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ABSTRACT

This dissertation consists of four different topics in the areas of proteomics, ge-

nomics, and cardiology. First, a data-based method was developed to assign the

subcellular localization of proteins. We applied the method to data on the bacte-

ria Rhodobacter sphaeroides 2.4.1 and compared the results to PSORTb v.3.0. We

found that the method compares well to PSORTb and a simulation study revealed

that the method is sound and produces accurate results. Next, we investigated ge-

nomic features involved in the lethality of the knockout mouse using the random

forest technique. We achieved an accuracy rate of 0.725 and found that among other

features, the evolutionary age of the gene was a good predictor of lethality. Third,

we analyzed DNA breakpoints across eight different cancer types to determine if

common hotspots or cancer-type specific hotspots can be well-predicted by various

genomic features and investigated which of the genomic features best predict the

number of breakpoints. Using the random forest technique, we found that cancer-

type specific hotspots are poorly predicted by genomic features but common hotspots

can be predicted using the relevant genomic features. Additionally, we found that

among the genomic features analyzed, indel rate and substitution rate were consis-

tently chosen as the top predictors of breakpoint frequency. Lastly, we developed a

method to predict the hypothetical heart age of a subject based on the subject’s elec-

trocardiogram (ECG). The heart age predictions are consistent with current ECG

science and knowledge of cardiac health.
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1. INTRODUCTION

My dissertation involved four topics in the areas of proteomics, genomics, and

cardiology:

1. A data-based method for assigning the subcellular localization of proteins,

2. Predicting the lethal phenotype of the knockout mouse by integrating compre-

hensive genomic data,

3. Comparative analysis of somatic copy-number alterations across different hu-

man cancer types reveals two distinct classes of breakpoint hotspots,

4. Predicting “heart age” using the electrocardiogram (ECG).

I address each topic, in turn, in sections two through five. In section two, I

present a method that assigns the subcellular localization to proteins based on mass

spectrometry (MS) data. The third section discusses the predictability of lethality

in the knockout mouse using genomic features and the fourth section investigates

genomic features involved in cancer hotspots. In section five, I present a method to

predict a subject’s “heart age” (hypothetical age) based on the electrocardiogram

(ECG).
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2. A DATA-BASED METHOD FOR PROTEIN SUBCELLULAR

LOCALIZATION

2.1 Introduction

Information regarding the subcellular localization of a protein is of significant in-

terest to scientists studying microorganisms. A subcellular fraction is a compartment

within a cell, and proteins may be present in a single fraction or present in multiple

fractions. Empirical observations of localized proteins, based upon mass spectrom-

etry (MS) analysis of subcellular fractions, often result in proteins being observed

across several fractions. The reasoning for this observation is a lack of a pure sub-

cellular fraction and that proteins in relatively high abundance can contaminate

multiple subcellular fractions. Scientists need an automated statistical procedure

to test for protein presence based upon empirical evidence. Current methods often

necessitate some prior knowledge of the protein or may only be applicable to highly

abundant proteins (Callister et al., 2006a). In addition, many methods are tailored

for a specific organism, are only for gram positive or gram negative bacteria, or only

identify proteins that are in a single fraction. We developed a data-based method

that is free of these restrictions. It can be applied to any organism for which these

type of data are available, and it identifies proteins in single or multiple fractions

with statistical confidence.

Our method combines peptide peak intensity information as a measure of protein

presence in a subcellular fraction. For each fraction, the relative abundance of the

protein is estimated as well as its standard error. From these estimates, a test statistic

and p-value are computed that allow us to decide whether the protein is present in

the fraction. If a protein is present in more than one fraction, Welch’s t-test or Hsu’s

2



multiple comparison procedure is employed to estimate the fraction, or fractions, in

which the protein is most abundant. This allows scientists to determine not only if

a protein is present but, more specifically, the fraction(s) in which the protein most

likely resides.

We applied this method to data collected on the bacteria R. sphaeroides 2.4.1

and compared the assignments to predictions from PSORTb v.3.0 (Yu et al., 2010).

PSORTb makes final predictions by combining the predictions of six modules of

varying methodology. While PSORTb’s predictions are based on amino acid se-

quences, our method, in contrast, makes assignments based on observed MS data,

which should always be more precise. To further evaluate our method, we performed

a simulation study.

2.2 Methods

2.2.1 Experimental methods

All experimental methods were carried out at the Pacific Northwest National Lab-

oratory (PNNL). Scientists at PNNL stated that culture conditions for R. sphaeroides

2.4.1 chemoorganoheterotrophic (non-photosynthetic) and photoorganoheterotrophic

(photosynthetic) growth as well as protocols for the fractionation of harvested cells

into subcellular fractions (cytoplasm, periplasm, cytoplasmic membrane, outer mem-

brane, and intracytoplasmic membrane) have been previously published (Barber

et al., 1996; Cohen-Bazire et al., 1957; Deal and Kaplan, 1983; Flory and Dono-

hue, 1995; Jackson, 1991; Tai and Kaplan, 1985; Weiss, 1976). The extraction of

proteins from each subcellular fraction followed protocols previously established for

conducting proteomics analyses utilizing the bottom-up, or peptide centric approach

(Callister et al., 2006b).
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2.2.2 Statistical methods

One of the challenges of using MS data is that there are frequently many zeros due

to absent or low abundant peptides that are not detected by the instrument. Instead

of throwing out the zeros, we designed a statistical model that accounts for the pres-

ence of zeros. For each fraction, twelve samples were taken in the non-photosynthetic

condition and fifteen samples were taken in the photosynthetic condition. Each sam-

ple had three technical replicates. Statistical Tools for AMT Tag Confidence (STAC)

is a method that quantifies the confidence in the AMT tag identification, where AMT

stands for Accurate Mass and Time (Stanley et al., 2011). Based on expert advice

from the biologists at PNNL, only data on peptides that had a mass tag STAC Score

≥ 0.90 and a fully-tryptic cleavage were used in this study. The abundance, Y , of

the peptide in a sample and fraction was taken to be the natural logarithm of the

average of the observed unscaled mass tag peak intensities across technical replicates.

The method is a two-step method. In step one, we determine in which fractions

the protein is present and in step two, we make the final assignment of where the

protein is most abundant. We first identify the peptides that were observed in each

fraction that also map to the protein. For each of these peptides, we then estimate the

peptide-level mean abundance as the average of observed peptide abundances over

the sample. For example, if the peptide was observed in 10 of the 12 samples, the

peptide-level mean abundance for this protein is the sum of the observed abundances

divided by 12. Next, we estimate the protein abundance and the standard error of

the protein abundance in each fraction. The estimated protein abundance in the

fraction is the simple average of the estimated peptide-level mean abundances that

map to that protein. The next section describes the full mathematical details of our

method, including the details for estimating the standard error of protein abundance

4



estimates.

In step one, we determine if a protein is present in a fraction by calculating the

t-statistic that would correspond to testing the null hypothesis that the mean protein

abundance is zero in the fraction versus the one-sided alternative hypothesis, that the

mean protein abundance is greater than zero in the fraction. Practically speaking,

the mean protein abundance cannot be zero since we are working with observed data

but the t-statistic still provides a useful index for deciding whether or not the protein

is present in the fraction. We decided that the protein was present in the fraction if

the p-value was less than α = 0.01.

Step two assigns the protein to the fraction(s) in which the protein is most abun-

dant. If the protein is present in only one fraction, we assign the protein to that

fraction. However, consider the case for which the protein is present in multiple

fractions. We would like to make a call as to where the protein is most abundant

and the likely subcellular fraction of primary localization. If the protein is present

in two fractions, we perform Welch’s t-test for unequal sample sizes and unequal

variances (Welch, 1947) to decide if the protein abundance for one fraction is higher

than the protein abundance for the other fraction. If it is, we assign the protein to

the fraction with the highest abundance. If there is not a significant difference in the

abundances, we assign the protein to both fractions. If the protein is present in more

than two fractions, we use Hsu’s procedure for multiple comparisons with unequal

sample sizes (Hsu, 2006) at the α = 0.01 level to determine the fraction, or fractions,

in which the protein is most abundant. The mathematical details for carrying out

this procedure are given next.
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2.2.2.1 Statistical method details

Let xijkst be the peptide peak intensity for protein i, peptide j, fraction k, sample

s, and technical replicate t. Thus, the peptide abundance is Yijks = log( 1
m

∑m
t=1 xijkst)

for protein i, peptide j, fraction k, and sample s where i = 1, 2, . . . ,M , j =

1, 2, . . . ,mik, k = 1, 2, . . . , K, s = 1, 2, . . . , n, and t = 1, 2, . . . ,m. We set Zijks = 1 if

the peptide is observed in the sample and Zijks = 0 if the peptide is not observed. In

reality, it is possible that Zijks = 1 but the peptide is mis-identified or that Zijks = 0

but the peptide is actually present; it is possible that we have left censoring in that

low abundances may not be observed. In the simulation study, we evaluated the

method under these conditions.

Let µijk be the mean abundance of peptide j corresponding to protein i in fraction

k over all hypothetical samples. Using properties of conditional expectation, we can

write:

µijk = E(Yijks)

= E(Yijks|Zijks = 1)× Pr(Zijks = 1) + E(Yijks|Zijks = 0)× Pr(Zijks = 0)

= θijk × τijk + εijk

where εijk represents the expected abundance of the peptide in the case of censoring,

τijk = Pr(Zijks = 1) is the probability that peptide j that corresponds to protein i is

present in a randomly-selected sample from fraction k, and θijk = E(Yijks|Zijks = 1)

is the expected abundance for this feature, given that it is present in the sample.

A natural estimate for θijk is the average of the observed abundances of peptide
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j corresponding to protein i in fraction k:

θ̂ijk =

∑n
s=1 ZijksYijks∑n

s=1 Zijks
=

1

nijk

n∑
s=1

ZijksYijks,

where nijk =
∑n

s=1 Zijks is the number of times this feature was observed in the sam-

ples. A natural estimate for τijk is the proportion of times peptide j corresponding

to protein i was identified in fraction k: τ̂ijk = nijk/n. Thus, we can estimate µijk

as:

µ̂ijk = θ̂ijk × τ̂ijk =
1

n

n∑
s=1

ZijksYijks.

Note that this differs from the simple average of the observed intensities, which would

equal (n/nijk)× µ̂ijk. In cases where a peptide is observed in some samples but not

others for a given fraction, µ̂ijk will attenuate the simple average toward zero, taking

into account the frequency of unobserved intensities.

Let ωik be the protein-level mean abundance for protein i in fraction k. This can

be expressed as the average of the peptide-level expectations:

ωik =
1

mik

mik∑
j=1

µijk.

We estimate ωik as:

ω̂ik =
1

mik

mik∑
j=1

µ̂ijk.
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To derive the standard error of µ̂ijk, we compute:

Var(µ̂ijk) =
n

n2

{
EZ

[
Var
(
ZijksYijks|Zijks = zijks

)]
+VarZ

[
E
(
ZijksYijks|Zijks = zijks

)]}
=

1

n

{
EZ

[
(1− Zijks)× 0 + Zijks × σ2

ijk

]
+VarZ

[
(1− Zijks)× 0 + Zijks × θijk

]}
=

1

n

{
σ2
ik × τijk + θ2ijk × τijk(1− τijk)

}

where

σ2
ijk = Var(Yijks|Zijks = 1)

which is estimated by

σ̂2
ijk =

1

nijk − 1

n∑
s=1

(YijksZijks − θ̂ijk)2Zijks.

We can estimate σ2
ik as the pooled sample variance of the observed abundances:

σ̂2
ik =

∑mik
j=1(nijk − 1)σ̂2

ijk∑mik
j=1(nijk − 1)

.

We estimate Var(µ̂ijk) by substituting the estimates for µijk, σij, and τijk. Similarly,

the variance of the protein-level mean abundance is:

Var(ω̂ik) =
1

m2
ik

mik∑
j=1

Var(µ̂ijk)

and can be estimated by substituting the estimates V̂ar(µ̂ijk).

8



For the purposes of deciding whether protein i is present in the population at

fraction k, we calculate the t-statistic

tik =
ω̂ik

ˆs.e.(ω̂ik)
,

with

dfik =

(
mik∑
j=1

nijk

)
−mik

where ω̂ik and ˆs.e.(ω̂ik) are estimates of the parameter and its standard error, re-

spectively. We then assign p-values

pik = 1− Pr(tik < T ),

where T ∼ tdfik . We decide that there is significant evidence that protein i is present

in fraction k if pik ≤ α1. For this study, we set α1 = 0.01 to be conservative but one

could increase α to have a greater chance of identifying subcellular localizations.

Now we perform Step 2. In some cases, pik ≤ α1 in multiple fractions so a

decision must be made to determine the set of fractions, Gi, where the protein is most

abundant. Choose α2 at which to do the following tests. We chose α2 = α1 = 0.01.

For protein i, let

Ĝi = {k : ω̂ik are not significantly different}

If the protein is present in two fractions at the α1 level, use Welch’s t-test (Welch,

1947) for unequal sample sizes and unequal variance to compare the estimated protein

abundances. If the resulting p-value ≤ α2 we decide that the fraction corresponding

to the highest abundance is in Ĝi. Otherwise, both fractions are in Ĝi. If the protein
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is present in more than two fractions, use Hsu’s multiple comparison procedure for

unequal replications at the α2 level (Hsu, 2006). Based on these results, include or

exclude locations in Ĝi.

When performing Hsu’s procedure (Hsu, 2006), let Hi = {k : pik ≤ α1}. Instead

of using the MSE, let the pooled sample variance be calculated as follows:

σ̂2 =

∑
k∈Hi dfikσ̂

2
ik∑

k∈Hi dfik
,

so that the total degrees of freedom for error is ν =
∑

k∈Hi dfik. This is appropriate,

in this case, since we estimate ωik by estimating mik µijk’s and not merely by the

sample average. By doing so, we account for the loss in the degrees of freedom.

Let t = |Hi|, c = 1, 2, . . . , t and s = 1, 2, . . . , t− 1 : s 6= c. For c = 1, 2, . . . , t and

k ∈ Hi, let ω̂ik = µ̂c so that the cth location is the control for Dunnett’s multiple

comparison with a control (MCC) procedure. Compute:

µ̂c − µ̂s + dcσ̂

√
1

nic
+

1

nis

dc = mdα2,t−1,ν

such that dα2,t−1,ν is Dunnett’s one-sided critical value at level α2 and

m = max
s 6=c
{1 + 1.07(1− nis

nic
)}

. Once this is completed for all s 6= c, let

D+
c = min

s 6=c

{
µ̂s − µ̂s + dcσ̂

√
1

nic
+

1

nis

}

. If D+
c < 0 set D+

c = 0. Repeat this for each of c = 1, 2, . . . , t so that we have t
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upper bounds equal to D+
c . If D+

c > 0, k ∈ Gi.

2.2.3 Simulation study

A simulation study was carried out to test the validity of the two-step process

of assigning protein localization. First, the simulated data were generated such

that there were 100 proteins assigned to each subcellular fraction. The first 100

proteins were assigned to the periplasm, the second 100 proteins were assigned to

the cytoplasm, and so on. Call the fraction where the protein was assigned the “target

fraction” and all other fractions where the protein was not assigned the “non-target”

fractions where we simulate false positives in the data. In addition to false positives,

there may be left censoring so we devised a “missingness” model to simulate the

possibility that a peptide could be present in a sample but not observed.

To assess the accuracy of the procedure in determining protein presence (Step 1),

we evaluated the Type I error rate, the proportion of times that the method correctly

assigned p-values ≤ 0.01 to the target fraction, and the proportion of the time that

it correctly classified the fraction as either target or non-target. To evaluate the final

protein assignment procedure (Step 2), we performed three tests. First, we calculated

the probability that the fraction with the highest estimated abundance, the target

location, was indeed assigned. Next, we computed the percent of the time that the

target fraction’s p-value was ≤ 0.01 and the target fraction was included in the final

assignment. And finally, to gain perspective on the precision of this procedure, we

calculated the average number of times that more than one fraction was included in

the final assignment when only one fraction should have been included. The details

of the simulation study are given next.
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2.2.3.1 Simulation study details

For simplicity, we allowed for only one peptide, j, in any fraction, with a to-

tal number of samples equal to 9. The observations from the target fraction are

distributed differently from the observations of the “non-target” fractions. For the

target fraction, let ωik ∼ N(10, 2) and σik ∼ Exp(1). Then, for protein i in the

target fraction, Yijks ∼ N(ωik, σik) and for protein i in any of the other fractions,

Yijks ∼ N(3, 1).

Additionally, we must take left censored data into account. For this type of data,

the lower the peptide abundance, the more likely it is that the peptide is not observed

in the sample. Recall that Zijks = 1 if a peptide is observed; otherwise, Zijks = 0. In

our missingness model, P (Zijks = 1) is a function of Yijks so that higher values of Yijks

produce higher probabilities of being observed. Then, Zijks ∼ Bernoulli(P (Zijks =

1)). The function used to generate these probabilities, illustrated in Figure 2.1, is a

scaled logistic(µ = 5, s = 2) cumulative distribution function.

P (Zijks = 0|Yijks = yijks) = 1− 1.08

1 + e−(yijks−5)/2
+

1

1 + e−(−5/2)

We evaluated the accuracy of the method in terms of six tests.

Test 1: To assess the Type I error rate, we calculated the proportion of times we

decided the protein was present in a fraction but it was actually not present.

Test 2: In order to assess the accuracy, we calculated the proportion of the time

that p-values ≤ 0.01 were correctly assigned to the target fraction.

Test 3: To assess the overall accuracy, we calculated the proportion of the time

that we correctly assigned the proteins to the target fraction and correctly assigned

proteins not in the target fraction to the non-target fractions.

To test the soundness of the method in making the final assignment (Step 2),
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Figure 2.1: Illustration of the “missingness” function used in the simulation study.
The x-axis represents the peptide abundance and the y-axis represents P (Zijks =
0|Yijks = yijks).

it is important to understand that parts of the results of these tests depend on the

results of the previous tests. First, we filtered the data based on the p-values from

the protein presence test and only considered those fractions with p-values ≤ 0.01 as

candidates for Ĝi. If a protein was not present in a fraction, it was considered not

to be in Ĝi. Recall that

Ĝi = {k : ω̂ik are not significantly different}

and that at the α2 = 0.01 level, the probability that the largest abundance should

be in Gi is 1− α2 = 0.99.

Test 4: First, we considered only the target fractions and calculated the propor-

tion of the time that the target fraction was in Ĝi. This assessed the probability

13



that the fraction with the highest simulated abundance (the target fraction) was

considered “best”. This proportion should be greater or equal to 0.99.

Test 5: To evaluate the overall correctness of both the presence and final assign-

ment we computed the proportion of the time that the target fraction was in Ĝi.

Test 6: We also tested the precision of the procedure as follows: In the previous

tests, a success was defined as the target fraction being in Ĝi but it was possible

that there was more than one fraction in Ĝi and it is important to determine, on

average, how many times this occurred. Thus, we calculated the average number of

times that there was more than one fraction in Ĝi when there should have only been

one fraction in Ĝi and called this measure the precision of the test.

2.3 Results and discussion

2.3.1 Proteins resolved to a single subcellular fraction

Our method is particularly informative where peptides for a protein are measured

in multiple fractions, but the likely fraction of localization is not apparent. For

example, unique peptides for 483 proteins were identified in multiple subcellular

fractions for R. sphaeroides 2.4.1 cultured under non-photosynthetic conditions. Of

these, there was not significant evidence (at the α = 0.01 level) of protein presence in

any fraction for 131 proteins but the primary fraction of localization was resolved for

270 proteins (56%). When we relaxed the Type I error rate to the α = 0.05 level, 334

of the 483 proteins (69%) for which unique peptides are observed in multiple fractions

were resolved to a primary fraction. Similarly, for the photosynthetic condition, there

was not significant evidence at the α = 0.01 level to conclude that the protein was

present in any fraction for 162 of the 559 proteins but the primary fraction for 249

of 559 (45%) proteins were resolved. When we increased α = 0.05, 318 of the 559

proteins (57%) in the photosynthetic condition were resolved to a primary fraction.
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Results from our statistical assignment of proteins to subcellular fractions were

compared to previous non-statistical assignments. Zeng et al., 2007 (Zeng et al.,

2007) focused on proteomes of the intra-cytoplasmic membrane (ICM), cytoplasmic

membrane (CM), and outer membrane (OM) fractions in order to better characterize

proteins associated with the ICM. Ten proteins were classified as ICM unique, while

another 18 were classified as ICM associated (larger number of peptides observed in

the ICM, but peptides also the CM), and 42 proteins were classified as CM enriched

(larger number of peptides observed in the CM, but peptides also observed in the

ICM).

Our results agreed with the assignment of well characterized photo apparatus pro-

teins such as PufM (RSP0256), PufL (RSP0257), and pigment proteins (RSP0314,

RSP1556) as ICM unique. Welch’s t-test for the photo reaction center protein

(RSP0291) could not reject the null-hypothesis (no significance difference in its abun-

dance between the ICM and CM), so it was assigned to both subcellular fractions.

However, our analysis could not validate the observation made by Zeng et al.,

2007 (Zeng et al., 2007) concerning RSP6124 (Conserved hypothetical), RSP1760

(Conserved hypothetical) and RSP3246 (Putative D-alanyl-D-alanine carboxypepti-

dase) as ICM unique. While peptides for RSP6124 were confidently identified in all

5 subcellular fractions, Hsu’s procedure (at the α = 0.01 level) assigned this protein

to the cytoplasm. For RSP1760, Hsu’s procedure could not resolve the primary sub-

cellular fraction among the OM, ICM, and CM. This is in contrast to Western blot

evidence that showed greater banding intensity of histidine tagged RSP1760 in the

ICM compared to the CM (Zeng et al., 2007). Finally, our analysis confidently iden-

tified peptides for RSP3246 only in the cytoplasm and periplasm, with a statistically

greater abundance of this protein occurring in the cytoplasm.

The ability to resolve the primary fraction of localization using this method allows
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for the development of biological hypotheses related to specific proteins. Peptides for

RSP0842, annotated as a putative porin protein (BLAST result against SwissProt),

were identified in multiple subcellular fractions for both R. sphaeroides 2.4.1 non-

photosynthetic and photosynthetic cell states. In the non-photosynthetic cell state,

the estimated standard error associated with the estimated abundance of RSP0842

in each fraction resulted in not assigning the protein to any fraction. However,

under conditions that induce photosynthesis, we assigned (at the α = 0.01 level)

RSP0842 to the intracytoplasmic membrane (ICM; p-value = 0.007) and did not as-

sign it to the periplasm (p-value = 0.185), cytoplasmic membrane (p-value = 0.045),

or outer membrane (p-value = 0.022) fractions. Porin proteins are largely consid-

ered to be outer membrane proteins that facilitate the passage of small hydrophilic

molecules. When we increased α from 0.01 to 0.05, the p-value corresponding to

the outer membrane is significant and the method assigns the protein to the outer

membrane, cytoplasmic membrane, and ICM. To our knowledge, the association of

RSP0842 with the ICM has not been reported for R. sphaeroides 2.4.1 and follow-up

experimentation to confirm this statistical based observation is needed.

2.3.2 Comparison to PSORTb

We applied our method to the data collected on R. sphaeroides 2.4.1 and com-

pared the results to PSORTb’s predictions. PSORTb v.3.0 predicts either a single

fraction or “Unknown” if the protein may be present in multiple fractions. In this

case, it is recommended that the long form of the PSORTb analysis be studied to

determine a prediction. For gram negative proteins, the possible final predictions for

PSORTb are “Unknown”, “Cytoplasmic”, “CytoplasmicMembrane”, “Periplasm”,

“OuterMembrane”, and “Extracellular”. In both conditions, our method may re-

turn any combination of “Cytoplasmic”, “CytoplasmicMembrane”, “Periplasm”, and
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“OuterMembrane”. Proteins in the photosynthetic condition may also have the

assignment of “ICM” which stands for intra-cytoplasmic membrane. Our method

returned assignments for 567 proteins in at least one condition, either the non-

photosynthetic or photosynthetic condition, or both. Of these 567, PSORTb returned

“Unknown” for 110 (19%) proteins. We compared our assignments to PSORTb’s

predictions for the remaining 457 proteins.

There were 384 proteins in the non-photosynthetic condition. Our method and

PSORTb agreed exactly for 243 (63%) of the proteins. However, there were an

additional 62 proteins for which we assigned multiple fractions, with PSORTb’s

prediction included in our assignment. Thus, there was at least some overlap for 305

proteins (79.4%).

In the photosynthetic condition, there were 376 proteins for which both PSORTb

and our method returned an assignment or prediction. Of these proteins, our method

assigned the exact same fraction as PSORTb for 202 proteins (54%). For those pro-

teins that we assigned to have multiple fractions, PSORTb’s prediction was included

in our assignment for 113 proteins. This means there was at least some overlap in

the predictions for 315 proteins (84%) in the photosynthetic condition.

Overall, there were 317 of the 457 proteins (69.4%) that our assignment matched

PSORTb’s prediction exactly in either the non-photosynthetic or photosynthetic con-

dition and our assignment for 387 proteins (84.7%) had at least some overlap with

PSORTb’s prediction in either the non-photosynthetic or photosynthetic condition.

There were 303 proteins for which we returned an assignment in both conditions and

only 33 (11%) of these proteins did not have some overlap with PSORTb in at least

one condition.

We randomly chose a few proteins for which we made the same assignment under

both conditions but our assignment differed from PSORTb’s prediction. Figure 2.2
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and Figure 2.3 correspond to the protein ABA79306 under the non-photosynthetic

and photosynthetic conditions, respectively. Our method assigned the protein to

the periplasm in both conditions, while PSORTb predicted the protein was in the

cytoplasmic membrane. In the non-photosynthetic condition (Figure 2.2), there

were 50 observations of peptides corresponding to this protein in the periplasm and

27 observations of peptides corresponding to this protein in the cytoplasm but no

observations of peptides corresponding to this protein in the cytoplasmic membrane.

In the photosynthetic condition (Figure 2.3), there were 44 observations of peptides

in the periplasm and 2 observations of peptides in the cytoplasm but no observations

of peptides corresponding to this protein in the cytoplasmic membrane.

Figure 2.2: Boxplots of the observed peptide abundance for various fractions corre-
sponding to protein ABA79306 under the non-photosynthetic condition. There were
50 observations in the periplasm and 27 observations in the cytoplasm.
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Figure 2.3: Boxplots of the observed peptide abundance for various fractions corre-
sponding to protein ABA79306 under the photosynthetic condition. There were 44
observations in the periplasm and 2 observations in the cytoplasm.

Figure 2.4 and Figure 2.5 correspond to the ABA78029 protein. We assigned

the protein to the outer membrane under both conditions, while PSORTb predicted

the protein is located in the cytoplasmic membrane. Under the non-photosynthetic

condition (Figure 2.4), there were 3 observations of peptides in the periplasm, 5 ob-

servations of peptides in the cytoplasmic membrane, and 15 observations of peptides

in the outer membrane. Under photosynthetic conditions (Figure 2.5), there were 4

observations of peptides in the cytoplasmic membrane and 20 observations of pep-

tides in the outer membrane. Furthermore, the boxplots of the peptide abundance

illustrate that the peptide abundances observed in the cytoplasmic membrane are

much smaller than the peptide abundances observed in the outer membrane.
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Figure 2.4: Boxplots of the observed peptide abundance for various fractions corre-
sponding to protein ABA78029 under the non-photosynthetic condition. There were
3 observations in the periplasm, 5 observations in the cytoplasmic membrane, and
15 observations in the outer membrane.
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Figure 2.5: Boxplots of the observed peptide abundance for various fractions corre-
sponding to protein ABA78029 under the photosynthetic condition. There were 4
observations in the cytoplasmic membrane and 20 observations in the outer mem-
brane.

2.3.3 Simulation study results

The simulation study revealed that the method produces sound and accurate

results for the simulated data. We used Wilson Score confidence intervals on all

of the proportions because its coverage better approaches the nominal value for

small samples than the usual Wald confidence interval. The Wilson Score interval is

computed as follows:

p̂+
z2
1−α/2
2n
± z1−α/2

√
p̂(1−p̂)
n

+
z2
1−α/2
4n2

1 +
z2
1−α/2
n

,
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where p̂ is the sample proportion, n is the number of samples, and z1−α/2 corresponds

to 1− α/2 percentile of the standard normal distribution.

When assessing the procedure that determines protein presence in a fraction,

the Type I error rate at the α = 0.01 level was 0.006 with a 99% Wilson Score

confidence interval of [0.004,0.015]. The proportion of the p-values ≤ 0.01 in the

target fraction was 0.926 with a 99% Wilson Score confidence interval of [0.895,

0.957]. Additionally, we found that the proportion of p-values ≤ 0.01 in the target

fraction and the p-values > 0.01 in the non-target fractions was 0.980 with a 99%

Wilson Score confidence interval of [0.973, 0.988].

Likewise, tests on the final assignment procedure produced excellent results. For

the first test, the data were filtered based on the presence of a protein in a fraction

at the α = 0.01 level. That is, a protein cannot be considered to have the largest

abundance if it is not present in the fraction at a significant level. When the data

were first filtered, the proportion of times that the target fraction was included in

the final assignment was 1.00 with a 99% Wilson Score confidence interval of [1,

1]. In estimating the overall success rate, we found that the proportion of times

the method correctly identified both presence of a protein and the protein’s correct

fraction was 0.926 with a 99% Wilson Score confidence interval of [0.897, 0.957].

Lastly, the proportion of times that the final assignment contained more than one

fraction when it should only contain one fraction was 0.00 with a 99% Wilson Score

confidence interval of [0.000, 0.026]. This last result indicates that the procedure

accurately classifies the target fraction as being in the final assignment set but it

does not spuriously include non-target fractions in the final assignment set.
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2.4 Conclusions

Our method is very flexible. It can be applied to any organism for which this

type of data are available. It also compared very well with PSORTb. Overall, our

assignments matched PSORTb’s prediction exactly in either the non-photosynthetic

or photosynthetic condition 69% of the time and at least partially matched PSORTb’s

prediction in at least one condition for 85% of the proteins. Additionally, our method

was able to assign a fraction for approximately 19% more proteins than PSORTb.

The results of the simulation study further confirmed that the methods outlined

in this paper are sound and produce very good results. The Type I error rate’s

confidence interval includes 0.01 and exceeds 0.01 by 0.005, an acceptable margin.

The proportion of times that correct p-values were assigned was 0.98 with a lower

bound of 0.973. Furthermore, combining the protein presence estimations with Hsu’s

procedure gave a proportion of correctly identifying the presence of a protein and its

fraction of 0.926, with a lower bound of 0.897. This implies that 90% of the time, the

method got it right. Another important facet of Hsu’s procedure is that more than

one fraction can be included in the final assignment. For this reason, it is important

to test the precision of our final assignment and make sure that it did not spuriously

include other fractions. This event never occurred in the simulation study and a 99%

confidence interval had the upper limit of the probability of this event occurring at

0.026 (2.6%). Thus, not only is this method accurate, it is also precise.
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3. PREDICTING THE LETHAL PHENOTYPE OF THE KNOCKOUT

MOUSE BY INTEGRATING COMPREHENSIVE GENOMIC DATA∗

3.1 Introduction

The mouse is the premier model organism for interpreting the human genome and

plays a key role in studying human diseases (Collins et al., 2007). Importantly, the

mouse is the only vertebrate species in which pre-selected genes can be deliberately

mutated (knocked out) such that the phenotypic effect associated with a gene can

be defined in a precise manner. Among various phenotypic effects of disrupting a

mouse gene, the lethal phenotype is of particular interest.

The primary biological questions we aimed to address were as follows:

1. Which genomic features are most important to predicting the lethal phenotype

of mouse single-gene knockouts?

2. Through reasonable computational approaches, to what extent can the knock-

out lethality be predicted from a wide range of genomic features?

This study compared the accuracy of three classification methods: logistic regres-

sion, support vector machine (SVM), and random forest. SVM and random forest

are machine learning methods that can be used to classify a binary response. In

order to fairly compare the methods, we used least absolute shrinkage and selection

∗Part of this section is reprinted with permission from “Predicting the lethal phenotype of the
knockout mouse by integrating comprehensive genomic data” by Yuan, Y., Xu, Y., Xu, J., Ball,
R.L., and Liang, H., 2012. Bioinformatics, 28, 1246–1252. Copyright 2012 by Yuan, Y., Xu, Y.,
Xu, J., Ball, R.L., and Liang, H.
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operator (LASSO) penalty (Tibshirani, 1996) for feature selection and allowed all

methods the same set of features. All the features with non-zero coefficients were

included in feature set.

My role in this endeavor was to apply the random forest technique to the data

using 5-fold cross validation, using LASSO for feature selection, and performing a

study bias correction when assessing the accuracy of the classifiers.

3.2 Methods

3.2.1 Data

Phenotype information was collected from the Mouse Genome Informatics (MGI)

database and the gene coding sequence, protein domain, gene homology and struc-

tural information were downloaded from Ensembl (release 59). There were 4670

genes with a known response (lethal or nonlethal) and 15,175 genes without a known

response. We designated the 4670 genes with a known response as the training set

and the remaining 15,175 genes as the predicting set. For each gene, there were 491

genomic features (Yuan et al., 2012).

3.2.2 Statistical methods

A random forest is a collection of decision trees such that each tree is built from a

random subset of the data. The random forest technique was first introduced in 2001

by Leo Breiman (Breiman, 2001), and since then it has been shown to be a highly

accurate classifier in a number of fields, including genetics (Bureau et al., 2005). We

used the ‘randomForest’ package in R (Liaw and Wiener, 2002) and chose parameter

values according to Breiman’s methodology. Although the default number of trees is

500, we chose to build 5000 trees (ntree = 5000) to obtain more robust results. Each

tree was grown to its full depth (nodesize = 1) and was not pruned. At each node

of each tree, a different random subset of the features was selected, and the Gini
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criterion was used to determine the feature in this subset that produced the best

split of the data. The size of this subset (mtry) was the square root of the number

of possible features. The other parameters were set as defaults.

We used LASSO for feature selection by utilizing the R package ‘glmnet’ (Fried-

man et al., 2010). The value of the tuning parameter, λ, was obtained through a

cross-validation procedure. If the feature had a non-zero coefficient, it was included

in the feature set to be used in each of the classification methods. An overall scheme

of the project is given in Figure 3.1.

Coding sequence

Protein sequence

Gene properties

Spatial expression

Temporal expression

Protein interaction

Epigenetic interaction

Data 
collection

Classifier
construction

Model  
evaluation

LASSO feature selection

5-fold 
cross-validation

Mouse single-gene knockout phenotype
(knockout lethality 1; otherwise 0)

Expression feature

Sequence feature

Interaction feature

Evaluate predictive power

Assess the bias 
in the training set

Training set: 
Genes with an annotated

knockout phenotype

vs.
Predicting set: 

Genes without an annotated 
knockout phenotype  

Logistic regression Random forest Support Vector Machine

Identify the most significant bias

•Final predictions for 
genes without a 
knockout phenotype

•Bias-corrected 
predictive power

ROC curve

Figure 3.1: Overall scheme of the project.

The random forest classifier performed best in terms of area under the ROC

curve, so it was used to make the final predictions for the genes. Since the random
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forest predictions were probability predictions, we chose the cutoff probability for

determining the final classification (1 for lethal, 0 for nonlethal) by maximizing the

accuracy.

We also needed to address the possible study bias in the training set. Some genes

may be studied more often than others because of the results of previous studies

or known interactions. Thus, the training set may contain more frequently studied

genes and we need to take this into account. To assess the possible study bias in

the training set, we computed the mutual information of features across the training

and predicting sets. We found that the training set was particularly biased in terms

of the evolutionary age feature. Ancient genes were more likely to be studied. Thus,

when computing the various accuracy measures, the measures were weighted by the

proportion of the evolutionary age group in the predicting set. There are seven

groups with the first group consisting of genes with evolutionary ages 1-6 and the

last group comprised of genes with an evolutionary age equal to 12.

Let pi be the proportion of evolutionary age group i in the predicting set. From

the 2×2 contingency table, we have the number of positives (P), the total number of

negatives (N), the number of true positives (TP), the number of false negatives (FN),

the number of false positives (FP), and the number of true negatives (TN). Then,

accuracy (Acc), positive predictive value (PPV), negative predictive value (NPV),
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and recall are defined as follows:

Acc =
TP+TN

P+N

PPV =
TP

TP+FP

NPV =
TN

TN+FN

Recall =
TP

TP+FN

We computed each measure for each evolutionary age group i and took the weighted

measures of accuracy as follows:

Acc* =
∑
i

piAcci

PPV* =
∑
i

piPPVi

NPV* =
∑
i

piNPVi

Recall* =
∑
i

piRecalli

3.3 Results

The gene features were categorized into three different groups:

• The genomic sequence set (S) is comprised of 373 features pertaining to coding

sequences, protein sequences, and other properties such as gene regulation.

• The mRNA expression set (E) is comprised of 94 features pertaining to tissue

expression profiles and developmental stage profiles.
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• The interaction set (I) is comprised of 24 features that pertain to mouse protein-

protein interaction and mouse epigenetic histone modification interactions.

Table 3.1 lists the top 20 features selected by LASSO based on the S+E+I gene

feature set. The feature with the largest coefficient is evolutionary age. In the mRNA

expression set (E), expression level in utero and expression level in development stage

15 ranked highest. Protein connectivity had the largest coefficient in the interaction

set (I). Although some of the features selected also exhibited a high correlation with

lethality, others, such as paralog sequence identity, did not show a high correlation

with knockout lethality.

Feature LASSO coefficient
Evolutionary age 0.473
Expression in utero 0.436
Expression in TS15 0.297
Paralog sequence identity -0.296
Total miRNA target sites 0.254
Expression in TS11 0.196
Connectivity 0.160
Expression in TS17 0.146
Expression in TS26 0.132
Expression in TS18 0.129
Total histone modification 0.128
Asparagine content 0.113
5-UTR length -0.110
Expression in upper spinal cord -0.110
Leucine content -0.106
Expression in bone -0.104
Expression in TS5 0.100
Amino acid length 0.093
Expression in ovary 0.089
Expression in TS19 0.086

Table 3.1: Top 20 informative genomic features related to knockout lethality, as
selected by LASSO
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Using only interaction features (I), we achieved a low AUC=0.598 but sequence

features alone (S) returned an AUC=0.738 and expression features alone (E) gave

an AUC=0.725. As more features were added to the classifiers, the AUC increased

with the highest AUC=0.782 achieved when all features were candidates for inclusion

(S+E+I). Without correcting for the study bias of the evolutionary age feature in

the training set, the accuracy for the S+E+I random forest classifier was 72.5% and

recall was 62.9%. When we corrected for the study bias (as described in the Methods

section), we achieved an accuracy (Acc*) of 70.9% and recall equal to 60.7%. Tables

3.2 and 3.3 summarize the performance of the random forest classifier across different

feature sets. Table 3.2 gives the values before correcting for the study bias in the

evolutionary age feature in the training set and Table 3.3 gives the values after we

correct for the study bias in the training set.

Feature set # Features included Cut-off Acc PPV NPV Recall
S 36 0.48 0.709 0.624 0.737 0.438
E 24 0.49 0.705 0.615 0.734 0.432
I 20 0.58 0.644 0.598 0.650 0.184
E+I 27 0.57 0.697 0.720 0.693 0.323
S+E 57 0.54 0.727 0.703 0.733 0.391
S+I 37 0.49 0.706 0.636 0.738 0.528
S+E+I 44 0.46 0.725 0.637 0.777 0.629

Table 3.2: Results for the various feature sets without correcting for study bias.
Cut-off was the value at which the probability prediction classified the gene as lethal.
Everything above cut-off was considered lethal. Accuracy (Acc), positive predictive
value (PPV), negative predictive value (NPV) and Recall were defined previously.

3.4 Discussion and conclusion

We compared the performance of three classifiers: logistic regression, support

vector machine, and random forest. We found that the random forest performed

best in terms of AUC and we achieved the best results (Acc=0.725) on the S+E+I

feature set, which included 44 of 491 features in the final classifier. Because mouse
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Feature set # Features included Cut-off Acc* PPV* NPV* Recall*
S 36 0.47 0.744 0.568 0.756 0.331
E 24 0.55 0.720 0.599 0.725 0.296
I 20 0.49 0.628 0.551 0.634 0.291
E+I 27 0.54 0.679 0.670 0.667 0.371
S+E 57 0.54 0.745 0.646 0.740 0.315
S+I 37 0.49 0.696 0.600 0.706 0.499
S+E+I 44 0.46 0.709 0.642 0.738 0.607

Table 3.3: Results for the various feature sets when we corrected for the study bias in
the training set. Cut-off was the value at which the probability prediction classified
the gene as lethal. Everything above cut-off was considered lethal. Accuracy (Acc*),
positive predictive value (PPV*), negative predictive value (NPV*) and Recall* were
defined previously.

knockout experiments are so time-consuming, we hope that scientists will use our

method to choose the best genes to investigate further.

We also investigated a large number of features that had not previously been

studied. We found that evolutionary age was consistently chosen as one of the

top features for predicting lethality. This suggests that disrupting an evolutionary

ancient gene results in more severe consequences. Also, although paralog sequence

identity did not have a high correlation with knockout lethality, it was also included

in the model because of a large negative LASSO coefficient. This suggests that if

a gene is removed and that gene has a closely related copy that is not removed,

there is not likely to be a lethal consequence. Other interesting features related to

gene expression, such as expression level in utero and TS15, were also identified and

deserve further study (Yuan et al., 2012). The paper (Yuan et al., 2012) discusses

these findings in more depth.
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4. COMPARATIVE ANALYSIS OF SOMATIC COPY-NUMBER

ALTERATIONS ACROSS DIFFERENT HUMAN CANCER TYPES

REVEALS TWO DISTINCT CLASSES OF BREAKPOINT HOTSPOTS∗

4.1 Introduction

Copy-number variations occur when parts of the cell’s DNA develop an abnor-

mal number of copies, either too many or too few. Somatic copy-number alterations

(SCNAs) play a significant role in the development of human cancers and studying

SCNAs can lead to important discoveries of cancer-causing genes and the develop-

ment of possible treatment strategies.

DNA breakpoints are defined as breaks in the chromosome that later recombine.

Breakpoints that are clustered in particular regions of the human genome are called

breakpoint hotspots, or hotspots. In this study, we consider data from eight different

cancer types (listed in Table 4.1) to investigate cancer-type specific hotspots and

common hotspots. Cancer-type specific hotspots are identified in one or two of the

eight cancer types and common hotspots are identified in at least seven of the eight

cancer types studied. Previous studies focused on pooled data sets from different

cancer types or only on a single cancer type. We utilized data from The Cancer

Genome Atlas (TCGA) project to perform a comparative analysis of breakpoints

across eight cancer types. The cancer types are listed in Table 4.1 and summary

∗Part of this section is reprinted with permission from “Comparative analysis of somatic copy-
number alterations across different human cancer types reveals two distinct classes of breakpoint
hotspots” by Li, Y., Zhang, L., Ball, R.L., Liang, X., Li, J., Lin, Z., and Liang, H., 2012. Human
Molecular Genetics, 21, 4957–4965. Copyright 2012 by Li, Y., Zhang, L., Ball, R.L., Liang, X., Li,
J., Lin, Z., and Liang, H.
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statistics on the number of breakpoints for each cancer type are given in Table 4.2.

Cancer type Abbreviation Number of samples
Breast invasive carcinoma BRCA 667
Glioblastoma multiforme GBM 441
Ovarian serous cyst adenocarcinoma OV 500
Kidney renal clear cell carcinoma KIRC 459
Colon adenocarcinoma COAD 892
Uterine corpus endometrioid carcinoma UCEC 272
Lung squamous cell carcinoma LUSC 187
Lung adenocarcinoma LUAD 163

Table 4.1: Eight cancer types investigated in this study.

Cancer type Min. 1st Quartile Median Mean 3rd Quartile Max.
BRCA 0 11 17 40.22 27 1546
GBM 0 4 7 21.46 13 836
OV 1 16 23 41.33 34.75 1021
COAD 0 2 4 17.97 8 819
KIRC 0 0 2 16.15 4 970
UCEC 0 2 4 13.04 8 524
LUSC 0 2 4 10.47 7 426
LUAD 0 1 2 7.58 5 338

Table 4.2: Summary statistics on the number of breakpoints for eight cancer types
investigated in this study.

My role in this study was to use the random forest technique to investigate the

predictability of cancer-type specific hotspots and common hotspots using genomic

features and to investigate the relationship between breakpoint frequency and the

genomic features using multivariate regression analysis.

4.2 Methods

The random forest classifiers were implemented using the ‘randomForest’ pack-

age (Liaw and Wiener, 2002) in R according to Breiman’s methodology (Breiman,

2001). Although the default number of trees is 500, we chose to build 1000 trees

(ntree=1000) to obtain more robust results. Each tree was grown to its full depth
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(nodesize=1) and was not pruned. At each node of each tree, a different random

subset of the features was selected, and the Gini criterion was used to determine the

feature in this subset that produced the best split of the data. The size of this subset

(mtry) was the square root of the number of possible features (mtry=
√
p, where p is

the number of features). Otherwise, the parameter values were left at their default

values. To assess the predictive power, we performed 10-fold cross-validation: in

each round, 90% of the data were used as the training data, and the remaining 10%

were used as the test data.

To investigate the relationship between the various genomic features and break-

point frequency, we first transformed the breakpoint frequency so that it was ap-

proximately normally distributed. If yi is the breakpoint frequency, the transformed

breakpoint frequency is defined as yi
t = yi

yi+µ̃
where µ̃ is the median of the sample. We

randomly divided the data into a training and test set with 70% of the data assigned

to the training set and 30% of the data assigned to the test set. We used forward

stepwise regression to investigate the relationship between the 19 genomic features

and breakpoint frequency. The 19 genomic features included sequence features, DNA

structural motifs, evolutionary features, and functional features.

4.3 Results

Table 4.3 summarizes the results of the forward selection regression analysis. We

computed the adjusted R2 over the training data and the R2 over the test data at

each step in the forward regression. The features were added in the order presented.

“All” is the sum of breakpoints across cancer types. The features that were selected

the most were indel rate, substitution rate, exon density, and sine. These features are

also shown to have high variable importance measures in the random forest (Figure

4.2 and Figure 4.3).
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Cancer
type

Features Included Adj R2

(Training)
R2

(Test)

All indelRate + exon + subRate + sine + line +
recRate + gc

0.223 0.156

BRCA subRate + sine + exon + recRate + gc + line 0.143 0.111

GBM subRate + exon + sine + fra + line + gc 0.154 0.103

OV indelRate + exon + subRate + sine + line +
slipped

0.235 0.153

KIRC subRate + triplex + recRate + exon 0.073 0.103

COAD subRate + exon + gc + cons17way 0.099 0.080

UCEC exon + subRate + sine + recRate + cruciform +
line + repTime + zdna

0.218 0.171

LUSC subRate + indelRate + gc + recRate + sine +
cruciform

0.099 0.066

LUAD indelRate + subRate + exon 0.073 0.064

Table 4.3: Results from the forward selection regression on the transformed break-
point data.

There were a total of 2822 hotspots. Of these, 138 were classified as common

hotspots (flag = 7 or 8) and 217 were classified as cancer-type specific hotspots (flag

= 1 or 2). We built two random forest classifiers. The first attempted to distinguish

between a common hotspot and all other hotspots. The second distinguished between

a cancer-type specific hotspot and all other hotspots. Figure 4.1 displays the ROC

curve of the resulting classifiers. The area under the curve (AUC) is 0.615 for the

cancer-type specific hotspot classifier and 0.748 for the common hotspot classifier.

The random forest classified common hotspots better than it classified cancer-type

specific hotspots. The resulting variable importance plots are shown in Figures 4.2

and 4.3. These plots give a ranking of each feature’s relative importance in predicting

the response.
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Figure 4.2: Variable importance plot for cancer-type specific hotspots. Larger mean
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4.4 Discussion and conclusion

At the time this study was published, it was the most comprehensive analysis

of SCNA data relating to human cancers. It was found that cancer-type specific

hotspots are poorly predicted by genomic features, and these hotspots show a signif-

icant enrichment for cancer genes, while common hotspots do not have this enrich-

ment property and they can be predicted by the relevant genomic features (Li et al.,

2012) . These results highlight the different evolutionary mechanisms present in the

common and cancer-type specific hotspots, and these insights are expected to help

scientists better understand the critical events in tumorgenesis and progression (Li

et al., 2012).
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5. PREDICTING “HEART AGE” USING THE ELECTROCARDIOGRAM

5.1 Introduction

Conventional resting electrocardiography (ECG) is currently used as a tool to

help diagnose both the form and extent of heart disease. However, its limitations

have been well-documented (Ashley et al., 2001; Levy et al., 1990; Sox, Jr et al.,

1989). More advanced techniques, such as spatial/spatiotemporal ECG (Kardys

et al., 2003) and high-frequency QRS ECG (Schlegel et al., 2004), have been devel-

oped that improve the diagnostic power of the ECG (Poplack Potter et al., 2010;

Schlegel et al., 2010). The strategy of diagnosis used by Schlegel et al. (2010) uses a

linear combination of outputs estimated by logistic regression or discriminant anal-

ysis models.

The goal of this study is to predict a subject’s hypothetical age based on the

ECG-related outputs and a diagnosis of “healthy”. We call this hypothetical age

“heart age”. The question is this: given an individual is healthy (that is, no risk

factors) and given the individual’s ECG outputs, what is his/her heart age? The

problem is that we do not observe heart age; we only observe the ECG outputs and

chronological age (body age). Thus, we cannot have a simple regression-type model.

We must find some means of inferring heart age based on the observables and prior

information. A Bayesian approach is a natural solution.

5.2 Data

Since early 2010, investigators in the Cardiovascular and Neurosciences labora-

tories at Johnson Space Center have had access to a database (A-ECG) of advanced

12-lead ECG recordings from healthy individuals, individuals with risk factors, and

individuals with heart disease. These subjects consisted of volunteers from cardiac
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clinics, volunteers from Johnson Space Center and the Universidad de los Andes

and Lund University Hospital, subjects who participated in earlier studies at the

Charleston Area Medical Center, and healthy subjects from Slovenia (Schlegel et al.,

2010). Because of the manner in which subjects were included in this database, the

A-ECG database is not a simple random sample from the population.

Each subject was classified according to their cardiac disease status and, if disease

was present, then also to the general severity of disease. Disease status was diagnosed

based on results from clinical imaging tests (currently, the “gold standard”) so that

if a subject had heart disease, the form and severity of heart disease was generally

known (Schlegel et al., 2010). Subjects were classified as “healthy” if they had no

cardiovascular or other systemic disease and also did not have other risk factors, such

as hypertension, smoking, or diabetes (Schlegel et al., 2010).

We utilized data from 1,439 subjects that were at least twenty years old, had

been given a 5-minute ECG, and were categorized as healthy, diseased, or as having

risk factors. Data from another 510 subjects were set aside to be used in subsequent

studies. Non-patient volunteers with risk factors, such as diabetes or high blood

pressure, were not given a diagnosis.

Subjects were put into 4 groups: healthy non-athletes (HNA), healthy athletes

(A), subjects with risk factors and no diagnosis (RFS), and subjects with disease

(D). Subjects in the HNA group were ordered based on age and every fourth sub-

ject was selected to be in the test set so that 545 subjects were put in the training

set and 183 subjects were put into the test set. The athletes were asymptomatic

volunteers with no evidence of cardiac disease based on a negative history and phys-

ical examination. All were endurance-trained athletes and the majority comprised

Swedish triathletes as well as semiprofessional soccer and handball players of both

sexes who had cardiac magnetic resonance imaging scans demonstrating no evidence

39



of hypertrophic cardiomyopathy nor any other clinical pathology (Poplack Potter

et al., 2010). Descriptive statistics for these groups are given in Table 5.1.

Group #subjects %females %males %20–40 %41-60 %60 and older
HNA(train) 545 41% 59% 56% 36% 8%
HNA(test) 183 43% 57% 55% 36% 9%
A 48 38% 62% 92% 6% 2%
RFS 221 47% 53% 10% 59% 31%
D 441 34% 66% 7% 50% 43%

Table 5.1: Descriptive statistics of the groups used in this study.

5.3 Methods

In the Bayesian paradigm, we assume there is a distribution on the parameter

of interest and we usually take the mean or the mode of the distribution to be the

point estimate of the parameter.

For a given subject, let

x = body age

y = vector of ECG outputs

a = heart age

By Bayes Rule, the posterior distribution for heart age is:

p(a|x,y) =
p(a|x)p(y|x, a)∫
p(a|x)p(y|x, a)da

and the predicted heart age, â = E(a|x,y) =
∫
ap(a|x,y)da, is the mean of the

posterior distribution.

Based on expert opinion, we assume that a subject’s heart age is approximately

normally distributed within 15 years of the subject’s body age so the prior distri-
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bution of heart age, p(a|x) ∼ N(x, 7.52), is a normal distribution with mean x and

standard deviation σa = 7.5.

Specifying the distribution of y given a and x is a bit trickier. Before including

heart age (a) in the distribution, let’s look at how we would get p(y|x) when y is

one dimensional (y = y and k = 1). Assume for the moment that the distribution of

y only depends upon x. Based on plots of body age versus ECG outputs, we found

that there were often slight nonlinear trends so we assumed a quadratic regression

model for the ith healthy subject:

yi|xi = β0 + β1xi + β2x
2
i + νi; νi ∼ N(0, σ2

ν)

for i = 1, 2, . . . , n. So, letting ~y = (y1, y2, . . . , yn)T , ~y|X ∼ N(Xβ, σ2
νI) where

X =



1 x1 x21

1 x2 x22
...

...
...

1 xn x2n


.

At first, we considered using weighted least squares to estimate β = (β0, β1, β2)
T

because the distribution of ages in our sample is not the same as the distribution of

ages in the healthy population. However, provided that the quadratic model holds,

the Gauss-Markov Theorem ensures that we obtain an unbiased estimate of β with

ordinary least squares. Therefore, β̂ = (XTX)−1XT~y is the best linear unbiased

estimator (BLUE). It follows that an unbiased estimate of σ2
ν is σ̂2

ν = 1
n−3

∑n
i=1 e

2
i ,

where e = (e1, e2, . . . , en)T = ~y −Xβ̂ (Monahan, 2008).

Given the estimates of β and σ2
ν , we incorporate heart age into the model. The
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influence of heart age (a) on the distribution of the ECG variable (y) is best illustrated

with an example. Consider the case where y increases as x and a increase and

suppose we look closely at subjects with a particular body age (keep x fixed). If a

were not in the model, we would expect to see a normal distribution of y around

E(y|x) = β0 + β1x+ β2x
2. In Figure 5.1, this distribution is represented by a black

curve. In the case where heart age is greater than body age, we would expect the

mean of y to be shifted right (blue) and if heart age is less than body age, we would

expect the mean of y to be shifted left (red). This leads to the following model:

(y|x, a) = β0 + β1x+ β2x
2 + θ(a− x) + ε,

where ε ∼ N(0, λ2).
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Figure 5.1: Illustration of the effect of heart age on the mean of y.

However, since we do not observe heart age, a, how do we estimate θ? From
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estimating β using least squares, we obtained an estimate of σ2
ν which is, in fact,

equal to Var {θ(a− x) + ε} = θ2σ2
a + Var(ε) and we have specified that σ2

a = 7.52.

If we could also estimate Var(ε) = λ2, we could solve for θ =
√

σ2
ν−λ2
σ2
a

, but we must

take the sign of θ into account. Notice that if y and x have a positive increasing

relationship, θ should be positive but, if y decreases as x increases, θ should be

negative. This is evident by looking at the sign of β1, therefore,

θ = sgn (β1)

√
σ2
ν − λ2
σ2
a

.

A previous study (Batdorf et al., 2006) on the reproducibility and reliability of

certain ECG-related outputs was completed by the National Space Biomedical Re-

search Institute and the Human Adaptation and Countermeasures Office at Johnson

Space Center in 2005. As a result, we had access to two repeated ECG measures of

y, taken a month apart, on m = 15 asymptomatic subjects (8 males and 7 females).

We assumed that every subject had a fixed heart age which was not likely to change

in one month, thus, any variability we observed in y for the subject was due to

Var(y|x, a) = λ2. Thus, we used the repeated measures to estimate Var(y|x, a) = λ2

from the differences between the two measurements, noting that E(d2i ) = 2λ2.

λ̂2 =
1

2m

m∑
i=1

d2i

where di = yi1 − yi2 is the difference between the measurements on the subject i.

Recall that we assumed σ2
a = 7.52. Therefore, we estimated θ by

θ̂ = sgn (β̂1)

√
σ̂2
ν − λ̂2
7.52

.
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5.3.0.1 Posterior distribution for heart age

Univariate case Let g(x) = β0 + β1x + β2x
2 − θx. The posterior distribution for

heart age for a given subject is:

p(a|x, y) =
p(a|x)p(y|x, a)∫
p(a|x)p(y|x, a)da

∝ exp

{
− 1

2σ2
a

(a− x)2
}

× exp

[
− 1

2λ2
{
y − β0 − β1x− β2x2 − θ (a− x)

}2]
= exp

{
−1

2
Q(a)

}
, where

Q(a) =
a2

σ2
a

− 2a
x

σ2
a

+
x2

σ2
a

+
1

λ2
[
aθ −

{
y −

(
β0 + β1x+ β2x

2 − θx
)}]2

=
a2

σ2
a

− 2a
x

σ2
a

+
x2

σ2
a

+
a2θ2

λ2
− 2a

θ {y − g(x)}
λ2

+
{y − g(x)}2

λ2

= a2
[

1

σ2
a

+
θ2

λ2

]
− 2a

[
x

σ2
a

+
θ {y − g(x)}

λ2

]
+

[
x2

σ2
a

+
{y − g(x)}2

λ2

]
= a2A− 2aB + C.

Therefore, p(a|x, y) ∝ exp

[
−A

2

{
a2 − 2a

B

A
+

(
B

A

)2
}]

= exp

{
−A

2

(
a− B

A

)2
}

so (a|x, y) ∼ N

(
B

A
,A−1

)
= N

[
x
σ2
a

+ θ{y−g(x)}
λ2

1
σ2
a

+ θ2

λ2

,

(
1

σ2
a

+
θ2

λ2

)−1]
.
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The predicted heart age is the mean of the posterior distribution.

â = E(a|x, y) =

∫
ap(a|x, y)da

=

x
σ2
a

+ θ̂{y−ĝ(x)}
λ̂2

1
σ2
a

+ θ̂2

λ̂2

where ĝ(x) = β̂0 + β̂1x+ β̂2x
2 − θ̂x.

Through algebraic manipulation, we can rewrite the predicted heart age as

â = x+

θ̂{y−β̂x}
λ̂2

1
σ2
a

+ θ̂2

λ̂2

,

where x = [1, x, x2]
T

.

Multivariate case To generalize, assume there are k ECG outputs in the model

and n subjects. For a given subject, let y = [y1, y2, . . . , yk]
T and let

θ = [θ1, θ2, . . . , θk]
T ,

β =



β01 β11 β21

β02 β12 β22
...

...
...

β0k β1k β2k


,Λ =



λ211 λ212 . . . λ21k

λ212 λ222 . . . λ22k
...

...
...

...

λ21k λ22k . . . λ2kk


and let g(x, x) = βx − xθ. So, (y|x, a) = N (βx+ (a− x)θ,Λ) and the posterior
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distribution of heart age,

p(a|x,y) ∝ p(a|x)p(y|x, a)

= exp

{
−1

2
Q(a)

}
, where

Q(a) =
1

σ2
a

{a− x}2 + {y − g(x, x)− aθ}T Λ−1 {y − g(x, x)− aθ}

=
a2

σ2
a

− 2a
x

σ2
a

+
x2

σ2
a

+ [aθ − {y − g(x, x)}]T Λ−1 [aθ − {y − g(x, x)}]

=
a2

σ2
a

− 2a
x

σ2
a

+
x2

σ2
a

+ a2θTΛ−1θ − 2aθTΛ−1 {y − g(x, x)}

+ {y − g(x, x)}T Λ−1 {y − g(x, x)}

= a2
[

1

σ2
a

+ θTΛ−1θ

]
− 2a

[
x

σ2
a

+ θTΛ−1 {y − g(x, x)}
]

+ C

= a2A− 2aB + C.

Therefore, p(a|x,y) ∝ exp

{
−A

2

(
a− B

A

)2
}

so (a|x,y) ∼ N

(
B

A
,A−1

)
= N

[
x
σ2
a

+ θTΛ−1 {y − g(x, x)}
1
σ2
a

+ θTΛ−1θ
,

1
1
σ2
a

+ θTΛ−1θ

]

and the predicted heart age,

â =

x
σ2
a

+ θ̂T Λ̂−1 {y − ĝ(x, x)}
1
σ2
a

+ θ̂T Λ̂−1θ̂
where ĝ(x, x) = β̂x− θ̂x.

Through algebraic manipulation, we can rewrite this as

â = x+
θ̂T Λ̂−1

{
y − β̂x

}
1
σ2
a

+ θ̂Λ̂−1θ̂
.
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To obtain β̂, let yi be the vector of k ECG outputs for the ith subject and let xi

be the body age of the ith subject, where i = 1, 2, . . . , n.

yi =



yi1

yi2
...

yik


,xi =


1

xi

x2i

 ,β =



β01 β11 β21

β02 β12 β22
...

...
...

β0k β1k β2k


The multivariate analog of the model for (y|x) is

yi = βxi + νi

where Var(νi) ∼ N(0,Σ). Then, (y1|x1), (y2|x2), . . . , (yn|xn) ∼ N(βxi,Σ) where Σ

is the k by k covariance matrix of the ECG outputs and Cov(yi,yj) = 0.

Let

Y =



y11 y12 . . . y1k

y21 y22 . . . y2k
...

...
...

...

yn1 yn2 . . . ynk


,E =



e11 e12 . . . e1k

e21 e22 . . . e2k
...

...
...

...

en1 en2 . . . enk


,

X =



1 x11 x211

1 x21 x221
...

...
...

1 xn1 x2n1


, and Σ =



σ2
11 σ2

12 . . . σ2
1k

σ2
12 σ2

22 . . . σ2
2k

...
...

...
...

σ2
1k σ2

2k . . . σ2
kk


.

Then, β̂T =
(
XTX

)−1
XTY . If E = Y −Xβ̂T , we estimate Σ as follows: σ̂2

rs =

1
(n−3)

∑n
i=1 eireis. However, we still need estimates of θ and Λ to get the predicted
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heart age.

Var(yi|xi) = Σ = Var {(ai − xi)θ + εi}

= σ2
aθθ

T + Λ.

As an approximation, ignoring the off-diagonal elements of θθT , we estimated θ as

θ̂ = ±

√
diag

{
1

σ2
a

(
Σ̂− Λ̂

)}
,

where the sign of θ̂k is the sign of β̂1k.

We specified σ2
a = 7.5 in the prior of heart age so if we can get an estimate of Λ,

we can get an estimate of θ. To do so, we use the repeated measures data (Batdorf

et al., 2006). There are two measurements, taken a month apart, for each of the

m = 15 subjects. A more robust estimate of Λ could be achieved with more subjects

in the repeated measures study. Let dik = yik1 − yik2 be the difference between the

measurements for the ith subject and kth ECG output, so that

d =



d11 d12 . . . d1k

d21 d22 . . . d2k
...

...
...

...

dm1 dm2 . . . dmk


so, λ̂2rs =

1

2m

m∑
i=1

dirdis, for r = 1, 2, . . . , k, s = 1, 2, . . . , k. Thus,

θ̂ =

√
1

σ2
a

diag
(
Σ̂− Λ̂

)
.

48



5.4 Results

Experts agree that women’s hearts age differently than men’s hearts. Women’s

hearts tend to age slower than men’s until post menopause, at which time their

cardiovascular age quickly catches up to males. Because of this phenomenon, we

need to check the model for a gender effect. To determine the need for a gender-

specific model, we performed a t-test on the differences between the predicted heart

ages of the gender-specific model and the model that does not take gender into

account. If we do not take gender into account, the model is biased upwards for

males (predicts higher heart ages) and biased downwards for females (predicts lower

heart ages) so we designed a gender-specific model (each gender has its own model).

If we let z = 1 if the subject is male and z = 0 if the subject is female, the posterior

for heart age in the gender specific model is:

p(a|x, y, z) =
p(a|x)p(y|x, a, z)∫
p(a|x)p(y|x, a, z)da

, and

â = z

x+
θ̂T1 Λ̂−1

{
y − β̂1x

}
1
σ2
a

+ θ̂T1 Λ̂−1θ̂1

+ (1− z)

x+
θ̂T2 Λ̂−1

{
y − β̂2x

}
1
σ2
a

+ θ̂T2 Λ̂−1θ̂2

 .
We used two linear combinations of ECG variables, y1 = γ1

Tv1 and y2 = γ2
Tv2

as outcomes so that y = [y1, y2]
T . The first ECG variable, y1, varies with age and

disease and y2 varies with disease.
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v1 =



1

Taxis

Pd

sin (FrQRSMax ∗ π/180)

LnHF

LnRMSsum

LnSpatialJT



and v1 =



1

IIQTVI

V5UnexQTVI

sin (QRSaxis ∗ π/180)

Pd

MeanAngle

LnnTV



γ1 =



−33.0669357

−0.007471284

0.0524961

−3.977162174

−0.75406667

0.295048301

5.607131563



and γ2 =



−5.561987914

3.278798871

1.482313958

−2.6315664

0.090181799

0.048045487

1.426993361


The resulting estimates for the gender-specific model (1 corresponds to males, 2
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corresponds to females) were:

θ̂1 = [0.175660, 0.274744]T ,

θ̂2 = [0.144594, 0.243787]T ,

β̂1 =

 −6.209620 0.145773 −0.000680

−10.826300 0.231253 −0.001750

 ,
β̂2 =

 −4.794610 0.066861 2.37× 10−6

−7.84566 0.083569 −0.000127

 , and

Λ̂−1 =

 4.649546 −0.064033

−0.064033 0.519129

 .
While the assumptions of the model are based on the healthy non-athlete pop-

ulations, it is useful to see how the model performs under other conditions, such

as when the subject has risk factors or cardiac disease. The results of the gender-

specific model are shown below in Figures 5.2 through 5.6. Normally, when making

predictions, we want the predicted values to be equal to the observed values. In the

figures below, this is symbolized by heart age equals body age (red line) where the

x-axis is the subject’s body age and the y-axis is the subject’s predicted heart age.

If the subject’s body age equals the subject’s predicted heart age, it will fall on the

red line. If the subject’s predicted heart age is higher than the subject’s body age,

it will be above the red line and if the subject’s predicted heart age is lower than

the subject’s body age, it will be below the red line. In this case, we want predicted

heart age to be centered around the subject’s body age, but not necessarily equal

to the subject’s body age because we want to take the subject’s ECG into account

when computing heart age. In the training data, we see this for both females and

males (Figure 5.2). Predicted heart ages are centered around the red line with some
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variability according to each subject’s ECG. We also observe this phenomena in the

test set, Figure 5.3.
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Figure 5.2: Body age versus predicted heart age in the training set. Black circle =
male. Blue dot = female.

In subjects with risk factors (Figure 5.4), we expect that most will have higher

predicted heart ages than their respective body ages but this should not be the case

for everyone. Just because a person has diabetes does not mean that he/she also

has heart disease. And, in subjects with heart disease (Figure 5.5), we expect most

subjects to have a higher predicted heart age than their body age. Indeed, these

results bear this out.
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Figure 5.3: Body age versus predicted heart age in the test set. Black circle = male.
Blue dot = female.
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Figure 5.4: Body age versus predicted heart age for subjects with risk factors. Black
circle= male. Blue dot = female.
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Figure 5.5: Body age versus predicted heart age for subjects with disease. Black
circle= male. Blue dot = female.

We also considered the healthy athlete group (Figure 5.6). Interestingly, we did

not find that athletes had lower predicted heart ages than their body age. In fact,

56.25% of the athletes had a predicted heart age higher than their body age whereas

51% of subjects in the healthy non-athlete training set had a predicted heart age

higher than their body age. Recall that these athletes are endurance-trained elite

athletes. A recent Mayo Clinic study (O’Keefe et al., 2012) found that these types of

athletes may actually do damage to their hearts by the manner in which they train.

Our predictions appear to support this conjecture.
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Figure 5.6: Body age versus predicted heart age for athletes. Black circle = male.
Blue dot = female.

5.5 Discussion and conclusion

The model was designed for healthy individuals at least 20 years old. However, it

is useful to see how the model performs in subjects with risk factors, elite endurance

trained athletes, and subjects with heart disease. Heart age predictions in healthy

non-athletes are centered around body age but take the variability of each subject’s

ECG into account. Heart age predictions in other subgroups are consistent with

current knowledge. About three-fourths of the subjects with risk factors have higher

predicted heart ages than their body ages and almost all of the subjects with disease

have higher predicted heart ages than their body ages. Furthermore, the model seems

to predict possible anomalies in endurance-trained athletes’ ECGs. In our sample,

56.25% of these athletes have predicted heart ages than exceed their body ages.

One possible problem with our method is that we may find that λ̂2 > σ̂2
ν , in which
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case, θ̂ is not defined. An alternative approach is to use a Bayesian model for θ with

a prior centered on β1.

While we do not have heart age measurements with which to compare our pre-

dictions, Todd Schlegel, a physician at NASA Johnson Space Center and expert in

ECG science, confirmed that the heart age predictions are consistent with the current

knowledge of ECG measurements and heart health. This model has the potential to

aid in the diagnosis of symptomatic patients who undergo an ECG. It could give the

physician and patient additional information regarding the patient’s cardiac health,

and this could lead to further testing or a change in lifestyle. Imagine a patient who

has not been diagnosed with heart disease but who has a higher predicted heart age

than the patient’s body age. This news could motivate the patient to eat healthier

and exercise and could also signify the need for further testing, perhaps catching a

disease before it gets worse.
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6. CONCLUSIONS

This dissertation consists of four main projects in the areas of proteomics, ge-

nomics, and cardiology. I have developed a data-based method for protein subcellular

localization. It compares well with the current gold-standard procedure, PSORTb

v.3.0 (Yu et al., 2010). In addition, the simulation study produced excellent results

and it is a flexible method that can be applied to a wide variety of organisms. In the

area of genomics, I have completed two projects (Li et al., 2012; Yuan et al., 2012)

with scientists at the University of Texas MD Anderson Cancer Center. In the first

study, we investigated the predictability of lethality of the knockout mouse using ge-

nomic features and in the second study, we analyzed breakpoint hotspots across eight

cancer types using the random forest technique. Lastly, I have developed a statistical

model that predicts a subject’s heart age based on electrocardiogram measurements.
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