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ABSTRACT

Delay is an important quality-of-service measure for the design of next-generation

wireless networks. This dissertation considers the problem of delay-limited commu-

nication over block-fading channels, where the channel state information is available

at the receiver but not at the transmitter. For this communication scenario, the

difference between the ergodic capacity and the maximum achievable expected rate

(the expected capacity) for coding over a finite number of coherent blocks represents

a fundamental measure of the penalty incurred by the delay constraint.

This dissertation introduces a notion of worst-case expected-capacity loss. Fo-

cusing on the slow-fading scenario (one-block delay), the worst-case additive and

multiplicative expected-capacity losses are precisely characterized for the point-to-

point fading channel. Extension to the problem of writing on fading paper is also

considered, where both the ergodic capacity and the additive expected-capacity loss

over one-block delay are characterized to within one bit per channel use.

The problem with multiple-block delay is considerably more challenging. This

dissertation presents two partial results. First, the expected capacity is precisely

characterized for the point-to-point two-state fading channel with two-block delay.

Second, the optimality of Gaussian superposition coding with indirect decoding is

established for a two-parallel Gaussian broadcast channel with three receivers. Both

results reveal some intrinsic complexity in characterizing the expected capacity with

multiple-block delay.
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1. INTRODUCTION

1.1 Motivation

In recent years, there has been an explosive increase in demands on the wireless

services with stringent quality-of-service requirements along with the rapid evolution

of wireless access technologies. This trend can be found in various wireless appli-

cations in our lives such as the real-time multimedia streaming on mobile devices.

One of the key measures of quality-of-service is delay. With delay limitation, wireless

channels may be faced with the capacity loss, which is mainly due to the time-varying

nature of wireless channels, so called fading. Understanding the impact of delay con-

straints on the overall performance of wireless channels is an interesting subject in

information theory.

Consider the discrete-time baseband representation of the single-user flat-fading

channel:

Y [t] =
√
G[t]X[t] + Z[t] (1.1)

where {X[t]} are the channel inputs which are subject to a unit average power con-

straint, {G[t]} are the power gains of the channel fading which we assume to be be

unknown to the transmitter but known at the receiver, {Z[t]} are the additive white

circularly symmetric complex Gaussian noise with zero means and unit variances,

and {Y [t]} are the channel outputs. As often done in the literature, we shall con-

sider the so-called block-fading model [1, Ch. 5.4.5] where {G[t]} are assumed to

be constant within each coherent block and change independently across different

blocks according to a known distribution FG(·). The coherent time of the chan-

nel is assumed to be large so that the additive noise {Z[t]} can be “averaged out”
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within each coherent block. Since both the power constraint and the noise variances

are normalized to one, the power gain G[t] also represents the instantaneous receive

signal-to-noise ratio of the channel.

The focus of this dissertation is on delay-limited communication for which com-

munication is only allowed to span (at most) a total of L coherent blocks where L

is a finite integer. In this setting, the Shannon capacity is a very pessimistic mea-

sure as it is dictated by the worst realization of the power-gain process and hence

equals zero when the realization of the power gain can be arbitrarily close to zero.

An often-adopted measure in the literature is the expected capacity [2–6], which is

defined as the maximum expected reliably decoded rate where the expectation is over

the distribution of the power-gain process.

The problem of characterizing the expected capacity is closely related to the

problem of broadcasting over linear Gaussian channels [2–6]. The case with L = 1

represents the most stringent delay requirement known as slow fading [1, Ch. 5.4.1].

For slow-fading channels, the problem of characterizing the expected capacity is

equivalent to the problem of characterizing the capacity region of a scalar Gaussian

broadcast channel, which is well understood based on the classical works of Cover [7]

and Bergmans [8], and then finding an optimal rate allocation based on the power-

gain distribution. For L > 1, the expected capacity can be improved by treating each

realization of the power-gain process as a user in an L-parallel Gaussian broadcast

channel and coding the information bits across different sub-channels [3, 9, 10]. In

the limit as L → ∞, by the ergodicity of the power-gain process each “typical”

realization of the power-gain process can support a reliable rate of communication

which is arbitrarily close to

Cerg(FG) = EG[log(1 +G)]. (1.2)
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Thus, Cerg(FG) is both the Shannon capacity (appropriately known as the ergodic

capacity [1, Ch. 5.4.5]) and the expected capacity in the limit as L→∞.

Formally, let us denote by Cexp(FG, L) the expected capacity of the block-fading

channel (1.1) for which the power-gain distribution is FG(·), and communication is

allowed to span (at most) a total of L coherent blocks. Then, as mentioned previ-

ously, the expected capacity Cexp(FG, L) → Cerg(FG) in the limit as L → ∞. As

such, the “gap” between the ergodic capacity Cerg(FG) and the expected capacity

Cexp(FG, L) represents a fundamental measure of the penalty incurred by imposing

a delay constraint of L coherent blocks. Such gaps, naturally, would depend on the

underlying power-gain distribution. To be more general, we are interested in char-

acterizing the worst-case gaps over all possible power-gain distributions (including

both the power-gain realizations and the probabilities for each realization) with a

fixed number of different possible realizations of the power gain in each coherent

block.

In this dissertation, the impact of delay is investigated in several channel settings.

• Worst-cast expected capacity loss for one-block delay. Motivated by the recent

trend on wireless applications, the most stringent delay constraint L = 1 is

considered. For this slow-fading scenario (L = 1), the broadcast strategy [3]

provides the expected capacity Cexp(FG, 1) as a power allocation problem. In-

vestigating the power allocation problem, our focus is on precise characteriza-

tions of the worst-case additive and multiplicative gaps between the ergodic

capacity Cerg(FG) and the expected capacity Cexp(FG, 1).

• Writing on block-fading paper. Here, an extension of the result for slow-fading

scenario to the problem of writing on block-fading paper [11–13] is considered.

For block-fading paper setting, the ergodic capacity remains unknown. Our

3



goal here is to characterize the ergodic capacity within a finite number of bits

per channel usage via an appropriate coding structure and to approximate the

worst-case capacity loss.

• Two-block delay. When the delay requirement is more than one coherent block

(L > 1), the expected capacity Cexp(FG, L) is in general unknown. The main

challenge there is on characterizing the capacity region of the L-parallel Gaus-

sian broadcast channel with a general message set configuration. To shed some

light on the problem with multiple-block delay, two different scenarios with

two-block delay are considered. One is the point-to-point two-state block fad-

ing channel with two-block delay, which is considered in [9]. Our focus here

is to establish a precise characterization of the expected capacity of the chan-

nel. Next, we consider a two-parallel Gaussian broadcast channel with three

receivers, which is related to multiple-state fading channels with two-block de-

lay. We focus on characterizing the entire capacity region by establishing the

optimality of Gaussian signaling along with the indirect decoding [14].

1.2 Dissertation Outline

The rest of the dissertation is organized as follows. Next in Chapter 2, the worst-

case gaps for one-block delay are precisely characterized. Key to the proof of the

worst-case gap results is an explicit characterization of an optimal power allocation

for characterizing the expected capacity Cexp(FG, 1), obtained via the marginal utility

functions introduced by Tse [15]. In Chapter 3, we extend the setting from the

point-to-point fading channel to the problem of writing on fading paper [11–13],

and provide a characterization of the ergodic capacity and the additive expected-

capacity loss over one-block delay to within one bit per channel use. In Chapter

4, the expected capacity of the point-to-point two-state fading channel with two-

4



block delay is precisely characterized with an optimal power allocation. In Chapter

5, the capacity region of a two-parallel Gaussian broadcast channel with degraded

message sets is precisely characterized. The characterization is based on optimality of

Gaussian signaling along with the indirect decoding [14]. In Chapter 6, we conclude

the dissertation with some remarks.
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2. WORST-CASE EXPECTED CAPACITY LOSS FOR ONE-BLOCK DELAY∗

2.1 Introduction

Consider the block-fading model (1.1) with the delay constraint of L coherent

blocks. As described in Chapter 1, the gap between the ergodic capacity Cerg(FG) and

the expected capacity Cexp(FG, L) represents a fundamental measure of the penalty

incurred by imposing a delay constraint of L coherent blocks. Obviously, such gaps

have strong dependencies on the underlying power-gain distribution. To have more

general understanding on the penalty, we consider the worst-case gaps over all pos-

sible power-gain distributions with a fixed number of different possible realizations

of the power gain in each coherent block.

More specifically, for the block-fading channel (1.1) with the power-gain distribu-

tion FG(·), let us define the additive and the multiplicative gap between the ergodic

capacity and the expected capacity under the delay constraint of L coherent blocks

as

A(FG, L) := Cerg(FG)− Cexp(FG, L) (2.1)

and

M(FG, L) :=
Cerg(FG)

Cexp(FG, L)
(2.2)

respectively. Focusing on the slow-fading scenario (L = 1), we have the following

precise characterization of the worst-case additive and multiplicative gaps between

the ergodic capacity and the expected capacity.

∗Reprinted, with permission, from J. W. Yoo, T. Liu, S. Shamai (Shitz), and C. Tian,“Worst-
Case Expected-Capacity Loss of Slow-Fading Channels,” IEEE Transactions on Information The-
ory, to appear, Copyright 2013 IEEE.
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Theorem 1.

sup
FG

A(FG, L) = logK (2.3)

and

sup
FG

M(FG, L) = K (2.4)

where the supremes are over all power-gain distribution FG(·) with K different pos-

sible realizations of the power gain in each coherent block.

The above results have both positive and negative engineering implications, which

are summarized below.

• On the positive side, note that both the ergodic capacity Cerg(FG) and the

expected capacity Cexp(FG, 1) will generally grow unboundedly in the limit as

the realizations of the power gain all tend to infinity. The difference between

them, however, will remain bounded for any finite-state fading channels (where

K is finite). Similarly, both the ergodic capacity Cerg(FG) and the expected

capacity Cexp(FG, 1) will vanish in the limit as the realizations of the power

gain all tend to zero. However, the expected capacity Cexp(FG, 1) (under the

most stringent delay constraint of L = 1 coherent block) can account, at least,

for a non-vanishing fraction of the ergodic capacity Cerg(FG).

• On the negative side, in the worst-case scenario both the additive gap A(FG, 1)

and the multiplicative gap M(FG, 1) will grow unboundedly in the limit as

the number of different realizations of the power gain in each coherent block

K →∞. Therefore, when K is large, delay-limited communication may incur

a large expected-rate loss relative to the ergodic scenario where there is no

delay constraint on communication. For continuous-fading channels where the

sample space of FG(·) is infinite and uncountable, it is also possible that the

7



expected-rate loss incurred by delay constraints is unbounded.

On the other hand, one should not be overly pessimistic when attempt to interpret

the worst-case gap results (2.1) and (2.2). First, the above worst-case gap results

are derived under the assumption that the transmitter does not know the realization

of the channel fading at all. In practice, however, it is entirely possible that some

information on the channel fading realization is made available to the transmitter

(via finite-rate feedback, for example). This information can be potentially used

to reduce the gap between the ergodic capacity and the expected capacity [16, 17].

Second, for specific fading distributions the gap between the ergodic capacity and

the expected capacity can be much smaller. For example, it is known [3] that for

Rayleigh fading, the additive gap between the ergodic capacity and the expected

capacity over one-block delay is only 1.649 nats per channel use in the high signal-

to-noise ratio limit, and the multiplicative gap is only 1.718 in the low signal-to-noise

ratio limit, even though in this case the power-gain distribution is continuous.

2.2 Optimal Power Allocation via Marginal Utility Functions

To prove the worst-case gap results (2.1) and (2.2) as stated in Theorem 1, let

us fix the transmit signal-to-noise ratio 1 and the power-gain distribution FG(·)

with K different possible realizations of the power gain in each coherent block. Let

g1, . . . , gK be the collection of the possible realizations of the power gain, and let

pk := Pr(G = gk) > 0. Without loss of generality, let us assume that the possible

realizations of the power gain are ordered as

g1 > g2 > · · · > gK ≥ 0. (2.5)
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Figure 2.1: A scalar Gaussian broadcast channel with degraded massage set.

With the above notations, the expected capacity Cexp(FG, 1) (under the delay con-

straint of L = 1 coherent block) is given by the maximum weighted sum-rate of the

scalar Gaussian broadcast channel with degraded massage sets in Figure 2.1 [3]:

max(β1,...,βK)

∑K
k=1 Fk log

(
1+βkgk

1+βk−1gk

)

subject to 0 = β0 ≤ β1 ≤ · · · ≤ βK ≤ 1
(2.6)

where

Fk :=
k∑

j=1

pj. (2.7)

Note that the optimization program (2.6) with respect to the cumulative power

fractions (β1, . . . , βK) is not convex. However, the program can be convexified via

the following simple change of variable [15,18]

rk := log

(
1 + βkgk

1 + βk−1gk

)
, k = 1, . . . , K. (2.8)

In the preliminary version of this work [19], this venue was further pursued to obtain

an implicit characterization of the optimal power allocation via the standard Karush-

9



Kuhn-Tucker conditions. Below we shall consider an alternative and more direct

approach which provides an explicit characterization of an optimal power allocation

via the marginal utility functions (MUFs) introduced by Tse [15].

Assume that gK > 0 (which implies that gk > 0 for all k = 1, . . . , K), and let

nk := 1/gk for k = 1, . . . , K. Given the assumed ordering (2.5) for the power-gain

realizations {g1, . . . , gK}, we have

0 < n1 < · · · < nK . (2.9)

Following [15], let us define the MUFs and the dominating MUF as

uk(z) :=
Fk

nk + z
, k = 1, . . . , K (2.10)

and

u∗(z) := max
k=1,...,K

uk(z) (2.11)

respectively. Note that for any k = 1, . . . , K, uk(z) > 0 if and only if z > −nk. Also,

for any two distinct integers k and l such that 1 ≤ k ≤ l ≤ K, the MUFs uk(z) and

ul(z) has a unique intersection at z = zk,l where

Fk
nk + zk,l

=
Fl

nl + zk,l
⇐⇒ zk,l =

Fknl − Flnk
Fl − Fk

. (2.12)

Note that Fk < Fl and nk < nl, so we have zk,l > nk. Furthermore, it is straight-

forward to verify that uk(z) > ul(z) > 0 if and only if −nk < z < zk,l, and

ul(z) > uk(z) > 0 if and only if z > zk,l (see Figure 2.2 for an illustration). For

the rest of this dissertation, the above property will be frequently referred to as the

single crossing point property of the MUFs.

10



0
0 z

ul(z) uk(z)

zk,l−nl −nk

Figure 2.2: The single crossing point property between the MUFs uk(z) and ul(z)
for k < l.

We emphasize here that the aforementioned single crossing point property relies

on the fact that both sequences {nk} and {Fk} increase monotonically with the

subscript k. Since this particular ordering was not specifically considered in the

MUFs defined in [15, Eq. (7)], next, instead of building on the results from [15], we

shall borrow the concept of MUF and establish our results from first principles. Let

us begin by defining a sequence of integers {π1, . . . , πI} recursively as follows.

Definition 1. First, let π1 = 1. Then, define

πi+1 := max

[
arg min

l=πi+1,...,K
zπi,l

]
, i = 1, . . . , I − 1 (2.13)

where I is the total number of integers {πi} defined through the above recursive pro-

cedure.
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Note that in the above definition, a “max” is used to break the ties for achiev-

ing the “min” inside the brackets, so there is no ambiguity in defining the integer

sequence {π1, . . . , πI}. Clearly, we have

1 = π1 < π2 < · · · < πI = K. (2.14)

Furthermore, we have the following properties for the sequence {zπ1,π2 , zπ2,π3 , . . . , zπI−1,πI},

which are direct consequences of the recursive definition (2.13) and the single crossing

point property of the MUFs.

Lemma 1. 1. For any i = 1, . . . , I − 1 and any l = πi + 1, . . . , K, we have

zπi,πi+1
≤ zπi,πl . (2.15)

2. For any i = 1, . . . , I − 2, we have

zπi,πi+1
≤ zπi+1,πi+2

. (2.16)

3. For any i = 1, . . . , I − 1 and any l = 1, . . . , πi+1 − 1, we have

zπi,πi+1
≥ zπl,πi+1

. (2.17)

Proof. Property 1) follows directly from the recursive definition (2.13).

To prove property 2), let us consider proof by contradiction. Assume that

zπi,πi+1
> zπi+1,πi+2

for some i ∈ {1, . . . , I − 2}. By property 1), we have zπi,πi+2
≥

zπi,πi+1
> zπi+1,πi+2

. Following the single crossing point property, we have 0 <

uπi+1
(zπi,πi+2

) < uπi+2
(zπi,πi+2

) = uπi(zπi,πi+2
). Using again the single crossing point

12



property, we may conclude that −nπi < zπi,πi+2
< zπi,πi+1

. But this contradicts

the fact that zπi,πi+2
≥ zπi,πi+1

as mentioned previously. This proves that for any

i = 1, . . . , I − 2, we must have zπi,πi+1
≤ zπi+1,πi+2

.

To prove property 3), let us fix i ∈ {1, . . . , I−1}. Note that the desired inequality

(2.17) holds trivially with equality for l = πi, so we only need to consider the cases

where l ∈ {πi + 1, . . . , πi+1 − 1} and l ∈ {1, . . . , πi − 1}.

For the case where l ∈ {πi + 1, . . . , πi+1 − 1}, by property 1) we have −nπi <

zπi,πi+1
≤ zπi,πl . Following the single crossing point property we have 0 < ul(zπi,πi+1

) ≤

uπi(zπi,πi+1
) = uπi+1

(zπi,πi+1
), which in turn implies that zπi,πi+1

≥ zl,πi+1
.

For the case where l ∈ {1, . . . , πi − 1}, let us assume, without loss of generality,

that l ∈ {πm, . . . , πm+1 − 1} for some m ∈ {1, . . . , i − 1}. By the previous case we

have zπm,πm+1 ≥ zl,πm+1 and hence

0 < ul(z) ≤ uπm+1(z) ∀z ≥ zπm,πm+1 . (2.18)

Also note that

uπm+1(z) ≤ uπm+2(z) ≤ · · · ≤ uπi+1
(z) ∀z ≥ max

m+1≤j≤i
zπj ,πj+1

. (2.19)

By property 2) we have

max
m+1≤j≤i

zπj ,πj+1
= zπi,πi+1

≥ zπm,πm+1 . (2.20)

Combining (2.18)-(2.20) gives 0 < ul(zπi,πi+1
) ≤ uπi+1

(zπi,πi+1
), which in turn implies

that zπi,πi+1
≥ zl,πi+1

.

Combing the above two cases completes the proof of property 3) and hence the

entire lemma.
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zz3,4

Figure 2.3: An illustration of the dominating MUF. In this example, we have K = 4
and z1,3 < z1,2 < z1,4. Therefore, we have I = 3, π1 = 1, π2 = 3, and π3 = 4. The
dominating MUF u∗(z) = u1(z) for z ∈ (−n1, z1,3), u

∗(z) = u3(z) for z ∈ (z1,3, z3,4),
and u∗(z) = u4(z) for z ∈ (z3,4,∞).

The following proposition provides an explicit characterization of the dominating

MUF (see Figure 2.3 for an illustration).

Proposition 1 (Dominating marginal utility function). For any i = 1, . . . , I and

any z ∈ (zπi−1,πi , zπi,πi+1
), the dominating MUF

u∗(z) = uπi(z). (2.21)

where we define zπ0,π1 := −n1 and zπI ,πI+1
:= ∞ for notational convenience (even

though π0 and πI+1 will not be explicitly defined).

Proof. Fix i ∈ {1, . . . , I}. Let us show that uπi(z) ≥ ul(z) for any z ∈ (zπi−1,πi , zπi,πi+1
)

by considering the cases l > πi and l < πi separately.
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For l > πi, by the single crossing point property we have 0 < ul(z) ≤ uπi(z)

for any −nπi < z ≤ zπi,l. By property 1) of Lemma 1, for any l > πi we have

zπi,πi+1
≤ zπi,l. Combined with the fact that zπi−1,πi ≥ −nπi (the equality holds only

when i = 1 by the definition of zπ0,π1 and the fact that π1 = 1), we may conclude

that for l > πi, uπi(z) ≥ ul(z) for any z ∈ (zπi−1,πi , zπi,πi+1
].

For l < πi, by property 3) of Lemma 1 we have zπi−1,πi ≥ zl,πi and hence 0 <

ul(z) ≤ uπi(z) for any z ≥ zπi−1,πi .

Combining the above two cases completes the proof of the proposition.

Now, let (β∗1 , . . . , β
∗
K) be an optimal solution to the optimization program (2.6).

Then, the expected capacity Cexp(SNR, FG, 1) can be bounded from above using the

dominating MUF as follows:

Cexp(FG, 1) =
K∑

k=1

Fk log

(
nk + β∗k
nk + β∗k−1

)
(2.22)

=
K∑

k=1

∫ β∗k

β∗k−1

uk(z)dz (2.23)

≤
K∑

k=1

∫ β∗k

β∗k−1

u∗(z)dz (2.24)

=

∫ β∗K

β∗0

u∗(z)dz (2.25)

≤
∫ 1

0

u∗(z)dz (2.26)

where (2.24) follows from the fact that for any k = 1, . . . , K we have β∗k−1 ≤ β∗k and

uk(z) ≤ u∗(z) for all z, and (2.26) follows from the fact that β∗0 = 0, β∗K ≤ 1, and

u∗(z) > 0 for all z ≥ 0. The equalities hold if (β∗1 , . . . , β
∗
K) satisfies

u∗(z) = uk(z) ∀z ∈ (β∗k−1, β
∗
k) (2.27)
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for any k = 1, . . . , K and β∗K = 1.

Note that by property 3) of Lemma 1, we have

−n1 =: zπ0,π1 < zπ1,π2 ≤ . . . ≤ zπI−1,πI < zπI ,πI+1
:=∞. (2.28)

To proceed, let us define two integers s and w as follows.

Definition 2. Let s be the largest index i ∈ {1, . . . , I} such that zπi−1,πi ≤ 0 and let

w be the largest index i ∈ {1, . . . , I} such that zπi−1,πi < 1.

Clearly, we have 1 ≤ s ≤ w ≤ I. Furthermore if s = w, we have

· · · ≤ zπs−1,πs ≤ 0 < 1 ≤ zπs,πs+1 ≤ · · · (2.29)

and if s < w, we have

· · · ≤ zπs−1,πs ≤ 0 < zπs,πs+1 ≤ · · · ≤ zπw−1,πw < 1 ≤ zπw,πw+1 ≤ · · · (2.30)

Using the definition of s and w, we have the following explicit characterization of an

optimal power allocation.

Proposition 2 (An optimal power allocation). Assume that gK > 0. Then, an

optimal solution (β∗1 , . . . , β
∗
K) to the optimization program (2.4) is given by

β∗k =





0, for 1 ≤ k < πs

zπi,πi+1
, for πi ≤ k < πi+1 and i = s, . . . , w − 1

1, for πw ≤ k ≤ K

(2.31)

Proof. Note that we always have β∗K = 1. Therefore, in light of the previous discus-

sion, it is sufficient to show that the choice of (β∗1 , . . . , β
∗
K) as given by (2.31) satisfies
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(2.27) for any k = 1, . . . , K. Also note that for the choice of (2.31), we only need to

consider the cases where k = πi for i = s, . . . , w. Otherwise, we have β∗k−1 = β∗k so

the open interval (β∗k−1, β
∗
k) is empty and hence there is nothing to prove.

Let us first assume that s = w. In this case, we only need to consider k = πs,

for which β∗k−1 = 0 and β∗k = 1. By Proposition 1, u∗(z) = uπs(z) for any z ∈

(zπs−1,πs , zπs,πs+1). By (2.29), zπs−1,πs ≤ 0 and zπs,πs+1 ≥ 1. We thus conclude that

u∗(z) = upis(z) for any z ∈ (0, 1).

Next, let us assume that s < w. We shall consider the following three cases

separately.

Case 1: k = πs. In this case, β∗k−1 = 0 and β∗k = zπs,πs+1 . By Proposition 1,

u∗(z) = uπs(z) for any z ∈ (zπs−1,πs , zπs,πs+1). By (2.30), zπs−1,πs ≤ 0. We thus

conclude that u∗(z) = uπs(z) for any z ∈ (0, zπs,πs+1).

Case 2: k = πi for some i ∈ {s + 1, . . . , w − 1}. In this case, β∗k−1 = zπi−1,πi and

β∗k = zπi,πi+1
. By Proposition 1, u∗(z) = uπi(z) for any z ∈ (zπi−1,πi , zπi,πi+1

).

Case 3: k = πw. In this case, β∗k−1 = zπw−1,πw and β∗k = 1. By Proposition 1,

u∗(z) = upiw(z) for any z ∈ (zπw−1,πw , zπw,πw+1). By (2.30), zπw,πw+1 ≥ 1. We thus

conclude that u∗(z) = upiw(z) for any z ∈ (zπw−1,πw , 1).

We have thus completed the proof of the proposition.

Note from (2.4) that the power allocated to the fading state gk is given by βk −

βk−1. Thus for the optimal power allocation given by (2.31), the “active” fading

states gk that are assigned to nonzero power (i.e., β∗k > β∗k−1) are πs, πs+1, . . . , πw,

i.e., gπs is the strongest active fading state, and gπw is the weakest active fading state

(see Figure 2.4 for an illustration). This provides an operational meaning for the

integer sequence {π1, . . . , πI} and the integers s and w defined earlier.

Building on Proposition 2, we have the following characterization of the expected
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Figure 2.4: An optimal power allocation obtained via the dominating MUF.

capacity Cexp(FG, 1), which will play a key role in proving the desired worst-case gap

results (2.1) and (2.2). The proof mainly involves some straightforward calculations

and hence is deferred to Appendix A.

Proposition 3 (Expected capacity over one-block delay). Assume that gK > 0 and

let

Λk :=





nπw+1
nπs

Fπs
Fπw

for 1 ≤ k ≤ πs

nπw+1
nπm−nπm−1

Fπm−Fπm−1

Fπ1
for πm−1 ≤ k ≤ πm and m = s+ 1, . . . , 1

1 for π1 ≤ k ≤ K.

(2.32)
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Then, the expected capacity Cexp(FG, 1) can be written as

Cexp(FG, 1) (2.33)

=
K∑

k=1

pk log Λk (2.34)

= Fπs log

(
Fπs
nπs

)
+

w∑

m=s+1

(Fπm − Fπm−1) log

(
Fπm − Fπm−1

nπm − nπm−1

)
+

Fπw log

(
nπw + 1

Fπw

)
. (2.35)

2.3 Two Asymptotic Regimes

Before we formally prove the worst-case gap results (2.1) and (2.2), let us first

take a look at the nature of the optimal power allocation (2.31) in two asymptotic

regimes. As we shall see, these analyses provides some insight into why the worst-case

additive and multiplicative gaps are logK and K, respectively.

Our first asymptotic analysis is in the high receive signal-to-noise ratio regime

and is motivated by the concept of generalized degree of freedom [20, 21]. Consider

gk = SNRrk , k = 1, . . . , K (2.36)

for some

r1 > r2 > · · · > rK > 0 (2.37)

where SNR can be made arbitrarily large. Fix {rk} and {pk}. For sufficiently large

SNR, by (2.12) we have

zk,l =
FkSNR−rl − FlSNR−rk

Fl − Fk
≈ Fk
Fl − Fk

SNR−rl (2.38)
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for any 1 ≤ k < l ≤ K. By the ordering (2.37), we have for sufficiently large SNR

Fk
Fl − Fk

SNR−rl <
Fk

Fl+1 − Fk
SNR−rl+1 (2.39)

and hence

zk,l < zk,l+1 (2.40)

for any 1 ≤ k < l ≤ K − 1. By the definition (2.13), we have I = K and πi = i for

all i = 1, . . . , K. Furthermore, by (2.38) we have 0 < zk,l < 1 for sufficiently large

SNR. Hence, by Definition 2 we have s = 1 and w = K. We thus conclude that for

sufficiently large SNR all fading states gk, k = 1, . . . , K, are active fading states that

are assigned to nonzero power. By (2.35) the expected capacity over one-block delay

Cexp = F1 log(F1SNRr1) +
K∑

m=2

(Fm − Fm−1) log

(
Fm − Fm−1

SNR−rm − SNR−rm−1

)
+

FK log

(
SNR−rK + 1

FK

)
(2.41)

≈
(

K∑

m=1

pmrm

)
log SNR +

K∑

m=1

pm log pm (2.42)

and by (1.2) the ergodic capacity

Cerg(FG) =
K∑

k=1

pk log(1 + SNRrk) ≈
(

K∑

k=1

pkrk

)
log SNR (2.43)

for sufficiently large SNR. Thus, for sufficiently large SNR the additive gap

A(FG, 1) ≈ −
K∑

m=1

pm log pm =: H(FG) ≤ logK (2.44)

for any {rk} and {pk}, where H(FG) denotes the entropy of the power-gain distribu-
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tion FG(·), and the last inequality follows from the well-known fact that a uniform

distribution maximizes the entropy subject to the cardinality constraint. This sug-

gests that the worst-case additive gap may be logK.

Our second asymptotic analysis is in the low receive signal-to-noise ratio regime

and is motivated by the concept of channel capacity per unit cost [22]. Consider

gk = αkSNR, k = 1, . . . , K (2.45)

for some

α1 > α2 > · · · > αK > 0 (2.46)

where SNR can be made arbitrarily close to zero. Fix {αk} and {pk}. For sufficiently

small SNR, by (2.12) we have

zk,l =
Fkα

−1
l − Flα−1k
Fl − Fk

1

SNR
(2.47)

for any 1 ≤ k < l ≤ K. Note that for sufficiently small SNR we have zk,l > 1

whenever it is positive. Thus, by Definition 2 we have w = s, i.e., the only active

fading state is gπs , for sufficiently small SNR. By (2.35) the expected capacity over

one-block delay

Cexp(FG, 1) = Fπs log(1 + απsSNR) ≈ FπsαπsSNR (2.48)

and by (1.2) the ergodic capacity

Cerg(FG) =
K∑

k=1

pk log(1 + αkSNR) ≈
(

K∑

k=1

pkαk

)
SNR (2.49)
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for sufficiently small SNR. By Lemma 1 and the fact that w = s we have

zk,πs ≤ zπs−1,πs ≤ 0 < 1 < zπs,πs+1 ≤ zπs,l (2.50)

for any 1 ≤ k < πs < l ≤ K, which implies that

Fπsαπs ≥ Fkαk, ∀k = 1, . . . , K. (2.51)

Thus, for sufficiently small SNR the multiplicative gap

M(FG, 1) ≈
∑K

k=1 pkαk
Fπsαπs

≤
K∑

k=1

1 = K (2.52)

for any {αk} and {pk}, suggesting that the worst-case multiplicative gap may be K.

2.4 Additive Gap

To prove the worst-case additive gap result (2.1), we shall prove that

sup
FG

A(FG, 1) ≤ logK (2.53)

and

sup
FG

A(FG, 1) ≥ logK (2.54)

separately.

Proposition 4 (Worst-case additive gap, converse part). For any power-gain distri-

bution FG(·) with K different realizations of the power gain in each coherent block,

we have

A(FG, 1) ≤ logK (2.55)
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Proof. Let us first prove the desired inequality (2.55) for the case where gK > 0. In

this case, by Proposition 3 the additive gap A(FG, 1) can be written as

A(FG, 1) =
K∑

k=1

pk log

(
nk + 1

nk

)
−

K∑

k=1

pk log Λk (2.56)

=
K∑

k=1

pk log

(
nk + 1

nkΛk

)
. (2.57)

We have the following lemma, whose proof is rather technical and hence is deferred

to Appendix B.

Lemma 2. For any k = 1, . . . , K, we have

nk + 1

nkΛk

≤ 1

pk
. (2.58)

Substituting (2.58) into (2.57), we have

A(FG, 1) ≤
K∑

k=1

pk log

(
1

pk

)
=: H(FG) ≤ logK. (2.59)

This proves the desired inequality (2.55) for the case where gK > 0.

For the case where gK = 0, let us consider a modified power-gain distribution

F ′G(·) with probabilities p′k = pk for all k = 1, . . . , K and g′k = gk for all k =

1, . . . , K − 1. While we have gK = 0 for the original power-gain distribution FG(·),

we shall let g′K = ε for some

0 < ε < min
k=1,...,K−1

[
Fk

(1− Fk) + nk

]
. (2.60)
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By 2.12, this will ensure that

z′k,K =
Fk/ε− nk

1− Fk
> 1, ∀k = 1, . . . , K − 1. (2.61)

By the definition of w′, z′π′
w′−1

,π′
w′
< 1 so we must have π′w′ 6= K and hence π′w′ <

K. By Proposition 2, this implies that β′∗K = β′∗K−1 so the fading state g′K are

assigned to zero power for the given power allocation (β′∗1 , . . . , β
′∗
K). Hence, the

given power allocation (β′∗1 , . . . , β
′∗
K) achieves the same expected rate for both power-

gain distributions FG(·) and F ′G(·). Since (β′∗1 , . . . , β
′∗
K) is optimal for the power-gain

distribution F ′G(·) but not necessarily so for FG(·), we have

Cexp(FG, 1) ≥ Cexp(F
′
G, 1) (2.62)

On the other hand, improving the realizations of the power-gain can only improve

the channel capacity1, so we have

Cerg(FG) ≤ Cerg(F
′
G). (2.63)

Combining (2.62) and (2.63) gives

A(FG, 1) = Cerg(FG)− Cexp(FG, 1) (2.64)

≤ Cerg(F
′
G)− Cexp(F ′G, 1) (2.65)

= A(F ′G, 1) (2.66)

≤ logK (2.67)

1By the same argument, we also have Cexp(FG, 1) ≤ Cexp(F
′
G, 1) and hence Cexp(FG, 1) =

Cexp(F
′
G, 1), even though this direction of the inequality is not needed in the proof.
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where the last inequality follows from the previous case for which g′K = ε > 0. This

completes the proof for the case where gK = 0.

Combing the above two cases completes the proof of Proposition 4.

Proposition 5 (Worst-case additive gap, forward part). Fix K, and consider the

power-gain distribution F
(d)
G (·) with

gk =
K−k+1∑

j=1

dj =
d(dK−k+1 − 1)

d− 1
(2.68)

for some d > max[K−1, 2] and uniform probabilities pk = 1/K for all k = 1, . . . , K.

For this particular parameter family of power-gain distributions, we have

lim
d→∞

A(F
(d)
G , 1) = logK. (2.69)

Proof. For the given power-gain distribution F
(d)
G , it is straightforward to calculate

that for any 1 ≤ k < l < K

nk + zk,l
nk + zk,l+1

=
l − k + 1

l − k
dK−l − 1

dK−l+1 − 1

dl−k − 1

dl−k+1 − 1
(2.70)

<
l − k + 1

l − k
dl−k − 1

dl−k+1 − 1
(2.71)

where the last inequality follows from the fact that d > 1. Since l−k ≥ 1 and d > 2,

we have

(l − k + 1)(dl−k − 1)− (l − k)(dl−k+1 − 1)

= [1− (l − k)(d− 1)]dl−k − 1 (2.72)

< 0. (2.73)
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Substituting (2.73) into (2.71) gives

nk + zk,l
nk + zk,l+1

< 1 (2.74)

which immediately implies that zk,l < zk,l+1 for any 1 ≤ k < l < K. We thus have

I = K and πi = i for all i = 1, . . . , K. Since d > max{K − 1, 2}, we have

z1,2 =
(d− 2)dK + d

(d− 1)g1g2
> 0 (2.75)

and

zK−1,K =
(K − 1)(d+ d2)−Kd

d(d+ d2)
<
K − 1

d
< 1 (2.76)

so by definition we have s = 1 and w = K. Thus, by the expression of Λk from (2.32)

we have

Λk =





(
∑K
j=1 d

j)(1+d)
K·d , k = 1

(
∑K−k+1
j=1 dj)(

∑K−k+2
j=1 dj)(1+d)

K·dK−k+3 , k = 2, . . . , K.
(2.77)

It follows that

n1 + 1

n1Λ1

= K ·

(
1 +

∑K
j=1 d

j
)
d

(∑K
j=1 d

j
)

(1 + d)
(2.78)

= K · d
K+1 +O

(
dK
)

dK+1 +O (dK)
(2.79)

→ K (2.80)
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in the limit as d→∞ and

nk + 1

nkΛk

= K ·

(
1 +

∑K−k+1
j=1 dj

)
dK−k+3

(∑K−k+1
j=1 dj

)(∑K−k+2
j=1 dj

)
(1 + d)

(2.81)

= K · d
2(K−k)+4 +O

(
d2(K−k)+3

)

d2(K−k)+4 +O (d2(K−k)+3)
(2.82)

→ K (2.83)

in the limit as d → ∞ for any k = 2 . . . , K. A numerical example illustrating

the convergence of (2.80) and (2.83) is provided in Figure 2.5- 2.7. By (2.57), the

additive gap

A(F
(d)
G , 1) =

K∑

k=1

pk log

(
nk + 1

nkΛk

)
(2.84)

→
K∑

k=1

1

K
logK (2.85)

= logK (2.86)

in the limit as d→∞. This completes the proof of Proposition 5.

Combining Propositions 4 and 5 completes the proof of the desired worst-case

additive gap result (2.1).

2.5 Multiplicative Gap

Similar to the additive case, to prove the worst-case multiplicative gap result

(2.2) we shall prove that

supFGM(FG, 1) ≤ K (2.87)

and

supFGM(FG, 1) ≥ K (2.88)
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Figure 2.5: A numerical example illustrating the convergence of (2.80) and (2.83).
In this example, K = 8 and d = 10.

separately.

Proposition 6 (Worst-case multiplicative gap, converse part). For any power-gain

distribution FG(·) with K different realizations of the power gain in each coherent

block, we have

M(FG, 1) ≤ K. (2.89)

Proof. Let us first prove the desired inequality (2.89) for the case where gK > 0. By
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Figure 2.6: A numerical example illustrating the convergence of (2.80) and (2.83).
In this example, K = 8 and d = 20.

definition the multiplicative gap M(FG, 1) can be written as

M(FG, 1) =
K∑

k=1

pk log
(
nk+1
nk

)

Cexp(FG, 1)
. (2.90)

We have the following lemma, whose proof is deferred to Appendix C.

Lemma 3. For any k = 1, . . . , K, we have

pk log
(
nk+1
nk

)

Cexp(FG, 1)
≤ 1. (2.91)
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Figure 2.7: A numerical example illustrating the convergence of (2.80) and (2.83).
In this example, K = 8 and d = 300.

Substituting (2.91) into (2.90), we have

M(FG, 1) ≤
K∑

k=1

1 = K. (2.92)

This proves the desired inequality (2.89) for the case where gK > 0.

For the case where gK = 0, we can use the same argument as for the addi-

tive case. More specifically, a modified power-gain distribution F ′G(·) can be found

such that g′K > 0, Cexp(F
′
G, 1) = Cexp(FG, 1), and Cerg(F

′
G) ≥ Cerg(FG). Thus, the
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multiplicative gap

M(FG, 1) =
Cerg(FG)

Cexp(FG, 1)
(2.93)

≤ Cerg(F
′
G)

Cexp(F ′G, 1)
(2.94)

= M(F ′G, 1) (2.95)

≤ K (2.96)

where the last inequality follows from the previous case for which g′K > 0. This

completes the proof for the case where gK = 0.

Combing the above two cases completes the proof of Proposition 6.

Proposition 7 (Worst-case multiplicative gap, forward part). Fix K, and consider

the power-gain distributions F
(d)
G (·) with

nk =
k∑

j=1

dj (2.97)

for some d > 0 and

pk =
dk∑K
j=1 d

j
(2.98)

for all k = 1, . . . , K. For this particular parameter family of power-gain distributions,

we have

lim
d→∞

M(F
(d)
G , 1) = K. (2.99)

Proof. Note that for the given power-gain distribution F
(d)
G ,

Fk =
k∑

j=1

pj =

∑k
j=1 d

j

∑K
j=1 d

j
(2.100)
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so

zk,l =
Fknl − Flnk
Fl − Fk

= 0, ∀1 ≤ k < l ≤ K. (2.101)

We thus have I = 2, π1 = 1, π2 = K, and s = w = 2. By the expression of Λk from

(2.32), we have

Λk =
nK + 1

nK
, ∀k = 1, . . . , K. (2.102)

It follows that the expected capacity

Cexp(F
(d)
G , 1) =

K∑

k=1

pk log Λk = log
nK + 1

nK
. (2.103)

We thus have

pk log
(
nk+1
nk

)

Cexp(F
(d)
G , 1)

=
pk log

(
nk+1
nk

)

log
(
nK+1
nK

) (2.104)

≥ pknK
nk + 1

(2.105)

=
dk∑k

j=1 d
j + 1

(2.106)

=
dk

dk +O (dk−1)
(2.107)

→ 1 (2.108)

in the limit as d→∞ for any k = 1, . . . , K, where (2.90) follows from the well-known

inequalities

x

1 + x
≤ log(1 + x) ≤ x, ∀x ≥ 0, (2.109)

so we have log
(
nk+1
nk

)
≥ 1

nk+1
and log

(
nK+1
nK

)
≤ 1

nK
. On the other hand, by Lemma

3
pk log

(
nk+1
nk

)

Cexp(F
(d)
G , 1)

≤ 1 (2.110)
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for any k = 1, . . . , K. Combining (2.108) and (2.110) proves that

pk log
(
nk+1
nk

)

Cexp(F
(d)
G , 1)

→ 1 (2.111)

in the limit as d → ∞ for all k = 1, . . . , K. A numerical example illustrating the

convergence of (2.111) is illustrated in Figure 2.8- 2.10. By (2.90), the multiplicative

gap

M(F
(d)
G , 1) =

K∑

k=1

pk log
(
nk+1
nk

)

Cexp(F
(d)
G , 1)

→
K∑

k=1

1 = K (2.112)

in the limit as d→∞. This completes the proof of Proposition 7.

Combining Propositions 6 and 7 completes the proof of the desired worst-case

multiplicative gap result (2.2).

33



1 2 3 4 5 6 7 8
10

−4

10
−2

10
0

g
k

1 2 3 4 5 6 7 8
10

−4

10
−2

10
0

p k

1 2 3 4 5 6 7 8
0

0.5

1

β
∗ k
−
β
∗ k
−
1

1 2 3 4 5 6 7 8
0.5

1

k

p
k
lo
g
( n

k
+

1

n
k

)
C

e
x
p
(F

G
,1
)

Figure 2.8: A numerical example illustrating the convergence of (2.111) is illustrated
in Figure 2.8- 2.10. In this example, K = 8 and d = 3.
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Figure 2.9: A numerical example illustrating the convergence of (2.111) is illustrated
in Figure 2.8- 2.10. In this example, K = 8 and d = 6.
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Figure 2.10: A numerical example illustrating the convergence of (2.111) is illustrated
in Figure 2.8- 2.10. In this example, K = 8 and d = 60.
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3. WRITING ON BLOCK-FADING PAPER∗

3.1 Introduction

Consider the problem of writing on block-fading paper [11–13]:

Y [t] = G[t](X[t] + S[t]) + Z[t] (3.1)

where {X[t]} are the channel inputs which are subject to a unit average power

constraint, {G[t]} are the power gains of the channel fading which are assumed to

be constant within each coherent block and change independently across different

blocks according to a known distribution FG(·), {S[t]} and {Z[t]} are independent

additive white circularly symmetric complex Gaussian interference and noise with

zero means and variance INR and 1 respectively, and {Y [t]} are the channel outputs.

The power gains {G[t]} are assume to be unknown to the transmitter but known at

the receiver and the interference signal {S[t]} are assumed to be non-causally known

at the transmitter but not to the receiver. Note here that the instantaneous power

gain G[t] applies to both the channel input X[t] and the known interference S[t],

so this model is particularly relevant to the problem of precoding for multiple-input

multiple-output fading broadcast channels.

As for the point-to-point fading channel (1.1) in Chapter 1, we are interested in

characterizing the worst-case expected-rate loss for the slow-fading scenario. How-

ever, unlike for the point-to-point fading channel (1.1), the ergodic capacity of the

fading-paper channel (3.1) is unknown. We first characterize the ergodic capacity

∗Reprinted, with permission, from J. W. Yoo, T. Liu, S. Shamai (Shitz), and C. Tian,“Worst-
Case Expected-Capacity Loss of Slow-Fading Channels,” IEEE Transactions on Information The-
ory, to appear, Copyright 2013 IEEE.
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of the fading-paper model (3.1) to within in one bit per channel use. As we will

see, this will also lead to a characterization of the additive expected-capacity loss to

within one bit per channel use for the slow-fading scenario.

3.2 Ergodic Capacity to within One Bit

Denote by Cfp
erg(INR, FG) the ergodic capacity of the fading-paper channel (3.1)

with transmit interference-to-noise ratio INR, and power-gain distribution FG(·). We

have the following characterization of Cfp
erg(INR, FG) to within one bit.

Theorem 2. For any transmit interference-to-noise ratio INR, and any power-gain

distribution FG(·), we have

Cerg(FG)− log 2 ≤ Cfp
erg(INR, FG) ≤ Cerg(FG) (3.2)

where Cerg(FG) is the ergodic capacity of the point-to-point fading channel (1.1) of

the same signal-to-noise ratio and power-gain distribution as the fading-paper channel

(3.1).

Proof. To show that Cfp
erg(INR, FG) ≤ Cerg(FG), let us assume that the interference

signal {S[t]} are also known at the receiver. When the receiver knows both the power

gain {G[t]} and the interference signal {S[t]}, it can subtract {
√
G[t]S[t]} from the

received signal {Y [t]}. This will lead to an interference-free point-to-point fading

channel (1), whose ergodic capacity is given by Cerg(FG). Since giving additional

information to the receiver can only improve the ergodic capacity, we conclude that

Cfp
erg(INR, FG) ≤ Cerg(FG).

To show that Cfp
erg(INR, FG) ≥ Cerg(FG)− log 2, we shall show that

R = EG
[
(logG)+

]
(3.3)
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is an achievable ergodic rate for the fading-paper channel (3.1), where x+ := max(x, 0).

Since

(logG)+ ≥ log(1 +G)− log 2 (3.4)

for every possible realization of G, we will have

Cfp
erg(INR, FG) ≥ EG

[
(logG)+

]
(3.5)

≥ EG[log(1 +G)]− log 2 (3.6)

= Cerg(FG)− log 2. (3.7)

To prove the achievability of the ergodic rate (3.3), we shall consider a commu-

nication scheme which is motivated by the following thought experiment. Note that

with ideal interleaving, the block-fading channel (3.1) can be converted to a fast-

fading one [1, Ch. 5.4.5] for which the power gains {G[t]} are independent across

different time index t. Now that the channel is memoryless, by the well-known result

of Gel’fand and Pinsker [23] the following ergodic rate is achievable:

R = max
(X,U)

[
I(U ;

√
G(X + S) + Z|G)− I(U ;S)

]
(3.8)

where U is an auxiliary variable which must be independent of (G,Z). An optimal

choice of the input-auxiliary variable pair (X, U) is unknown [11, 12]. Motivated by

the recent work [24], let us consider

U = X + S (3.9)

where X is circularly symmetric complex Gaussian with zero mean and variance P

and is independent of S. For this choice of the input-auxiliary variable pair (X,U),
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we have

I(U ;
√
G(X + S) + Z|G)− I(U ;S) (3.10)

= EG[log(1 +G(1 + INR))]− log (1 + INR) (3.11)

≥ EG[log(G(1 + INR))]− log (1 + INR) (3.12)

≥ EG[logG]. (3.13)

This proves that

R = {EG[logG]}+ (3.14)

is an achievable ergodic rate for the fading-paper channel (3.1).

Note that even though the achievable ergodic rate (3.14) is independent of the

transmit interference-to-noise ratio INR, it is not always within one bit of the

interference-free ergodic capacity Cerg(FG). This is because when G < 1, we have

logG < 0, i.e., the realizations of the power gain which are less than 1 contribute neg-

atively to the achievable rate (3.14). By comparison, the realizations of the power

gain never contribute negatively (but possibly zero) to the achievable rate (3.3).

Next, motivated by the secure multicast code construction proposed in [25], we shall

consider a separate-binning scheme which allows opportunistic decoding at the re-

ceiver to boost the the achievable ergodic rate from (3.14) to (3.3).

Fix ε > 0 and let (U,X) be chosen as in (3.9). Consider communicating a message

W ∈ {1, . . . , eLTcR} over L coherent blocks, each of a block length Tc which we assume

to be sufficiently large.

Codebook generation. Randomly generate L codebooks, each for one coherent

block and consisting of eTc(LR+I(U ;S)+ε) codewords of length Tc. The entries of the

codewords are independently generated according to PU . Randomly partition each
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Figure 3.1: The codebook structure for achieving the ergodic rate (3.3). Each code-
word bin in the codebooks contains codewords.

codebook into eLTcR bins, so each bin contains eTc(I(U ;S)+ε) codewords. See Fig. 3.1

for an illustration of the codebook structure.

Encoding. Given the messageW and the interference signal SLTc := (S[1], . . . , S[LTc]),

the encoder looks into the W th bin in each codebook l and tries to find a codeword

that is jointly typical with STcl , where STcl := (S[(l− 1)Tc + 1], . . . , S[lTc]) represents

the segment of the interference signal SLTc transmitted over the lth coherent block.

By assumption, Tc is sufficiently large so with high probability such a codeword can

be found in each codebook [26]. Denote by UTc
l := (U [(l − 1)Tc + 1], . . . , U [lTc]) the

codeword chosen from the lth codebook. The transmit signal XTc
l := (X[(l− 1)Tc +

1], . . . , X[lTc]) over the lth coherent block is given by XTc
l = UTc

l − STcl .

Decoding. Let Gl be the realization of the power gain during the lth coherent
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block, and let

L := {l : I(U ;
√
Gl(X + S) + Z)− I(U ;S) > 0}. (3.15)

Given the received signal Y LTc := (Y [1], . . . , Y [LTc]), the decoder looks for a code-

word bin which contains for each coherent block l ∈ L, a codeword that is jointly

typical with the segment of Y LTc(L) received over the lth coherent block. If only one

such codeword bin can be found, the estimated message Ŵ is given by the index of

the codeword bin. Otherwise, a decoding error is declared.

Performance analysis. Note that averaged over the codeword selections and by

the union bound, the probability that an incorrect bin index is declared by the

decoder is no more than

∏

l∈L

eTc(I(U ;S)+ε) · e−Tc(I(U ;
√
Gl(X+S)+Z)−ε)

= e−Tc
∑
l∈L[I(U ;

√
Gl(X+S)+Z)−I(U ;S)−2ε]. (3.16)

Thus, by the union bound again, the probability of decoding error is no more than

eTcLR · e−Tc
∑
l∈L[I(U ;

√
Gl(X+S)+Z)−I(U ;S)−2ε]

= e−Tc{
∑
l∈L[I(U ;

√
Gl(X+S)+Z)−I(U ;S)−2ε]−LR}. (3.17)

It follows that the transmit message W can be reliably communicated (with expo-

nentially decaying error probability for sufficiently large Tc) as long as

∑

l∈L

[
I(U ;

√
Gl(X + S) + Z)− I(U ;S)− 2ε

]
− LR > 0 (3.18)
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or equivalently

R <
1

L

∑

l∈L

[
I(U ;

√
Gl(X + S) + Z)− I(U ;S)− 2ε

]
. (3.19)

Note that

1

L

∑

l∈L

[
I(U ;

√
Gl(X + S) + Z)− I(U ;S)− 2ε

]

=
1

L

∑

l∈L

[
I(U ;

√
Gl(X + S) + Z)− I(U ;S)

]
− 2|L|

L
ε (3.20)

≥ 1

L

∑

l∈L

[
I(U ;

√
Gl(X + S) + Z)− I(U ;S)

]
− 2ε (3.21)

=
1

L

L∑

l=1

[
I(U ;

√
Gl(X + S) + Z)− I(U ;S)

]+
− 2ε (3.22)

≥ 1

L

L∑

l=1

(logGl)
+ − 2ε (3.23)

where (3.21) follows from the fact that |L| ≤ L, (3.22) follows from the definition

of L from (3.15), and (3.23) follows from (3.13). Finally, by the weak law of large

numbers,

1

L

L∑

l=1

(logGl)
+ → EG

[
(logG)+

]
(3.24)

in probability in the limit as L → ∞. We thus conclude that (3.3) is an achievable

ergodic rate for the fading-paper channel (3.1).

We have thus completed the proof of Theorem 2.

The following observations are now in place. First, the boost of the achievable

rate from (3.14) to (3.3) is mainly due to opportunistic decoding used by the re-

ceiver, which ensures that the realizations of the power gain which are less than 1

do not contribute negatively to the achievable rate. Second, the separate-binning
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scheme takes advantage of the block-fading nature and does not apply to the fast-

fading scenario. Finally, the nature of the separate-binning scheme is such that the

interference signal S[t] within each coherent block only needs to be made available

to the transmitter at the beginning of the block and not necessarily at the start of

the entire communication.

3.3 Additive Expected-Capacity Loss to within One Bit

Let Cfp
exp(INR, FG, L) be the expected capacity of the fading-paper channel (3.1)

under the delay constraint of L coherent blocks, and let

Afp(INR, FG, L) := Cfp
erg(INR, FG)− Cfp

exp(INR, FG, L) (3.25)

be the additive gap between the ergodic capacity Cfp
erg(INR, FG) and the expected

capacity Cfp
exp(INR, FG, L). We have the following results.

Theorem 3. For any transmit interference-to-noise ratio INR and any power-gain

distribution FG(·), we have

A(FG, 1)− log 2 ≤ Afp(INR, FG, 1) ≤ A(FG, 1). (3.26)

Proof. We claim that for any transmit interference-to-noise ratio INR > 0 and any

power-gain distribution FG(·), we have

Cfp
exp(INR, FG, 1) = Cexp(FG, 1). (3.27)

Then, the desired inequalities in (3.26) follow immediately from the above claim and

Theorem 2.

To prove (3.27), let us consider the following K-user memoryless Gaussian broad-
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cast channel:

Yk =
√
gk(X + S) + Z, k = 1, . . . , K (3.28)

where X is the channel input which is subject an average power constraint, S and

Z are independent additive white circularly symmetric complex Gaussian interfer-

ence and noise, and gk and Yk are the power gain and the channel output of user k,

respectively. The interference S is assumed to be non-causally known at the trans-

mitter but not to the receivers. Similar to the interference-free (scalar) Gaussian

broadcast channel, the broadcast channel (3.28) is also (stochastically) degraded.

Furthermore, Steinberg [27] showed that through successive Costa precoding [26] at

the transmitter, the capacity region of the broadcast channel (3.28) is the same as

that of the interference-free Gaussian broadcast channel. We may thus conclude that

the expected capacity Cfp
exp(INR, FG, 1) of the fading-paper channel (3.1) is the same

as the expected capacity Cexp(FG, 1) of the interference-free point-to-point fading

channel (1.1) of the same power-gain distribution FG(·). This completes the proof of

Theorem 3.

Combining Theorems 1 and 3 immediately leads to the following corollary.

Corollary 1.

log(K/2) ≤ sup
INR,FG

Afp(INR, FG, 1) ≤ logK. (3.29)

where the supreme is over all transmit interference-to-noise ratio INR and all power-

gain distribution FG(·) with K different possible realizations of the power gain in each

coherent block.
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4. TWO-STATE BLOCK-FADING WITH TWO-BLOCK DELAY

4.1 Introduction

Consider the block-fading channel with a delay constraint of two blocks and two

possible power gain realizations at each coherent block given by

Yi[t] = Xi[t] + Zi[t], i = 1, 2 (4.1)

where {X1[t]} and {X2[t]} are the channel inputs during block 1 and 2, which are

subject to the unit average total power constraint

1

2N

N∑

t=1

(
|X1[t]|2 + |X2[t]|2

)
≤ 1 (4.2)

and {Z1[t]} and {Z2[t]} are independent additive (complex) white Gaussian noise.

For each block, there are two possible realizations for the noise variance: with prob-

ability p the noise variance is σ2
H and with probability 1− p the noise variance is σ2

L

where 0 < σ2
H ≤ σ2

L.

In [9], Whiting and Yeh characterized the expected capacity of the channel (4.1).

However, their result on the expected capacity is, in fact, incorrect due to a wrong

expression for the expected rate in their converse proof. This issue in [9] was noticed

in [10]. Here, we characterize the expected capacity of the channel, which is strictly

greater than the expected rate provided in [9]. An optimal power allocation is also

characterized via marginal utility functions (MUFs) [15].

Let ZiH and ZiL denote Zi with the noise variance σ2
H and σ2

L respectively. As

described in [9], there are four possible states of the received signal at the receiver,
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which are (Y1H , Y2H), (Y1H , Y2L), (Y1L, Y2H), and (Y1L, Y1L) where

YiH := Xi + ZiH (4.3)

YiL := Xi + ZiL (4.4)

for i = 1, 2. Note here that there are relationships between the possible states as

(Y1L, Y2L) → (Y1H , Y2L) → (Y1H , Y2H)

(Y1L, Y2L) → (Y1L, Y2H) → (Y1H , Y2H).
(4.5)

From the relationship (4.5), without loss of generality, we may consider a set of

five independent messages {WLL,W0,WHL,WLH ,WHH} where WLL is intended for

(Y1L, Y1L), {WLL,W0,WHL} are intended for (Y1H , Y2L), {WLL,W0,WLH} is intended

for (Y1L, Y2H), and {WLL,W0,WHL,WHL,WHH} are intended for (Y1H , Y2H). We thus

have a parallel Gaussian broadcast channel with the message set {WLL,W0,WHL,WLH ,WHH},

which is equivalent to the channel (4.1) as illustrated in Figure 4.1. Based on the

equivalent broadcast channel, the expected capacity of the channel (4.1) across two

coherent blocks is characterized in the following theorem.

Theorem 4. The expected capacity Cexp of the Gaussian block fading channel (4.1)

across two coherent blocks is given by

Cexp = max
0≤β1≤β2≤1

[
p log

(
β1 + σ2

H

σ2
H

)
+ log

(
1 + σ2

L

β2 + σ2
L

)
+

(
p− 1

2
p2
)(

log

(
β2 + σ2

H

β1 + σ2
H

)
+ log

(
β2 + σ2

L

β1 + σ2
L

))]
. (4.6)
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Figure 4.1: An equivalent Gaussian product broadcast channel.

Compared to the expected rate in [9], we can achieve

(p− p2) log

(
β1 + σ2

H

σ2
H

)
(4.7)

extra expected bits per channel use.
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4.2 Proof of the Main Result

Note that the expected achievable rate E[R] of the channel (4.1) for coding over

two blocks is given by:

E[R] = p2(RHH +RHL +RLH +R0 +RLL) + p(1− p)(RHL +RLL +R0) +

p(1− p)(RLH +RLL +R0) + (1− p)2RLL

= p2(RHH +RHL +RLH) + p(1− p)(RHL +RLH) +

(p2 + 2p(1− p))R0 +RLL

≤ (p2 + p(1− p))(RHH +RHL +RLH) + (p2 + 2p(1− p))R0 +RLL

= p(RHH +RHL +RLH) + (2p− p2)R0 +RLL. (4.8)

where RHH , RHL, RLH , R0, and RLL denote achievable rates of the messages WHH ,

WHL, WLH , W0, and WLL respectively.

4.2.1 The Converse

By Fano’s inequality, we can bound each term on the right-hand side of (4.8) as:

2N(RHH +RHL +RLH − ε)

= H(WHH ,WHL,WLH)− 2Nε

≤ I(WHH ,WHL,WLH ;Y N
1H , Y

N
2H |W0,WLL)

= h(Y N
1H , Y

N
2H |W0,WLL)− h(Y N

1H , Y
N
2H |WHH ,WHL,WLH ,W0,WLL),
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2N(R0 − ε) = H(W0)− 2Nε

≤ min
{
I(W0;Y

N
1H , Y

N
2L|WLL), I(W0;Y

N
1L, Y

N
2H |WLL)

}

≤ 1

2

[
I(W0;Y

N
1H , Y

N
2L|WLL) +

1

2
I(W0;Y

N
1L, Y

N
2H |WLL)

]

=
1

2
h(Y N

1H , Y
N
2L|WLL)− 1

2
h(Y N

1H , Y
N
2L|W0,WLL) +

1

2
h(Y N

1H , Y
N
2L|WLL)− 1

2
h(Y N

1H , Y
N
2L|W0,WLL)

and

2N(RLL − ε) = H(WLL)− 2Nε

≤ I(WLL;Y N
1L, Y

N
2L)

= h(Y N
1L, Y

N
2L)− h(Y N

1L, Y
N
2L|WLL)

where ε → 0 in the limit as N → ∞. Thus, from (4.8), the expected rate E[R] can

be bounded from above as

2N
(
E[R]− (3p− p2 + 1)ε

)

≤ p
[
h(Y N

1H , Y
N
2H |W0,WLL)− h(Y N

1H , Y
N
2H |WHH ,WHL,WLH ,W0,WLL)

]
+

(
p− 1

2
p2
)[

h(Y N
1H , Y

N
2L|WLL)− h(Y N

1H , Y
N
2L|W0,WLL)+

h(Y N
1L, Y

N
2H |WLL)− h(Y N

1L, Y
N
2H |W0,WLL)

]
+

[
h(Y N

1L, Y
N
2L)− h(Y N

1L, Y
N
2L|WLL)

]
. (4.9)
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Equivalently, we have

2N
(
E[R]− (3p− p2 + 1)ε

)

≤ p
[
h(Y N

1H |W0,WLL) + h(Y N
2H |Y N

1H ,W0,WLL)−

h(Y N
1H , Y

N
2H |WHH ,WHL,WLH ,W0,WLL)

]
+

(
p− 1

2
p2
)[

h(Y N
1H |WLL) + h(Y N

2L|Y N
1H ,WLL)−

(
h(Y N

1H |W0,WLL) + h(Y N
2L|Y N

1H ,W0,WLL)
)

+

(
h(Y N

1L|WLL) + h(Y N
2H |Y N

1L,WLL)
)
−

(
h(Y N

1L|W0,WLL) + h(Y N
2H |Y N

1L,W0,WLL)
)]

+

[
h(Y N

1L, Y
N
2L)−

(
h(Y N

1L|WLL) + h(Y N
2L|Y N

1L,WLL)
)]
. (4.10)

Note from the Markov relationship

Y N
1L − Y N

1H − {XN
1 , X

N
2 } − Y N

2H − Y N
2L

that

h(Y N
2L|WLL, Y

N
1H) ≤ h(Y N

2L|WLL, Y
N
1L)

and

h(Y N
2H |W0,WLL, Y

N
1H) ≤ h(Y N

2H |W0,WLL, Y
N
1L).
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We thus have

2N
(
E[R]− (3p− p2 + 1)ε

)

≤ h(Y N
1L, Y

N
2L)− ph(Y N

1H , Y
N
2H |WHH ,WHL,WLH ,W0,WLL) +

(
p− 1

2
p2
)
h(Y N

1H |WLL)−
(

1− p+
1

2
p2
)
h(Y N

1L|WLL) +

1

2
p2h(Y N

1H |W0,WLL)−
(
p− 1

2
p2
)
h(Y N

1L|W0,WLL) +

(
p− 1

2
p2
)
h(Y N

2H |WLL, Y
N
1L)−

(
1− p+

1

2
p2
)
h(Y N

2L|WLL, Y
N
1L) +

1

2
p2h(Y N

2H |W0,WLL, Y
N
1H)−

(
p− 1

2
p2
)
h(Y N

2L|W0,WLL, Y
N
1H). (4.11)

Note that

h(Y N
1H , Y

N
2H |WHH ,WHL,WLH ,W0,WLL) = 2N log

(
πeσ2

H

)
. (4.12)

Furthermore, by the power constraint (4.2) we have

E

[
1

2N

N∑

t=1

(
|X1[t]|2 + |X2[t]|2

)
]
≤ 1.

Hence, without loss of generality we may assume that

1

2N

N∑

t=1

|Xi[t]|2 = θi, i = 1, 2

where θ1 ≥ 0, θ2 ≥ 0, and θ1 + θ2 ≤ 1. It follows that

h(Y N
1L, Y

N
2L) ≤

2∑

i=1

h(Y N
iL ) ≤

2∑

i=1

N log
(
πe(2θi + σ2

L)
)
. (4.13)
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Further note that

N log
(
πeσ2

L

)
= h(Y N

1L|WHH ,WHL,WLH ,W0,WLL)

≤ h(Y N
1L|W0,WLL)

≤ h(Y N
1L|WLL)

≤ h(Y N
1L)

≤ N log
(
πe(2θ1 + σ2

L)
)
,

so there exist β
(1)
1 and β

(1)
2 such that 0 ≤ β

(1)
1 ≤ β

(1)
2 ≤ 1,

h(Y N
1L|WLL) = N log

(
πe(2θ1β

(1)
2 + σ2

L)
)

(4.14)

and

h(Y N
1L|W0,WLL) = N log

(
πe(2θ1β

(1)
1 + σ2

L)
)
. (4.15)

By the conditional entropy power inequality, we have

N log
(
πe(2θ1β

(1)
2 + σ2

L)
)

= h(Y N
1L|WLL)

≥ N log
(

2Nh(Y
N
1H |WLL) + πe(σ2

L − σ2
H)
)

and

N log
(
πe(2θ1β

(1)
1 + σ2

L)
)

= h(Y N
1L|W0,WLL)

≥ N log
(

2Nh(Y
N
1H |W0,WLL) + πe(σ2

L − σ2
H)
)
.

Equivalently,

h(Y N
1H |WLL) ≤ N log

(
πe(2θ1β

(1)
2 + σ2

H)
)

(4.16)
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and

h(Y N
1H |W0,WLL) ≤ N log

(
πe(2θ1β

(1)
1 + σ2

H)
)
. (4.17)

Similarly, note that

N log
(
πeσ2

L

)
= h(Y N

2L|WHH ,WHL,WLH ,W0,WLL, Y
N
1H)

≤ h(Y N
2L|W0,WLL, Y

N
1H)

≤ h(Y N
2L|W0,WLL, Y

N
1L)

≤ h(Y N
2L|WLL, Y

N
1L)

≤ h(Y N
2L)

≤ N log
(
πe(2θ2 + σ2

L)
)

so there exist β
(2)
1 and β

(2)
2 such that 0 ≤ β

(2)
1 ≤ β

(2)
2 ≤ 1

h(Y N
2L|WLL, Y

N
1L) = N log

(
πe(2θ2β

(2)
2 + σ2

L)
)

(4.18)

and

h(Y N
2L|W0,WLL, Y

N
1H) = N log

(
πe(2θ2β

(2)
1 + σ2

L)
)
. (4.19)

By the conditional entropy power inequality, we have

h(Y N
2H |WLL, Y

N
1L) ≤ N log

(
πe(2θ2β

(2)
2 + σ2

H)
)

(4.20)

and

h(Y N
2H |W0,WLL, Y

N
1H) ≤ N log

(
πe(2θ2β

(2)
1 + σ2

H)
)
. (4.21)
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Figure 4.2: A three-layer superposition coding scheme for broadcasting over two
coherent blocks

Substituting (4.12)–(4.21) ino (4.11), dividing both sides of the inequality by 2N ,

and letting N →∞, we have

E[R] ≤ max(
θ1,θ2,β

(1)
1 ,β

(1)
2 ,β

(2)
1 ,β

(2)
2

)R1 +R2 (4.22)

where

Ri :=
1

2

[
p log

(
2θiβ

(i)
1 + σ2

H

σ2
H

)
+ log

(
2θi + σ2

L

2θiβ
(i)
2 + σ2

L

)
+

(
p− 1

2
p2
)(

log

(
2θiβ

(i)
2 + σ2

H

2θiβ
(i)
1 + σ2

H

)
+ log

(
2θiβ

(i)
2 + σ2

L

2θiβ
(i)
1 + σ2

L

))]
(4.23)

for i = 1, 2. Using the “super code” argument provided in [9], it can be shown

that without loss of optimality, we may assume that θ1 = θ2 = 1/2. Once we fix

θ1 = θ2 = 1/2, by the symmetry of R1 and R2 we may assume without loss of

optimality that β
(1)
1 = β

(2)
1 = β1 and β

(1)
2 = β

(2)
2 = β2. This completes the proof of

the converse part of the theorem.
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4.2.2 Achievability

The expected rate on the right-hand side of (4.6) can be achieved by a three-layer

superposition coding as illustrated in Figure 4.2. The power allocations, from the

bottom to the top layers, are given by 1 − β2, β2 − β1, and β1, respectively. The

bottom layer is used to encode the message WLL and is of a total rate

log

(
1 + σ2

L

β2 + σ2
L

)
.

It can be either a joint codebook or two separate codebooks, each for one coherent

block. The middle layer is used to encode the message W0 and is of a rate

1

2
log

(
β2 + σ2

H

β1 + σ2
H

)
+

1

2
log

(
β2 + σ2

L

β1 + σ2
L

)
.

It must be a joint codebook as it needs to be decodable when the received signals

are either (Y1H , Y2L) or (Y1L, Y2H). The top layer consists of two separate codebooks,

one for each coherent block and of a rate

1

2
log

(
β1 + σ2

H

σ2
H

)
.

One of them is used to encode the message WHL, and the other is used to encode the

message WLH . No power is allocated to encode the message WHH . It is straightfor-

ward to verify that the achievable expected rate of the above scheme is indeed given

by the right-hand side of (4.6). This completes the proof of the achievability part

and hence the entire theorem.

Remark 1. By comparison, the coding scheme considered in [9] is also a three-layer

superposition coding scheme for which the bottom and the middle layers are the same
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as those considered in this dissertation. The difference is in the top layer, which uses

a joint codebook to encode the message WHH . Such a coding scheme is apparently

inferior to the coding scheme considered in this dissertation, as the top layer is not

decodable when the received signals are either (Y1H , Y2L) or (Y1L, Y2H), resulting a net

loss of

(p− p2) log

(
β1 + σ2

H

σ2
H

)

bits in expected rate.

4.3 Optimal Power Allocation

In the following proposition, an optimal power allocation for the expected capac-

ity (4.6) is explicitly characterized.

Proposition 8 (An optimal power allocation). An optimal solution (β∗1 , β
∗
2) to the

optimization problem (4.6) is given by

β∗1 = min

{(
(1− (1− p))σ2

L − (1 + (1− p))σ2
H

2(1− p)

)+

, 1

}
(4.24)

and

β∗2 = min

{(
(1− (1− p)2)σ2

L − (1 + (1− p)2)σ2
H

2(1− p)2
)+

, 1

}
. (4.25)

Proof. Let us rewrite the expected capacity the expected capacity (4.6) as

Cexp = max
0≤β1≤β2≤1

[
p log (1 + gHβ1) + log

(
1 + gL

1 + gLβ2

)
+

(
p− 1

2
p2
)(

log

(
1 + gHβ2
1 + gHβ1

)
+ log

(
1 + gLβ2
1 + gLβ1

))]
(4.26)

where gH := 1/σ2
H and gL := 1/σ2

L and thus gL < gH . The optimal solution (β∗1 , β
∗
2)

of the maximization problem in (4.26) can be obtained by considering MUFs [15].
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Following [9], let us define the MUFs as

u1(z) := p · gH
1 + gHz

(4.27)

u2(z) :=

(
p− p2

2

)(
gH

1 + gHz
+

gL
1 + gLz

)
(4.28)

u3(z) :=
gL

1 + gLz
(4.29)

and the dominating MUF as

u∗(z) := max
l=1,2,3

ul(z). (4.30)

It is easy to see that MUFs u1(z), u2(z), and u3(z) have the single crossing point

property as MUFs defined in Chapter 2. Clearly, u1(z) and u2(z) have a unique

intersection at z = z1 where

z1 =
(1− (1− p))gH − (1 + (1− p))gL

2(1− p)gHgL
. (4.31)

Providing that z1 ≥ 0, u1(z) > u2(z) if and only if 0 ≤ z < z1 and u1(z) ≤ u2(z) if

and only if z ≥ z1. Similarly, u2(z) and u3(z) have a unique intersection at z = z2

where

z2 =
(1− (1− p)2)gH − (1 + (1− p)2)gL

2(1− p)2gHgL
. (4.32)

Assuming that z2 ≥ 0, u2(z) > u3(z) if and only if 0 ≤ z < z2 and u2(z) ≤ u3(z) if

and only if z ≥ z2. Note here that each of the MUFs can dominate the others on a

single interval at most within [0, 1] and that z1 ≤ z2 since gL ≤ gH . Thus, we can
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rewrite the dominating MUF u∗(z) for z ∈ [0, 1] as

u∗(z) =





u1(z), for 0 ≤ z < min{z+1 , 1}

u2(z), for min{z+1 , 1} ≤ z < min{z+2 , 1}

u3(z), for min{z+2 , 1} ≤ z < 1

(4.33)

where (·)+ := max{·, 0}.

Now, we have

Cexp = p log (1 + gHβ
∗
1) + log

(
1 + gL

1 + gLβ∗2

)
+

(
p− p2

2

)(
log

(
1 + gHβ

∗
2

1 + gHβ∗1

)
+ log

(
1 + gLβ

∗
2

1 + gLβ∗1

))
(4.34)

=

∫ β∗1

0

p · gH
1 + gHz

dz +

∫ 1

β∗2

gL
1 + gLz

dz +

∫ β∗2

β∗1

(
p− p2

2

)(
gH

1 + gHz
+

gL
1 + gLz

)
dz (4.35)

=
3∑

l=1

∫ β∗l

β∗l−1

ul(z)dz (4.36)

≤
∫ 1

0

u∗(z)dz (4.37)

where β0 := 0 and β3 := 1. Note here that the inequality (4.37) holds with equality

if and only if β∗1 = min{z+1 , 1} and β∗2 = min{z+2 , 1}. Therefore, we have

Cexp =

∫ 1

0

u∗(z)dz (4.38)

with the optimal power allocation

β∗1 = min

{(
(1− (1− p))gH − (1 + (1− p))gL

2(1− p)gHgL

)+

, 1

}
(4.39)
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and

β∗2 = min

{(
(1− (1− p)2)gH − (1 + (1− p)2)gL

2(1− p)2gHgLb

)+

, 1

}
. (4.40)

This completes the proof of Proposition 8.
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5. THE CAPACITY REGION OF A PRODUCT GAUSSIAN BROADCAST

CHANNEL WITH DEGRADED MESSAGE SETS∗

5.1 Introduction

Broadcast is a fundamental nature of wireless communication: any receiver within

the transmission range can listen to the source and potentially decode some of the

messages. With appropriate coding architecture, the broadcast nature of wireless

communication can be used to the advantage of simultaneously transmitting to sev-

eral receivers at high rates. Understanding the limits and the appropriate coding

architectures that can harness the broadcast advantage of wireless communication is

an important subject of network information theory [28].

Most of the previous work focused on one of the following two scenarios:

1. to deliver the same messages to each of the receivers, usually known as the

multicast problem; and

2. to deliver completely distinct messages to different receivers, namely the private

message problem.

Formally, the distinction between these two broadcast scenarios can be identified by

the configurations of the message sets associated with each of the receivers. For the

multicast problem, the intended message sets for each of the receivers are identical.

For the private message problem, the intended message sets for each of the receivers

are mutually exclusive. Clearly, the appropriate coding architecture depends on the

configurations of the message sets.

∗Reprinted, with permission, from J. W. Yoo, T. Liu, and Y. Liang, “The capacity region of a
product Gaussian broadcast channel with degraded message sets,” in Proc. 5th International ICST
Conference on Communications and Networking in China, Beijing, China, August 2010, Copyright
ICST.
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Figure 5.1: Broadcast channel with degraded message sets.

Between these two “extreme” broadcast scenarios, the multicast and the private

message problems, there is a rich collection of “intermediate” problems with message

sets of interesting configurations and significant engineering appeal. A good example

is the degraded message set problems first considered in [29], which can be used

to model broadcast scenarios with a progressively encoded source and receivers of

different quality-of-service requirement.

Fig. 5.1 illustrates a general discrete memoryless broadcast channel with degraded

message sets. The transmitter has a total ofK independent messages (M1,M2, . . . ,MK).

Each of the K receivers demands a subset of messages from the transmitter. The

message set Sk intended for receiver k is given by

Sk = {M1,M2, . . . ,Mk}, k = 1, 2, . . . , K.

Clearly, we have

S1 ⊆ S2 ⊆ · · · ⊆ SK

and hence the name “degraded message sets”.

For the degraded message set problem, there is a natural communication strategy
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based on superposition coding [30] and direct decoding. With K independent mes-

sages at the transmitter and K receivers, an K-layer superposition code can be built

with the kth layer from the bottom representing message Mk. Receiver k decodes

messages (W1,W2, . . . ,Wk) by directly decoding all the bottom layers up to the kth.

For K = 2, it was shown in [29] that this natural strategy is also optimal in achieving

the capacity region of the channel. For K ≥ 3, however, finding the capacity region

of the discrete memoryless broadcast channel with degraded message sets remains

an open problem in network information theory.

In an excellent contribution [14], Nair and El Gamal considered a special three-

receiver discrete memoryless broadcast channel with degraded message sets and pre-

sented a precise single-letter characterization of the capacity region. Specifically,

in [14], it was assumed that:

1. receiver 2 is degraded with respect to receiver 1, i.e., X − Y1 − Y2 forms a

Markov for any input distribution p(x); and

2. the rate of message M2 is set to be zero so in defacto, there are only two

independent messages M1 and M3 at the transmitter.

Under these two assumptions, Nair and El Gamal [14] proved a surprising result that

the natural scheme that uses direct decoding is, in general, suboptimal. Instead, a

coding scheme that uses indirect decoding [14] can always achieve the capacity region

of the channel.

Building on the result of [14], we consider a specific product Gaussian broadcast

channel with degraded message sets and provide an explicit characterization of the

capacity region. The main tools used in this characterization are Lagrangian theory

[31] and an extremal entropy inequality of Liu and Viswanath [32]. It is worth

mentioning that the exact same product Gaussian model was also considered in the
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original work of Nair and El Gamal [14], and characterizing the capacity region was

posted as an open problem.

5.2 Channel Model

Figure 5.2: Product Gaussian broadcast channel with degraded message sets.

As shown in Fig. 5.2, consider a discrete-time memoryless product Gaussian

broadcast channel with three receivers. At each time sample, the received signals

at receivers 1, 2 and 3 are given by Y1 = (Y11, Y12), Y2 = (Y21, Y22) and Y3 = Y31,

respectively, where

Y31 = X1 + Z1, Y11 = Y31 + Z2, Y21 = Y11 + Z3

Y12 = X2 + Z4, Y22 = Y12 + Z5.
(5.1)

Here, X = (X1, X2) is the channel input, and Zi, i = 1, 2, 3, 4, 5, are Gaussian noise

with zero means with covariance Ni, respectively, and are assumed to be mutually

independent of each other. We consider two different types of power constraints on
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the channel input X: an average total power constraint

E[X2
1 +X2

2 ] ≤ P (5.2)

and an individual per-subchannel power constraint

E[X2
i ] ≤ Pi, i = 1, 2. (5.3)

The transmitter has two independent messages M0 and M1, where M0 is a com-

mon message intended for all three receivers and M1 is a private message intended

only for receiver 1. The capacity region C(P ) is given by the set of nonnegative rate

pairs (R0, R1) that can be achieved by any coding scheme under the average total

power constraint (5.2). Likewise, the capacity region C(P1, P2) is given by the set of

nonnegative rate pairs (R0, R1) that can be achieved by any coding scheme under

the individual per-subchannel power constraint (5.3).

From the channel model (5.1), it is clear that X−Y1−Y2 forms a Markov for any

distribution on the channel input X. In this case, a single-letter characterization of

the capacity region was obtained in [14, Prop. 2] and is given by the set of nonnegative

rate tuples (R0, R1) such that

R0 ≤ I(U1;Y21) + I(U2;Y22)

R0 ≤ I(V1;Y31)

R1 ≤ I(X1;Y11|U1) + I(X2;Y12|U2)

R0 +R1 ≤ I(V1;Y31) + I(X1;Y11|V1) + I(X2;Y12|U2)

(5.4)

for some joint distributions on (U1, V1, X1) and (U2, X2) such that U1 − V1 − X1

forms a Markov chain. The main goal is to evaluate the rate region (5.4) for the
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specific product Gaussian model (5.1) under both average total and individual per-

subchannel power constraints.

5.3 Main Result

The main result of this chapter is an explicit characterization of the capacity

region of the product Gaussian broadcast channel (5.1) under the individual per-

subchannel power constraint (5.3), summarized in the following theorem.

Theorem 5. The capacity region C(P1, P2) of the three-receiver product Gaussian

broadcast channel (5.1) under the individual per-subchannel power constraint (5.3)

is given by the set of nonnegative rate tuple (R0, R1) such that

R0 ≤ C
(

P1−Q1

Q1+N1+N2+N3

)
+ C

(
P2−Q2

Q2+N4+N5

)

R0 ≤ C
(
P1

N1

)

R1 ≤ C
(

Q1

N1+N2

)
+ C

(
Q2

N4

)

R0 +R1 ≤ C
(
P1

N1

)
+ C

(
Q2

N4

)

(5.5)

for some 0 ≤ Q1 ≤ P1 and 0 ≤ Q2 ≤ P2, where C(x) := 1
2

log(1 + x).

As a corollary, we have the following characterization of the capacity region of the

product Gaussian broadcast channel (5.1) under the average total power constraint

(5.2).

Corollary 2. The capacity region C(P ) of the three-receiver product Gaussian broad-

cast channel (5.1) under the average total power constraint (5.2) is given by the set
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of nonnegative rate tuple (R0, R1) such that

R0 ≤ C
(

Q3

Q1+N1+N2+N3

)
+ C

(
Q4

Q2+N4+N5

)

R0 ≤ C
(
Q1+Q3

N1

)

R1 ≤ C
(

Q1

N1+N2

)
+ C

(
Q2

N4

)

R0 +R1 ≤ C
(
Q1+Q3

N1

)
+ C

(
Q2

N4

)

(5.6)

for some Qi ≥ 0, i = 1, 2, 3, 4, and Q1 +Q2 +Q3 +Q4 ≤ P .

Proof. This is a simple consequence of Theorem 5 and the well-known fact that

C(P ) =
⋃

P1+P2≤P

C(P1, P2).

5.4 Proof of the Main Result

The achievability of the rate region (5.5) follows from that of (5.4) by setting

Xi = Ui + Wi for i = 1, 2 and V1 = X1, where Ui and Wi are two independent

Gaussian variables with zero means and variances Pi−Qi and Qi, respectively. (Note

that for such a choice of (U1, V1, X1), U1 − V1 − X1 forms a trivial Markov chain.)

We therefore concentrate on proving the converse part of the theorem.

To prove the converse part of the theorem, we shall need the following extremal

entropy inequality which first appeared in [32, Th. 8].

Lemma 4 ( [32]). Let P and µ be two nonnegative real numbers, and let Z1, Z2

be two Gaussian variables with zero means and variances N1 and N2, respectively.
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Assume that 0 < N1 ≤ N2. If there exists a nonnegative real number P ∗ satisfying

(P ∗ +N1)
−1 +M1 = µ(P ∗ +N2)

−1 +M2

M1P
∗ = 0

M2(P − P ∗) = 0

for some nonnegative real numbers M1 and M2, then

h(X + Z1|U)− µh(X + Z2|U)

≤ 1

2
log 2πe(P ∗ +N1)−

µ

2
log 2πe(P ∗ +N2)

for any (X,U) independent of (Z1, Z2) and such that E[X2] ≤ P .

We are now ready to prove the converse part of the theorem. Consider proof

by contradiction. Let (Ro
0, R

o
1) be an achievable rate pair that lies outside the rate

region (5.5). From [33], we have Ro
0 ≤ Rmax

0 where

Rmax
0 := min

{
C
(

P1

N1+N2+N3

)
+ C

(
P2

N4+N5

)
, C
(
P1

N1

)}
.

Note that when Ro
1 = 0, Rmax

0 can be achieved by letting Q1 = Q2 = 0 in (5.5).

Thus, we may assume that Ro
1 > 0 and write Ro

1 = R∗1 + δ for some δ > 0, where R∗1
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T2(Q
∗
1 +N1 +N2)

−1 +M1 = T1(Q
∗
1 +N1 +N2 +N3)

−1 +M2 (5.7)

(Q∗2 +N4)
−1 +M3 = T1(Q

∗
2 +N4 +N5)

−1 +M4 (5.8)

T2 + T3 = 1 (5.9)

T1R
o
0 = T1

[
C

(
P1 −Q∗1

Q∗1 +N1 +N2 +N3

)
+

C

(
P2 −Q∗2

Q∗2 +N4 +N5

)]
(5.10)

T2R
∗
1 = T2

[
C

(
Q∗1

N1 +N2

)
+ C

(
Q∗2
N4

)]
(5.11)

T3(R
o
0 +R∗1) = T3

[
C

(
P1

N1

)
+ C

(
Q∗2
N4

)]
(5.12)

M1Q
∗
1 = 0 (5.13)

M2(P1 −Q∗1) = 0 (5.14)

M3Q
∗
2 = 0 (5.15)

M4(P2 −Q∗2) = 0 (5.16)

is given by

max R1

s.t. Ro
0 ≤ C

(
P1−Q1

Q1+N1+N2+N3

)
+ C

(
P2−Q2

Q2+N4+N5

)

R1 ≤ C
(

Q1

N1+N2

)
+ C

(
Q2

N4

)

Ro
0 +R1 ≤ C

(
P1

N1

)
+ C

(
Q2

N4

)

Q1 ≤ P1

Q2 ≤ P2

−Q1 ≤ 0

−Q2 ≤ 0.

Let (R∗1, Q
∗
1, R

∗
2) be an optimal solution to the above optimization problem. Then,

(R∗1, Q
∗
1, R

∗
2) must satisfy the Karush-Kuhn-Tucker (KKT) conditions [31] as shown

in the top of next page, where Ti, i = 1, 2, 3, 4, and Mi, i = 1, 2, 3, 4, are nonnegative
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Lagrangian multipliers. From the KKT conditions (5.9)–(5.12), we have

(T1 + T3)R
o
0 +Ro

1

= (T1 + T3)R
o
0 +R∗1 + δ

= (T1 + T3)R
o
0 + (T2 + T3)R

∗
1 + δ

= T1R
o
0 + T2R

∗
1 + T3(R

o
0 +R∗1) + δ

= T1

[
C

(
P1 −Q∗1

Q∗1 +N1 +N2 +N3

)
+ C

(
P2 −Q∗2

Q∗2 +N4 +N5

)]
+

T2

[
C

(
Q∗1

N1 +N2

)
+ C

(
Q∗2
N4

)]
+ T3

[
C

(
P1

N1

)
+ C

(
Q∗2
N4

)]
+ δ

= T1

[
C

(
P1 −Q∗1

Q∗1 +N1 +N2 +N3

)
+ C

(
P2 −Q∗2

Q∗2 +N4 +N5

)]
+

T2C

(
Q∗1

N1 +N2

)
+ T3C

(
P1

N1

)
+ C

(
Q∗2
N4

)
+ δ. (5.17)

On the other hand, by the KKT condition (5.9) and the assumption that (Ro
0, R

o
1)

is achievable, we have

(T1 + T3)R
o
0 +Ro

1

= (T1 + T3)R
o
0 +Ro

1

= (T1 + T3)R
o
0 + (T2 + T3)R

o
1

= T1R
o
0 + T2R

∗
1 + T3(R

o
0 +Ro

1)

≤ T1 [I(U1;Y21) + I(U2;Y22)] + T2 [I(X1;Y11|U1) + I(X2;Y12|U2)] +

T3 [I(V1;Y31) + I(X1;Y11|V1) + I(X2;Y12|U2)]

= T1h(Y21) + T1h(Y22) + T3h(Y31)− [h(Y11|X1) + h(Y12|X2)] +

[T2h(Y11|U1)− T1h(Y21|U1)] + [h(Y12|U2)− T1h(Y22|U2)] +

T3[h(Y11|V1)− h(Y31|V1)] (5.18)
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for some joint distributions on (U1, V1, X1) and (U2, X2) such that U1−V1−X1 forms

a Markov chain and E[X2
i ] ≤ Pi for i = 1, 2.

The terms on the right-hand side of the above equation can be further bounded/evaluated

as follows.

1. It is well known [28] that Gaussian maximizes differential entropy for a given

power, so we have

h(Y21) ≤ 1
2

log 2πe(P1 +N1 +N2 +N3)

h(Y22) ≤ 1
2

log 2πe(P2 +N4 +N5)

h(Y31) ≤ 1
2

log 2πe(P1 +N1).

(5.19)

2. The channel inputs (X1, X2) are independent of the Gaussian noise (Z1, Z2, Z3, Z4, Z5),

so we have

h(Y11|X1) = h(Z1 + Z2) = 1
2

log 2πe(N1 +N2)

h(Y12|X1) = h(Z4) = 1
2

log 2πeN4.
(5.20)

3. Putting together the KKT conditions (5.7), (5.13) and (5.14), we have

T2(Q
∗
1 +N1 +N2)

−1 +M1 = T1(Q
∗
1 +N1 +N2 +N3)

−1 +M2

M1Q
∗
1 = 0

M2(P1 −Q∗1) = 0

where M1, M2, T1 and T2 are nonnegative real numbers. By Lemma 41, we

1If T2 = 0, we have either T1 = 0 or Q∗1 = 0. In either case, inequality (5.21) holds trivially.
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have

T2h(Y11|U1)− T1h(Y21|U1)

= T2h(X1 + Z1 + Z2|U1)− T1h(X1 + Z1 + Z2 + Z3|U1)

≤ T2
2

log 2πe(Q∗1 +N1 +N2)−
T1
2

log 2πe(Q∗1 +N1 +N2 +N3). (5.21)

4. Similarly, putting together the KKT conditions (5.8), (5.15) and (5.16), we

have

(Q∗2 +N4)
−1 +M3 = T1(Q

∗
2 +N4 +N5)

−1 +M4

M3Q
∗
2 = 0

M4(P2 −Q∗2) = 0

where M3, M4 and T1 are nonnegative real numbers. Again, by Lemma 4, we

have

h(Y12|U2)− T1h(Y22|U2)

= h(X2 + Z4|U2)− T1h(X2 + Z4 + Z5|U2)

≤ 1

2
log 2πe(Q∗2 +N4)−

T1
2

log 2πe(Q∗2 +N4 +N5). (5.22)
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5. Finally, note that

h(Y11|V1)− h(Y31|V1)

= h(X1 + Z1 + Z2|V1)− h(X1 + Z1|V1)

= I(Z2;X1 + Z1 + Z2|V1)

= h(Z2)− h(Z2|X1 + Z1 + Z2, V1) (5.23)

≤ h(Z2)− h(Z2|X1 + Z1 + Z2, V1, X1) (5.24)

= h(Z2)− h(Z2|Z1 + Z2, V1, X1)

= h(Z2)− h(Z2|Z1 + Z2) (5.25)

= I(Z2;Z1 + Z2)

=
1

2
log 2πe(N1 +N2)−

1

2
log 2πeN1 (5.26)

where (5.23) is due to the independence of Z2 and V1; (5.24) is due to the

fact that conditioning reduces differential entropy [28]; and (5.25) is due to the

independence of (Z1, Z2) and (V1, X1).

Substitute (5.19)–(5.22) and (5.26) into (5.18). With some rearranging of terms,

we may obtain

(T1 + T3)R
o
0 +Ro

1

≤ T1

[
C

(
P1 −Q∗1

Q∗1 +N1 +N2 +N3

)
+ C

(
P2 −Q∗2

Q∗2 +N4 +N5

)]
+

T2C

(
Q∗1

N1 +N2

)
+ T3C

(
P1

N1

)
+ C

(
Q∗2
N4

)
(5.27)

Note that δ > 0, so this is a contradiction to (5.17). We therefore conclude that

any achievable rate pair (Ro
0, R

o
1) must also be inside the rate region (5.5). This

completes the proof of the converse part of the theorem.

73



6. CONCLUSION

Delay is an important quality-of-service measure for the design of next-generation

wireless networks. For delay-limited communication over block-fading channels, the

difference between the ergodic capacity and the maximum achievable expected rate

for coding over a finite number of coherent blocks represents a fundamental measure

of the penalty incurred by the delay constraint.

This dissertation introduced a notion of worst-case expected-capacity loss. Focus-

ing on the slow-fading scenario (one-block delay), it was shown that the worst-case

additive expected-capacity loss is precisely logK nats per channel use and the worst-

case multiplicative expected-capacity loss is precisely K, where K is the total number

of different possible realizations of the power gain in each coherent block. Exten-

sion to the problem of writing on fading paper was also considered, where both the

ergodic capacity and the additive expected-capacity loss over one-block delay were

characterized to within one bit per channel use.

The problem with multiple-block delay is considerably more challenging. The

main difficulty there is that the capacity region of the parallel Gaussian broadcast

channel with a general message set configuration remains unknown. This dissertation

presents two partial results. First, the expected capacity is precisely characterized

for the point-to-point two-state fading channel with two-block delay. Second, the

optimality of Gaussian superposition coding with indirect decoding is established for

a two-parallel Gaussian broadcast channel with three receivers. Both results reveal

some intrinsic complexity in characterizing the expected capacity with multiple-block

delay.

Many research problems are open along the line of broadcasting over fading chan-
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nels. Unlike for the case of one-block delay, the expected capacity of the point-to-

point fading channel over multiple-block delay is unknown except for the case with

two-block delay and two different possible realizations of the power gain in each co-

herent block, which is considered in Chapter 4 and in [9,10]. With multiple transmit

antennas, the expected capacity of the point-to-point fading channel is unknown even

for one-block delay [3]. Another interesting and challenging scenario is the mixed-

delay setting, where there are multiple messages of different delay requirement at the

transmitter. Some preliminary results can be found in [34]. With known interfer-

ence at the transmitter, one may also consider the setting where the channel fading

applies only to the known interference (the fading-dirt problem) [35] or, more gener-

ally, different channel fading applies to the input signal and the known interference

separately.
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APPENDIX A

PROOF OF PROPOSITION 3

Let us first rewrite the expression (2.22) for the expected capacity Cexp(FG, 1) as

follows:

Cexp(FG, 1) =
K∑

j=1

(
j∑

k=1

pj

)
log

(
nj + β∗j
nj + β∗j−1

)
(A.1)

=
K∑

k=1

pk

[
K∑

j=k

log

(
nj + β∗j
nj + β∗j−1

)]
(A.2)

=
K∑

k=1

pk log Λk (A.3)

where

Λk =
K∏

j=k

nj + β∗j
nj + β∗j−1

(A.4)

and (β∗1 , . . . , β
∗
K) is given by (2.31).

To show that Λk as given by (A.4) equals the right-hand side of (2.32), let us

first assume that s = w. For this case, by (2.31) we have β∗j = β∗j−1 for every j 6= πs.

Thus, substituting (2.31) into (A.4) gives

Λk =





nπs+1
nπs

, for 1 ≤ k ≤ πs

1, for πs < k ≤ K.
(A.5)

Next, let us assume that s < w. We shall consider the following three cases

separately.
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Case 1: k ≤ πs. For this case, substituting (2.31) into (A.4) gives

Λk =
nπs + zπs,πs+1

nπs

(
w−1∏

j=s+1

nπj + zπj ,πj+1

nπj + zπj−1,πj

)
nπw + 1

nπw + zπw−1,πw

(A.6)

=
nπw + 1

nπs

w−1∏

j=s

nπj + zπj ,πj+1

nπj+1
+ zπj ,πj+1

(A.7)

=
nπw + 1

nπs

w−1∏

j=s

Fπj
Fπj+1

(A.8)

=
nπw + 1

nπs

Fπs
Fπw

(A.9)

where (A.8) follows from the fact that the MUFs uπj(z) and uπj+1
(z) intersect at

z = zπj ,πj+1
so we have

nπj + zπj ,πj+1

Fπj
=
nπj+1

+ zπj ,πj+1

Fπj+1

⇐⇒ nπj + zπj ,πj+1

nπj+1
+ zπj ,πj+1

=
Fπj
Fπj+1

. (A.10)

Case 2: πm−1 < k ≤ πm for some m ∈ {s+ 1, . . . , w}. For this case, substituting

substituting (2.31) into (A.4) gives

Λk =

(
w−1∏

j=m

nπj + zπj ,πj+1

nπj + zπj−1,πj

)
nπw + 1

nπw + zπw−1,πw

(A.11)

=
nπw + 1

nπm + zπm−1,πm

w−1∏

j=m

nπj + zπj ,πj+1

nπj+1
+ zπj ,πj+1

(A.12)

=
nπw + 1

nπsnπm + zπm−1,πm

w−1∏

j=m

Fπj
Fπj+1

(A.13)

=
nπw + 1

nπm + zπm−1,πm

Fπm
Fπw

(A.14)

=
nπw + 1

nπm − nπm−1

Fπm − Fπm−1

Fπw
(A.15)

where (A.13) follows from (A.10), and (A.15) follows from the fact that the MUFs
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uπm−1(z) and uπm(z) intersect at z = zπm−1,πm so by (2.12) we have

zπm−1,πm =
Fπm−1nπm − Fπmnπm−1

Fπm − Fπm−1

⇐⇒ Fπm
nπm + zπm−1,πm

=
Fπm − Fπm−1

nπm − nπm−1

. (A.16)

Case 3: k > πw. For this case, we have β∗j = β∗j−1 = 1 for any j ≥ k. Hence, by

(2.31) we have

Λk = 1. (A.17)

Finally, substituting (2.32) into (2.34) gives

Cexp(FG, 1) (A.18)

=
πs∑

k=1

pk log Λπs +
w∑

m=s+1




πm∑

k=πm−1+1

pk


 log Λπm (A.19)

= Fπs log Λπs +
w∑

m=s+1

(
Fπm − Fπm−1

)
log Λπm (A.20)

= Fπs log

(
nπw + 1

nπs

Fπs
Fπw

)
+

w∑

m=s+1

(
Fπm − Fπm−1

)
log

(
nπw + 1

nπm − nπm−1

Fπm − Fπm−1

Fπw

)
(A.21)

= Fπs log

(
Fπs
nπs

)
+

w∑

m=s+1

(
Fπm − Fπm−1

)
log

(
Fπm − Fπm−1

nπm − nπm−1

)
+

Fπw log

(
nπw + 1

Fπw

)
(A.22)

This completes the proof of Proposition 3.
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APPENDIX B

PROOF OF LEMMA 2

Let us consider the following three cases separately.

Case 1: k ≤ πs. For such k, by property 3) of Lemma 1 and the definition of s

we have

Fknπs − Fπsnk
Fπs − Fk

= zk,πs ≤ zπs−1,πs ≤ 0 (B.1)

which implies that

nπs
Fπs
≤ nk
Fk
. (B.2)

By the expression of Λk from (2.32), for k ≤ πs we have

nk + 1

nkΛk

=
nk + 1

nπw + 1

Fπwnπs
Fπsnk

(B.3)

≤ nk + 1

nπw + 1

Fπw
Fk

(B.4)

≤ 1

pk
(B.5)

where (B.4) follows from (B.2), and (B.5) follows from the fact that nk+1 ≤ nπs+1 ≤

nπw + 1, Fπw ≤ 1, and Fk ≥ pk.

Case 2: πm−1 < k ≤ πm for some m ∈ {s + 1, . . . , w}. For such k, by (2.32) we

have

nk + 1

nkΛk

=
nk + 1

nπw + 1

nπm − nπm−1

Fπm − Fπm−1

Fπw
nk

. (B.6)

By property 1) of Lemma 1 we have zπm−1,πm ≤ zπm−1,k which implies that

nπm − nπm−1

Fπm − Fπm−1

=
nπm−1 + zπm−1,πm

Fπm−1

≤ nπm−1 + zπm−1,k

Fπm−1

=
nk − nπm−1

Fk − Fπm−1

. (B.7)
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Substituting (B.7) into (B.6) gives

nk + 1

nkΛk

≤ nk + 1

nπw + 1

nk − nπm−1

Fk − Fπm−1

Fπw
nk
≤ 1

pk
(B.8)

where the last inequality follows from the fact that nk + 1 ≤ nπm + 1 ≤ nπw + 1,

nk − nπm−1 ≤ nk, Fπw ≤ 1, and Fk − Fπm−1 ≥ pk.

Case 3: k > πw. For such k, by (2.32) we have Λk = 1 and hence

nk + 1

nkΛk

=
nk + 1

nk
. (B.9)

By property 1) of Lemma 1 and the definition of w, we have 1 ≤ zπw,πw+1 ≤ zπw,k,

which implies that

nk + 1 ≤ nk + zπw,k =
Fk(nk − nπw)

Fk − Fπw
. (B.10)

Substituting (B.10) into (B.9) gives

nk + 1

nkΛk

≤ Fk
Fk − Fπw

nk − nπw
nk

≤ 1

pk
(B.11)

where the last inequality follows from the fact that nk − nπw ≤ nk, Fk ≤ 1, and

Fk − Fπw ≥ pk.

Combining the above three cases completes the proof of Lemma 2.
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APPENDIX C

PROOF OF LEMMA 3

Let us begin by establishing a simple lower bound on the expected capacity

Cexp(FG, 1). Applying the long-sum inequality

∑

i

ai log
ai
bi
≥
(∑

i

ai

)
log

∑
i ai∑
i bi

(C.1)

we have

Fπs log

(
Fπs
nπs

)
+

w∑

m=s+1

(
Fπm − Fπm−1

)
log

(
Fπm − Fπm−1

nπm − nπm−1

)
≥ Fπw log

(
Fπw
nπw

)
. (C.2)

Substituting (C.2) into the expression of Cexp(FG, 1) from (2.35), we have

Cexp(FG, 1) ≥ Fπw log

(
Fπw
nπw

)
+ Fπw log

(
nπw + 1

Fπw

)
(C.3)

= Fπw log

(
nπw + 1

nπw

)
. (C.4)

Next we shall prove the desired inequality (2.91) by considering the following four

cases separately.

Case 1: k > πw. For such k, by property 1) of Lemma 1 and the definition of w

we have zπw,k ≥ zπw,πw+1 ≥ 1 and hence

nπw + 1

Fπw
≤ nπw + zπw,k

Fπw
=
nk − nπw
Fk − Fπw

. (C.5)
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Thus

pk log
(
nk+1
nk

)

Cexp(FG, 1)
≤

pk log
(
nk+1
nk

)

Fπw log
(
nπw+1
nπw

) (C.6)

≤ pk
Fπw

nπw + 1

nk
(C.7)

≤ pk
nk

nk − nπw
Fk − Fπw

(C.8)

≤ 1 (C.9)

where (C.6) follows from (C.4), (C.7) is due to the well-know inequalities (2.109) so

log
(
nk+1
nk

)
≤ 1

nk
, and log

(
nπw+1
nπw

)
≥ 1

nπw+1
, (C.8) follows from (C.5), and (C.9) is

due to the fact that nk − nπw ≤ nk and Fk − Fπw ≥ pk.

Case 2: k = πw. For such k, by (C.4) we have

log
(
nk+1
nk

)

Cexp(FG, 1)
≤

log
(
nπw+1
nπw

)

Fπw log
(
nπw+1
nπw

) =
1

Fπw
(C.10)

and hence
pk log

(
nk+1
nk

)

Cexp(FG, 1)
≤ pπw
Fπw
≤ 1. (C.11)

Case 3: k = πm for some m ∈ {s, . . . , w − 1}. For this case, we shall show that

for any m ∈ {s, . . . , w − 1}
log
(
nπm+1
nπm

)

Cexp(FG, 1)
≤ 1

Fπm
(C.12)

and hence
pπm log

(
nπm+1
nπm

)

Cexp(FG, 1)
≤ pπm
Fπm

≤ 1. (C.13)
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To prove (C.12), let us define g(z) := N(z)/D(z) where

N(z) = log

(
nπm + z

nπm

)
(C.14)

D(z) = Fπs log

(
Fπs
nπs

)
+

w∑

i=s+1

(
Fπi − Fπi−1

)
log

(
Fπi − Fπi−1

nπi − nπi−1

)
+

Fπw log

(
nπw + z

Fπw

)
. (C.15)

By Lemma 1 and the definition of s and w, we have

0 < zπs,πs+1 ≤ zπm,πm+1 ≤ zπm,πw ≤ zπw−1,πw < SNR. (C.16)

By the expression of Cexp(FG, 1) from (2.35), we have

log
(
nπm+1
nπm

)

Cexp(FG, 1)
= g(1) ≤ sup

z≥zπm,πw
g(z) (C.17)

where the last inequality follows from the fact that zπm,πw < 1 as mentioned in

(C.16). Next, we shall show that g(z) ≤ 1/Fπm at the boundary points z = zπm,πw

and z =∞, and for any local maximum z∗ > zπm,πw . We may then conclude that

sup
z≥zπm,πw

g(z) ≤ 1/Fπm . (C.18)

First, since m < w we have

g(∞) = 1/Fπw ≤ 1/Fπm . (C.19)

Next, to show that g(zπm,πw) ≤ 1/Fπm , let us apply the log-sum inequality (152)

88



to obtain

Fπs log

(
Fπs
nπs

)
+

m∑

i=s+1

(
Fπi − Fπi−1

)
log

(
Fπi − Fπi−1

nπi − nπi−1

)
≥ Fπm log

(
Fπm
nπm

)
(C.20)

and

w∑

i=m+1

(
Fπi − Fπi−1

)
log

(
Fπi − Fπi−1

nπi − nπi−1

)
≥ (Fπw − Fπm) log

(
Fπw − Fπm
nπw − nπm

)
. (C.21)

Substituting (C.20) and (C.21) into (C.15) gives

D(zπm,πw) ≥ Fπm log

(
Fπm
nπm

)
+ (Fπw − Fπm) log

(
Fπw − Fπm
nπw − nπm

)
+

Fπw log

(
nπw + zπm,πw

Fπw

)
(C.22)

= Fπm log

(
Fπm
nπm

nπw − nπm
Fπw − Fπm

)
+

Fπw log

(
Fπw − Fπm
nπw − nπm

nπw + zπm,πw
Fπw

)
(C.23)

= Fπm log

(
nπm + zπm,πw

Fπm

)
(C.24)

= FπmN(zπm,πw) (C.25)

where (C.24) follows from the fact that the MUFs uπm(z) and uπw(z) intersect at

z = zπm,πw so we have

Fπm
nπm + zπm,πw

=
Fπw

nπw + zπm,πw
=
Fπw − Fπm
nπw − nπm

. (C.26)

It follows immediately from (C.25) that

g(zπm,πw) = N(zπm,πw)/D(zπm,πw) ≤ 1/Fπm . (C.27)
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Finally, to show that g(z∗) ≤ 1/Fπm for any local maximum z∗ > zπm,πw , let us

note that g(z) is continuous and differentiable for all z > zπm,πw so z∗ must satisfy

d

dz
g(z)

∣∣∣∣
z∗

= 0 (C.28)

or equivalently

dN(z)

dz
D(z)

∣∣∣∣
z∗

=
dD(z)

dz
N(z)

∣∣∣∣
z∗
. (C.29)

We thus have

g(z∗) =
N(z∗)

D(z∗)
(C.30)

=
dN(z)/dz

dD(z)/dz

∣∣∣∣
z∗

(C.31)

=
1

Fπw

nπw + z∗

nπm + z∗
(C.32)

≤ 1

Fπw

nπw + zπm,πw
nπm + zπm,πw

(C.33)

=
1

Fπm
(C.34)

where (C.33) follows from the facts that nπw > nπm so nπw+z
nπm+z

is a monotone decreasing

function of z for z ≥ 0 and that z∗ ≥ zπm,πw > 0, and (C.34) follows from (C.26).

Substituting (C.18) into (C.17) completes the proof of the desired inequality

(C.12) for Case 3.

Case 4: k < πw but k 6= πi for any i = s, . . . , w − 1. For such k, let m be the
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smallest integer from {s, . . . , w} such that k < πm. Note that

pk log
(
nk+1
nk

)

Cexp(FG, 1)
=

pk log
(
nk+1
nk

)

log
(
nm+1
nm

)
log
(
nm+1
nm

)

Cexp(FG, 1)
(C.35)

≤
pk log

(
nk+1
nk

)

Fπm log
(
nπm+1
nπm

) (C.36)

=
pk
Fπm

f(1) (C.37)

where (C.36) follows from (C.10) for m = w and from (C.12) for m = s, . . . , w − 1,

and

f(z) :=
log
(
nk+z
nk

)

log
(
nπm+z
nπm

) . (C.38)

Since nk < nπm , f(z) is a monotone decreasing function for z > 0. By Lemma 1 and

the definition of w, we have

zk,πm ≤ zπm−1,πm ≤ zπw−1,πw < 1. (C.39)

We shall consider the following two sub-cases separately.

Sub-case 4.1: zk,πm > 0. By the monotonicity of f(z) and the fact that SNR >

zk,πm > 0 as mentioned in (C.39), we have

f(1) ≤ f(zk,πm) =
log
(
nk+zk,πm

nk

)

log
(
nπm+zk,πm

nπm

) ≤ nπm + zk,πm
nk

(C.40)

where the last inequality follows from the inequalities (2.109) so we have log
(
nk+zk,πm

nk

)
≤

zk,πm
nk

and log
(
nπm+zk,πm

nπm

)
≥ zk,πm

nπm+zk,πm
. By Lemma 1 and the fact that k < πm, we

have zπm−1,πm ≥ zk,πm > 0 and hence m ≥ s + 1. Therefore, k 6= πm−1 and we must
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have k > πm−1. Again, by Lemma 1 we have zk,πm ≤ zπm−1,πm ≤ zπm−1,k and hence

nπm + zk,πm
Fπm

=
nk + zk,πm

Fk
≤ nk + zπm−1,k

Fk
=
nk − nπm−1

Fk − Fπm−1

. (C.41)

Substituting (C.41) into (C.40) gives

f(1) ≤ Fπm(nk − nπm−1)

nk(Fk − Fπm−1)
≤ Fπm
Fk − Fπm−1

. (C.42)

Further substituting (C.42) into (C.37) gives

pk log
(
nk+1
nk

)

Cexp(FG, 1)
≤ pk
Fk − Fπm−1

≤ 1. (C.43)

Sub-case 4.2: zk,πm ≤ 0. In this case, zk,πm = Fknπm−Fπmnk
Fπm−Fk

≤ 0 so we have

Fknπm ≤ Fπmnk. By the monotonicity of f(z) and the fact that SNR > 0, we have

f(1) ≤ lim
z↓0

f(z) =
nπm
nk
≤ Fπm

Fk
. (C.44)

Substituting (C.44) into (C.37) gives

pk log
(
nk+1
nk

)

Cexp(FG, 1)
≤ pk
Fk
≤ 1. (C.45)

Combining the above two sub-cases completes the proof for Case 4. We have thus

completed the proof of Lemma 3.
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