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ABSTRACT 

 

 Skin friction drag reduction is one of the most promising paths in the 

investigation of the reduction of aircraft fuel burn. 40 – 50% of overall drag comes 

from the surfaces of the wings and stabilizers. Natural laminar flow airfoils can 

extend the region of laminar flow and reduce skin friction drag. However, real-

world aircraft wings do not have perfectly smooth surfaces, and therefore the 

tolerances for step and gap excrescences on these airfoils must be investigated. 

Previous work has focused on excrescences on flat plates, and only recently 

included pressure gradient effects. 

 A new three-dimensional swept wing airfoil with an actuated leading edge 

(SWIFTER) has been constructed, and will extend the body of knowledge of step 

and gap excrescences to a more real-world configuration and higher Reynolds 

numbers. An integrated control system for the leading edge actuation system is 

proposed, including both interface hardware and control code. A heating system for 

the test surface is also discussed, and the controller hardware, sensors, and code 

specified. For wind tunnel testing, a proposed set of wall liners are developed from 

zero-lift condition streamlines and divided into parts suitable for manufacturing, 

assembly, and installation. Finally, preliminary wind tunnel step excrescence tests 

using an existing swept-wing model and appliqué step material were conducted, and 

the results are discussed with relevance to testing on the new model. 
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NOMENCLATURE 

 

Cl Coefficient of lift 

Cp Coefficient of pressure 

Cp Specific heat 

DAQ Data AcQuisition 

FoS Factor of Safety 

FRL Flight Research Laboratory 

FTE Flight Test Engineer 

h Dimensional excrescence height 

HART Hyuga Aerodynamic Research by Towing 

IR Infrared 

K Pressure parameter 

k Dimensional excrescence height 

KIAS Knots Indicated Air Speed 

KSWT Klebanoff Saric Wind Tunnel 

LSWT Low Speed Wind Tunnel 

m Mass 

MATLAB MATrix LABoratory 

MEATLOAF Manufacturing Tolerances for Laminar Flow 

MOSFET Metal Oxide Semiconductor Field-Effect Transistor 

NACA National Advisory Committee for Aeronautics 
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NTS Non-Test Surface 

OML Outer Mold Line 

P Power 

PID Proportional Integral Derivative 

PTFE PolyTetraFluoroEthylene 

Rek Non-dimensional excrescence height 

Rekcrit Non-dimensional critical excrescence height 

Retr Non-dimensional transition location 

Rexk Non-dimensional chordwise location of excrescence 

Rhcrit Critical excrescence height based on h 

RMS Root Mean Square 

RPM Revolutions Per Minute 

RTD Resistive Temperature Detector 

SETS Surface Excrescence Transition Study 

SSR Solid State Relay 

SWIFT Swept Wing In-Flight Test 

SWIFTER Swept Wing In-Flight Test Excrescence Research 

t Time 

Tf Final temperature 

Ti Initial temperature 

TS Test Surface 
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T-S Tollmein-Schlichting instability 

Ue Boundary layer edge velocity 

Uk Velocity at excrescence height 

U∞ Freestream velocity 

VI Virtual Instrument 

β Pressure parameter 

β Model Angle of Attack/Aircraft Yaw Angle 

ν Kinematic viscosity 

νk Viscosity at excrescence height 
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CHAPTER I 

INTRODUCTION 

 

 

Motivation 

 

 With current economic pressures and fast-dwindling oil reserves, both 

commercial airlines and military aviation services see fuel burn reduction as a major 

priority. There are several avenues of improvement being investigated, including 

increased-efficiency engines, higher-energy-density fuels, the use of lightweight 

composite structures in airframe construction, improved aerodynamic efficiency, more 

efficient flight routing, and local air traffic control. 

One of the promising development avenues in the improvement of aerodynamic 

efficiency is that of aircraft skin friction drag reduction. On a modern airliner, turbulent 

skin friction is responsible for 50% of the overall drag budget (Figure 1), and even more 

on business jet type aircraft (Saric 2010). Contributions to the skin friction drag come 

largely from the fuselage, but 40-50% of the total comes from the surfaces of the wings 

and the vertical and horizontal stabilizers. 

 



 

2 

 

 

 

Figure 1 - Drag breakdown on a modern airliner 

 

 

Extending the region of laminar flow, with its lower coefficient of friction, can see 

significantly reductions made in the total drag – up to 15%. This can then translate to 

significant fuel burn savings, which would result in very large cumulative financial 

savings across an entire fleet. However, the implementation of laminar flow design into 

aircraft has proved difficult. Designing an airfoil suitable for extended laminar flow 

requires an outer mold line (OML) that is quite different from traditional airfoils in order 

to control disturbances in the boundary layer and delay the transition of the flow to 

turbulence.  
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This must be balanced, however, with the performance requirements of the aircraft, 

as laminar flow airfoils can have lower coefficients of lift (Cl), which may lead to 

limitations on the design of the aircraft as a whole. Moreover, the manufacturing 

tolerances for the surfaces of laminar flow airfoils, particularly in the leading edge 

region, are much more restrictive than traditional airfoils, both in terms of overall 

surface finish, and in the acceptable sizes of steps and gaps, which are almost 

unavoidable on production aircraft. All of this leads to cost and time increases, not just 

in the initial manufacturing stages, but also in the ongoing maintenance of the surface, 

which can significantly reduce the potential savings from the design, and tend to be off-

putting to manufacturers. As the tolerance requirements for these surface excrescences 

are not yet fully understood, current guidelines may be tighter than necessary to maintain 

the benefits of the design. If it was found that these tolerances could be loosened, and a 

correlation between step height or gap width and transition location was developed that 

was based on a criteria applicable to a wide range of airfoil designs and flight conditions, 

cost savings would follow, as 

a) The cost of manufacturing and surface maintenance would drop, 

b) Testing each specific new design would no longer be required, and 

c) The criteria could be used to make appropriate decisions about the location of 

unavoidable steps and gaps, such as maintenance hatches and deicing equipment. 
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Literature Review 

 

Though there is a large body of work on the effect of step and gap excrescences on 

transition to turbulence, the majority of existing data are for flat plates with zero to a 

very mild positive pressure gradient. One area that had not been investigated in the 

literature until recently was the effect of pressure gradients on transition in the presence 

of step and gap excrescences, particularly in the region of the leading edge of the airfoil. 

A favorable pressure gradient has a stabilizing effect on a boundary layer, which delays 

transition, and would theoretically allow larger step and gap excrescences than in a zero 

gradient scenario. This would suggest that the criteria and guidelines established 

previously are inherently conservative for natural laminar flow (NLF) airfoils, being 

based in large part on flat plates with no pressure gradient data, while NLF airfoils tend 

to have favorable pressure gradients over their leading edge regions. This leads to very 

restrictive manufacturing tolerances for practical aircraft design as seen in Drake et al. 

(2010), which took the case of an example aircraft designed for high altitude and long 

endurance, with chord of 1.52m, Mach 0.6, and altitude of 55,000 feet (Figure 2). 

Forward-facing steps are limited to the order of 250μm, and aft-facing steps even 

smaller, in the absence of consideration of a pressure gradient.  
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Figure 2 - Step excrescence tolerances (Drake et al., 2010) 
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Pioneering work in this area was conducted by Aaron Drake and Anne Bender at 

Northrop Grumman, investigating step and gap excrescences on two-dimensional airfoils 

with favorable pressure gradients over a wide range of chord Reynolds numbers and 

excrescence sizes. This thesis describes work done in preparation for a follow-on study 

of the effect of step and gap excrescences on transition to turbulence on a three-

dimensional swept-wing. The study will comprise both wind tunnel testing in the ultra-

low disturbance Klebanoff-Saric Wind Tunnel (KSWT), and flight testing at the Texas 

A&M Flight Research Laboratory (FRL), mounted to the lab’s Cessna O-2A 

experimental platform. The tests will be conducted with a newly-constructed airfoil 

model with an actuated leading edge to produce forward-facing and aft-facing steps, 

gaps, and combinations of the above. 

In any discussion of flow involving step excrescences, the common parameters must 

be defined. First, the excrescence height can be non-dimensionally expressed as an 

excrescence Reynolds number, Rek, where  

 

    
   

  ⁄  

 

and uk is the velocity at the excrescence height k above the surface, and νk is the viscosity 

at the same height. The literature refers to the allowable step tolerance in terms of a non-

dimensional critical step height, or Rekcrit, which allows a comparison across a broad 
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range of situations. Works such as Drake et al. (2008) use the parameter K to describe 

the non-dimensionalized pressure gradient, as they regard it as a parameter “readily 

available to the aerodynamic designer”, while acknowledging that it is not ideal for more 

in-depth studies. K is defined in Zhou and Wang (1992) as 

 

  
 

   
   
  

 
 

    
   
  

 

 

Issues arise with this definition of pressure gradient when accelerated flows over 

steps or ramps are considered. The presence of a viscosity term in a description of an 

inviscid phenomenon, as well as the fact that if temperature changes, but all other factors 

are held constant, K will change, but the pressure gradient will not, suggest that the 

Hartree parameter, β, would be more appropriate for these flows. The Hartree parameter, 

based on the Falkner-Skan solution for similarity flows, is defined as 

 

  
 

   
   
  

∫     
 

 

 

where 
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In the literature, focus has primarily been on surface excrescences comprising 

forward facing steps, raised strips or ridges, wires, bulges and waves, with some 

attention also paid to isolated aft facing steps. Early work by Fage (1943) looked at the 

effects of ridges on the surface of airfoils. These ridges consisted of a forward facing 

step, followed 2.54cm further downstream by an aft facing step. The conclusions 

reached were that neither shape of the excrescence, nor the pressure gradient, had much 

influence on the critical height. However, this may have been as a result of the particular 

shapes tested. For a ridge excrescence, a laminar separation bubble is created both at the 

forward and aft facing steps on the upstream and downstream sides of the ridge. 

Therefore, any resultant effect on transition can be viewed only as coming from a 

combination of the two separated regions. Fage expressed his tolerances in terms of a 

relationship between the excrescence geometry, boundary layer edge velocity, kinematic 

viscosity, and transition location, which became known as the Fage Criterion. A Rekcrit 

value of 900 can, however, be extracted from the data (Drake et al, 2010). 

Later similar work by Drake et al. (1996) investigated combinations of ridges and 

gaps, but this time in a flight environment, at Mach 0.5 to 0.8. The purpose of the 

experiment was to study the possibility of smoothing the interface between the 

removable leading edge of a business jet and the primary wing surface with a strip insert.  
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Figure 3 - Test airfoil on underside of F-104G aircraft (Drake et al., 1996) 

 

The airfoil under test was mounted to the underside of an F-104G aircraft on a 

specific flight test fixture (Figure 3). It had a favorable pressure gradient to attempt 

replicate a natural laminar flow design. Several configurations were tested, and those 

with a forward-facing step, followed one inch downstream by an aft-facing step, gave a 

Rekcrit value of about 500. 
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Obara and Holmes (1985), discusses testing on both the NASA X-21A and T-34C 

experiments. The critical Reynolds number in these cases, Rh,crit was determined based 

on freestream velocity U∞, kinematic viscosity ν, and the height of the step or length of 

the gap, h. 

 

        
   

 ⁄  

 

The X-21 tests investigated the effect of forward-facing steps in the leading edge 

region of the wings on transition. In addition to this, the effect of gaps was studied at the 

nose of the aircraft. Forward-facing sharp steps were found to have a Rh,crit value of 

1800, while gaps were found to have a Rh,crit value of 15,000 (The literature does not 

state whether streamwise or leading edge normal definition was used to determine 

critical Reynolds numbers for these excrescences). This suggests that gaps have far less 

of an influence on transition than steps. Later tests investigating the effects of steps on 

transition were conducted using an NLF glove on the unswept wing of a T-34C Turbo-

Mentor aircraft. Steps were located near the leading edge of the lower side of the glove, 

with a mild favorable pressure gradient. It was found that for the sharp forward facing 

steps, the Rh,crit value was 1800. However, for the rounded forward-facing steps, the 

transition location was well downstream from the step, giving a Rh,crit value of 2700 

(Figure 4). This can be attributed to the smaller separation bubble generated by the less-

severe geometry change of the rounded step. Additional tests were conducted to 
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investigate steps over a range of sweep angles. However, these tests would not be an 

accurate representation of swept-wing step excrescence effects, as the airfoil itself was 

not swept, and not subject to as large a degree of crossflow instability. 

 

 

 

Figure 4 - X-21 & T-34C testing critical Reynolds numbers (Obara & Holmes, 1985) 
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Figure 5 - Flat plate step excrescence study setup (Wang and Gaster, 2005) 

 

 

Wind tunnel tests on flat plates with forward-facing and aft-facing steps (Figure 5) 

have also been conducted by Wang and Gaster (2005), and Crouch et al (2006). These 

experiments both found that an aft-facing step was two to three times more effective at 

causing transition to turbulence than a forward-facing step. Drake et al (2010), suggests 

that an Rekcrit value for aft-facing steps could be extrapolated from that for a wire trip 

(Rekcrit = 120), of which there is more data in the literature. Taking into account the lack 

of compression before the step that would have occurred with a wire trip, and had a 

stabilizing effect on the boundary layer, an Rekcrit value of 80 is estimated. 
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To develop a relationship between pressure gradient and Rekcrit, Northrop Grumman 

Corporation began research on flat plates with favorable pressure gradients under the 

Surface Excrescence Transition Study (SETS), with first results published in Bender et 

al (2005). Initial testing was conducted at Washington State University, in the 

Contractionless Boundary Layer Wind Tunnel (Figure 6). This is an open loop tunnel, 

with a 1.82m long, 0.61x0.61m test section, and unit Reynolds number up to 

0.66x10
6
/m. The test section has a flexible upper wall, allowing varying pressure 

gradients to be set. The test model was a 1.22m chord flat plate with a super ellipse 

leading edge, and was made in two pieces, allowing a step to be created 0.23m aft of the 

leading edge (Figure 7). This low-speed testing showed that transition location did 

change as a result of varying the pressure gradient on the model, and had the potential to 

loosen manufacturing tolerances. However, the data was limited by the maximum 

achievable chord Reynolds number of roughly 7.5x10
5
, and tunnel freestream turbulence 

levels were not ideal for this testing, so a different facility was required for further 

investigation. 
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Figure 6 - Contractionless Boundary Layer Wind Tunnel (Bender et al., 2005) 

 

 

 

Figure 7 - Northrop flat plate model step design (Bender et al., 2005) 
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The facility selected was the Tohoku University Towing Wind Tunnel in Japan 

(Figure 8). It consists of a 2km long test track, on which an electric vehicle, known as 

the Hyuga Aerodynamic Research by Towing (HART) vehicle, runs. The model under 

test is placed on the vehicle, accelerated, and then studied in a 515m long covered 

measurement region. The maximum speed of the vehicle is 50m/s. Initial tests at this 

facility were conducted with a model identical to that used in the low speed testing, 

giving a maximum chord Reynolds number increase of roughly five times. The pressure 

gradient with this flat plate was very mildly favorable. The results of these tests were 

dramatic. From the low speed testing, an increase in the Rekcrit values was expected, but, 

as can be seen in Figures 9 & 10, which plot Rek against Retr-Rexk, the non-dimensional 

transition location aft of the step, for both the low-speed tests (Task 1) and the Towing 

Wind Tunnel data (Task 6), the jump was significant. As expected from the previous 

literature, the Rekcrit values of aft-facing steps were on the order of two to three times 

smaller than the forward-facing steps.  
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Figure 8 - Flat plate test at the Towing Wind Tunnel (Bender et al., 2007) 

 

Figure 9 - Forward-facing steps v transition location (MEATLOAF Final Report, 2006) 
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Figure 10 - Aft-facing steps v transition location (MEATLOAF Final Report, 2006) 

 

 

This increase over the initial low-speed tests can be attributed to the much lower 

turbulence environment of the open-air test track, which is also much more 

representative of the flight environment. Later measurements at the facility (SETS Final 

Report, 2009) found turbulence intensity levels to be 0.05-0.1%, which are closer to the 

data from Fanning (2012), which measured freestream turbulence levels from the Flight 

Research Lab’s Cessna O-2A platform to be on the order of 0.023-0.047%. This 

suggested that environmental conditions have a larger influence on excrescence 

tolerances than was expected, and that further increases will be found in flight testing. 
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Further studies were conducted using three purpose-built models, (Figure 11), for 

the Towing Wind Tunnel. One with a nominally zero pressure gradient (Gradient-Z), 

and two with increased favorable pressure gradients (Gradient-A and Gradient-B) 

(Figure 12), and variable steps located 0.48m aft of the leading edge along the surface. 

 

 

 

Figure 11 - Gradient-B, Gradient-A, Gradient-Z. Flow is L-R (SETS Final Report, 2009) 
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Figure 12 - Comparison of Cp distribution 

 

 

The longer chord length of the models allowed the chord Reynolds number to be 

increased to between 4x10
6

 and 8x10
6
 – values much more representative of an aircraft 

wing in a flight environment. During the testing, issues were encountered with the 

sealing of the step junction on the Gradient-B model. Therefore, the data from it had 

significant run-to-run variation, and will not be discussed in this review. The results of 

testing with the Gradient-Z and Gradient-A models in the Towing Wind Tunnel are 

shown in Figures 13 and 14 for forward-facing and aft-facing steps, respectively.  
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Figure 13 - Forward-facing steps v transition location (SETS Final Report, 2009) 
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Figure 14 - Aft-facing steps v transition location (SETS Final Report, 2009) 
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The Gradient-Z data shows much the same results as the initial MEATLOAF Task 6 

tests at the facility, but extends the Reynolds number range to over 4x10
6
 at transition. 

The resulting values of Rek are slightly lower for both forward-facing and aft-facing 

steps, but this could be attributed to the pressure gradient being closer to zero on the new 

model than the original. It was found that transition on both models was linearly caused 

by the generation of Tollmein-Schlichting (T-S) waves, as would be expected for an 

unswept flat plate. Comparing the Rek values of the Gradient-Z and Gradient-A models 

shows clearly that the increased favorable pressure gradient of the Gradient-A model had 

a strong stabilizing effect on the boundary layer, and a resultant increase in the 

excrescence height required to cause transition.  
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CHAPTER II 

EXPERIMENTAL SETUP 

 

 

Swept Wing In-Flight Testing Excrescence Research (SWIFTER) Model 

 

 The SWIFTER model is externally similar to the SWIFT model. It has a leading 

edge sweep of 30 degrees, and a chord of 1.37m (54 inches), which allows a maximum 

Reynolds number of 7.5x10
6
 at the maximum dive speed of the O-2A. It has a span of 

1.07m (42 inches) at the leading edge, with a 4.5 degree cut aft of the leading edge for 

ground clearance during takeoff. As with SWIFT, the test surface of SWIFTER aft of the 

leading edge will be powder coated black to provide an optimal surface for infrared 

thermography. The outer mold line (OML) of the model is identical to that of SWIFT, 

with a leading edge symmetric to 15% chord, and the non-test, pressure, surface aft of 

that designed to cancel any lift generated on the test, suction, surface. The airfoil is 

designed to generate crossflow instabilities, and be subcritical to T-S waves. 
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Figure 15 - SWIFTER model 

 

 

Computational Fluid Dynamics (CFD) analysis by Matthew Tufts, using ANSYS 

ICEM software, showed that the SWIFT OML would be suitable for this series of 

excrescence experiments. It can be seen in Figure 16 that the test surface Cp distribution 

at -4.5 degrees β matched closely with that of the Northrop SETS Gradient A profile, 

once aft of the leading edge region (SETS Final Report, 2009). This region of the 

SWIFTER model was never expected to match, due to the large curvature not present on 

the SETS model. 
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Figure 16 - Comparison of SWIFTER Cp to Northrop SETS Gradient A 

 

 

The design philosophy of SWIFTER is very similar to that of SWIFT, and a more 

detailed description of the design of that model can be found in McKnight (2006). 

Construction is of machined 7075-T6 aluminum, and the model is in three primary 

sections – the test surface, non-test surface, and leading edge, with a hollow cavity in the 

center, allowing room for instrumentation. There are, however, some differences in the 

designs, based both on experimental requirements and on practical considerations, built 

from several years of operation of SWIFT. With the planned addition of hardware and 



 

26 

 

 

instrumentation to allow the leading edge of the model to actuate, and create step and 

gap excrescences, it was desired that weight be saved in the structure of the model. The 

primary method by which this was achieved was by replacing the stepped internal faces 

of the test and non-test surfaces with smooth faces of mainly 3.175mm (0.125 inch) 

thickness (Figure 17), and a uniform thickness of 6.35mm (0.25 inches) in the leading 

edge. This was not possible in the construction of SWIFT due to machining limitations. 

In addition to this, the steel plates at the root and tip of the model on SWIFT were 

removed from the SWIFTER design, with no major adverse impact on structural rigidity. 

 

 

Figure 17 - SWIFTER test (L) and non-test (R) surface interior faces 
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Worst case scenario loading Factor of Safety (FoS) analyses were carried out by 

Tom Duncan, using Solidworks Finite Element Analysis package. The worst case 

scenario is based on a 2G pull up and 30 degree bank, simulating a mid-dive abort. With 

550lbs of lift on the model, 175lbs of which were applied to the leading edge, 40lbs of 

drag, and the 2G inertial loading, all factors of safety were found to be well over the 

minimum target of 1.5. Based on operational experience with the SWIFT model, with 

which any change to the internal configuration of the model required unmounting it from 

the wing of the O-2A, laying it on a workbench, and removing all connectors to split the 

model in half, it was decided that a better solution was to add access panels to the non-

test surface. These would allow the interior components to be examined and modified 

with the model still in situ, either on the wing of the O-2A, or in the test section of the 

KSWT. Four panels were added (Figure 18), two in a vertical orientation just aft of the 

leading edge, for access to the actuation system, and two further aft in a horizontal 

orientation, for access to pressure ports and other instrumentation. A thickened ridge was 

added to the non-test surface around each of the panel locations to allow the panels to sit 

flush with the surface, while still being securely held in place by retaining bolts. 
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Figure 18 - SWIFTER non-test surface side showing access panels 

 

 

When mounted to the outboard pylon of the O-2A, the model interfaces through a 

two-piece aluminum channel section (Figure 18, top) with two titanium eyebolts that 

connect into the mounting hooks of the pylon. On the SWIFT model, this channel was 

slotted to allow the angle of attack of the model, β, to be adjusted to suit the experiment 

being conducted. However, throughout the course of testing, the angle was never 

adjusted, and left at one degree toe out.  
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To simplify the design for SWIFTER, it was decided to remove the adjustment 

capability, and instead have a fixed β of four degrees toe out. This angle was chosen as 

the majority of tests are conducted in the vicinity of four degrees toe out, and setting the 

model into this range would reduce the sideslip angle that would be required to be flown 

by the aircraft. The five hole probe is mounted to the non-test surface on an L-section 

piece of aluminum supported by two stand offs. On SWIFT, a major time factor in 

mounting the model to the wing of the O-2A was the alignment of the five hole probe. 

The procedure involved marking chalklines on the floor of the hangar in line with the 

model chordline and the probe, measuring the angular offset, and adjusting the probe 

until it fell within +/-0.1 degrees of the chordline. This could take over two hours to 

complete. 

 

 

 

Figure 19 – New five hole probe mount standoff 
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To attempt to improve the mounting procedure, new standoffs were designed with 

the curvature of the non-test surface machined into their base (Figure 19). The aim of 

this was to have a self-aligning system that, after verification, would allow the mount to 

be installed and be sure of correct positioning. As with SWIFT, the test and non-test 

surfaces, as well as one of the two leading edges, are outfitted with two rows of pressure 

ports in order to validate the computational pressure coefficients throughout the target β 

range. 

The primary difference between SWIFTER and SWIFT is the leading edge 

actuation system. Unlike SWIFT, where the leading edge was directly bolted to the test 

and non-test surfaces for maximum rigidity, in order to allow the creation of step and 

gap excrescences, the leading edge on SWIFTER is supported by actuator lead screws 

and guide shafts mounted to rail guides on pylons from the main body of the model. Due 

to this less rigid mounting solution, modifications had to be made to the test and non-test 

surfaces in order to minimize relative displacement between the test surface forward 

face, and leading edge aft face. Another factor considered was the uniformity of relative 

displacement across the entire span of the model, as if this could not be minimized, the 

excrescences created could not rightly be called two-dimensional. After several 

iterations of finite element analysis, a final configuration was reached which gave 

uniformity of relative displacement across the center span of the model of less than 

25μm, which was deemed sufficient, as it matched the accuracy to which Northrop set 

their step excrescences in the SETS experiments. This configuration resulted in 

thickening the first eight inches of the test surface to 0.5 inches, with the central 11 
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inches thickened further to 1.0 inches (Figure 20). The matching section of the non-test 

surface was also thickened similarly. 

 

 

 

 

Figure 20 - SWIFTER test surface thickened sections 

 

 

 

 

 



 

32 

 

 

 

Figure 21 - SWIFTER leading edge cutaway showing actuation system 

 

 

The leading edge actuation system (Figure 21) consists of motion hardware, guide 

and restraining hardware, and position feedback hardware which work in conjunction to 

smoothly move and restrain the leading edge in whatever configuration is desired by the 

test operator. The motion hardware consists of four Anaheim Automation 23A stepper 

motors (Figure 22), two for step actuation, and two for gap, with a linear travel per step 

of 6.4μm. Each motor can drive 100lbs force, more than enough to move the leading 

edge in operational conditions, and when not in motion, cannot be moved from its 
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stopped position, unless an extreme load occurs which strips the threads of the hardened 

steel lead screw. The leading edge step actuator mounts are connected to Thomson linear 

rail guides on pylons from the main body of the model. These support any non-axial 

loading on the lead screws of the gap actuators. Lateral loading on the step actuator lead 

screws are supported by four solid shafts running through bearing blocks in parallel with 

the actuator mounts. These shafts also minimize any looseness in the system that could 

cause the actuators to bind. 

 

 

 

Figure 22 - Anaheim Automation 23A stepper motor 
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Figure 23 - AEC Magnetics electromagnet 

 

 

Lateral and axial loading of the leading edge is also supported by an AEC 

Magnetics electromagnet (Figure 23), rated at 1500lbs force, mounted midspan in the 

model body. It connects to a one inch thick low carbon steel block in the leading edge. 

As only two thirds of the magnet face is in contact at any time, a proportional axial 

restraining force of 1000lbs is applied to the leading edge. As the shearing load is rated 

at 25% of the axial force, 250lbs force supports lateral loading of the leading edge.  
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Figure 24 - Unimeasure ZX-PA displacement sensor 

 

 

Position feedback in both the gap and step directions of motion is provided by three 

Unimeasure ZX-PA “stringpot” displacement sensors (Figure 24). These potentiometer 

sensors have a measurement range of 38.1mm, and a repeatability of +/-0.03%, in this 

case, within 11.4μm. Position is measured via a nylon jacketed wire cable, which allows 

the sensors to remain connected even when the sensor mounting point and cable 

connection point are not aligned. The position can then be calculated through relations 

from both the gap and step sensors. One of these sensors is mounted in the gap direction, 

and two are mounted in the step direction, one towards the tip, the other towards the 

root. This allows the uniformity of the step excrescence to be monitored, and motion 

stopped if the actuators appear to be driving the leading edge out of alignment. 
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Figure 25 - Leading edge gap inserts 

 

 

If a non-zero gap configuration is desired, gap inserts cut from sheet aluminum of a 

known thickness can be bolted into position on the aft face of the leading edge (Figure 

25). To allow these inserts to be installed without removing the leading edge completely 

from the model, they will be split in half along the span of the model, allowing them to 

be inserted from the left and right sides of the model. As a perfect seal between the 

leading edge and the main body of the model is required to prevent any leakage into the 

test surface boundary layer, a compressible polytetrafluoroethylene (PTFE) gasket tape 

will be applied to the aft face of the leading edge, and Kapton tape to the forward face of 

the test and non-test surfaces. After preliminary smoke leakage tests, it was found that 

tape of thickness 0.5mm provided adequate sealing. 
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Flight Research Laboratory (FRL)  

 

 The FRL operates a 1968 Cessna O-2A– a high wing, twin engine aircraft with 

centerline thrust and twin tailbooms (Figure 26). This aircraft is a militarized version of 

the Cessna 337, with modifications including four wing-mounted pylons, reinforced 

wing spars, enlarged observation windows for both pilot and copilot, and a rack system 

in the aft of the cabin, originally for radio equipment. Through a large library of aircraft 

performance and safety analysis data, and a history of operation over the past few years 

with the FRL in the SWIFT test program, the aircraft has been found to be well suited to 

the role of experimental research platform. Flight crew for experimental operations 

consists of a pilot in the front left seat, a copilot/safety observer in the front right seat, 

and a flight test engineer (FTE) in the rear right seat. The pilot flies the aircraft relying 

on target point data provided by the FTE during all test phases, while the copilot 

maintains situational awareness of the surrounding airspace, as well as assisting in test 

operation and data recording when required. The FTE is the primary test operator, 

calling all configuration changes, monitoring the test parameters, and commencing and 

terminating test phases. Ground crew consists of two personnel responsible for preflight 

documentation, final exterior inspections, and communications with the flight crew 

while airborne by way of a ground radio operations station at the FRL, with the callsign 

“Aggie Base”.  
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Figure 26 - Cessna O-2A  

 

 

Test operations are conducted in two non-congested airspaces in the vicinity of 

Easterwood Airport (KCLL). The test area for an operation is chosen based on weather 

and sun location considerations. All flights are tracked by flight following, and 

confirmation of clear airspace is made before any test maneuver is begun. Previous 

experiments with the O-2A have required the flight profile to consist of a climb to an 

altitude of 10,500ft, followed by a cold soaking period of 20 minutes. With the model 

cooled to ambient temperature, the aircraft was then placed in a dive at 175KIAS to 
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achieve a target Reynolds number of 7.5x10
6
. The angle of attack of the model, β, is then 

held at the point specified by the FTE. As the aircraft descended, the ambient 

temperature increased, and the model would warm up. IR thermography was used to 

visualize the transition front. The dive would then be terminated at 3,000ft for safety 

reasons. 

With the new SWIFTER program, however, the range of target Reynolds numbers 

is wider, as the aim is to extend the dataset from the Northrop SETS experiments, which 

only go as high as 4x10
6
. Therefore, not all flight operations will require a dive to reach 

the target Reynolds number, and it can be achieved in level flight. This has the benefit of 

increasing the time aloft, and the amount of data that can be collected. In addition, the 

range of weather conditions in which the tests can be conducted is expanded, as if there 

is an overcast cloud deck that would normally prevent operations due to moisture 

concerns, the test can be carried out below that altitude. 
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FRL Instrumentation 

 

 To measure flight data, the O-2A is outfitted with an Aeroprobe conical tip five 

hole probe mounted to the non-test side of the model (Figure 27), and a Resistive 

Temperature Detector (RTD) mounted on the port wing. The five hole probe is capable 

of measuring pitch, yaw, static pressure and dynamic pressure. The ports are connected 

to four Honeywell FP2000 pressure transducers located within the model. Combined 

with the temperature, this provides a record of altitude, true airspeed, Mach number, and 

Reynolds number. To record freestream turbulence levels, a sting mount with a NACA 

0015 airfoil is mounted on the starboard wing. It holds an array of four hotwires and 

allows turbulence levels to be measured, correlated, and acoustic disturbances removed 

for a more accurate reading. 
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Figure 27 - Five hole probe 

 

 

A hotfilm array, with associated Preston tube shear stress measurement device, 

static pressure port, and thermocouple for calibration, can be applied to the test surface 

of the model if higher accuracy transition measurements are required. Two AA Systems 

AN-1003 anemometers can be mounted on the rack to receive both the hotwire and 

hotfilm data. The information is processed through a pair of National Instruments DAQ 

boards – a USB-6259, with 16 differential analog input channels, and a sample rate of up 

to 1.25Mhz, and a USB-6255 for 16-bit analog to digital conversion, and fed to the 

FTE’s flight laptop, running a custom Labview program. 
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Figure 28 - Yoke-mounted pilot display 

 

 

A yoke-mounted display (Figure 28) provides real-time updates on target Reynolds 

number and β, as well as their rate of change, to the pilot, allowing them to maintain 

values within tight bounds. The display is also used to review the atmospheric 

temperature profile with the FTE before commencing a dive, in order to better anticipate 

any possible temperature inversions or turbulence. All system 115VAC power is 

provided through an 1100W inverter connected to the aircraft battery. Power can be 

killed by either the FTE or the pilot in the event of an emergency. 
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To visualize transition on the test surface of the model, a FLIR Systems SC8200 

Infrared camera is used. This uses an Iridium Antimonide (InSb) detector, and operates 

in the 3-5μm (mid-band) spectral range. It is designed to operate in a temperature range 

of -40
o
C to 50

o
C, and to a maximum altitude of 40,000ft. It has a resolution of 1024 x 

1024 pixels, and can sample at up to 132Hz, but for normal operations, a maximum of 

30Hz is used to minimize bandwidth issues over the Gigabit Ethernet connection to the 

flight laptop. The camera is operated by FLIR’s ExaminIR software, providing both 

recording and real-time display of the thermal image. This is constantly monitored 

during test procedures by the FTE, who can then use it to aid in making calls on when to 

switch to the next test points. The camera is mounted to the instrumentation rack in the 

aft of the cockpit of the O-2A, and views the model through an open section in the left 

side passenger window, as the Plexiglass cabin window would prevent transmission of 

the 3-5μm spectral range. 

The FRL has two lenses for use with the camera – a 17mm focal length, and a 

50mm focal length. The 17mm lens has a 56.9
o
 field of view (Figure 29), which allows 

for an overall view of the model. The 50mm lens has a 20.9
o
 field of view which allows 

for a more in-depth view of regions of interest across the test surface of the model. 

Ground tests with a 4.5mm x 1mm striped pattern (Figure 30) show that it is 

theoretically possible for the SC8200, fitted with the 50mm lens, to resolve crossflow 

instabilities on the test surface of the model, a valuable research asset, to which the FRL 

has not had access to this point. 
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Figure 29 - SC8000 IR image of SWIFT model (17mm lens) 

 

 

 

 



 

45 

 

 

 

Figure 30 - Resolution of representative crossflow pattern with 50mm lens 

 

 

 

 

 

4.5mm x 1mm striped pattern 
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Klebanoff-Saric Wind Tunnel (KSWT) 

 

 The KSWT (Figure 31) is a closed-loop, low-speed tunnel, with extremely low 

disturbance levels. It is capable of speeds up to 31m/s, with an accuracy of +/-0.1m/s of 

the desired speed. The fan (Figure 32) is an adjustable pitch design, with nine blades, 

and is located downstream of the test section, on the return leg. Power is provided by an 

external 150hp DC variable current electric motor, mounted in an acoustically insulated 

enclosure below the fan housing, by way of a belt drive. Maximum RPM of the system 

is 1300, controllable to +/-1RPM. The test section (Figure 33) has a cross section area of 

1.4m x 1.4m (4.5ft x 4.5ft) at the entrance, and 1.41m x 1.4m (4.64ft x 4.5ft) at the exit. 

This is due to the floor sloping downwards slightly to account for boundary layer growth 

on the tunnel walls. The section is supported on four isolated pedestals, with a Fabreeka 

Precision-Aire PAL 21 pneumatic isolator mounted to each, to minimize the 

transmission of vibrations from external influences. It is also not rigidly connected to the 

contraction cone or diffuser.  
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Figure 31 - Perspective & plan views of the KSWT 
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Figure 32 - KSWT fan in situ 

 

 

 

Figure 33 - KSWT test section and supports 
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The test section is removable by crane for model installation, preparation, or 

removal. Two test sections are available for use to minimize downtime during 

configuration changes. One is primarily used for swept wing testing, while the other is 

used for flat plate research. An interchangeable panel is mounted in the center of the test 

section, with the option of mounting a viewing/IR window or a hot wire traverse 

mechanism. To minimize disturbances in the tunnel, a variety of measures have been 

taken. In the main and extended diffusers, flow separation due to large angles was 

reduced by the addition of two screens and splitter plates, which also helps reduce large 

scale turbulence from the fan. 

The plenum section is coated with two kinds of acoustic panel – broadband (50-

5000Hz) damping plates, and 500Hz+ acoustic foam. These help to minimize the 

frequency band (50-400Hz) in which many of the tunnels instabilities exist. These 

treatments are also present in the first corner, to minimize noise propagation upstream. 

Turning vanes located at the all four corners aid in reducing overall background noise 

levels. A honeycomb mesh and seven wire screens are also included downstream of the 

fourth corner to reduce turbulence levers, and increase flow uniformity. Downstream of 

the screens, a 2.2m (7.2ft) settling chamber allows viscous dissipation to reduce 

disturbance intensity further. This then leads to the contraction cone, with a 5.33:1 ratio, 

and zero slope and curvature ends to minimize differing turbulence intensities, and to 

reduce the risk of a separation bubble forming, causing pressure fluctuations. 
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Figure 34 - SWIFTER mounted in KSWT test section 

 

 

As SWIFTER was designed to be mounted on the FRL’s Cessna O-2, it is optimally 

viewed from the right side, facing downstream. However, the KSWT test section is 

designed for the test surface to be on the left side, facing downstream (Figure 34). This 

necessitated the mounting of the model inverted from its normal orientation, and with 

the sweep now sloping aft from the lowest forward point to the highest. Precautions will 

have to be taken during tunnel operations to avoid dust and debris buildup on the 

exposed leading edge. In addition, when working around the model, tunnel personnel 

will have to be very conscious of the risk of dropped tools and equipment. The mounting 

hardware allows for adjustment of the angle of attack of the model in increments of 0.2 

degrees. 
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KSWT Instrumentation 

 

 Freestream data is measured in the tunnel with a pitot static tube located nine 

inches downstream of the test section entrance, and a RTD located just below it. The 

pitot static tube is connected to Baratron absolute and differential pressure transducers. 

These measurements combine to provide freestream velocity measurements accurate to 

+/-0.1m/s. These data, along with test data, are recorded with a trio of National 

Instruments USB-6211 DAQ boards. This is integrated with the tunnel control software, 

which is controlled by a terminal interface. The tunnel can be set to maintain constant 

velocity, Reynolds number, or fan RPM. In addition to the directly relevant test 

parameters, the motor and fan temperatures are monitored, along with the pressure 

values for the test section pneumatic isolation system in order to ensure the normal 

operation of the tunnel. Warnings are shown to the tunnel operator when out of range 

values occur. The primary method for determining boundary layer transition location on 

the test surface of SWIFTER in the KSWT will be infrared thermography with the FLIR 

Systems SC8000 camera, as when mounted on the O-2A. 
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Figure 35 - Upstream and downstream camera positions 

 

 

The camera will be mounted to the metal frame of the traverse box on the outside of 

the test section. Several positions, to be finalized, will be utilized to give the best range 

of views of the test surface, and particular regions of interest that arise. These potentially 

include upstream and downstream positions (Figure 35), with ports cut through the 

Plexiglass panels to allow transmission of the 3-5μm spectral range. It should be noted 

that only one of these ports should be open at any one time to prevent circulation 

through the traverse pressure box, and the flow over the model being affected. A new 

viewing panel with several IR transparent windows along its length will allow more in-

depth analysis across the test surface, using the 17mm lens. 
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Figure 36 - Hotwire traverse system 

 

If a detailed study of the boundary layer profiles on the test surface is required, the 

hotwire anemometry traverse system (Figure 36) can be used. The system consists of a 

high precision three-axis traverse with two probes on a sting mount – one for freestream 

readings, and one for the boundary layer. The bulk of the mechanism is outside the test 

section, within the pressure box. A single lead screw and two guide rails control the 

streamwise motion of the traverse frame. Mounted to this, two lead screws control the 

spanwise motion of the hotwire sting mount. Finally, a single lead screw controls the 

wall normal motion of the sting. All of the lead screws are driven by Compumotor 

microstepping motors, while position is given by Renco encoders. Minimum steps are 

11.9μm in the streamwise direction, 1.27μm spanwise, and 0.64μm wall normal. 
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Figure 37 - Hotwire sting mount (top-down view) (White, 2000) 

 

 

The sting mount (Figure 37) is the only part of the system that extends into the test 

section proper. It consists of a thin tapered airfoil shape with two hotwire probe mounts 

extending upstream. It enters the test section through a streamwise zippered slot in the 

Plexiglass traverse window. This zipper keeps the opening closed to either side of the 

sting mount to minimize venting of the test section. The slot translates with the spanwise 

motion of the system. The sting mount generally completes a boundary layer scan in an 

automated sequence during a test run, based on parameters input by the tunnel operator. 

It can also be positioned by direct command input, if desired. 
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CHAPTER III 

THEORY 

 

 

Flow Over Step and Gap Excrescences 

 

For an aft-facing sharp step, the flow detaches immediately at the corner (Figure 

38). The separated shear layer then curves downwards and reattaches to the surface. 

Below the shear layer is a recirculating vortical flow region with maximum backflow 

velocities of over 20% of freestream velocity (Castro & Haque, 1987). Reattachment can 

be unsteady, with the point at which the flow reattaches changing as a result of 

momentary flow reversal in the shear layer, causing the separation bubble to 

momentarily collapse (Driver, 1987). Whether the flow reattaches in a laminar or 

turbulent manner determines whether or not the overall flow immediately transitions to 

turbulence aft of the step. Forward-facing steps (Figure 39) develop a separated 

recirculation vortical flow region at the forward face of the step. For all but very low 

Reynolds number flows, a second separation region also develops on the top surface of 

the step immediately aft of the forward edge. For configurations with a forward-facing 

step leading an aft-facing step, as in the work of Fage, interaction between the two 

separated regions cannot be ruled out. 
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Figure 38 - Flow over aft-facing step geometry (Driver, 1987) 

 

 

 

Figure 39 - Flow over forward-facing step geometry (Obara & Holmes, 1985) 
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Figure 40 - Smoke visualization and schematics of gap flow (Sinha et al., 1982) 

 

 

Flow over small gaps (Figure 40) has much less of an influence on transition to 

turbulence than flow over steps, either forward-facing or aft-facing. This can be 

attributed to the more self-contained nature of the separated flow region. For gaps with 

height to width ratios of around 1:1, a single, centered vortex structure develops, 

whereas for a gap with a deeper ratio of 2.5:1, two stacked vortices develop (Sinha et al., 

1982). 
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Flow Instabilities 

 

Although the precise mechanism for breakdown to turbulence of the flow over step 

and gap excrescences is not yet well understood, a brief discussion of the primary 

instabilities relevant to this application is worthwhile, so that any phenomena observed 

may be seen in the context of what is known for flow over swept wing airfoils in 

general. The relevant instabilities are Tollmein-Schlichting (T-S) waves, crossflow 

vortices, and the free shear layer instability. 

Tollmein-Schlichting (T-S) waves are a streamwise, two-dimensional viscous 

instability, and dominate the transition process of most two-dimensional boundary 

layers, such as unswept wings and flat plates. They are sensitive to freestream 

conditions, sound, and two-dimensional roughness (Saric, 1998). However, they are 

insensitive to three-dimensional roughness. Their initial amplitudes come from the 

freestream, and they are slow growing. Positive pressure gradients stabilize the waves 

well, and weak wall suction can also be used for control. T-S waves are relevant to this 

investigation of step and gap excrescences as a wide variety of two-dimensional 

excrescences will be tested. Even though they are stabilized by the overall positive 

pressure gradient of the airfoil, larger magnitude excrescence configurations may induce 

their growth due their sensitivity to two-dimensional roughness, and due to local 

generation of adverse pressure gradients. 
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Figure 41 - Streamline deflection on a swept wing 

 

 

Crossflow vortices come from the existence of a pressure gradient on the surface of 

a swept wing, which deflects the streamlines over the airfoil inboard, on the suction side, 

as far aft as the pressure minimum, at which point the streamlines deflect outboard 

(Figure 41). Within the boundary layer, this centrifugal acceleration is not balanced by 

the pressure gradient, and the fluid velocity reduces. This imbalance creates a secondary 

flow within the boundary layer orthogonal to the inviscid streamlines. This means that 

the boundary layer velocity profile (Figure 42) contains an inflection point, subject to an 

inflectional instability – streamwise co-rotating vortices that cause breakdown to 

turbulence by way of mean flow distortion, and inflectional instabilities. The fact that, 
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unlike T-S waves, crossflow is destabilized by a positive pressure gradient makes it a 

complicated problem to solve. 

 

 

 

Figure 42 - Swept wing boundary layer profile (Saric, 2010) 
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The crossflow instability is sensitive to freestream turbulence and three-dimensional 

roughness. In a low turbulence environment, such as flight, stationary vortices are 

dominant, whereas in a higher turbulence environment, greater than 0.15% intensity 

(Deyhle & Bippes, 1996), travelling crossflow dominates. Surface roughness levels have 

also been found to affect which form is present (White, 2000). As the test airfoil has a 

positive pressure gradient, the crossflow instability is expected to be a factor in the 

transition to turbulence, despite showing insensitivity to two-dimensional roughness at 

low amplitudes (Radetsky et al., 1999). 

The inviscid free shear layer instability can develop along the shear layer separating 

the flow over the separation bubble from the vortical structures within it. It comes as a 

result of the inflection in the velocity profile caused by the abrupt change in the 

momentum of the fluid in the wake of the surface excrescence. High momentum fluid 

above the shear layer and low momentum fluid below mix, by way of a Kelvin-

Helmholtz mechanism, and grow the shear layer thickness, as can be seen in Figure 38. 

The fluid entrained in the shear layer creates a positive pressure gradient, causing it to 

curve down towards the surface, and impinge at the reattachment point. Vortex shedding 

occurs at this point and the shed vortices can contribute to transition to turbulence 

downstream of the separation bubble, if turbulence does not immediately occur when a 

new boundary layer forms at reattachment. 
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CHAPTER IV 

ACTUATION CONTROL SYSTEM 

 

 

As mentioned in Chapter II, the leading edge of the model can be actuated to create 

step and gap excrescences by use of a combination of motion, restraining, and feedback 

hardware. This set of hardware must be controlled as a whole, by way of a control 

system that allows the operator to enter the desired parameters of step height, or gap 

width, without regard to the minutiae of the individual processes that occur to allow their 

goal to be accomplished. For this to be achieved, the operation of each hardware 

component in the system, how it can be controlled from the Labview software, and how 

that software can tie all of the various inputs and outputs together must be discussed. 

For the development of this proposed SWIFTER actuation system, two National 

Instruments data acquisition (DAQ) boards were used to interface between the actuation 

hardware and Labview software. A USB-6211 board provided the high-speed digital 

output channels, along with the analog inputs, while a USB-6501 board provided extra 

digital channels. For the actual operational control of SWIFTER, a National Instruments 

X-Series USB-6341 board consolidated all the channels onto one board, while also 

providing higher resolution and better hardware timing options. 
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Linear Actuators 

 

The linear actuators are stepper type electric motors. They consist of a series of 

eight stators on the inside of the casing, spaced at 45
o
 intervals, each with five teeth, 

spaced at 7.2
o
 intervals, wired in two alternating phases. The rotor, attached to the drive 

nut in the center, has two sets of 50 poles, North and South, around its circumference, 

and offset from each other by a half pole-width. Rotating the actuator through one step is 

achieved by switching power and current direction between the two phases of the 

windings, gradually incrementing the position of the rotor, as seen in Figure 43. This 

allows 200 1.8
o
 step increments in rotation, translating by the pitch of the lead screw to 

6.35μm axial motion per full step. Micro-stepping, or dividing the step angle into smaller 

angles, can be produced by supplying proportional current to the windings by sine and 

cosine functions. 
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Figure 43 - Phase excitation of a stepper motor (Shinano.com) 

 

 

Figure 44 - Geckodrive G540 controller 
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In order to send this information to the actuators, a motor controller is required that 

converts inputs in the form of speed and direction commands into current bursts to the 

phase windings. For the development of the SWIFTER actuation system, a Geckodrive 

G540 four-channel 10-microstepping controller (Figure 44) operating on 24V DC power 

was used. The direction input on each of the motor controller channels simply required a 

high or low voltage signal from one of the DAQ board digital outputs. The speed and 

distance input, however required a pulse train to be transmitted from a digital output. 

Each pulse needed to be four microseconds wide, with the speed of the motor 

determined by the duty cycle of the pulse train, and the distance to move determined by 

the number of pulses. 

This was implemented in Labview by building a Virtual Instrument (VI) with inputs 

for speed in μm/s, direction, and distance in μm. The direction input sent a single digital 

1D sample to the port or ports assigned to the direction input of the one or more 

actuators to be moved. This changed the state of the port to low or high, and maintained 

that state until an overriding signal was sent. The speed input was divided by the travel 

per microstep of 0.635μm, to give the pulse frequency, and multiplied by the pulse width 

to give the duty cycle. These parameters were then used to generate a pulse train with a 

base state of low, as required by the motor controller. The distance input was also 

divided by the travel per microstep, giving the number of pulses required to travel that 

distance. The now finite pulse train was then sent to the digital ports assigned to the 

speed input of the actuators to be moved. 
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Displacement Sensors 

 

The displacement sensor feedback potentiometers are supplied with +/-5V DC 

power, and wired as variable resistors, with maximum resistance at zero extension, and 

minimum resistance at maximum extension. This gives a 10V span across the 38.1mm 

range of motion of the cable, and 260μV/μm. However, due to variations in the power 

supply, even with voltage smoothing, accuracy can only be guaranteed to fall within  

~+/-10μm, however, this is more than sufficient for the purposes of the leading edge 

actuation. The connections of the potentiometers were wired as differential inputs to the 

analog input ports of the DAQ board. A Labview VI was then used to record their 

values. The input from all three potentiometers were collated in a two dimensional array, 

and then each input averaged over 100 samples to give a mean voltage value. 

 

Electromagnet 

 

The electromagnet operates on 24V DC power, so to control it with the 5V output of 

the DAQ board, a MOSFET relay board was added. When the DAQ port assigned to the 

electromagnet was set high, the relay closed and allowed the 24V DC feed to power the 

electromagnet. When the port was set to low, the relay opened, cutting power to the 

electromagnet. This was controlled by a Labview VI similar to that of the direction part 

of the linear actuator VI. 
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Displacement Sensor Calibration  

 

The displacement sensors each came with a six point calibration from the factory. 

However, given the small nature of the displacements being measured, it was felt that an 

independent calibration should be developed. In addition, with two sensors mounted in 

the step direction, and one in the gap direction, angular corrections would have to be 

made as the leading edge actuates from position to position. A VI was developed in 

Labview that would iterate the leading edge through a series of step and gap excrescence 

positions from zero to the extremes of the range in all directions. First, the leading edge 

would move from zero gap and step out to 10mm in five steps, momentarily pausing at 

each one to record the displacement sensor readings. Then, the leading edge would move 

to a 10mm step in the non-test surface direction, retract the gap to zero, and repeat the 

move pattern out to the 10mm gap. Then, it would move a 1mm step in the test surface 

direction, and repeat the pattern. This would continue until it completed the pattern at a 

10mm step in the test surface direction. The data was stored in three two-dimensional 

arrays, which were then imported to MATLAB. The surface fitting tool sftool was then 

used to fit a polynomial curve to the surfaces.  

Initial tests with the test rig (to be discussed later in this chapter) showed that the 

sensors were relatively linear, with only minor curvature resulting from the angular 

variation with position change. It is planned that a finer initial calibration be carried out 

when the model is ready to begin testing, and then, for the initial testing phase, a coarse 
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calibration check be carried out each day until it is verified that day to day variations 

such as temperature and humidity have no major effect on the calibration. 

 

Actuation Sequences 

 

To this point, the leading edge actuation has only been discussed at the lowest level 

of code, at which the actuation subVI is given inputs of distance, speed and direction to 

pass to the motor controller. In order to actuate the leading edge, however, the motors 

will have to operate as part of a sequence involving the displacement sensors and the 

electromagnet. There are three different actuation sequences available to the user during 

operation of the system: Step sequence, Zero sequence, and Gap sequence.  

The Step sequence allows the leading edge to be positioned at a desired step 

excrescence, and zero gap. It consists of three phases. The first creates a leading edge 

gap of 5mm to allow clearance. The second phase moves the leading edge to the desired 

step excrescence. The third phase then retracts the gap created in the first phase to seal 

the leading edge to the body of the model. The Zero sequence is identical to the Step 

sequence, other than that the second phase is fixed to move the step excrescence to zero, 

positioning the leading edge in the completely closed configuration. The Gap sequence 

is designed to create pure gaps, with no step component. It first checks to see whether 

the step excrescence is at zero. If not, it calls the Zero sequence. Then, it moves the 

leading edge to the desired gap position. Each of these sequences uses a combination of 
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step and gap movements. They do this by calling Gap and Step Calculator subVIs. These 

Calculators take inputs of desired step or gap excrescences, and handle all the operations 

required to begin, create, and complete that motion.  

The first phase of the Gap Calculator takes the input of the desired gap position, and 

checks whether it is within the safe range of motion in the gap direction. If it exceeds 

this range, the desired gap is modified to the maximum extended position allowed in the 

range, provisionally set at 20mm. If the desired gap position is fully retracted, or zero, 

the desired gap is modified to negative 500μm. With the PTFE gasket in place, this 

allows the gasket to be compressed to the maximum extent possible, limited by the 

power of the actuators. It also automatically corrects any minor misalignment of the 

leading edge between the two gap actuators, as if one reaches the limit before the other, 

it will simply stall in a safe manner, and the other will catch up. Even though the desired 

gap is modified to a negative value, the position is still recorded as zero, as the leading 

edge does not actually retract past this point. Finally in the first phase, the difference 

between the final desired gap position and the current gap position is calculated, and 

separated into absolute distance and direction parts. 

In the second phase, the electromagnet control subVI is called, and the 

electromagnet switched off. There is a fixed timeout in this phase, to allow the magnetic 

field to dissipate before actuation, and avoid the motors stalling. The third phase then 

calls the actuation subVIs for both gap actuators, feeds in the distance and direction 

parameters, leaving the speed set at the default setting of 1000μm/s. Once this is 

complete, the fourth phase begins, which is the reverse of the second phase, activating 
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the electromagnet. The fifth and final phase of the Gap Calculator checks the previously 

recorded position of the leading edge in the gap direction against the values from the gap 

displacement sensor. First, it takes the recorded current gap and step positions and plugs 

their values +/-10μm into the displacement sensor calibration equations calculated 

previously. This gives a pair of outputs in volts. The current gap displacement sensor 

reading is then called. If it falls between these two values, the leading edge is correctly 

positioned. If it falls outside this value, the leading edge recorded gap position has come 

out of synchronization with the displacement sensor, and a Gap Sync Error is displayed 

to the user. If this is a result of a stall, or missed steps, it can be corrected by rezeroing 

the gap. Otherwise, a recalibration may be necessary.  

The Step Calculator operates in a very similar manner to the Gap Calculator. The 

first phase limits the input desired position to within a safe positive and negative range 

of 10mm. As there are no hardware safeties such as the electromagnet in the step 

direction, phases two and four are eliminated. The third and final phase of the Step 

Calculator checks the recorded position of the leading edge in the step direction against 

readings from the two step displacement sensors. Both sensors are checked individually 

against their calibration equations as mentioned earlier. If both sensors are found to be 

outside calibration, it is likely that the leading edge has come out of synchronization 

with the displacement sensors, and a Step Sync Error is displayed to the user. If only one 

of the sensors is outside calibration, it is more likely that one of the actuators has stalled 

for some reason, possibly as a result of friction, or a component catching internally. This 

will display a Step Alignment Error to the user. As the step direction does not have a 
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simple method for validating its position during operation, as with the gap direction, any 

error displayed would be best dealt with by manual verification, either in the tunnel, or 

in the hangar after landing, if this occurs during flight testing.  

 

Indicators and Global Variables 

 

The Labview Global Variable feature was used to store any data that needed to be 

accessed by multiple VIs not in direct communication, such as the current step and gap 

position information. It was also used to control indicators visible to the user during 

operation. These indicators include the step and gap alignment and sync errors, which 

were set to flash a red light four times and then remain lit to attract the attention of the 

user. The actuation and electromagnet subVIs also communicated their active or inactive 

state by way of a solid green indicator light. The current step and gap positions are 

reported to the user by way of a visual representation of the leading edge with sliding 

indicators along the sides, and a numeric display of the current step and gap in microns. 
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User Interface 

 

The proposed front panel of the SWIFTER control VI (Figure 45) is the highest 

level of the Labview VI hierarchy in the control system, and the only screen with which 

the user would interface. It has a compact design, in order to share screen space with the 

preexisting flight interface. The actuation controls comprise three primary sections: 

Operation, Setup, and Diagnostics and Information. To prevent accidental operation of 

Setup controls during test operations, or of the Operation controls when adjusting the 

model, the Activate Operation and Activate Setup Controls radio buttons are linked in 

such a manner that when one is activated, the other is deactivated. This deactivation 

closes all ongoing operations, and completely locks out the controls in that section. In 

addition, if any alignment or synchronization errors occur during test operations, the 

Operation section is also deactivated to prevent further aggravation of the problem, and 

to give the user time to assess the situation. As is standard practice with Labview, the 

STOP button also deactivates all sections and resets input conditions before closing the 

VI. 
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Figure 45 - SWIFTER UI - Actuation 

 

 

The Operation section is the interface by which the user controls the actuation of the 

leading edge during test operations, and directly controls the Step, Gap and Zero 

Sequence subVIs. It consists of a three-part Tab control, which allows only one of the  

operation tabs – Create Step, Create Gap, and Return to Zero - to be viewed at a time. 

Both the Create Step and Create Gap tabs have numeric inputs for the desired position in 

microns, and a radio button to confirm the start of the operation. The Return to Zero tab 

does not have a numeric input, as its target position is fixed. Once the operation is 

complete, a green light on the panel flashes four times to notify the user. 
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The Setup section is designed for use outside of test conditions, for operations such 

as when the leading edge is being realigned, or the step excrescence zero position is 

being set. It has three primary functional areas. The first is the electromagnet override. 

As the actuators are able to be controlled individually in Setup, unlike in the Operation 

section, the lower-level actuation subVIs are being used. As a result, the automatic 

powering on and off of the electromagnet is unavailable. Therefore, deactivating the 

electromagnet is necessary for all Setup operations. The second is the individual actuator 

control panel. This subsection allows the user to move each of the four actuators 

individually or in gap or step pairs to achieve perfect alignment of the leading edge with 

the body of the model before commencing operations. It has a Listbox selector by which 

the desired actuator or pair of actuators for motion can be selected, a numeric input for 

distance to be moved in microns – unlike the operation input, in which the final desired 

position is entered, a direction switch, and a radio button to confirm the start of the 

motion. The third and final section is the position updater. Once the leading edge is set 

to a zero step and zero gap - or relative zero gap when using gap inserts - configuration 

by the user, the current step position and current gap position variables used by the 

operational Step and Gap Sequence subVIs can be updated to zero at this reference 

condition. 

The Diagnostics and Information section consists of the indicator panel by which 

the user is informed of actuator and electromagnet power state, as well as any alignment 

of synchronization errors, and the Current Position graphic, showing the current leading 



 

75 

 

 

edge excrescence configuration by way of sliding indicators and numeric readouts in 

microns. 

 

Actuation System Test Rig 

 

As the SWIFTER model was still in production during the development of the 

actuation control system, an alternative system had to be developed to test the proposed 

Labview code and interface hardware. This test rig (Figure 46) would be required to test 

the linear actuators and the displacement sensors. It was not seen as necessary to test the 

electromagnet, as its control was elementary. In order to best replicate the application, it 

was decided to use two actuators mounted at right angles, with the second actuator 

mounted on a traversing platform driven by the first actuator. This was achieved by way 

of a Dry-Lin TW-01-15 linear rail guide available from the FRL surplus. 

For these initial tests, only one Unimeasure ZX-PA displacement sensor was 

acquired. This was used to measure the displacement of the shaft of the second actuator 

relative to the test rig baseplate. To measure the displacement of the first actuator shaft 

and the traversing platform, an Omega LP-803 solid shaft linear potentiometer 

displacement sensor was used. As the connection point on the traversing platform did 

not move transverse to the shaft of this sensor, the lack of two-dimensional freedom 

available with the Unimeasure sensor was not an issue. 
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Figure 46 - Actuation system test rig 

 

 

As the shaft of the second actuator was not fixed rotationally, it could have spun 

freely when active, instead of giving pure axial motion. To solve this problem, a 

rectangular arm was bolted to it. This arm sat against a vertical plate bolted to the 

traversing platform, and prevented rotation of the shaft. It had the secondary function of 

providing a connection point for the end of the displacement sensor cable. The test rig 

structure was manufactured in the Low Speed Wind Tunnel (LSWT) machine shop from 

6061-T6 aluminum. 
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CHAPTER V 

HEATING SYSTEM 

 

 

Test Surface Heating 

 

As mentioned in Chapter II, during flight testing, the Reynolds number range of 

interest means that not all flights will involve a dive in the data acquisition phase. This 

has the advantage of extending both the duration of the test flights, and the range of 

operational conditions in which they can take place. The disadvantage of this, however, 

is that the atmospheric thermal gradient can no longer be used to heat the model and 

create a visible transition front on the IR image. Similarly, when testing in the wind 

tunnel, no thermal gradient is available. 

To solve this problem, it was decided to actively heat the test surface of the model. 

Heating the test surface to a uniform temperature prior to the test operation, and then 

switching off the heater and allowing the airflow to cool the test surface would, in effect, 

be the opposite of the current method in use in flight. Instead of having a uniformly cold-

soaked model heating at different rates dependent on the laminar or turbulent flow 

condition, there would be a uniformly-heated test surface being cooled, with the only 

practical difference being the inversion of the colors on the IR image. 
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The four primary design considerations when deciding how to control the 

temperature of the test surface of the model were that the system must be internal, so as 

not to effect the flow over the test surface, that it must be unaffected by the elements, 

that it must be light enough to use in flight, and that it must be power-efficient enough to 

operate on the available power from the aircraft. Several methods of controlling the 

surface temperature of the model were considered, including water cooling, as had 

previously been used on models in the KSWT. However, this option was ruled out due to 

weight limitations in flight, in addition to the complexities of running a water system in 

the vicinity of the electrical leading edge control hardware. It was decided to heat the 

test surface of the model by way of electrical resistance heater elements. These would be 

applied to the inside face of the test surface, and power applied until the outer surface 

had reached the desired uniform temperature. 

To estimate the power requirements of the resistance heaters, a high-end thermal 

delta of 10
o
C, and a warm-up time of 180 seconds were chosen. The formula for warm-

up power is given by 

 

 (     )  
   (     )
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where  m = mass of the test surface (g) 

 Cp = Specific heat of aluminium (J/g/
o
C) 

 Tf = Final temperature (
o
C) 

 Ti = Initial temperature (
o
C) 

 t = Warm-up time (seconds) 

 

Allowing for 20% losses through various mechanisms gives an estimate of 800W 

required, which is within the capabilities of the aircraft power supply. As noted above, 

this is a high-end estimate, as the required thermal delta will likely be lower, on the 

order of 2-5
o
C. 

When the initial studies were carried out, the test surface had a uniform thickness, 

which greatly simplified the heating system. However, after the leading edge 

displacement studies were completed, the forward region of the test surface was 

thickened. This created four distinct surfaces with different thicknesses to the exterior of 

the test surface to be heated. In addition to this, the test surface had several pylons and 

hardware mounting points that would be unable to be heated directly (Figure 47). 

However, these are isolated, and heat will spread into them from the surrounding areas, 

reducing the size of the unheated spots on the test surface. IR images from previous 

testing with the SWIFT model also show that features such as ribs do not have a large 

impact on overall image quality. In order to ensure uniformity across the entire test 

surface despite the areas of different thickness, the areas will have to be separately 
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controlled and set to the target temperature. As the areas are also of varying sizes, the 

rate at which they heat will have to be adjusted to ensure that a uniform temperature is 

achieved across all areas at roughly the same time. 

 

 

 

 

Figure 47 - SWIFTER test surface interior 
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Feedback and Control 

 

The temperature of the heated areas will be measured with three-wire Resistance 

Temperature Detectors (RTDs), which have a linear relationship between temperature 

and resistance. These sensors will be mounted on the inside face of the test surface with 

the heating elements. The three-wire configuration minimizes the effects of the lead wire 

resistance on the reading. RTDs have an advantage over thermocouples in that they do 

not require special wiring from the sensor to the control unit, which is useful when 

mounted on the O-2A, as the standard connectors can be used. They are also more stable 

and accurate, in general, than surface-mounted thermocouples, which can drift over time. 

One disadvantage of this configuration is that the temperature on the exterior of the test 

surface is not directly being measured. If this is found to be required during testing, a 

possible solution is to use non-contact IR thermocouples. These single-pixel sensors can 

be mounted remotely, e.g. in the window of the O-2A cabin, and directed at the centre of 

each of the heated areas to provide a definitive measurement of the test surface 

temperatures. 

To control the heating of the test surface, a Watlow EZ-Zone digital controller 

system will be used. This system consists of three modules – an RMC control module, 

an RME expansion module, and an EZ-RUI user interface module. The modules operate 

on 24V DC power, and draw 7W each. The RMC control module has four bays (Figure 

48), each of which contains an input connector to which the RTD can be wired. The 
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RME expansion module has four bays, of which two contain a dual 10A Solid State 

Relay (SSR) output for four outputs in total, and two are left empty.  110V AC supply 

power is connected to these relays, and then out to the terminals of the heating elements. 

The 10A limit is more than sufficient to provide the power required to heat the elements, 

and the output power can be scaled to suit the application. A Quencharc capacitor 

connected across the elements protects the circuitry from the counter electromagnetic 

force when the elements are depowered. The EZ-RUI interface (Figure 49) will not be 

used as the primary programming interface in this application, but will serve as a display 

of current element temperatures or setpoints, and any errors that may occur. 

 

 

 

Figure 48 - Layout of RMC and RME interfaces 
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Figure 49 - EZ-RUI interface 

 

The controller system interfaces with the laptop through a USB to RS-485 serial 

port adapter. Watlow provides its own EZ-Zone Configurator software to allow the 

controllers to be easily programmed, and this interface is useful for initial setup and 

calibration of a full set of variables. However, for operation during tests, it is preferable 

to integrate the control of the heating system into the Labview user interface. To do this, 

Watlow provided an example Labview VI for writing to and reading from the 

controllers. Although the example VI itself was not well suited to the application, it 

contained subVIs to control communication over the RS-485 serial connection, which 

could be integrated into the SWIFTER control VI. 

These subVIs allowed the communications port to be opened, written to, read from, 

and closed. The Open and Close subVIs required only an input of which 

communications port to operate. The Read and Write subVIs took inputs of zone, 

parameter, and instance, and for Write, value. Zone determined which controller module 

would be targeted. Parameter specified which parameter was to be selected, and instance 
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specified which individual input or output was to be read or written. A complete list of 

control parameters is available in the RMC and RME user manuals. For the proposed 

Labview code, only the parameters expected to need to be controlled during test 

operations were made available. These were setting and checking the target temperature, 

changing the control loop state on and off, and monitoring the heater power level. 

To avoid the user having to remember a list of numeric parameters and associated 

input values, parameter control was integrated into the user interface using a Listbox 

selector for the parameters, a numeric input for the target temperature, a selector switch 

for control loop activation, and an array of numeric readouts to display the current values 

of the selected parameter. It is planned to add a realtime updating graphic display of the 

current and target temperatures for each heated area, both to allow verification that the 

target temperature has been reached and maintained, and to allow the user to monitor 

how the controller is achieving this temperature, and whether the rate or damping need 

to be adjusted. To set up and calibrate the heating system, however, would require more 

parameters to be controlled than just those added to the Labview VI. These include 

calibrating the Proportional Integral Derivative (PID) control variables to determine how 

the heating elements approach and maintain their target temperature, setting the upper 

and lower power limits on each element to ensure that the surface reaches a uniform 

temperature at an even rate, setting the sensor input type and units, and setting any 

offsets that are found to be required. All of these tasks, as mentioned above, are more 

easily accomplished using the Watlow EZ-Zone Configurator software. 
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CHAPTER VI 

WALL LINER DESIGN 

 

 

Function and Theory 

 

When a model is installed in a standard rectangular wind tunnel, the flow past it is 

quite different from the flow that it would experience in a free flight condition. This is 

due to the finite cross section of the test section, whose walls exert an influence on the 

flow near them, and change the pressure distribution across the surfaces of the model. In 

a wind tunnel such as the KSWT, with a cross section area of 1.4m x 1.4m (4.5ft x 

4.5ft), an airfoil section model such as SWIFTER, with a relatively large 1.37m (54 

inch) chord, will experience significant pressure distribution effects, which produce a 

highly three-dimensional pressure pattern. Additionally, three-dimensional boundary 

layer instabilities can be introduced, with effects on transition pattern. Other effects 

include turbulent wedges propagating from the junction between the leading edge and 

the upper and lower walls. These wedges grow inwards at a 12
o
 angle, reducing the area 

on the test surface of the model where representative data may be obtained. 

 



 

86 

 

 

To counter these effects,  and obtain a spanwise uniform flowfield across the model, 

wall liners can be installed in the test section, at each end of the model, that follow the 

curved streamlines of the flow around an infinite-span version of the airfoil in a free 

flight condition. For this proposed wall liner design for SWIFTER in the KSWT, the 

side walls will remain flat, and not bulge to follow the contours of the flow over the 

surfaces, as this makes taking observations and measurements of the conditions difficult. 

Dagenhart & Saric (1999), show that the influence of the sidewalls on the pressure 

distribution over the model surfaces is not negligible, but that the pressure distributions 

remain qualitatively the same when the wall interference is included in the design of the 

wall liners. 

 

Streamlines to Solids 

 

To create a zero-lift condition, it was decided to set the angle of attack of the model 

in the tunnel at negative 2
o
. Streamlines at 30

o
 angle of incidence to the infinite airfoil 

model replicated the sweep of the model. Using ANSYS ICEM to create a grid, and then 

ANSYS Fluent to model the flow, Matthew Tufts generated a set of streamlines 

distributed from both surfaces of the model to the tunnel side walls, and extending far 

upstream and downstream of the model. To import these streamlines to Solidworks, they 

were converted to a comma-delimited .sldcrv format. As Solidworks could not handle 

the large number of points in the streamline files, the point density of the streamlines 
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was reduced from ~160,000 per streamline to ~1,000 by filtering the data to a 5mm 

spacing tolerance. This still provided enough resolution for smooth curves, and was on 

the same order as the number of points used when designing the wall liners for use with 

the ASU (67)-0315 model. 

 

 

 

Figure 50 - Streamlines around infinite SWIFTER airfoil (Flow from bottom left) 
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After importing the set of streamlines, seen in Figure 50, the next step was to create 

a smooth surface. This was accomplished using the Surface Loft tool, which calculates a 

smooth surface curve to link a series of line curves. The surfaces were created in two 

halves – the test surface and non-test surface. Some streamlines in the region of highest 

curvature near the model were omitted in order that the surfaces could be solved. 

Comparison of the finished surface with these curves showed no deviation of note from 

their path. As the curves were imported at a 30
o
 angle of incidence, a new reference 

plane was established parallel to the plane of the flow to which the wall liners would be 

made orthogonal. At this point, the design was split into upper and lower wall liner files. 

The surface used by both would be identical, but for the upper wall liner, the lower face 

of the streamsurface would face out, and the upper face for the lower wall liner. The 

procedure, listed below for creating the solid wall liners, is otherwise identical. 

To create a solid part for the wall liner, first the innermost curves of the 

streamsurfaces were extruded downwards at 30
o
 along the axis of the model. A 

perimeter box, with the dimensions of the test section was then added, and the 

streamsurfaces trimmed to this. The perimeter box was then trimmed to intersect the 

extruded inner curves of the test side. The only remaining open face of the box was then 

closed using the Plane Surface tool, and then a solid part created using the Knit Surface 

tool. The procedure was then repeated to create the non-test side solid part. 
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Figure 51 - Lower wall liner solid parts 

 

 

The thickness of the wall liners was determined by the contraction cone fairing 

upstream of the test section, previously installed for use with the ASU (67)-0315 model 

and wall liners. In order to have a smooth flow over the interface, the wall liners would 

have to match the distance from the upper and lower walls of the tunnel to the fairings. 

The construction of new contraction cone fairings was considered, but as successful 

operation of the tunnel, with no choking effects encountered, was well documented in 

previous tests with that contraction ratio, it was decided to keep it the same. This had the 

additional advantage of simplifying procedures when switching between testing with 

SWIFTER and ASU (67)-0315, as fairings would not need to be changed out. As the 

ASU (67)-0315 had a 15cm wider span than SWIFTER, matching the liner thickness to 
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the existing contraction cone fairing meant that the wall liners would sit too low to the 

floor and ceiling of the test section to properly cover the root and tip of the model along 

the full chord. To solve this issue, an airfoil spacer, shaped to the OML of SWIFTER 

was designed to fit to the root end of the model and bridge the gap (Figure 52). The gap 

at the ceiling of the test section was small enough not to require a spacer, as taping the 

model and liner interface would cover the slight gap at the trailing edge of the model 

without difficulty. 

 

 

 

Figure 52 - Airfoil spacer 
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Unlike with previous models, the nature of SWIFTER required that some 

modifications be made to the wall liners. At both the root and tip of the model, a section 

of wall liner was cut back from the leading edge to allow the actuation system to 

function throughout its range (Figure 53). Taping between the liner and the leading edge 

would prevent any unwanted sharp steps from being presented to the flow. Two channels 

were also cut into the test and non-test sides of the upper wall liner, perpendicular to the 

leading edge interface, to allow gap inserts to be maneuvered into position while the 

model is installed in the wind tunnel. When not being used for this purpose, the channels 

will be taped over to prevent any disturbance to the flow. 

 

 

 

Figure 53 - Wall liner leading edge cutaway 
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Splitting to Sections 

 

At this point in the design, the wall liners consist of four monolithic blocks – upper 

and lower, test side and non-test side. In order to construct the wall liners in a practical 

manner, there are four main restricting factors that need to be considered. First, the liner 

sections have to be split into quadrants, top and bottom, in order to allow them to be 

inserted around the model once it is installed in the test section. Secondly, the stock 

foam material from which the wall liners will be constructed is available in 2.44m x 

1.22m (8ft x 4ft) billets, which are not long enough to completely construct a full-length 

quadrant. Thirdly, the limitations of the foam cutting machine, which can only cut 

material up to 7.5cm (three inches) thick. Finally, the strength of the foam itself - the 

material can only be cut so thin before it becomes at risk of failing under its own weight 

before all the pieces can be assembled. 

The procedure developed to satisfy these restrictions was to take each quadrant 

section individually, and, starting at the outer flat face and moving inwards towards the 

profiled surface, divide the quadrant into a series of layers. The first layer piece would 

be made as thick as practical to minimize the number of foam sheets required, and yet 

not leave the remaining section be so thin in some pieces that it would risk failure. The 

remaining section would then be inspected to determine what thickness slices could then 

be taken to divide it into pieces that would both fit into a standard thickness foam sheet, 



 

93 

 

 

and again be thick enough in all areas not to fail. Each quadrant had to be inspected 

individually, due to the varying contours across the surfaces of the wall liners. 

The lower wall liner, due to the shape of the streamlines aft of the model, had a thin 

ridged section from the trailing edge of the model to the aft end of the test section. 

Again, due to the thin nature of this ridge, material strength had to be considered. The 

ridge was very tall relative to its width, meaning that there would not be enough 

thickness within the three inch maximum to provide a rigid base section along the full 

length of the quadrant. It was therefore decided to split the uppermost layer into a series 

of short pieces, no more than 0.6m in length. Additionally, one piece had to be split into 

two laterally due to a narrow section in the center of the non-test side quadrant. 

 

 

 

Figure 54 - Exploded view of the lower wall liner, downstream test surface quadrant 
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Due to the 30
o
 sweep of the model, the quadrants forward of the model in the upper 

wall liner, and the quadrants aft of the model in the lower wall liner exceeded the 

maximum 2.44m length available in the stock foam billets, and were required to be split 

into two sections through all the layers longitudinally to compensate. The airfoil spacer 

was divided into four pieces – upstream and downstream, test and non-test side, which 

would each be permanently attached in position to their respective quadrants of the 

lower wall liner to simplify assembly. A complete list of wall liner pieces, dimensions, 

and related information is included in Appendix A. 

A system of nomenclature was created to keep track of the large number of final 

pieces. For the first part of the name, the piece would be labeled Upper or Lower, for 

upper or lower wall liner. Next, it would be labeled TS or NTS for test or non-test 

surface. Then would come A or B, for upstream or downstream. The layers, referenced 

from the outermost, would be numbered 1, 2, 3 etc. If the layer was sectioned along its 

length, the pieces would be labeled a, b, c etc., referenced from the upstream edge of the 

part. Finally, if the section was split laterally, the parts would be identified by in or out, 

relative to the model. For example, the upper surface, non-test side, upstream, layer 2, 

upstream piece, and the lower surface, non-test side, downstream, layer 3, second most 

upstream, model side piece would be respectively denoted as Upper NTS A 2a and 

Lower NTS B 3b in. 
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Assembly and Finishing 

 

When all the wall liner pieces have been manufactured, the following procedure is 

proposed for their assembly and finishing. To start, the pieces will be dry-assembled in 

the test section around the model. Any minor dimensional irregularities and fit issues can 

be dealt with at this point. Once all the pieces have achieved a satisfactory fit, each 

quadrant will be permanently assembled using a heavy duty construction adhesive. Next, 

all surfaces of the quadrants will be coated with an epoxy-microsphere blend, creating an 

impermeable and easily sanded surface to provide a good substrate for fibreglassing. 

Two layers of fiberglass cloth will then be applied, first a 10oz/sq yd plain weave, and 

then a 3oz/sq yd satin weave for an improved surface finish. This will provide a hard 

outer layer to protect the wall liners from damage during use or storage, and allow tunnel 

operators to put their weight on them when working on the model. Finally, the wall 

liners will be finished with a coat of flat black paint.  
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CHAPTER VII 

PRELIMINARY TESTING 

 

 

In order to gain some experience of step excrescence testing before the SWIFTER 

model was completed, and to develop some initial avenues of investigation for the actual 

experimental testing stage, it was decided to use the ASU (67)-0315 model in the KSWT 

to investigate step effects. Steps would be created by applying material to the test surface 

of the model to create a uniform forward or aft facing step configuration. The ASU (67)-

0315 model (Figure 55) is a 45
o
 swept wing model with a chord of 1.83m (72 inches), 

and a pressure minimum at 71% chord. The leading edge to 10% chord is constructed of 

solid aluminum, and the main body has a fiberglass skin to reduce weight. The model 

has a 0.76m (30 inch) interchangeable aluminum leading edge section centered at mid-

span, which extends back to 20% chord. For this experiment, a solid leading edge 

section would be used. 
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Figure 55 - ASU (67)-0315 

 

 

Material and Preparation 

 

To create the uniform step excrescence on the model test surface, several materials 

were considered. A hard rapid-prototyped polymer sheet formed to the surface contour 

of the model was investigated, however as the facilities at Texas A&M were unable to 

produce parts of the size required, this idea was discarded. A conformal appliqué 

material such as foam or rubber sheeting was then investigated. The advantage of being 

able to order a large quantity of material on a roll, and create various configurations 

simply by cutting to size and applying to the model seemed an attractive proposition. 

Samples of various materials were therefore acquired for initial testing purposes. These 
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included closed-cell foam and neoprene rubber, with adhesive backing for ease of 

application. 

To ensure that the surface finish of the appliqué material would not itself cause 

transition on the test surface of the model, the roughness of the materials was 

investigated using a Mitutoyo SJ-400 Surface Roughness Tester. This unit is a stylus 

based profilometer and can be calibrated by the user to give sub-0.01μm accurate 

measurements. Initial surface measurements of the foam and rubber material found them 

to be well outside acceptable limits for boundary-layer testing, with average RMS 

measurements of greater than 15μm recorded for both materials. Sanding and polishing 

the rubber material saw incremental gains. Adding a layer of Kapton film to the surface, 

however, dramatically reduced the roughness values. The foam material, with a layer of 

Kapton smoothly applied to the surface gave average RMS values of 3μm, while the 

rubber material gave average RMS values of 1μm roughness. Therefore, the rubber 

material, with a layer of Kapton film across the surface was selected. 

Application testing was conducted prior to installing the material on the ASU 

model. It was found that the adhesive on the back of the rubber did not adhere 

uniformly, and left pockets of air trapped between the adhesive and the sheet. These had 

to be individually slit open and flattened as the sheet was being applied to the surface. 

Some minor surface imperfections did remain. However, due to their low amplitude and 

smooth contours, they were not seen to have a noticeable effect on transition during 

testing. As the adhesive tended to leave a residue on the surface after removal, it was 
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decided to apply a layer of Kapton tape to the test surface of the model prior to the 

application of the rubber sheet to protect the finish. 

 

Experimental Design and Techniques 

 

As the experiment would be conducted in a break between other testing programs 

on the ASU model, to avoid any risk of scratching the surface, it was decided to work 

only with a forward-facing step, with its leading edge located at 22% chord, slightly aft 

of the highly polished region forward of 20% chord, and extending back to aft of 65% 

chord. The rubber material created a step height k of 1.6mm. Transition detection for the 

experiment would be conducted using naphthalene flow visualization. The technique 

works on the principle that at or near room temperature, naphthalene sublimes at a rate 

proportional to the shear stress experienced. As turbulent regions have higher shear 

stress, the sublimation will happen faster than in laminar regions, and will provide a 

defined image of the transition front, or any wedges caused by surface imperfections or 

debris. A coat of naphthalene would be applied immediately before each test run so that 

the minimum amount of material would sublime prior to the tunnel coming on condition, 

thus maximizing the contrast visible between the regions. Once the test was completed, 

the tunnel would stay running until all the naphthalene had sublimed. To apply the 

naphthalene to the surface of the model, first, the naphthalene crystals were dissolved in 

acetone until the mixture saturated. The mixture was then sprayed onto the surface of the 
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appliqué material, moving towards the aft of the model, with the spray pattern moving in 

the spanwise direction and parallel to the leading edge in order to avoid visual confusion 

with transition patterns as a result of variations in thickness of the application that may 

occur as a result of overlapping lines of spraying. 

With the 1.6mm k excrescence, the KSWT range of operation provided an ideal 

range of operating speeds to produce Rek values normal to the leading edge on the same 

order as the Northrop SETS tests. Data were available from previous tests with the ASU 

model for chord Reynolds values of 1.6x10
6
, 2.4X10

6
, 2.8X10

6
, and 3.2X10

6
 from which 

to calculate these. Using the formula: 

 

    
   

  
 

 

where uk is the velocity observed at height k above the surface in an undisturbed 

boundary layer, and νk is the viscosity at that same location, the Rek values normal to the 

leading edge for the chord Reynolds numbers provided were found to range from 647 to 

2889. As the values changed in a linear manner, they were then interpolated to provide 

intermediate values, and extrapolated downwards for lower values (Figure 56). Test runs 

were conducted at nine different chord Reynolds numbers, listed below in Figure 57 

with corresponding values for Rek and Rexk, the Reynolds number at the chordwise 

location of the step. 
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Figure 56 - Rek v chord Reynolds number 
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Rec (X106) Rek Rexk (X106) 

0.88 647 0.19 

1.4 1029 0.31 

1.6 1176 0.35 

1.8 1376 0.40 

2 1577 0.44 

2.2 1777 0.48 

2.4 1978 0.53 

2.8 2422 0.62 

3.2 2889 0.70 

Figure 57 - Test run Reynolds values 

 

 

Experimental Results 

 

Due to a combination of heavy naphthalene application and spraying up to the 

leading edge of the appliqué material, the early test runs provided little useful 

information. Wedges immediately formed from the leading edge of the material, which 

were believed to be as a result of naphthalene crystal buildup. To counter this, later runs 
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only sprayed naphthalene from 30% chord aft, and the leading edge was inspected for 

any unwanted debris before each run commenced. Despite these efforts to improve the 

quality of the naphthalene application, a definitive transition front was not identified at 

any tested chord Reynolds number. As normal transition on the model, without the 

added appliqué excrescence sheet had been recorded at 55-60% chord at 2.8X10
6
 Rec, it 

is very unlikely that the front would have moved aft off the sheet. 

 

 

 

Figure 58 - Wedge and streak pattern at 2.8X10
6
 Rec 
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The best images were recorded at 2.8X10
6
 Rec, and showed multiple distinct 

wavelength structures repeated across the span of the model (Figure 58). All of the 

wavelengths were at or less than 12mm, the most unstable wavelength for the ASU 

model. It is unknown whether these structures result from the existence of the step on the 

surface of the model, or if they were caused by minor irregularities in the vertical face of 

the step, which resulted from the cutting of the rubber material or application of the 

Kapton film, but their existence does serve as a reference for the tests with the 

SWIFTER model. 

Also noted during testing was the fact that the due to the curvature of the surface of 

the model, the angle of incidence of the flow on the face of the step would not be 

orthogonal, as with the flat plate tests that had previously been conducted. This would 

lead to an effectively different step excrescence height. Therefore, the local flow 

velocity component and the resultant Rek values of any tests with the SWIFTER model 

will need to be adjusted for direct comparison with those previous studies. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

Leading Edge Actuation Control System 

 

A control system was proposed to control the actuation of the leading edge of the 

SWIFTER model, and create step and gap excrescences at precise specified locations. A 

hardware interface, with a National Instruments USB-6341 DAQ board, a voltage 

smoothing circuit for the displacement sensors, and a Geckodrive G540 motor controller 

for the linear actuators was assembled. A structured Labview user interface was then 

created to allow the test operator to control the leading edge from the flight laptop. This 

consisted of a hierarchical series of Virtual Instruments integrating all the hardware 

controls required for the test operations and carrying out all calculations and checks 

required to safely and efficiently move the leading edge as requested. Labview code was 

also created to develop a calibration set for the displacement sensors which could then 

act as a reference for day to day calibration variations. 

Going forward, the proposed user interface would need to be integrated into the 

existing flight VI in a manner which allows all pertinent information and controls to be 

displayed on screen at once. Once the SWIFTER model is fully operational, variables 

such as timeouts for electromagnet power cycling, number of samples for the 
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displacement sensors, and safe limits on actuation ranges in the step and gap directions 

could then be optimized. The calibration of the displacement sensors should be checked 

daily until it is verified the environmental variables have no major effect on the 

calibration. A refinement of the linear actuator control VI, taking speed ramping into 

account, as opposed to the instant speed setting of the current method, could lead to 

smoother operation and less wear on the hardware components. 

 

Test Surface Heating System 

 

An active heating system for the test surface of the SWIFTER model was developed 

in order to allow IR thermography data to be acquired both in flight without the creation 

of a thermal gradient from a dive, and in the wind tunnel. This system involved heating 

the inner face of the test surface by way of electrical resistance heater elements. Due to 

the discrete variations in thickness across the inner face of the test surface, the heater 

elements must be controlled by separate loops for each of the areas to produce a uniform 

temperature across the external face of the test surface. The temperature of each area of 

the test surface will be monitored by way of surface-mounted RTDs. The heating of the 

surface will be controlled by a Watlow EZ-Zone digital controller system, consisting of 

an RMC control module with inputs for the RTDs, an RME expansion module with four 

10A Solid State Relays to control power to the resistive heating elements, and an EZ-

RUI user interface module, which can display pertinent information and error messages 
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to the test operator. The controller system connects to the flight laptop by way of a USB 

to RS-485 serial port adapter. Proprietary configuration software by Watlow can be used 

for initial setup purposes, and control can be integrated into the Labview user interface 

to allow target temperatures and other parameters to be adjusted and heating to be started 

and stopped during test operations. 

Going forward, the proposed heating system user interface can be integrated into the 

existing flight VI, and refined to allow control of all pertinent parameters to be easily 

monitored and adjusted by the test operator. The addition of a realtime display of current 

and target temperatures for each area would be recommended. Once the system is 

operational, variables such as power applied to each heated area, the rate of heating each 

area, the PID control variables, and the temperature deltas required for a crisp IR image 

could be determined. The effectiveness of the surface-mounted RTDs on the inner face 

of the test surface compared to non-contact IR thermocouples should be investigated if 

the quality of the images is not satisfactory. 
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Wind Tunnel Wall Liners 

 

A proposed set of upper and lower wall liners were designed in Solidworks for the 

test section of the KSWT and the SWIFTER model, based on the streamlines around an 

infinite SWIFTER airfoil at angle of attack of negative 2
o
, and an angle of incidence of 

30
o
, to create a zero-lift condition. The thickness of the liners was set at such that it 

would smoothly interface with the contraction cone fairing from the experiments 

involving the ASU (67)-0315 model, and avoid any potential problems with choking 

effects. Due to the smaller span of the SWIFTER model, an airfoil spacer was also 

designed to fill the gap between the lower wall liner and the root end of the model. The 

liners were then split into quadrants to allow them to be inserted into the test section 

around the SWIFTER model. To meet manufacturing limitations imposed by the 

standard dimensions of stock foam billets, and the maximum thickness limit of the foam 

cutting machine, as well as limitations based on the structural rigidity of the foam 

material itself, the quadrants were then broken up into an assembly of pieces which 

would be permanently assembled and coated in fiberglass prior to their installation in the 

test section. A system of nomenclature was devised to keep track of the large number of 

final pieces.  
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Preliminary Tests 

  

An experiment was devised to develop some initial avenues of investigation in step 

excrescences, and to allow the test operators to gain experience. It involved using the 

ASU (67)-0315 model in the KSWT with a step geometry created by applying material 

to the test surface of the model. After comparing various options for practicality and 

surface finish requirements, an adhesive-backed neoprene rubber sheet material, with a 

layer of Kapton film across its surface was found to be most suitable. A forward-facing 

step configuration was selected, with a 1.6mm k step excrescence height. The leading 

edge of the step material was located at 22% chord, and extended back to aft of 65% 

chord. Naphthalene flow visualization was used to detect transition location. Tests were 

conducted at a range of chord Reynolds number values selected to produce Rek values 

on the same order as the Northrop SETS tests. Due to issues with naphthalene 

application, and step leading edge contamination, a definitive transition front was not 

identified at any tested chord Reynolds number. However, images recorded did show 

multiple distinct wavelength structures across the span of the model, all at or below the 

most destructive 12mm wavelength. These may be a result of minor irregularities in the 

vertical face of the step. 

Looking forward to testing with the SWIFTER model, it seems worthwhile to bear 

these wavelength structures in mind, in case they reoccur. They may be part of the step 

excrescence flow phenomena, or it may indicate, as was suspected with this series of 
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tests, that a lack of uniformity in the vertical face of the forward-facing step could be at 

fault, and that the Kapton film on the leading edge of the body of the SWIFTER model 

may need better application technique. Finally, the non-orthogonal angle of incidence of 

the flow on the face of the step resulting from the curvature of the surface should be 

calculated to create a proper correlation between the Rek values recorded on the 

SWIFTER model and those in previous studies. 
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APPENDIX 

WALL LINER PIECES AND DIMENSIONS 

 

Extreme Dimensions of Wall Liner Pieces 

Section Part Layer Length 

(in) 

Width 

(in) 

Height 

(in) 

Sheet 

Thickness 

(in) 

Lower 

TS 

A 1 82.0 24.5 3.0 3.0 

2 82.0 24.5 3.0 3.0 

3 26.4 5.4 1.4 1.5 

B 1a 96.0 23.6 2.0 2.0 

1b 13.5 23.6 2.0 2.0 

2a 96.0 23.6 1.5 1.5 

2b 13.5 23.6 1.5 1.5 

3a 26.7 23.6 3.0 3.0 

3b 24.0 5.2 1.8 2.0 

3c 24.0 5.9 1.8 2.0 

3d 24.0 5.9 1.9 2.0 

3e 10.8 5.8 1.9 2.0 

Lower 

NTS 

A 1 82.0 30.4 3.0 3.0 

2 82.0 30.4 2.5 2.5 

3 44.1 6.5 1.0 1.0 

B 1a 96.0 30.4 2.0 2.0 

1b 13.5 30.4 2.0 2.0 

2a 96.0 30.4 2.0 2.0 

2b 13.5 30.4 2.0 2.0 

3a 6.3 27.8 1.5 1.5 

3b-in 7.0 4.1 1.2 1.5 

3b-out 6.5 22.5 0.1 1.0 

3c 15.0 2.6 1.3 1.5 

3d 24.0 6.0 1.7 2.0 

3e 24.0 6.0 1.7 2.0 

3f 24.0 6.5 1.8 2.0 

3g 9.2 6.6 1.8 2.0 
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Section Part Layer Length 

(in) 

Width 

(in) 

Height 

(in) 

Sheet 

Thickness 

(in) 

Upper 

TS 

A 1a 96.0 24.5 2.0 2.0 

1b 18.0 24.5 2.0 2.0 

2a 96.0 24.5 1.5 1.5 

2b 18.0 24.5 1.5 1.5 

3a 93.2 24.5 2.0 2.0 

3b 22.0 22.0 2.0 2.0 

4a 92.1 24.4 1.6 2.0 

4b 22.9 21.9 2.6 3.0 

B 1 77.5 23.6 3.0 3.0 

2 77.5 23.6 3.0 3.0 

3 77.5 23.6 1.5 1.5 

4 77.5 23.5 1.7 2.0 

Upper 

NTS 

A 1a 96.0 30.4 2.0 2.0 

1b 18.0 30.4 2.0 2.0 

2a 96.0 30.4 1.5 1.5 

2b 18.0 30.4 1.5 1.5 

3a 93.2 30.4 2.0 2.0 

3b 21.9 28.1 2.0 2.0 

4a 92.1 29.6 2.1 2.5 

4b 23.2 28.2 2.8 3.0 

B 1 77.5 30.4 3.0 3.0 

2 77.5 30.4 3.0 3.0 

3 77.5 30.4 2.6 3.0 

Airfoil Spacer TS A 26.8 3.6 2.6 3.0 

TS B 28.5 3.6 2.6 3.0 

NTS A 26.8 2.2 2.6 3.0 

NTS B 25.7 2.2 2.6 3.0 

 




