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ABSTRACT 

 

Within fractured reservoirs, such as tight gas reservoir, coupled processes between 

matrix deformation and fluid flow are very important for predicting reservoir behavior, 

pore pressure evolution and fracture closure. To study the coupling between gas 

desorption and rock matrix/fracture deformation, a poroelastic constitutive relation is 

developed and used for deformation of gas shale. Local continuity equation of dry gas 

model is developed by considering the mass conservation of gas, including both free and 

absorbed phases. The absorbed gas content and the sorption-induced volumetric strain 

are described through a Langmiur-type equation. A general porosity model that differs 

from other empirical correlations in the literature is developed and utilized in a finite 

element model to coupled gas diffusion and rock mass deformation.  

The dual permeability method (DPM) is implemented into the Finite Element Model 

(FEM) to investigate fracture deformation and closure and its impact on gas flow in 

naturally fractured reservoir. Within the framework of DPM, the fractured reservoir is 

treated as dual continuum. Two independent but overlapping meshes (or elements) are 

used to represent these kinds of reservoirs: one is the matrix elements used for  

deformation and fluid flow within matrix domain; while the other is the fracture element 

simulating the fluid flow only through the fractures. Both matrix and fractures are 

assumed to be permeable and can accomodate  fluid transported. A quasi steady-state 

function is used to quantify the flow that is transferred between rock mass and fractures. 

By implementing the idea of equivalent fracture permeability and shape-factor within the 
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transfer function into DPM, the fracture geometry and orientation are numerically 

considered and the complexity of the problem is well reduced. Both the normal 

deformation and shear dilation of fractures are considered and the stress-dependent 

fracture aperture can be updated in time.  

Further, a non-linear numerical model is constructed by implementing a poroviscoelastic 

model into the dual permeability (DPM)-finite element model (FEM) to investigate the 

coupled time-dependent viscoelastic deformation, fracture network evolution and 

compressible fluid flow in gas shale reservoir. The viscoelastic effect is addressed in 

both deviatoric and symmetric effective stresses to emphasize the effect of shear strain 

localization on fracture shear dilation. The new mechanical model is first verified with 

an analytical solution in a simple wellbore creep problem and then compared with the 

poroelastic solution in both wellbore and field cases. 
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CHAPTER I  

INTRODUCTION  

 

1.1 Overview  

Methane is becoming an important and reliable global natural energy resource. Its 

demand and production have been significantly promoted over the last decade. As shown 

in the resource triangle (Figure 1), unconventional reservoirs, like coalbed methane 

(CBM), gas shale and gas hydrates, make up a great portion of the gas resources in the 

world (Holditch, 2009).  

 

Figure 1 Resource triangle for gas (after Holditch, 2009) 
 

Gas shale is one of the major unconventional reservoirs for natural gas, mostly methane. 

Currently, natural gas production is proven to be commercially possible in different gas 
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shale reservoirs across United States (Figure 2). Numerous operations have been 

conducted in Barnett shale, Eagle Ford shale and Haynesville shale.  

 

Figure 2 Locations of major gas shale reservoirs in the U.S. (Energy Information 
Administration, 2012) 

 

According to the updated discoveries of gas reserves and the application of innovative 

technologies in the development of gas reservoirs, annual natural gas production in the 

U.S. is believed to increase to 27.9 trillion cubic feet by 2035. Compared to the 21.6 

trillion cubic feet gas production in 2010, a considerable 29% increase is projected in the 

following two decades. And the shale gas production is predicted to significantly 

increase from only 5.0 trillion cubic feet in 2010 to 13.6 trillion cubic feet in 2035, 
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which would supply 49% of domestic gas production in the U.S. by 2035 (Energy 

Information Administration, 2012).  It is obvious that the promising development of gas 

shale reservoirs will contribute almost all the growth of domestic gas production in the 

U.S. 

Among all the domestic gas shale reservoirs shown in Figure 2, the Barnett Shale is the 

most well studied and developed one. Its commercial gas production was first 

established by Mitchell Energy and Development Corporation in 1981 (Curtis, 2002; 

Martineau, 2007). Since then, numerous wells have been drilled by more than 200 

operators, which resulted in a rapid increase of annual gas production in Barnett Shale in 

the past decade (Figure 3). By July 19, 2012, the total number of operated gas wells was 

16,213 in this area (Texas Railroad Commission, 2012). Its gas production contributes 

nearly 9% domestic gas production at present (Energy Information Administration, 

2012). 

The Barnett Shale is located in the Fort Worth Basin, which is a north-south elongated 

basin in north-central Texas (Figure 2). Its productive part covers nearly 5,000 square 

miles (13,000 km2), which characterizes it as the largest onshore natural gas field in the 

U.S. (Martineau, 2007; Zhao et al., 2007; Texas Railroad Commission, 2012). The major 

producing area of Barnett Shale is Newark East field (Hill and Nelson, 2000; Martineau, 

2007). The Barnett Shale is of Mississippian age and was deposited in a foreland basin 

(Thompson, 1988; Jarvie et al., 2007; Pollastro et al., 2007; Zhao et al., 2007). In Barnett 

shale, organic-rich shale is the primary source and reservoir for gas accumulation 

(Montgomery et al., 2005; Pollastro, 2007). The depth of Barnett Shale ranges from 
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6,500 to 8,500 ft (1,981-2,591m) and its net thickness varies between 50 and 200 ft (15-

61m) in Newark East field (Curtis, 2002). 

 

Figure 3 Gas production and well count history of Barnett Shale between 1993 and 
2011 (from Texas Railroad Commission, 2012) 
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1.2 Motivation  

Gas shale reservoirs are quite different among and within sedimentary facies. They differ 

in mineral composition or geological evolution, but they are all characterized by very 

fine grain texture and hence extremely low matrix permeability (Curtis, 2002; Vermylen, 

2011). The matrix permeability of these shales typically varies from microdarcy to 

nanodarcy, which makes natural gas hard to be extracted from gas shale reservoir. 

Therefore, hydraulic fracturing and horizontal drilling are necessary for economic 

production from this kind of formation (Vanorsdale, 1987; Martineau, 2007; Cramer, 

2008; Holditch, 2009; Vermylen, 2011; Sone, 2012). 

Hydraulic fracturing treatment is handled by injecting water and/or gel into the wellbore 

at sufficiently high pressure and rate to create and propagate multiple fractures in the 

rock. During the hydraulic fracturing process, the contacted surface area of reservoir 

rock will be increased by connecting to pores and natural fractures, and hence, the pore 

pressure in the matrix rock adjacent to the fractures will be lowered and allow trapped 

gas molecules to flow into the wellbore. Fracturing can be carried out in horizontal 

wells, whose laterals vary between 1,000 and 3,500ft (304.8-1,066.8m). Such wells were 

first drilled in the Barnett Shale in 2003 (Martineau, 2007). Multi-stage hydraulic 

fracturing is performed in horizontal wells to maximize the drainage area of gas shale. 

By applying these advanced technologies, both the number of operations and the 

productivity in gas shale could be greatly promoted. However, many challenges remain 

unsolved in the fracture design and reservoir simulation work. 
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In practice, production from fractured stimulated wells of Barnett Shale rapidly 

decreases within several months after reaching early peak (Vermylen, 2011). In Figure 4, 

this type of decline takes place not only in the Barnett Shale but also in other gas shale 

plays, as the Woodford shale and so on (Kozier, 1984; McBane and Thompson, 1984; 

Vanorsdale, 1987; Baihly et al., 2010; Medeiros et al., 2010; Ambrose et al., 2011; 

Cook, 2011; Jayakumar et al., 2011; Martin et al., 2011). Among the four typical gas 

shale reservoirs (Figure 4), the Barnett Shale presents the lowest initial production rate 

but flattest curve.  An important question is the cause(s) of the decline and how soon 

does it occur in a given well? Gas release mechanism and/or the time-dependent geo-

mechanical behavior of the fractures more than likely play an important role.  

The mechanical response of a gas shale reservoir to hydraulic fracturing is quite different 

from that of conventional or other unconventional resource. The conventional hydraulic 

fracturing is envisioned as a bi-wing shape fracture developed in the direction normal to 

the minimum principal stress. Whereas, according to the microseismic monitoring 

events, a complex fracture network is often developed in gas shale reservoirs, resulting 

from the interaction between natural fractures and the hydraulic fracture upon 

stimulation (Mayerhofer et al., 2006; Warpinski et al., 2008; Cipolla et al., 2009; Cipolla 

et al., 2010; Du et al., 2010; Chaudhri, 2012; Olorode et al., 2012; Zhou et al., 2012).  

This irregular and complicate fracture network should be considered in the reservoir 

simulator to predict future production and assess fracture design. 
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Figure 4 First year gas production rate from four different shale plays in 2008 
(source: SPE 135555) 
 

In many reservoir simulators for gas shale, only the elastic deformation of reservoir rock 

and fractures is considered. The elastic properties of the rock formations are obtained 

from core and log analyses prior to the simulation work. However, many experiment 

studies and field investigations indicated that shale undergoes viscoelastic deformation 

under in-situ stress condition (Olsson, 1980; Blanton and Teufel, 1983; Huang et al., 
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1987; Warpinski, 1989; Zhou et al., 1992; Remvik, 1995; Bloch et al., 1999; Sone and 

Zoback, 2011). This time dependent response of reservoir rock is important in predicting 

reservoir performance, especially long-term performance. Neglecting this time-

dependent reservoir behavior during production may underestimate reservoir compaction 

and lead to incorrect forecast production (Hagin and Zoback, 2007). 

Due to the distinct nature of gas shale reservoirs, a full understanding of the mechanical 

behavior of gas shale is required to evaluate and enhance gas production. However, a 

comprehensive geomechanical reservoir simulator, which is capable of incorporating in-

situ stress, gas desorption, reservoir compaction, nonideal fracture network and 

viscoelastic deformation, is not available in literature.  

 

1.3 Previous work  

1.3.1 Storage and flow mechanisms 

Geomechanical reservoir performance and gas flow mechanism are critical issues for 

shale gas production, especially in fractured reservoirs. In addition, gas shale has a gas 

storage and release mechanism, which is quite different from that of conventional 

reservoirs that ought to be coupled to rock deformation. During gas production, pore 

pressure decrease along fractures (both natural and induced fractures) causes the increase 

of the effective in-situ stress. The increase in effective in-situ stress can compact the 

reservoir and reduce the fracture aperture and hence lower the reservoir permeability. 

However, the adsorbed gas is released from gas shale matrix and diffused into fractures 
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by the reduction of pore pressure. This gas desorption process results in the shrinkage of 

shale matrix and enhances the permeability in both matrix and fractures. The 

permeability evolution of gas shale reservoir is governed by these two coupled but 

competitive processes.                   

Gas in shale exists not only in small pores and open fractures (free gas), like 

conventional reservoirs, but is also adsorbed onto the surface of shale matrix. The 

amount of adsorbed gas is quantified through Langmuir isotherms (Bumb and McKee, 

1988; Nguyen, 1989; Lane et al., 1990; Lu et al., 1995; Zhao et al., 2004; Ross and 

Bustin, 2007; Bustin et al., 2008; Lewis and Hughes, 2008; Zhang et al., 2008). 

Langmuir isotherms are commonly used to describe the relationship between the 

adsorption of methane molecules onto coal or shale surface and gas pressure at reservoir 

temperature. As a major gas storage mechanism in gas shale, releases of adsorbed gas 

should be considered in shale mechanical response. Neglecting the desorption process 

may result in significant errors in production prediction, especially for stimulated wells 

in gas shale reservoirs (Lane et al., 1990; Montgomery et al., 2005; Ross and Bustin, 

2009; Schepers et al., 2009).  

 

1.3.2 Dynamic permeability 

The matrix porosity changes during production, causing permeability variation during 

gas production. Therefore, permeability changes in response to both sorption-induced 

matrix deformation and free gas depletion, and variation in in-situ stress conditions 
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(Seidle and Huitt, 1995; Palmer and Mansoori, 1998; Shi and Durucan, 2004; Cui and 

Bustin, 2005; Robertson and Christiansen, 2006, 2008; Zhang et al., 2008). Such 

coupling must be incorporated in rock deformation.  

McKee et al. (1988) developed a relation between permeability change and stress 

variation based on Carmen-Kozeny equation. 

 

3

0 01 1
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where 
pc  is the average pore compressibility;   is the change of effective stress. In 

this model, the compressibility of solid grains is omitted by assuming it is very small 

compared to the porosity change in shale.  

Liu and Civan (1995) proposed the following correlation by modifying the Kozeny 

equation.  
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where the dimensionless parameter pk  denotes the conductivity of fluid seepage within 

plugged pores; f  represents the fraction of unplugged pore throats; *  is the porosity 

which is affected by mechanical loading. In this model, the particle plugging effects are 

taken into consideration. If the flow factor, f , is set to 1, this model is exactly the same 

as the cubic function. 

Seidle and Huitt (1995) attributed all the real time porosity variation to the sorption-

induced strain by excluding elastic strain of the matrix. This assumption might not be 
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proper for gas shale, whose desorption gas content is not as significant as that of coalbed 

methane.  
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where   is the porosity at pressure p ; 0  is the initial porosity at initial reservoir 

pressure 0p ; mC  represents the swelling coefficient of matrix; mV  is maximum amount 

of adsorption; b is a Langmuir constant. 

The Palmer-Mansoori model (1998) took both stress-caused elastic deformation and 

desorption-induced swelling into consideration.  This model was developed for uniaxial 

strain conditions, and its expression was given as: 
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where mc  is the compressibility of pore space; l  represents the maximum volumetric 

strain when pressure goes to infinite; K  and M  denote the rock’s bulk and constrained 

axial modulus respectively. The second term in the right hand side (RHS) of equation 
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1.05 represents the mechanical deformation caused by the change of effective stress, 

while the third term reflects the desorption-induced matrix swelling. 

The Shi-Durucan model (2004) was derived for uniaxial strain conditions. 

  0
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1 1
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            (1.7) 

where 
fc  is the compressibility of cleat volume; 

l  represents the maximum volumetric 

strain when pressure goes to infinite; E  is Young’s modulus and   denotes Poisson’s 

ratio. 

The Cui-Bustin model (2005) showed porosity was a general function of bulk modulus 

of rock and pore space, mean stress and pore pressure:  
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                             (1.8) 
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                                 (1.9) 

where pK  denotes the bulk modulus for the pore space;  and 0  are the current and 

initial mean stresses respectively. Assuming K  and pK  are constants, this model is 

derived by integrating the following equation with time: 

 
1 1

p

d
d dp

K K






 
    
 

                                            (1.10) 
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Under the uniaxial strain conditions, this model can be transformed to a function which 

is close to Palmer-Mansoori model. 

The Robertson-Christiansen model (2006) was set up for hydrostatic stress condition to 

resemble the lab conditions for permeability measurement of core samples, while the 

overburden pressure was assumed be a constant. 

 
0( )
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0 0 0 0

1 9 1 2exp 3 ln
p p
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      

      

       (1.11) 

where 0c  is the initial fracture compressibility;   is the change rate of fracture 

compressibility. Without specifying any stress conditions, a general porosity model, 

taking both in-situ  stress conditions and gas desorption mechanisms into account, was 

developed within the framework of Biot’s poroelasticity theory (Biot, 1935) and was 

utilized in the numerical model of this work. 

 

1.3.3 Analytical and numerical simulators 

Numerous analytical and semi-analytical models are available in literature to investigate 

the flow behavior in reservoirs using the dual continuum concept (either a dual porosity 

or dual permeability model). Some analytical models treated a fractured reservoir as an 

equivalent homogeneous porous medium (Bumb and McKee, 1988; Carlson, 1994) or 

just modeled a single fracture performance in this formation (Gringarten et al., 1974; 

Nobakht and Clarkson, 2012b, 2012a). Xu et al. (2009) developed a hydraulic fracture 

network model to handle the growth of multiple fractures in gas shale reservoir and 
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solved it analytically or semi-analytically based upon a quasi-steady fluid flow 

approximation. Xu et al. (2011) presented several analytical models to estimate the gas 

production from fractured shale gas reservoirs and validated them with commercial 

simulators. Ambrose et al. (2011) provided hybrid methods by combining both analytical 

and empirical approaches to predict post-fracturing well performance in both 

homogeneous and heterogeneous cases. However, gas desorption was omitted in these 

analytical models.  

Several more advanced analytical and semi-analytical were developed to capture fracture 

complexity and/or gas desorption. Medeiros et al. (2006) discretized the highly 

heterogeneous reservoir into grids to represent substructures by assuming local 

homogeneity and coupling the analytical and pressure transient solutions within each 

grid. Samandarli et al. (2011b) used the analytical solution of dual porosity model, in 

which fractures are the only conduit for fluid flow and rock matrix acts as source of 

fluid, to history match the production of fractured gas shale reservoirs and took gas 

properties variation and gas desorption into account. Thompson et al. (2011) utilized the 

trilinear flow model to predict production in multi-fractured horizontal wells and 

simulated regional permeability within stimulated reservoir volume (SRV) and adsorbed 

gas contribution. Zhou et al. (2012) proposed a semi-analytical model on discretized 

fracture plane to manage the local heterogeneity and non-darcy flow was considered.  

Whereas, nonlinear gas compressibility, fluid exchange between matrix and fracture and 

fracture aperture variation still remained unsolved in these models. By assuming 

constant fracture aperture and regular-shaped fracture network, another widely used 
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model in literature is analytical dual porosity (Gatens III et al., 1985; Lee and Gatens III, 

1985; Gatens III et al., 1989; Spivey and Semmelbeck, 1995; Bello and Wattenbarger, 

2008; Lewis and Hughes, 2008; Samandarli et al., 2011a).   

Due to the limitation in fully describing the gas flow mechanism and pressure dependent 

reservoir response to gas depletion, more and more numerical simulators have been 

constructed and applied in the studies of gas shale and other unconventional reservoirs. 

Some numerical models were successfully used in history match of gas production 

(King, 1993; Freeman et al., 2009; Freeman et al., 2010; Jayakumar et al., 2011; Olorode 

et al., 2012). However, only fluid transport is considered during gas production by 

neglecting rock deformation, which means an uncoupled or partially couple process is 

considered. In reality, pore pressure variation leads to either expansion or contraction of 

the rock and will affect fracture aperture during reservoir life. It is inadequate to separate 

one from the other in reservoir simulation. This coupling is considered by poroelastic 

theory. 

 

1.3.4 Coupled flow/rock deformation for shale  

Biot (1935; 1941) was the first to propose a linear poroelastic theory to describe the 

coupled hydro-mechanical process during rock consolidation. Rice and Cleary (1976) 

took fluid compressibility into account and extended this theory to both drained and 

undrained condition. Detournay and Cheng (1993) applied this theory to solve various 

boundary value problems and provided lots of analytical and numerical solutions, which 
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can be used to verify our numerical model. Heidug and Wong (1996) proposed a fully 

coupled constitutive model to simulate hydration swelling of water-absorbing rocks by 

using non-equilibrium thermodynamics and Gibbs-Duhem equation to quantify the 

swelling, osmosis and solute flow processes. Diek and Ghassemi’s work (2004) 

extended this chemo-poroelastic theory by fully coupling the four processes of 

mechanical, hydraulic, chemical and thermal in transversely isotropic porous media 

saturated by a compressible and thermally expansible solution composed of a solvent 

and one or more solute. Zhang et al. (2008) and Zhao et al.(2004) developed Biot-type 

models to simulate gas transportation and coupled matrix deformation for coal seam. 

However, only an ideal gas law was used in their model, and gas compressibility was 

ignored. Huang and Ghassemi (2011) improved their work by utilizing a real gas law 

and focusing on adsorbed gas within shale matrix. In that work, a non-linear fully 

coupled poroelastic finite element model was constructed and then applied in performing 

poroelastic analysis of gas production from gas shale. However, fracture network and 

deformation was not taken into account in the production process.  

 

1.3.5 Fracture network consideration 

Many numerical methods have been developed to study the fracture deformation and 

interaction between natural and hydraulic fractures. The discrete fracture network (DFN) 

approach is a widely used approach for handling fracture propagation and interaction 

(Lee et al., 1999; Dershowitz et al., 2000; Karimi-Fard and Firoozabadi, 2001; Sarda et 

al., 2001; Sarda et al., 2002; Karimi-Fard and Firoozabadi, 2003; Tamagawa and 



 

17 

 

Tezuka, 2004; Li and Lee, 2006; Kim and Schechter, 2007; Li and Lee, 2008; Bang and 

Jeon, 2009; Kim and Schechter, 2009; Meyer and Bazan, 2011; Moinfar et al., 2011; 

Moinfar et al., 2012; Zeng et al., 2012). However, when using the DFN within the 

framework of FEM and FDM, the matrix domain needs to be explicitly discretized. This 

requires a refinement of mesh which could significantly increase the computational 

density and time consumption and hence withdraws its applications in highly fractured 

reservoirs. 

Displacement-discontinuity method (DDM) is another popular way to model the fracture 

deformation (Wardle and Enever, 1983; Priest, 1984; Wardie, 1984; Curran and 

Carvalho, 1987; Nakagawa et al., 1999; Yacoub and Curran, 1999; Lavrov et al., 2005; 

Regueiro, 2006; Tao et al., 2009; Zhou and Ghassemi, 2009; Marji et al., 2010; Verde 

and Ghassemi, 2013). This is an indirect boundary element method by assuming 

continuous stress field whereas discontinuous displacement across fracture. The DD 

approach addresses the matrix description implicitly so mesh refinement is not an issue. 

An accurate analytical solution for displacement discontinuity in a homogeneous rock 

system is a prerequisite for the application of this method. 

The continuum method is appropriate for simulating fracture deformation in naturally 

fractured medium. In the conventional continuum approach, a fractured reservoir was 

treated as an equivalent homogeneous porous medium. Regarding the existence of 

fractures, faults or cracks, this approach was not applicable for highly heterogeneous 

porous medium (Lee et al., 1999)  like gas shale. Instead, the dual continuum concept 

would be a suitable candidate to quantify fluid flow within fractured porous medium.  
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The dual continuum concept was introduced by Barenblatt et al. (1960) and first applied 

to reservoir simulation by Warren and Root (1963). In this method, the fractured 

reservoir was treated as a dual continuum. Two independent but overlapping grids (or 

elements) were used to represent the fractured reservoir: one was the matrix elements 

denoting the reservoir deformation and fluid flow within the matrix domain while the 

other was the fracture elements to simulate fluid flow only through them. The fluid flow 

in fracture element and matrix element was independent from each other and only 

coupled by a transfer term, which was used to quantify the fluid exchange between 

matrix block and its adjacent fractures. These authors built the mathematical framework 

for modeling single-phase flow within fractured medium and simulating its interaction 

between fractures and matrix. Later, this approach was extended to simulate multiphase 

flow (Kazemi et al., 1976; Rossen, 1977; Saidi, 1983). Since then, a number of reservoir 

simulators have been constructed by using the dual continuum concept in either finite 

difference method (FDM) or finite element method (FEM). Kazemi et al. (1992) 

incorporated an empirical transfer function (pseudo-capillary-pressure function) into 

dual porosity simulator to solve field problems.  

Lee et al. (1999) applied both the dual porosity model and discrete fracture network 

model to study the fluid flow in fractured aquifers and established the correlation 

between the two methods. Ganzer (2002) proposed to keep the elements without 

fractures as a conventional single permeability grid to get the discretized fractured 

reservoir more close to the real geological formation. Guo et al. (2004) constructed a 

multi-medium model by modeling the mass transfer between matrix block and macro-
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fracture through the micro-fracture network. Ramirez et al. (2009) derived a transfer 

function to quantify the fluid exchange between matrix and fractures which was driven 

by capillary pressure, gravity and diffusion in dual porosity model.  In that work, the 

matrix block was in sugar-cube or match-stick shape. Al-kobaisi et al. (2009) provided 

an analytical approximation of the transfer function to the differential equation and 

adjust the transfer function to investigate the surfactant flow and early mass transfer in 

matrix and fractures. Zhang et al. (2009) upscaled the DFN model to dual porosity 

model by using matrix-fracture coupling term (sigma). Zhang et al. (2011) modeled the 

fracture permeability with different fracture connectivity pattern on a cell-by-cell basis 

and implemented shear displacement induced fracture permeability change into dual 

permeability model and used the effective permeability concept to simulate the 

mechanical deformation of both connected and unconnected fractures during 

waterflooding. 

Note that the dual continuum concept can be classified into two different approaches in 

literature: 1) dual porosity model; 2) dual permeability model (DPM). For the dual 

porosity model, fractures need to be connected as the fluid is assumed to flow only 

through fractures and rock matrix only acts as source of fluid (da Silva, 1989; Fung, 

1993; Gurpinar et al., 1999; Lee et al., 1999; Gurpinar and Kossack, 2000; Donato et al., 

2003; Guo et al., 2004; Al-kobaisi et al., 2009; Ramirez et al., 2009; Zhang et al., 2009).  

Blaskovich et al. (1983) and Hill and Thomas (1985) improved the dual porosity model 

by introducing fluid interaction between matrix blocks, which is the key divergence 

between dual porosity model and dual permeability model. Within the DPM framework, 
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both matrix and fractures are assumed to be permeable and the fluid can be transported 

via these two (Blaskovich et al., 1983; Hill and Thomas, 1985; Dean and Lo, 1988; 

Chawathe et al., 1996; Al-Huthali and Datta-Gupta, 2004; Cicek, 2005; Ding et al., 

2006; Alamdari et al., 2012). By allowing fluid exchange between adjacent matrix block, 

these simulator, developed with finite difference method, can provide a more accurate 

simulation of the flow path than the dual porosity model.  

In the early dual permeability models (Blaskovich et al., 1983; Hill and Thomas, 1985), 

fluid flow, which was uncoupled or partially coupled with rock deformation, was 

modeled solely in the reservoir simulation. The interactions between fluid flow and rock 

deformation were usually neglected. Aifantis (1977) proposed a couple model in dual 

porosity/permeability medium for single phase flow by adopting mixture theory, but no 

unified formulation was given. Bai et al. (1993) and Ghafouri and Lewis (1996) 

implemented the dual permeability model into a fully coupled finite element model by 

taking both displacement and pore pressure as primary variables in the formulation. 

Lewis and Ghafouri (1997) further extended this approach for modeling multiphase flow 

in a heterogeneous media and revealed the strong influence of the coupling process 

between fluid flow and rock deformation by comparing the numerical results with those 

of uncoupled simulators. Lamb et al. (2010) modified this model to address 

displacement discontinuity by incorporating extended finite element method (XFEM). 

Huang and Ghassemi (2011) proposed a fully coupled poroelastic model by  using a real 

gas law and focusing on the impact of adsorbed gas on matrix porosity and permeability 

evolution. In that work, a non-linear fully coupled poroelastic finite element model was 
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developed and applied in performing poroelastic analysis of gas shale deformation. 

However, that model was built up on a single porosity basis and fluid transport equation 

for fractures was not given. Compared with DFN and dual porosity model, DPM can 

overcome the limitations in mesh refinement and fracture network connectivity. 

However, the interactions between nonlinear gas compressibility, gas desorption, 

pressure dependent fracture aperture and irregular-shaped fracture network, which 

coexist within gas shale reservoirs, cannot be simultaneously captured by these 

previously mentioned models. 

 

1.4 Objective  

Within fractured reservoirs, coupled processes between matrix deformation and fluid 

flow are important for predicting reservoir behavior, pore pressure evolution and fracture 

closure. However, it remains difficult to model fluid flow interaction between fractures 

and matrix and displacement discontinuity simultaneously in reservoir simulation.  

The primary objective of this work was to develop a numerical model, based on dual 

permeability method, for simulating coupled fluid flow and geomechanical processes 

associated with gas shale development. To accomplish this goal, I  

1) developed constitutive relationships for the coupled gas flow and rock deformation 

within fractured reservoirs to simulate elastic and viscoelastic effects and compressible 

fluid flow mechanics;  
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2) investigated the interactions among rock matrix deformation – pressure dependent 

fracture geometry – gas flow physics that can be incorporated into numerical simulators;  

3) conducted numerical studies for various degrees of branching and interconnectivity of 

fracture networks and identified reservoir properties that cause the loss of fracture area 

and conductivities and hence impact production. 



 

23 

 

CHAPTER II  

FULLY COUPLED POROELASTIC MODEL 

Desorption is a major mechanism for gas production for shale reservoirs and can impact 

the mechanical reservoir response. To study the coupling between gas desorption and 

rock matrix/fracture deformation, a poroelastic constitutive relation is developed and 

used for deformation of gas shale. Local continuity equation of dry gas model is 

developed by considering the mass conservation of gas, including both free and absorbed 

phases. In contrast to previous works which use an ideal gas law and neglect the gas 

compressibility, a real gas law is employed herein by using the Z-factor and gas 

formation volume factor Bg. The absorbed gas content and the sorption-induced 

volumetric strain are described through Langmiur-type equation. Without assuming a 

particular stress conditions, a general porosity model that differs from other empirical 

correlations in the literature, is developed and utilized in a finite element model to 

coupled gas diffusion and rock mass deformation. As the natural gas properties vary 

with pressure and appear in the stiffness matrix, a nonlinear iterative method is 

incorporated in the finite element procedure. The model is used to study the time 

evolution of gas desorption, stress-dependent porosity and permeability during gas 

depletion process. The model is verified through the comparison with the analytical 

solution for the methane depletion of the Barnett shale. In chapter 3, this model will be 

further developed by incorporating dual permeability concept to study the gas desorption 

influences, the dynamic fracture closure and gas flow in naturally fractured reservoir.   
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2.1 Introduction  

Gas shale is a major unconventional source of natural gas production. Gas shales have 

ultra-low permeability thus necessitating hydraulic fracturing from horizontal wells. 

However, most often production from fractured wells rapidly declines (Lane et al., 1990; 

Montgomery et al., 2005; Ross and Bustin, 2009; Schepers et al., 2009). In many cases 

this can be attributed to the time-dependent behavior of the rock fracture/matrix system 

related to coupled diffusion/deformation phenomena and particular rheological 

characteristics.  

Gas in shale is stored not only in small pores and open fractures (free gas), as 

conventional reservoirs, but is also adsorbed onto the pore surface or is confined onto the 

rock grains in shale matrix (Figure 5) as solid solution. Based on field and lab data of 

Devonian shales, 50% or more of gas in place may be stored as adsorbed gas (Kuuskraa 

et al., 1985; Lane et al., 1989; Lane et al., 1990). 

 

Figure 5 Illustration of the coexistence of free gas (yellow), adsorption gas and 
solution gas (green) in gas shale reservoir in the pore space. 
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Langmuir isotherms is always employed to quantify the amount of adsorbed gas in 

literature (Bumb and McKee, 1988; Nguyen, 1989; Rushing et al., 1989; Lane et al., 

1990; Lu et al., 1995; Zhao et al., 2004; Ross and Bustin, 2007; Bustin et al., 2008; 

Lewis and Hughes, 2008; Zhang et al., 2008). Langmuir isotherms are empirical 

correlations to model the gas adsorption capacity of coal or shale without temperature 

variation, which is depended on reservoir pressure and petrophysical properties. As an 

important gas storage mechanism in gas shale and some other unconventional reservoirs, 

release process of adsorbed gas need to be implemented into numerical reservoir 

simulator to accurately capture gas store and flow mechanics. Neglecting desorption 

process of adsorbed gas may eventually lead to significant errors in predicting reservoir 

performance and final production, typically for stimulated wells in gas shale (Lane et al., 

1990; Montgomery et al., 2005; Ross and Bustin, 2009; Schepers et al., 2009). 

Gas transportation and coupled hydromechanical process have been studied for coal 

seam (Zhao et al., 2004; Zhang et al., 2008). A similar approach is adopted in this 

dissertation and is applied to gas shale. In contrast to previous works, which use an ideal 

gas law and ignore gas compressibility (Zhao et al., 2004; Zhang et al., 2008) in the gas 

transport equation, a real gas law is applied herein by considering the pressure-

dependent Z-factor and gas formation volume factor Bg. Also, a general porosity model 

that is different from other empirical correlations in the literature (Seidle and Huitt, 

1995; Palmer and Mansoori; Shi and Durucan, 2004; Cui and Bustin, 2005; Robertson 

and Christiansen, 2006, 2008) is derived and used in our finite element model. The 
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porosity is treated as a function of reservoir pressure, rock mechanical properties, and 

gas desorption isotherm parameters in this study.  

The main work in this chapter is to construct a fully coupled poroelastic model that 

considers the time evolution of gas desorption, stress-dependent permeability and 

porosity during gas depletion process to quantify the influences of gas sorption induced 

fracture/matrix deformation under the in-situ stress conditions. Then, the model is 

further improved to handle complex fracture network in the following chapters. 

 

2.2 Gas adsorption  

Adsorption refers to the process that gas molecules, like methane and carbon dioxide, are 

attracted to surface of a porous medium, like gas shale and CBM. Desorption is the 

opposite of adsorption, during which gas molecules are released from the surface as a 

result of a pressure drop. These surface phenomena are highly related to the internal 

surface area of solid. Normally, for a porous medium with very small pore space 

(nanometer-scale in Figure 6), its internal surface area will significantly increase with 

the decrease of pore size and hence exhibits the rise of gas adsorption capacity. The 

adsorption ability of a porous rock is also dominated by its composition, as the weight 

percent of organic kerogen. Gas shale has both tiny pore size (nanometer-scale) and high 

concentration of organic kerogen. Thus, gas shale commonly demonstrates greater gas 

adsorption potential compared to the conventional reservoirs. Adsorption gas always 

plays an important role in the estimation of gas-in-place and actual production from gas 

shale reservoirs. Its release also impact rock mechanical response of reservoir. 
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Figure 6 Magnitude ranges of permeability and pore size trends for different rock 
types (Schön, 2011) 

 

To quantify the amount of adsorbed gas in a rock, Langmuir isotherms are widely used 

in biology, chemistry, petroleum engineering and so on. They are founded by measuring 

the amount of adsorption gas under different pressures while keeping invariant 

temperature and fitting the results to a theoretical model.  Their shape and magnitude are 

determined by the adsorption capability and mechanism of the medium. Langmuir 

(1916) first proposed a semi-empirical isotherm to model gas adsorption. His model was 

derived based on the kinetic mechanism of gas motion and assumed that gas molecules 

could be only adsorbed on to a single layer and there was no interaction between 

neighboring molecules. In literature, his model is usually named as Langmuir or Type I 
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isotherm (Figure 7). The fitted curve of Langmuir isotherm can be described through the 

following two-parameter equation: 

( ) L

L

V p
V p

p P



                                                       (2.1) 

where ( )V p  is the volume of adsorbed gas per unit mass of medium; LV  and LP  

represent Langmuir volume and pressure constant respectively; p  is the gas pressure in 

pore space. And this model is only valid for the material that presents a monolayer of 

adsorbed gas molecules for a specific gas.  

 

Figure 7 Type I and II adsorption isotherms 
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In reality, it is highly possible that gas molecules can be attracted onto the already 

adsorbed molecules to form multilayers of adsorption. In that situation, the monolayer 

Langmuir model is not applicable. Brunauer et al. (1938) presented another isotherm 

model to take this into consideration. This multilayer model is called BET or Type II 

isotherm (Figure 7). Like the Langmuir isotherm, this BET isotherm can also be 

modeled by an equation: 

   0 0

( )
1 1 /

mV Cp
V p

p p C p p


    

                                      (2.2) 

where ( )V p  is the volume of adsorption gas per unit mass of medium; mV  is the 

maximum adsorption of a single layer; 0p denotes the saturation pressure of gas; p  is 

the gas pressure in pore space; C  represents a dimensionless constant which depends on 

temperature. Both the Type I and II isotherms are derived for single phase system and 

can be further developed for binary or multiphase system (Chen et al., 2009; Lin, 2010). 

The adsorption of nature gas, mostly CH4, onto the internal surface of coal and gas shale, 

usually fits Langmuir-type isotherm, which can be supported by experiment results. Lu 

et al. (1995) measured gas (CH4) adsorption capability for the samples gathered from 

Devonian shale and Antrim shale. And their results for adsorption isotherms resembled 

Langmuir-type isotherm. The Barnett Shale core samples also displayed Langmuir-type 

methane adsorption isotherm (Lancaster et al., 1992; Montgomery et al., 2005; Kang et 

al., 2010; Vermylen, 2011). However, the adsorption isotherm of CO2 on shale and coal 

surface did not fit Langmuir-type (Lin, 2010; Vermylen, 2011). It may follow BET-type 

isotherm or some other complicated models. In this project, our work will focus on the 



 

30 

 

gas production, mostly methane, from gas shale reservoirs. Therefore, only Langmuir-

type isotherm will be considered in building up the numerical simulator. 

 

Figure 8  A typical example of gas content in the Barnett Shale 
 

The relationship between gas content, including both free gas and adsorbed gas, and 

reservoir pressure is demonstrated in Figure 8 for a typical Barnett Shale sample 

(Montgomery et al., 2005). The free gas, sometimes called porosity gas, shows a nearly 

straight line while the adsorbed gas presents a nonlinear curve, which is identical to a 
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Langmuir-type isothermal. For an ordinary reservoir pressure (3,800psi) in the Barnett 

Shale, almost 38% total gas is stored as adsorption gas in this case. However, this 

significant amount of adsorbed gas demonstrates a nearly flatten pattern curve at high 

reservoir pressure, more than 1000 psi, when compared with free gas. It implies that, 

when reservoir pressure is high, the adsorbed gas is hard to release and only contributes 

to a minor portion of production, although it covers a considerable portion in gas-in-

place of gas shale reservoir.  

A resultant volumetric strain is generated during the gas adsorption/desorption process, 

which has been proven by experiment work (Harpalani and Schraufnagel, 1990; Cui and 

Bustin, 2005; Robertson, 2005). This sorption-induced strain can project non-negligible 

mechanical influence on the deformation of matrix rock, like coal seam and gas shale. 

Previously mentioned experiments showed that the isotherm curves of gas sorption-

induced strain could also be classified as Langmuir-type curves. So, a Langmuir type 

equation is widely used to describe gas sorption-induced strain (Shi and Durucan, 2004; 

Robertson and Christiansen, 2006, 2008; Zhang et al., 2008; Chen et al., 2009; Liu et al., 

2010). 

s L

L

p

P p
 


                                                            (2.3) 

where s  is defined as gas sorption-induced strain; L  is the Langmuir volumetric strain, 

which denotes the maximum volumetric strain that could be induced in the bulk rock 
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when fully saturated with gas; 
LP  represents Langmuir pressure at which half of the

L

can be measured.  

This function is only valid for a single phase system and assumes that only volumetric 

strain is affected by gas desorption, i.e., gas sorption-induced strain has the same 

influence in all directions and also the three normal stress components. 

 

  2.3 Poroelastic model  

A poroelastic formulation considering gas desorption has been previously developed for 

coal-bed methane. This was accomplished based on a direct analogy between poroelastic 

dilation and thermal contraction in order to study the coupling response between gas 

desorption and rock matrix/fracture deformation (Shi and Durucan, 2004; Zhang et al., 

2008). We build on these works by applying the same poroelastic formulation to gas 

shale, considering that gas shale is a system composed by shale matrix and gas, 

including both free and absorbed phase gas. 

Then, a set of governing equations of the non-linear poroelastic model are constructed to 

prescribe the shale matrix deformation, gas flow mechanism and their interactions.  

The following important assumptions are made in defining the fundamental field 

equations for the system: (i) shale is a linearly elastic, isotropic and homogeneous 

medium; (ii) shale is fully saturated with gas; (iii) complete isothermal conditions with 

no chemical perturbation; (iv) dry gas is considered so that only gas flows through the 
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wellbore; (v) Darcy flow is valid for the system; (vi) plane strain conditions with 

infinitesimal strains are applicable; (vii) gravity effect on gas flow is negligible.   

 

2.3.1 Constitutive equation 

Diek and Ghassemi’s (2004) chemo-thermo-poroelastic theory is an improvement of the 

Heidug and Wong’s (1996) work and is derived from the potential energy of wetted clay 

matrix, i.e., the differences between the internal energy of fluid saturated porous medium 

and that of the pore fluid. In the case of complete isotropy and without chemical 

influences, the constitutive equation for an isotropic thermo-poroelatic porous medium is 

given as (tension is considered positive): 

2( ) 2
3ij kk ij ij ij s ij

G
K G p K T                                        (2.4) 

where K  , G   represent the rock’s bulk and shear modulus respectively;  is the Biot’s 

poroelastic coefficient; s  denotes the volumetric thermal expansion coefficient of the 

solid matrix. The above linearization of rock-fluid constitutive equations (2.4) express 

the total stresses ij  with respect to three variables, the solid strain ij , the pore pressure

p , and the temperature T  and the dots above variables represent time derivatives.  

Considering the macro matrix shrinkage, a direct analogy between poroelastic dilation 

and thermal contraction could be proposed to describe the constitutive relation between 

gas desorption and rock matrix/fracture deformation for deformed gas shale (Shi and 

Durucan, 2004) 
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2( ) 2
3ij kk ij ij ij s ij

G
K G p K                                         (2.5) 

where s  is defined as gas sorption-induced strain. Again, only the three normal stress 

components are affected by thermal contraction/gas desorption and no shear is induced.  

The strain-displacement expression is defined as: 

, ,
1 ( )
2ij i j j iu u                                                       (2.6) 

where iu  represents the solid displacement vector (denoting the movement of the porous 

rock with respect to a reference configuration).  

By applying Eq. (2.6) into Eq. (2.5),  the strain-stress relation is given as: 

1 1 1
2 6 9 3 3

s
ij ij kk ij ij ijp

G G K K


     

 
     

 
                       (2.7) 

where kk  is the trace of stress tensor. Then, the volumetric strain of the gas shale (

v xx yy zz      ) is readily obtained from Eq. (2.7): 

1
3v kk sp

K K


                                                   (2.8) 

With tension positive, the mean compressive stress is defined as: 

/ 3kk                                                           (2.9) 

After putting Eq. (2.9) into Eq. (2.8), the volumetric strain of the gas shale can be 

rewritten as: 
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1 ( )v sp
K

                                                     (2.10) 

The component of effective stress is also given as: 

'
ij ij ijp                                                      (2.11) 

With body force, the momentum balance equation is expressed as:  

     , 0ij j if                                                       (2.12)                                                 

where if  represents the components of body force. 

Substituting the constitutive Eq. (2.5) into the equilibrium Eq. (2.12) with Eq. (2.6), a set 

of Navier-type equations is obtained: 

2
, , , 0

1 2i k k i i s i i

G
G u u p K f 


     


                              (2.13) 

 

2.3.2 Mass conservation of gas 

In the case of complete isotropy and without chemical influences, the fluid transport 

equation for an isotropic thermo-poroelatic porous medium is given as (tension is 

considered positive): 

                                               1
kk p

M
  

                                                  
 (2.14)  

where  represents the variation of fluid content per unite reference volume;   is the 

Biot’s effective stress coefficient which measures the ability of the pore pressure to act 

against compressional stresses; M  stands for the Biot modulus, defined as the inverse of 
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a storage coefficient with the expression of 1
M p







; the dots above variables 

represent time derivatives. 

The mass conservation equation of fluid is given by (Diek and Ghassemi, 2004) 

v  
                                                   

(2.15) 

where v  denotes Darcy’s filter velocity;   denotes the source density. 

And the fluid content variation could be expressed by: 

0f f

g

m m





                                                  (2.16) 

where 
fm  defines the total fluid mass; 0fm  is the fluid mass at reference configuration; 

g  is the gas density. And the time evolution of fluid content variation is obtained: 

f

g

m





                                                     
(2.17) 

Combinig Eq.(2.15) and Eq.(2.17), local continuity equation is developed by considering 

the mass conservation of gas content: 

( )g

m
v

t
 


 


                                            (2.18) 

where q
v

A
  is the fluid velocity;

g  is the gas density;   denotes the source density 

(rate of injected gas content per unit volume of the porous medium); m  represents the 

gas content remaining within a unit volume of rock, including both free and absorbed 

gas  (Saghafi et al., 2007)           
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L
g sc r

L

V p
m

p P
    


                                                  (2.19) 

where   represents the porosity; 
g  is the gas density at reservoir condition;

sc  denotes 

gas density at standard condition; r  is the density of gas shale; LV  and LP  represent 

Langmuir volume and pressure constant respectively; p  is the gas pressure in pore 

space. The first term in the right hand side (RHS) of equation 2.19 represents the free 

gas content which is stored in pore space, while the second term reflects the adsorbed 

gas that is attracted onto the internal surface of matrix. 

Based on the real gas law, the gas density could be expressed as: 

g

g

pM

ZRT
                                                             (2.20) 

where 
gM  is the gas molecular mass; Z  is the compressibility factor with 1scZ   at 

standard conditions; R  represents the universal gas constant. Then, the gas density at 

standard condition yields as: 

sc g

sc

sc

p M

RT
                                                         (2.21) 

with scp  and scT  denoting the pressure and temperature under standard condition. 

By neglecting the gravity effect, the gas superficial velocity could be given from Darcy’s 

law:  

                        k
v p


                                                             (2.22) 
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where k  stands for gas permeability of the formation;  is the gas viscosity. Substituting 

Eq. (2.19)-(2.22) into Eq. (2.18), it yields: 

2 ( )
( )

sc r L L
a

L sc g

p V Pp T p p RT
k p

t Z p P T t Z M






  
     

   
                  (2.23) 

Therefore, the gas flow equation of dry gas model is developed by considering the mass 

conservation of gas content, including both free and absorbed phase gas. This Biot-type 

equation is quite different from the models that we can find in literature, which utilized 

an ideal gas law and neglected the gas compressibility (Zhao et al., 2004; Zhang et al., 

2008). Then, the rock constitutive equation (Eq. (2.13)) and gas flow equation (Eq. 

(2.23)) are coupled through the following general porosity model.  

 

 2.4 Porosity model  

During the gas depletion process, the reduction of pore pressure causes a rise in effective 

stress in the reservoir. This increase of effective stress can compact the reservoir and 

hence reduce its porosity and permeability. Simultaneously, the reduction of pore 

pressure also results in the release of adsorbed gas, whose effect on the porosity and 

permeability of the system is the reverse of pore pressure decrease (since effective stress 

is reduced by it). So the net change of porosity and permeability in the reservoir is the 

outcome of these two competing processes.  

The matrix porosity is an essential factor to simulate reservoir permeability evolution 

during gas production. Due to the complex gas storage and flow mechanism within gas 
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shale, it is a function of rock mechanical properties, gas desorption capability and in-situ 

stress condition. In the following, different porosity models, which can be found in 

literature, are discussed briefly for gas sorption-bearing rocks. 

 

2.4.1 Seidle-Huitt model 

Seidle-Huitt model (1995) assumed that only sorption-induced strain caused changes in 

porosity in the coalbed with matchstick geometry, which excluded all elastic strain 

generated by stress variation within the matrix. This might not be the proper case for gas 

shale, whose desorped gas does not cover a significant portion of production as that of 

coalbed methane.  

0

0 0 0

21 1
1 1m m

bp bp
C V

bp bp



 

   
      

    
                                  (2.24) 

where   is the porosity at pressure p ; 0  is the initial porosity at initial reservoir 

pressure 0p ; mC  represents the swelling coefficient of matrix; mV  is maximum amount 

of adsorption; b is a Langmuir constant. In this model, the gas adsorption is given by the 

following Langmuir equation: 

( )
1

m
ads

V bp
V p

bp



                                                    (2.25) 

And the volumetric strain ( ( )v p ) is set proportional to amount of adsorption gas by a 

swelling coefficient, mC  
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( )
1

m
v m

V bp
p C

bp
 


                                                   (2.26) 

 

2.4.2 Palmer-Mansoori model 

Palmer-Mansoori model (1998) considered both stress-caused elastic deformation and 

desorption-induced swelling.  This model was developed under uniaxial strain conditions 

and was given as: 

  0
0

0 0 0 0

1 1
1 1

m lc bpK bp
p p

M bp bp



  

  
       

   
                       (2.27) 

where mc  is the compressibility of pore space, defined as the change of pore volume 

with pore pressure; l  represents the maximum volumetric strain when pressure goes to 

infinite; K  and M  denote the rock’s bulk and constrained axial modulus respectively. 

The second term in the right hand side (RHS) of equation 2.27 represents the mechanical 

deformation caused by the change of effective stress, while the third term reflects the 

desorption-induced matrix swelling. 

 

2.4.3 Cui-Bustin model 

Cui-Bustin model (2005) showed the porosity was a general function of bulk modulus of 

rock and pore space, mean stress and pore pressure:  

   0 0
0

1 1exp
p

p p
K K


 



   
         

   

                             (2.28) 
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where 
pK  denotes the bulk modulus for the pore space;  and 0  are the current and 

initial mean stress respectively. Assuming K  and 
pK  are constants, this model is derived 

by integrating the following equation with time 

  
1 1

p

d
d dp

K K






 
    
 

                                            (2.29) 

 

2.4.4 General model 

To avoid any stress or strain restrictions for the application of porosity model, a general 

model is derived from poroelasticity theory (Detournay and Cheng, 1993), by taking 

both gas desorption mechanism and in-situ stress condition into account (Huang and 

Ghassemi, 2011). 

For the initial condition, we assume the initial volumetric strain is zero ( 0 0v  ). So, in 

the following discussion, we are dealing with the increments of all strain and stress 

components, which are indicated by the “  ” script on top of variables. The volumetric 

response of the porous medium with respect to loading {P, p} (mechanical and fluid 

loading, respectively) can be expressed by the following relations (Detournay and 

Cheng, 1993): 

1 ( )V
P p

V K



                                                     (2.30) 

1 ( )p

p p

V
P p

V K



                                                   (2.31) 
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where K  and 
pK  denote bulk modulus for the medium and the pore space respectively; 

pV  is the volume of pore space;   is the Biot’s poroelastic coefficient;   is a 

dimensionless coefficient with the expression 1 p

s

K

K
   ; sK  represents the bulk 

modulus of solid constituent. 

Recalling Eq. (2.10), a similar expression could be stated in this case study: 

1 ( ) s

V
p

V K
  


                                               (2.32) 

If we assume that sorption-induced strain projects the same effect on bulk rock and pore 

space, another relation for pore space could be proposed: 

1 ( )p

s

p p

V
p

V K
  


                                            (2.33) 

By applying Betti-Maxwell reciprocal theorem: 

p

p

VV

p





 

 
                                              (2.34) 

The following equation could be obtained:  

pK K



                                                    (2.35) 

Applying the definition p sV V V   and /pV V  , the following equations could be 

readily developed (Detournay and Cheng, 1993)  
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1
s

s

VV

V V





 
 


                                           (2.36) 

(1 )
p s

p s

V V

V V



 

  
 


                                       (2.37) 

By combining Eq. (2.32)-(2.37),   could be solved: 

1 1( )( )
p

p
K K

                                         (2.38) 

This expression is identical to the Eq. (2.29) that is used for developing Cui-Bustin 

model (2005). In that work, Cui-Bustin model was derived by assuming constant K  and 

pK  and integrating the equation over time. However, 
pK  is also a function of porosity 

(as shown in Eq. (2.35)). We substitute Eq. (2.9) and (2.35) into Eq. (2.38) to get the 

following expression of porosity:  

( )( )v s

s

p

K
                                                  (2.39) 

With the initial condition of the system, 0 0v  : 

0
1 ( )v v v sp
K

                                           (2.40) 

Then the following relation could be revealed:  

0                                                           (2.41) 

Substituting Eq. (2.38) and (2.39) into Eq. (2.40), we can get: 
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0 0
0

1 [ ( )]
1

S S
S S

    
 

                                     (2.42) 

with 
v s

s

p
S

K
      and 0 0 0

0 0
0

s L

s s L

p p p
S

K K P p
    


 and script “ 0 ” indicating 

initial conditions. 

The total volumetric deformation (
v ) of the porous medium consists of the pore space 

deformation ( p ), the deformation of the solid porous matrix ( sm ) and gas sorption-

induced strain ( s ). The deformation of the solid porous matrix is due to the fluid 

pressure and effective stress loading: 

(i) the effect of fluid pressure (the compression stress or strain is negative) 

   1 1sm

s

p

K
                                                                                   (2.43) 

(ii) the effect of effective stress loading 

'

2 3
kk

sm

s

e
K


                                                                                            (2.44)  

where sK is the bulk modulus of the solid and   is the porosity.  The mean effective 

stress ( ' / 3kk ) has the following relation with the volumetric strain and pore pressure: 

' ' ''

( )
3 3

xx yy zzkk
v s

s

K
K p

K

  
 

 
                                  (2.45)   

where K  (K < Ks) is the bulk modulus of the porous matrix. Combining Eq.  (2.43) and 

(2.44), and substituting Eq.  (2.45) result in the deformation of the solid porous matrix: 
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               ( ) 1sm v s

s s s

K p K

K K K
   

 
     

 
                            (2.46)  

The pore space volumetric strain is obtained by subtracting the volumetric deformation 

of the solid porous matrix from the total volumetric strain and using the definition of 

Biot’s coefficient ( 1 / sK K   ):  

  ( )p v s

s

p

K
                                                    (2.47)    

This general porosity model is a key component to control reservoir permeability 

distribution and time evolution, which will be discussed in the following. And it is also 

an indispensable function to further expand the gas flow equation (Eq. (2.22)) to obtain 

the fully coupled poroelastic model for developing numerical simulator of gas shale. 

                                       

2.5 Permeability model  

Both porosity and permeability of gas shale are essential mechanical properties that 

govern gas deliverability through reservoirs. In reality, porosity and permeability are the 

function of the reservoir stresses condition, reservoir pressure, gas adsorption and rock 

properties and they cannot stay invariant during gas depletion. Some commonly used 

porosity models are briefly introduced and a general porosity model is derived for gas 

sorption-bearing rocks, based on poroelasticity theory. Then, a general porosity model is 

utilized to estimate permeability field within reservoir. 

Validated with numerous experiment results, several empirical functions have been 

developed to correlate permeability with porosity in the literature. Commonly, a cubic 
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function can be used to calculate rock matrix permeability change during production. 

This correlation was adopted in Seidle-Huitt model (1995) and Palmer-Mansoori model 

(1998) for computing permeability after developing porosity model. 

3

0
0

k k




 
  

 
                                                         (2.48) 

where the subscript “0” represents the initial value of the variables. 

Liu and Civan (1995) proposed the following correlation by modifying the Kozeny 

equation.  

 
3

*
0

1 p

k
f k f

k





 
   
 

                                            (2.49) 

where the dimensionless parameter 
pk  denotes the conductivity of fluid seepage within 

plugged pores; f  represents the fraction of unplugged pore throats; *  is the porosity 

which is affected by mechanical loading. In this model, the particle plugging effects is 

taking into consideration. If the flow factor f  is set to 1, this model is exactly the same 

as the above cubic function. 

McKee et al. (1988) developed another correlation based on Carmen-Kozeny equation. 

 

3

0 01 1

p

p

c

c

k e

k e






 

 


 
                                             (2.50) 

where pc  is the average pore compressibility;   is the change of effective stress. In 

this model, the compressibility of solid grains is omitted as it is assumed to be negligible 

compared to pore compressibility.  
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For most gas shale reservoir, its porosity 0 1  , which is just on order of 1%. 

Therefore, Eq. (2.50) can be simplified to: 

 3

0

pck
e

k

 
                                                         (2.51) 

This function is similar to the correlation developed in Shi-Durucan model (2004), Cui-

Bustin model (2005) and Robertson-Christiansen model (2006).  

Shi-Durucan model (2004) was derived under uniaxial strain conditions. 

  0
0

0 0

exp 3
1 1

l
f

L L

E pk p
c p p

k P p P p



 

    
      

       

            (2.52) 

where 
fc  is the compressibility of cleat volume; l  represents the maximum volumetric 

strain when pressure goes to infinite; E  is Young’s modulus and   denotes Poisson’s 

ratio. 

Cui-Bustin model (2005)  was established by using cubic law. However, this model was 

similar to Eq. (2.51). This model was obtained by assuming constant values of K  and 

pK  over time. Under uniaxial strain condition, this permeability model can be 

transformed to a function which was close to Shi-Durucan model. 

   0 0
0

3exp
p

k
p p

k K
 

  
       

  

                           (2.53) 

Robertson-Christiansen (2006) developed a model for hydrostatic stress condition to 

resemble the lab condition for permeability measurement on core, while the overburden 

pressure was assumed be a constant. 
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c p p

k E P p P p
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 

     
      

      

       (2.54) 

where 0c  is the initial fracture compressibility;   is the change rate of fracture 

compressibility. 

 

2.5.1 Klinkenberg model 

The conventional Klinkenberg model (Klinkenberg, 1941) was proposed based on the 

assumption that the gas molecule velocity was non-zero at the porous media surface due 

to slip. This occurs when the magnitude of gas molecule’s mean free path approaches the 

pore diameter. The onset of slip is, when the mean free path increases (e.g., at low 

pressure), becoming less two orders of magnitude smaller than the capillary radius 

(Kundt and Warburg, 1875). Utilizing the kinetic theory of gases and straight tube flow 

geometry, Florence et al. (2007) presented a detailed derivation of Klinkenberg equation: 

4 41
8

c
g

c c

R p c
q

L R

 



 
  

 
                                            (2.55) 

 where gq  is the volumetric gas flow rate; cR  denotes the pipe radius; cL  is the length of 

the flow tube;   stands for viscosity of the gas; p is the differential pressure; c is a 

constant which is slightly lower than 1 (Kundt and Warburg, 1875);   represents the 

mean free path of gas molecules. Based on this model, the apparent gas permeability is 

given as (Florence et al., 2007):  
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

 
  

 
                                                  (2.56) 

where  4
K

c

c p
b

R


   is termed as “gas slippage factor”.          

 

2.5.2 Beskok-Karniadakis microflow model                                                                        

A unified flow model was proposed by Beskok and Karniadakis (1999) to predict 

volumetric gas flow rate through micro tubes: 

 
4 41 1

8 1
c

g

c

R p Kn
q Kn

L bKn






  
    

                                     (2.57) 

where   represents the dimensionless rarefaction coefficient; b  is dimensionless slip 

coefficient;  Kn  is the Knudsen number defined as: 

 
c

Kn
R


                                                          (2.58) 

where cR  denotes the pipe radius;   is the mean free path of gas molecules; it is defined 

by Loeb (1934) as: 

( , )
2
RT

p T
p M

 
                                                (2.59) 

where p  is the mean gas pressure ;  T  is the absolute temperature;   is the viscosity of 

gas at p  and T ; R  is the universal gas constant; M  is the molecular mass of the gas. 
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Based on Kn , various flow regimes could be classified by Schaaf and Chambre (1961): 

continuum fluid flow ( 0.001Kn  ), slip flow ( 0.001 0.1Kn  ), transition flow (

0.1 10Kn  ) and free molecular flow ( 10Kn  ). 

The parameter   is a function of Kn  through the following empirical correlation 

(Beskok and Karniadakis, 1999): 

21
0 1

2( ) tan c
Kn c Kn 



                                              (2.60) 

where 1 4.0c   and 2 0.4c   and: 

0
64 64

153 1
4

Kn
b

 



  

 
 

 

                                    (2.61) 

Then the parameter   could be simplified to: 

1 0.4
2

128( ) tan 4
15

Kn Kn


                                          (2.62) 

Based on this model, the apparent gas permeability could be expressed as (Civan, 2010): 

 
41 1

1a

Kn
k k Kn

bKn


 
    

                                    (2.63) 

where k  stands for the intrinsic permeability of porous medium given as:  

2

8
c

c

R
k




                                                      (2.64) 
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with /c cL L   (2.65) denoting the tortuosity factor of flow path. The intrinsic 

permeability is independent of flow condition and fluid type. 

Let 1b    and ( ) 0Kn   for a slip flow regime, Eq. (2.54) could be simplified to: 

4 41
8 1

c
g

c

R p Kn
q

L Kn





  
   

                                            (2.66)     

Eq.(2.63)  is given as:                    41
1a

Kn
k k

Kn


 
   

                                              (2.67)                                               

for 0.001 0.1Kn  , 4 4
1

Kn
Kn

Kn



, then the above equations can be expressed as: 

 
4

1 4
8

c
g

c

R p
q Kn

L






                                              (2.68) 

                                                         1 4ak k Kn                                                   (2.69) 

According to Eq. (2.58), Eq. (2.68) could be rewritten as: 

4 41
8

c
g

c c

R p
q

L R

 



 
  

 
                                           (2.70) 

Considering c  is very close to 1, it could be suggested that the conventional 

Klinkenberg model is a good analogue to Beskok-Karniadakis microflow model under 

this circumstance. 

Based on the  Klinkenburg model, the apparent gas permeability could be stated as 

(Florence et al., 2007):                    1 K
a

b
k k

p


 
  

 
                                                  (2.71) 
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where  Kb  is termed as “gas slippage factor”. Comparing Eq.(2.69) with Eq.(2.71), one 

can get 

                                                              44K n

c

p
b pK

R


                                          (2.72)                                       

Substituting   with Eq.(2.59), Eq.(2.72) can be given as: 

                                                                4
2K

c

RT
b

R M

 
                                          (2.73) 

From Eq.(2.64), the hydraulic pipe radius cR  is expressed as:  

                                                                    8 c
c

k
R




                                           (2.74) 

Substituting Eq.(2.74) into Eq.(2.73), the following equation is derived: 

                                                                 K

c

RT
b

M k

 


 

                                     (2.75)                                               

Letting
c

RT

M


 


                                                                                                    (2.76) 

Eq.(2.75) can be rewritten as a “square root” model: 
0.5

K

k
b 






 

  
 

                      (2.77) 

Civan (2010) proposed the following correlation to compute   term for various gases 

under isothermal condition (assumed to be 298K) in SI unites: 
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                                                           32.79 10
M


                                            (2.78) 

In Figure 9, the linear relationship between the term /   and M for various gases is 

shown in log-log diagram. The data for hydrogen, helium, nitrogen, are and carbon 

dioxide are collected from Florence et al.(2007); while gas properties of methane is 

obtained from literature and its   term is calculated from Eq.(2.78). All the gas 

properties and computed data are listed in Table 1. 

 

Figure 9 Correlation between /   and M for various gases. 



 

54 

 

Gas Viscosity at 1atm 
and 298K (Pa∙s) 

Molecular 
Weight(Kg/Kg-mole) 

  (Pa∙m) 

Hydrogen 8.845E-06 2.0159 1.74E-02 
Helium 1.985E-05 4.0026 2.77E-02 
Nitrogen 1.781E-05 28.01348 9.39E-03 
Air 1.842E-05 28.9586 9.55E-03 
Carbon dioxide 1.503E-05 44.0095 6.32E-03 
Methane 1.100E-05 16.043 7.66E-03 

 
Table 1 Computed   term based on the data of Florence et al.(2007) 

 

By taking the empirical correlation (Eq.(2.78), the computed   term (isothermal 

conditions, T=298K) for pure methane is plotted as red curve in Figure 10. If assuming 

the intrinsic permeability 1k D   and porosity 0.04  , the dimensionless 

permeability /ak k  can be calculated from Eq.(2.71) and (2.77) and is demonstrated as 

blue curve in Figure 10. It can be seen that   term decreases while the gas permeability 

( ak ) increases with gas depletion. 

If taking the temperature term into conderation, Eq.(2.78) can be extended into the 

computation of   term under any reservoir conditions. 

                                          

32.79 10 161.62
298

T T

M M
  


                                (2.79) 
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Figure 10 Calculated   term and /ak k under different reservoir pressure for 
methane. 
 

2.5.3 Forchheimer’s model for non-Darcy flow 

The above models are only applicable for low velocity gas flow, which is adequate for 

Darcy’s law. As for high velocity gas flow, Non-Darcy flow effect should be taken into 

account. Forchheimer equation (1901) was developed to describe this nonlinear fluid 

flow phenomena by incorporating a quadratic term into conventional Darcy’s law:   
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2dp
v v

dx k


                                                  (2.80) 

where q
v

A
  is the gas velocity;    is called beta factor or turbulence factor. 

Then, the apparent permeability could be presented as (Huang and Ayoub, 2008): 

1 1 1

a

dp v

k v dx k




 
                                             (2.81) 

Apparently,   is the slope of the Forchheimer graph ( 1

ak
vs. v


) .This is the 

conventional way to estimate it in oil and gas industry (Huang and Ayoub, 2008). 

For dry gas, its velocity could be expressed at standard condition by taking the gas 

expansion into account:  

res sc
g

q q
v B

A A
                                             (2.82) 

where resq  and scq  stand for the volumetric flow rate at reservoir condition and standard 

condition respectively; 
gB  is the gas formation volume factor with the definition as: 

sc
g

sc sc sc

pV T Z
B

V p T Z
                                        (2.83)                                                                                       

where Z  is the compressibility factor ( 1scZ  ). 

Then, 1 /sc
sc g

sc g

V
B

V B


 


                                                                              (2.84) 
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Substituting Eq. (2.82) and Eq. (2.84) into Eq. (2.81) yields: 

2

2
sc sc

g sc g

q qdp
B B

dx k A A


                                                   (2.85) 

Integration of the above equation needs special treatment as the gas properties are not 

constant with pressure change, the pseudo-pressure is introduced(Al-Hussainy et al., 

1966): 2

1

( ) 2
p

p

p
m p dp

Z
                                                                                            (2.86)                                                               

By applying Liebnitz’s rule to differentiate the above integral, we obtain: 

( ) 2m p p p

x Z x

 


 
                                                       (2.87) 

Replacing dp

dx
 in Eq. (2.85) by Eq. (2.87) and 

gB  by its definition (Eq.(2.83)): 

2

2

( ) 1
2

sc sc sc
sc

sc

T q qm p

p T x k A A




 
   

  
                                     (2.88) 

Separating variables and integrating on each side: 

2

1

2

20

1( )
2

p L
sc sc sc

sc
p

sc

T q q
dm p dx

p T k A A




 
   

 
   

One can get                 
2

1 2
2

( ) ( ) 1
2 /

sc sc
sc

sc sc

q qm p m p
L

p T T k A A




 
  
 

                                  (2.89) 

From Darcy’s law: a
sc g

k A dp
q B

dx
                                                                           (2.90) 
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For steady state laminar flow: 1 2( ) ( )
2 /
a

sc

sc sc

k A m p m p
q

L p T T


                                             (2.91) 

Combining Eq. (2.89) with Eq. (2.91), it is obtained: 

1 1 sc
sc

a

q

k k A



                                                   (2.92) 

where   is taken at mean pressure. 

 

2.6 Finite element model 

After developing the general porosity model, we will incorporate it into the field 

equation (Eq. (2.23)). By expanding the first term on the LHS of Eq. (2.23) and taking 

Eq. (2.20) and (2.47) into account, one can obtain: 

2( )
v L L

g L s

Pp p p

t Z Z K p P p K t

    


     
               

                 (2.93) 

where  
gK  is the gas bulk modulus.                              

As 1

g sK K M

  
   where M  is the Biot modulus, Eq.(2.93) could be rewritten as: 

2

1
( )

v L L

L

Pp p p

t Z Z M p P p t

 
 

   
    

      
                       (2.94) 

gB  is the gas formation volume factor with the definition in Eq.(2.83) and Z  is the 

compressibility factor which is shown in the gas flow equation in Zhang et al.(2008). 

By substituting Eq. (2.94) and (2.83) into the LHS of Eq. (2.23), it yields:   
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2 2

1 ( )
( ) ( )

g r L Lv L L
a

L L g

B V PPp p p p p RT
k p

Z M p P p t p P Z t Z M

 
  



   
      

     
    (2.95) 

By taking the derivative of pseudo-pressure (Eq.(2.86)) with respect to time, we obtain: 

( ) 2m p p p

t Z t

 


 
                                              (2.96) 

Substituting Eq.( 2.87) and (2.96) into Eq.( 2.95) and assuming constant
ak , finally we 

get:      
  2

2

2 1 ( ) 2( )
( )

g r L L Lv a

L g

B V P kp m p RT
m p

Z t M p P t M

 
 
  

  
     
   
 

          (2.97)                    

Taking Eq. (2.3) and (2.87) into the Navier-type equation (2.13), it could be rewritten as: 

2
, ,2 ( ) 0

1 2 ( ) 2
L L

i k ki i i

L

PG Z
G u u K m p f

P p p

 




 
      

  
               (2.98) 

Therefore, a coupled poroelastic model (Eq. (2.97) and (2.98)) is constructed to describe 

the interaction between gas diffusivity and rock mass deformation. 

The above coupled set of equations can be rewritten as the follows by eliminating the 

body force and source/sink terms ( ): 

2
2( ) ( ) 0

3 ( ) 2
L L

L

PG Z
K G K m p

P p p

 

  

          
   

u u M             (2.99) 

  2
2

2 1 ( ) ( ) 0
( )

g r L L Lv a

L

B V P kp m p
m p

Z t M p P t

 

 

  
     
   
 

          (2.100) 

where u  represents the displacement vector,  1,1,0 TM=   for plane strain cases and 

 1,1,1,0,0,0 TM= for three dimension applications. 
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Since the coefficients, such as p ,  and Z , are not constant and are incorporated in the 

coefficients of the field equations (Eq. (2.99) and (2.100)),  the system is non-linear and 

hence not amenable to analytical solutions. Thus, a numerical method is required to 

solve these non-linear partial differential equations (PDE) with certain initial and 

boundary conditions. 

Considering this is a non-linear poroelastic problem, the finite element method is 

adopted in this study. Eight-node quadrilateral elements are used to compute solid 

displacement vector, u , while four-node quadrilateral element is applied to calculate 

pseudo-pressure ( )m p . The unknowns ( u  and ( )m p ) can be approximated by the 

following functions: 

uu=N u                       pm(p)=N m(p)                                (2.101) 

where uN  and  pN  are the conventional shape functions and u  and m(p)  are the vectors 

of the nodal displacement and pseudo-pressure respectively. Galerkin’s finite element 

method (GFEM) is then used to discretize the field equations in spatial domain. 

u m(p) fK A                                                 (2.102) 

u m(p) m(p) 0T

HL S H                                       (2.103) 

where 

T

eV
K B DBdV                                               (2.104) 

 
T

2 N
( ) 2

M
e

L L
p

V
L

P Z
A B K dV

P p p

 


  
        

                  (2.105) 
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 
T 2 NM

e
p

V

p
L B dV

Z



 
     

 
                           (2.106) 

 T

2

1N N
( )e

g r L L L

p p
V

L

B V P
S dV

M p P

  
          

                (2.107) 

T
N N

e

a
H p p

V

k
H dV



 
         

 
                          (2.108) 

Within the complete expression of each term, eV  represents the element area, f denotes 

the external applied forces, B and D  are the strain-displacement matrix and stress-strain 

matrix respectively. 

For the temporal discretization, the following equation is taken into Eq. (2.102) and 

(2.103) with an implicit variable .  

1p =p ( )pn n t    

where t  is the time increment; the variable   is bounded between 0.5 (Crank-Nicolson 

implicit scheme) and 1.0 (fully implicit scheme) for stability; subscript n  represents the 

last time step. After some algebraic work, we finally obtain the following discretization 

equations: 

 
1

fu
m(p)m(p)

n

T

H tH

K A

H tL S tH


       
                

             (2.109) 

where t  is the time increment; implicit variable  is bounded between 0.5 and 1.0 for 

stability; subscript 1nt   represents the time of last step. It is obvious that the “stiffness” 

matrix of the above FEM formula is unsymmetrical. Thereafter, an unsymmetrical solver 
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is utilized to solve the above equations (Smith and Griffiths, 1997). For the far-field 

boundary, a no flow condition is applied. 

As the natural gas properties which are not constant and change with p
nt
 (pore pressure 

at current time step), are included in the “stiffness” matrix, a nonlinear iterative method 

(see Appendix VI) is needed in the numerical procedure. A tolerance value (0.2%) is set 

to check the convergence in every iteration process during each time step. 

In this finite element model, the nodal variables u  and ( )m p  can be solved directly 

from Eq. (2.109). Then, the total and effective stresses, which are not primary variables, 

can be computed through Eq. (2.5) and (2.11) at Gauss integration points of each 

element. 

 

 

2.7 Verification 

The finite element model for gas flow is verified by comparing its predictions with the 

analytical solution of production from a well in a poroelastic rock by assuming that gas 

properties are linear function of pressure and temperature. In this numerical analysis, the 

reservoir dimension is 10m  10m. Considering the axial symmetry of the wellbore 

geometry and trying to reduce the computational density, only a quadrant of reservoir is 

running to simulate gas flow and reservoir deformation, as shown in Figure 11. The 

finite element mesh and element geometry are also presented in Figure 11. 
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Under plane strain conditions, the production of gas within the wellbore can be 

simulated by decreasing the pore pressure on the wellbore wall at very initial (as t=0). 

Then, a wellbore with radius ( 0.1ma  ) is located in the center of the reservoir and its 

bottom hole pressure (BHP) should be set lower than the reservoir pressure since gas 

production.  

 

Figure 11 Reservoir and mesh geometry 
 

In order to solve field equation (2.99) and (2.100), proper initial and boundary 

conditions need to be specified first. In this study, the initial reservoir pressure is set to 

be 28.27MPa and the BHP at wellbore is 15 MPa and kept constant with time under 

isothermal conditions.  
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As for the far field boundary, constant pressure is maintained. And there is no 

mechanical loading acting on any part of the reservoir. In order to highlight the matrix 

deformation caused by gas flow, the in-situ stress state is assumed to be isotropic during 

the verification process. All reservoir parameters and gas properties for the FEM are 

given in Table 2, which are mainly extracted from Palmer et al. (2007), Zhang et al. 

(2008), Montgomery et al. (2005) and Kale et al. (2010).  

In the poroelastic model, the BHP at the wellbore is suddenly reduced from 28.27MPa 

and maintain at 15 MPa for gas production. The profiles of the pore pressure variation 

and induced total radial and tangential stresses (compression is considered positive) 

around the wellbore are depicted in Figure 12, 13, and 14, respectively. The analytical 

solution (given in Appendix) is also shown for comparison. It can be seen that tensile 

tangential stress can be generated close to the wellbore due to gas depletion.  From the 

figures, it is obvious that all the finite element results match very well with the analytical 

solution at early stage. However, as time goes by, the difference between the two results 

becomes significant. This difference is caused by the gas compressibility and non-

linearity of the natural gas properties, which are not included in the analytical solution.   
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Poisson’s ratio,   0.25 
Young’s modulus, E  20.68GPa 

Shear modulus, G  8.27GPa 
Initial porosity,   0.04 
Biot’s coefficient,   0.64 

Initial permeability, k  0.1 D  

Bulk modulus, K  13.79GPa 

Solid bulk modulus, sK  37.82GPa 

Initial reservoir pressure, 0p  28.27MPa 

Average system temperature, T  090 C  
Density of gas shale, r  32.40 10 kg/m3 

Min in-situ stress, h  39.01MPa 

Max in-situ stress, H  43.34MPa 

Langmuir pressure constant, LP  6.11MPa 

Langmuir volume constant, LV  21.50 10 m3/kg 
Langmuir volumetric strain constant, L  22.30 10  

Table 2 Input parameter for single permeability model 
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Figure 12 Comparison of numerical results (solid curves) with analytical solution 
(data markers) for the distribution of induced pore pressure around the wellbore. 
 

 



 

67 

 

 

Figure 13 Comparison numerical (solid curves) and analytical solutions (data 
markers) for induced total radial stress around the wellbore. 
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Figure 14 Comparison of numerical (solid curves) and analytical solutions (data 
markers) for induced total tangential stress. 
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2.8 Conclusion 

In this chapter, a coupled poroelastic model has been successfully constructed to 

simulate geomechanical reservoir response to gas production process by considering free 

and adsorbed gas within shale matrix. The gas transport equation for single phase flow 

has been developed by considering the mass conservation of gas content, including both 

free and absorbed phase gas, and a real gas law. The amount of adsorbed gas is 

determined through Langmuir isotherms. The rock constitutive equation and gas 

transport equation are coupled through the general porosity model and matrix 

permeability is also simulated during production based on the Beskok-Karniadakis 

microflow model. These have been implemented in a non-linear coupled poroelastic 

FEM model in which the nodal variables u  and ( )m p  are treated as unknowns. The 

model has been verified by comparing its results with the appropriate analytical solution. 
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CHAPTER III  

DUAL PERMEABILITY MODEL 

In gas shale and tight sand reservoirs, coupled process between matrix deformation and 

fluid flow is important for predicting reservoir behavior, pore pressure evolution and 

fracture closure. In this chapter the dual permeability method (DPM) is implemented in a 

Finite Element Model (FEM) to investigate fracture deformation and closure and its 

impact on gas flow in a fractured reservoir. Within the framework of DPM, the fractured 

rock is treated as dual continuum. Two independent but overlapping meshes (or 

elements) are used to represent the fractured rock mass: one is the matrix elements used 

to describe the reservoir matrix deformation and fluid flow within the matrix domain; 

while the other is the fracture element simulating the fluid flow only through fractures. 

Both matrix and fractures are assumed to be permeable and the fluid can be exchanged 

and transported via these two. A quasi steady-state function is used to quantify the flow 

between the rock matrix and the fractures. By implementing the concept of equivalent 

fracture permeability, and the shape-factor within the transfer function into DPM, the 

fracture geometry and orientation are numerically considered and the complexity of the 

problem is reduced. The stress-dependent fracture aperture is updated as time elapses. 

Simulation results show that the time evolutions of gas pressure, effective stresses, 

fracture aperture and permeability are strongly affected by desorption gas during 

production, especially in the near-wellbore region. Gas desorption retards the influence 

of the effective stress increase associated with pore pressure reduction during 
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production. Combination of in-situ stress condition and gas desorption mechanism 

governs the fracture deformation behavior in fractured reservoirs. 

 

3.1 Introduction  

Gas shale is one of the major unconventional reservoirs for natural gas. However, gas 

production on a fracture network is controlled by the interaction of natural fractures and 

hydraulic fractures. Experience has shown that often production from fractured wells 

rapidly declines (Lane et al., 1990; Montgomery et al., 2005; Ross and Bustin, 2009; 

Schepers et al., 2009). The production decline is believed to be closely related to the 

fracture permeability evolution with time. In many cases, the fracture permeability is 

impacted by the time-dependent geomechanical behavior of rock fracture/matrix system. 

As a result, rock mechanical properties and coupled rock (matrix/fracture) deformation 

and gas flow are important to predict the reservoir behavior such as pore pressure 

evolution and fracture closure.  

Due to the limitation in fully capturing coupled process of gas flow and pressure 

dependent mechanical behavior of fractured reservoir within gas shale in analytical and 

semi-analytical models, many numerical simulators have been developed and applied to 

gas shale and other unconventional reservoirs.  

The discrete fracture network (DFN) is broadly adopted in reservoir simulators to 

manage fracture propagation and fracture network development, for either hydraulic or 

natural fracture (Lee et al., 1999; Dershowitz et al., 2000; Karimi-Fard and Firoozabadi, 

2001; Sarda et al., 2001; Sarda et al., 2002; Karimi-Fard and Firoozabadi, 2003; 
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Tamagawa and Tezuka, 2004; Li and Lee, 2006; Kim and Schechter, 2007; Li and Lee, 

2008; Bang and Jeon, 2009; Kim and Schechter, 2009; Meyer and Bazan, 2011; Moinfar 

et al., 2011; Moinfar et al., 2012; Zeng et al., 2012). The DFN approach can provide 

realistic visualization of fracture network in naturally fractured reservoir. While, the 

geometry and location of individual fracture is outlined by using unstructured elements 

and its mechanical influence on fluid flow is imposed explicitly for most DFN cases. 

Moreover, when using FEM or FDM, the matrix domain needs to be explicitly 

discretized to fully capture the evolution of fracture network, especially for the area near 

fractures. Consequently, the computational effort and time consumption is greatly 

increased by this mesh refinement and hence reduces its applications in highly fractured 

reservoirs for field cases. 

Displacement-discontinuity method (DDM) is another widely accepted approach to 

address the mechanical performance of fractures during fluid flow process within 

naturally fractured reservoir (Wardle and Enever, 1983; Priest, 1984; Wardie, 1984; 

Curran and Carvalho, 1987; Nakagawa et al., 1999; Yacoub and Curran, 1999; Lavrov et 

al., 2005; Regueiro, 2006; Tao et al., 2009; Zhou and Ghassemi, 2009; Marji et al., 

2010). Compared to DFN, the major advantage of this method is that only the fractures 

(boundary) are discretized which can reduce the computational density greatly. 

However, this is an indirect boundary element method based on the assumption of 

homogeneity and continuous stress field whereas discontinuous displacement through 

fractures.  
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The continuum method is a good candidate for simulating fracture deformation in 

naturally fractured medium. Considering the presence of fractures, faults or cracks, a 

fractured reservoir cannot be treated as an equivalent homogeneous porous medium, as 

in the conventional continuum model. Alternatively, the dual continuum concept is an 

extensively used and efficient way to quantify fluid flow within fractured porous media. 

Within the framework of dual continuum method, the displacement discontinuity 

behavior of the fractures is neglected and the fluid exchange between matrix and fracture 

is handled by a transfer term (Barenblatt et al., 1960; Warren and Root, 1963; Kazemi et 

al., 1976). Compared with DFN, the dual continuum method does not require mesh 

refinement and no accurate analytical solution for displacement is demanded as DDM.  

The dual continuum concept can be grouped into two different categories: 1) the dual 

porosity model; 2) the dual permeability model (DPM). In some papers, these two terms 

refer to the same method. Theoretically, they are dissimilar in the way the flow channels 

within the reservoir are set up. In the porosity model, fractures are the only conduits for 

fluid flow so they need to be connected to deliver fluid to the wellbore; whereas, in 

DPM, fractures are the major fluid flow channel but the fluid can also move through the 

permeable matrix block. Fracture network connectivity is not a prerequisite in DPM, 

when compared with the dual porosity model. 

In this chapter, the dual permeability method (DPM) is implemented into the non-linear 

fully coupled poroelastic finite element model to investigate fracture deformation and 

closure and its impact on gas flow in naturally fractured reservoir. The primary objective 

of this work is to simulate the time evolution of gas pressure, effective stresses, fracture 
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aperture and permeability during fluid depletion process and quantify the influence of 

matrix and fracture deformation in the vicinity of the wellbore on gas production. 

 

3.2 Dual permeability method  

Fluid flow mechanism in a fractured shale reservoir is quite different from that of 

conventional reservoirs, particularly for gas reservoirs. Two distinct flow regimes 

coexist in a heterogeneous gas reservoir, as illustrated in Figure 15.  

 

 

Figure 15 Different flow mechanisms coexist within fractured reservoir 
 

One is the fast flow flushing toward the wellbore through fractures by the imposed 

appropriate boundary condition for production. The second flow is due to the pressure 

difference or gradient that is created between the matrix gas and the fracture free gas. 
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The gas within the matrix pores, including both free gas and adsorbed gas as discussed 

in Chapter 2, moves out to the adjacent fractures via a “diffusion” process. However, this 

diffusive flow occurs at a low rate due to the ultra-low permeability of shale matrix.  

 

3.2.1 Dual continuum treatment 

 

Figure 16 General representation of dual continuum method for discretized 
fractured reservoir 

 

To simulate this complicated flow phenomenon in fractured porous medium,  the dual 

continuum concept was first introduced to literature by Barenblatt et al. (1960) and 

incorporated into reservoir simulation by Warren and Root(1963). In this method, the 

fractured reservoir is treated as a dual continuum in Figure 16. Two independent but 
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overlapping meshes (or elements) are used to represent the fractured reservoir: one is for 

the matrix, denoting the reservoir deformation and fluid flow within the matrix domain 

while the other is for the fractures to simulate fluid flow only through them. The fluid 

flow within fracture element and matrix element is independent from each other and are 

only coupled by a transfer term which is used to quantify the two-way fluid exchange 

between matrix block and its adjacent fractures. Both fracture element and matrix 

element are characterized in porosity, permeability, pore pressure and other mechanical 

properties. The fracture elements are distinguished from matrix elements by their high 

permeability but very low storage. In early works, the geometry of matrix/fracture 

network was represented by a regular sugar cube and the dual continuum model was 

only set up for simulating single-phase flow within fractured medium. Kazemi et al. 

(1976), Rossen (1977), and Saidi (1983) extended the application of this dual continuum 

theory into developing numerical simulator for modeling multiphase flow. Later, several 

simulators were developed for more complex situations, like multi-dimension and/or two 

or multi-phase flow, by employing either finite difference method(FDM) or finite 

element method(FEM) (Kazemi et al., 1992; Zhang et al., 1996; Lee et al., 1999; Guo et 

al., 2004; Al-kobaisi et al., 2009; Ramirez et al., 2009; Zhang et al., 2009; Lamb et al., 

2010; Moinfar et al., 2011; Zhang et al., 2011). The dual continuum treatment is widely 

employed in various reservoir simulators, either analytical model or numerical model, to 

deal with the simultaneous flows in different scales within these highly heterogeneous 

reservoirs. 
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Figure 17 Dual permeability treatment for a fractured reservoir 
 

In the early publications (Barenblatt et al., 1960; Warren and Root, 1963; Kazemi et al., 

1976), fractures were assumed to be uniformly distributed within fractured medium and 

an identical dual permeability was applied to each matrix subdomain. Ganzer (2002) 

suggested that the elements without fracture could be treated as conventional single 

permeability (porosity) grid to make the discretized fractured reservoir closer to the 

complicated geological formation. Thus, the dual permeability treatment is only required 

for the elements with fractures. As for the elements without fractures, this treatment is 

not necessary, which is not taken into consideration in conventional dual permeability 

model. To get the discretized fractured reservoir closer to the real geological formation, 
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the elements without fractures are kept as conventional single permeability grid as 

illustrated in Figure 17. This significantly reduces the computational density and 

efficiently handles the fracture properties and reservoir heterogeneity on an element by 

element basis.  

 

3.2.2 Dual porosity vs. dual permeability 

Under many circumstances, dual porosity and dual permeability mean the same way to 

deal with fluid flow in heterogeneous fractured reservoir based on the dual continuum 

concept. However, they are distinguished from each other by treating flow path within 

matrix block. The key divergence between dual porosity model and dual permeability 

model is that in the conventional dual porosity model, global fluid flow takes place only 

within the fracture elements. Local fluid flow only occurs between matrix element and 

the intersecting fracture element because of the pressure gradient between matrix pore 

gas and fracture free gas. As shown in Figure 18, matrix elements only act as source for 

fluid flow within their adjacent fractures. All matrix elements are isolated from each 

other and no local fluid exchange between nearby matrix elements is allowed in the dual 

porosity model. Fractures are the only fluid channels that need to be interconnected with 

each other to transmit fluid flow through reservoir (da Silva, 1989; Fung, 1993; Gurpinar 

et al., 1999; Lee et al., 1999; Gurpinar and Kossack, 2000; Donato et al., 2003; Guo et 

al., 2004; Al-kobaisi et al., 2009; Ramirez et al., 2009; Zhang et al., 2009). The 

boundary condition is only imposed on the fracture subdomain. 
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Figure 18 Schematic representation of flow path in dual porosity model 
 

Whereas, Blaskovich et al. (1983) and Hill and Thomas (1985) improved the dual 

porosity model by introducing fluid interaction between matrix subdomains. Later, series 

of research works were carried out to investigate the fluid transportation in fractured 

medium by adopting this dual permeability (modified dual porosity) idea (Blaskovich et 

al., 1983; Hill and Thomas, 1985; Dean and Lo, 1988; Chawathe et al., 1996; Al-Huthali 

and Datta-Gupta, 2004; Cicek, 2005; Ding et al., 2006; Alamdari et al., 2012).  

In the dual permeability model, both matrix and fractures are assumed to be permeable 

and allowing fluid transport. Fracture elements are still the major channel for delivering 

the most portion of global fluid flow to the production well. The fluid flow through 

matrix only contributes a minor part of production due to the low permeability of matrix rock. 

The local fluid flow can take place between matrix element and fracture element, as in 

dual porosity model, but it can also move from one matrix block to its neighboring 

matrix blocks because of the pressure difference between two. Unlike the dual porosity 

model, matrix element serves as both flow channels and source and storage in dual 

permeability model, which is closer to reality than the dual porosity model. Both the 
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fracture and matrix subdomain need to be subjected to boundary conditions in the dual 

continuum (DC) approach.  

In DC model, fracture network connectivity is not a must. Hence, unconnected or 

isolated fractures can also be considered and contribute to the production, which cannot 

be dealt in dual porosity model. Though the fluid flushes at an extremely low velocity 

through matrix blocks, it might address significant influence on the final production and 

reservoir mechanical response, considering the existence of great heterogeneity and 

complexity of fracture network within gas shale reservoirs. This effect might not be 

negligible for long term prediction of production, especially for a field case work. 

Moreover, the dual permeability model can provide a more accurate description of the 

flow path in the reservoir than that in the dual porosity model. 

 

 

Figure 19 Schematic representation of flow path in dual permeability model 
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3.2.3 Transfer function 

Although dual porosity model and dual permeability model are quite different in theory, 

they both are based on the dual continuum concept, as depicted in Figure 19, and are all 

classified as dual continuum method. In the dual continuum treatment, a fractured 

porous rock is supposed to be composed of two independent but overlapping elements, 

matrix and fracture element, as discussed previously. For a fracture matrix system, the 

superposition of those two distinct elements needs to be addressed. The matrix and 

fracture sub-systems are linked by the fluid interaction between them, which is the heart 

of dual continuum approach. Both dual porosity and dual permeability models use the 

same approach to estimate the fluid exchange between matrix and fracture along the 

open surface of fractures.  

A quasi steady-state function, derived by Barenblatt et al. (1960), is commonly used to 

quantify the fluid transferred between the rock matrix and fractures. Transfer rate per 

unit matrix volume, mfq (1/ s ), is given as the following expression:           

 m
mf m f

k
q p p


                                                 (3.1)                                            

where  ( 2m ) is the shape-factor for reservoir simulation and denotes the area effect of 

matrix and fracture geometry on the mass transfer between the two; mk denotes the 

matrix permeability;  stands for the fluid viscosity; mp  is the pore pressure within 

matrix and fp  is the fluid pressure along the fracture. This function is only valid for 

single phase flow (ignoring capillary effects).   
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Warren and Root (1963) used a stacked-cubes model to represent a fractured reservoir. 

In their model, fractures are evenly distributed and act as boundaries between matrix 

elements. They proposed an analytical solution to estimate the shape factor for single-

phase flow:  

 
2

4 2N N

L



                                                  (3.2) 

where 1,2 3N or  represents the total number of sets of parallel fractures around one 

matrix block (as shown in Figure 20); L  denotes the characteristic length of a 

rectangular matrix grid, which is given as: 
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                         (3.3) 

where xL , yL and zL  represent the matrix block size in three different directions. For the 

case of a cube,  x y zL L L L    hence the shape factor equals to 2

12
L

, 2

32
L

and 2

60
L

 

corresponding to 1, 2 and 3 sets of parallel fractures. 
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Figure 20 Schematic representation of different sets of fractures 
 

Kazemi et al. (1976) extended Warren and Root’s model into simulating multiphase 

flow. They developed a numerical simulator by using finite difference method. Based on 

a seven point finite difference scheme, they obtained an expression for shape factor in 

three-dimension: 

2 2 2

1 1 14
x y zL L L


 

    
 

                                                    (3.4) 

In this model, a linear pressure distribution was assumed between the fracture and matrix 

element center. 

Lim and Aziz (1995) derived a shape factor for a non-linear pressure gradient between 

the fracture and matrix element center. Analytical solution for pressure diffusion within 

cylindrical block was used to approximate the pressure distribution within matrix block. 

Without assuming pseudo steady-state flow within matrix, the fracture geometry was 

combined with the fluid flow mechanism. In their work, the general expression of shape 

factor for an anisotropic, rectangular shape matrix element was reported as  
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                                                (3.5) 

where  
1/3

x y zk k k k  is the equivalent isotropic permeability for matrix block. 

For an isotropic case, the above expression can be simplified to 

2
2 2 2

1 1 1

x y zL L L
 

 
    
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                                              (3.6) 

Eq.(3.6) is quite similar to Eq.(3.4) except for the coefficient term. 

Within each fractured element, after calibrating with experimental results, the shape-

factor could be computed as (Kazemi et al., 1992; Zhang et al., 1996): 

1

1 J
j

j j

A

V d




                                                        (3.7)      

where jA  is the surface area for one fracture and 
jd  stands for the distance between the 

element center and the fracture; J  represents the total number of fractures within the 

element; V  is the volume of the element.  

 

 

3.3 DPM-Poroelastic model  

In the early dual permeability models (Blaskovich et al., 1983; Hill and Thomas, 1985), 

fluid flow, which was uncoupled or partially coupled with rock deformation, was 

modeled solely in the reservoir simulation. The interactions between fluid flow and rock 

deformation were usually neglected. However, fluid production from underground 
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reservoir concerned a fully coupled hydro-mechanical process. During fluid depletion, 

pore pressure change and reservoir rock/fracture deformation, could inevitably affect 

each other during the whole reservoir life. Therefore, it is often inappropriate to 

artificially detach fluid flow from matrix deformation in reservoir simulation.  

Naturally, the dual permeability formulation, formed in a fully coupled manner, was 

required to investigate the realistic response of fractured reservoir to wellbore 

completion and production. Aifantis (1977) proposed a coupled model in dual 

porosity/permeability medium without giving formulation. Bai et al. (1993) and 

Ghafouri and Lewis (1996) derived the constitutive equations to describe the mechanical 

response of a fractured reservoir to single phase flow. In their work, the dual 

permeability formulation had been developed and incorporated into a finite element 

model to construct a numerical simulator for single phase flow. Later, Lewis and 

Ghafouri (1997) extended this model for simulating multiphase flow through a fractured 

reservoir and revealed the strong influence of the coupling process between fluid flow 

and rock deformation by comparing the numerical results with those of uncoupled 

simulators. Lamb et al.(2010) further improved the model to solve displacement 

discontinuity within fractured porous medium by incorporating extended finite element 

method (XFEM).  In all of these coupled dual permeability models, only incompressible 

or slightly compressible fluid was taken into consideration and gas desorption and gas 

compressibility were not included in the fundamental formulation of these work. Thus, 

these models are not suitable for predicting reservoir performance and production in gas 

shale. 
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Then, Huang and Ghassemi (2011) proposed a fully coupled poroelastic model by  using 

a real gas law and focusing on the impact of adsorbed gas on matrix porosity and 

permeability evolution, as discussed in chapter 2. In that work, a non-linear fully 

coupled poroelastic finite element model was developed and applied in performing 

poroelastic analysis of gas shale deformation. However, that model was built on a single 

porosity basis and fluid transport equation for fractures was not given. 

To take the fracture network and deformation into account, the dual permeability idea is 

implemented into the non-linear fully coupled poroelastic model, which is derived in 

Chapter 2 and the fractures are elastic. The governing equation for matrix deformation is 

identical to that of the single porosity model (Eq.(2.92)). 

2
2( ) ( ) 0

3 ( ) 2
L L

m

L m m

PG Z
K G K m p

P p p

 

  

          
   

u u M           (3.8)   

where mp  is the gas pore pressure within matrix elements;  1,1,0 TM=   for plane strain 

cases and  
T1,1,1,0,0,0M= for three dimension applications; all other terms use the 

same definition as in Chapter 2.                            

In the DPM theory, two distinct but overlapping elements are used to represent the 

fractured reservoir: one is for the matrix blocks characteristic in high storage but low 

permeability while the other is for the fracture segments featured in high permeability 

but low storage. In the mathematic formulation, two different ways are needed to derive 

fluid continuity equation for matrix element and fracture element. 
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The transfer term (Eq. (3.1)) is treated as sink for the matrix and a source for the fracture 

in DPM, respectively. By putting the transfer term as a sink term in Eq.(2.92), the 

continuity equation for gas shale in a matrix element is given by Eq.(3.9). 
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          (3.9)                         

The first term of Eq. (3.9) represents the volumetric strain change of matrix subdomain, 

whose presence denotes the coupling between fluid flow and rock mechanical response. 

In the second term,  1

g sM K K

  
   is the inverse of Biot’s modulus (under certain 

conditions represent storage coefficient) of the matrix subdomain and 
 

2( )
g r L L L

L

B V P

p P

 


 

represents the influence of adsorbed gas on fluid accumulation and the whole second 

term denotes the fluid accumulation in the matrix blocks. The third term stands for the 

fluid interaction between adjacent matrix subdomains, which does not show up in the 

dual porosity model. The RHS term is the fluid exchange between matrix and fracture 

continua. 

By ignoring the gas desorption and coupled matrix deformation and changing the sink 

term to source term in Eq.(3.9), the gas transportation equation for fracture element is 

obtained from Eq. 3.9 as below (Bai et al., 1993; Lamb et al., 2010):  

2( )1 ( )f f

f mf

f

m p k
m p q

M t 


  


                                   (3.10) 
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where 
fp  is the gas pore pressure along fracture elements and 

fk  is the permeability of 

fracture elements. As 
g sK K , the Biot modulus 

fM  in Eq.(3.10) is expressed as: 

1 f

f gM K


                                                     (3.11) 

with 
f  denoting the porosity of fracture and 

gK  representing the gas bulk modulus in 

fracture elements. Detailed derivation of fluid continuity equation will be given in 

Appendix III for free gas case by using the general porosity model given in Chapter 2. 

After incorporating the DPM theory into fully coupled poroelastic model for gas shale, 

the governing equations, including one for matrix rock deformation (Eq.(3.9)) and two 

for fluid flow through the matrix (Eq.(3.10)) and fracture (Eq.(3.11)),  respectively, are 

successfully derived and are ready for further numerical implementation. In this work, 

these governing equations are discretized and solved by finite element method later. A 

DPM-FEM numerical simulator, modeling single phase flow (dry gas) through fractured 

gas shale, will be developed based on these fully coupled governing equations.  

 

3.4 Fracture permeability  

In reservoir formations, both natural fractures and hydraulic fractures usually possess 

irregular shape and rough surfaces and sometimes are partially closed, as demonstrated 

in Figure 21. To simplify the computation, a fracture is ideally represented by a set of 

parallel plates to study the fluid flow through it (Snow, 1965; Witherspoon et al., 1980; 

Bai et al., 1993). 
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Figure 21  A real natural fracture and its idealized shape for numerical simulation 
 

By assuming laminar flow between two smooth parallel plates, as shown in Figure 22, 

the analytical solution of Navier-stokes equation in this model yields the following 

widely used cubic law (Snow, 1965; Witherspoon et al., 1980): 

3

12
a w p

Q
L


                                                       (3.12) 

where Q  is the total flux flushing through the fracture space;  a  is the fracture aperture, 

which is the distance between two fracture walls, as depicted in Figure 22;  w  is height 

of the plate and L  is the fracture length;   is the fluid viscosity; p  is the pressure 

drop along the flow direction. 
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Figure 22 Volumetric flux (Q) between parallel plates with apertures (a), plate 
height (w) and plate lengths (L) 

 
In one dimension, Darcy’s law for fluid flow is given as 

flk A p
Q

L


                                                            (3.13) 

where flk  is the fracture permeability in the direction parallel to the fluid flow; A  is 

cross-section of fracture perpendicular to the flux, which equals to wa . 

From Eq. (3.12) and Eq.(3.13),  flk  can be easily derived from the cubic law:  

                                                       
2

12fl

a
k                                                            (3.14) 

This relation between fracture aperture and its corresponding permeability is derived 

from the simple parallel plate model. In the model, the two fracture walls are assumed to 

be smooth and parallel to each other and separated by a uniform aperture. The flow 
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through the fracture space is laminar due to the uniform pressure gradient within fracture 

plane. However, the natural fractures departure these assumptions by their rough 

surfaces and partially closure at finite points, as shown in Figure 21. All these 

characteristics of natural fractures diminish the total hydraulic flow passing fracture 

open space and hence lower the equivalent hydraulic aperture. Therefore, it is inadequate 

to directly use the Eq.(3.14) to compute fracture permeability for natural fractures.  

After validating with the experiment results, Witherspoon et al. (1980) incorporated a 

friction term into the ideal cubic law to account for the reduction of hydraulic flow. This 

effective cubic law was proven to be independent with rock type and stress history in 

their work. The relation between hydraulic aperture and permeability is given as:  

2

12fl

a
k

f
                                                   (3.15) 

where f  is the friction term and ranges between 1.04 and 1.65. 

Gas deliverability is highly related to the fracture permeability in naturally fractured gas 

shale reservoir. From Eq. (3.15), it can be seen that the fracture permeability is 

dependent on hydraulic aperture for either natural fracture or hydraulic fracture. In the 

conventional dual porosity/permeability models, fracture aperture/permeability as well 

as some other mechanical properties, are given or computed uniformly over the whole 

reservoir, as given in Figure 23(I). This reservoir-level equivalent aperture can be only 

valid for the fracture systems with regular distribution and connection of small scale 

fractures. This equivalent aperture over reservoir volume is too coarse to confirm real 
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observation and capture details in local flow phenomena, especially for large scale 

fractures. However, in gas shale reservoir, hydraulic fractures usually extend hundreds 

of feet in completion process. If uniform hydraulic aperture is presumed for these large 

scale fractures in dual permeability model, inaccurate simulation results might be 

presented (Moinfar et al., 2012).    

 

 

Figure 23 Equivalent fracture aperture: (I) whole reservoir-level average (green 
line); (II) segmented element-level average (red lines); blue curves represent real 
fracture aperture along its length. 
 

To fully handle the heterogeneity of complex fractured reservoir and describe the 

realistic behavior of large scale fractures, these large scale fractures can be discretized 

into small segmented fractures (Clemo and Smith, 1989). As shown in Figure 23(II), a 

large scale fracture is modeled as a curve in two-dimension and intersects multiple 

elements after spatial discretization of whole matrix domain. The intersection of matrix 
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element and fracture is first determined for dual permeability treatment in this work. 

Then, within the element containing pieces of fracture, the parallel plate model is applied 

to represent the segment of fracture by assuming a uniform aperture along the fracture 

segment only within the corresponding fractured element. This element-level averaged 

aperture is later used to compute the corresponding fracture permeability only within the 

intersected elements. However, across the whole reservoir, this element-level averaged 

aperture varies with position (Figure 23(II)) and time for a single fracture. By 

discretizing large scale fractures into small segments, the fracture aperture and hence its 

permeability is no longer constant along the facture length, which better conforms to 

reality.   

 

 

Figure 24 Fracture permeability in local coordinate 
 

Following fracture discretization, fracture permeability ( flk ) within each intersected 

element can be calculated by employing cubic law (Eq.(3.15)). In two dimensions, this is 
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just the permeability component in the direction parallel to the fracture length, as 

depicted in Figure 24. By using parallel plate model, the fracture wall is assumed to be 

impermeable with no slip boundary condition. Thus, the permeability tensor of fracture, 

aligned to local coordinate system, is given as: 

0
0 0

fl

f

k
k

 
     

 
                                                        (3.16) 

It can be seen in Figure 24, as for local coordinate system, lx -axis is parallel to the 

fracture length and ly -axis is normal to the fracture length.  
flk  is the permeability along 

lx  direction and can be calculated through Eq.(3.15). The permeability in ly  direction is 

set to be zero.   

 

(I)                                                     (II) 

Figure 25 (I) Rotating local coordinate system to global coordinate system; (II) 
geometry of fracture in 3D 

 

In most cases, this local coordinate system is not parallel to the global coordinate system 

of the whole reservoir, especially for complex fracture network. As shown in Figure 25 
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(I), there always exists a rotation angle   between the two coordinate systems. As we 

need to handle and solve the problem in global coordinate, the permeability tensor of 

every fracture should be stated in global coordinate system.  

                                                    
T

fg fk R k R                                                       (3.17) 

where 
cos sin
sin cos

R
 

 

 
  

 
  is the rotation tensor.                                                   (3.18) 

In the rotation tensor, the counter-clockwise rotation direction is defined as positive. 

In the framework of dual permeability model, an artificial element is used to compute 

the fluid flow through the discrete fracture contained within the matrix element. By 

assuming homogeneous permeability field within the fractured element, an equivalent 

permeability tensor can be obtained on the element (Lamb et al., 2010): 

f

f e fg

e

A
k k

A
                                                         (3.19) 

where f ek  is the equivalent permeability tensor of the fractured element; 
fA  is the 

surface area  (line length in 2D) of the fracture within the element; eA denotes the 

element area (Figure 25 (II)); 
fgk is the permeability tensor of fracture in the global 

coordinate system, which is computed from the local permeability tensor of fracture ( flk

) through coordinate rotation. 

This equivalent permeability tensor is an averaged tensor over the area of the fracture 

element. By doing so, the fluid flow through the fracture element is a good analogue to 

the flow through the fracture. In this way, the total fluxes via fractures are evaluated over 
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the element volume to ensure the mass conservation for each fracture element. For a 

complex fracture network, the matrix block might be intersected by several fractures 

which are not uniformly distributed in the matrix element. In this case, a generalized 

expression of equivalent fracture permeability tensor is given as 

1

n
fi

f e fgi

i e

A
k k

A

                                                          (3.20) 

where n  represents the total number of fractures within a fracture element; 
fiA  is the 

surface area for one fracture and fgik  is its permeability tensor aligned to global 

coordinate system.  

In the dual permeability treatment, the equivalent fracture permeability is only computed 

within each fractured element (grid) by assuming homogeneous permeability field 

within the corresponding fractured element and matrix element. Each element can have a 

different permeability field as the whole reservoir is not homogenous (matrix and 

fracture properties can vary). By discretizing large scale fractures into discrete 

fragments, the fracture aperture and hence its permeability varies along the fracture 

length. In the application of equivalent fracture permeability, the fractures are not 

required to be well connected or regularly distributed. Inclined, isolated, or connected 

fractures and multi-scale fractures can be all handled over the control volume of fracture 

element.  

By adopting the idea of discrete fracture, equivalent fracture permeability and shape-

factor within the transfer function in the DPM, the complex fracture geometry and 
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orientation are numerically considered and the complexity of the problem is reduced. In 

this way, the mesh refinement is not required for DPM, even for a slightly coarse mesh. 

That is the reason this method is used herein to predict the geomechanical evolution of 

fractured reservoirs, which are highly heterogenous. 

 

3.5 Fracture deformation  

During gas production in gas shale reservoir, coupled gas flow and matrix deformation 

will cause a change in fracture aperture and consequently alter the fracture permeability 

with time. The time evolution of fracture permeability will simultaneously influence the 

fracture fluid flow and matrix deformation, especially for long term production. So the 

fracture deformation, either opening or closure, should be considered in the numerical 

simulator to sketch the real mechanical behavior of fractures.  

The two walls of fractures are usually not smooth and contacts with each other at some 

finite points. These rough fractures will undergo two modes of deformation, normal or 

shear-dilation, which are determined by the stress state in the local coordinate system.  

In the finite element formulation of DPM, the nodal variables u , ( )mm p  and ( )fm p  can 

be solved directly from Eq.(3.8), (3.9) and (3.10). Then, the total and effective stresses, 

which are not primary variables, can be computed at Gauss integration points through 

Eq.(3.21) and (3.22) (tension is considered positive). 

2( ) 2
3ij kk ij ij m ij s ij

G
K G p K                                    (3.21) 
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'
ij ij m ijp                                                (3.22) 

After computing the total stress tensor of fracture (
f ) aligned with the global 

coordinate system, the local total stress tensor of fracture 
fl  can be easily derived 

through coordinate rotation, which have been employed to compute fracture 

permeability in global coordinate: 

   
T

fl fR R                                               (3.23)                                                                                          

where 
cos sin
sin cos

R
 

 

 
  

 
 in which   is the rotation angle between the two coordinate  

systems with the counter-clockwise rotation direction defined as positive.  

 

Figure 26 Rotating stress tensor from global coordinate system to local coordinate 
system, where x’-axis is parallel to a fracture surface and y’-axis is normal to it.  
 

As shown in Figure 26, the stress tensor in global coordinate system is given as 

xx xy

f

yx yy

 


 

 
     

 
; while stress tensor in local coordinate system is ll

fl

n

 


 

 
     

 
. 

The normal stress n  acting on the fracture surface is the second diagonal term of fl  
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and shear stress  is the off-diagonal term in the local total stress tensor. After that, the 

effective normal stress '
n  on the same fracture surface can be calculated by the 

following equation (compression is considered as positive): 

'
n n fp                                                      (3.24) 

 

3.5.1 Normal deformation 

Because of the discontinuity between two fracture walls, a fracture is easier to deform 

than the intact rock mass. The normal deformation is caused by the variation of effective 

normal stress '
n  acting on the fracture surface: the fracture walls tend to move towards 

each other with increase of the effective normal stress, as shown in Figure 27; and the 

fracture walls will move apart due to the decrease of the effective normal stress. The 

magnitude of fracture opening or closure in normal direction is controlled by the 

effective normal stress as well as the fracture stiffness. 
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Figure 27 Normal deformation of a rough fracture 
 

Goodman (1976) investigated the stress-displacement relationship for artificial fractures 

in rock samples. He proposed a hyperbolic relationship to describe the fracture closure in 

normal direction: 

' '

'

B

n ni n

ni m n

u
A

u u

 



 
  

 
                                        (3.25) 

where '
ni  is the initial effective normal stress; A  and B  are empirical constants; mu  

represents the maximum normal displacement for fracture closure; nu  is the normal 

displacement under effective normal stress '
n . In his model, the fracture closure is 

governed by the initial stress and maximum displacement of fracture. 
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Figure 28 Hyperbolic relationship between stress and displacement of a fracture. 
 

Barton et al. (1985) suggested another hyperbolic relationship to model the stress-

deformation behavior of fractures based on experiment results of natural fractures within 

different rock types: 

' n
n

n

u

A Bu
 


                                                    (3.26) 

where A and B are empirical constants. 

As shown in Figure 28, the initial fracture stiffness is given as: 

    
'

0
1

n

n
ni u

n

K
u A


                                                  (3.27)                                     

And the maximum normal displacement is expressed as: '
n

m

A
u

B  
                     (3.28) 
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Then, after substituting the constants A and B with Eq. (3.27) and (3.28), Eq.(3.26) can 

be stated as: 

'

1 /
n

n ni

n m

u
K

u u
 


                                        (3.29) 

Eq.(3.29) can be rewritten as:                 '1 /
m

n

ni m n

u
u

K u 



                                      (3.30) 

Then, in Barton-Bandis constitutive model, the fracture closure is expressed as a 

function of effective normal stress and initial stiffness of fracture. 

In Eq.(3.30), mu  and nu  are the normal joint displacements and can be expressed by the 

fracture aperture,  which denotes the distance between two fracture walls. 

m ma u                                                     (3.31)                         

n m na u u                                                 (3.32) 

where ma  is the aperture at zero normal stress and na  is the fracture aperture under 

effective normal stress '
n . By replacing mu  and nu  with Eq.(3.31) and (3.32) into 

Eq.(3.30) , one can get: 

'1 / ( )
m

n

n ni m

a
a

K a



                                        (3.33) 

Barton et al. (1985) also offered the empirical formulae to compute niK  and ma  in terms 

of fracture roughness (JRC), wall strength (JCS) and mean aperture. However, there are 

so many unknowns which need be specified or measured.  
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For the case of 90% fracture closure: 0.9n mu u                                                       (3.34) 

By putting Eq.(3.34) and (3.31) into Eq.(3.29), the expression for 90% closure effective 

normal stress '
ref  can be obtained: 

' 9ref ni mK a                                                      (3.35)                                                                                                            

Substituting the term ni mK a  in Eq.(3.33) by Eq.(3.35), the fracture aperture can be 

calculated by: 

' '1 9 /
m

n

n ref

a
a

 



                                               (3.36) 

This stress-aperture relationship is derived based on Barton-Bandis constitutive model 

and widely used in literature to model fracture normal deformation (Hicks et al., 1996; 

Willis-Richards et al., 1996; Rahman et al., 2002). Form Eq. (3.36), it can be seen that 

fracture aperture during normal loading is a function of effective normal stress ( '
n ), the 

stress-free aperture ( ma ) and the 90% closure stress ( '
ref ). By using the relationship, the 

pressure-dependent fracture aperture in normal deformation can be updated explicitly as 

time elapse and stress changes. 

 

3.5.2 Shear dilation 

When subjected to shear stress under in-situ conditions, the fracture walls are likely to 

slip over each other in the direction parallel to the fracture surfaces. Due to the offset of 

the two uneven fracture walls, the aperture of the fracture might also change, as shown 



 

104 

 

in Figure 29. This shear-dilation induced aperture variation has been proven by the 

experiment results (Barton et al., 1985). Probably, this stimulated aperture, caused by 

shear slippage, can cause the enhancement of the fracture permeability and hence affect 

the hydro-mechanical behavior of rock mass. Thus, the shear-dilation behavior of natural 

fractures should be included in the geo-mechanical reservoir simulation. 

 

Figure 29 Shear-dilation of a rough fracture (Goodman, 1980) 
 

The linear relationship (Hicks et al., 1996) between excess shear stress (  ) and shear 

displacement ( su ) is given by: 

sh sK u                                                        (3.37) 

where shK  represents the shear stiffness of fracture. 
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In the Mohr-Coulomb criterion, shear failure or displacement can only take place when 

the shear stress ( n ) is greater than the shear strength of the fracture (
p ), which is a 

critical parameter to measure the resistance of fracture to shear slippage. The shear 

strength of the fracture can be approximated by combing Patton and Mohr-Coulomb 

criterion: (Willis-Richards et al., 1996; Rahman et al., 2002): 

' tan( )eff

p n f dil                                                  (3.38) 

where 
f  is the friction angle and typically varies between 300-400; eff

dil  represents the 

effective dilation angle and measures the roughness of the fracture surface, which is also 

termed as fracture roughness coefficient (JRC) by Barton et al. (1985). According to the 

laboratory measurement of dilation angle (
dil ) under low effective stress (Willis-

Richards et al., 1996), the expression of eff

dil can be given as: 

' '1 9 /
eff dil
dil

n ref




 



                                              (3.39) 

Shear failure is taking place only if the shear stress exceeds the fracture shear strength: 

' tan( )eff

n p n n f dil                                           (3.40) 

And the excess shear stress is defined as the difference between shear stress and shear 

strength (Willis-Richards et al., 1996): ' tan( )eff

n p n n f dil                        (3.41)                      

Combing Eq.(3.37), (3.40) and (3.41), it yields 

'
'

'

tan( )
( tan( ))

0 ( tan( ))

eff

n n f dil eff

n n f dil

s sh

eff

n n f dil

u K

   
   

   

  
 

 
  

                 (3.42)                                                              
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From Figure 29, the fracture aperture induced by shear dilation (
sa ) is related to the 

shear displacement through the following equation (Barton et al., 1985; Hicks et al., 

1996; Willis-Richards et al., 1996): 

tan( )eff

s s dila u                                                      (3.43) 

By replacing the term eff

dil  in Eq.(3.43) by Eq.(3.39), the fracture aperture due to shear 

dilation is expressed by: 

' '

tan( )
1 9 /

s dil
s

n ref

u
a



 



                                                  (3.44) 

Finally, we can see that the shear displacement induced fracture aperture is a function of 

internal friction angle (
f ), shear stiffness of fracture ( shK ), shear dilation angle (

dil ), 

90% closure stress ( '
ref ) and effective normal stress ( '

n ) acting on the fracture walls. 

After giving the expression of shear displacement by Eq. (3.42), the mechanical behavior 

of fractures during shear-dilation process can be mathematically assessed and readily 

incorporated into the numerical simulator. 

Even with very high effective stress, the rough fracture surfaces are not in full contact 

with each other. Usually, there exists a residual aperture resa  to prevent complete closure 

of fractures to flow. This residue aperture is a very small quantity and always set to be 

zero in simulation work.  

Taking the apertures caused by normal deformation and shear dilation and residual 

aperture into account, the total fracture aperture during mechanical deformation is 

formed as Eq.(3.45) and its schematic representation is given in Figure 30. 
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' '

tan( )
1 9 /
m s dil

n s res res

n ref

a u
a a a a a



 


    


                            (3.45) 

 

Figure 30 The relationship between fracture aperture and effective normal stress. 
The blue curve represents the stress-aperture relation before shear slip and red 
curve denotes the stress-aperture relation after the shear failure (Tezuka et al., 
2005). 
 

As plotted in Figure 30, the blue curve demonstrates the stress-aperture relation caused 

by normal deformation only and red curve represents the total fracture deformation 

induced by both normal deformation and shear dilation. This shear-dilation process can 

dramatically change the fracture mechanical behavior. The general expression of total 

aperture (Eq.(3.45)) provides a simple way to model the mechanical deformation of 

complex fracture network, some of which might suffer shear displacement. 
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3.6 Finite element model  

Since the unknown variables such as p ,  and Z , appear in the coefficients of the field 

equations (Eq.3.8, 3.9 and 3.10) for this dual permeability model,  the system is non-

linear and hence not amenable to analytical solutions. Thus, a numerical method is 

required to solve these non-linear partial differential equations (PDE) with certain initial 

and boundary conditions. 

The finite element method is used in this study. Eight-node quadrilateral element is used 

to compute solid displacement vector u , while four-node quadrilateral element is 

applied to calculate pseudo-pressure for fluid, either ( )mm p or ( )fm p . The unknowns,u

, ( )mm p and ( )fm p ), at any arbitrary point can be approximated by interpolating the 

variables at nodal points through the following functions (Smith and Griffiths, 1997): 

uu=N u                               pm(p )=N m(p )m m                       pm(p )=N m(p )f f             (3.46) 

where uN  and  pN  are the conventional shape functions and u , m(p )m  and m(p )f are 

the vectors of the nodal displacement, pseudo-pressure within matrix and fracture 

respectively. Galerkin’s finite element method (GFEM) is a widely used way to divide 

domain into elements and integrate the weak formulation over the element to minimize 

the solution residual. This method is then used to discretize the field equations in spatial 

domain. 

( )mKu A m p f                                                (3.47) 

1 1( ) ( ) ( ( ) ( ))T

m H m m fL u S m p H m p Q m p m p                       (3.48) 
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2 2( ) ( ) ( ( ) ( ))f H f m fS m p H m p Q m p m p                       (3.49) 

where  

T

eV
K B DBdV                                             (3.50) 

 
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 


  
        

               (3.51) 

 
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p
L B dV
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


 
     

 
                             (3.52) 
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          

               (3.53) 
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H p p
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

 
         

 
                           (3.54) 
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S dV
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 
        
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                              (3.55) 
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

 
         
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                           (3.56) 
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Q dV



 
        

 
                               (3.57) 

Within the complete expression of each term, eV  represents the element area, f denotes 

the external applied forces, B and D  are the strain-displacement matrix and stress-strain 

matrix respectively. 
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For the temporal discretization, Crank-Nicolson scheme is applied to Eq.(3.47-3.49) 

with an implicit variable  . After some algebraic work, we finally obtain the following 

discretize equations: 

 1 1

2 2

1

2

0
( )

0 ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

T

H m

H f

H m f

H f m
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L S tH Q t Q t m p

Q t S H t Q t m p
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H t Q t m p Q tm p

H t Q t m p Q tm p
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  

   
  

         
           

 
 

      
      

       (3.58) 

where t  is the time increment; implicit variable   is bounded between 0.5 and 1.0; 

subscript 1nt   represents the time of last step. The “stiffness” matrix of the above FEM 

formula is not symmetrical. Thereafter, an optimized FORTRAN solver, called Pardiso 

will be utilized. 

As the natural gas properties are not constant with pressure change, and p
nt

 (pore 

pressure at the current time step) are included in the “stiffness” matrix, a nonlinear 

iterative method is needed in the numerical procedure. This is done by using the 

unknowns computed from previous step to estimate the stiffness matrix in the current 

step (see Appendix IV). A tolerance value (0.2%) is used to check the convergence in 

every iteration during each time step. In this finite element model, the nodal variables u ,

( )mm p and ( )fm p can be solved directly from Eq.(3.58). Then, the total and effective 

stresses at Gauss integration points, which are not primary variables, can be computed 

through Eq.(3.21) and (3.22). 
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3.7 Verification 

The non-linear fully coupled poroelastic FEM model (single porosity) for simulating gas 

production from gas shale has been verified using analytical solutions in Chapter 2. 

However, as no analytical solutions are available, the program is verified by using a very 

low fracture aperture and comparing the dual permeability model to the analytical 

solution for a single permeability model. 

In this numerical analysis, the reservoir dimension is 10m10m. Considering the axial 

symmetry of the wellbore geometry, only a quadrant of the reservoir is simulated as 

shown in Figure 31. The finite element mesh and element geometry are also presented in 

Figure 31. And six near-wellbore fractures are considered in the verification process, as 

shown in Figure 31. Three of them are perpendicular to the minimum in-situ stress 

direction to represent hydraulic fractures. The others three are assumed to be pre-existing 

natural fractures. 

In field, a producer with radius ( 0.1ma  ) is located in the center of the reservoir and its 

bottom hole pressure (BHP) is set lower than the reservoir pressure to initiate 

production. In this FEM model, under the plane strain conditions for the 2-D case, the 

production of gas within the wellbore can be simulated by decreasing the pore pressure 

on the wellbore wall at  t=0. Flow rate at wellbore can be computed through Darcy’s 

law. 
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Figure 31 Wellbore and Fractures geometry 
 

In order to solve these diffusion the initial reservoir pressure is set to be 8.27 MPa 

(1200psi) and the BHP at wellbore is 5.52 MPa (800psi) and is kept constant in time 

under isothermal conditions. For the far-field boundary, a no flow condition is applied.  

In order to highlight the matrix deformation and gas flow only induced by pore 

pressureperturbation, the in-situ stress state is assumed to be isotropic during the 

verification process. All reservoir parameters and gas properties for the FEM are given 

in Table 3. 
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Table 3 Input parameter for dual permeability model 
 
 

 

 

 

 

 

Poisson’s ratio,   0.25 0.25 
Young’s modulus, E  20.684GPa 63.0 10 psi 
Shear modulus, G  8.274GPa 61.2 10 psi 
Initial porosity,   0.04 0.04 
Biot’s coefficient,   0.6354 0.6354 
Initial permeability, k  191.0 10  m2 0.1 D  
Bulk modulus, K  13.790GPa 62.0 10 psi 
Solid bulk modulus, sK  37.820GPa 65.5 10 psi 

Initial reservoir pressure, 0p  28.269MPa 4100psi 
Bottom hole pressure, wfp  15MPa 2176psi 
Average system temperature, T  090 C  0194 F  
Density of gas shale, r  32.4 10 kg/m3 150lb/ft3 
Min in-situ stress, h  39.011MPa 5658psi 
Max in-situ stress, H  43.340MPa 6286psi 
Langmuir pressure constant, LP  6.109MPa 886psi 
Langmuir volume constant, LV  0.015 m3/kg 0.24ft3/lb 
Langmuir volumetric strain constant, L  0.02295 0.02295 
Aperture without any normal stress, 0a  0.0001m 33.94 10 in 
Empirical constant, A  1.0 1.0 
90% closure stress, B  50MPa 7252psi 
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In the verification process, the fracture aperture within the reservoir is assumed to be 

ultra-low and equal to 6
0 1.0 10 ma   . In this way, the equivalent fracture permeability 

of the fractured elements resembles the matrix permeability and the result of the dual 

permeability model can be compared against the single permeability model. The profiles 

of the pore pressure distribution around the wellbore are depicted in Figure 32. In both 

models, it can be observed that the gas pressure decreases with time and decreases close 

to the wellbore pressure due to production. It can be seen that all the numerical results of 

DPM agree very well with those of the single permeability model. 

 

Figure 32 Comparison of dual permeability model results (dashed curves) with 
single permeability model results (data markers) for the distribution of induced 
pore pressure around the wellbore. 
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3.8 Conclusion  

The response of fractured gas shale to gas diffusion in depletion process has been 

successfully studied using a non-linear coupled poroelastic model and considers 

adsorbed gas within shale matrix (Chapter 2). In this chapter, this single permeability 

model for simulating gas flow is further developed by incorporating the dual continuum 

concept to handle fracture network in heterogeneous reservoirs such as gas shale and 

coal-bed methane.  

In the dual permeability model, elements without fracture will remain as conventional 

single permeability cells whereas the dual permeability treatment is needed for the 

elements intersected with fractures. In this newly created model, both matrix and 

fractures are set to be permeable, so that fluid can move through both. Within the 

framework of this DPM-FEM model, every element, either with or without fractures, can 

have its own permeability tensor and other mechanical properties.  
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The fractures, especially large scale fractures, are discretely represented by small 

segments and their geometry and mechanical behavior are considered on element-by 

element basis. Fracture aperture and hence its permeability is no longer constant along 

the fracture length. The stress-dependent fracture aperture, caused by both normal 

deformation and shear displacement, can be computed by a simple correlation and 

updated explicitly within the time loop of finite element model.  And the implementation 

of DPM to the non-linear fully coupled poroelastic FEM model was verified with single 

permeability model. 
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CHAPTER IV  

POROVISCOELASTICITY 

In most reservoir simulators for gas shale, only the elastic deformation of reservoir rock 

and fractures is modeled. However, many experimental studies and field investigation 

indicated that shale might experience viscoelastic deformation before reaching plastic 

deformation under in-situ stress condition. Thus, in this work, a non-linear numerical 

simulator was constructed by incorporating a poroviscoelastic model into the dual 

permeability (DPM)-finite element model (FEM) to investigate the coupled time-

dependent viscoelastic deformation, fracture network evolution and compressible fluid 

flow in gas shale reservoir. The viscoelastic effect was addressed in both deviatoric and 

mean effective stresses to emphasize the effect of shear strain localization on fracture 

shear dilation. In the strain damage model, shear viscosity was set to be proportional to 

the second invariant of the strain-rate for viscous rheology. The new mechanical model 

was first verified with an analytical solution in a simple consolidation problem and 

wellbore creep problem and then compared with the poroelastic solution under the same 

conditions. Comparing the case of poroelasticity and poroviscoelasticity showed that the 

pore pressure difference throughout the domain was small; however, the stress evolution 

was quite divergent, especially for the area close to the loading boundary. This 

numerical model was applied to a field case of fractured gas shale reservoir to 

understand the long term viscoelastic and damage effects on the gas production in gas 

shale. 
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4.1 Introduction  

For successful drilling, completion and simulation of gas shale reservoirs, accurate 

measurement and estimation of rock mechanical properties is demanded in petroleum 

industry.  Core sample tests and log data analyses are commonly used to acquire rock 

mechanical properties. Only elastic properties of reservoir rock can be extracted from 

these two methods. However, the geomechanical deformations of shale reservoirs 

usually demonstrate time-dependent behavior and follow viscoelastic, even viscoplastic, 

constitutive laws, which was proven by extensive experiment results (Olsson, 1980; 

Blanton and Teufel, 1983; Huang et al., 1987; Warpinski, 1989; Zhou et al., 1992; 

Remvik, 1995; Bloch et al., 1999; Sone and Zoback, 2011).  

A non-negligible portion of the reservoir mechanical response occurs as viscoelastic 

deformation, which is non-linear in time and cannot be correctly described by linear 

elasticity theory. This time-dependent geomechanical behavior of rock matrix/fracture 

system can impact the dynamic permeability of the reservoir and hence affect the gas 

deliverability during production period, especially for a long-term prediction during 

reservoir life.  Failure to handle this viscoelastic deformation of gas shale reservoirs may 

result in significant errors in predicting reservoir compaction and gas production. The 

viscoelastic theory and applications on nonporous medium are widely developed in 

literature, but seldom applied to the porous medium.   

Biot (1956) initially proposed a poro-visco-elasticity theory to investigate the linear 

viscoelasticity and anisotropy of porous medium, which presented viscoelastic 

deformation of solid and viscous flow of pore fluid. The linearized formulation of Biot’s 
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poro-visco-elasticity theory was established based on a thermodynamic approach, in 

which a generalized free energy as well as dissipation function was used to define 

thermodynamic systems. The linear operator, containing both elastic and viscous terms, 

between stress, strain, fluid content and pressure was given and applied to solve the field 

equations.  

Abousleiman et al. (1993) introduced a micromechanical method to interpret Biot’s 

poro-visco-elasticity theory. In their micromechanical approach, the generalized 

Kelvin’s model (three parameters) was utilized to compute the bulk modulus of rock 

matrix ( K ) and solid constituent ( sK ) in Laplace domain. In this way, the rock elastic 

and viscoelastic properties were considered at pore scale and applied to represent the 

coefficients in the poroviscoelastic constitutive equations. Then, an analytical solution 

for wellbore problem was derived to investigate the coupled process between fluid flow 

and rock viscoelastic deformation.  

Bloch et al. (1999) applied the poroviscoelasticity theory to interpret anelastic strain 

recovery test by using modified Kelvin’s model (three parameters). The rock mechanical 

properties, such as Young’s modulus and bulk modulus were computed in a similar way 

to that of Abousleiman et al. (1993) to account for viscoelastic effect. Both the analytical 

solutions of poroviscoelastic and viscoelastic models were applied to predict the 

viscoelastic behavior among different rock types, sandstone, chalk and shale in that 

study. By comparing the results between poroviscoelastic and viscoelastic solutions, 

poroviscoelastic was advanced in forecasting the deformation of rock sample in time.  
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Simakin and Ghassemi (2005) developed another poroviscoelastic model by taking the 

relaxation in both deviatoric stress and the symmetric effective stress into consideration. 

In that work, a Maxwell linear viscoelastic model was employed to describe the 

mechanical nature of reservoir rock and shear viscosity was assumed to be proportional 

to the second invariant of the strain rate for viscous rheology in the damage model. 

Based on these assumptions, a numerical model was constructed to simulate the triaxial 

compressional test of rock, which melted partially under in-situ conditions. In this new 

mechanical model, the poroviscoelasticity was implemented with damage model to study 

the shear strain localization and fluid flow in rock. 

In this chapter, a poroviscoelastic model with damage model is incorporated into the 

dual permeability (DPM)-finite element model (FEM) numerical simulator to study the 

coupled time-dependent viscoelastic deformation, fracture network evolution and 

compressible fluid flow in gas shale reservoir. The primary objective of this chapter is to 

simulate the time evolution of gas pressure, effective stresses, fracture aperture and 

permeability during gas depletion process and quantify the influence of shear strain 

localization on matrix and fracture deformation during gas production. 

 

4.2 Linear viscoelasticity  

In an elastic material, the stress and strain correlation is modeled by Hooke’s law and 

demonstrates a linear relationship which is only dependent on the mechanical properties 

of the material and is invariant with time as shown in Figure 33. However, a viscoelastic 

material usually exhibits the elastic deformation as well as the viscous deformation, 
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which is time-dependent. According to the boundary condition, either stress relaxation or 

strain creep (Figure 33) can be presented by a viscoelastic material. 

 

Figure 33 Schematic descriptions of stress-strain relationships in elastic, viscous 
and viscoelastic materials  
 

In a relaxation test, if the applied strain is kept as constant, the stress of viscoelastic 

material decreases with time as illustrated in Figure 33; in a creep test, if applied stress 

on the boundary of the sample is held constant, the strain of viscoelastic material 

increases over time as shown in Figure 33.  The relaxation and creep phenomena coexist 

inherently within viscoelastic materials.  

Although the stress and strain relationship for viscoelastic materials is time dependent, it 

is assumed to be linear which is an ideal but widely used way to describe the 

complicated viscoelastic behavior in literature. However, the actual stress-strain 

response could be non-linear. 
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In the theory of linear viscoelasticity, two simple mechanical elements, spring and 

dashpot, are utilized to represent the elastic and viscous behavior respectively, as 

depicted in Figure 34.  

 

Figure 34 Two mechanical elements used in linear viscoelasticity 
 

Spring is a representative of linear elastic solid.  Its constitutive equation is given as 

below:                                                          K                                                      (4.1) 

where K  is the stiffness of the spring. In a spring, strain is an instantaneous function of 

stress during loading process and it reduces to zero instantly when unloaded.  

Dashpot works as a piston moving within a viscous medium and is used to describe the 

viscous behavior. For a dashpot, we have the following constitutive equation: 

d

dt


                                                   (4.2) 
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where   is the dashpot viscosity (creep compliance) and is a constant. It is obvious that 

stress is a linear function of strain rate in Eq. (4.2). Integrating Eq. (4.2) by assuming 

constant load 0  and zero initial strain, one can get:     

0 t





                                                            (4.3)                     

Strain depends not only in stress level, but also stress history in loading process. It can 

be seen that strain is accumulated linearly with time in Eq. (4.3). If the relationship 

between stress and strain rate in Eq. (4.2) becomes non-linear, a non-linear 

viscoelasticity theory will be developed, which will not be addressed in this study.  

Two simple but typical models will be examined to demonstrate how to construct a 

linear viscoelastic model by employing linear spring and dashpot elements.  

The Kelvin model consists of a spring and dashpot element, which are connected in 

parallel as shown in Figure 35 (I). In this parallel two-element model, the total stress and 

strain are given as: 

e ve   

                                                        
 (4.4) 

e ve   

                                                         
 (4.5) 

By substituting Eq. (4.1) and (4.2) into Eq. (4.4), the governing equation of Kelvin 

model is expressed as:                     K   

                                                         
(4.6)

                                
 

The Maxwell model is another typical two-element model which is composed of a spring 

and dashpot element that are connected in series as depicted in Figure 35 (II). The 
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components in series carry the same the total stress and their strains are added to find the 

total strain so that:  

e ve   

                                                        
 (4.7) 

e ve   

                                                         
 (4.8) 

By taking Eq. (4.1) and (4.2) into Eq. (4.8), one can get the governing equation of 

Maxwell model:                             
/

K
K


 


 

                                                      
(4.9) 

In literature, numerous linear viscoelastic models are constructed based on different 

combination of spring(s) and dashpot(s). If a Kelvin and a Maxwell model are connected 

in series, the Burger’s model is formed, as shown in Figure 35 (III). Normally, 

increasing the number of mechanical elements in a model can improve its quality in 

predicting the mechanical response of viscoelastic materials. Consequently, the number 

of necessary mechanical properties also rises, whose measurement might be difficult or 

even impossible through experiments.
 
In the following section, the Maxwell model will 

be used to develop a linear poroviscoelastic model which is incorporated into a 

numerical reservoir simulator to study the viscoelastic effects during gas production. 
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Figure 35 schematic representation of three liner-viscoelastic models: (I) Kelvin 
model; (II) Maxwell model; (III) Burger’s model 
 

 

4.3 Poroviscoelastic model  

Diek and Ghassemi’s (2004) chemo-poroelastic theory is an improvement of the Heidug 

and Wong (1996) work and is derived from the potential energy of wetted clay matrix, 

i.e., the differences between the internal energy of fluid saturated porous medium and 

that of the pore fluid. In the case of complete isotropy and without thermal and chemical 

influences, the constitutive equations for a poroelastic porous rock are given as (tension 

is considered positive): 

2( ) 2
3ij kk ij ij ij

G
K G p        

                              
(4.10)  

1
kk p

M
  

                                          
 (4.11)  
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where K and G  represent the rock’s bulk and shear modulus respectively;   is the 

Biot’s effective stress coefficient which measures the ability of the pore pressure to act 

against compressional stresses; M  stands for the Biot modulus, defined as the inverse of 

a storage coefficient with the expression of 1
M p







; the dots above variables 

represent time derivatives. With the isotropic thermodynamic response, coefficient 

and M are given by: 

1
s

K

K
  

 
                                                    (4.12)  

1

f sM K K

  
 

                                               
 (4.13) 

where sK  and fK  stand for the solid matrix’s bulk modulus and fluid modulus 

respectively;   represents the porosity. The above linearization of rock-fluid constitutive 

equations (4.10) to (4.11) express the total stresses 
ij  and the variation of fluid content 

  with respect to two variables, the solid strain 
ij  and the pore pressure p in linear 

poroelasticity theory. 

The components of effective stress tensor ( 'ij ) are given as the sum of the 

corresponding total stress ( ij ) components and pore pressure of fluid ( p ): 

'

2( ) 2 , , , ,
3

ij ij ij

kk ij ij

p

G
K G i j k x y z

   

  

 

   
                    (4.14)                               

And, the 3D strain-stress relation is expressed as: 
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1 1 1' ' , , , ,
2 6 9ij ij kk ij i j k x y z
G G K

   
 

    
 

             (4.15)                         

So the volumetric strain could be obtained as 

1 '
3v kk

K
                                              (4.16) 

In order to solve these linear equations by finite element method, the stress-strain 

relation need to be expressed in matrix form. In matrix form, the stress-strain 

relationship for an isotropic rock can be written as:                                                                                      

4 2 2 0 0 0
3 3 3'
2 4 2' 0 0 0
3 3 3'
2 2 4 0 0 0' 3 3 3

' 0 0 0 2 0 0
' 0 0 0 0 2 0

0 0 0 0 0 2

xx xx

yy yy

zz zz

xz xz

yz yz

xy xy

K G K G K G

K G K G K G

K G K G K G

G

G

G

 

 

 

 

 

 

 
   

    
          
    

      
    
    
    
       

 
 

                 (4.17) 

Under plane strain condition,  0zz xz yz       

so that the above stress-strain relation can be simplified to 

' 4 / 3 2 / 3 0
' 2 / 3 4 / 3 0

0 0 2

xx xx

yy yy

xy xy

K G K G

K G K G

G

 

 

 

     
    

      
        

                            (4.18)                                                                

From Eq.(4.15), for plane strain condition,   

1 1 1' ' 0
2 6 9zz zz kk ij
G G K

   
 

    
 

                           (4.19)            

the 3rd normal stress component due to Poisson effect can be easily derived 
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 
 

3 2' ' '
2 3zz xx yy

K G

K G
  


 


                                (4.20) 

So the mean effective stress is given as: 

 
 

' 3 ' '
3 2 3

kk
m xx yy

K

K G


    


                           (4.21) 

In mechanics, any stress tensor can be decomposed into two parts, mean stress ( Im ) 

and deviatoric stress ( s ), through the following way: 

0
I

0
xx xy xx yxm

m

yx yy xy yym

s s
s

s s

  


  

    
       

    
               (4.22)                                            

where  

2

2

xx yy

yx
xx yx

xy yy xx yy

xy

s s
s

s s

 


 


 
  
   

     

                              (4.23)                                                                   

Letting 1 2
xx yy

S
 

  and 2 xy yxS    , the deviatoric stress tensor can be given as: 

1 2

2 1

S S
s

S S

 
  

 
                                                  (4.24) 

A synthetic vector ( ) can be formed by putting the hydrostatic ( m ) and deviatoric 

stress ( 1S  and 2S ) components together in the following way: 

1

2

m

S

S

 
 

 
 
  

                                                      (4.25) 
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A linear operator (tensor C ) is used to transform the stress tensor in plane strain (also in 

vector form) into vector  : 

1

2

'
[ ] '

m xx

yy

xy

S C

S

 





  
  

     
     

                                   (4.26)                                                                            

where   

   
3 3 0

2 3 2 3
1 1[ ] 0
2 2
0 0 1

K K

K G K G

C

 
  
 
 

  
 
 
 
 

                        (4.27) 

And its inverse is  1

1 1 0
3

[ ] 1 1 0
3
0 0 1

G

K

G
C

K



 
 

 
   
 
 
 
  

                                                     (4.28)       

Correspondingly, another synthetic vector ( ) can be given by putting the plane strain 

“volumetric” (
v xx yy    ) and deviatoric strain ( 1 2

xx yy 



  and 2 xy  ) 

components together in the same way:  

1

2

v





 
 

 
 
  

                                                          (4.29) 

The above vector  can be also transformed into the conventional strain tensor (in 

vector form) through a linear operator: 
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1

2

1 1 0
1 1 0
2 2
0 0 1

v xx

yy

xy

 

 

 

 
    
            
       

 

                                  (4.30) 

The poro-viscoelastic constitutive law for the Maxwell model is given by Eq. (4.9). The 

difference between the constitutive equations of poroviscoelasticity and that of 

poroelasticity is the viscous term (the second term on the RHS of Eq. (4.9)), which is 

modeled by the linear dashpot element. The viscous behavior of reservoir rock can affect 

the time evolution of both the deviatoric and symmetric components of stress (Simakin 

and Ghassemi, 2005).  

The deviatoric stress components ( 1S  and 2S ) contain two terms in the relation between 

stresses rate and strain rate: one is the conventional linear elastic deformation; the other 

is the viscous relation term, indicating the deviatoric stress decays with a relaxation time 

s , which is proportional to the shear viscosity of the matrix ( s ).  

2 2,3i
i i

s

G i



                               (4.31)        

where s
s

G


   and s  is the shear viscosity, which describes a material’s resistance to 

shear flow; the script dot indicates the time derivative of the corresponding term.    

Similarly to the deviatoric part, the effective stresses-strain rate relation for the 

symmetric part ( m ) can be expressed in terms of two terms: one is the linear elastic 

deformation and the other is another viscous relaxation term, showing that the symmetric 
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stress evolves with a characteristic time 
v , which is proportional to the volumetric 

viscosity of the matrix (
v ). 

1i
i i

v

K i



                                      (4.32) 

where v
v

K


   and v  is the volumetric viscosity, which measures a material’s reaction 

to volume change. 

Note that the last equations are written in terms of effective stress components and the 

“prime” has been omitted. In matrix form, the above equations (Eq. (4.31) and (4.32)) 

can be rewritten as: 

1 1 1

2 2 2

0 0 /
0 2 0 /
0 0 2 /

m v m v

s

s

K

S G S

S G S

   

 

 

       
       

   
       
              

                 (4.33)                                                                                    

According to Eq. (4.26), the plane strain effective stresses (in vector form) can be 

expressed as 

1

'
' [ ]
xx

yy

xy

C









 
 

  
 
 

                                  (4.34) 

Taking Eq. (4.28), (4.30) and (4.33) into Eq.(4.34), it yields for effective stresses: 



 

132 

 

1

2

1 1 0' 1 / 3 1 0 0 0 /
1 1' 1 / 3 1 0 0 2 0 0 /
2 2

0 0 1 0 0 2 /0 0 1

4 / 3 2 / 3 0
2 / 3 4 / 3 0
0 0 2

xx xx m v

yy yy s

xy xy s

G K K

G K G S

G S

K G K G

K G K G

G

   

  

  

  
          
                                             
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     (4.35)                             

Let  
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                                                          (4.36) 

represent the stiffness matrix for elasticity, and: 
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                                      (4.37)   

represent the viscoelasticity component. Then, the increment of effective stress at current 

step can be expressed as: 
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     

                                  (4.38) 

Or one can write it as  ' 'D V     (4.39) for simplicity. Substituting Eq. (4.14) into 

Eq. (4.38), one can get 
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                              (4.40) 

Thus, for a fully coupled hydro-mechanical process, the increment of total stress at 

current stage is stated as: 
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                           (4.41) 

For the mechanical equilibrium, the following equation should be satisfied by the total 

stresses, which are computed through Eq. (4.41): 

0f                                                 (4.42)  

where f  is the external body force.                                                                                    

Without a volume source, the conservation equation of fluid mass is given by (Diek and 

Ghassemi, 2004):                                          0w                                              (4.43) 

where w  denotes Darcy’s filter velocity;  The transport equation for isotropic flow 

without thermal and chemical osmosis is deduced:  

f

k
w p


                                              (4.44) 

where k  denotes the intrinsic permeability; f  represents the viscosity of the fluid.  

Let 
f

k



  and substitute Eq. (4.44) into Eq. (4.43): 

2 p                                                (4.45) 

Combining Eq.(4.11) and (4.45), a coupled fluid diffusion equation could be yielded: 
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21( )u p p
M

                                         (4.46) 

Eq.(4.41) and (4.46) represent a coupled set for poroviscoelasticity. They can be used to 

simulate the interaction between viscoelastic deformation of rock mass and fluid flow in 

a fluid flow-mechanical process under plane strain condition. Neglecting the second 

term on the RHS of Eq. (4.41), this model becomes identical to the conventional 

poroelastic model (Biot, 1941; Rice and Cleary, 1976; Diek and Ghassemi, 2004).  

 

4.4 Viscosity model for the rock 

Based on the experiment data, shear viscosity during deformation can be expressed as 

(Rushmer, 1995; Tommasi et al., 2000) 

1/ 1
0 ( ) n

s s T e 


                                        (4.47) 

where 
1/2

2
ij ij

e
  

  
 

is the second invariant of strain rate; in plane strain, it is given as

1/22 2
2

2
xx yy

xye
 


 

  
  

; n  is set in the range of 3-10. Shear viscosity is a function of both 

temperature and strain rate. 

Sleep (2002) proposed a damage rheology model by taking both strain weakening and 

healing process into consideration. In the model, the damage tensor ( C ) was expressed 

in the compliance form of viscosity. 

 
C

Af e BC
t


 


                                      (4.48) 
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The first term on the RHS of Eq.(4.48) represents the strain weakening process, which is 

proportional to the second invariant of strain rate; while the second term denotes the 

healing process of damage (as recrystallization). For an isotropic material, the damage 

tensor C  can reduce to a scalar:  1/ sC                                                                    (4.49) 

By substituting the function f  in Eq. (4.48) by a power law formulation for viscous 

rheology with an exponent 1 1/m n   and replacing the damage tensor with Eq.(4.49)  

into Eq.(4.48), a common power law for viscous rheology can be derived in the steady 

state asymptotic. This is used only in the verification case of consolidation problem (for 

reservoir problems, a simpler rheology is used) whose analytical solution was given by 

Simakin and Ghassemi (2005).  

m

s

B
e

A



                                                (4.50) 

where A ( 910 0.1A   ) and B  ( 92 10 0.2B    ) are empirical constants.  

 

4.5 Finite element formulation  

After developing the coupled poro-viscoelastic model (Eq.(4.41) and (4.46)) with 

damage rheology (Eq.(4.50)), this model features in the nonlinearity of stress-strain 

relationship and power law rheology, which is distinguished from direct analytical 

methods by using Laplace transformation (Abousleiman et al., 1993; Bloch et al., 1999). 

Due to the complexity (nonlinearity) of the model, analytical solution is not amenable to 

solve the field equations. Therefore, a numerical method, finite element method, is 
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needed to solve these coupled fluid flow and rock deformation equations with certain 

initial and boundary conditions.  

For plane strain conditions considered herein, a corresponding stiffness matrix ( D ) is 

selected for the poroviscoelastic model. In this work, eight-node quadrilateral elements 

are used to compute solid displacement vector u , while four-node quadrilateral element 

is applied to calculate pore pressure p  for fluid. By applying the FEM approximation, 

the unknowns ( u and p ) at gauss integration points can be computed through the 

following equaitons: 

uNu u                           pNp p                           (4.51) 

where uN  and  pN  are the shape functions for solid and fluid elements; u and p  are the 

vectors of the displacement and pore pressure at nodal points respectively. 

For the mechanical equilibrium, Galerkin’s finite element method (GFEM) is used to 

discretize Eq. (4.41) in spatial domain and the total stresses should satisfy Eq.(4.42). In 

weak form formulation, the mechanical equilibrium equation (Eq.(4.42)) for the 

poroviscoelastic model is expressed as: 

pNT T veB DBud B pd R f  

 

                          (4.52) 

where   represents the discretized domain; R  denotes the external applied forces; 

 '
1

ve T

nf B V d 



   represents the internal force resulted from viscoelastic 

deformation; B is the strain-displacement matrix for solid element.  
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By running element by element assembling, Eq. (4.52) is given in matrix form  

 Δu Δp R + f`e eK A t                                           (4.53) 

Where  

T

e
K B DBdV


                                                 (4.54) 

   
T

pN
e

A B dV


                                             (4.55)                                                                                                

where e represents the area of an element. 

For the fluid diffusion equation (Eq.(4.46)), its FEM formulation is expressed in matrix 

form by applying GFEM treatment: 

u p p 0T

HA S H                                               (4.56) 

where 

T

p p
1N N

e
S dV

M

 
        

 
                                    (4.57) 

 
T

p pN NH
e

H dV

                                         (4.58) 

For the temporal discretization, the following equation is taken into Eq. (4.56) with an 

implicit variable  .  

1p =p ( )pn n t                                             (4.59) 

where t  is the time increment; implicit variable   is bounded between 0.5 (Crank-

Nicolson scheme) and 1.0 (fully implicit scheme) for stability; subscript n  represents 

the last time step. After some algebraic work, we finally obtain the following discretize 

equation for fluid diffusion equation: 
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 u p pT

H H nA S tH H t                                     (4.60) 

By assembling the mechanical equation (Eq.(4.53)) and fluid diffusion equation 

(Eq.(4.60)) into matrix form, the FEM formulation for the poroviscoelasticity theory is 

given as: 

 
 u R + f`

p p
e e

T

H H n

K A t

A S tH H t
 

      
              

                (4.61) 

Apparently, the rise of internal force is caused by the viscoelastic deformation, which 

can be treated as boundary conditions in the FEM formulation and updated at each time 

step for equilibrium purpose. 

A new numerical model is constructed by implementing the coupled poro-viscoelastic 

model into a finite element formulation. This model is first verified with analytical 

solution in simple case and compared to the poroelastic results in consolidation problem. 

Then, gas flow and fracture network can be incorporated into the numerical model to 

investigate the geomechanical (viscoelastic) behavior of gas shale reservoir and 

mechanical deformation of contact surfaces during production. 

 

4.6 Verification  

4.6.1 Consolidation problem 

Due to the complexity of the poroviscoelastic problem, no analytical solution is available 

to solve the problem in 3D case. So, a 1D consolidation problem having a simple 

geometry (Figure 36) will be considered and solved analytically to partially verify the 

numerical model of poroviscoelastic deformation. 
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Figure 36 Geometry of consolidation problem for deriving analytical solution 
 

A block of rock is subjected to a constant load ( yy ) on the top surface. This mechanical 

load is greater than the internal fluid pressure of the sample and hence triggers the 

poroviscoelastic deformation. There is no any horizontal displacement or fluid leak-off 

on the right and left side boundary of the block, resulting in development of lateral 

confining pressure ( xx ) during the loading process. However, the displacement and 

fluid leak-off is allowed on the top, in the y-axis (vertical) direction, which means the 

sample is under a uniaxial strain condition. The bottom side of the sample is 

impermeable and fixed for any vertical displacement. Then, the symmetric and 

deviatoric stress tensors can be given as 

0
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0
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xx yy
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xx yy

 


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                                    (4.62)                                                                                     
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                                   (4.63)                                                                                   

For a steady-state asymptotic solution, the following equations are obtained from Eq. 

(4.21), (4.31) and (4.32): 
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                               (4.65) 

For the consolidation problem, constantyy   without any body forces and 0xx   

Subtracting Eq. (4.63) from Eq.(4.62), one can get  

1
3yy v s yy
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  
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                           (4.66) 

Applying the Laplacian operator on both sides of the Eq. (4.66), the following 

expression is obtained: 
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                              (4.67) 

Recalling the fluid diffusion equation (Eq.(4.46)), if taking 0p   for steady state and 

replacing the Laplacian of pore pressure by Eq.(4.67), one can get 
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Letting 
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, the above equation has a general solution 

1 2( ) y y

yy y C e C e                                        (4.69) 

By substituting this solution into Eq. (4.66), the following equation can be derived 
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Applying the boundary condition (0) 0p   and 0y L

p

y






, one can get the solution for 

mode I loading case: 
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For the mode 2 loading case ( 0yy  ), the boundary condition is 0(0)p p  and 

0y L

p

y






, then the solution will be expressed as: 

( 2 )

2
0 1

y L y

L

p e e

p e

 



 







                                   (4.72) 
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Figure 37 Comparison of numerical results (data markers) with analytical solution 
(solid curves) for the distribution of pore pressure in steady state. 
 

By simulating the simple geometry and boundary conditions for a uniaxial strain 

problem, the analytical solution of pore pressure distribution is plotted together with that 

of numerical solution, as shown in Figure 37. All the required rock mechanical 

properties for both numerical and analytical tests are kept the same as listed in Table 2 

for the verification and the shear viscosity, which is set to 104.0 10 Pa ss    . When 

pore pressure reached steady state (slight change of pore pressure and stress component 
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with respect to time), it can be seen that the analytical solution matches very well with 

the finite element results for fluid loading. 

 

4.6.2 Wellbore problem (creep closure) 

Under the plane strain condition for the 2-D case, the wellbore problem (geometry is 

given in Figure 38), is widely studied and analytically solved in literature. In this 

problem, uniform stress 0p is acting on the far field boundary of the reservoir rock and 

the fluid pressure wfp is maintained on the wellbore wall ( 0.1mr a  ). The the fluid 

pressure wfp is set lower than the far field stress 0p to initialize the elastic or even 

viscoelastic deformation. For the elastic deformation, the analytical solution of radial 

displacement is available in literature (Jaeger et al., 2007): 

 
2

0( )
2r wf

a
u r p p

Gr
                                            (4.73) 

It can be seen that the response of displacement field to the stress loading is 

instantaneous. For the viscoelastic deformation, the analytical solution of radial 

displacement for the Maxwell viscoelatic model is given as (Christensen, 1971): 

   
2

0
1,

2r wf

a t
u r t p p

r G 

 
   

 
                            (4.74) 

In this solution, the displacement field is a function of radius and time, which is quite 

different from that of the elastic case. This time dependent behavior corresponds to the 

viscoelastic creep of the formation, which can cause the closure of the wellbore with 

time. (Christensen, 1971) 
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Figure 38 Geometry of wellbore problem 
 

This analytical solution for Maxwell model (Eq. 4.74) can be employed to verify the 

numerical model of poroviscoelasticity in this study. By simulating the axisymmetric 

geometry and boundary conditions for the wellbore problem (mode II laoding), the 

analytical solutions of the radial displacement evolution at the wellbore wall ( 0.1mr  ) 

are plotted against those of numerical solution with different solid viscosity, as displayed 

in Figure 39. In the verification process, the difference between the far field stress 0p  

and mud pressure wfp  is set to be 1.0 MPa and all necessary rock mechanical properties 

are extracted from Table 2. For the shear viscosity of the rock sample, three different 

values are used in the comparison. It can be seen that the analytical solutions agree very 

well with the finite element results of the Maxwell model for fluid loading. When the 

solid deformation gets close to elastic regime, as the viscosity is greater than 

181.0 10 pa s  in this study, the radial displacement of the wellbore wall becomes 
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invariant or slightly changes with time. The viscoelastic deformation (creep), hence the 

wellbore closure, becomes more significant with lower viscosity of the reservoir rock. 

 

Figure 39 Comparison of numerical results (data markers) with analytical solution 
(solid curves) for the time evolution of the radial displacement at the wellbore wall 
with the variation of the viscosity of the reservoir rock. 
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4.7 Comparison  

In order to highlight the influence of viscoelastic deformation in matrix mechanical 

performance, both the numerical models for poroviscoelasticity and poroelasticity are 

applied to simulate 1D consolidation of the same rock sample in Figure 36, whose 

properties are given in Table 4. Besides this, boundary conditions and loading history are 

kept the same as those in the verification process and assumed for both models. With 

these assumptions, a comparison is allowed between the two different models. 

The results of numerical experiments are presented in Figure 40, 41 and 42.  Figure 40 

shows the distribution of pore pressure along vertical direction within the sample. The 

poroviscoelastic cases are given in data markers, while the poroelastic cases are shown 

in solid curves for comparison. The pore pressure responses for fluid loading in two 

cases overlap each other. It implies that the viscoelastic effect is insignificant (In the 

fluid diffusion equation, the coupled term is very small when compared to the fluid 

pressure gradient) in the pore pressure evolution which agrees with the results in 

Abousleiman et al. (1993), in which a three-parameter generalized Kelvin’s model was 

used. Figure 41 depicts the distribution of effective stress '
xx  along vertical direction 

and Figure 42 demonstrates the distribution of effective stress '
yy  in the same direction. 

The difference in the stress responses between two cases becomes noticeable as time 

elapse. However, away from the loading boundary ( 0y  ), the difference in the stress 

responses between two cases reduces with dimensionless position ( /y L ). It indicates 
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that the viscoelastic deformation projects considerable influence in the development of 

stress field, especially for the area close to the loading boundary. 

 

Drained Poisson’s ratio,   0.219 
Undrained Poisson’s ratio, u  0.461 

Young’s modulus, E  1.853GPa 

Shear modulus, G  0.76GPa 
Porosity,   0.2989 
Biot’s coefficient,   0.966 

Permeability coefficient,   16 23.33 10 m /(Pa s)   

Bulk modulus, K  1.10GPa 

Solid bulk modulus, sK  32.65GPa 

Shear viscosity, s  114.0 10 pa s   
Table 4 Rock mechanical properties used in the comparison 
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Figure 40 Influence of viscoelastic deformation on the distribution of pore pressure 
in vertical direction (solid curve: poroelasticity; data marker: poroviscoelasticity) 
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Figure 41 Influence of viscoelastic deformation on the distribution of effective stress 
'
xx  along vertical direction (solid curve: poroelasticity; data marker: 

poroviscoelasticity) 
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Figure 42 Influence of viscoelastic deformation on the distribution of effective stress 
'
yy  along vertical direction (solid curve: poroelasticity; data marker: 

poroviscoelasticity) 
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4.8 Poroviscoelastic-DPM-FEM model  

In Chapter 3, a DPM-FEM model was developed based on poroelastic constitutive law. 

However, the viscoelastic effect, which is proved to be essential in stress response in 

shale samples, was omitted in that model. In this chapter, a poroviscoelastic-FEM model 

is constructed based on the Maxwell model. By combining the DPM-FEM model and 

poroviscoelastic-FEM model (Eq.(4.41) and (4.46)), a poroviscoelastic-DPM-FEM 

model is proposed to handle the viscoelastic deformation, fracture network evolution, 

and gas storage and flow mechanism simultaneously in gas shale reservoir. 

As stated before, the difference between FEM formulation of poroelasticity (Zhou and 

Ghassemi, 2009) and poroviscoelasticity (Eq.(4.61)) in the fluid-mechanical process is 

the internal force term, which is induced by the viscoelastic deformation. Thus, an 

internal force term ( f` e ) denoting the viscoelastic effect is added to Eq. (3.48); while the 

gas transportation equations for matrix (Eq.(3.49)) and fracture (Eq.(3.50)) elements are 

unaltered. 

Therefore, the FEM formulation for the poroviscoelastic-DPM-FEM model is given as 

(Appendix VI): 
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where all the coefficients are defined by Eq.3.51-3.58; the internal force is computed by 

 '
1f` T

e n

e

B V d 



    (4.73), whose detailed derivation is given in Section 5. 

The procedure to solve the non-linear equations (Eq.(4.75)) is briefly given as below: 

(i) Unknowns ( u , ( )mm p and ( )fm p ) from a previous time step are used to 

“guess” the initial stiffness matrix in current time step; and the intial 

condition of the reservoir is used for the first guess; 

(ii) In current time step, the FEM formulation (Eq.(4.72))  is solved to obtain the 

increment of unknown variables ( u , ( )mm p and ( )fm p ); 

(iii) The newly updated u , ( )mm p and ( )fm p is used to compute the strain, 

stress at current time step and then update the fracture aperture, boundary 

conditions and stiffness matrix; 

(iv) Step (ii) is repeated to get the new u , ( )mm p and ( )fm p for the next 

iteration; if u , ( )mm p and ( )fm p are close enough to those in the 

presvious iteration, the iteration is terminated and the next time step is 

proceeded. 
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4.9 Conclusion  

In this chapter, a coupled poroviscoelastic model is developed based on the Maxwell 

model and applied to investigate the interaction between viscoelastic deformation of 

rock mass and fluid flow in a fluid-mechanical process. The viscoelastic effect is 

addressed in both deviatoric and symmetric effective stresses.  

The poroviscoelastic model has been implemented into a finite element formulation in 

plane strain condition. This newly constructed mechanical model has been verified with 

analytical solution in a uniaxial strain problem. And then it has been compared to the 

poroelastic results in consolidation problem under plane strain deformation. By 

comparing the case of poroelasticity and poroviscoelasticity, viscoelastic effect in pore 

pressure response throughout the whole sample is slight; however, viscoelastic effect in 

the stress evolution is noticeable, especially for the area near the loading boundary.  

 

 

 

 

 

 

 



 

154 

 

Finally, a non-linear numerical simulator is constructed by incorporating this 

poroviscoelastic model into the dual permeability (DPM)-finite element model (FEM) to 

study the long term viscoelastic effect in fracture network evolution and hence the gas 

production in gas shale reservoirs. 
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CHAPTER V  

APPLICATION 

5.1 Wellbore problem-single permeability  

In this session, poroelastic analysis of gas production from gas shale is performed by 

using the non-linear fully coupled poroelastic finite element model (single permeability). 

The example considered Barnett Shale with properties given in Table 2. The finite 

element mesh used for the simulation is shown in Figure 11. The reservoir is assumed to 

be subjected to the following in-situ stress conditions: H =43.34 MPa in the x-direction 

( 0  ) and h =39.01 MPa in the y-direction ( / 2  ). In order to simplify the 

problem, only methane (single phase and single component) is considered. Two different 

cases are simulated to quantify the net influence of gas sorption and induced matrix 

deformation: (i) only free gas is produced; (ii) free and desorption gas are produced. The 

gas sorption influence on gas pressure distribution, time evolution of permeability, and 

the effect of gas desorption on effective stress field are studied simultaneously. 

 

5.1.1 Gas pressure distribution  

The spatial and temporal variations in gas pressure around the wellbore in response to 

gas depletion are presented in Figure 43. In both cases, with and without desorbed gas, 

the gas pressure decreases with time in a similar manner. However, the reduction of gas 

pressure for the desorption case is relatively slower than that of only free gas. This is 

attributed to the release of the sorption gas from the matrix. 
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Figure 43 Influence of gas desorption on the distribution of gas pressure in the x-
direction (solid curves: with desorption; dashed lines: without desorption). 
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5.1.2 Evolution of matrix permeability   

The distributions of the permeability ratio ( 0/k k ) in time and space are depicted in 

Figure 44. For the no-desorption case, the permeability ratio decreases near the wellbore 

but, gradually increases with time and away from the well to approach unity. When 

desorption is included, the permeability ratio increases moderately, its highest value is at 

the wellbore wall and gradually decreases with distance from the well. The reduction of 

the permeability for the free gas case is associated with a pore pressure reduction that 

increases the effective stresses thus compressing the pore space. On the other hand, gas 

desorption induces tensile stresses that work against the influence of increases 

compressive effective stress associated with pore pressure reduction and thus, cause 

permeability enhancement within the near wellbore region. Close to the wellbore, a 

greater pore pressure drop is generated and so a larger amount of adsorbed gas is 

released which in turn, enhances the tensile stresses and causes a higher increases in 

permeability. The zone with a permeability ratio greater than 1 expands away from the 

wellbore with the elapse of time. It can be seen that if the gas desorption is omitted, the 

permeability and gas flow capabilities will be underestimated within the reservoir, 

especially for the area near the wellbore.   
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Figure 44 Influence of gas desorption on the evolution of gas permeability in the x-
direction (solid curves: with desorption; dashed lines: without desorption). 
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5.1.3 Effective stress variation    

Figure 45 and 46 show the distributions of the total effective radial and tangential 

stresses around the wellbore for with and without desorption cases. It can be seen that 

when including desorption, the compressive effective radial stresses around the wellbore 

are relatively lower than when desorption is excluded, irrespective of the spatial and 

temporal extent. However, the total effective tangential stresses in the no-desorption case 

is compressive and increases with time at every point. Its highest value is on the 

wellbore wall and is associated with the pore pressure drawdown. On the other hand, the 

total effective tangential stress for the desorption case is tensile near the wall (r/a=1), 

becoming more tensile with time. But, away from the wellbore wall, it increases and 

becomes compressive with time. Further, it can be seen that with desorption, the total 

effective tangential stresses are relatively lower in the near the wellbore region. In this 

tensile area, small fractures might open. However, But the effective tangential stresses in 

the with-desorption case are slightly higher than those in the without-desorption case in 

the far field at the same time, which implies that the fractures tends to close more easily 

and earlier with desorption gas within reservoir. All these differences can be related to 

the impacts of gas desorption mechanism.  
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Figure 45 Influence of gas desorption on the evolution of total effective radial stress 
in the x-direction (compression +; solid curves: with desorption; dashed lines: 
without desorption). 
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Figure 46 Influence of gas desorption on the evolution of total effective tangential 
stress in the x-direction (solid curves: with desorption; dashed lines: without 
desorption); due to gas desorption, total effective tangential stress becomes slightly 
negative at wellbore (r/a=1) in this case study. 
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5.2 Wellbore problem-dual permeability  

In this session, geomechanical evolution of a fractured reservoir during gas production is 

simulated by using the non-linear fully coupled poroelastic DPM-FEM model. 

Geomechanical parameters given in Table 5 and the finite element mesh presented in 

Figure 11 and 31 are also used for the analysis. The reservoir is assumed to be subjected 

to the following in-situ stress conditions: H =43.34 MPa in the x-direction ( 0  ) and 

h =39.01 MPa in the y-direction ( / 2  ). In order to simplify the problem, only 

methane (single phase and single component) production is considered. And six near-

wellbore fractures are considered at current stage. Three of them which are marked as 

Frac1, 3 and 5 in Figure 47, are perpendicular to the minimum in-situ stress direction to 

represent hydraulic fractures. The others three, which are named as Frac2, 4 and 6 in 

Figure 45, are pre-existing natural fractures. 

The gas pressure variations (both spatial and temporal) around the wellbore due to the 

gas depletion are given in Figure 47-49. In these three diagrams, the gas pressure 

decreases with the time across the whole reservoir. However, as expected, the contour of 

gas pressure is highly affected by the presence of fractures whose locations are outlined 

by the solid dark lines in each of these three diagrams. The gas pressure in the region 

around the fractures is depleted more rapidly compared to the rest of the reservoir.  
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Table 5 Input geomechanical parameters used in the wellbore case study 
 

 

 

 

 

 

Poisson’s ratio,   0.25 0.25 
Young’s modulus, E  20.684GPa 63.0 10 psi 
Shear modulus, G  8.274GPa 61.2 10 psi 
Initial porosity,   0.04 0.04 
Biot’s coefficient,   0.6354 0.6354 
Initial permeability, k  191.0 10  m2 0.1 D  
Bulk modulus, K  13.790GPa 62.0 10 psi 
Solid bulk modulus, sK  37.820GPa 65.5 10 psi 

Initial reservoir pressure, 0p  8.274MPa 1200psi 
Bottom hole pressure, wfp  5.516MPa 800psi 
Average system temperature, T  090 C  0194 F  
Density of gas shale, r  32.4 10 kg/m3 150lb/ft3 
Min in-situ stress, h  39.011MPa 5658psi 
Max in-situ stress, H  43.340MPa 6286psi 
Langmuir pressure constant, LP  1.517MPa 220psi 
Langmuir volume constant, LV  0.0172 m3/kg 0.275ft3/lb 
Langmuir volumetric strain constant, L  0.02295 0.02295 
Aperture without any normal stress, 0a  0.0001m 33.94 10 in 
Empirical constant, A  1.0 1.0 
90% closure stress, B  50MPa 7252psi 
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Figure 47 Distribution of gas pressure after 1 day depletion. 
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Figure 48 Distribution of gas pressure after 3 days depletion. 
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Figure 49 Distribution of gas pressure after 10 days depletion. 
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Then, two different simulation cases are studied to quantify the influence of desorption-

induced matrix deformation: (i) only free gas is drained; (ii) free plus desorption gas is 

produced. The results in terms of time evolution of fracture aperture for both cases are 

discussed below. 

As shown in Figure 50, the time evolutions of fracture aperture along the dimensionless 

fracture length are plotted for Frac1 for both cases. The fracture aperture is not uniform 

along its length in either case. In the 1st case, the fracture aperture slightly increases with 

time, especially in the near-wellbore region. For some time, the fracture aperture is a bit 

lower near its end that is close to the wellbore. In the 2nd case, the fracture behavior has 

a similar trend. However, the fracture aperture variation for the same time span is more 

significant when compared with that in the 1st case. The fracture will open a bit in this 

case, especially for the near the wellbore region which is compatible with the effective 

tangential stress (Huang and Ghassemi, 2011). These anomalies can be attributed to the 

impacts of gas desorption mechanism. Close to the wellbore, a greater pore pressure 

reduction is generated and hence a larger amount of adsorbed gas is released which in 

turn, decreases the effective tangential stresses and enhances the desorption-induced 

matrix deformation. With relatively lower effective tangential stresses, fractures tend to 

open a bit in the vicinity of the wellbore upon gas desorption. 
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Figure 50 Time evolution of dimensionless aperture of Frac1. 
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However, the behavior of Frac2 and Frac3 are quite different from that of Frac1, 

particularly in the 2nd case. In the 1st case, the aperture changes minimally for both Frac2 

and Frac3 as depicted in Figure 51 and 52. In the 2nd case, Frac2 closes at both ends and 

opens near its center for some time. The whole fracture opens first and then closes with 

time. Frac3 opens continuously as time elapses. The aperture of Frac2 is lower than that 

of Frac3 as its orientation is normal to the maximum in-situ stress. During gas 

production, the expected closure of the fractures is associated with a pore pressure 

reduction that increases the compressive effective stress. However, gas desorption 

induces tensile stress that works against the influence of pore pressure reduction and 

causes the fracture open. 

In general, fractures that are parallel to the maximum in-situ stress direction will open 

during gas depletion due to the release of adsorption gas. Fractures that are 

perpendicular to the maximum in-situ stress tend to close down earlier than those 

parallel to the maximum in-situ stress with or without gas desorption.  
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Figure 51 Time evolution of dimensionless aperture of Frac2. 
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Figure 52 Time evolution of dimensionless aperture of Frac3. 
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5.3 Field case study  

In this session, the non-linear fully coupled poroelastic DPM-FEM model is further 

applied to a field case to investigate the geomechanical evolution of a fractured reservoir 

in field scale. In this case study, the reservoir size is 200m 200m 60m  . Figure 53 

shows the whole reservoir domain and its finite element mesh. In total, 10000 eight-node 

rectangular elements are employed and their size is uniform across the whole domain. 

As decipted in Figure 53, a horizontal well is placed in the center of the reservoir and is 

set to parallel to the x-axis. No displacement and no flow conditions are applied to the 

outer boundary of the reservoir domain. The reservoir is assumed to be subjected to the 

following in-situ stress conditions: H =43.34 MPa in the y-direction and h =39.01 

MPa in the x-direction. Primary geomechanical parameters used in this study are 

summarized in Table 5.  

In order to highlight the matrix deformation induced by gas desorption, the initial 

reservoir pressure is set to be 8.27 MPa (1200psi) and the bottom hole pressure (BHP) of 

the horizontal well is 5.52 MPa (800psi), which is kept contant and lower than the 

reservoir pressure in production period. And the temperature and chemical perturbations 

are minimized during the numerical simulation. And also, only methane (single phase 

and single component) production is considered and the reservoir deformation is 

calculated under plane strain condition in the 2D cases.  
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Figure 53 Finite element mesh for field case study 
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Table 6 Input parameters for field case study 

 

 

 

 

Poisson’s ratio,   0.25 0.25 

Young’s modulus, E  20.684GPa 63.0 10 psi 

Shear modulus, G  8.274GPa 61.2 10 psi 
Initial porosity,   0.04 0.04 

Biot’s coefficient,   0.6354 0.6354 
Intrinsic permeability, k

 181.0 10  m2 1.0 D  

Bulk modulus, K  13.790GPa 62.0 10 psi 
Solid bulk modulus, sK  37.820GPa 65.5 10 psi 
Initial reservoir pressure, 0p  8.274MPa 1200psi 
Bottom hole pressure, wfp  5.516MPa 800psi 

Average system temperature, T  090 C  0194 F  
Density of gas shale, r  32.4 10 kg/m3 150lb/ft3 

Min in-situ stress, h  39.011MPa 5658psi 
Max in-situ stress, H  43.340MPa 6286psi 
Langmuir pressure constant, LP  3.447MPa 500psi 
Langmuir volumetric strain constant, L  0.0023 0.0023 

Shear dilation angle, dil  30 30 
Friction angle, 

f  310 310 
Shear stiffness of fracture, shK  1.0GPa 51.45 10 psi 
Stress-free aperture, ma  0.001m 23.937 10 in 
90% closure stress, '

ref  40MPa 5802psi 
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5.3.1 Effect of desorption 

The influences of gas desorption on reservoir deformation and hence the gas production 

is first investigated. In order to simplify the problem, a simple geometry is considered in 

this case. Only one large transverse hydraulic fracture, whose length is 100m (328ft), 

intersects the horizontal well as shown in Figure 54. As stated in Chapter 3, the fracture 

aperture and permeability are all pressure dependent and governed by Eq. (3.45) and 

Eq.(3.15) respectively. Therefore, the fracture condnctivity is not a constant in these 

numerical tests.  

 

Figure 54 Schematic diagram of a horizontal gas well (red curve) with one 
transverse fracture (blue line) 
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As for the matrix permeability, the Beskok-Karniadakis microflow model is used in our 

simulator. Different adsorption isotherms for a typical Barnett Shale sample can be 

obtained from Montgomery et al. (2005). The gas content for adsorbed gas inceases with 

the Langmuir volume constant 
LV

 
for a fixed reservoir pressure as illustrated in Figure 

55. These three representative values for Langmuir volume constant are used in the 

parametric tests to demonstrate the influence of the gas desorption on production. 

 

Figure 55 Three typical adsorption isotherms for Barnett shale: 60LV  scf/ton (red 
curve), 90LV  scf/ton (green curve), 120LV  scf/ton (blue curve), respectively 
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Figure 56 Effect of adsorption on gas flow rate 
 

In Figure 56, the four different runs correspond to the three dinstinct gas desorption 

isotherms given in figure 55 and none desorption gas case ( 0LV  scf/ton). With varying 

desorptive contribution, the gas flow rate changes apparently. It indicates that the gas 

flow rate accelerates with increasing the sorptive storage of gas (value of LV ). However, 

the gas flow rate declines steeply in the early time, around 1 month, in all the four runs. 

The gas desorptive contribution can only slightly retard but barely prevent the decline. 
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Figure 57 Effect of adsorption on cumulative gas production 
 

In Figure 57, the cumulative gas production curves for the four runs in Figure 55 are 

presented for comparison. We observed that contribution of desorptive gas on 

production becomes more significant with greater sorptive storage. After 100 days 

depletion, nearly 30% difference on the production yields between the cases of 120LV 

scf/ton and 0LV  scf/ton. 
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Figure 58 Effect of adsorption on fracture aperture after 25days production 
 

The fracture mechanical responses to the four runs are illustrated In Figure 58. Due to 

the symmetry of the fracture geometry, only one wing of the fracture is plotted in Figure 

58. The dimensionless length / 0x L  denotes the place of the horizontal well and 

/ 1.0x L   is one end of the fracture. For all the four runs, the fracture aperture is not 

uniform along its length and is lower in the vincinity of the wellbore ( / 0x L  ) due to 

the greater pore pressure reduction and hence the effective stresses increase. However, 
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the desorption gas can overcome the increase of effective stresses and force the fracture 

to relatively “open” by comparing to the case without desorption gas ( 0LV  scf/ton). 

Figure 58 shows greater fracture aperture corresponds to higher sorptive storage (
LV ).  

 

5.3.2 Effect of fracture geometry 

As single bi-wing shape fracture geometry is not sufficient to represent the complex 

fracture network, some fracture complexity need to be considered in the numerical 

simulator to predict gas production and assess fracture design in gas shale reservoirs. In 

this session, the influence of the fracture geometry on the gas production is addressed. 

Three selected fracture geometry models are shown in Figure 57: in the left one, one big 

hydraulic fracture (210 m in length) intersects two natural fractures (120m in length); in 

the middle one, both wings of the hydraulic fracture are offseted by the natural fractures; 

in the right one, the hydraulic fracture intersects more natural fractures to creat an 

irregular fracture network. In all these three runs, the same sorptive storage ( 90LV 

scf/ton) is used to diminish the gas desorption influence. And the total surface area of the 

hydraulic fractures and the natural fractures are maintained as constants. The results for 

the three runs are given in Figure 60-64.  

The time evolutions of pore pressure distribution for the three models are given in Figure 

60-62. Severe pressure depletion is observed in the near fracture region and the depletion 

area expands from the fracture-face with time in all three runs. Due to different fracture 

geometry (intersection between natural fractures and hydraulic fractures), the shape of 
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the depletion area varies from case to case, which might impact the production behavior 

of the reservoir. 

Figure 63 presents three curves of gas flow rate, which correspond to the three different 

geometry models. Apparently, model 1 gives the highest flow rate among the three, and 

model 3 demonstrates the lowest one. As fracture segments are placed close to their 

adjacent ones, when they drain the same area, they will compete with each other to 

influence the production. And during gas depletion, the effective stress normal to the 

fracture face of a fracture segment is elevated by the pore pressure drop in the matrix 

rock and hence forces the fracture segment to close. The perturbation of the effective 

stress is maximum at the fracture face and declines away from the fracture. If the two 

fracture segments are set close to each other, the stress perturbation can radiate from one 

to the other and further reduce the fracture aperture and hence its conductivity. As in 

model 1, the fractures are set far away from each other to minimize the stress influence 

between the neighbor ones. As the fracture network becomes more complicated (model 

3), more fracture segments are placed close to their adjacent ones and the stress 

interactions between them get increased, which can lower the fracture apertures when 

compared to model 1. However, the rapid drop of the flow rate still exists in the early 

time for the three runs. This steep decline is slightly decelerated in model 1.  

In Figure 64, three curves of cumulative gas production for the three models are 

depicted. It can be seen that model 1 produces most gas during the entire production 

period when compared with the other two and model 3 presents the least production 

among the three, which is related to the stress influence between the adjacent fractures. 
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As the distance between the adjacent fractures gets smaller, when they drain the same 

area, the fluid production of adjacent fractures will repel each other and the stress 

influence between the two will become more significant and hence affect the fracture 

behavior and fluid flow through them. 

 

Figure 59 Three different frature geometry models for simulation; Total length of 
the hydraulic fracture is 210m  and the total length of the nature fractures is 120m. 
The initial aperture of each segments is determined by the initial stress acting on it 
at the beginig of simulation. 
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Figure 60 Pore pressure distribution at 25 days 
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Figure 61 Pore pressure distribution at 100 days 
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Figure 62 Pore pressure distribution at 400 days 
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Figure 63 Effect of fracture geometry on gas flow rate 
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Figure 64 Effect of fracture geometry on cumulative gas production 
 

 

 

 

 

 

 



 

191 

 

5.3.3 Effect of viscoelastic deformation 

In Chapter 4, a coupled poroviscoelastic model was proposed based on the Maxwell 

model. The model is applied to a field case in this Section to investigate the viscoelastic 

effect in the gas depletion process (using point source to represent the well). Two 

different runs are carried to quantify the influence of viscoelastic deformation of 

reservoir rock: (i) using a fully coupled poroelastic model given in Chapter 3; (ii) using a 

fully coupled poroviscoelastic model developed in Chapter 4. In order to minimize other 

effects, the moajor geomechanical parameters used in these two runs are kept the same 

and lised in Table 5. And the sorptive storage ( LV ) is set to 0 scf/ton and only one large 

hydraulic fracture (200m in length) presents in the reservoir for both runs. No flow 

condition and constant stress are applied to all the outer boundaries. 

The initial shear viscosity of the formation is 9
0 1.0 10 pa ss    (extracted from 

experimental data (Li and Ghassemi, 2012)). A typical value of the power law exponent 

of the damage model is given as 3n  (Simakin and Ghassemi, 2005). The 

dimensionless value of the kinetic healing parameter A  is 1 and  the ratio of /B A  is 

kept as a constant, e.g. 8, during the process (Simakin and Ghassemi, 2005).  

Figure 65 demonstrates the time evolution of the fracture aperture in two runs. Only one 

wing of the fracture is plotted due to the symmetry of the fracture geometry. The 

dimensionless length / 0.5x L  correseponds to the location of the horizontal well and 

/ 0x L  denotes one end of the fracture. For the poroelastic model, the fracture aperture 

decreases with time due to pore pressure reduction and hence effective stress increase in 
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matrix. However, for the poroviscoelastic model, the fracture closes more rapidly 

compared to the poroelastic case. This anomaly can be attributed to the creep 

phenomenon of the reservoir rock, during which the increasing of the volumetric strain 

of the matrix can further increase the effective stress acting on the fracture surface and 

push the fracture to close. Based on the cubic law, this reduction of the fracture aperture 

can decrease the permeability of the fracture and consequently lessen the final 

production, which is illustrated in Figure 67 and 68. 

Figure 66 shows the pore pressure distribution during production for the two runs. It is 

obvious that the differences between the results of the two runs are small. In the fluid 

transport equation (Eq.(4.46)), the first term ( ( )u  ), which denotes the solid 

deformation, is negligible when comparing with the fluid diffusion process caused by the 

high pressure perturbation around the fracture, especially for a geological time scale. It 

indicates that for the rheology used, the change of solid deformation rate between the 

elastic and viscoelastic regime is so minute that the viscous deformation of reservoir 

rock can only slightly impact the fluid diffusion process during a long term production.  
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Figure 65 Comparison of poroviscoelastic model results (solid curve) with the 
poroelastic model results (dashed curves) for the time evolution of fracture 
aperture (one wing). Effective normal stresss acting on the fracture causes closure. 
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a. poroelastic model, 25days.                      

 

b. poroviscoelastic model, 25days. 
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c. poroelastic model, 100days.                       

 

d. poroviscoelastic model, 100days. 
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e. poroelastic model, 400days.                       

 

f. poroviscoelastic model, 400days. 

Figure 66 Pore pressure distribution during gas production. 
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In Figure 68, we observe the similar trends of the gas flow rate for both poroelastic and 

poroviscoelastic cases. In the early stage of the production (<100Days), the two curves 

almost overlap each other; however, the divergence between the two cases rises with 

time for a long term production. According to this divergence, the difference in the 

cumulative production between the two cases grows with time, as decipted in Figure 69. 

Even the viscous deformation of reservoir rock can hardly affect the fluid diffusion 

process it can project significant impact on the fracture deformation and force the 

fracture to “heal” due to creep behavoir. In the poroviscoelastic case, the increase of the 

effective stress acting on the fracture walls is caused by two processes: (1) pore pressure 

reduction in matrix due to gas depletion; (2) continuous increase of the compressive 

strain with time in the matrix during creep. Therefore, the gas flow rate and cumulative 

production can be stalled by the viscous deformation of the reservoir rock. 
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Figure 67 Effect of viscous deformation on gas flow rate 
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Figure 68 Effect of viscous deformation on cumulative gas production (6% 
difference at large times) 
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CHAPTER VI  

DISCUSSION AND CONCLUSION 

The mechanical response of fractutured gas shale reservoirs to gas depletion and 

compressible fluid flow can interact with each other and hence significantly impact the 

gas production. There exist coupled fluid-machnical interactions in the fractured gas 

shale reservoir: (i) matrix solid deformation caused by pore fluid reduction; (ii) gas 

desorption induced matrix deformation; (iii) fluid volume and pressure change in 

response to matrix solid deformation; (iv) fracture deformation, either normal and shear-

dilation, induced by stress evolution within the reservoir; (v) pore fluid variation due to 

permeability change, either in matrix and fracture; (vi) fluid response to viscous 

deformation of reservoir rock. To take all these processes into consideration, a coupled 

numerical model was constructed step by step in this work. 

In Chapter 2, a coupled poroelastic constitutive relation is developed to investigate the 

geomechanical reservoir response to gas production process. The gas transport equation 

for single phase flow was developed by considering the mass conservation of gas 

content, including both free and absorbed phase gas within shale matrix, and a real gas 

law. The amount of adsorbed gas was modelled through Langmuir isotherms. The rock 

constitutive equation and gas transport equation were coupled through the general 

porosity model and matrix permeability was modeled by Beskok-Karniadakis microflow 

model during production. All the field equations were solved by Galerkin’s Finite 

Element Method (GFEM) and verified with the appropriate analytical solution.  
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Then, this single permeability was further developed by incorporating the dual 

continuum concept to simulate fracture network in heterogeneous reservoirs such as gas 

shale and coal-bed methane in Chapter 3. In the dual permeability model (DPM), 

elements without fracture were treated as conventional single permeability grids whereas 

the dual permeability treatment was applied for the elements with fractures. Both matrix 

and fracture subdomains were assumed to be permeable to allow fluid to pass through 

both. Within the framework of this DPM-FEM model, each element, either with or 

without fractures, featured its own permeability tensor as well as other geomechanical 

properties. The fractures, especially large scale hydraulic fractures, were discretely 

depicted by small segments and their geometry and mechanical behavior were handled 

on element-by element basis. The Barton-Bandis model was used to describe the local 

mechanical deformation of fractures, either induced by normal stress or shear 

displacement. The implementation of DPM to the non-linear fully coupled poroelastic 

FEM model was verified with single permeability model.  

In Chapter 4, a fully coupled poroviscoelastic model was constructed to study the the 

interactions between solid viscous deformation and fluid flow during gas production. 

The Maxwell model was employed herein to develop the constitutive relations and the 

viscoelastic effect was considered in both deviatoric and symmetric effective stresses. A 

reservoir simulator was constructed by incorporating this poroviscoelastic model into the 

DPM-FEM model developed in Chapter 3 to investigate viscoelastic effect in fracture 

deformation and hence the final gas production for a long period. This newly constructed 
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mechanical model was verified with analytical solution and compared to the poroelastic 

results in consolidation problems.  

Finally, several different case studies, from wellbore to field scale, were conducted by 

applying the comprehensive geomechanical reservoir simulator in Chapter 5. Based on 

these numerical analyses, the main conclusions are summarized as:  

(i) Gas in the near-fracture region (including both natural and induced fractures) 

is produced through the fracture at a tremendous rate at early time. And then, 

gas, which moves from the matrix to the fracture at a very low rate, becomes 

dominated in production. This is the cause of the rate decline behavior of the 

gas shale reservoirs. Due to the ultra-low permeability of shale matrix, steep 

pressure gradient is formed in the near fracture region and migrates away 

from the fracture-face with time, which is the driving force for gas depletion. 

(ii) Simulation results show that the fluid flow and reservoir mechanical behavior 

are strongly influenced by desorption gas during production. The growth of 

the gas flow rate can be observed along with the increase of desorptive 

contribution. However, the gas desorptive contribution can slow down but 

cannot prevent the decline of gas flow rate. 

(iii) The intersection or interaction between hydraulic fratures and natural 

fractures can change the effective fracture surface area during the production. 

And some small change of the fracture geoemtry might significantly 

influence the reservoir mechanical behavior and impact the final production.  
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(iv) Vviscous deformation is a slow but chronic effect. It can only slightly affect 

the fluid diffusion process. However, the mechanical response of the fracture 

is very sensitive to the creep behavior of the reservoir rock. Therefore, it can 

still provide significant impact on the gas production in a long term sense.  

Gas desorption, fracture deformation and reservoir viscous deformation are all important 

processes and should be taken into consideration in accurately assessing hydraulic 

fracture design and predicting the production of gas shale reservoirs. 

6.1 Recommendations for Future Work 

In this project, both the poroelastic and poroviscoelastic constitutive relationships and 

compressible fluid mechanics and fracture mechanics are successfully incorporated into 

the finite element models to investigate the reservoir geomechnics of gas shale. 

However, during the constructing and utilizing the numerical models, there still exist 

some additional improvements for future work. 

An issue is that the poroviscoelatic behavior is the temperature component. The solid 

viscosity is highly dependent on the reservoir temperature and can dramatical reduce 

with elevated temperature and the presence of fluid. In the current version of the 

program, we just conduct all the analyses under the isothermal conditions and uniform 

solid viscosity is adopted in each run by excluding the temperature influences, which 

might not be correct in the in-situ conditions, especially for the HPHT (high pressure 

high temperature) reservoirs.  
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In this work, a very simple viscoelastic model (Maxwell model) is used to construct the 

linear poroviscoelastic model. However, the Maxwell is only a two-element model and 

is not an ideal candidate to simulate strain creep during loading process. Normally, 

increasing the number of mechanical elements in a model can highly improve its quality 

in predicting the mechanical response of viscoelastic materials. In the future, Burgers 

model or some other comprehensive models can be incorporated into the numerical 

model to accurately address the strain creep of the viscoelastic materials. However, more 

mechanical properties are demanded in more complicated model, whose measurement 

might be difficult or infeasible through experiments.
 
 

Throughout the work, all the mechanical models to simulate fracture deformation, 

including both normal deformation and shear dilation, are derived for elastic medium in 

the literature. However, these available elastic models are adopted and directly applied 

to the poroelastic and poroviscoelastic models in this project. In the poroviscoelstic 

models, these fracture deformation models need to be further developed and verified 

with experimental data by incorporating the viscous component in Young’s modulus and 

shear modulus, which are not constant under viscous deformation.    

Besides all above, this model was conceptually developed for single phase flow and 

applied to two dimensional plane strain cases. In the future, three dimensional models 

can be developed to simulate the multi-phase flow in gas shale and other unconventional 

reservoirs.   
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In the poroelastic models, the pressure perturbation (difference between the bottomhole 

pressure and reservoir pressure) cannot be too high, as exceeds 40MPa. Even when we 

try to use the ideal gas law, this limitation still exsits. It might be related to the gas 

compressibity and the stability of the finite element algorithm and need to be further 

investigate. 

In the poroviscoelatic cases, the viscosity of the rock formation can not be too low, as 

lower than 91.0 10 pa s  for both the wellbore and field cases. If the viscosity of the 

sample is beyond the lower limit, the resultant internal force will be too significant to get 

the iterations converged. Using very small time step might solve the problem in the 

wellbore cases; however, it is not applicable to the field cases, which need to conduct the 

prediction in several years.  
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APPENDIX I 

ANALYTICAL SOLUTION OF MODE II LOADING OF A WELLBORE 

Wellbore Problem Definition: 

A vertical borehole is drilled in a porous rock layer subjected to a non-hydrostatic 

horizontal in situ stress field: 

0 0( )xx P S                                                                                                                (I-1) 

0 0( )yy P S                                                                                                                (I-2) 

0xy                                                                                                                            (I-3) 

0p p                                                                                                                            (I-4) 

where 0P  is the far-field mean stress and 0S  is stress deviator and 0p  is the pore 

pressure.  

Two assumptions need to be addressed in order to analyze this problem: 

(1) under plane strain condition; 

(2) instantaneous drilling process is simulated by removing at 0t   the stresses and 

pore pressure which were acting on the borehole boundary initially. 

Boundary conditions at the borehole wall under mode II loading are given as below: 

0rr                     0r              0p p                                                                   (I-5) 

Both the induced stress and pore pressure will vanish at infinity. 
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Diffusion Equation: 

Under the condition of planar deformation and axisymmetry, the displacement field is 

obviously irrotational and characterized by the only non-zero component, ( , )ru r t . Then 

the pore pressure diffusion equation takes the following form: 

2

2

1 (1 )( ) ( 2 )rr

p p p d
c p

t r r r GS dt


 
  

   
     

  
                                                    (I-6) 

Because of the vanishing stress condition at infinity, in this case, the pore pressure is 

governed by a homogeneous diffusion equation: 

2

2

1 1p p p

r r r c t

  
 

  
                                                                                                        (I-7) 

 

Analytical Solution: 

Laplace transform ( )htf e f t dt





  (h is the transform parameter)  

with '( )hthf e f t dt





   

Apply the Laplace transformation to diffusion equation (I-7) 

2

2

1 0p p h
p

r r r c

 
  

 
                                                                                                  (I-8) 

Diffusion Eq.(I-8) can be regarded as a modified Bessel’s differential equation 

And its general solution is 1 0 ( )h
p D K r

c
                                                                (I-9) 

where K0 is the modified Bessel function of second kind of order 0; D1 is a constant. 
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Now, we just restrict our attention to the special case in which the displacement field is 

irratational without any body force. Then it can be derived from a scalar potential   as 

,i iu                                                                                                                           (I-10) 

according to the Helmholtz decomposition of a vector field. 

Then, the Navier type equation:  2
, ,1 2i k ki i i

G
G u u p F


   


                                (I-11) 

can be reduced to:       , ,ikk ip
G


                                                                              (I-12) 

It can be integrated to yield 

, ( )i iu p g t
G


                                                                                                        (I-13) 

where ( )g t  is generally an unknown function of time only and it should be identically 

zero for the irrotational displacement in infinite or semi-infinite domain (Detournay and 

Cheng, 1993). 

For this problem: p
G


    (I-14) (because of the vanishing stress condition at infinity) 

Applying the Laplace transformation to Eq. (I-14) and substituting p  with Eq.(I-9), one 

can get  1 0 ( )h
p D K r

G G c

 
                                                                                 (I-15) 

Apply the Laplace transformation to equation 1 ( )rru
r r







                                   (I-16) 

1 0
1 ( ) ( )r

h
ru D K r

r r G c





  


                                                                              (I-17) 

As 1 1 0[ ( )] ( ) [ ( )] ( )n n

n n

d d
x K x x K x xK x xK x

dx dx
                                                (I-18) 
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1 0

1 0

1 1

( ) ( )

( ) ( )( ) ( )

( ) [( ) ( )]

r

r

r

h
d ru D K r rdr

G c

c h h h
d ru D K r r d r

G h c c c

c h h
d ru D d r K r

G h c c









 

  

                                                              (I-19) 

Integrating on both sides of Eq.(I-19), it yields 

1 1 2( ) ( )r

c h h
ru D r K r D

G h c c


    

2
1 1( )r

Dc h
u D K r

G h c r


                                                                                   (I-20) 

Checking Boundary conditions: 0rr r    and 0p p  at r=a 

0 0
0 1 0

0
1

0

( ) ( )

( )

p ph
p p p a D K a

h c h

p
D

h
hK a

c

       

  
                                                         (I-21) 

If Let h
a

c
  , the expression for 1D  can be rewritten as 

0
1

0 ( )
p

D
hK 

                                                                                                             (I-22) 

Then, we could get the solution of pore pressure in Laplace domain: 

 
0

0 0

( )

( )

h
K r

hp c

p K 
                                                                                                         (I-23) 

For Hooke’s law   22
1 2rr rr

G
G p


   


  


                                                         (I-24) 
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Apply Laplace transformation 

22
1 2

r
rr

u G
G p

r


  




  

 
                                                                                     (I-25) 

By replacing ru and   with Eq.(I-20) and (I-17) respectively, Eq.(I-25) is given as 

1
02

1 1 02

( ) 22 [ ] [ ( )] ( )
1 2rr

h
dK r

pDc G hc
G D D K r

G h dr r G c h

  
 


     


 

Due to 0rr   at r=a , with 1'( ) ( ) ( )n n n

n
K x K x K x

x
    

01 2
1 0 1 02

01
1 0 2 1 02

01
2 1 0 02

0 01
2 02

0

( ) 20 2 [ ( ( ) ) ] [ ( )] ( )
1 2

( ) 2 20 2 [ ( ) ] ( )
1 2

( )2 2 [ ( ) ( )]
1 2

( )2 12 ( )[ ( )]
( ) 1 2

2

pK D G
G D K D K

G a G h

pK G
D K D D K

a h

pKG
D D K K

a h

p pKG
D K

a hK h

  
  

 

 
   

 

 
   

 

 
  

  

        


       


    



    



 0 01
22

0

( ) 12 [ ]
( ) 1 2

p pKG
D

a h K h

 
 

  


   



 

Constant 2D  is solved: 
2

0 1
2

0

( )2
2 ( )

p Ka
D

G h K




 
                                                (I-26) 

From Eq. (I-20), it is obtained: 
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2
1 1

2
0 0 1

1
0 0

20 1
0 1

0 0

1
1

0 0
0

( )

( )1( ) ( ) ( 2 )
( ) 2 ( )

( ) ( )
( ) ( )

( )2 ( )2 [ ]
( )

( )

r

r

r

r

Dc h
u D K r

G h c r

p p Kc h a
u K r

G hK h c r G h K

c h
p K r

p Kah c
u

G h K G h r K

h
K r

Ghu Kc

p a K h
r K

c






  

 

  




 


   

     

  

  

                                 (I-27) 

From eq. (I-25), it is obtained: 

1
2

1 1 0 1 02

1
2

1 0 1 0 1 02

1

1 0

22
1 2

( ) 22 [ ] [ ( )] [ ( )]
1 2

( ) 22 { [ ( ) ] } [ ( )] [ ( )]
1 2

( )
2 [ ( )

1

r
rr

rr

rr

rr

u G
G p

r

h
dK r

Dc G h hc
G D D K r D K r

G h dr r G c c

h
K r

Dh G h hc
G D K r D K r D K r

G c r G c ch
r

c

h
K r

h c
D K r

c h
r

c


  



  
 



  
 




 


  

 

     


       


    0 0 22

2( ) ( )]
2 2

h h G
K r K r D

c c r



 
 



1
0

22
0

( ) 22 ( )
( )rr

h
K r

p Gc
D

hK rh
r

c

 


     

21
0 0 1

2
0 0

( ) ( )22 ( ) ( 2 )
( ) 2 ( )rr

h
K r

p p KG ac

hK r G h Kh
r

c


  

  
      
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21
1

2
0 0

0

( ) ( )2 [ ]
( )

( )

rr

h
K r

h Kac

p r Kh
r K

c

 


 


                                                                      (I-28) 

For planestrain 

22 ( ) 0
1 2kk

G
p g t 


  


                                                                                         (I-29) 

( )g t is generally an unknown function of time only and it should be identically zero for 

the irrotational displacement in infinite or semi-infinite domain (Detournay and Cheng, 

1993). 

After applying Laplace transformation to Eq. (I-29), finally one can get the solution of 

tangential stress in Laplace domain: 

20 1
0 0 1

2
0 0

0

2
2

( ) ( ) ( )2 2 [ ]
( ) ( )

( )

rr

rr

p

p

h h
K r K r

p p Kac c

h K h r Kh
r K

c







  

  


  

  


  

   

   

20 1
1

2
0 0 0

0

( ) ( ) ( )2 [ ]
( ) ( )

( )

h h
K r K r

h Kac c

p K r Kh
r K

c

 


  


                                                   (I-30) 
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APPENDIX II 

ANALYTICAL SOLUTION OF 1D CONSOLITION 

Terzaghi’s one-dimensional consolidation(Mechanical) 

Assumptions: 

1).A soil layer of thickness L, resting on a rigid impermeability base  

2).A constant load is applied to the surface of the layer under drained conditions; 

3).Boundary conditions: p=0 at x=0 and p / x 0   at x=L 

Initial pore pressure field p(x,0), induced by loading of the layer, is given by 

0p( ,x) ηp / GS                                                                                                         (II-1) 

Under uniaxial strain condition: xx
η

p σ
GS

                                                               (II-2) 

xx  is the only non-zero strain in this situation; 

Diffusion equation is given as: 
2

2

xxp p η dσ
C

t x GS dt

 
  

 
                                            (II-3) 

Since the stress ( xx ) is a constant, a homogeneous diffusion equation is given: 

                                               
2

2 0p p
C

t x

 
 

 
                                                             (II-4) 

Let , ( ) ( )p(x t) x g t  

Then Eq.(II-4) is transformed to: ( ) '( ) ''( ) ( ) 0x g t C x g t                                       (II-5) 

Separate variables: '( ) ''( )
( ) ( )

g t x
C

g t x




  

By assuming 2''( )
( )

x

x





 , Eq. (II-5) can be rewritten as: 
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2''( ) ( ) 0x x                                                                                                           (II-6) 

1 2( ) x xx C e C e             (II-7)   is the general solution for Eq.(II-6) 

where C1 and C2 are constants; 

By applying boundary conditions 

1 2 2 10, (0) ( ) 0 (0) 0 (0) 0p( t) g t C C C C                                       (II-7) 

1

2

' , '( ) ( ) 0 '( ) 0
'( ) ( ) 0

1

L L

L

p (L t) L g t L

L C e e

e

 



 

  

   

   

  

 

If let i   ( is real)                                                                                               (II-8) 

2 cos(2 ) sin(2 ) 1
2 (2 1)

(2 1)
2

i Le L i L

L n

n

L

  

 




   

  


 

                                                                             (II-9) 

By taking Eq.(II-7)-(II-9) into Eq.(II-7), it yields 

1 1 1 1
2 1( ) 2 sin( ) 2 sin( )

2
i x i x n

x C e C e iC x iC x
L

    
                                          (II-10) 

If  let 2 1( ) sin( )
2n

n
x x

L
 


                                                                                      (II-11) 

Then the following two equations can be obtained 

2 2
2

2

(2 1)
4n

n

L





                                                                                                      (II-12) 

, ( ) ( )n n np (x t) x g t                                                                                                    (II-13) 
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By substituting Eq.(II-12) and (II-13) into Eq.(II-6), the general solution of ,np (x t)  can 

be derived: 

2 2
2

2

2 2

2

2 2(2 1)
24

2 2(2 1)
24

'( ) ''( ) (2 1)
( ) ( ) 4

(2 1)'( ) ( )
4

( ) *

2 1( , ) sin( )*
2

n n

n n

n n

n t
C

L
n

n t
C

L
n

g t x n
C C C

g t x L

n
g t C g t

L

g t B e

n
p x t x e

L





 















   


  

 


 

                                                                (II-14) 

So the general product solutions to Eq.(II-4) is given as: 

2 2(2 1)
24

0

2 1( , ) sin( )*
2

n t
C

L
n

n

n
p x t A x e

L






 




                                                                  (II-15) 

As ,0p(x ) ηp / GS                                                                                                 (II-16) 

0

0 0

0

2 1( ,0) sin( )
2

2 2 1 2 2 1sin( )* sin( )
2 2

2 2 2 1 4[ cos( ) ]
(2 1) 2 (2 1)

n

n

L L

n

L

n

n ηp
p x A x

L GS

n ηp ηp n
A x dx x dx

L L GS GS L L

ηp L n ηp
A x

GS L n L GS n



 


 





 

 


  

 
  


   

 



                                (II-17) 

Then, the solution for the homogeneous diffusion equation (Eq.(II-4)) is  

2 2(2 1)
24

0

4 2 1( , ) sin( )*
(2 1) 2

n t
C

L

n

ηp n
p x t x e

GS n L






  







                                               (II-18) 

Calculating displacement field 

Let the displacement   u

x x xu u u                                                                         (II-19) 
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where xu is the time-dependent incremental component; u

xu  is the initial undrained 

elastic displacement; 

Under uniaxial strain condition 2 (1 )
1 2

u
xx xx

u

G
M


   




 


                                    (II-20) 

For Mode I loading: 0   under undrained condition, with 0xu   at x=L 

2 (1 ) 2 (1 )
1 2 1 2

(1 2 ) (1 2 ) ( )
2 (1 ) 2 (1 )

u

u u x
xx

u u

L
u u u
x

x
u u

G G u
p

x

p p
u dx L x

G G

 


 

 

 



 

  
   

  

 
   

 

                                                          (II-21) 

From navier equation: 
2

2

2 (1 ) 0
1 2

xuG p

x x






 
 

  
, we could get 

2

2

1 2
2 (1 )

xu p

x G x






  


  
                                                                                              (II-22) 

Replacing p in Eq.(II-22) by Eq.(II-18), the following expression is obtained 

2 2(2 1)2
24

2
0

1 2 4 2 1 2 1cos( )*
2 (1 ) (2 1) 2 2

n t
C

x L

n

u ηp n n
x e

x G GS n L L




  
 

  



   


  
                 (II-23) 

Let 
2 2(2 1)
24

n t
C

L
n e








 , above equation could be simplified to: 

2

2
0

( ) 2 2 1cos( )
2 (1 )(1 ) 2

x u
n

nu

u p n
x

x G L L

 
 

 

 



  


  
                                                          (II-24) 

Let defining ( )
2 (1 )(1 )

u

u

p
M

G

 

 

 


 
 (II-25), Eq.(II-24) can be rewritten as 

2

2
0

2 2 1cos( )
2

x
n

n

u n
M x

x L L
 





 



                                                                                 (II-25) 
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Integrating on both sides of Eq.(II-25) by x, it yields 

2

20 0
0

0 0
0

0
0

2 2 1cos( )
2

2 2 2 1[sin( ) ]
(2 1) 2

4 2 1sin( )
(2 1) 2

x x
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n

n

x xx
n

n

x x
x n

n

u n
dx M x dx

x L L

u L n
M x

x L n L

u u n
M x

x x n L

 

 


 
















 




 
 

 

  
  

  

 





                                               (II-26) 

Let 0
x

x

u
Q

x






 (constant), the following equation is derived 

0

4 2 1sin( )
(2 1) 2

x
n

n

u n
M x Q

x n L
 







 
 

 
                                                             (II-27) 

Again, integrating on both sides of Eq.(II-27) by x, one can get 

0

0

2 2
0

4 2 1[ sin( ) ]
(2 1) 2

4 2 2 1[ cos( ) ]
(2 1) (2 1) 2

8 2 1cos( ) ( )
(2 1) 2

L L
x

n
x x

n

L L L

x x x n x

n

x n

n

u n
dx M x Q dx

x n L

L n
u M x Qx

n n L

L n
u M x Q L x

n L

 


 
 

 














 
  

 


    

 


    



 





                       (II-28) 

With boundary condition: t=0, 1 0n xu                                                      (II-29) 

2 2
0

2 2
0

2 2(2 1)
24

2 2
0

8 2 1( ) cos( )
(2 1) 2

8 2 1cos( )(1 )
(2 1) 2

( ) 8 2 1cos( )(1 )
2 (1 )(1 ) (2 1) 2

n

x n

n

n t
C

u L
x

nu

L n
Q L x M x

n L

L n
u M x

n L

p L n
u x e

G n L






 


 


  









  




   




   



 
   

  







             (II-30) 

Thus, the total displacement is found 
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2 2(2 1)
24

2 2
0

(1 2 ) ( ) 8 2 1( ) cos( )(1 )
2 (1 ) 2 (1 )(1 ) (2 1) 2

n t
C

u u L
x

nu u

p p L n
u L x x e

G G n L


  


   

   



  
   

   


(II-31) 

The surface displacement is given as: 

2 2(2 1)
2* 4

2 2
0

(1 2 ) ( ) 8(0, ) (1 )
2 (1 ) 2 (1 )(1 ) (2 1)

n t
C

u u L
x

nu u

p p L
u u t L e

G G n


  

   

   



 
   

   
       (II-32) 

If let 
2 2(2 1)

2 2 2
0

8, ( ) (1 )
4 (2 1)

n

n

Ct
f e

L n

  



 



  


 , the surface settlement is  

* (1 2 ) [1 ( )]
2 (1 ) (1 )(1 2 )

u u

u u

p L
u f

G

  


  

  
 

  
                                                             (II-33) 
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Hydraulic consolidation(Mode II loading) 

Homogeneous diffusion equation: 
2

2 0p p
C

t x

 
 

 
                                                (II-34) 

With boundary conditions: p=p* at x=0 and p / x 0   at x=L,  

                                            Initial pore pressure p(x, 0) =0 

First try to find a steady state solution p(x, t) =V(x) 

Then the diffusion equation (Eq.(II-34)) becomes to  

''( ) 0 ( )CV x V x ax b                                                                                        (II-35) 

Where a and b are both constants. 

After applying boundary conditions, one can get 

*(0, ) (0)
'( , ) '( ) 0

p t V b p

p L t V L a

  

  
                                                                                            (II-36) 

Sbustituing Eq.(II-36) into Eq.(II-35), it yields 

*( )V x p                                                                                                                  (II-37) 

If let ( , ) ( , ) ( )p x t p x t V x                                                                                        (II-38) 

Putting Eq.(37) and (38) into Eq.(34), we can get 

2

2

2 2 2 2

2 2 2 2

2

2

( , ) ( , ) ( ) ( , )

( , ) ( , ) ( ) ( , )

( , ) ( , )

p x t p x t V x p x t
C

t t t x

p x t p x t V x p x t

x x x x

p x t p x t
C

t x

   
  

   

   
  

   

 
 

 

                                                                (II-39) 

Then the boundary condition can be expressed as: 
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* *

* *

(0, ) (0, ) (0) 0
'( , ) '( , ) '( ) 0 0 0
( ,0) ( ,0) ( ) 0

p t p t V p p

p L t p L t V L

p x p x V x p p

    

    

     

                                                                     (II-40) 

According to the B.C. (Eq.(II-40)), the general solution for ( , )p x t  (homogeneous part) 

should be the same as the solution we got in mode I loading:  

2 2(2 1)
24

0

2 1( , ) sin( )*
2

n t
C

L
n

n

n
p x t A x e

L






 




                                                                 (II-41) 

As * *

0

2 1( ,0) sin( )
2n

n

n
p x p A x p

L







      

* *

0 0

*
*

0

2 2 1 2 2 1( )sin( ) sin( )
2 2

2 2 2 1 4[ cos( ) ]
(2 1) 2 (2 1)

L L

n

L

n

n n
A p x dx p x dx

L L L L

L n p
A p x

L n L n

 


 

 
    


     

 

 
                              (II-42) 

By taking Eq.(II-42) into Eq.(II-41), the solution of pore pressure can be given by 

2 2(2 1)
2* 4

0

4 2 1( , ) sin( )*
(2 1) 2

n t
C

L

n

n
p x t p x e

n L







 




  


                                         (II-43) 

Combing Eq.(37), (38) and (43), the following expression is derived 

2 2(2 1)
2* 4

0

4 2 1( , ) ( , ) ( ) [1 sin( )* ]
(2 1) 2

n t
C

L

n

n
p x t p x t V x p x e

n L







 




    


           (II-44) 

Calculating displacement 

For Mode II loading: 0xu   at x=L and 0xu    at t=0 

From navier equation: 
2

2

2 (1 ) 0
1 2

xuG p

x x






 
 

  
                                                  (II-45) 
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we could get 
2

2

1 2
2 (1 )

xu p

x G x






  


  
                                                                      (II-46) 

Replacing p in Eq.(II-46) by the solution of p (Eq.(II-44)) we calculated, one can get 

2 2(2 1)2
2* 4

2
0

1 2 4 2 1 2 1[ cos( )* ]
2 (1 ) (2 1) 2 2

n t
C

x L

n

u n n
p x e

x G n L L




  
 


 



   
 

  
            (II-47) 

If let 
2 2(2 1)
24

n t
C

L
n e








 , Eq.(II-47) could be simplified to: 

2

2
0

2 2 1[ cos( ) ]
2

x
n

n

u p n
x

x G L L


 

 



 
 


                                                                     (II-48) 

Integrating on both sides of Eq.(II-48) by x 
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
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
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
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 


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                                       (II-49) 

If 0
x

x

u
Q

x






 (constant), Eq.(II-49) can be rewritten as 
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4 2 1sin( )
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x
n

n

u p n
x Q
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
 



 


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                                                   (II-50) 

Again, integrating on both sides of Eq.(II-50) by x 
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x G n L
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2 2
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8 2 1cos( ) ( )
(2 1) 2x n

n
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u x Q L x

G n L


 



 




   


                                          (II-51) 

Apply B.C.  at t=0, 1 0n xu     
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


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
                                    (II-52) 

Then, the surface displacement can be obtained 

2 2(2 1)
2* 4

2 2
0

8(0, ) ( 1)
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L
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n
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
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

  


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

                                                 (II-53) 

Let 
2 2(2 1)

2 2 2
0

8, ( ) (1 )
4 (2 1)

n

n

Ct
f e

L n

  



 


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

                                                 (II-54) 

Eq.(II-53) can be stated as * ( )p L
u f

G






                                                         (II-55) 
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APPENDIX III 

POROSITY MODEL WITH DIFFERENT PHASES 

The volumetric strain of the gas shale could be rewritten as: 

1 ( )v p
K

                                                                                                           (III-1) 

Governing equations for single phase flow: 

Local continuity equation is developed by considering the mass conservation of gas 

content: ( )f

m
v

t
 


 


                                                                                        (III-2)                                                              

where q
v

A
  is the superficial velocity;

f  is the fluid density;   denotes the source 

density (rate of injected gas content per unit volume of the porous medium); m  

represents remained fluid content within unit volume of medium:  

fm                                                                                                                        (III-3)                                       

From Darcy’s law:    ak A
q p


                                                                               (III-4) 

where ak  stands for apparent Darcy permeability. 

Substituting Eq.(III-3)-(III-4) into Eq.(III-2), it yields: 

  ( )a
f f

k
p

t
   




  


                                                                                     (III-5)                                              

Porosity model: 

For the initial condition, assuming 0 0v  . So, in the following discussion, we are 

dealing with the increments of all strain and stress components. 
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The volumetric response of the porous medium with respect to loading {P, p}could be 

expressed by the following relations (Detournay and Cheng, 1993): 

1 ( )V
P p

V K



                                                                                                       (III-6) 

1 ( )p

p p

V
P p

V K



                                                                                                    (III-7) 

With the subscript p denoting pore space and 1 p

s

K

K
   . 

By applying Betti-Maxwell reciprocal theorem: p

p

VV

p





 

 
                            (III-8) 

The following equation could be obtained:    
pK K




                                            (III-9) 

Applying the definition p sV V V   and /pV V  , the following equations could be 

readily developed (Detournay and Cheng, 1993) 

1
s

s

VV

V V





 
 


                                                                                                     (III-10) 

(1 )
p s

p s

V V

V V



 

  
 


                                                                                               (III-11) 

Combing Eq.(III-6)-(III-11),   could be solved: 

1 1( )( ) ( )
p

P p P p
K K K

 
 


                                                                       (III-12) 

Substituting Eq.(III-1) and (III-9) into Eq.(III-12), one can get:  

( )( )v

s

p

K
                                                                                                     (III-13)  
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With the initial condition 0 0v  : 0
1 ( )v v v p
K

                                       (III-14) 

Then the following relation could be revealed: 0                                        (III-15) 

Substituting Eq.(III-13) and (III-14) into Eq.(III-15), we can obtain: 

0 0
0

1 [ ( )]
1

S S
S S

    
 

                                                                                  (III-16) 

With 
v

s

p
S

K
   (III-17) and 0

0
s

p
S

K
   (III-18)     

(1) Slightly compressible fluid (as water) 

By taking out the time derivation in the LHS of Eq.(III-5) 

( )f a
f f

kp
p

p p t

 
   



  
    

   
                                                               (III-19) 

The change of fluid density with respect to pressure is expressed as: 

f f

fp K

 



                                                                                                              (III-20) 

The total volumetric deformation ( v ) of the porous medium consists of the pore space 

change ( p ) and the deformation of the solid porous matrix ( s ).   The deformation of 

the solid porous matrix is due to the fluid pressure and effective stress loading: 

(i) the effect of fluid pressure (the compression stress or strain is negative) 

             1 1s

s

p

K
                                                                          (III-21)  

(ii) the effect of effective stress loading 
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'

2 3
kk

s

sK


                                                                               (III-22)  

where 
sK is the bulk modulus of the solid and   is the porosity.  The average effective 

stress ( ' / 3kk ) has the following relation with the volumetric strain and pore pressure: 

' ' ''

3 3
xx yy zzkk

v

s

K
K p

K

  


 
                                                                          (III-23)         

where K  (K < Ks) is the bulk modulus of the porous matrix. Combining Eqs. (III-21) 

and (III-22), and substituting Eq. (III-23) result in the deformation of the solid porous 

matrix:  1s v

s s s

K p K

K K K
  

 
    

 
                                                          (III-24)  

The pore space change is obtained by subtracting the deformation of the solid porous 

matrix from the total volumetric strain and using the definition of Biot’s coefficient,  (

1 / sK K   ):  p v

s

p

K
                                                                          (III-25) 

Then, the pore volume change with respect to pressure is expressed as: 

p v

sp p p K

   


  
  

  
                                                                                      (III-26) 

Substituting Eq.(III-20) and Eq.(III-26) into Eq.(III-19), one can get 

( )v a

f s

kp
p

t K K t

   
 



   
        

                                                             (III-27) 

As 1

f sK K M

  
   where M is the Biot modulus, Eq.(III-27) could be rewritten as: 
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1 ( )v akp
p

t M t


 



 
   

 
                                                                               (III-28) 

This expression of fluid diffusivity eqation is compatible with Diek and Ghassemi’s 

work (2004) and Detournay and Cheng (1993). 

(2) Gas flow (only free gas) 

Real gas density could be expressed as: g

g

pM

ZRT
                                                  (III-29) 

Replacing 
g  in Eq.(III-5) by Eq.(III-30), it yields 

( )a

g

p p RT
k p

t Z Z M






  
    

  
                                                                           (III-30) 

Expanding the term on the LHS of Eq.(III-30)   

1 1
/

1 1
/

p p p

t Z t Z Z t

p p

Z p Z t Z t

p p p

Z p Z p Z p t

 












     
    

     

   
   

   

    
   

    

                                                               (III-31) 

The change of gas density with respect to pressure is expressed as: 

1 1 1
/

g

g

g g

dp
C

p Z p Z p K





  
   

  
                                                                        (III-32) 

where  gC  is the gas compressibility ; the inverse of the gas compressibility gives gas 

bulk modulus gK  

And the pore volume change with respect to pressure is expressed the same as Eq. (III-

26): 
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p v

sp p p K

   


  
  

  
                                                                                   (III-33) 

 Substituting Eq.(III-32) and (III-33) into Eq.(III-31), one can get: 

v

g s

p p p

t Z Z K p K t

   


    
           

                                                               (III-34) 

As 1

g sK K M

  
   where M is the Biot modulus, Eq.(III-34) could be rewritten as: 

1 vp p p

t Z Z M p t




   
   

     
                                                                             (III-35) 

Substituting Eq.(III-35) into Eq.(III-30), yields: 

1 ( )v
a

g

p p p RT
k p

Z M p t Z M


 



  
    

  
                                                        (III-36) 

As the gas properties are not constant with pressure change, the pseudo-pressure is 

introduced: 2

1

( ) 2
p

p

p
m p dp

Z
                                                                              (III-37) 

By applying Liebnitz’s rule to differentiate the above integral, we obtain: 

( ) 2m p p p

x Z x

 


 
                                                                                                 (III-38) 

And   ( ) 2m p p p

t Z t

 


 
                                                                                       (III-39) 

Substituting Eq.(III-38) and (III-39) into Eq.(III-36): 

1 ( ) ( ( ( )))
2 2( )

2

v
a

g

p Z m p p Z RT
k m p

ZM Z p t Z p M
m p

p

  
 
 

 
  
     

  
 

                (III-40) 
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Assuming constant 
ak , finally one can get: 

21 2 ( ) 2( )
( )

v a

g

kp m p RT
m p

M Z m p t M


 
  

  
    

  
                                              (III-41)   

It could be expressed as: 

22 1 ( ) 2( )v a

g

kp m p RT
m p

Z t M t M


 
  

 
   

 
                                                       (III-42) 

(3) Gas flow (free gas + desorption gas) 

The volumetric strain of the gas (free gas and desorption gas) could be rewritten as: 

1 ( )v sp
K

                                                                                                  (III-43) 

where s  is defined as gas sorption-induced strain 

Governing equations for gas flow: 

Local continuity equation is developed by considering the mass conservation of gas 

content: ( )g

m
v

t
 


 


                                                                                    (III-44)                              

where q
v

A
  is the superficial velocity; g  is the gas density;   denotes the source 

density (rate of injected gas content per unit volume of the porous medium); m  

represents remained gas content within unit volume of medium, including both free and 

absorbed gas (Saghafi et al., 2007):  

L
g g r

L

V p
m

p P
    


                                                                                            (III-45)        
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where 
sc   denotes gas density at standard condition; r  is the density of gas shale; 

LV  

and 
LP  represent Langmuir volume and pressure constant respectively. 

Real gas density could be expressed as: g

g

pM

ZRT
                                                  (III-46) 

where 
gM is the gas molecular mass; Z  is the compressibility factor with 1scZ  . 

Then sc g

sc

sc

p M

RT
                                                                                                     (III-47) 

With scp and scT  denoting the pressure and temperature under standard condition. 

From Darcy’s law: ak A
q p


                                                                               (III-48) 

where ak  stands for apparent gas permeability. 

Substituting Eq.(III-45)-(III-48) into Eq.(III-44), it yields: 

( )L
r a

L g

V pp p p RT
k p

t Z t Z p P Z M


 



   
      

     
                                            (III-49) 

Porosity model: 

For the initial condition, assuming 0 0v  . So, in the following discussion, we are 

dealing with the increments of all strain and stress components. 

The volumetric response of the porous medium with respect to loading {P, p}could be 

expressed by the following relations (Detournay and Cheng, 1993) 

1 ( )V
P p

V K



                                                                                                     (III-50) 

1 ( )p

p p

V
P p

V K



                                                                                                  (III-51) 
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With the subscript p denoting pore space and 1 p

s

K

K
   . 

Recalling Eq.(III-43), a similar expression could be stated in this case study: 

1 ( ) s

V
p

V K
  


                                                                                              (III-52) 

If we assume that sorption-induced strain projects the same effect on bulk rock and pore 

space, another relation for pore space could be proposed: 

1 ( )p

s

p p

V
p

V K
  


                                                                                           (III-53) 

By applying Betti-Maxwell reciprocal theorem: p

p

VV

p





 

 
                         (III-54) 

The following equation could be obtained:
pK K




                                             (III-55) 

Applying the definition p sV V V   and /pV V  , the following equations could be 

readily developed (Detournay and Cheng, 1993): 

1
s

s

VV

V V





 
 


                                                                                                    (III-56) 

(1 )
p s

p s

V V

V V



 

  
 


                                                                                              (III-57) 

Combing Eq.(III-52)-(III-57),   could be solved: 

1 1( )( )
p

p
K K

                                                                                               (III-58) 

Substituting Eq.(III-43) and (III-55) into Eq.(III-58), one can get:  
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( )( )v s

s

p

K
                                                                                               (III-59)  

s is defined as gas sorption-induced strain. A Langmuir type equation is developed to 

compute s  (Zhang et al., 2008) 

s L

L

p

P p
 


                                                                                                         (III-60) 

where L  is the Langmuir volumetric strain, which denotes the maximum volumetric 

strain that could be induced to the bulk rock as fully saturated with gas (Shi and 

Durucan, 2004). 

With the initial condition 0 0v  : 0
1 ( )v v v sp
K

                                  (III-61) 

Then the following relation could be revealed: 0                                       (III-62) 

Substituting Eq.(III-59) and (III-61) into Eq.(III-62), we can obtain: 

0 0
0

1 [ ( )]
1

S S
S S

    
 

                                                                                 (III-63) 

with v s

s

p
S

K
     (III-64) and 0 0 0

0 0
0

s L

s s L

p p p
S

K K P p
    


  (III-65)     

The total volumetric deformation ( v ) of the porous medium consists of the pore space 

change ( p ), the deformation of the solid porous matrix ( sm ) and gas sorption-induced 

strain ( s ). The deformation of the solid porous matrix is due to the fluid pressure and 

effective stress loading: 

(iii) the effect of fluid pressure (the compression stress or strain is negative) 
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             1 1sm

s

p

K
                                                                           (III-64)  

(iv) the effect of effective stress loading 

            
'

2 3
kk

sm

s

e
K


                                                                                    (III-65)  

where sK  is the bulk modulus of the solid and   is the porosity.  The average effective 

stress ( ' / 3kk ) has the following relation with the volumetric strain and pore pressure: 

' ' ''

( )
3 3

xx yy zzkk
v s

s

K
K p

K

  
 

 
                                                               (III-66)  

where K  (K < Ks) is the bulk modulus of the porous matrix. Combining Eqs. (III-64) and 

(III-65), and substituting Eq. (III-66) result in the deformation of the solid porous matrix:

  ( ) 1sm v s

s s s

K p K

K K K
   

 
     

 
                                               (III-67)  

The pore space change is obtained by subtracting the deformation of the solid porous 

matrix from the total volumetric strain and using the definition of Biot’s coefficient,  , (

1 / sK K   ):                       ( )p v s

s

p

K
                                             (III-68) 

 Expanding the first term on the LHS of Eq.( III-49)     

1 1
/

1 1
/

p p p

t Z t Z Z t

p p

Z p Z t Z t

p p p

Z p Z p Z p t

 












     
    

     

   
   

   

    
   

    

                                                               (III-69) 
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The change of gas density with respect to pressure is expressed as: 

 1 1 1
/

g

g

g g

dp
C

p Z p Z p K





  
   

  
                                                                  (III-70) 

where  
gC  is the gas compressibility ; the inverse of the gas compressibility gives gas 

bulk modulus 
gK  

By taking Eq.(III-68), the pore volume change with respect to pressure is given as: 

p v s

sp p p p K

    


    
    

    
                                                                      (III-71) 

 Substituting Eq.(III-70) and (III-71) into Eq.(III-69) and replacing s  by Eq.(III-60), it 

yields: 

2( )
v L L

g L s

Pp p p

t Z Z K p P p K t

    


     
               

                                        (III-72) 

As 1

g sK K M

  
   where M is the Biot modulus, Eq.(III-72) could be rewritten as: 

2

1
( )

v L L

L

Pp p p

t Z Z M p P p t

 
 

   
    

      
                                                      (III-73) 

gB is the gas formation volume factor with the definition as: 

sc
g

sc sc sc

pV T Z
B

V p T Z
                                                                                               

where Z  is the compressibility factor with 1scZ  . 

Then, sc
sc g

Tp
p B

Z T
                                                                                            (III-74) 

Substituting Eq.(III-74) into the second term on the LHS of Eq.(III-49)   
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  2 2( ) ( )
g r L Lsc r L L

L sc L

B V Pp V P T p p p

p P T t p P Z t

  


   
                                                                   (III-75) 

Substituting Eq.(III-73) and (III-75) into Eq.(III-49), one can get: 

2 2

1 ( )
( ) ( )

g r L Lv L L
a

L L g

B V PPp p p p p RT
k p

Z M p P p t p P Z t Z M

 
  



   
      

     
      (III-76) 

As the gas properties are not constant with pressure change, the pseudo-pressure is 

introduced: 2

1

( ) 2
p

p

p
m p dp

Z
                                                                               (III-77) 

By applying Liebnitz’s rule to differentiate the above integral, we obtain: 

( ) 2m p p p

x Z x

 


 
                                                                                                  (III-78) 

And  ( ) 2m p p p

t Z t

 


 
                                                                                         (III-79) 

Substituting Eq.(III-78) and (III-79) into Eq.(III-76): 

2 2

1 ( ) ( )
( ) 2 ( ) 2( )

2

( ( ( )))
2

g r L LvL L

L L

a

g

B V PP p Z m p p Z m p

ZM P p Z p t p P Z p t
m p

p

p Z RT
k m p

Z p M

  
 








 
   
   

     
 

    

          (III-80)                                              

Assuming constant ak , finally one can get: 

  2
2

2 1 ( ) 2( )
( )

g r L L Lv a

L g

B V P kp m p RT
m p

Z t M p P t M

 
 
  

  
     
   
 

                   (III-81) 
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APPENDIX IV 

PVT GAS PROPERTIES 

Z-factor 

The real gas equation of state, which is commonly used in industry, is defined as 

following:          PV ZnRT                                                                                      (IV-1) 

where P = pressure; V =volume; T =temperature; n =the number of moles; R =the 

universal gas constant, whose value is depend on the above unites; Z is called the Z-

factor or compressibility factor, which is dimensionless.  

The Z-factor is applied to correct the ideal gas law, especially the pressure, to fit the real 

gas behavior. The Z-factor is a function of both pressure and temperature. However, it 

only varies with pressure in reservoir engineering, as reservoir temperature is almost 

constant and merely changes during production.  

There are several experimental and numerical ways to determine the Z-factor. Among 

them, Standing-Katz correlation is widely accepted and used with confidence in 

industry, which correlates the Z-factor to pseudo-reduced pressure prP  and temperature 

prT  (Standing and Katz, 1942). 

Prior to use the Standing-Katz correlation, the pseudo critical pressure pcP  and 

temperature 
pcT of gas mixture should be calculated by applying the Kay’s rules (Kay, 

1936): pc j cjP y P                       pc j cjT y T                                                      (IV-2) 
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where  
cjP  and 

cjT  are the critical pressure and temperature of jth component 

respectively; 
jy  is the mole fraction of corresponding component. Then, the pseudo-

reduced pressure 
prP  and temperature 

prT could be determined:  

/pr pcP P P                        /pr pcT T T                                                                     (IV-3) 

where P and T are reservoir pressure and temperature.  

With these two terms (
prP  and 

prT ), the Z-factor could be readily read from the 

Standing-Katz correlation chart. 

Though the Standing-Katz correlation is proved to be reliable by the industry over years, 

some computer solutions for calculating the Z-factor are developed in gas reservoir 

engineering programs. A number of different methods for reproducing the Z-factor chart 

had been reviewed and compared by Takacs (1976). Based on his work, the Dranchuk 

and Abou-Kassem method, which utilizes equation of state of 11 factors to compute Z-

factors, is the most accurate. Its absolute error is only as low as 0.316% (Dranchuk and 

Kassem, 1975). A computer-based procedure is constructed to reproduce the Standing-

Katz Z-factor chart by using the Dranchuk and Abou-Kassem equation and then 

incorporated into the FEM numerical simulator.  

The Dranchuk and Abou-Kassem equation is shown as below: 
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   

3 52 4
1 3 4 5

2 57 8 7 8
6 92 2

2
2 2

10 11 113

1

1 exp

pr

pr pr pr pr

pr pr

pr pr pr pr

pr

pr pr

pr

A AA A
Z A

T T T T

A A A A
A A

T T T T

A A A
T



 


 

 
       

 

   
          
   

  

                                                          (IV-4) 

where 
0.27 pr

pr

pr

P

ZT
                                                                                                  (IV-5) 

The constants are given as follows: 

1 0.3265A  , 2 1.0700A   , 3 0.5339A   , 4 0.01569A  , 5 0.05165A   , 6 0.5475A  ,

7 0.7361A   , 8 0.1844A  , 9 0.1056A  , 10 0.6134A  , 11 0.7210A  . 

By expressing Z as a function of reduced density 
pr  from Eq. (IV-5) and then 

substituting it in Eq. (IV-4), the following non-linear equation could be obtained: 

   

2 53 5 7 8 7 82 4
1 6 93 4 5 2 2

2
2 2

10 11 113

1

0.27
1 exp 0

pr pr pr

pr pr pr pr pr pr pr pr

pr pr

pr pr

pr pr pr

A A A A A AA A
A A A

T T T T T T T T

P
A A A

T T

  


 



     
                   
     

    

         (IV-6) 

For simple, this equation can be rewritten as: ( ) 0prf                                          (IV-7) 

 It can be readily solved for pr  by using the Newton-Raphson iterative method. The 

detailed working steps are listed below: 

1) make an initial guess of i

pr , as 1 0.1pr  , where i  is the number of iteration; 
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2) replace this value in Eq. (IV-6); some non-zero value ( )i i

prf   will be generated 

unless the correct i

pr  has been selected in step (1); 

3) updated estimate of 
pr  could be determined as:  

1
i

i i
ipr pr

pr

f
df

d

 



                                                                                     (IV-8) 

      where 
pr

df

d
 is expressed as the derivative of Eq. (IV-6) 

   
 

43 5 7 8 7 82 4
1 6 93 4 5 2 2

3 2 5
10 10 11 10 11 2

113 3 3 2

2 5

2 2 2 0.27
exp

pr pr

pr pr pr pr pr pr pr pr pr

pr pr pr pr

pr

pr pr pr pr pr

A A A A A AA Adf
A A A

d T T T T T T T T

A A A A A P
A

T T T T

 


  




     
                   
     

 
      
 

(IV-9) 

4) repeat the step(2) and (3) until the convergence condition is satisfied, as 

1 0.001i i

pr pr    ;       

5) Finally, the Z-factor can be resulted by substituting the computed value of pr  in 

Eq. (IV-5). 

This method is applicable over the ranges (Cox, 1988):  

0.20 30.prP              and            1.0 3.0prT                                   (IV-10) 

A FORTRAN subroutine calcGAS is written based on this procedure. Each time we 

need to input the Tpr(pseudo-reduced temperature) to computer each isotherm of Z-

factor. 
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As shown in the diagram below (Figure 68), the Z-factor first decreases and then 

increases with increasing Ppr along each isothermal. A linear relationship with positive 

slope is established between the Z-factor and Ppr on each isothermal, if the pseudo-

reduced pressure is higher enough, as greater than 5. However, the slope of this linear 

relationship gradually reduces with increasing pseudo-reduced temperature. Our 

numerical result is highly compatible with the origin Standing-Katz correlation chart, but 

one thing need to be pointed out that the Z value for Ppr=0.2 is always negative. I think 

this is related to the current convergence condition which we specified in the iteration 

process. If we try to improve the accuracy of our results, we need to sacrifice the 

computation time by orders. Another important issue is that this procedure is invalid for 

HPHT reservoir. 
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Figure 69 Reproduce Standing-Katz correlation chart for pure methane by 
applying subroutine calcZ 
 

Isothermal compressibility 

The coefficient of isothermal compressibility of gas 
gc  (gas compressibility) is defined 

as:  1
g

T

V
c

V P

 
   

 
                                                                                                 (IV-11) 
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According to the real gas equation (IV-1), the coefficient of isothermal compressibility 

could be expressed as:  1 1
g

T

Z
c

P Z P

 
   

 
                                                              (IV-12) 

Pseudo-reduced compressibility is introduced by Trube (1957) pr

g

pc

c
c

P
                (IV-13) 

Then, by combing Eq. (IV-12) and (IV-13), the dimensionless 
prc  could be defined as: 

1 1

pr

pr g pc

pr pr T

Z
c c P

P Z P

 
      

                                                                                 (IV-14) 

The expression of Z-factor could be obtained from Eq. (IV-5) 

0.27 pr

pr pr

P
Z

T
                                                           (IV-15) 

By differentiating Eq.(IV-15),  

0.27
pr

pr

pr

pr T

pr T
pr pr pr

pr T

Z

Z

P Z
ZT T






 
     

          

                       (IV-16) 

 

Substituting 
pr

pr T

Z

P

 
   

in Eq. (IV-14) by Eq. (IV-16), an expression for dimensionless 

prc  could be obtained as:  

1 0.27 pr

pr

pr T

pr

pr pr

pr
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Z

c
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                                                                    (IV-17) 
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By running subroutine calcZ, Z and 
pr  could be computed. By differentiating Eq. (IV-

4) on both sides, term 
pr

pr T

Z



 
   

could also be evaluated: 
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(IV-18) 

Then, the dimensionless 
prc  can be calculated. Henceforth, coefficient of isothermal 

compressibility of gas 
gc  can be determined from Eq.(IV-13). Our numerical results 

(Figure 69) are quite close to some numerical simulation results in literature (Trube, 

1957; Ghedan et al., 1993). 
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Figure 70  Isotherms of reduced compressibility Vs. reduced pressure curves of 
pure methane 
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Gas viscosity 

Gas viscosity is frequently estimated through different empirical correlations. Among 

them, the Lee, Gonzalez, and Eakin (LGE) correlation is widely used in petroleum 

literature.  

After modifying Starling and Ellington correlation (1964), the LGE correlation is 

proposed by Lee et al. (1966) based on the experimental data of eight samples of natural 

gas whose specific gravities are less than 0.77. The direct measurement of gas viscosity 

is conducted on gas samples composed by pure hydrocarbon components; however, the 

non-hydrocarbon components (or impurities) are not taken into account in this 

correlation. The LGE correlation expresses the gas viscosity as a function of 

temperature, gas molecular weight and density at relevant reservoir conditions: 

 410 exp C

g gA B                                                                                                (IV-19) 

where  

  1.59.379 0.01607
209.2 19.26

M T
A

M T




 
                                                                                   (IV-20) 

986.43.448 0.01009B M
T

                                                                                   (IV-21) 

2.447 0.2224C B                                                                                                  (IV-22) 

And g  is the gas density (in gm/cc) at specific temperature and pressure; M  is the gas 

molecular weight (in lb/lb-mole); T  represents reservoir temperature (in deg R); g  is 

the gas viscosity with unit in cp. 
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This correlation is quite accurate for gases of specific gravity less than 1.0, with 2% 

average absolute error at low pressure and 4% average absolute error at high pressure. 

The correlation is applicable to the pressure range between 100 and 8000 psia and the 

temperature range between 100 and 340 deg F (Lee et al., 1966). It is proven to be 

reliable to predict viscosities of gas with low quantities of impurities at common 

reservoir conditions (Londono et al., 2005). It is inadequate to use this correlation to 

predict gas viscosities of HPHT reservoir. 

 

Figure 71 Viscosity of pure methane Vs. reservoir pressure 
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Pseudopressure 

In gas reservoir engineering, the real gas pressure and its corresponding pseudopressure 

are the two most significant parameters. As the gas properties are not constant with 

pressure variation, the common method for computing pseudo-pressure is numerical 

integration (Al-Hussainy et al., 1966)  2

1

( ) 2
( ) ( )

p

p

p
m p dp

p Z p
                           (IV-23)        

where 1p  is any arbitrary base pressure (usually standard condition). 

 

Figure 72 Pseudopressure of pure methane Vs. pressure 
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Reverse computation 

As pseudopressure(m(p)) has no physical meaning, a reverse computation should be run 

to convert it to its corresponding pressure during reservoir simulation process. 

Interpolation or table read might be the easiest way to do this job in literature. However, 

both of them are not feasible or sufficient for an accurate reservoir simulator. For this 

purpose, the Newton-Raphson iterative method is adopted in this work to realize such 

conversions. For a given pseudopressure, the reservoir pressure is root of the following 

equation: 2

1

2 ( ) 0
( ) ( )

p

p

p
dp m p

p Z p
                                                                    (IV-24) 

For simplicity, this equation can be written as: ( ) 0f p                                          (IV-25)                

p can be easily evaluated by using the Newton-Raphson iterative method, as what have 

done for calculating Z factor. The detailed working steps are listed below: 

1) make an initial guess of ip , as 1 ( )*0.012
2

m p
p    (Al-Jawad, 1997)  (IV-26), 

where i  is the number of iteration; 

2) replace this value in Eq.(IV-25); some non-zero value ( )i if p  will be generated 

unless the correct ip  has been selected in step (1); 

3) updated value of p  could be determined by:  

           1
i

i i
i

f
p p

df

dp

                                                                                          (IV-27) 

where 
idf

dp
 is obtained by differentiating eq.(IV-24) to p  



 

265 

 

( ) 2
( ) ( )

i

i i

f p p

p p Z p





                                                    (IV-28) 

where ( )ip and ( )iZ p  is computed from subroutine calcGAS which has been 

discussed before. 

4) repeat the step(2) and (3) until the convergence condition is satisfied, as 

1

0.001
i i

i

p p

p

 
 ;                                                                                        (IV-29) 

A FORTRAN subroutine p4mp is written to convert pseudopressure to its corresponding 

pressure based on the above procedure.  

Pressure(psi) m(p)psi^2/cP Pressure(psi) Difference(%) 

399.84 5.83.E+06 400.01 0.042 

799.68 6.36.E+07 799.93 0.031 

1199.52 1.58.E+08 1199.48 0.003 

1599.36 2.72.E+08 1599.29 0.004 

1999.20 3.89.E+08 1999.23 0.001 

2399.04 5.01.E+08 2399.09 0.002 

2798.88 6.11.E+08 2798.97 0.003 

3198.72 7.17.E+08 3198.85 0.004 

3598.56 8.21.E+08 3598.73 0.005 

3998.40 9.22.E+08 3998.60 0.005 

4398.24 1.02.E+09 4398.43 0.004 

4798.08 1.12.E+09 4798.27 0.004 

5197.92 1.22.E+09 5198.11 0.004 

5597.76 1.31.E+09 5597.94 0.003 

5997.60 1.40.E+09 5997.76 0.003 

 
Table 7 Pressure recalculated from pseudopressure 

 

The data in the first column in Table 5 are the input pressure data for subroutine 

pseudopressure with 1.20prT   and the data in the second column are the output 
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corresponding pseudopressure by running subroutine pseudopressure, which should also 

be the input pseudopressure data for subroutine p4mp.Henceforth, the data in the third 

column are the recalculated pressure from the pseudopressure after running subroutine 

p4mp. The different between the original and recalculated values of pressure is limited 

within 0.05%, as shown in the 4th column in Table 5.  The number of iterations for 

pseudopressure conversions is no more than 4, which means Eq. (IV-24) converges very 

quickly. Based on the efficiency and accuracy of computational process, this numerical 

model seems to be capable for simulating gas PVT properties and practically acceptable 

in gas reservoir engineering.  
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APPENDIX V 

INSTRUCTION FOR FEM  
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APPENDIX VI 

NUMERICAL APPROACH TO CREEP (FEM) 

To resemble the basic natures of creep phenomena in viscoelastic medium, inelastic 

deformations, stress relaxation as well as the weakening of the material strength need to 

be considered in the mechanical models, either analytical or numerical models. A 

comprehensive model should be capable of predicting long term deformation and creep 

behavior of the material regardless of the geometry and the loading history. Obviously, 

numerical models, as finite element method (FEM) and boundary element method 

(BEM), are advanced in wide range of applications in simulating creep behavior.  

Prior to building the numerical models, a reliable constitutive model need to be 

constructed or proposed to describe the time dependent deformation associated with 

creep phenomena. However, no matter which constitutive model is used, the following 

governing equations should be satisfied: 

(1) Strain-displacement relation 

, ,
1 ( )
2ij i j j iu u                                             (VI-1) 

Where iu  represents solid displacement vector denoting the movement of the porous 

medium with respect to a reference configuration; 
ij is the component of strain tensor. 

(2) Equilibrium equation 

            , 0ij j if                                                      (VI-2) 
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Where if  represents the components of body force; 
ij denotes the component of stress 

tensor. 

In the finite element procedure, The unknowns ( u -displacement vector) at any arbitrary 

point can be approximated by interpolating the variables at nodal points through the 

following functions (Smith and Griffiths, 1997):      

    uu = N u                                 (VI-3) 

where uN  is the conventional shape function and u is the vector of the nodal 

displacement. Based on this approximation, Eq.(VI-1) can be expressed in matrix form: 

    = uB                                     (VI-4) 

where B is the strain-displacement matrix and     uNB    with   denoting the 

differential operator. The expression of B depends on the element type and the formation 

of the displacement vector. 

In matrix form, the stress-strain relationship can be given as generalized Hooke’s law:    

        = uD D B                (VI-5) 

where D  is the stress-strain matrix. 

In the principle of virtual work (Kim and Kuhlemeyer, 1977; Ghazlan et al., 1995; 

Zienkiewicz and Taylor, 2000; Chazal and Moutou Pitti, 2011), the sum of the total 

external and internal virtual work is equal to zero:      

0e iW W                                    (VI-6) 
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        V A
V V S

dV f u dV f u dA                               (VI-7) 

where  and u denote virtual strain and displacement respectively; Vf and Af  

represent volumetric force and surface traction. 

By taking the finite element approximation (Eq.(VI-4) and (VI-5)) into the equilibrium 

equation (VI-7), it yields the following incremental formula:    

K u R                             (VI-8) 

where T

V
K B DBdV   is the global stiffness matrix; R is the increments of loading 

vector, including both the external force and resultant internal force. In the elasticity 

regime, the expressions for K and R are simple and identical in literature. However, for 

the viscoelastic or creep problems, those expressions vary from case to case.  

Roughly, there are two different ways, initial strain and initial stress respectively, to 

solve the non-linear time-dependent creep problems by using the finite element method 

(Kim and Kuhlemeyer, 1977).  

i) In the initial strain method, the creep strain at any time interval is defined by 

the stress history through the constitutive laws. The creep strain increments 

are converted into induced nodal forces and the stiffness matrix is constant 

within each time interval. In the creep problem, the total strain ( T ) is 

composed by two different parts (Gioda, 1981; Naumenko, 2006): elastic ( e

) and creep ( cr ).  

                 T e cr                   (VI-9) 
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                 By substituting Eq. (VI-9) into the equilibrium equation (VI-7), the following     

                 linear equation can be obtained: 

                      crK u R f           (VI-10) 

where     
Tcr

cr
V

f B D dV   denotes the internal force induced by creep.  In this 

method, the stress-strain matrix D  is kept the same during each time step, and all the 

creep effect are put into the vector crf , which is also adopted in this work.  The detailed 

expression of vector crf depends on the constitutive model. Within this framework, 

Gioda (Gioda, 1981) developed the finite element model for creep problems by using a 

general non-linear viscoplastic rheological law and incorporating the primary, secondary 

and tertiary creep regime in a cylinder test. Ghazlan et al. (Ghazlan et al., 1995)                   

proposed an incremental formulation by dividing the creep compliance into elastic and 

inelastic (creep) part and generalized Kelvin model and Laplace transformation were 

employed to derive the creep part of the compliance. Naumenko (Naumenko, 2006) 

presented the derivation of FEM formula by taking both thermal and viscoelastic effect 

into consideration and gave out the explicit time procedure for how to solve the problem 

numerically. Other than the incremental formula, Naumenko (Naumenko, 2006) derived 

his formula in full form, thus the vector crf  in that work reflected the whole history of 

the strain. Chazal and Moutou Pitti (Chazal and Moutou Pitti, 2011) proposed an 

incremental constitutive equation by using a pseudo fourth order tensor for non-ageing 

viscoelastic materials and then applied the finite element method to discretize the 

formulation and solve the boundary viscoelastic problems. In this work, the vector crf  
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is derived step by step by using the Maxwell model and the viscoelastic effect is 

addressed in both deviatoric and mean effective stresses.  

ii) In the initial stress method, the total stress at any time interval is governed by 

the strain history through the constitutive laws. Thus, both the stiffness 

matrix and induced internal or pseudo force term are functions of stress state 

and its change during each time interval. Kim and Kuhlemeyer (Kim and 

Kuhlemeyer, 1977) applied this method for creep analysis and used the 

principle of virtual work to derived the following FEM formula:    

   E EK u P                                           (VI-11) 

where     
T ( )E

V
K B D t B dV  ; ( )D t  and EP  are all stress (deviatoric stress) 

dependent variables during tests and need to be updated within each time step. Anderson 

and  Bridwell (Anderson and Bridwell, 1980) developed a finite element procedure to 

study the long term thermal creep of materials by following an arbitrary constitutive law. 

In their model, current stress, instead of initial stress, was used in the creep calculation 

and the geometry change was taking into account in updating the stress state to predict 

large deformation. Noriyuki (Noriyuki, 1986) proposed an incremental formulation to 

investigate the creep deformation of cylindrical shell under axial compression. In his 

work, it was assumed that the creep remained constant and used as initial strain across a 

time interval. Zocher et al. (Zocher et al., 1997)  presented another finite element 

algorithm by taking the integral form of the constitutive equations and assumed constant 

strain rate within a time step to predict both creep and relaxation behavior. And 

Dirichlet-Prony series was used to represent the relaxation moduli in the integral form.               
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The procedure to solve the non-linear equations in the FEM procedure is briefly given as 

below: 

(i) Unknowns ( u , ( )mm p and ( )fm p ) from a previous time step are used to 

“guess” the initial stiffness matrix in current time step; 

(ii) In current time step, the FEM formulation is solved to obtain the increment of 

unknown variables ( u , ( )mm p and ( )fm p ); 

(iii) The newly updated u , ( )mm p and ( )fm p is used to compute the strain, 

stress at current time step and then update the fracture aperture, boundary 

conditions, internal force and stiffness matrix; 

(iv) Step (ii) is repeated to get the new u , ( )mm p and ( )fm p for the next 

iteration; if u , ( )mm p and ( )fm p are close enough to those in the 

presvious iteration, the iteration is terminated and the next time step is 

proceeded.     

 




