j)(T) (3.21)

In the original problem, the reward structure is a constant chosen in each episode

based on the goal and boundary specifications, and the episode terminates when a

non-zero reward is received. If this reward structure is unmodified, and not a function

of the sample time, Equation 3.21 becomes defined according to Equation 3.22, where

Ṽ
(i)
T is the value function as a function of only the constant reward after i episodes,

steps(j) is the number of steps experienced within episode j, and the return R(j) from

episode j is the average reward received during that episode.

29

Ṽ
(i)
T = α

i∑
j=1

(1− α)i−jr
(j)
c

steps(j)
(3.22)

If the reward function r(j)(T) is considered to be a linear combination of the

constant reward given in each episode, r
(j)
c , and some independent function of the

sample time, f(T), the value function can be further expanded. If the reward function

is additive, it is as shown in Equation 3.23.

r(j)(T) = r(j)
c + f(T) (3.23)

With this reward structure, the value function becomes as shown in Equation 3.24.

V
(i)
T (T) = α

i∑
j=1

(1− α)i−j
(r

(j)
c + f(T))

steps(j)
(3.24)

This can be further expanded, and the resulting value function is as shown in

Equation 3.25

V
(i)
T (T) = α

i∑
j=1

(1− α)i−jr
(j)
c

steps(j)
+ αf(T)

i∑
j=1

(1− α)i−j

steps(j)
(3.25)

With the original constant reward function, the value function was defined ac-

cording to Equation 3.22, and was given the notation Ṽ
(i)
T . With this substitution, it

can be seen how the additive function f(T) affects the overall value in Equation 3.26.

V
(i)
T (T) = Ṽ

(i)
T + αf(T)

i∑
j=1

(1− α)i−j

steps(j)
(3.26)

So if the function f(T) is independent of episodic rewards, it can be factored out

of the online process and added to the value function itself outside of the episodes.

Similarly, it can be considered how a sample time function f(T) affects the value

30

function if it is multiplicative. This reward structure is as shown by Equation 3.27.

r(j)(T) = r(j)
c f(T) (3.27)

By substituting the reward structure of Equation 3.27 into the value function of

Equation 3.21, the value function becomes as defined in Equation 3.28.

V
(i)
T (T) = α

i∑
j=1

(1− α)i−jr
(j)
c f(T)

steps(j)
(3.28)

The function f(T) can be easily factored out, and this results in the form shown

in Equation 3.29.

V
(i)
T (T) = αf(T)

i∑
j=1

(1− α)i−jr
(j)
c

steps(j)
(3.29)

Now if the original value function Ṽ
(i)
T is substituted into Equation 3.29, it can be

seen that the sample time function f(T) can be factored out of the online process.

This is shown in Equation 3.30.

V
(i)
T (T) = f(T)Ṽ

(i)
T (3.30)

By comparing Equations 3.26 and 3.30, it can be seen that either form of the

reward structure results in the ability to factor the sample time function out of

the online process, but the multiplicative case is much simpler to implement. This

property depends on the function f(T) being independent of each episode, and so

it must be used the same regardless of the constant reward, rc. For example, if the

reward was shaped so that the positive goal reward was multiplied by a function

f(T) but the negative boundary reward was left constant, the function f(T) could

31

not be factored out of the episodic summation.

It is now interesting to consider the slopes of these value functions considered over

the sample times. By analyzing these derivatives, it can be seen that the change in

value over sample times after i episodes has a significant difference between the two

forms of the value function. As can be seen in Equation 3.31, when the additive form

of the reward function is used from Equation 3.23, the constant reward drops out of

the derivative. However, it can be seen in Equation 3.32 that when the multiplicative

form of the reward is used from Equation 3.27 the constant reward does have an effect

on the variation in value over T . So choosing which form to use depends on whether

it is desired for the reward given in an episode to affect the variation in value. Since

the desire is to encourage achieving more positive rewards and fewer negative rewards

based on the value of T chosen, the multiplicative form will be used.

∂V
(i)
T

∂T
(T) = α

∂f(T)

∂T

i∑
j=1

(1− α)i−j

steps(j)
(3.31)

∂V
(i)
T

∂T
(T) = α

∂f(T)

∂T

i∑
j=1

(1− α)i−jr
(j)
c

steps(j)
(3.32)

The next consideration that must be made is what function should be used for

shaping the rewards with sample times. To shape the reward, it must be considered

what problem is being solved. In the case of Q-learning-based control, the prob-

lem being solved is the reaching of a goal state while avoiding boundary states. In

Sampled-Data Q-learning, the objective is expanded to also determine the largest

sample time that can be used while still solving the original Q-learning control prob-

lem. This indicates that the reward must be a function of the sample time, but the

choice of the function can have implications on the result. One possible implemen-

tation would be the reward structure in Equation 3.33.

32

r(T) = rcT (3.33)

Considering this reward reveals a simple linearly multiplicative function of the

sample time where f(T) = T . This means that the first derivative is invariant of

the sample time. This is the simplest function of the sample time that can be used,

but the fact that the slope in value function is invariant of sample time may be

problematic. The next simplest implementation would be a polynomial of degree 2,

and it has the benefit of having a slope that varies with sample time.

r(T) = rcT
2 (3.34)

This quadratic implementation has the benefit of making rewards larger as sample

time increases than the linear counterpart, but only when T > 1. So it can be

beneficial to use the square root function instead when T < 1. This final version of

the reward structure is shown in Equations 3.35-3.37, where the sample time function

f(T) is multiplicative and quadratic in T .

r(T) =

 rc
√
T if 0 < T < 1

rcT
2 if T ≥ 1

(3.35)

V
(i)
T (T) =

 αT
1
2

∑i
j=1

(1−α)i−jr
(j)
c

steps(j)
if 0 < T < 1

αT 2
∑i

j=1
(1−α)i−jr

(j)
c

steps(j)
if T ≥ 1

(3.36)

∂V
(i)
T

∂T
(T) =

1
2
αT−

1
2

∑i
j=1

(1−α)i−jr
(j)
c

steps(j)
if 0 < T < 1

2αT
∑i

j=1
(1−α)i−jr

(j)
c

steps(j)
if T ≥ 1

(3.37)

To ensure that the choice of reward functions has merit, a variety of reward func-

tions were tested in simulation using the 2D robot example. After allowing each

33

simulation to run for 10,000 episodes with different reward functions, the resulting

best sample time was used in a Monte Carlo simulation. Table 3.1 shows the percent-

age of successful goal achievements based on the sample time used in the simulation,

and if a reward function chose that sample time it is indicated. Table 3.1 reveals

that for this simulation, of the reward functions tested a quadratic reward provides

the longest sample time before success begins to decline.

Table 3.1: Reward Function Success Rate

T Successes f(T)

0.01 84% 1
0.02 83%
0.03 87%
0.04 82% T
0.05 84%
0.06 83% T 2

0.07 77% T 3, eT

0.08 75%
0.09 71%
0.10 69%

3.4 Sampled-Data Q-learning Examples

To demonstrate the Sampled-DataQ-learning algorithm, examples of a dynamical

system controlled by Q-learning were constructed. The first example shown here

was chosen to be an inverted pendulum on a cart. This is a good example of a

simple dynamical system where the choice of sample time can have a drastic impact

on the ability to control the system successfully. The other examples shown here

are 2 different approaches at simulating a simple robot with first-order dynamics,

which will be the basis for dynamics learning and later used for multiagent system

34

simulations.

3.4.1 Inverted Pendulum

In this example, the system consists of an inverted pendulum on a cart. The

pendulum is allowed to rotate freely about the point of connection, and the only

control input available is the force applied to the cart along the x-axis. This system

is shown in Figure 3.2.

Figure 3.2: Inverted Pendulum

The position-level states that describe this system’s orientation are x and θ. To

describe the dynamics of this system, the state-space of Equation 3.38 is used.

x = [x ẋ θ θ̇]T = [x1 x2 x3 x4]T (3.38)

The full nonlinear dynamics can then be derived in this form, as is demonstrated

in Appendix A. The final dynamical equations used to simulate this inverted pen-

dulum on a cart are shown in Equation 3.39.

35

ẋ1 = x2

ẋ2 =
F +mLx2

4 sin(x3)−mg sin(x3) cos(x3)

M +m sin2(x3)
(3.39)

ẋ3 = x4

ẋ4 =
g sin(x3)− ẋ2 cos(x3)

L

To determine the proper state-space for RL, one might assume that the full

state vector should be used. However, in this case it can be seen that including the

position (x) and the cart velocity (ẋ) will not contribute much since it does not affect

the pendulum orientation (θ) explicitly. In fact, it can be seen from the equations

of motion in Equation 3.39 that it is the acceleration of the cart that explicitly

contributes to the pendulum orientation dynamics. Since the only states propagated

and known for the cart at any given time interval are x and ẋ, an estimate of the

acceleration is used for the RL state space according to:

ẍest =
ẋt − ẋt−1

T
(3.40)

To learn action-value functions for each sample time T , the state-space must also

include the sample time. The action-space must likewise be selected, but in this

problem the only thing that makes sense is to use the force F as the action since

it is the only control. The state- and action-spaces for the RL formulation of this

problem are as shown in Equations 3.41 and 3.42, respectively.

s = [ẍest θ θ̇ T]T (3.41)

a = F (3.42)

36

The next step is to define the reward structure. The rewards depend upon both

the goals of the system and the constraints placed on the system. For this example,

the goal was determined to be the state where both θ = 0 and θ̇ = 0, with a tolerance

of ±1◦ and ±2◦/sec, respectively. If this goal was achieved, a positive reward of

+10 was used to update the action-value function. The horizontal position and

velocity of the cart were not considered for determination of the goal achievement.

This structure provides the ranges for which positive rewards are achieved, but it

is likewise necessary to define the constraints for which negative rewards are given.

Again, the cart position and velocity do not contribute to the negative rewards

by remaining unconstrained. The pendulum orientation was constrained so that it

would not be allowed to move beyond ±12◦ without incurring negative rewards. The

angular velocity was constrained so that it was not allowed to go beyond ±20◦/sec

without incurring negative rewards. If these constraints were violated, a negative

reward of -10 was used to update the action-value function. All orientations that do

not yield either a positive or negative reward receive a neutral reward of 0. Thus the

reward structure is:

r =

+10 if |θ| < 1◦ and |θ̇| < 2◦/sec

−10 if |θ| > 12◦ or |θ̇| > 20◦/sec

0 otherwise

(3.43)

With the RL representation determined, the simulation was performed. The

parameters for the inverted pendulum cart were set as follows. The mass of the

cart, M , was set to be 5kg. The mass at the end of the pendulum, m, was set

to be 1kg, with the pendulum rod considered to be massless for simplicity. The

length of the pendulum rod, L, was chosen to be 2m. The total range of possible

actions was chosen to be F = -40N to 40N in 20N intervals. This system was

37

then simulated continuously by using a 4th-order Runge-Kutta method with the full

nonlinear dynamics from Equation 3.39 and a small integration timestep of h =

0.01sec. The system was treated as a sampled-data system by sampling the states at

a rate of T chosen by an ε-greedy policy from VT at the beginning of each episode.

The value assigned to ε for this simulation was ε = 0.7. The total range of possible

sample times from which to choose was T = 0.01sec to 1.0sec in 0.01sec intervals. For

this simulation, α was chosen as a constant 0.01 and γ was selected to be a constant

0.7. Each learning simulation was allowed to last until tf = 5sec.

When determining the length of an episode, there are many possibilities. Here,

an episode is defined to be some significant portion of the learning process. For this

particular problem, an episode was determined to last until either t = tf or |θ| > 12◦.

The simulation was then allowed to run for many episodes to converge to both the

optimal value of T and the optimal action-value function, Q.

When using the SDQL algorithm on the inverted pendulum example, two different

cases were tested. The first scenario involves using no reward shaping based on

sample time. This is done as a sanity check since it should converge to a minimum

sample time in the event that there is no sample time reward shaping. The second

scenario tested sample time reward shaping.

Using the representation of the inverted pendulum control problem described

above, the simulation was allowed to learn for 10,000 episodes using MATLAB. This

translated to roughly 12 hours of real time. After the learning was completed, the

action-value function was tested, and an example of this is shown in the following

figures. The sample time value function, VT , converged to the highest value of the

sample time being T = 0.01sec. This makes sense for this particular experiment since

no constraints were placed on sample time length in the reward structure. With no

function of the sample time included in the reward function, the sample time value

38

function after 10,000 episodes is as shown in Table 3.2. The mean sample time value

and variance of values over sample times are shown in Equations 3.44 and 3.45.

Table 3.2: SDQL Pendulum Result - Constant Reward

T (sec) VT

0.01 11.7
0.02 4.7
0.03 4.6
0.04 7.1
0.05 2.7
0.06 1.7
0.07 4.6
0.08 2.8
0.09 3.4
0.10 1.8

E[VT] = 4.51 (3.44)

V ar[VT] = 9.01 (3.45)

The action-value function is too large to report here, but the mean and covariance

over possible actions is of interest. These are shown in Equations 3.46 and 3.47,

respectively. In Equation 3.46, it is seen that the average values are all close, but

the largest values are on the smaller forces. The covariance matrix in Equation 3.47

shows that the values in the action-value function do not vary drastically by state.

39

Figure 3.3: Inverted Pendulum State Time History: Constant Reward

E[Q] =

0.3031 , F = −40N

0.5751 , F = −20N

0.4941 , F = 0N

0.4640 , F = 20N

0.4264 , F = 40N

(3.46)

Cov[Q] =

110 −1 13 −2 1

−1 118 4 2 3

13 4 172 −5 11

−2 2 −5 113 2

1 3 11 2 113

× 10−2 (3.47)

40

Figure 3.4: Inverted Pendulum Force Time History: Constant Reward

Figure 3.5: Inverted Pendulum Phase Diagram: Constant Reward

41

In Figure 3.3, the cart began stationary with no pendulum angular velocity and

an initial orientation of θ = −10◦. As can be seen, by exploiting the learned action-

value function the control policy was able to stabilize the pendulum to the goal

within the 10 second timespan alloted. After reaching the goal region, the control

policy was able to use occasional impulses to keep the angle within the goal region

of 0◦± 1◦, as seen in Figure 3.4. Figure 3.5 shows that the system stabilizes near the

point (0,0) in phase space. This indicates a successful control policy learned using

Sampled-Data Q-learning.

The second case tested involves reward shaping based on the sample time, with a

multiplicative quadratic reward function. After 10,000 learning episodes, the SDQL

algorithm was able to converge to a maximum-value sample time of T = 0.08 sec.

The VT values are reported in Table 3.3. The mean sample time value and variance

of values over sample times are shown in Equations 3.48 and 3.49.

Table 3.3: SDQL Pendulum Result - Quadratic Reward

T (sec) VT

0.01 2.7
0.02 5.2
0.03 7.0
0.04 8.7
0.05 9.1
0.06 6.0
0.07 9.8
0.08 10.9
0.09 9.9
0.10 9.3

E[VT] = 7.86 (3.48)

42

V ar[VT] = 6.60 (3.49)

With the control policy using the maximum-value sample time of T = 0.08 sec,

the inverted pendulum cart is successfully controlled as shown in Figures 3.6-3.8.

Figure 3.6 shows that while it is more difficult to control the cart with the longer

sample time limitations, it is able to successfully move the pendulum to the center

and use force inputs to keep it in the tolerance of ±1◦.

Figure 3.6: Inverted Pendulum State Time History: Quadratic Reward

The action-value function is too large to report here, but the mean and covariance

over possible actions is of interest. These are shown in Equations 3.50 and 3.51,

respectively. The values in the action-value function are smaller than before due to

the reward shaping, and so the mean values are an order of magnitude smaller while

the covariances are 3 orders of magnitude smaller. In Equation 3.50, it is seen that

the average values favor smaller force responses. The greatest reinforcement occurred

43

Figure 3.7: Inverted Pendulum Force Time History: Quadratic Reward

at F = 0N due to time spent within the goal range. The larger forces are less helpful

as the pendulum approaches the goal so they are favored less often. The covariance

matrix in Equation 3.51 shows that the values in the action-value function do not

vary drastically by state.

E[Q] =

0.0257 , F = −40N

0.0351 , F = −20N

0.0538 , F = 0N

0.0316 , F = 20N

0.0243 , F = 40N

(3.50)

44

Figure 3.8: Inverted Pendulum Phase Diagram: Quadratic Reward

Cov[Q] =

130 4 −18 −10 16

4 120 35 9 1

−18 35 410 48 4

−10 9 48 170 3

16 1 4 3 92

× 10−5 (3.51)

3.4.2 Rotating Robot

For the next experiment, the Sampled-Data Q-learning algorithm was tested on

a robot that travels forward with a constant speed and is able to rotate to change its

heading angle. This is an important example since it is analogous to high-level com-

mands of aircraft systems. This system is crafted so that the only actions required

by the learning agent are commanded changes in heading angle.

45

ẋ = V cosψ (3.52)

ẏ = V sinψ (3.53)

ψ̇ = (ψc − ψ)τ−1 (3.54)

After each sample timestep T , the learner evaluates the current position and

heading angle for making a choice of commanded change in heading angle. The time

constant τ for the commanded change of the heading angle ψ is chosen to be τ = 0.2

sec. The options for commanded change in heading are as shown in Equation 3.55.

ψc = [−45◦ 0◦ 45◦]T (3.55)

With the dynamics described in Equations 3.52-3.55, the commanded bank angle

can be changed by the learner according to the policy, π. The sample time, T , is

determined by the Sampled-Data Q-learning algorithm with possible sample times

chosen from T = 0.01 sec to T = 0.1 sec in intervals of T = 0.01 sec. The reward

shaping used for this simulation was defined by Equation 3.56, where the constant

reward was rc = −10 for the boundary, rc = 0 for neutral states, and rc = 100 for

the goal.

r(T) =

 rc
√
T if 0 < T < 1

rcT
2 if T ≥ 1

(3.56)

The robot is placed in a grid with the origin placed at the center and extend-

ing ±10m in the x-direction and ±10m in the y-direction. The goal is for the

robot to reach the center of the space at [0, 0] ± [1, 1]m. After 10,000 episodes,

the Sampled-Data Q-learning algorithm converged to a near-optimal control policy

with a maximum-value sample time of T = 0.07 sec, as shown in Table 3.4. The

46

mean sample time value and variance of values over sample times are shown in Equa-

tions 3.57 and 3.58. It can be seen that due to the different reward structure and

amount of time per episode, the value associated with the best sample time receives

far greater reinforcement than that of the inverted pendulum example. The variance

in values is greater in this case by several orders of magnitude.

Table 3.4: SDQL Robot Result - Quadratic Reward

T (sec) VT

0.01 29.1
0.02 29.9
0.03 2.4
0.04 42.9
0.05 51.4
0.06 73.4
0.07 2271.8
0.08 14.7
0.09 29.2
0.10 120.8

E[VT] = 266.56 (3.57)

V ar[VT] = 4.98× 105 (3.58)

The action-value function itself is far too large to report here, but the mean and

covariance over possible actions is of interest. These are shown in Equations 3.59

and 3.60, respectively. In Equation 3.59, it is seen that for the reward structure of

this problem, the mean values are all less than 1, and a lower value was given on

average to no change in heading angle than the turning actions.

47

E[Q] =

0.0811 , ∆ψ = −45◦

0.0745 , ∆ψ = 0◦

0.0876 , ∆ψ = 45◦

(3.59)

Cov[Q] =

0.8771 0.0797 0.0914

0.0797 0.9442 0.0154

0.0914 0.0154 1.1810

 (3.60)

After completing the learning, the Monte Carlo results show the ability to suc-

cessfully control the robot to the center of the space from each quadrant, as shown

in Figures 3.9-3.20. In these figures, the starting point is marked by ◦ and the final

point is marked by *.

Figure 3.9: Robot Simulation - Quadrant 1

48

Figure 3.10: State History of Robot - Quadrant 1

Figure 3.11: Command History of Robot - Quadrant 1

49

Figure 3.12: Robot Simulation - Quadrant 2

Figure 3.13: State History of Robot - Quadrant 2

50

Figure 3.14: Command History of Robot - Quadrant 2

Figure 3.15: Robot Simulation - Quadrant 3

51

Figure 3.16: State History of Robot - Quadrant 3

Figure 3.17: Command History of Robot - Quadrant 3

52

Figure 3.18: Robot Simulation - Quadrant 4

Figure 3.19: State History of Robot - Quadrant 4

53

Figure 3.20: Command History of Robot - Quadrant 4

54

Figures 3.9-3.20 demonstrate that for the value of T = 0.07 sec chosen by the

Sampled-Data Q-learning algorithm, the learner was able to control the robot to

reach the goal from all around the environment, and it was able to do so with a

success rate of 85%. This shows that the SDQL algorithm was able to successfully

learn a non-minimal sampling rate that allows for successful control to the goal.

To compare the results of SDQL to those of Q-learning, this rotating robot ex-

ample was further explored. The basic Watkins’ Q-learning algorithm was used to

learn a control policy for navigating the robot to the goal of [x, y] = [0, 0] with a

sampling rate of 0.05 sec. After 10,000 learning episodes, this action value function

was then exploited using Monte Carlo simulations. For the Monte Carlo simulations,

the environment was first sampled at T = 0.05 sec to determine the accuracy of the

policy over the sampling rate used. In this case, the robot was able to reach the

goal with a success rate of 82%. This sample time was then changed to T = 0.08

sec to compare to what SDQL determined was the best rate for this problem. With

this change in sampling rate, the accuracy of the action value function fell to 61%

as compared to the SDQL accuracy of 85% for T = 0.08 sec. This shows that the

SDQL algorithm is capable of determining the best sample time and providing good

control for that sample time while a basic Q-learning approach suffers from lack of

accounting for time.

Using RL to determine this sample time and control policy is indeed possible

with this algorithm, but it is also of interest to determine an approximation of the

agent’s dynamics once the sample time is set. Using a similar RL framework to learn

agent dynamics approximations is explored in detail in the next chapter.

55

4. DYNAMICS APPROXIMATION LEARNING*

When using Q-learning to determine a control policy for dynamical systems, the

benefit of not needing to have a model of the dynamics can lead to the user neglecting

the dynamics entirely. Learning a control policy for these systems is necessary, but

often it is desired to also determine some approximation of the dynamics. This

is especially important when dealing with the control of heterogeneous multiagent

systems since coordinating the agents requires knowing how the individual agents

respond differently in time to similar action inputs [25].∗

The fundamental question that is being explored in this chapter is whether or not

a method of identifying a system’s dynamics can be determined by beginning with

a Reinforcement Learning framework. The objective is not necessarily to determine

a method of system identification that is better than other current methods, but

rather to see if the power of the RL methodology can be utilized to determine sys-

tem dynamics approximations so it can be incorporated easily into algorithms that

already use RL. Ease of implementation for determining the dynamics of a system

where episodic learning is already in place is being sought.

Reinforcement Learning techniques are capable of determining the value associ-

ated with taking a particular control action given the current state, or similarly the

value of being in a particular state. The goal of the investigation in this chapter is

to determine if this value function iteration methodology can be used to determine

time dynamics information by finding the parameter approximation that maximizes

a value function for the current approximation. Determining a simple model of the

∗Part of the material reported in this chapter is reproduced with permission of John Wiley
& Sons, Inc. from Reinforcement Learning and Approximate Dynamic Programming for Feedback
Control, eds. Frank L. Lewis and Derong Liu, 2012, John Wiley & Sons, Inc., Hoboken, NJ.
Copyright 2013 by The Institute of Electrical and Electronics Engineers, Inc.

56

dynamics can be beneficial for many applications, such as model-based control laws,

determination of optimal sampling to avoid aliasing, and time-to-goal evaluations of

agents.

Evaluating time-to-goal requirements for individual agents is of interest here since

it is what will be used by the supervisor in the hierarchical multiagent systems dis-

cussed in Chapter 5. One way that a supervisor could evaluate choosing between

different agents for a particular goal is to compare their individual action-value func-

tions. These Q functions provide information about expected reward based on cur-

rent state information, and so act as a cost-to-go function. However, when comparing

agents with different dynamics that have different learning experience, the values as-

sociated with expected reward-to-go do not necessarily take time-to-goal into account

unless time were somehow wrapped into the reward shaping. The amount of time

required to achieve the goal is not explicit in the action-value function because the

state-transitions probabilities (i.e., the dynamics) are unknown in the cases discussed

in this dissertation. It would be more beneficial to have some estimate of the time

dynamics for each agent so that a direct comparison of time-to-goal can be consid-

ered.

In this chapter, two similar algorithms are investigated for their ability to use

a Reinforcement Learning framework to determine an accurate approximation of

an agent’s state dynamics. The scope being considered here involves modeling in-

dividual states from systems with multiple states, and they are considered to be

deterministic. The states to be modeled must also be uncoupled from the other

states, so the parameters being learned can provide simple uncoupled models of the

states themselves.

57

4.1 First-Order Dynamics Learning

The simplest agent dynamics to represent and learn are first-order dynamics. In

a first-order dynamical system, the individual state transitions can be described by

determining the time constant, τ , from the stable first-order ODE shown in Equa-

tion 4.1. This makes learning an approximate time constant all that is needed to

determine the time behavior of the agent.

τ
dx

dt
= −x (4.1)

This ODE can be easily solved to get a solution for the state transition from x1 to

x2 according to the increment in time, ∆t. The derivation of this equation is shown

in Equations 4.2 - 4.5, with the final solution shown in Equation 4.5.

∫ x2

x1

dx

x
= −

∫ t2

t1

dt

τ
(4.2)

ln(x2)− ln(x1) = −t2 − t1
τ

= −∆t

τ
(4.3)

ln

(
x2

x1

)
= −∆t

τ
(4.4)

x2 = x1e
−∆t/τ (4.5)

Equation 4.5 provides the solution to a first-order differential equation that can

determine a state x2 given the state x1, ∆t, and the time constant τ . Determining

an approximation for each state-to-state transition can be accomplished by learning

a time constant associated with each state-action pair. If an action a is taken in

58

the current state s with a learned time constant τ for that state-action pair, an

approximate next state s∗ that is measured after a sampling timestep T can be

determined by Equation 4.6.

s∗ = se−T/τ (4.6)

This development demonstrates the ability to predict a state based on a system

with stable dynamics and no command, so the exponential decay is predictable. In

systems with control there is a commanded state that is typically non-zero, and con-

sideration must be made for the commanded non-zero setpoint. The dynamics can

be solved for a non-zero setpoint similarly to before. The first-order differential equa-

tion for a non-zero setpoint is as shown in Equation 4.7, where xc is the commanded

non-zero setpoint.

τ
dx

dt
= xc − x (4.7)

This can be rearranged and solved in a parallel manner to before by Equations 4.8-

4.12.

∫ x2

x1

dx

x− xc
= −

∫ t2

t1

dt

τ
(4.8)

ln(x2 − xc)− ln(x1 − xc) = −t2 − t1
τ

= −∆t

τ
(4.9)

ln

(
x2 − xc
x1 − xc

)
= −∆t

τ
(4.10)

59

x2 = (x1 − xc)e−∆t/τ + xc (4.11)

x2 = x1e
−∆t/τ + (1− e−∆t/τ)xc (4.12)

The solution provided in Equation 4.12 demonstrates that the original zero-point

solution in Equation 4.5 can be augmented for non-zero setpoint by the addition of

the second term with xc. It can easily be seen how this is translated into the variables

used in RL for state transitions by Equation 4.13, where the commanded state is the

variable sc.

s∗ = se−T/τ + (1− e−T/τ)sc (4.13)

Equation 4.13 can be used to approximate a state transition for a single 1-

dimensional state. If more than one independent state dimension is to be approxi-

mated, multiple time constants would be needed. For instance, if this method were

applied to a robot traversing a 2-D space with independent first-order dynamics in

forward translation and rotation, one might want to know the state transition dy-

namics of both τforward and τrotate independently as they would most likely have

different dynamics. Time constants for each state-action pair would be determined

based on whether the robot were moving forward or rotating.

With the ability to predict the state after the sample time period T using the

current approximation of the time constant, τ , a reward function can be created. The

reward function used here is based on the error between the predicted next state,

s∗, and the actual next state, s′. To maximize the reward, the error between the

predicted and observed next state must be minimized. This can be accomplished by

any number of functions involving the error. The most obvious choices would be to

60

use either the inverse of the error or the negative of the error function. Because the

inverse can lead to singularity problems, the negative is only considered here. The

L2-norm was chosen as the error reward function because it will always produce a

non-negative value, making the opposite always non-positive. This reward function

is shown in Equation 4.14.

r(s′, s∗) = −‖s′ − s∗‖2 =
√

(s′ − s∗)T(s′ − s∗) (4.14)

Learning an approximate time constant can be achieved using this reward struc-

ture by formulating an update similar to that done in the SDQL algorithm. This

new algorithm, called First-Order Dynamics Learning (FODL), is shown in Algo-

rithm 4.1 [25]. The The implementation of this algorithm is shown in the block

diagram of Figure 4.1.

In Algorithm 4.1, the global first-order dynamics value function used for deter-

mining τ is denoted V π
1 while the local value function for each episode is denoted V1.

The local value function is initialized to 0 at the beginning of each episode, and the

average value for each time constant is used to update the global value function at

the end of each episode. This is done to eliminate bias due to the number of times

a particular time constant is visited per episode. Since the chosen reward function

always produces a negative reward, choosing the correct value too often in an episode

can result in artificially deflating the value. Using the average value over an episode

helps to reduce that effect.

The FODL algorithm shown in Algorithm 4.1 represents the utilization of this

dynamics learning process after having already determined the control policy and

sample time using the SDQL algorithm in Algorithm 3.1. The FODL algorithm can

also be combined with SDQL to learn all information at the same time. This full

61

Algorithm 4.1 First-Order Dynamics Learning (FODL)

• Determine T and Q(s̃,a) for system (e.g., Sampled-Data Q-learning)

• Initialize V π
1 (τ) arbitrarily

• Repeat for each episode:

– Initialize s, append T to s̃

– Initialize V1(τ) to 0

– Repeat for each sample timestep:

∗ Choose a from s̃ using greedy policy derived with Q(s̃,a)

∗ Choose τ using policy derived from V π
1 (τ) (e.g., ε-Greedy)

∗ Predict next state, s̃∗, with s̃, a, and τ using first-order approxima-
tions

∗ Take action a, observe actual next state, s̃′

∗ Observe r shaped from observed s̃′ and predicted s̃∗

∗ V1(τ) ← V1(τ) + α [r - V1(τ)]

∗ s̃ ← s̃′

– Until s̃ is terminal

– V π
1 (τ) ← V π

1 (τ) + V1(τ)/visits(τ)

algorithm is shown in Algorithm 4.2.

62

Figure 4.1: FODL Diagram

63

Algorithm 4.2 FODL with SDQL

• Initialize Q(s̃,a) arbitrarily

• Initialize VT (T) arbitrarily

• Initialize V π
1 (τ) arbitrarily

• Repeat for each episode:

– Choose T using policy derived from VT (T) (e.g., ε-Greedy)

– Initialize R = 0

– Initialize s, initialize s̃ by appending T to s

– Initialize V1(τ) to 0

– Repeat for each timestep:

∗ Choose a from s̃ using policy derived from Q(s̃,a) (e.g., ε-Greedy)

∗ Choose τ using policy derived from V π
1 (τ) (e.g., ε-Greedy)

∗ Predict next state, s̃∗, with s̃, a, and τ using first-order approxima-
tions

∗ Take action a, observe r, s̃′

∗ Observe rdyn shaped from observed s̃′ and predicted s̃∗

∗ V1(τ) ← V1(τ) + α [rdyn - V1(τ)]

∗ Q(s̃,a) ← Q(s̃,a) + α [r + γ maxa′ Q(s̃′,a′) - Q(s̃,a)]

∗ s̃ ← s̃′

– Until s̃ is terminal

– R = average(r)

– VT (T) ← VT (T) + α [R - VT (T)]

– V π
1 (τ) ← V π

1 (τ) + V1(τ)/visits(τ)

64

4.2 Second-Order Dynamics Learning

The algorithm for first-order dynamics can be extended to learning approxima-

tions of second-order system dynamics. Whereas in the first-order case a systems’

dynamics can be described by one parameter (time constant), a second-order sys-

tem requires learning two parameters (natural frequency and damping ratio). For a

second-order system, determining the next state after T is not as simple as for the

first-order case. The governing ODE for a system with second-order dynamics with

state s and a step command of sc is as shown in Equation 4.15.

d2s

dt2
+ 2ζωn

ds

dt
+ ω2

ns = ω2
nsc (4.15)

This system can be parameterized in state-space form by making new vari-

able declarations. If the state-space is parameterized according to Equations 4.16

and 4.17, then the governing equations of motion become as shown in Equations 4.18

and 4.19.

s1 = s (4.16)

s2 = ṡ (4.17)

ṡ1 = s2 (4.18)

ṡ2 = −2ζωns2 − ω2
n(s1 − sc) (4.19)

Alternatively, the dynamics shown in Equations 4.18 and 4.19 can be put into

state-space form, such as shown in Equation 4.20. The state-space form of these

equations can be seen in Equation 4.21.

65

ẋ = Ax+Bu (4.20)

 ṡ1

ṡ2

 =

 0 1

−ω2
n −2ζωn

 s1

s2

+

 0

ω2
n

 sc (4.21)

x = s (4.22)

u = sc (4.23)

A =

 0 1

−ω2
n −2ζωn

 (4.24)

B =

 0

ω2
n

 (4.25)

To determine the solution to the second-order system, the characteristic equation

must be found. This can be done by taking the Laplace transform of the second-order

dynamics defined in Equation 4.15. This is demonstrated in Equations 4.26-4.32.

L{s̈+ 2ζωnṡ+ ω2
ns = ω2

nsc} (4.26)

L{s̈+ 2ζωnṡ+ ω2
ns} = L{ω2

nsc} (4.27)

The Laplace transform of derivatives are as shown in Equations 4.28 and 4.29.

L{ṡ} = λS(λ)− s(0) (4.28)

66

L{s̈} = λ2S(λ)− λs(0)− ṡ(0) (4.29)

The derivatives can be substituted into Equation 4.27 to continue the derivation

with the Laplace transformed variables.

λ2S − λs(0)− ṡ(0) + 2ζωn(λS − s(0)) + ω2
nS = ω2

nSc (4.30)

S(λ2 + 2ζωnλ+ ω2
n) = ṡ(0) + (λ+ 2ζωn)s(0) + ω2

nSc (4.31)

S(λ) =
ṡ(0) + (λ+ 2ζωn)s(0) + ω2

nSc(λ)

λ2 + 2ζωnλ+ ω2
n

(4.32)

The Laplace transform of the commanded state, sc is as shown in Equation 4.33,

providing the frequency domain solution to the second-order differential equation in

Equation 4.34.

L{sc} = Sc(λ) =
sc
λ

(4.33)

S(λ) =
ṡ(0) + (λ+ 2ζωn)s(0)

λ2 + 2ζωnλ+ ω2
n

+
ω2
nsc

λ(λ2 + 2ζωnλ+ ω2
n)

(4.34)

The Laplace transformed state described by Equation 4.34 can be used to find the

poles of the system. The characteristic equation is the denominator of this function

as shown in Equation 4.35. This equation can be solved as shown in Equations 4.35-

4.38 to find the values of the poles as a function of ωn and ζ in Equation 4.38.

λ2 + 2ζωnλ+ ω2
n = 0 (4.35)

67

λ =
−2ζωn ±

√
4ζ2ω2

n − 4ω2
n

2
(4.36)

λ =
−2ζωn ± 2ωn

√
ζ2 − 1

2
(4.37)

λ = −ζωn ± jωn
√

1− ζ2 (4.38)

Upon examining Equation 4.38, it can be seen that the value of the damping

ratios influence the dynamics such that there are 4 main solutions. If ζ = 0 then

there is no damping, if 0 < ζ < 1 then the system is underdamped, if ζ = 1 it is

critically damped, and if ζ > 1 then the system is overdamped. For each of these

scenarios, the poles are as listed in Equation 4.39.

λ =

±jωn if ζ = 0

−ζωn ± jωn
√

1− ζ2 if 0 < ζ < 1

−ωn if ζ = 1

−ζωn ± ωn
√
ζ2 − 1 if ζ > 1

(4.39)

The plot of these poles in the complex plane shows the difference these solutions

have on the behavior of the system. These plots are shown in Figures 4.2-4.5.

68

Figure 4.2: Complex Plane - ζ = 0

Figure 4.3: Complex Plane - 0 < ζ < 1

69

Figure 4.4: Complex Plane - ζ = 1

Figure 4.5: Complex Plane - ζ > 1

70

The solution for the state shown in Equation 4.34 is the frequency domain solu-

tion, so finding the time domain solution for the state requires an inverse Laplace

transform. Using the inverse Laplace transform to find the time domain solution re-

quires partial fraction expansion over each of the 4 cases of ζ, and is a rather involved

process. The full process for obtaining the solution by partial fraction expansion and

inverse Laplace transformation can be found in Appendix B. For the case of ζ = 0,

the solution is as shown in Equation 4.40.

s(t) = sc +
ṡ(0)

ωn
sin(ωnt) + (s(0)− sc) cos(ωnt) (4.40)

For the case of 0 < ζ < 1, the solution is as shown in Equation 4.41.

s(t) = sc +
ζ√

1− ζ2
e−ζωnt

(
s(0)− sc +

ṡ(0)

ζωn

)
sin(ωnt

√
1− ζ2) (4.41)

+e−ζωnt(s(0)− sc) cos(ωnt
√

1− ζ2)

For the case of ζ = 1, the solution is as shown in Equation 4.42.

s(t) = sc + (s(0)− sc)e−ωnt + (ṡ(0) + ωns(0)− ωnsc)te−ωnt (4.42)

And for the case of ζ > 1, the solution is as shown in Equation 4.43.

71

s(t) = sc +

(
ṡ(0) + (2ζωn − z1)s(0)− scz2

z2 − z1

)
e−z1t (4.43)

−
(
ṡ(0) + (2ζωn + z2)s(0)− scz1

z2 − z1

)
e−z2t

where

z1 = ωn(ζ −
√
ζ2 − 1)

z2 = ωn(ζ +
√
ζ2 − 1)

With the predictive state equations shown above, the algorithm for Second-Order

Dynamics Learning is as shown in Algorithm 4.3. The SODL algorithm is very similar

to the FODL algorithm, with the difference being in the state-prediction equations

and the parameters being determined. Here, the global second-order dynamics value

function is denoted V π
2 and the local value function is V2. The implementation of

this algorithm is shown in the block diagram of Figure 4.6. The comparison of this

diagram to Figure 4.1 shows the similarities between these two algorithms.

Figure 4.6: SODL Diagram

72

Algorithm 4.3 Second-Order Dynamics Learning (SODL)

• Determine T and Q(s̃,a) for system (e.g., Sampled-Data Q-learning)

• Initialize V π
2 (ωn, ζ) arbitrarily

• Repeat for each episode:

– Initialize s, append T to s̃

– Initialize V2(ωn, ζ) to 0

– Repeat for each sample timestep:

∗ Choose a from s̃ using greedy policy derived with Q(s̃,a)

∗ Choose ωn and ζ using policy derived from V π
2 (ωn, ζ) (e.g., ε-Greedy)

∗ Predict next state, s̃∗, with s̃, a, ωn, and ζ using second-order ap-
proximations

∗ Take action a, observe actual next state, s̃′

∗ Observe r shaped from observed s̃′ and predicted s̃∗

∗ V2(ωn, ζ) ← V2(ωn, ζ) + α [r - V2(ωn, ζ)]

∗ s̃ ← s̃′

– Until s̃ is terminal

– V π
2 (ωn, ζ) ← V π

2 (ωn, ζ) + V2(ωn, ζ)/visits(ωn, ζ)

Just as was shown with FODL, it can be seen that the SODL algorithm as

written in Algorithm 4.3 is used after learning the control policy and sample time

by SDQL. However, just as before with FODL, the SODL and SDQL algorithms

can be combined to learn all information at once. This full algorithm is displayed in

Algorithm 4.4.

73

Algorithm 4.4 SODL with SDQL

• Initialize Q(s̃,a) arbitrarily

• Initialize VT (T) arbitrarily

• Initialize V π
2 (ωn, ζ) arbitrarily

• Repeat for each episode:

– Choose T using policy derived from VT (T) (e.g., ε-Greedy)

– Initialize R = 0

– Initialize s, initialize s̃ by appending T to s

– Initialize V2(ωn, ζ) to 0

– Repeat for each timestep:

∗ Choose a from s̃ using policy derived from Q(s̃,a) (e.g., ε-Greedy)

∗ Choose ωn and ζ using policy derived from V π
2 (ωn, ζ) (e.g., ε-Greedy)

∗ Predict next state, s̃∗, with s̃, a, ωn, and ζ using second-order ap-
proximations

∗ Take action a, observe r, s̃′

∗ Observe rdyn shaped from observed s̃′ and predicted s̃∗

∗ V2(ωn, ζ) ← V2(ωn, ζ) + α [rdyn - V2(ωn, ζ)]

∗ Q(s̃,a) ← Q(s̃,a) + α [r + γ maxa′ Q(s̃′,a′) - Q(s̃,a)]

∗ s̃ ← s̃′

– Until s̃ is terminal

– R = average(r)

– VT (T) ← VT (T) + α [R - VT (T)]

– V π
2 (ωn, ζ) ← V π

2 (ωn, ζ) + V2(ωn, ζ)/visits(ωn, ζ)

74

4.3 Dynamics Learning Examples

The learning of approximate dynamics modeling parameters can be very beneficial

for problems involving coordination of multiple heterogeneous agents. Learning the

time constants for a first-order system or the natural frequency and damping ratio

for a second-order system removes uncertainty about the time response behavior of

individual agents. Figure 4.7 shows an example of a multiagent system that requires

coordination to maximize goal achievement in minimal time. In this system there

are 4 agents, although only 3 are pictured. The 3 pictured agents each have differing

dynamics that cause them to transition from state-to-state in different amounts of

time. The fourth, unseen agent, is the high-level agent that gives commands to the

3 low-level agents.

Figure 4.7: Multiagent System

In this hypothetical 2D path planning scenario, there are 2 separate goals that

75

each must be reached by any 2 of the 3 low-level agents. Minimizing time is considered

to be of highest priority, so the high-level agent must take each low-level agent’s

dynamics into consideration. For instance, agent A2 may be sufficiently close enough

to goal G2 to make the decision easy, but the relative positions of A1 and A2 to

G1 must be considered before deciding which agent to send. While it may be the

simplest approach to just send both agents and see who reaches the goal first, it is

considered a waste of valuable resources to send 2 agents to achieve a goal that only

takes 1 agent. The decision becomes even more difficult if all 3 agents were to begin

at the same state. For this scenario, let us assume that agent A1 is significantly faster

than A3, and although A3 is closer in distance it will actually take longer to achieve

the goal. This may result in the set of high-level commands shown in Figure 4.8.

Figure 4.8: High-Level Agent Commands

In this scenario, the high-level agent gives commands to each of the low-level

76

agents. For this to be possible, each low-level agent must have its own control policy

based on the commands given. This would simply require that each agent learn

its individual optimal sample time, T , using Algorithm 3.1, and learn its dynami-

cal model parameters for performing state-to-state transitions using Algorithms 4.1

and 4.3. These can be done together online using the combined algorithms shown in

Algorithms 4.2 and 4.4. The high-level agent simply needs to sample each agent’s

positions at different intervals, according to the individual T associated with each. It

can then use each agent’s learned τ or ωn and ζ to make decisions regarding minimum

time goal achievement. An example of how this might affect the decision making of

the high-level agent from our thought experiment is shown in Figure 4.9.

Figure 4.9: High-Level Agent Decision Making

This motivating example is a generalization of systems that need to receive high-

level commands, and then use lower-level controllers to achieve those commands.

This type of system can consist of any group of spacial agents with time dynamics.

77

Examples of this include cooperative robots, aircraft, ground vehicles, and any com-

bination of these. The previously used example of the forward-moving robots with

rotational command changes provide a general framework for simulating this type of

system, and will be used to test these algorithms.

4.3.1 First-Order Examples

Here, the same rotating robot from Section 3.4.2 is used to test the FODL al-

gorithm. In this example, the robot translates forward at a constant speed while

rotating to control direction of travel. The heading angle of this robot exhibits

first-order dynamics, and the time constant describing these dynamics needs to be

determined. The time constant τ informs the dynamics according to Equation 4.44.

ψ̇ = (ψc − ψ)τ−1 (4.44)

In this example, the FODL algorithm was used online with the SDQL algorithm

to determine the best approximation of the time constant while also learning the best

sample time and control. The time constant for this robot simulation was chosen to

be τ = 0.2 sec, so that was the target value that the FODL algorithm was supposed

to determine. Equation 4.45 shows the proper equation of motion for the rotation

of this robot given the time constant of τ = 0.2 sec. Figures 4.10-4.15 show the

evolution of the sampled-data value function over the course of 10,000 episodes.

ψ̇ = 5 (ψc − ψ) (4.45)

78

Figure 4.10: 1st Order Value Function for τ = 0.2: 0 Episodes

Figure 4.11: 1st Order Value Function for τ = 0.2: 200 Episodes

79

Figure 4.12: 1st Order Value Function for τ = 0.2: 1,000 Episodes

Figure 4.13: 1st Order Value Function for τ = 0.2: 5,000 Episodes

80

Figure 4.14: 1st Order Value Function for τ = 0.2: 10,000 Episodes

Figure 4.15: 1st Order Value Function History for τ = 0.2

81

As these figures show, the FODL algorithm was able to determine the correct

time constant of τ = 0.2 sec early in the learning process, and the continued learn-

ing reinforced that knowledge. The final values associated with the various time

constants after 10,000 learning episodes are shown in Table 4.1. The mean time

constant value and the variance of values over possible time constants are shown in

Equations 4.46 and 4.47.

Table 4.1: FODL Robot Value Function: τ = 0.2

τ(sec) V1

0.1 −1.79× 104

0.2 −0.65× 104

0.3 −1.12× 104

0.4 −1.44× 104

0.5 −1.49× 104

0.6 −1.68× 104

0.7 −1.75× 104

0.8 −1.86× 104

0.9 −1.94× 104

1.0 −2.03× 104

1.1 −2.05× 104

1.2 −2.03× 104

1.3 −2.07× 104

1.4 −2.26× 104

1.5 −2.22× 104

1.6 −2.14× 104

1.7 −2.11× 104

1.8 −2.27× 104

1.9 −2.19× 104

2.0 −2.19× 104

E[V1] = −1.85× 104 (4.46)

82

V ar[V1] = 1.78× 107 (4.47)

After successfully demonstrating the capability of the FODL algorithm to con-

verge to the correct time constant for this example, the dynamics were changed so

that a different time constant should be learned. Using the same rotating robot

example as before, the example was executed with a new time constant of τ = 1

sec. This results in the equation of motion for the robot rotation as shown in Equa-

tion 4.48.

ψ̇ = ψc − ψ (4.48)

Using this new time constant, the FODL algorithm was utilized. Figures 4.16-4.21

show the convergence of the value function to the proper time constant.

Figure 4.16: 1st Order Value Function for τ = 1: 0 Episodes

83

Figure 4.17: 1st Order Value Function for τ = 1: 200 Episodes

Figure 4.18: 1st Order Value Function for τ = 1: 1,000 Episodes

84

Figure 4.19: 1st Order Value Function for τ = 1: 5,000 Episodes

Figure 4.20: 1st Order Value Function for τ = 1: 10,000 Episodes

85

Figure 4.21: 1st Order Value Function History for τ = 1

86

The value convergence history shown in these figures indicates that the FODL

algorithm was again successful in determining the correct time constant. In the pre-

vious case of τ = 0.2, the value was prominent very early and remained so throughout

the learning process. In the case of τ = 1 it can be seen that the value function is

much smoother and gradual, but the algorithm still converges to and maintains a

maximum value associated with the correct time constant of τ = 1. The final learned

values for the time constants after 10,000 learning episodes are shown in Table 4.2.

The mean time constant value and the variance of values over possible time constants

are shown in Equations 4.49 and 4.50.

Table 4.2: FODL Robot Value Function: τ = 1

τ(sec) V1

0.1 −30.38× 103

0.2 −18.48× 103

0.3 −13.20× 103

0.4 −10.41× 103

0.5 −7.36× 103

0.6 −6.04× 103

0.7 −5.27× 103

0.8 −4.42× 103

0.9 −3.69× 103

1.0 −3.15× 103

1.1 −3.90× 103

1.2 −4.59× 103

1.3 −4.63× 103

1.4 −4.33× 103

1.5 −4.96× 103

1.6 −5.53× 103

1.7 −5.78× 103

1.8 −5.65× 103

1.9 −5.80× 103

2.0 −5.08× 103

87

E[V1] = −7.63× 103 (4.49)

V ar[V1] = 4.21× 107 (4.50)

4.3.2 Second-Order Examples

Now the rotating robot example is used to test the SODL algorithm, so the sim-

ulation must be altered to include dynamics of second-order. In this simulation, the

robot still translates forward with a constant speed and rotates to control heading di-

rection, but the heading angle exhibits second-order dynamics rather than first-order.

Equation 4.51 shows the second-order differential equation driving the dynamics.

ψ̈ = −2ζωnψ̇ + ω2
n(ψc − ψ) (4.51)

The RL state-space for this problem can be augmented to include ψ̇ so that there

is full state feedback, but it is not necessarily needed. For the sake of learning time,

the second-order cases in these simulations maintain the same state-space as before.

It is seen in the simulations that for these problems it is not necessary to include the

heading angle rate as convergence is still obtained with high accuracy.

For this simulation, the true natural frequency and damping ratio for the robot

were set to ωn = 6 rad/sec and ζ = 0.8. This provides a robot that is able to rotate

its heading angle to the new command with a maximum overshoot of Mp = 1.52%

and a peak time of tp = 0.87 sec. This is a mild overshoot and a reasonably quick

peak time. These values are determined according to Equations 4.52 and 4.53.

Mp = exp

(
−πζ√
1− ζ2

)
∗ 100% (4.52)

88

tp =
π

ωn
√

1− ζ2
(4.53)

With the chosen values of ωn = 6 rad/sec and ζ = 0.8, the equation of motion

for the heading angle becomes as shown in Equation 4.54.

ψ̈ = −9.6ψ̇ + 36(ψc − ψ) (4.54)

The robot is then allowed to learn using Sampled-Data Q-learning with the SODL

algorithm active. This continues for 10,000 episodes just as before, with the SODL

algorithm seeking to determine the proper natural frequency and damping ratio for

the heading angle command. After 10,000 learning episodes, the SODL algorithm

was successfully able to learn the correct natural frequency and damping ratio values

of ωn = 6 and ζ = 0.8. Figures 4.22-4.26 show the evolution of the SODL value

function V2 over the course of the 10,000 learning episodes completed.

89

Figure 4.22: 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 0 Episodes

Figure 4.23: 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 200 Episodes

90

Figure 4.24: 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 1,000 Episodes

Figure 4.25: 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 5,000 Episodes

91

Figure 4.26: 2nd Order Value Function for (ωn, ζ) = (6, 0.8): 10,000 Episodes

92

The way that the V2 function is formulated implies that the value determined is

for the combination of the variables ωn and ζ rather than designating values for each

separately. This is done because it is both of these variables together that determines

the behavior of a system, and not either one separately. However, if one were to wish

to see how they are valued individually, the average values can be determined. If the

value function entries for each instance of a particular ωn are averaged together, an

estimate of the value for that frequency is determined. Likewise, the same can be

done for the damping ratio. Figures 4.27-4.33 show how the average values for the

individual parameters evolve over time.

Figure 4.27: Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 0 Episodes

93

Figure 4.28: Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 200 Episodes

Figure 4.29: Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 1,000 Episodes

94

Figure 4.30: Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 5,000 Episodes

Figure 4.31: Average 2nd Order Values for (ωn, ζ) = (6, 0.8): 10,000 Episodes

95

Figure 4.32: Average ωn Value History for (ωn, ζ) = (6, 0.8)

Figure 4.33: Average ζ Value History for (ωn, ζ) = (6, 0.8)

96

The final version of the average value function for each parameter is shown in

Figure 4.31. The final values for V2 are shown in Table 4.3. The mean value and

the variance of values over possible combinations of frequency and damping ratio are

shown in Equations 4.55 and 4.56.

Table 4.3: V2 after 10,000 Episodes: (ωn, ζ) = (6, 0.8)

ωn = 2 ωn = 4 ωn = 6 ωn = 8 ωn = 10

ζ = 0.4 −3220 −3107 −2412 −2671 −5130
ζ = 0.8 −3450 −2610 −1466 −2606 −4110
ζ = 1.2 −3283 −2883 −2393 −2323 −4092
ζ = 1.6 −3008 −2855 −3180 −2940 −3155
ζ = 2.0 −3240 −3602 −2795 −2576 −3484

E[V2] = −3.06× 103 (4.55)

V ar[V2] = 5.05× 105 (4.56)

Having shown that the SODL algorithm is capable of accurately learning the nat-

ural frequency and damping ratio of a second-order system, the process was repeated

with new second-order dynamics. The rotational dynamics of the rotating robot were

altered so that the natural frequency was now ωn = 10 rad/sec and the damping ra-

tio was ζ = 1.2. This system should respond faster than the one before because

the natural frequency is faster, but it also is slightly overdamped. The equation of

motion governing the rotational dynamics of this system is shown in Equation 4.57.

ψ̈ = −24ψ̇ + 100(ψc − ψ) (4.57)

97

This system was allowed to learn for 10,000 episodes using the SODL algorithm.

Over the course of these learning episodes, the SODL algorithm was able to suc-

cessfully converge to the correct parameter values of ωn = 10 rad/sec and ζ = 1.2.

Figures 4.34-4.38 show the evolution of the SODL value function V2 over the course

of the 10,000 learning episodes completed.

Figure 4.34: 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 0 Episodes

98

Figure 4.35: 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 200 Episodes

Figure 4.36: 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 1,000 Episodes

99

Figure 4.37: 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 5,000 Episodes

Figure 4.38: 2nd Order Value Function for (ωn, ζ) = (10, 1.2): 10,000 Episodes

100

The average values over the evolution of V2 are able to show the approximate

evolution of the individual values for ωn and ζ. Figures 4.39-4.43 show the evolution

of the individual parameters’ average values.

Figure 4.39: Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 0 Episodes

101

Figure 4.40: Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 200 Episodes

Figure 4.41: Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 1,000 Episodes

102

Figure 4.42: Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 5,000 Episodes

Figure 4.43: Average 2nd Order Values for (ωn, ζ) = (10, 1.2): 10,000 Episodes

103

Figure 4.44: Average ωn Value History for (ωn, ζ) = (10, 1.2)

Figure 4.45: Average ζ Value History for (ωn, ζ) = (10, 1.2)

104

The final version of the average value function for each parameter is shown in

Figure 4.43. The final values for V2 are shown in Table 4.4. The mean value and

the variance of values over possible combinations of frequency and damping ratio are

shown in Equations 4.58 and 4.59.

Table 4.4: V2 after 10,000 Episodes: (ωn, ζ) = (10, 1.2)

ωn = 2 ωn = 4 ωn = 6 ωn = 8 ωn = 10

ζ = 0.4 −11247 −8765 −8401 −6698 −7618
ζ = 0.8 −10756 −9082 −7527 −5721 −5615
ζ = 1.2 −10520 −9511 −6902 −6524 −4729
ζ = 1.6 −11128 −8905 −8259 −5583 −4835
ζ = 2.0 −11085 −9018 −7629 −6772 −6321

E[V2] = −8.01× 103 (4.58)

V ar[V2] = 3.89× 106 (4.59)

4.3.3 Multiple States

Now that the FODL and SODL algorithms have been shown to successfully learn

accurate models of the states, it is of interest to show that more than one state

can be modeled from the same agent. In this simulation, the same rotating robot

example from before will be explored for the case where the speed changes alongside

the heading angle. For this example, the robot begins at rest and is commanded

to accelerate to a known maximum speed, Vmax. When the agent reaches its goal

region, the robot is commanded to return to rest.

Since the robot cannot overshoot its maximum or minimum speed, it is appropri-

105

ate to model the dynamics of this state as first-order, and the FODL algorithm will

be utilized for determining the time constant (τV) that describes this process. The

heading angle will also be commanded to change for controlling the robot to its goal,

and it is modeled with second-order dynamics. The SODL algorithm is thus used to

determine the natural frequency (ωn,ψ) and damping ratio (ζψ) that best model these

dynamics. The governing equations of motion are shown in Equations 4.60-4.63.

ẋ = V cosψ (4.60)

ẏ = V sinψ (4.61)

V̇ = (Vc − V)τ−1
V (4.62)

ψ̇ = −2ζψωn,ψψ̇ + ω2
n,ψ(ψc − ψ) (4.63)

In the following simulation, the maximum speed of the robot is 2 m/s, and the

time constant that describes the speed dynamics is τV = 1 sec. The robot begins

at rest and accelerates to 2 m/s, maintaining that maximum speed until it reaches

the goal zone of [x, y] = [0, 0]± [1, 1] m. When the goal has been reached, the robot

decelerates back to rest using the same time constant. For the heading angle changes,

the natural frequency is ωn,ψ = 6 rad/s and the damping ratio is ζψ = 0.8. Each of

these states to be modeled will learn their own dynamics value function using the

two appropriate algorithms.

After simulating this robot for 10,000 learning episodes, the FODL and SODL

algorithms were successfully able to model these dynamics. The resulting value

functions are reported in Tables 4.5 and 4.6. The mean and variance of V1 values

for the velocity time constant are shown in Equations 4.64 and 4.65. The mean

and variance of V2 values for the heading angle frequency and damping ratio are

106

shown in Equations 4.66 and 4.67. It can be seen from these tables that the proper

values for these dynamics parameters were determined by their respective algorithm.

Figures 4.46-4.47 show the individual value functions.

Table 4.5: V1 for Robot Speed: τ = 1

τV (sec) V1

0.1 −12.17× 104

0.2 −6.99× 104

0.3 −4.85× 104

0.4 −3.90× 104

0.5 −3.45× 104

0.6 −3.05× 104

0.7 −2.41× 104

0.8 −2.42× 104

0.9 −1.89× 104

1.0 −0.87× 104

1.1 −1.70× 104

1.2 −1.87× 104

1.3 −1.81× 104

1.4 −2.06× 104

1.5 −2.15× 104

1.6 −2.24× 104

1.7 −1.87× 104

1.8 −2.53× 104

1.9 −2.63× 104

2.0 −2.33× 104

E[V1] = −31.6× 103 (4.64)

V ar[V1] = 6.27× 108 (4.65)

107

Table 4.6: V2 for Robot Heading with Velocity Changes: (ωn,ψ, ζψ) = (6, 0.8)

ωn,ψ = 2 ωn,ψ = 4 ωn,ψ = 6 ωn,ψ = 8 ωn,ψ = 10

ζψ = 0.4 −6694 −5002 −3931 −6582 −9926
ζψ = 0.8 −5933 −4523 −1750 −5020 −8600
ζψ = 1.2 −6428 −4821 −3551 −4931 −6467
ζψ = 1.6 −5860 −4475 −4060 −5012 −6591
ζψ = 2.0 −6224 −4804 −5218 −5236 −6239

E[V2] = −5.52× 103 (4.66)

V ar[V2] = 2.61× 106 (4.67)

Figure 4.46: V1 for Robot Speed Plot

108

Figure 4.47: V2 for Robot Heading with Velocity Changes Plot

109

4.4 Sample Time Ranges

In this section, the effect of sampling rate on the ability to learn dynamics is

explored. This is done by testing the First-Order Dynamics Learning and Second-

Order Dynamics Learning algorithms on the rotating robot example under a variety

of sampling rates. For the first case, the simulation was performed using a time

constant of τ = 0.2, and a large range of sampling rates were used.

The first range that was tested was a range of fast sample times ranging from

T = 0.01 sec to T = 0.1 sec in 0.01 sec intervals. For this range, it was found that

the FODL algorithm successfully converged to the proper time constant of τ = 0.2

for all of the sample times tested. These values are shown in Table 4.7. A wider

range was then used for longer sample times ranging from T = 0.05 sec to T = 1.0

sec in 0.05 sec intervals. In this case, the FODL algorithm was able to successfully

converge to the correct time constant in all cases except for the last sample time of

1 sec. These values are reported in Table 4.8. This indicates a possible divergence

from success for larger sample times, so a final range was tested of T = 1.0 sec to

T = 2.0 sec in 0.1 sec intervals. In this case, as shown by Table 4.9, the FODL

begins diverging from the correct time constant. The algorithm determines a time

constant that is within 0.1 sec of the correct value for sample times up to 1.5 sec,

and then diverges to being within 0.2 sec afterward. This indicates that the ability

of the FODL algorithm to converge to the correct time constant is indeed dependent

on having a fast sampling rate. For the case of this example, the sampling frequency

must be faster than 1 Hz.

Since the shorter sampling rates seem to provide accurate learning results for the

FODL algorithm, it is next desired to see if there is a range of sampling rates that

are too fast for accurate learning of the dynamics. The final range tested was a set of

110

Table 4.7: FODL with Sampling Ranges (Short)

T (sec) τ = argmaxτ V1

0.01 0.2
0.02 0.2
0.03 0.2
0.04 0.2
0.05 0.2
0.06 0.2
0.07 0.2
0.08 0.2
0.09 0.2
0.10 0.2

sample times ranging from T = 0.001 sec to T = 0.01 sec, as reported in Table 4.10.

In this case, after 10,000 episodes it was found that as the sampling rates become

too fast, the FODL algorithm has trouble determining the correct time constant.

The FODL algorithm was able to determine the correct time constant of τ = 0.2 for

sample times that are at least T = 0.007 sec. For sample times shorter than this, the

algorithm was unable to accurately determine the time constant. The overall range

for this example for accurately determining the time constant is thus as shown in

Equation 4.68.

111

Table 4.8: FODL with Sampling Ranges (Medium)

T (sec) τ = argmaxτ V1

0.10 0.2
0.15 0.2
0.20 0.2
0.25 0.2
0.30 0.2
0.35 0.2
0.40 0.2
0.45 0.2
0.50 0.2
0.55 0.2
0.60 0.2
0.65 0.2
0.70 0.2
0.75 0.2
0.80 0.2
0.85 0.2
0.90 0.2
0.95 0.2
1.00 0.3

Table 4.9: FODL with Sampling Ranges (Long)

T (sec) τ = argmaxτ V1

1.00 0.3
1.10 0.3
1.20 0.1
1.30 0.2
1.40 0.1
1.50 0.5
1.60 0.3
1.70 0.2
1.80 0.4
1.90 0.6
2.00 0.6

112

Table 4.10: FODL with Sampling Ranges (Tiny)

T (sec) τ = argmaxτ V1

0.001 1.4
0.002 0.3
0.003 1.5
0.004 0.3
0.005 1.2
0.006 1.5
0.007 0.2
0.008 0.2
0.009 0.2
0.01 0.2

113

0.006 < T < 1 (4.68)

Equation 4.68 indicates the accuracy with which the time constant, τ , can be

determined based on the sample time for the rotating robot example. It has been

discovered that the prediction of the time constant is dependent on a particular range

of T that is bounded both above and below. For accurate determination of the time

constant for this case, the sample time must be between 0.006 sec and 1.0 sec.

The same analysis was then completed for the SODL algorithm, with the case

of ωn = 6 rad/s and ζ = 1.2. For this case, it was determined that the range of T

required to learn was slightly more restrictive. Tables 4.11 and 4.12 show the results

of this analysis.

Table 4.11: SODL with Sampling Ranges (Short)

T (sec) ωn = argmaxωn
V2 ζ = argmaxζ V2

0.01 8 1.6
0.02 6 1.2
0.03 6 1.2
0.04 6 1.2
0.05 6 1.2
0.06 6 1.2
0.07 6 1.2
0.08 6 1.2
0.09 6 1.2
0.10 6 1.2

As Tables 4.11-4.12 show, the range of sample times that allows for successful

learning of the natural frequency and damping ratio for this problem is smaller than

for the first-order case. The range allowed for this particular example is as shown in

Equation 4.69.

114

Table 4.12: SODL with Sampling Ranges (Long)

T (sec) ωn = argmaxωn
V2 ζ = argmaxζ V2

0.10 6 1.2
0.20 6 1.2
0.30 6 1.2
0.40 6 1.2
0.50 6 1.2
0.60 6 1.2
0.70 6 1.2
0.80 6 1.2
0.90 4 0.8
1.00 8 1.6

0.01 < T < 0.9 (4.69)

The results presented in this chapter indicate that the algorithms FODL and

SODL are capable of accurately determining a model of an agent’s individual state

dynamics for first- and second-order systems, respectively. Determining this infor-

mation is especially of interest in the case of a multiagent system with agents of

unknown dynamics. The use of these 2 algorithms, along with SDQL, in the case of

commanding agents in a hierarchical multiagent system is explored in the following

chapter.

115

5. MULTIAGENT SYSTEMS

In systems that involve only one independent agent, determining proper high-

level commands for goal achievement is typically trivial. If a goal must be achieved

and there is only one agent to command, there is no decision to be made. The agent

must be the one to achieve the goal. However, in systems with multiple independent

agents there is a consideration that must be made for hierarchical decision making.

If there are multiple agents in a system and only one is needed to achieve a new goal,

which agent should be tasked? In this chapter, the idea of utilizing the previously

discussed learned dynamics to make hierarchical decisions for goal assignment is

explored.

5.1 Learning in Multiagent Systems

The idea of utilizing learning techniques in the control of multiagent systems has

been investigated for a variety of system structures, and for a variety of learning

methods [35, 4]. Multiagent systems can include both cooperative agents and inde-

pendent agents [29, 47, 43]. They can be handled with a single homogeneous level

or with hierarchical commands between higher- and lower-level agents [30, 17, 49].

The structure of the multiagent system effects the manner in which the learned in-

formation is utilized between separate agents. This section discusses research that

has been done in RL for multiagent systems for the purpose of determining which

type of multiagent system solution is useful for this research.

5.1.1 Single-Level Multiagent Learning

In work by , a Q-learning-based algorithm called Hyper-Q learning is introduced

for systems involving multiple agents [47]. Hyper-Q learning learns values of mixed

116

strategies rather than base actions, and Bayesian inference is used to estimate other

agent’s strategies from observed actions. The Q-matrix of this technique involves the

joint mixed strategy of all other agents. Convergence of this algorithm is dependent

on both the agents’ learning dynamics and the function approximation technique

utilized. Here, agents can estimate the strategies of other agents by means of either

model-based or model-free methods. Model-free estimation methods are explored,

and Bayesian inference is chosen for estimating agent strategies based on the history

of observed actions. This performs well for the simple rock-paper-scissors game

examples shown in this paper, but it has not been shown for more complex systems.

The concept of independent vs. cooperative agent learning was investigated in

research performed by [43]. In this work, the author uses hunter-prey MDP games to

determine how the level of information sharing affects the convergence behavior for

multiple agents. The hunter-prey games can be considered to be multiagent gridworld

navigation with moving goals, and in this case information can be shared between

agents that includes sensory information, policies learned, and solution episodes ex-

perienced. This examination was performed solely on these hunter-prey style games,

and the results of this research demonstrate that there is a difference in payoff that

must be considered between independent agents and cooperative agents. The paper

concludes that sharing information and learning cooperatively improves the con-

vergence time and allows for joint task achievement in these single-level scenarios.

However, it takes a much larger state-space to learn cooperative behavior for joint

tasks, and the sharing of knowledge or episodes comes with a cost in communication.

The idea of using MDP games, or general stochastic games, for exploring multi-

agent Reinforcement Learning methods was further investigated by . In this work,

multiagent systems were examined by using minimax criterion to determine optimal

policies for zero-sum stochastic games involving 2-players. This minimax criterion

117

allows the agent to converge to a fixed strategy in winning the game by determining

a policy capable of performing as well as possible against the worst possible oppo-

nent. This limited view of multiagent system learning is further expanded later in

work done by , who explored the application of Reinforcement Learning to general-

sum stochastic games. This paper uses the Nash equilibria conditions to design the

learning agent for the purpose of non-cooperative Reinforcement Learning. In these

non-cooperative games, none of the agents are aware of each other or consider each

other in their decision making. It is shown that the algorithm proposed converges,

but it is entirely dependent on certain restrictions to the games.

These research areas involving multiple agents include the investigation of games

where one agent is attempting to defeat another, but in many practical applica-

tions it is more helpful to consider the case of multiagent systems where the goal is

cooperation to achieve a mutual goal. In research performed by , multiagent Rein-

forcement Learning in cooperative coordination games is considered. These games

are considered for both the cases of independent learners and joint-action learners.

For the independent case, each agent has a separate Q-learner that is unaware of

any other agents. In the joint-action learner case, each agent has a learner that

updates and makes decisions based on the joint action of all observable agents. The

authors found that both cases converge in finite time and the joint-action learner

converges faster, but both cases converge on a similar time scale. It was also found

that while the joint-action learner converged slightly faster, it is limited in the fact

that it takes a lot of contrary experience to learn to choose a path that has already

been heavily reinforced. This indicates that in scenarios where multiple agents are

used to achieve a goal rather than combat each other, using independent learners

for each agent provides comparable convergence time with a simpler implementation

and more influential later learning.

118

In work done by , a distributed Reinforcement Learning approach was investigated

for determining an optimal policy for a cooperative multiagent system [29]. The

systems considered in this work consists of individual agents that learn independently

and have no information communicating between individual agents. After learning,

The agents in this system must learn optimal policies and agree on a single policy that

leads to optimal behavior for the joint team effort. The combined MDP is handled

by treating them collectively as a single MDP where the action vector is composed

of an augmented vector of all possible actions for all agents. This is accomplished

by creating a central Q-matrix with state-action information for all agents, but each

agent only updates and selects from the subset of the Q-matrix that represents the

individual agent’s elementary actions. Each agent assumes that all agents will act

optimally in this scenario. This research reveals that even if each agent chooses

their individual action optimally, the joint action selection can still be suboptimal.

This indicates that the agents must have some level of coordination between them,

whether it be mutually achieved or through some hierarchical command structure.

The concept of coordination in cooperative multiagent systems was further ex-

plored by the works of [19]. This research involves cooperative multiagent systems

where joint actions are chosen but the agents do not have the ability to observe their

mutual actions. The agents must choose their joint actions using environmental

feedback. The action selection used is called the Boltzmann strategy, which uses a

probability function to determine an action’s usefulness. This usefulness probability

is used by each agent when choosing their individual actions, and an action selection

strategy is proposed called the Frequency Maximum Q-Value heuristic. This gives

the estimated value of choosing an action by a linear combination of the Q-table

value and the possible reward weighted by the probability of receiving that reward.

The resulting value is then used in the Boltzmann strategy for action selection. This

119

was tested on the same cooperative games used by and , and was shown to out-

perform their strategies by converging to optimal actions in each game, although it

proved to perform equally poorly in truly stochastic games.

In each of these scenarios explored, Reinforcement Learning-based techniques

were explored for multiagent systems where agents operate at the same level with

no hierarchy. The results presented in these papers indicate that there is promise

to further exploration of these methods, but perhaps some level of supervision is

necessary to achieve the kind of cooperation required for more complex systems.

5.1.2 Hierarchical Multiagent Learning

In work by , cooperative hierarchical Reinforcement Learning algorithms are dis-

cussed for learning in multiagent systems with hierarchical policies [13, 14]. In this

research, hierarchical methods are investigated where the communication level be-

tween individual agents are sorted into a hierarchy dependent on the level of coop-

eration required. In non-cooperative subtasks, joint actions are not required since

the agents act completely independently of each other. Each individual agent can be

modeled as individual SMDPs, and do not require communication to accomplish the

subtasks. In cooperative subtasks, the system is modeled as a joint-action learner

where the actions taken are determined by the union of actions between agents.

This is done at a high-level of abstraction and does not involve low-level subtasks.

The cooperation levels are defined by the user, and if there are subtasks that would

benefit from cooperation but are defined as non-cooperative they will be suboptimal.

However, this methodology has the benefit of making cooperation more efficient since

cooperation subtasks take less time to complete due to infrequent communication.

The complexity of the learner is also greatly reduced because the only information

that must be stored is local agent information. The authors conclude that dividing

120

tasks into hierarchy reduces learning time and time to achieve tasks.

In fact, in a survey of multiagent Reinforcement Learning published by it is de-

termined by the authors that after examining the multiagent Reinforcement Learning

approaches to date, it would be helpful to future approaches to have some division of

task structure into hierarchical methodology. This idea of hierarchical reinforcement

learning is further expanded upon by the works of in [53] and [54]. In these pa-

pers, the idea of hierarchical multiagent Reinforcement Learning is solidified into a

series of multi-level automated supervisors. The agents that perform tasks are called

“workers” and the supervisors evaluate the worker agents’ policies and give sugges-

tions of actions to perform. Tasks are allocated to workers based on the evaluation

of the supervisor agents, and the worker agents do not have to carry around extra

baggage regarding the state of other agents in the system. The automated supervisor

is able to evaluate where tasks should be allocated based on information that the

supervisor maintains about the lower-level worker agents. This automated super-

visory approach to multiagent Reinforcement Learning provides faster convergence,

accurate policies, and low need for communication.

It is this most recent approach to multiagent Reinforcement Learning that will be

exploited in the examples shown in this chapter. By using a hierarchical approach to

multiagent systems, a high-level automated supervisor can be used to allocate tasks

to lower-level agents. These agents only need to know their own individual policies

for achieving the task given to them, and do not need to be concerned with the other

agents in the system. The high-level supervisor will provide information regarding

the goal that each agent in the system should achieve, and the allocation of goals

to agents will be determined by minimum time-to-goal for the total achievement

of all goals in the system. Each agent in the system will learn their own action-

value function, sample time value function, and dynamics value functions using the

121

algorithms presented in Chapters 3 and 4. The learned dynamics will be used by the

supervisor agent to evaluate how long it will take each agent to achieve each goal,

and then will allocate agents to goals by a minimum time consideration. The process

for learning and implementing the supervisor in this multiagent system scenario is

illustrated in Figure 5.1.

Figure 5.1: Hierarchical Multiagent System Diagram

5.2 Homogeneous Agents Examples

In this section, the case of a homogeneous multiagent system is explored. In

this sense, a homogeneous multiagent system is a multiagent system where all of

the agents have identical governing equations of motion. Since the dynamics of

the agents in this system are all the same, they can each be controlled using the

same policies. The high-level supervisor that allocates tasks to agents does so by a

minimum total time consideration. In the case of agents with identical dynamics,

the minimum distance and minimum time scenarios should be the same. The agents

122

in this example are all rotating robots such as are described in Section 3.4.2.

This system is set up with 1 high-level supervisor agent, 3 low-level rotating robot

agents, and 3 goals to be reached. This system is illustrated in Figure 5.2. The high-

level supervisor agent, As, is able to “see” state information about all 3 agents and

all 3 goals. The supervisor is also able to communicate with the 3 agents, as shown

by the dashed lines. This is how goal allocation is determined during the simulation.

Figure 5.2: Hierarchical Multiagent System

At the beginning of simulation, the supervisor checks the initial conditions of each

agent and compares them to the goals that need to be achieved. The dynamics value

functions, V1 or V2, are checked by the supervisor for each agent for determining the

best approximation of the agent dynamics. This information is used by the supervisor

to determine which agents will be commanded to which goals for achieving all goals

in minimum time. Each agent controls itself to its specified goal, so the sample time

123

for each agent will be determined individually using its respective sampled-data value

function, VT .

In these simulations, all of the agents will be identical in their dynamics, so they

will all have the same governing equations of motion. The agents simulated here

will be based on the rotating robot example from the previous chapters, and for

simplicity these initial simulations will have first-order dynamics in their rotation.

All agents begin at rest and accelerate to the same maximum forward speed of V = 1

m/s with a time constant of τV = 1 sec, and they have a heading angle time constant

of τψ = 0.2 sec. When they reach their goal region, they will be commanded to stop,

and will decelerate back to V = 0 m/s with the same speed dynamics. The governing

equations of motion for these agents are as shown in Equations 5.1-5.4.

ẋ = cosψ (5.1)

ẏ = sinψ (5.2)

V̇ = Vc − V (5.3)

ψ̇ = 5(ψc − ψ) (5.4)

5.2.1 Equal Number of Agents and Goals

In this simulation, the 3 goals are designated G1, G2, and G3, and are as shown

in Table 5.1. Two different cases will be tested here. The first will involve each of

the agents beginning at different initial conditions. This should result in the agents

being commanded to go to the goal that is closest to them in space. In the second

case, all of the agents will begin with the same initial conditions, so the supervisor

will have to allocate goals randomly.

124

Table 5.1: Multiagent Goals

Goal Coordinates

G1 [x, y]=[0, 0]
G2 [x, y]=[3, 6]
G3 [x, y]=[−5, 8]

For the first case, the initial conditions of each agent will each be different from

one another. They all begin with a speed of 0 m/s, and they all accelerate to 1 m/s

with a velocity time constant of τV = 1 sec. The other states begin with the values

shown in Table 5.2.

Table 5.2: Homogeneous Multiagent System ICs - Sim 1

Agent x0 (m) y0 (m) ψ0 (deg)

A1 −5 −5 0
A2 0 4 90
A3 4 −6 180

With these initial conditions, the supervisor agent As used the learned dynamics

to determine the proper agent-to-goal assignment for minimum time. The agents

were then able to successfully navigate to their goals using the control policies and

sample times learned previously. This is shown in Figures 5.3-5.6, which demonstrate

that for homogeneous agents the supervisor chose the closest goal in space to each

agent. The goal assignment determined by the supervisor is shown in Table 5.3.

125

Table 5.3: Homogeneous Multiagent Goal Assignment - Sim 1

Goal Agent

G1 A3

G2 A2

G3 A1

Figure 5.3: Homogeneous Multiagent Robot Paths - Sim 1

126

Figure 5.4: Homogeneous Multiagent Robot States - Sim 1

Figure 5.5: Homogeneous Multiagent Robot Command - Sim 1

127

Figure 5.6: Homogeneous Multiagent Robot Speed - Sim 1

128

Figure 5.3 indicates that all agents were able to reach their designated goals

within the 30 second time period allowed. Figure 5.4 shows that the agent that took

longest to reach its goal was A1, which took 15 seconds to reach goal G3, so the full

task achievement took 15 seconds. Figure 5.5 shows the heading angle command

history for each of the agents, and it can be seen that they do not all have the

same sampling rate. Agent A1 had a sample time of T = 0.08 sec, A2 sampled at

an interval of T = 0.04 sec, and A3 sampled every T = 0.06 sec. The speed time

histories for each agent are shown in Figure 5.6, and show the first-order response of

the robots to the commands of maximum speed and stopping.

Next, the same simulation was performed where all agents began with the exact

same initial conditions. The initial conditions are as shown in Table 5.4. In this case,

the supervisor should be forced to assign goals randomly, and that is indeed the case

in practice. Figures 5.7-5.10 show how the simulation turned out for this case, and

the goal assignment from As is shown in Table 5.5.

Table 5.4: Homogeneous Multiagent System ICs - Sim 2

Agent x0 (m) y0 (m) ψ0 (deg)

A1 −5 −5 180
A2 −5 −5 180
A3 −5 −5 180

Table 5.5: Homogeneous Multiagent Goal Assignment - Sim 2

Goal Agent

G1 A2

G2 A3

G3 A1

129

Figure 5.7: Homogeneous Multiagent Robot Paths - Sim 2

130

Figure 5.8: Homogeneous Multiagent Robot States - Sim 2

Figure 5.9: Homogeneous Multiagent Robot Command - Sim 2

131

Figure 5.10: Homogeneous Multiagent Robot Speed - Sim 2

132

5.2.2 Fewer Goals than Agents

This simulation shows how the supervisor can command an agent to stay in its

initial state in the event that there are fewer goals than agents. Here, there are 3

agents but only 2 goals to achieve. Only 1 agent per goal is needed, so the supervisor

determines which agents should be chosen and allocates the proper goals to them.

The agent that is not chosen for a goal will be commanded to remain still in its

initial state.

For this case, the two goals that are being investigated are G1 and G2 from

Table 5.1. As before, two different test cases will be considered. The first case

involves having each of the agents beginning with different initial conditions. The

initial conditions are as shown in Table 5.6.

Table 5.6: Homogeneous Multiagent System ICs - Sim 3

Agent x0 (m) y0 (m) ψ0 (deg)

A1 0 4 90
A2 −6 2 −90
A3 6 −2 0

Under the initial conditions in Table 5.6, the supervisor determined that the

best task allocation for minimum time was to assign each agent to the closest goal,

leaving agent A3 without an assignment. Agent A3 is tasked to wait as a result while

agents A1 and A2 achieve their assigned goals, which are shown in Table 5.7. This

is demonstrated in Figures 5.11-5.14.

133

Table 5.7: Homogeneous Multiagent Goal Assignment - Sim 3

Goal Agent

G1 A2

G2 A1

Figure 5.11: Homogeneous Multiagent Robot Paths - Sim 3

134

Figure 5.12: Homogeneous Multiagent Robot States - Sim 3

Figure 5.13: Homogeneous Multiagent Robot Command - Sim 3

135

Figure 5.14: Homogeneous Multiagent Robot Speed - Sim 3

136

For the second case, all 3 agents began in the same initial conditions. The initial

conditions for these agents are reported in Table 5.8. As before, since all agents have

identical dynamics the supervisor chooses goals randomly, and the goal assignments

are shown in Table 5.9. Figures 5.15-5.18 show the agents achieving the specified

goals.

Table 5.8: Homogeneous Multiagent System ICs - Sim 4

Agent x0 (m) y0 (m) ψ0 (deg)

A1 −6 −4 180
A2 −6 −4 180
A3 −6 −4 180

Table 5.9: Homogeneous Multiagent Goal Assignment - Sim 4

Goal Agent

G1 A3

G2 A1

These examples show that the supervisor is capable of assigning agents to goals,

and for the case of having all agents be identical the minimum-time decisions are

equivalent to the minimum-distance decisions. The individual sample times and

control policies for each agent are used to achieve the particular goal assigned to them,

and they are all capable of doing so successfully in each case. It is now necessary to

consider the scenario where the agents do not have the same dynamics, and see how

the learned dynamics for each agent affects the supervisor’s goal allocation decisions.

137

Figure 5.15: Homogeneous Multiagent Robot Paths - Sim 4

Figure 5.16: Homogeneous Multiagent Robot States - Sim 4

138

Figure 5.17: Homogeneous Multiagent Robot Command - Sim 4

Figure 5.18: Homogeneous Multiagent Robot Speed - Sim 4

139

5.3 Heterogeneous Agents Examples

In this section, the case of a multiagent system with heterogeneous dynamics is

considered. Just as before, there are 3 different agents with 3 different goals. The

agents each have different dynamics, so the task allocation from the supervisor agent

will be based on the dynamics of each individual agent considered. In this multiagent

system, the 3 agents have different dynamics that exhibit either first- or second-order

behavior.

In these examples, each agent begins at rest and accelerates to the maximum

speed with first-order dynamics governing the speed changes. Once an agent reaches

the goal region, it is commanded to decelerate to rest. All agents in this simulation

have a speed time constant of τV = 1 sec that is unknown to the learner, but they each

have different maximum speeds which are already known. The rotational dynamics

for each agent are varied. It is known in advance whether the dynamics are first- or

second-order, but the parameters governing the rotational equations of motion are

unknown to the learner. The general equations of motion for the first-order rotation

are shown in Equations 5.5-5.8.

ẋ = V cosψ (5.5)

ẏ = V sinψ (5.6)

V̇ = (Vc − V)τ−1
V (5.7)

ψ̇ = (ψc − ψ)τ−1
ψ (5.8)

For the case of agents with second-order dynamics in the rotation, the heading

angle equation of motion shown in Equation 5.8 must be replaced with the second

140

derivative. This is shown in Equation 5.9.

ψ̈ = −2ζψωn,ψψ̇ + ω2
n,ψ(ψc − ψ) (5.9)

The 3 different agents discussed will be labeled as agents A1-A3. A1 is a robot

with first-order dynamics in rotation that has a time constant of τψ = 0.2 sec.

A1 reaches a maximum speed of 1 m/s from rest according to the first-order time

constant of τV = 1 sec. The resulting equations of motion governing A1 are shown

in Equations 5.10-5.13.

ẋ = V cosψ (5.10)

ẏ = V sinψ (5.11)

V̇ = Vc − V (5.12)

ψ̇ = 5(ψc − ψ) (5.13)

A2 has similar speed dynamics with the same first-order time constant of τV = 1

sec, but the maximum speed of A2 is faster with Vmax = 2 m/s. A2 also differs in

rotation with second-order heading angle dynamics. The rotational dynamics are

governed by a natural frequency of ωn,ψ = 6 rad/s and an underdamped damping

ratio of ζψ = 0.8. The equations of motion for A2 are shown in Equations 5.14-5.17.

141

ẋ = V cosψ (5.14)

ẏ = V sinψ (5.15)

V̇ = Vc − V (5.16)

ψ̈ = −9.6ψ̇ + 36(ψc − ψ) (5.17)

A3 also has a first-order speed time constant of τV = 1 sec, but it has the slowest

maximum speed with Vmax = 0.5 m/s. A3 has second-order rotational dynamics

similar to A2, but the natural frequency is ωn,ψ = 10 rad/s and it is overdamped

with ζψ = 1.2. The equations of motion for A2 are shown in Equations 5.18-5.21.

ẋ = V cosψ (5.18)

ẏ = V sinψ (5.19)

V̇ = Vc − V (5.20)

ψ̈ = −24ψ̇ + 100(ψc − ψ) (5.21)

The SDQL algorithm was used on all 3 agents to determine the control policy

for each agent to reach the specified goals, and to determine the best sampling rate

for doing so by maximizing the quadratic sample time reward. The agents also

experienced the dynamics learning algorithms, using FODL on A1 and SODL on A2

and A3. For all of the agents, these algorithms were used online during the learning

process, according to Algorithms 4.2 and 4.4. After running these algorithms for

each of the agents, the determined sample times and dynamics approximations for

each agent were determined to be as reported in Tables 5.10-5.12.

Using the dynamics learned as shown in Tables 5.10-5.12, the multiagent system

142

Table 5.10: Agent 1 Learned Dynamics

Parameter G1 G2 G3

T (sec) 0.08 0.04 0.06
τV (sec) 1.0 1.0 1.0
τψ(sec) 0.2 0.2 0.2

Table 5.11: Agent 2 Learned Dynamics

Parameter G1 G2 G3

T (sec) 0.10 0.08 0.04
τV (sec) 1.0 1.0 1.0

ωn,ψ(rad/s) 6 6 6
ζψ 0.8 0.8 0.8

can be simulated. The system is hierarchical with a single supervisory agent that uti-

lizes the dynamics information in allocating goals to agents according to Figure 5.1.

The low-level agents, designated Agents A1-A3, use the learned control policies and

sample times to sample the environment and direct themselves to their designated

goals.

5.3.1 Equal Number of Agents and Goals

In the first scenario, there will be a goal for every agent simulated. The first case

involves having each agent begin at a different initial condition. Since the agents have

different dynamics now, the supervisor will have to consider the learned dynamics

Table 5.12: Agent 3 Learned Dynamics

Parameter G1 G2 G3

T (sec) 0.06 0.08 0.02
τV (sec) 1.0 1.0 1.0

ωn,ψ(rad/s) 10 10 10
ζψ 1.2 1.2 1.2

143

in determining which agent to allocate to each task, and minimum distance will not

necessarily be the same assignment as minimum time. The initial conditions for this

first case are shown in Table 5.13. The goals are labeled as shown in Table 5.1, and

the agent-to-goal task assignment determined by the supervisory agent is shown in

Table 5.14.

Table 5.13: Heterogeneous Multiagent System ICs - Sim 1

Agent x0 (m) y0 (m) ψ0 (deg)

A1 −6 −7 −90
A2 0 5 90
A3 5 −3 0

Table 5.14: Heterogeneous Multiagent Goal Assignment - Sim 1

Goal Agent

G1 A3

G2 A2

G3 A1

Once the supervisor agent completed its task allocation, the agents in the system

were simulated using all of the learned information to reach their goals. The results of

this simulation shown in Figures 5.19-5.22 indicate that all algorithms were successful

in contributing to the multiagent system control problem.

144

Figure 5.19: Heterogeneous Multiagent Robot Paths - Sim 1

Figure 5.20: Heterogeneous Multiagent Robot States - Sim 1

145

Figure 5.21: Heterogeneous Multiagent Robot Command - Sim 1

Figure 5.22: Heterogeneous Multiagent Robot Speed - Sim 1

146

Figure 5.19 indicates that all agents were able to reach their designated goals

within the 30 second time period allowed. Figure 5.20 shows that the agent that

took longest to reach its goal was A1, which took 16 seconds to reach goal G3, so

the full task achievement took 16 seconds. Figure 5.21 shows the heading angle

command history for each of the agents, and it can be seen that they do not all have

the same sampling rate. Agent A1 had a sample time of T = 0.08 sec, A2 sampled

at an interval of T = 0.10 sec, and A3 sampled every T = 0.06 sec. The speed time

histories for each agent are shown in Figure 5.22, and show the first-order response

of the robots to the commands of maximum and minimum speed.

Upon examining Figure 5.19, it can be seen that agent A3 reinforced undesirable

behavior in the form of loops. This is an indication that this was an early path that

received positive reinforcement, and with further learning this learned behavior may

be overcome. To demonstrate this, agent A3 received an additional 10,000 learning

episodes to see if it could learn a better path. Figures 5.23-5.26 show that this is

indeed the case. Agents A1 and A2 retain the same learning and therefore follow the

same path as before, but agent A3 has learned to follow a better path to its goal.

147

Figure 5.23: Heterogeneous Robot Paths - Sim 1 (More Learning)

148

Figure 5.24: Heterogeneous Robot States - Sim 1 (More Learning)

Figure 5.25: Heterogeneous Robot Command - Sim 1 (More Learning)

149

Figure 5.26: Heterogeneous Robot Speed - Sim 1 (More Learning)

150

The next case involves having all 3 agents begin at the same initial conditions.

In this scenario, the different dynamics will make a very big difference in how goals

are allocated to agents. The initial conditions for all of the agents are shown in

Table 5.15, and the resulting goal assignments from agent As are shown in Table 5.16.

Table 5.15: Heterogeneous Multiagent System ICs - Sim 2

Agent x0 (m) y0 (m) ψ0 (deg)

A1 0 4 90
A2 0 4 90
A3 0 4 90

Table 5.16: Heterogeneous Multiagent Goal Assignment - Sim 2

Goal Agent

G1 A2

G2 A3

G3 A1

In this case, the slowest agent, A3, was assigned to the easiest target, G2. For

the other 2 goals, due to the initial orientation it was deemed that goal G1 would

need to be reached by the fastest agent, A2. Agent A1 was then left with the task of

achieving goal G3. Figures 5.30-5.27 show the successful simulation of this test case.

151

Figure 5.27: Heterogeneous Multiagent Robot Paths - Sim 2

152

Figure 5.28: Heterogeneous Multiagent Robot States - Sim 2

Figure 5.29: Heterogeneous Multiagent Robot Command - Sim 2

153

Figure 5.30: Heterogeneous Multiagent Robot Speed - Sim 2

154

5.3.2 Fewer Goals than Agents

Now the case of assigning goals to agents when there is a surplus of agents must be

considered. In these cases, there will be the same 3 agents and only goals G1 and G2

as before. The first case will demonstrate the task allocation in the situation where

initial conditions are not the same. Since not every agent must go to a goal, the

learned dynamics will need to be considered by agent As to ensure minimum time,

not minimum distance. The initial conditions for this case are shown in Table 5.17,

and the goal assignments determined by the supervisor, As, are shown in Table 5.18.

Table 5.17: Heterogeneous Multiagent System ICs - Sim 3

Agent x0 (m) y0 (m) ψ0 (deg)

A1 −5 −5 −90
A2 0 5 180
A3 3 −4 0

Table 5.18: Heterogeneous Multiagent Goal Assignment - Sim 3

Goal Agent

G1 A1

G2 A2

In this case, it is seen that although agent A3 is closer to goal G1 than agent

A1, it is actually agent A1 that gets the goal assignment due to faster dynamics.

Figures 5.34-5.31 show the successful navigation of each agent to its goal for this

case.

155

Figure 5.31: Heterogeneous Multiagent Robot Paths - Sim 3

Figure 5.32: Heterogeneous Multiagent Robot States - Sim 3

156

Figure 5.33: Heterogeneous Multiagent Robot Command - Sim 3

Figure 5.34: Heterogeneous Multiagent Robot Speed - Sim 3

157

For the next case, the scenario of having all 3 agents begin with the same initial

conditions but only have 2 possible goals will be investigated. Here, all of the agents

begin with the initial conditions shown in Table 5.19. The supervisor assigns goals

based on their learned dynamics, and this task allocation is shown in Table 5.20.

Table 5.19: Heterogeneous Multiagent System ICs - Sim 4

Agent x0 (m) y0 (m) ψ0 (deg)

A1 −5 −5 180
A2 −5 −5 180
A3 −5 −5 180

Table 5.20: Heterogeneous Multiagent Goal Assignment - Sim 4

Goal Agent

G1 A1

G2 A2

Supervisor As then uses the dynamics to determine which agents will be assigned

to which goals. Intuitively, the farthest goal should receive the fastest agent and

the slowest agent should have no assignment. Indeed, it is verified that this is the

case. Figures 5.35-5.38 show the simulation of these agents as they achieve their

designated tasks. These figures show that each of the agents are able to achieve their

designated goal successfully.

158

Figure 5.35: Heterogeneous Multiagent Robot Paths - Sim 4

Figure 5.36: Heterogeneous Multiagent Robot States - Sim 4

159

Figure 5.37: Heterogeneous Multiagent Robot Command - Sim 4

Figure 5.38: Heterogeneous Multiagent Robot Speed - Sim 4

160

The results presented in this chapter show that learning an approximation of

the dynamics for an agent’s states is useful for determining minimum time-to-goal

commands in a hierarchical multiagent system. The learning of appropriate sample

times and control policies by SDQL allows low-level agents to traverse the state-space

and achieve goals assigned to them. The dynamics approximations learned from

FODL and SODL can be used by the supervisory agent to run internal simulations

and determine which agents should be assigned to each goal. This brings together

all of the algorithms presented in this dissertation for use in a generalized simulation

of dynamical multiagent command and control systems.

161

6. CONCLUSIONS AND RECOMMENDATIONS

This dissertation investigated several points involving the use of Reinforcement

Learning in the control of dynamical systems. The following conclusions can be

drawn from this dissertation.

6.1 Sampled-Data Q-learning

1. Sampled-Data Q-learning is capable of determining the sample time that max-

imizes the sample-time reward function. For a reward that is a function of the

sample time itself, this gives a non-minimal sampling rate. If the reward is not

a function of the sample time, Sampled-Data Q-learning chooses the fastest

sampling rate allowed by the user.

2. Sampled-Data Q-learning is capable of learning the best sample time while

simultaneously learning the control policy. This is accomplished with model-

free learning. Separate control policies can be determined for different sample

times by augmenting the state vector with the sample time itself. The next-

state prediction probability is unaffected by this augmentation, so the Markov

Property is preserved for systems that are already Markov.

3. A reward function quadratic in sample time is capable of determining a sam-

ple time that provides good success in control while being non-minimal. If

the sample time reward function, r(T), is linearly dependent on the sample

time function, f(T), then the sample time function can be factored out of the

episodic sample time value function, VT (T). The result is the ability to use

constant rewards for control within the episode while shaping the sample time

value function external to the episodes. This is only the case if all rewards are

162

linearly dependent on the same sample time function.

6.2 Dynamics Learning

1. The First-Order Dynamics Learning algorithm is capable of accurately deter-

mining the time constant that models the first-order behavior of the state being

investigated. It can also be concluded that the Second-Order Dynamics Learn-

ing algorithm is capable of accurately determining the natural frequency and

damping ratio that models the second-order behavior of the state being inves-

tigated. Additionally, both the First- and Second-Order Dynamics Learning

algorithms are capable of accurately learning dynamics parameters for multiple

states within the same system.

2. The negative L2-norm of the state prediction error provides a reward function

capable of minimizing state prediction error, and therefore maximizing reward

on the best approximation of dynamics.

3. The First- and Second-Order Dynamics Learning algorithms require simulation-

specific ranges of sampling rates to accurately model the dynamics. For the

robot example used in this work, the First-Order Dynamics Learning algo-

rithm was accurate over the sample time range 0.006 < T < 1. The Second-

Order Dynamics Learning Algorithm was accurate over the sample time range

0.01 < T < 0.9.

6.3 Multiagent Systems

1. The Sampled-Data Q-learning algorithm is capable of determining the best

individual control policies and sample times for each low-level agent, which are

not necessarily all the same. The control policy and associated sampling rate

163

learned for each agent can be used to control all agents simultaneously, given

goal commands from the supervisory agent.

2. The First- and Second-Order Dynamics Learning algorithms are able to de-

termine accurate dynamics approximations for all low-level agents involved in

the simulations. These learned dynamics approximations are then used by the

high-level supervisory agent to determine task allocation for each agent.

3. The high-level supervisor agent is capable of determining minimum total time

to achieve all goals once the dynamics approximations, control policies, and

sample times of all agents in the system have been learned.

6.4 Recommendations

The work presented in this dissertation involves using a Reinforcement Learning

framework to determine algorithms capable of improving the performance of Rein-

forcement Learning control in systems with time dynamics. The algorithms inves-

tigated are Sampled-Data Q-learning, First-Order Dynamics Learning, and Second-

Order Dynamics Learning. There are a number of extensions that merit investigation:

1. The scope of the systems investigated in this dissertation was limited to deter-

ministic systems that can be modeled linearly. Further investigation of these

algorithms to stochastic systems and nonlinear dynamics is warranted. Mea-

surement noise, environmental disturbances, and nonlinear dynamics are a reg-

ular part of engineering systems that should be considered.

2. The systems investigated in this dissertation were numerical simulations of real-

world systems. It is recommended that use of these algorithms on experimental

hardware systems be investigated.

164

3. The First- and Second-Order Dynamics Learning algorithms were developed

for learning dynamical models of states exhibiting first- and second-order dy-

namics, respectively. For systems of order greater than two, it would be of

interest to investigate the use of Second-Order Dynamics Learning to approx-

imate them. These systems can usually be approximated well by second-order

systems because second-order systems exhibit the necessary traits (i.e. over-

shoot, oscillation, damping, etc.).

4. Extending these algorithms to the modeling of coupled systems would be a re-

search area with great potential. The states modeled in this dissertation were

exclusively uncoupled states with their own independent dynamics. Learning

the models of the modes of systems with coupled states would be beneficial

for systems with complex state dependence, such as in aircraft linear mod-

eling. Learning time constants for first-order modes and natural frequency

and damping ratios for second-order modes for aircraft linear models would be

beneficial for autonomous aircraft system identification.

5. Investigate using the learned dynamics approximations to determine improved

paths given what is already known in Q. Given that an action-value function

has been determined for a particular query, it would be beneficial to determine

how the learned dynamics approximations can be used to modify the policy for

new queries that have not been learned. This can be explored in the context

of new goals, new initial conditions, and changes to the environment (such as

obstacles).

6. Investigating multiple layers of supervisors interacting with each other would

be of interest to this research. In the multiagent systems described in this dis-

sertation, there is one layer of low-level agents and a single supervisor for all of

165

them. Breaking regions into separate groups requires intercommunication be-

tween supervisors to achieve optimal path planning. The use of the algorithms

presented in this dissertation could be of benefit to further research in these

more complex multiagent environments.

166

REFERENCES

[1] P. Abbeel, M. Quigley, and A.Y. Ng. Using inaccurate models in reinforce-

ment learning. In Proceedings of the 23rd International Conference on Machine

Learning, ICML ’06, pages 1–8, New York, NY, 2006. ACM.

[2] J.A. Bagnell and J.G. Schneider. Autonomous helicopter control using rein-

forcement learning policy search methods. In Proceedings of the 2001 IEEE

International Conference on Robotics and Automation, volume 2, pages 1615–

1620, 2001.

[3] R. Bhattacharya and G.J. Balas. Anytime control algorithm: Model reduction

approach. Journal of Guidance, Control, and Dynamics, 27(5):767–776, 2004.

[4] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of mul-

tiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cy-

bernetics, Part C: Applications and Reviews, 38:156–172, 2008.

[5] S. Chakravorty and J.L. Junkins. A methodology for intelligent path planning.

In Proceedings of the 2005 IEEE International Symposium on Intelligent Con-

trol, pages 592–597, 2005.

[6] S. Chakravorty and S. Kumar. Generalized sampling-based motion planners.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

41(3):855–866, 2011.

[7] C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooper-

ative multiagent systems. In Proceedings of National Conference on Artificial

Intelligence, AAAI-98, pages 746–752, 1998.

167

[8] J. Fisher and R. Bhattacharya. Linear quadratic regulation of systems with

stochastic parameter uncertainties. Automatica, 45(12):2831–2841, 2009.

[9] G.F. Franklin, M.L. Workman, and D. Powell. Digital Control of Dynamic Sys-

tems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 3rd edition,

1997.

[10] N. Friedman. Bayesian network classifiers. Machine Learning, 29(2-3):131–163,

1997.

[11] C. Gaskett, D. Wettergreen, and A. Zelinsky. Learning in continuous state

and action spaces. In N. Foo, editor, Advanced Topics in Artificial Intelligence,

volume 1747 of Lecture Notes in Computer Science, pages 417–428. Springer

Berlin / Heidelberg, 1999.

[12] P. Gerard and O. Sigaud. Designing efficient exploration with macs: Modules

and function approximation. In Proceedings of the Fifth Genetic and Evolution-

ary Computation Conference, volume 2724, pages 1882–1893, 2003.

[13] M. Ghavamzadeh and S. Mahadevan. Learning to communicate and act using

hierarchical reinforcement learning. In Proceedings of the Third International

Joint Conference on Autonomous Agents and Multiagent Systems - Volume 3,

AAMAS ’04, pages 1114–1121, Washington, DC, 2004. IEEE Computer Society.

[14] M. Ghavamzadeh, S. Mahadevan, and R. Makar. Hierarchical multi-agent rein-

forcement learning. Autonomous Agents and Multi-Agent Systems, 13:197–229,

2006.

[15] E. R. Gomes and R. Kowalczyk. Dynamic analysis of multiagent q-learning with

168

ε-greedy exploration. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning, pages 369–376, Montreal, Quebec, Canada, 2009.

[16] K. Gopal, T. Romo, J.C. Sacchettini, and T.R. Ioerger. Efficient retrieval of

electron density patterns for modeling proteins by x-ray crystallography. In

International Conference on Machine Learning and Applications (ICMLA’04),

pages 380–387, Louisville, KY, 2004.

[17] J. Hu and M.P. Wellman. Multiagent reinforcement learning: Theoretical frame-

work and an algorithm. In Proceedings of the 15th International Conference on

Machine Learning, pages 242–250, Madison, WI, 1998.

[18] L. C. Baird III. Reinforcement Learning Through Gradient Descent. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA, 1999.

[19] S. Kapetanakis and D. Kudenko. Reinforcement learning of coordination in

cooperative multi-agent systems. In Proceedings of the Nineteenth National

Conference on Artificial Intelligence, AAAI-02, pages 326–331, 2002.

[20] K. Kirkpatrick. Reinforcement Learning for Active Length Control and Hys-

teresis Characterization of Shape Memory Alloys. Master’s thesis, Texas A&M

University, College Station, TX, 2009.

[21] K. Kirkpatrick, J. May Jr., and J. Valasek. Aircraft system identification using

artificial neural networks. In AIAA Aerospace Sciences Meeting, pages 157–163,

Grapevine, TX, 2013.

[22] K. Kirkpatrick and J. Valasek. Reinforcement learning for characterizing hys-

teresis behavior of shape memory alloys. Journal of Aerospace Computing, In-

formation, and Communication, 6(3):227–238, 2009.

169

[23] K. Kirkpatrick and J. Valasek. Active length control of shape memory alloy

wires using reinforcement learning. Journal of Intelligent Material Systems and

Structures, 22(14):1595–1604, 2011.

[24] K. Kirkpatrick and J. Valasek. Morphing smart material actuator control using

reinforcement learning. In J. Valasek, editor, Morphing Aerospace Vehicles and

Structures. John Wiley & Sons, Chichester, UK, 2012.

[25] K. Kirkpatrick and J. Valasek. Reinforcement learning control with time de-

pendent agent dynamics. In F. L. Lewis and D. Liu, editors, Reinforcement

Learning and Approximate Dynamic Programming for Feedback Control. John

Wiley & Sons, Hoboken, NJ, 2012.

[26] M. G. Lagoudakis and R. Parr. Model-free least squares policy iteration. Tech-

nical Report CS-2001-05, Duke University, Durham NC, 2001.

[27] A. Lampton. Discretization and Approximation Methods for Reinforcement

Learning of Highly Reconfigurable Systems. PhD thesis, Texas A&M Univer-

sity, 2009.

[28] P. L. Lanzi. Learning classifier systems from a reinforcement learning perspec-

tive. Soft Computing - A Fusion of Foundations, Methodologies and Applica-

tions, 6:162–170, 2002.

[29] M. Lauer and M. Riedmiller. An algorithm for distributed reinforcement learn-

ing in cooperative multi-agent systems. In Proceedings of the Seventeenth In-

ternational Conference on Machine Learning, ICML ’00, pages 535–542, San

Francisco, CA, 2000. Morgan Kaufmann Publishers Inc.

[30] M. L. Littman. Markov games as a framework for multi-agent reinforcement

170

learning. In The Eleventh International Conference on Machine Learning, pages

157–163, San Francisco, CA, 1994.

[31] R. A. McCallum. Instance-based state identification for reinforcement learning.

In Advances in Neural Information Processing Systems, volume 7, Cambridge,

MA, 1995. MIT Press.

[32] T. M. Mitchell. Machine Learning. The McGraw-Hill Companies, Inc., Singa-

pore, 1997.

[33] R. Munos. A study of reinforcement learning in the continuous case by the

means of viscosity solutions. Machine Learning, 40:265–299, 2000.

[34] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transfor-

mations: Theory and application to reward shaping. In Sixteenth International

Conference on Machine Learning, pages 278–287, 1999.

[35] L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art.

Autonomous Agents And Multi-Agent Systems, 11(3):387–434, 2005.

[36] T. Poggio and F. Girosi. Networks for approximation and learning. In Proceed-

ings of the IEEE, Cambridge, MA, 1990.

[37] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[38] M.A. Rahman and M.A. Hoque. On-line adaptive artificial neural network based

vector control of permanent magnet synchronous motors. IEEE Transactions

on Energy Conservation, 13(4):311–318, 1998.

[39] M. Riedmiller. Neural fitted q iteration - first experiences with a data efficient

neural reinforcement learning method. In Machine Learning: ECML 2005, vol-

171

ume 3720 of Lecture Notes in Computer Science, pages 317–328, Porto, Portugal,

2005. Springer.

[40] P. Sabes. Approximating q-values with basis function representations. In The

Fourth Connectionist Models Summer School, pages 264–271, Hillsdale, NJ,

1993.

[41] W.D. Smart and L.P. Kaelbling. Practical reinforcement learning in continuous

spaces. In Proceedings of the Sixteenth International Conference on Machine

Learning, pages 903–910, 2000.

[42] R. Sutton and A. Barto. Reinforcement Learning: An Introductions. The MIT

Press, Cambridge, MA, 1998.

[43] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In The Tenth International Conference on Machine Learning, pages

330–337, Amherst, MA, 1993.

[44] G. Taylor and R. Parr. Kernelized value function approximation for reinforce-

ment learning. In Proceedings of the 26th International Conference on Machine

Learning, Montreal, Canada, 2009.

[45] S. H. G. ten Hagen. Continuous State Space Q-Learning for Control of Nonlinear

Systems. PhD thesis, University of Amsterdam, 2001.

[46] G. Tesauro. Td-gammon, a self-teaching backgammon program, achieves

master-level play. Neural Computation, 6(2):215–219, 1994.

[47] G. Tesauro. Extending q-learning to general adaptive multiagent systems. In

Advances in Neural Information Processing Systems, volume 16, Vancouver and

Whistler, Canada, 2003.

172

[48] J. Valasek and W. Chen. Observer/kalman filter identification for online sys-

tem identification of aircraft. Journal of Guidance, Control, and Dynamics,

26(2):347–353, 2003.

[49] H. Vollbrecht. Hierarchical Reinforcement Learning in Continuous State Spaces.

PhD thesis, Abteilung Neuroinformatik, Universität Ulm, Ulm, Germany, 2003.

[50] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.

[51] S. Whiteson, M. E. Taylor, and P. Stone. Empirical studies in action selection

with reinforcement learning. Adaptive Behavior, 15:33–50, 2007.

[52] S. Wollkind, J. Valasek, and T.R. Ioerger. Automated conflict resolution for air

traffic management using cooperative multiagent negotiation. In AIAA Guid-

ance, Navigation, and Control Conference, Providence, RI, 2004.

[53] C. Zhang, S. Abdallah, and V. Lesser. Efficient multi-agent reinforcement learn-

ing through automated supervision. In Proceedings of the 7th International Joint

Conference on Autonomous Agents and Multiagent Systems - Volume 3, AA-

MAS ’08, pages 1365–1370, Richland, SC, 2008. International Foundation for

Autonomous Agents and Multiagent Systems.

[54] C. Zhang, S. Abdallah, and V. Lesser. Integrating organizational control into

multi-agent learning. In Proceedings of The 8th International Conference on

Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’09, pages

757–764, Richland, SC, 2009. International Foundation for Autonomous Agents

and Multiagent Systems.

173

APPENDIX A

DERIVATION OF INVERTED PENDULUM EQUATIONS OF MOTION

In this appendix, the equations of motion for an inverted pendulum on a cart are

derived. The system consists of a cart of mass M with a massless pendulum arm of

length L oriented vertically upwards and a mass m at the tip. The pendulum arm

is perturbed from vertical by the angle θ, and is controlled by a force F that acts

horizontally on the cart. This system is shown in Figure A.1.

Figure A.1: Inverted Pendulum on a Cart

To determine the equations of motion for the system described by Figure A.1,

Lagrangian mechanics can be used. The Lagrangian function is described by Equa-

tion A.1, where Lf is the Lagrangian function, K is the kinetic energy, and U is the

potential energy.

Lf = K − U (A.1)

174

Using the Lagrangian function, the equations of motion for a system can be de-

termined by the Euler-Lagrange equations, where qi are the generalized coordinates.

The derivatives of qi are q̇i, and are independent of q’s. The generalized forces are

represented by the symbol Qi. These equations are as shown in Equation A.2.

d

dt

(
∂Lf
∂q̇i

)
− ∂Lf

∂qi
= Qi (A.2)

Determining the generalized forces can be done using a calculation of the work

rate. The work rate can be described by the inner product between the forces of the

system and the velocity. This is shown in Equation A.3, where Ẇ is the work rate,

F is the force vector, and v is the velocity vector.

Ẇ = F · v (A.3)

If the velocity is written in terms of generalized coordinates, v = v(q), then the

velocity can be written according to Equation A.4, where there are n degrees of

freedom.

v =
n∑
i=1

∂r

∂qi
q̇i (A.4)

This yields the form of the work rate shown in Equation A.5.

Ẇ = F ·
n∑
i=1

∂r

∂qi
q̇i = Qiq̇i (A.5)

By examining Equation A.5, it can be seen that the generalized forces are as

described by Equation A.6.

175

Qi = F ·
n∑
i=1

∂r

∂qi
(A.6)

To make the determination of generalized forces simpler, the relationship de-

scribed by Equation A.7 can be used.

∂r

∂qi
=
∂v

∂q̇i
=
∂a

∂q̈i
(A.7)

It is often simpler to determine the velocity partial than the displacement par-

tial, so substituting this equality into Equation A.6 yields the following form for

determining generalized forces:

Qi = F ·
n∑
i=1

∂v

∂q̇i
(A.8)

So, the equations of motion can be determined according to Equation A.9.

d

dt

(
∂Lf
∂q̇i

)
− ∂Lf

∂qi
= F ·

n∑
i=1

∂v

∂q̇i
(A.9)

In the system described by Figure A.1, there are 2 independent degrees of freedom

and therefore 2 generalized coordinates. The motion can be broken up into two

different systems, with the cart as one system and the mass as the other. The

velocities of each of these two systems can be described according to Equations A.10

and A.11.

v2
c = ẋ2 (A.10)

v2
m =

(
d

dt
(x+ L sin θ)

)2

+

(
d

dt
(L cos θ)

)2

(A.11)

176

The mass velocity, vm, can be expanded to the form shown in Equations A.12-

A.14.

v2
m =

(
ẋ+ Lθ̇ cos θ

)2

+
(
−Lθ̇ sin θ

)2

(A.12)

v2
m = ẋ2 + 2ẋθ̇L cos θ + L2θ̇2 cos2 θ + L2θ̇2 sin2 θ (A.13)

v2
m = ẋ2 + 2ẋθ̇L cos θ + L2θ̇2 (A.14)

Using Equations A.10 and A.14, the kinetic energy can be determined.

K =
1

2
(Mv2

c +mv2
m) =

1

2
Mẋ2 +

1

2
m
(
ẋ2 + 2ẋθ̇L cos θ + L2θ̇2

)
(A.15)

U = mgL cos θ (A.16)

This results in the following Lagrange function:

Lf =
1

2
Mẋ2 +

1

2
m
(
ẋ2 + 2ẋθ̇L cos θ + L2θ̇2

)
−mgL cos θ (A.17)

=
1

2
(M +m)ẋ2 +

1

2
mL2θ̇2 +mLẋθ̇ cos θ −mgL cos θ (A.18)

The generalized forces for this system are as shown in Equations A.19 and A.20.

Qx = F (A.19)

177

Qθ = 0 (A.20)

The derivatives of Equation A.18 can be evaluated, and are shown in Equa-

tions A.21-A.26.

∂Lf
∂ẋ

= (M +m)ẋ+mLθ̇ cos θ (A.21)

∂Lf
∂x

= 0 (A.22)

∂Lf

∂θ̇
= mL2θ̇ +mLẋ cos θ (A.23)

∂Lf
∂θ

= −mLẋθ̇ sin θ +mgL sin θ (A.24)

d

dt

(
∂Lf
∂ẋ

)
= (M +m)ẍ+mLθ̈ cos θ −mLθ̇2 sin θ (A.25)

d

dt

(
∂Lf

∂θ̇

)
= mL2θ̈ +mLẍ cos θ −mLẋθ̇ sin θ (A.26)

By substituting these relations into Equation A.2, the equations of motion can

be determined by the following:

F = (M +m)ẍ+mLθ̈ cos θ −mLθ̇2 sin θ (A.27)

178

0 = mL2θ̈ +mLẍ cos θ −mLẋθ̇ sin θ +mLẋθ̇ sin θ −mgL sin θ (A.28)

= Lθ̈ + ẍ cos θ − g sin θ (A.29)

By rearranging Equation A.29, the equation for the second time derivative of θ

can be determined, as shown in Equation A.30

θ̈ =
g sin θ − ẍ cos θ

L
(A.30)

Equation A.30 can then be substituted into Equation A.27 to determine a solution

for ẍ. This is shown in Equations A.31-A.33, with the solution for ẍ shown in

Equation A.34.

F = (M +m)ẍ+mL

(
g sin θ − ẍ cos θ

L

)
cos θ −mLθ̇2 sin θ (A.31)

F = (M +m)ẍ−mẍ cos2 θ +mg sin θ cos θ −mLθ̇2 sin θ (A.32)

(
M +m(1− cos2 θ)

)
ẍ = F +mLθ̇2 sin θ −mg sin θ cos θ (A.33)

ẍ =
F +mLθ̇2 sin θ −mg sin θ cos θ

M +m sin2 θ
(A.34)

Now if the variables are redefined in state-space form according to Equations A.35-

A.38, the equations of motion can be written in those terms. The full dynamics de-

scribing the system of Figure A.1 are shown in state-space notation in Equation A.39.

x1 = x (A.35)

179

x2 = ẋ = ẋ1 (A.36)

x3 = θ (A.37)

x4 = θ̇ = ẋ3 (A.38)

ẋ1 = x2

ẋ2 =
F +mLx2

4 sin(x3)−mg sin(x3) cos(x3)

M +m sin2(x3)

ẋ3 = x4

ẋ4 =
g sin(x3)− ẋ2 cos(x3)

L

(A.39)

180

APPENDIX B

PARTIAL FRACTION EXPANSION SOLUTIONS

In this appendix, partial fraction expansion is performed on a second-order system

in response to a step input of commanded next state. The second-order differential

equation being solved is as shown in Equation B.1, where the state is s and the

system is responding to a nonzero setpoint state command of sc.

s̈+ 2ζωṡ+ ω2s = ω2sc (B.1)

The frequency domain solution for this equation is as shown in Equation B.2.

S(λ) =
ṡ(0) + (λ+ 2ζω)s(0)

λ2 + 2ζωλ+ ω2
+

ω2sc
λ(λ2 + 2ζωλ+ ω2)

(B.2)

To determine the time domain solution to Equation B.1, the inverse Laplace

transform needs to be determined for Equation B.2. Determining the appropriate

solution requires partial fraction expansion, and to simplify matters separate solu-

tions will be found for the 4 uniques cases of damping ratio.

B.1 No Damping

In this first scenario, the case of no damping is considered so ζ = 0. This results

in the following simplification of Equation B.2.

S(λ) =
ṡ(0) + λs(0)

λ2 + ω2
+

ω2sc
λ(λ2 + ω2)

(B.3)

The second term of Equation B.3 can be expanded as shown in Equations B.4-B.9.

181

ω2sc
λ(λ2 + ω2)

=
C1

λ
+
C2λ+ C3

λ2 + ω2
(B.4)

ω2sc = C1(λ2 + ω2) + C2λ
2 + C3λ (B.5)

ω2sc = (C1 + C2)λ2 + C3λ+ C1ω
2 (B.6)

⇒

C1 + C2 = 0

C3 = 0

ω2C1 = ω2sc

(B.7)

⇒

C1 = sc

C2 = −sc

C3 = 0

(B.8)

ω2sc
λ(λ2 + ω2)

=
sc
λ
− scλ

λ2 + ω2
(B.9)

So the expanded form of the frequency domain solution can be written as shown

in Equation B.10.

S(λ) =
ṡ(0) + λs(0)

λ2 + ω2
+
sc
λ
− scλ

λ2 + ω2
(B.10)

This can be further expanded to the form shown in Equation B.11.

S(λ) =
sc
λ

+
ṡ(0)

ω

(
ω

λ2 + ω2

)
+ (s(0)− sc)

λ

λ2 + ω2
(B.11)

The time domain solution can be found by using the inverse Laplace transforms

182

in Equations B.12-B.14.

L−1

{
1

λ

}
= 1 (B.12)

L−1

{
ω

λ2 + ω2

}
= sin(ωt) (B.13)

L−1

{
λ

λ2 + ω2

}
= cos(ωt) (B.14)

With these inverse Laplace transforms, the time domain solution for a the second-

order system described in Equation B.1 can be found when ζ = 0. This solution is

shown in Equation B.15.

s(t) = sc +
ṡ(0)

ω
sin(ωt) + (s(0)− sc) cos(ωt) (B.15)

B.2 Underdamped

The next case will consider underdamping, or a range of 0 < ζ < 1. In this

scenario, the full form of Equation B.2 must be expanded. The first term of Equa-

tion B.2 can be expanded according to Equations B.16-B.18.

183

ṡ(0) + (λ+ 2ζω)s(0)

λ2 + 2ζωλ+ ω2
=
λs(0) + ṡ(0) + 2ζωs(0)

(λ+ ζω)2 + ω2(1− ζ2)
(B.16)

= s(0)

(
λ+ ṡ(0)

s(0)
+ 2ζω

(λ+ ζω)2 + ω2(1− ζ2)

)
(B.17)

= s(0)
ζω

(λ+ ζω)2 + ω2(1− ζ2)

+ s(0)
λ+ ζω

(λ+ ζω)2 + ω2(1− ζ2)
(B.18)

+
ṡ(0)

ζω

ζω

(λ+ ζω)2 + ω2(1− ζ2)

By using the inverse Laplace transforms in Equations B.13 and B.14, Equa-

tion B.18 can be solved for the time domain solution of the first term in Equation B.2.

This is shown in Equations B.19-B.20.

L−1

{
ṡ(0) + (λ+ 2ζω)s(0)

λ2 + 2ζωλ+ ω2

}
= s(0)e−ζωt

ζ√
1− ζ2

sin(ωt
√

1− ζ2)

+ s(0)e−ζωt cos(ωt
√

1− ζ2) (B.19)

+
ṡ(0)

ζω
e−ζωt

ζ√
1− ζ2

sin(ωt
√

1− ζ2)

=
e−ζωt sin(ωt

√
1− ζ2)

ω
√

1− ζ2
(ζωs(0) + ṡ(0)) (B.20)

+ s(0)e−ζωt cos(ωt
√

1− ζ2)

Now to determine a time domain solution to the second term in Equation B.2 re-

quires partial fraction expansion. The expansion is demonstrated in Equations B.21-

B.27.

ω2sc
λ(λ2 + 2ζωλ+ ω2)

=
C1

λ
+

C2λ+ C3

λ2 + 2ζωλ+ ω2
(B.21)

184

ω2sc = C1(λ2 + 2ζωλ+ ω2) + (C2λ+ C3)λ (B.22)

ω2sc = λ2(C1 + C2) + λ(2ζωC1 + C3) + C1ω
2 (B.23)

⇒

C1 + C2 = 0

2ζωC1 + C3 = 0

ω2C1 = ω2sc

(B.24)

⇒

C1 = sc

C2 = −sc

C3 = −2ζωsc

(B.25)

ω2sc
λ(λ2 + 2ζωλ+ ω2)

=
sc
λ
− scλ+ 2ζωsc
λ2 + 2ζωλ+ ω2

(B.26)

ω2sc
λ(λ2 + 2ζωλ+ ω2)

=
sc
λ
− scζω

(λ+ ζω)2 + ω2(1− ζ2)
− sc(λ+ ζω)

(λ+ ζω)2 + ω2(1− ζ2)
(B.27)

The inverse Laplace transforms in Equations B.12-B.14 can then be used to trans-

form Equation B.27 into the time domain. This produces the time domain solution

to the second term of Equation B.2, shown in Equation B.28.

L−1

{
ω2sc

λ(λ2 + 2ζωλ+ ω2)

}
= sc − sc

ζ√
1− ζ2

e−ζωt sin(ωt
√

1− ζ2) (B.28)

− sce−ζωt cos(ωt
√

1− ζ2)

185

By combining Equations B.20 and B.28, we arrive at the full time domain solution

to Equation B.1 for the case of 0 < ζ < 1 shown in Equation B.29.

s(t) = sc +
ζ√

1− ζ2
e−ζωt

(
s(0)− sc +

ṡ(0)

ζω

)
sin(ωt

√
1− ζ2)

+e−ζωt(s(0)− sc) cos(ωt
√

1− ζ2)

(B.29)

B.3 Critically Damped

The critically damped case is considered here, so the damping ratio is designated

as ζ = 1. This yields the following reduced form of Equation B.2.

S(λ) =
ṡ(0) + (λ+ 2ω)s(0)

λ2 + 2ωλ+ ω2
+

ω2sc
λ(λ2 + 2ωλ+ ω2)

(B.30)

S(λ) =
ṡ(0) + (λ+ 2ω)s(0)

(λ+ ω)2
+

ω2sc
λ(λ+ ω)2

(B.31)

The first term of Equation B.31 can be expanded as shown below.

ṡ(0) + (λ+ 2ω)s(0)

(λ+ ω)2
=

C1

λ+ ω
+

C2

(λ+ ω)2
(B.32)

ṡ(0) + (λ+ 2ω)s(0) = C1(λ+ ω) + C2 (B.33)

⇒

 s(0)λ = C1

ṡ(0) + 2ωs(0) = ωC1 + C2

(B.34)

186

⇒

 C1 = s(0)

C2 = ṡ(0) + ωs(0)
(B.35)

This results in the following expansion for the first term.

ṡ(0) + (λ+ 2ω)s(0)

(λ+ ω)2
=

s(0)

λ+ ω
+
ṡ(0) + ωs(0)

(λ+ ω)2
(B.36)

The second term of Equation B.31 can be expanded as shown below.

ω2sc
λ(λ+ ω)2

=
C1

λ
+

C2

λ+ ω
+

C3

(λ+ ω)2
(B.37)

ω2sc = C1(λ+ ω)2 + C2λ(λ+ ω) + C3λ (B.38)

ω2sc = λ2(C1 + C2) + λ(2C1ω + C2ω + C3) + C1ω
2 (B.39)

⇒

C1 + C2 = 0

2C1ω + C2ω + C3 = 0

C1ω
2 = scω

2

(B.40)

⇒

C1 = sc

C2 = −sc

C3 = −scω

(B.41)

This results in the following expanded form of the second term.

ω2sc
λ(λ+ ω)2

=
sc
λ
− sc
λ+ ω

− ωsc
(λ+ ω)2

(B.42)

187

The fully expanded form of Equation B.31 is shown in Equations B.43 and B.44.

S(λ) =
s(0)

λ+ ω
+
ṡ(0) + ωs(0)

(λ+ ω)2
+
sc
λ
− sc
λ+ ω

− ωsc
(λ+ ω)2

(B.43)

S(λ) =
sc
λ

+
s(0)− sc
λ+ ω

+
ṡ(0) + ωs(0)− ωsc

(λ+ ω)2
(B.44)

The inverse Laplace transform can be used to obtain the time-domain solution to

Equation B.44. Equations B.45 and B.46 are more general Laplace transforms that

can be used in this case.

L−1

{
1

λ− a

}
= eat (B.45)

L−1

{
n!

(λ− a)n+1

}
= tneat (B.46)

Using these inverse transforms, the time domain solution for the state can be

determined. The solution for a critically damped second-order system is shown in

Equation B.47.

s(t) = sc + (s(0)− sc)e−ωt + (ṡ(0) + ωs(0)− ωsc)te−ωt (B.47)

B.4 Overdamped

Here the case of overdamping is discussed, so in this scenario ζ > 1. For this case

the full form of Equation B.2 must be expanded, but it will be done using different

substitutions than the underdamped case in Section B.2. First we will define two

new constants to make the derivation easier.

188

z1 = ω(ζ −
√
ζ2 − 1) (B.48)

z2 = ω(ζ +
√
ζ2 − 1) (B.49)

With these constants, Equation B.2 can be rearranged to the form shown in

Equation B.50.

S(λ) =
ṡ(0) + (λ+ 2ζω)s(0)

(λ+ z1)(λ+ z2)
+

ω2sc
λ(λ+ z1)(λ+ z2)

(B.50)

The first term of Equation B.50 will be expanded using partial fractions as shown

in Equations B.51-B.56.

ṡ(0) + (λ+ 2ζω)s(0)

(λ+ z1)(λ+ z2)
=

C1

λ+ z1

+
C2

λ+ z2

(B.51)

ṡ(0) + (λ+ 2ζω)s(0)

(λ+ z1)(λ+ z2)
= C1(λ+ z2) + C2(λ+ z1) (B.52)

ṡ(0) + (λ+ 2ζω)s(0)

(λ+ z1)(λ+ z2)
= λ(C1 + C2) + C1z2 + C2z1 (B.53)

⇒

 C1 + C2 = s(0)

C1z2 + C2z1 = ṡ(0) + 2ζωs(0)
(B.54)

⇒

 C1 = ṡ(0)+(2ζω−z1)s(0)
z2−z1

C2 = − ṡ(0)+(2ζω+z2)s(0)
z2−z1

(B.55)

189

ṡ(0) + (λ+ 2ζω)s(0)

(λ+ z1)(λ+ z2)
=

(
ṡ(0) + (2ζω − z1)s(0)

z2 − z1

)
1

λ+ z1

(B.56)

−
(
ṡ(0) + (2ζω + z2)s(0)

z2 − z1

)
1

λ+ z2

The frequency domain solution for the first term of Equation B.50 can then be

transformed into the time domain using Equation B.45. This time domain solution

to the first term is shown in Equation B.57.

L−1

{
ṡ(0) + (λ+ 2ζω)s(0)

(λ+ z1)(λ+ z2)

}
=

(
ṡ(0) + (2ζω − z1)s(0)

z2 − z1

)
e−z1t (B.57)

−
(
ṡ(0) + (2ζω + z2)s(0)

z2 − z1

)
e−z2t (B.58)

Now the second term of Equation B.50 can be expanded in a similar way. This

expansion is shown in Equations B.59-B.64.

ω2sc
λ(λ+ z1)(λ+ z2)

=
C1

λ
+

C2

λ+ z1

+
C3

λ+ z2

(B.59)

ω2sc = C1(λ+ z1)(λ+ z2) + C2λ(λ+ z2) + C3λ(λ+ z1) (B.60)

ω2sc = λ2(C1 + C2 + C3) + λ(C1(z1 + z2) + C2z2 + C3z1) + C1ω
2 (B.61)

190

⇒

C1 + C2 + C3 = 0

C1(z1 + z2) + C2z2 + C3z1 = 0

C1ω
2 = ω2sc

(B.62)

⇒

C1 = sc

C2 = − scz2
z2−z1

C3 = scz1
z2−z1

(B.63)

ω2sc
λ(λ+ z1)(λ+ z2)

=
sc
λ
−
(

scz2

z2 − z1

)
1

λ+ z1

+

(
scz1

z2 − z1

)
1

λ+ z2

(B.64)

Using the inverse Laplace transforms of Equations B.12 and B.45, Equation B.64

can be transformed to the time domain to obtain Equation B.65.

L−1

{
ω2sc

λ(λ+ z1)(λ+ z2)

}
= sc −

(
scz2

z2 − z1

)
e−z1t +

(
scz1

z2 − z1

)
e−z2t (B.65)

Combining Equations B.57 and B.65, we arrive at the time domain solution to

Equation B.1 for the case of ζ > 1 shown in Equation B.66.

s(t) = sc +

(
ṡ(0) + (2ζω − z1)s(0)− scz2

z2 − z1

)
e−z1t

−
(
ṡ(0) + (2ζω + z2)s(0)− scz1

z2 − z1

)
e−z2t

where

z1 = ω(ζ −
√
ζ2 − 1)

z2 = ω(ζ +
√
ζ2 − 1)

(B.66)

191

