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ABSTRACT

In this dissertation results are presented from a search for the pair production

of heavy colored particles (gluinos, squarks) in R-parity conserving supersymmetric

models, in which the lightest supersymmetric particle is a stable and neutral ob-

ject. The search was performed for events with at least two tau leptons, two highly

energetic jets and large missing transverse momentum in the final state on a data

sample of proton-proton collisions at
√
s = 7 TeV. The data sample was collected

by the Compact Muon Solenoid detector at the Large Hadron Collider in 2011, and

it corresponds to an integrated luminosity of 5fb−1. The tau isolation variable was

optimized for this search. The number of events corresponding to standard model

processes in the final selection was estimated to be 7.49 ± 0.74 using background

estimation techniques based on data. Nine observed events are found to be in agree-

ment with the standard model prediction, and exclusion limits on gluino mass are

obtained in the context of supersymmetric models at the 95% confidence level.
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1 INTRODUCTION

The concept of matter being composed of minute fundamental components has

been around for a very long time. Over two thousand years ago the greek philosopher

Democritus first developed the concept of an undividable substance he called the

atom, which in greek means indivisible. It wasn’t until the nineteenth century that

the existence the atom could be indirectly established. The twentieth century would

yield many physics theories and experiments that showed that the atom itself has

a structure and thus making the term a misnomer. The later half of the twentieth

century produced many results that pushed our physical understanding of the most

elementary particles and the fundamental forces. Those results were integrated into

a comprehensive theory of force and matter interaction called the Standard Model

(SM) of particle physics. With the tools of the twenty first century, scientists hope

to answer many of the remaining open questions of the last century.

The SM describes various phenomena of elementary particle interactions to a high

degree of precision. However, there are a growing number of observations that suggest

that the SM is an incomplete, low energy approximation of a more fundamental

description of nature. These observations range from astronomical data suggesting

the existence of weakly interacting but abundant form of matter called Dark Matter

(DM) to other problems like: matter anti-matter asymmetry, neutrino oscillations,

the Hierarchy Problem [1] and other phenomena that the SM, as it stands, cannot

account for.

The Large Hadron Collider (LHC) is the largest experiment in human history. It is

designed to collide two proton beams at center of mass energies just over seven times

larger than its predecessor, the Tevatron at Fermi National Accelerator Laboratory,

and is expected to probe physics beyond the SM (BSM), giving physicists a new edge

to search for answers. One possible extension to the SM is Supersymmetry (SUSY).

SUSY is favored by many physicists because it allows for the unification of gauge
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couplings while also naturally providing a DM candidate in the form of the lightest

SUSY particle (LSP). A description of SUSY is presented in subsection 2.4.

The dissertation is structured as follows: Chapter 2 contains a brief description

of the SM and SUSY is presented as well as the motivation to search for SUSY. The

experimental tools used for the analysis presented in this dissertation are described in

some detail in Chapter 3. Since this dissertation deals with tau leptons as part of the

final state signature, a short chapter is dedicated to its properties, 4. The analysis

strategy and the description of how physics objects are identified and reconstructed

in the CMS collaboration are presented in chapters 5 and 6, respectively. Chapter

7 describes the event selections used in this analysis while Chapter 8 deals with

the estimation of standard model sources in the search region. Statistics as well as

systematic uncertainties are presented in Chapters 9 and 10. Finally the results and

final remarks are in Chapters 11 and 12.
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2 THEORY AND MOTIVATION FOR SUPERSYMMETRY AT THE LHC

2.1 The Standard Model of Particle Physics

The Standard Model (SM) is a conceptually simple but very powerfull description

of the known fundamental particles and their interactions [1]. A large amount of

experimental observations can be explained within the framework of the SM as well

as some aspects of cosmology in the early universe.

In the SM, matter is made of half-integer spin particles called fermions, while

the electromagnetic, weak and strong fundamental forces are mediated by integer

spin particles called bosons. The SM divides fermions into two categories: leptons

and quarks. The lepton family includes the electron-type particles and the neutrino-

type particles that are primarily involved in the electroweak interactions which are

mediated by the γ/W±/Z0 bosons. The quark family includes the up-type quark (up,

charm, and top) and the down-type quarks (down, strange, and bottom). Quarks

and leptons are divided into three generations where the most significant distinction

is made by the masses and not their quantum numbers.

The fermion field ψ can be decomposed into chirality components designated

left-handed (L) and right-handed (R) chirality (ψL and ψR). This distinction is

becomes importand in the SM because the left and right handed fermions have

different properties and thus act differently under gauge transformations. The left-

handed fermions are arranged in doublets in the SM while the right-handed fermions

are arranged in singlets (see Table 2.1).

The forces governing the elementary particle interactions are mediated by bosons

which are the quanta of the gauge fields and couple to the corresponding charges.

The interactions are described by the symmetry transformations of the SU(3)C ×

SU(2)L × U(1)Y groups, where the meaning of S stands for special (det(U) = 1)

and U is unitary (UU † = 1). For instance, the symmetry group of quantum chromo

dynamics (QCD) contains the underlying symmetries governing the strong force ’felt’

3



Table 2.1
Fermions of the standard model of particle physics.

1st 2nd 3rd Interactions

Quarks

(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

Weak, electromagnetic, strong

u,d, c, s b, t Electromagnetic, strong

Leptons

(
νe

e

)
L

(
νµ

µ

)
L

(
ντ

τ

)
L

Weak, electromagnetic

eR µR τR Electromagnetic

by particles with color charge, such as quarks. The symmetries of the electroweak

force are contained by the SU(2)L and the U(1)Y gauge groups.

2.2 Beyond The Standard Model

In spite of the success of the SM, there are an increasing number of observations

that suggest that the SM is an incomplete approximation of a more fundamental

description of nature. For instance, in the SM neutrinos are massless, however ex-

periments show that a neutrino detected as one type (e.g. electron neutrino) can

later be detected and identified as a different type of neutrino (e.g. muon neutrino).

This phenomenon, called neutrino oscillations, suggests that neutrinos have a mass

and thus are not fully consistent with the SM. Another shortcoming of the SM it

that, even though the strength of gravitational interactions is much smaller than the

other fundamental forces and thus does not play a role in collider experiments, grav-

ity has not yet been incorporated to the theory. Astrophysical observations indicate

a large discrepancy in the mass of large astronomical objects when calculated via

their gravitational effects as opposed to their luminous effects. This suggests a type

of matter that does not interact via the electromagnetic force and thus cannot be

observed by optical means. This type of matter is known as dark matter (DM) and

it is calculated to be about six times more abundant than common matter. The SM
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does not provide a good candidate to account for the DM content in the universe.

These are only a few of the questions that have not yet been explained within the

framework of the SM.

In an attempt to answer some of these questions, many theories of physics beyond

the SM (BSM) have been developed. One of such theories is SUSY which is, perhaps

currently, the most appealing. In the next section a brief description of SUSY is

presented.

2.3 Supersymmetry

Without a doubt, symmetry is one of the most important concepts in physics

and a fundamental characteristic of modern particle physics. Finding an “ultimate”

symmetry to describe nature has been a goal for many physicists. SUSY might prove

to be that supreme symmetry since, under quite general assumptions, is the largest

attainable symmetry of the S-Matrix [2]. It is a symmetry that relates the fermionic

multiplets which are the basic constituents of matter with the force carriers which

are bosons. SUSY is an extension of the Poincaré group that combines states of

different angular momentum into a single irreducible multiplet. The generators of

SUSY do not commute with the generators of the Poincaré group. The underlying

property of these generators is that they carry angular momentum and thus relate

fermions and bosons. The SUSY algebra is obtained by grading the Poincaré al-

gebra by introducing four spinor anticommuting generators Qα in addition to the

ten generators of the Poincaré group. Thus, giving us a total of fourteen hermitian

operators that obey the following rules:

[Qα, Pµ] = 0 (2.1)

[Qµ, Jνρ] = 0 (2.2)
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{Qµ, Qν} = 2Pµν (2.3)

And the Poincaré generators obey the familiar rules:

[Pµ, Pν ] = 0 (2.4)

[Jµν , Pρ] = ηµρPν − ηνρPµ (2.5)

[Jµν , Jρσ] = ηµρMνσ − ηµσMνρ + ηνσMµρ − ηνρMµσ (2.6)

Here the P ′s are the translator generators, the J ′s represent the lorentz trans-

formations and η is the well known Minkowski metric. Looking at the rules for the

superalgebara we see immediately that the Q′s are translation invariant, (Eq. 2.1).

Equation 2.2 transforms as a Dirac spinor under the homogeneous Lorentz transfor-

mations and 2.3 implies that the Q’s are not independent. Extensions to the SUSY

can be found by adding an index j = 2 . . . N to the supergenerators Qα thus having

any number of SUSY generators.

2.4 Motivation for SUSY Searches at the LHC

Supersymmetry is one of the leading theories for BSM physics since it allows for

the unification of gauge couplings while also providing a candidate for DM in the

form of the LSP. SUSY models predict a spectrum of new particles similar to those

of the SM but with spins that differ by one-half to their respective SM partners.

In the case of gauge mediated breaking, the LSP is often the gravitino [3], while in

supergravity inspired models the lightest neutralino (χ̃0
1) is often the LSP. Colored

SUSY particles can be copiously pair-produced at the LHC and will very often decay

into color singlet states that ultimately decay to an LSP. Since these SUSY particles

have not been observed by previous experiments, they are expected to be heavy

(TeV scale). Therefore, a typical SUSY signature at the LHC consists of a high

multiplicity of highly energetic jets and a large momentum imbalance in the detector.
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Additionally, the final state containing tau leptons is particularly important and

interesting in many SUSY models. For example, in gauge mediated SUSY, the NLSP

(often the slepton) can decay to a lepton and a gravitino. Additionally, the couplings

to third generation leptons can be enhanced in many regions of parameter space, thus

leading to final states that predominantly contain tau leptons. Minimal supergravity

(mSUGRA) is another model in which the cascade decays of SUSY particles can

consist of tau leptons. Minimal supergravity is one of the most widely studied models

due to it’s ability to resolve a number of problems with the SM [4,5] and also naturally

providing a cold dark matter candidate with the correct annihilation cross sections

in the early universe to create the amount of dark matter relic density observed

today by the Wilkinson Microwave Anisotropy Probe (WMAP) [6]. Although the

analysis presented is not limited to a particular BSM theory, mSUGRA is chosen as

a benchmark due to the simplicity of the model as it contains only four parameters

and one sign to determine all masses and couplings.

An interesting feature of mSUGRA is that certain regions of parameter space

give rise to SUSY mass hierarchies where the lightest slepton, τ̃1, and the lightest

neutralino, χ̃0
1, are nearly mass degenerate i.e.,∆M = Mτ̃ −Mχ̃0

1
∼ 5− 20 GeV/c2.

Thus, the χ̃0
2 → τ τ̃ → ττ χ̃0

1 decays are dominant and the branching ratio for χ̃0
2 →

ll̃ → llχ̃0
1, where l = e, µ, is effectively zero. Therefore, a search for new physics in

final states with high energetic jets, large momentum imbalance, and tau leptons can

provide a “golden” mode for discovery. This stau-neutralino coannihilation region has

extremely significant cosmological implications as it provides the much needed τ̃1–χ̃
0
1

“coannihilation” in the early universe to produce the correct DM relic abundance

observed today. The stau-neutralino coannihilation region is particularly difficult

to identify due to the production of very low energy taus from τ̃1 → τ χ̃0
1 (pτ

T ∼

15 GeV before decaying). Because the analysis presented is sensitive to the stau-

neutralino coannihilation region where the identification of low pT taus is difficult

and backgrounds are large, sensitivity to many other models and regions of SUSY
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parameter space is naturally achieved. Therefore, the stau-neutralino coannihilation

region provides a very good benchmark model for designing a search for BSM physics

processes with highly energetic jets, large momentum imbalance, and tau leptons.
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3 EXPERIMENTAL TOOLS

3.1 The Large Hadron Collider

The LHC is a two-ring superconducting particle accelerator located at the Euro-

pean Center for Nuclear Research (CERN), in the French-Swiss border near the city

of Geneva, Switzerland. The LHC rings are located approximately 100 meters under-

ground in a 26.7 km tunnel originally build for the Large Electron Collider [7]. The

two LHC rings carry hadron beams traveling in opposite directions at speeds close

to the speed of light. These beams are crossed at four interaction points distributed

around the LHC circumference. Figures 3.1 and 3.2 show an aerial view of the LHC

complex and a schematic view of the CERN accelerator complex, respectively.

The charged particle beams are guided around the LHC ring by over a thousand

superconducting dipole magnets built from coils of electric cable capable of operat-

ing in a superconducting state, thus conducting electricity efficiently and without

resistance or energy losses. To keep the magnets in a superconducting state they

must be cooled to extremely low temperatures, approximately −270 degrees C. The

probability that two subatomic particles will interact as the beams cross is small.

In order to increase the probability of an interaction, the protons are arranged in

bunches and squeezed. This is done so that the protons within the bunches will

be situated within a smaller cross-section. To achieve the squeezing of the proton

bunches quadrupole magnets are used. Each quadrupole magnet measures between

5 and 7 meters in length.

The LHC hosts multiple experiments. Located at one of the four interaction

points, the Compact Muon Solenoid (CMS) is a multi-purpose detector aimed at

exploring physics at the TeV scale. The analysis presented in this dissertation makes

use of the 5 fb−1 of p-p collision data collected by CMS at a center of mass energy
√
s = 7TeV, delivered by the LHC in 2011. In the following section a description of

CMS is afforded to the readers.
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Fig. 3.1. Aerial view of the LHC [8].

3.2 The CMS Detector

Installed about 100 meters underground near the French village of Cessy, the

CMS detector is one of six multi-purpose detectors along the LHC main ring that are

designed to probe a wide variety of physics processes [7]. Located on the opposite side

of the ring is the ATLAS detector. CMS and ATLAS are the two largest experiments

at the LHC.

The CMS detector was designed to meet the goals of the LHC program summa-

rized as follows [9]:

• Dimuon mass resolution of ∼ 1% at 100 GeV as well as good muon resolution

over a wide variety of angles and momenta and the ability to determine muon

charge unambiguously for muons with momentum, p < 1 TeV.
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Fig. 3.2. CERN accelerator complex [10].
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• A pixel detector close to the interaction point is required in order to ensure

efficient triggering and tagging of τ ′s and b-jets.

• To obtain a diphoton and dielectron mass resolution of ∼ 1% at 100 GeV, a

good electromagnetic energy resolution is required.

• To achieve good missing-transverse-energy and dijet mass resolution, calorime-

ters with a large hermetic coverage and fine lateral segmentation are vital.

The apparatus itself is made of many layers of materials that use the properties

of particles to detect and measure the charge and momentum of said particles to a

high degree of precision. Closest to the interaction point is the tracking system which

identifies the path (tracks) of passing particles and matches them to an originating

vertex. The first three layers of the tracking system make up the silicon pixel and

the next 10 make up the strip tracker. Surrounding the tracking system are the

electromagnetic calorimeter (ECAL) and the hadronic calorimeter (HCAL), respec-

tively. The ECAL system also includes a silicon sensor preshower detector in front

of its endcaps. Around the calorimeters at 7m in diameter is perhaps the central fea-

ture of this apparatus, the superconducting magnet, which provides a field of 3.8 T.

Muons are measured in gas-ionization detectors embedded in the steel return yoke.

In addition to the barrel and endcap detectors, CMS has extensive forward calorime-

try. The relative luminosity is measured using the forward calorimeters. Collision

events are selected by a first level trigger made of a system of fast electronics and

a higher level trigger that consists of a farm of commercial CPUs running a version

of the offline reconstruction optimized for fast processing. A detailed description of

the CMS detector coordinate system and subdetector systems is presented in the

following sections. The overall layout of the CMS detector and its substructure is

shown in Figures 3.3 and 3.4.
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Fig. 3.3. Schematic drawing of the CMS detector.

3.2.1 CMS Coordinate System

In the CMS experiment, a right-handed coordinate system is used [7]. In this

coordinate system the origin is placed at the nominal interaction point with the x-axis

pointing towards the center of the LHC ring and the y-axis pointing perpendicularly

to the LHC’s ring plane. The z-axis is set along the counterclockwise-beam direction.

The polar angle, θ, is measured from the positive z-axis and the azimuthal angle, φ,

is measured in the x-y plane. The pseudorapidity is defined in the usual way (i.e.

η = −ln[tan(θ/2)]).

3.2.2 CMS Tracker System

Surrounding the interaction point, the CMS tracking system is designed to ef-

ficiently measure the trajectories of charged particles as well as to provide precise

reconstruction of secondary vertices. Due to the LHC design specifications a detector
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Fig. 3.4. Drawing of the CMS detector showing inner sub-systems.

Fig. 3.5. CMS Pixel detector layout.
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with high granularity and fast response is required to reliably identify the trajectories

and attribute them to the correct bunch crossing [11]. The entire CMS tracker is

composed of 1440 pixel and 15,148 strip detector modules.

Pixel Detector

The pixel detector is the CMS system closest to the interaction point. It contains

65 million pixels with a pixel cell size of 100 × 150 µm2 covering a pseudorapidity

of -2.5 < η 2.5, which matches the acceptance of the central tracker. This detector

is essential for the reconstruction of primary and secondary vertices of particles such

as tau leptons and b quarks. It consists of three 53 cm long barrel layers located at

mean radii of 4.4, 7.3, and 10.2 cm, and two endcap disks extending from 6 to 15 cm

in radius. Figure 3.5 shows the pixel detector layout.

Silicon Strip Tracker

Immediately following the pixel detector, the silicon strip extends to a radius of

1.3 m. There are a total of 10 layers of silicon strip detectors, four tracker inner

barrel (TIB) layers with two inner endcap disks (TID), and six outer barrel (TOB)

layers. The TIB uses silicon sensors of 10 cm × 80 µm and a thickness of 320 µm.

The TOB uses silicon sensors 25 cm × 180 µm and 500 µm of thickness [11]. On

both sides, the tracker endcap (TEC) sensors are used with a thickness of 320 µm in

the inner four rings and a thickness of 500 µm in the outer rings.

3.2.3 The Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) at CMS is designed to identify and

reconstruct electrons and photons. Photodetectors are attached to the back of the

crystals to detect scintillation light and convert it to electrical signal. Figure 3.6
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Fig. 3.6. Electromagnetic shower created due to the interaction of
an electron with the ECAL crystals.

shows an illustration of an electromagnetic shower initiated by an electron interaction

with the ECAL crystal.

The ECAL is a hermetic homogeneous calorimeter composed of over 61,000 lead

tungstate (PbWO4) crystals forming the barrel, and over 14,000 more in both endcaps

(see Figure 3.7). The ECAL system also includes a silicon sensor preshower detector

in front of its endcaps. Avalanche photodiodes (APDs) are used as photodetectors in

the barrel while the endcaps use vacuum photodiodes (VPTs) [11]. Figures 3.8-3.9

show pictures of the barrel and endcap crystals with the photodetectors attached.

3.2.4 The Hadron Calorimeter

The hadron calorimeter (HCAL) at CMS is designed to measure the energy of

hadrons and is of particular importance to the measurement of missing transverse

momentum. The HCAL system is divided into four subsystems: the barrel (HB),

endcaps (HE), outer (HO), and forward (HF). The HB and HE are sampling calorime-

ters made of layers of absorber materials (70% Cu, 30% Zn) and scintillator materials

(Bicron BC408) [11]. The HB is itself divided into two half-barrel sections (HB+

and HB-) and extends to |η| <1.3, the HE extends the η coverage to 3. A picture of
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Fig. 3.7. The CMS Electromagnetic Calorimeter.

Fig. 3.8. A barrel crystal and the APD capsule [11].
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Fig. 3.9. An endcap crystal and VPT [11].

an HCAL half-barrel can be seen in Fig. 3.10. Figure 3.11 shows a drawing of the

HB wedge design.

In addition to the HB and HE the HO is placed outside the solenoid in the

central pseudorapidity region where ECAL and HB stopping power is not sufficient

to contain hadron showers. It is utilized to detect late starting showers and showers

penetrating past the HB. Finally, at 11.m from the interaction point the HF uses

Cherenkov-based technology and extends the pseudorapitidy coverage to |η| =5.2.

Figure 3.12 shows a longitudinal view of the CMS with the locations of HB, HE, HO

and HF and their respective η coverage.

3.2.5 Muon System

The CMS muon system is composed of about 25,000 m2 of detection planes [11].

It was designed to be capable of reconstructing the charge and momentum of muons

over the kinematic range of the LHC. Like other sub-systems the muon system has
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a cylindrical barrel, and two endcaps on each end. It uses 3 types of gas particle

detectors to adequately identify muons: drift tube chambers (DT), cathode strip

chambers (CSC), and resistive plate chambers (RPC). Figure 3.13 shows a depiction

of a muon traveling through the CMS barrel.

The barrel section of the muon system consists of 4 concentric stations and about

172,000 sensitive wires. The inner 3 cylinder stations have 60 DTs while the outer

one has 70. A DT chamber is made of 2 or 3 superlayers (SL), where each SL is made

of 4 layers of staggered drift cells. The endcap regions of the muon system uses CSCs

to identify muons between |η| values of 0.9 and 2.4. There are 4 stations of CSCs in

each of the two endcaps, each CSC consists of six anode wire planes intervaled among

7 cathode panels. Figure 3.14 shows a quarter plane view of the CMS detector with

the CSCs highlighted. In addition to the DTs and CSCs the muon system has a

total of 6 layers of RPCs in the barrel region and a plane of RPCs in each of the first

3 station in the endcaps. The RPCs are gaseous parallel-plate detectors capable of

tagging the time of an ionizing events in much less than 25 ns, which is the LHC’s

bunch crossing (BX) target at design luminosity (in 2011 the BX were 75 ns and 50

ns).

3.2.6 Triggering

At design luminosity the LHC will deliver forty million BXs per second averaging

more than twenty interactions per BX. Since it is not possible to process and store

the massive amounts of data associated with this number of events, a system has to

be in place to select the relevant physics events. The trigger system performs this

task and thus is the first step in the event selection process for physics analyzes.

The trigger system does the selection in two steps callet Level-1 Trigger (L1) and

High-Level Trigger (HLT). The L1 Trigger consists of high performance electronics

custom-designed for CMS while the HLT consists of software implemented in a farm

of about one thousand commercial processors. The combined rate reduction for the
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Fig. 3.10. CMS HCAL half-barrel in the assembly hall [11].

Fig. 3.11. View of the HB wedge showing scintillator sampling design [11].
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Fig. 3.12. Longitudinal view of the CMS detector [11].

Fig. 3.13. Depiction of muon going trough the CMS detector.
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Fig. 3.14. Quarter panel view of the CMS detector.

Fig. 3.15. Architecture of the Level-1 Trigger [11].
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L1 and HLT combined is in the order of 106. Figure 3.15 shows a schematic of the

L1 Trigger system.

3.2.7 Data Acquisition

The CMS data acquisition (DAQ) system is capable of recording nearly 100 GB

of data per second from approximately 650 data sources while providing enough

computing power for the HLT. Table 3.1 shows the number of data sources for every

CMS sub-system. Figure 3.16 shows a schematic view of the CMS DAQ architecture.

Table 3.1
Number of sub-detector data sources [11].

Sub-detector Number of data sources
Tracker pixel 40
Tracker strips 440
Preshower 56
ECAL 54
HCAL 32
Muons CSC 8
Muons RPC 3
Muons DT 10
Global Trigger 3
CSC, DT Track Finder 2
Total 626
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Fig. 3.16. Architecture of the CMS DAQ System [11].
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4 TAU LEPTONS

Since the reconstruction and identification of taus is key to this analysis, it is

appropriate to dedicate a chapter to give a general overview of the tau lepton and

some of its physical properties. The present chapter will provide the necessary in-

troduction to tau leptons and in Chapter 6, the discussion is followed by details on

tau identification in the CMS experiment.

The tau discovery was made in at the Stanford Linear Accelerator Center (SLAC)

in experiments carried out in 1975 using the SPEAR electron positron colliding

ring [12]. Due to its large mass, it can decay leptonically as well as hadronically (see

Figs. 4.1–4.2). One third of taus decay leptonically (τ → ντ lνl where l is a light

lepton). The remainder decay into hadronic jets (in this dissertation, the notation τh

is used to represent a hadronically decaying tau). In the latter case, tau jets consist

of final states with one, three, or (rarely) five charged mesons usually accompanied

by one or more neutral pions.

The tau lepton is a heavy electron-like particle. It’s the heaviest known lepton

with a mass of 1.777 GeV/c2 and a mean lifetime of 2.9 × 10−13 seconds. Because

of the tau’s short lifetime it can only be detected indirectly by looking at its decay

products. Furthermore, when a tau decays leptonically the light leptons cannot be

distinguished from electrons or muons produced by other processes. Therefore only

hadronically decaying taus modes are considered in this analysis.

Since the tau lepton decays to eνeντ (17.8%); µνµντ (17.4%); and hadrons (τh)

+ ντ (64.8%), there are six distinct possible final states of ditau decays, namely

ee (3.1%), µµ (3.1%), eµ (6.2%), eτh (23.1%), µτh (22.5%), and τhτh (42%).

In general ditau related searches, the µµ, ee, and eµ final states have the lowest

background contamination, while the double hadronic final state τhτh has the largest

branching ratio but suffers from large QCD jet backgrounds.
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Fig. 4.1. Feynman diagram of leptonic tau decays.

Fig. 4.2. Sample Feynman diagram of a hadronic tau decay mode.

26



5 ANALYSIS STRATEGY

In R-parity conserving SUSY the dominant production mechanisms at the LHC

are q̃q̃, q̃g̃, and g̃ pair production. In the case of q̃g̃ pair production the presence

of SUSY is likely to reveal itself in final states with high pT jets. This is due to

its heavy nature (Mq̃,g̃ at TeV scale) and the frequency of decays to neutralinos

plus quark/gluons (e.g. q̃ → qχ̃0
2). Additionally, because the LSP is heavy, weakly

interacting and stable, events are expected to have a large momentum imbalance.

In general, these SUSY events have at least two high pT jets and large missing

transverse energy (MET, E/ T ). Furthermore, some SUSY models and regions of

parameter space (e.g. mSUGRA at high tanβ) can give rise to χ̃0
2 → τ τ̃ → ττ χ̃0

1

decays with a branching ratio close to 100%. It is in this region that the presence of

SUSY can be discovered in final states containing a pair of tau leptons (see Chapter

4).

Due to the degeneracy between the τ̃ and χ̃0
1, taus from τ̃1 → τ χ̃0

1 decays are

expected to be low energy τ ’s. Therefore, these events will have a pair of tau leptons

in the final state, one of which would be a low pT tau. As explained in Chapter 4 a

search using two τh’s in the final state would suffer from a large QCD contamination.

However, the analysis presented in this dissertation does not suffer from large QCD

contribution because of the requirement of a large E/ T . Then,it is preferable to make

use of the double hadronic final state τh τh since it has a larger branching fraction (∼

65%) as well as a smaller energy loss due to neutrinos (pτh
T ∼ 1

2
pτ

T ).This dissertation

focuses on the search for SUSY in the double hadronic tau final state.

To select the trigger for this analysis one must consider the following. The effi-

ciency for events passing a double hadronic tau trigger is typically a rising function

that plateaus at ∼ 85–90% per tau leg in the τh pT range pT > 50 GeV/c. Then

using a double tau trigger would diminish the sensitivity to many BSM processes

with low pT taus. For this reason a trigger based on E/ T or H/ T must be selected (see
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Chapter 7). The use of such trigger confines the search to high E/ T or H/ T regions

but has the advantage that the τh selections remain unbiased and allow the lowest

possible pT thresholds for tagging τh candidates.

Finally to validate tau identification and ensure the robustness of the tau se-

lections it is important to obtain a clean sample of Z → ττ events. However in

the double hadronic tau final state it is not possible to obtain such a sample due

to the contamination from QCD. Instead, one can obtain relatively clean samples

of Z → ττ events in the µτh final state where the presence of the µ significantly

reduces the QCD background. If a control sample of Z → ττ events is achieved

in the µτh final state with consistency in shape and event rates between collision

data and MC simulation, then this indicates that the tau tagging criteria is robust

and that the proper scale factors were applied. In order to ensure the robustness of

the analysis and confidence in the results, collision data is used whenever possible

to understand and validate the efficiency of reconstruction methods as well as the

estimation of the background contributions. For that purpose control regions (CRs)

are defined with most of the selections similar to those used in the main search but

enriched with events from background processes. Once a background enhanced re-

gion is created, selection efficiencies are measured in those regions and extrapolated

to the region where the signal is expected. In cases where a method based in collision

data (data-driven method) is not possible scale factors between collision data and

MC simulation are applied to estimate the background contribution to the signal

region. Such scale factors are calculated as the ratio between the observed collision

data events and the expected MC events in the background enhanced region.

Figure 5.1 shows the overall analysis strategy ranging from the definition of the

signal region to the determination of CRs.
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Fig. 5.1. Analysis strategy flow chart.
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6 OBJECT RECONSTRUCTION AND IDENTIFICATION

6.1 Jet Reconstruction

In CMS there are several jet reconstruction algorithms available. In this

analysis we use Particle Flow (PF) jets, which use information from all subdetectors

to produce a mutually exclusive collection of particles which in turn are used as

input to the jet clustering algorithms. PF jets are reconstructed using the Anti-

KT jet clustering algorithm [13] with a reconstruction cone R=
√
η2 + φ2. In this

analysis a reconstruction cone with R = 0.5 is used. The PF jet objects are corrected

using three levels of a factorized jet correction system: L1FastJet, L2Relative, and

L3Absolute. L1 corrections are based on event energy densities and jet areas and

remove additional contributions to the measured jet energies due to pile-up particles.

The L2 and L3 corrections are based on Monte Carlo (MC) truth information and

seek to remove any pT and η dependencies.

6.2 Tau Reconstruction and Identification

Identifying taus at hadron colliders is particularly challenging because the physics

signature of a τh will closely resemble that of a quark/gluon jet. Then, a major

challenge in any τh identification algorithm is in discriminating against quark/gluon

jets, which are produced with a cross-section several orders of magnitude larger than

τh. To do this the CMS collaboration has developed several algorithms to reconstruct

and identify τh leptons. In this analysis the method used is called the Hadrons Plus

Strips (HPS) algorithm, which makes use of PF jets as inputs.

For any PF jet to be considered as a possible τh candidate it must first pass an

isolation requirement that was optimized for this search. This requirement is referred

to as “very loose” (VLoose) isolation and it has a value of ∆R = 0.3. This isolation
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Fig. 6.1. Depiction of τh decay modes.

requirement allows for an increased signal acceptance while maintaining a low rate

of fake τh leptons.

In HPS the PF jet information is passed to an algorithm that uses strips of clus-

tered electromagnetic particles to reconstruct neutral pions. These strips (”neutral

pions”) are then combined with the charged hadrons within the PF jets to recon-

struct the main tau decay modes (PF taus) outlined in Table 6.1. Figure 6.1 shows

a depiction of a single hadron, one charge hadron plus one strip, and a three charged

hadron decay mode.

Table 6.1
Reconstructed tau decay modes

HPS Tau Decay Modes
Single Hadron + Zero Strips
Single Hadron + One Strip
Single Hadron + Two Strips

Three Hadrons
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6.3 Electron Reconstruction and Identification

Electrons are reconstructed using information from the tracker and ECAL detec-

tors. Electron tracks are reconstructed by matching trajectories in the silicon strip

tracker and matching to hits in the pixel detector. A Gaussian Sum Filter is used for

the reconstruction of trajectories in the silicon strips. The track that best matches

the energy supercluster in ECAL is chosen to be reconstructed. Two energy cluster-

ing algorithms are used to measure the energy of electrons and photons: one for the

barrel and one for the endcaps. In addition, electrons are required to be isolated in

the calorimeter and tracker. Calorimeter isolation requires recorded hits (RecHits)

to have an energy threshold of > 0.1 GeV inside a cone of ∆R= 0.4 in the endcaps

and > 0.08 GeV in the barrel.

6.4 Muon Reconstruction and Identification

In this analysis we use “global” muons, which are isolated by having minimal

energy in a cone of ∆R= 0.5 around the lepton trajectory. Table 6.2 shows a

complete list of the µ identification criteria.

Table 6.2
µ identification

“Global” µ
Tracker hits ≥ 10

Pixel hits ≥ 1
≥ 2 chambers with matching segments

Global fit χ2/NDOF < 10
≥ 1 hit in muon system

|d0| < 0.2 cm
ΣpT of iso. tracks /ECAL RecHits < 1
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6.5 E/ T and H/ T

The CMS detector is capable of detecting all known particles produced in pp

collisions (except neutrinos) up to |η| ∼ 5. This allows a precise measurement of the

momentum-imbalance in the transverse direction relative to the beam also known as

missing transverse energy or MET. The MET vector, ~E/ T , when calculated based on

the PF algorithm is referred to as PFMET. PFMET makes use of the PF algorithms

to reconstruct the momenta of individual particles:

~E/ T = −Σi~p
i
T , (6.1)

where the index i runs over all PF object candidates. In the proposed analysis we

also define the missing momentum quantity H/ T =| ~H/ T |=| −Σi~p
i
T |, with the sum

running over all PF jets with transverse momenta pT > 30 GeV. We favor H/ T over

E/ T in order to reduce the PU dependence in our search.
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7 TRIGGER AND EVENT SELECTIONS

7.1 Trigger Performance

The signal region of this analysis is selected by requiring events with at least two

jets which pass a fully hadronic HLT trigger based onH/ T > 150 GeV (HLT PFMHT150).

The HLT PFMHT150 trigger is validated by obtaining a CR of pure tt̄ events. This

type of events is selected because their topology is very similar to that of the signal

region in this analysis, with two high pT jets from the top quark decay as well as real

or fake τh’s from the hadronic decay of the W bosons. To avoid a potential bias in

the high H/ T region the events are selected using µ + τh and e + τh cross-triggers.

Additonally, the following selection criteria are applied to the sample:

Acceptance Selections:

• ≥ 1 l (l = Global muon or electron) with pT > 10 GeV/c and |η| < 2.1

• ≥ 1 PFTau with pT > 15 GeV/c and |η| < 2.1

• ≥ 1 e/µτh pair with ∆R(e/µ, τh) > 0.7

Muon Selections:

• ≥ 1 µ with tracker hits ≥ 10

• ≥ 1 µ with pixel hits ≥ 1

• ≥ 1 µ with ≥ 2 matching segments

• ≥ 1 µ with χ2/ndof < 10

• ≥ 1 µ |d0| < 0.2 cm

• ≥ 1 µ passing isolation
∑

pT of tracks and Ecal RecHits < 1

Electron Selections:
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• Electron must be a Ecal driven electron

• |∆ηin| < 0.005 in EB; |∆ηin| < 0.007 in EE

• |∆φin| < 0.09 in EB and EE

• H/Em < 0.05 in EB and EE

• σiηiη < 0.03 in EE

• E2×5/E5×5 > 0.94 ||E1×5/E5×5 > 0.83 in EB

• Ecal Isolation :
∑
Eecal

T < 4.5 GeV

(EEcalRecHit
barrel > 0.08 GeV, ET

EcalRecHit
endcap > 0.1 GeV, ∆Riso = 0.4)

• Track Isolation:
∑
ptrk

T < 3.5 GeV (ptrk
T > 0.7 GeV, ∆Riso = 0.4)

Tau Selections:

• ≥ 1 τh passing the HPS ”tight” muon veto

• ≥ 1 τh passing the HPS ”tight” electron veto

• ≥ 1 τh passing the HPS decay mode finding

• ≥ 1 τh passing the HPS ”very loose” isolation

Topological Selections:

• Q(e/µ)×Q(τh) < 0

• E/T > 30 GeV

• ≥ 1 jet tagged as a b-jet using the TCHE working point

The HLT PFMHT150 trigger efficiency is defined as follows:

ε =
Number of Events Passing Selections Above AND HLT PFMHT150

Number of Events Passing Selections Above
(7.1)
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Fig. 7.1. Trigger turn-on curve.

Figure 7.1 shows the trigger HLT PFMHT150 turn-on-curve extracted directly

from data using the methodology described in this section. One can see the plateau

is reached at H/ T > 230 GeV, therefore validating the use of H/ T > 250 GeV in

this analysis. The HLT PFMHT150 trigger efficiency can be directly measured from

this validation sample, by fitting the trigger turn-on curve to an error function. The

efficiency at the plateau is 98.9 ± 2.5 %.

7.2 Event Selection

The signal selections are outlined below:

Baseline selections:

• 1st Leading Jet pT > 100 GeV and |η| < 3

• 2nd Leading Jet pT > 100 GeV and |η| < 3

• H/ T > 250 GeV
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Tau selections:

• ≥ 2 τh’s with pT > 15 GeV and |η| < 2.1

• ≥ 2 τh’s passing the HPS muon veto

• ≥ 2 τh’s passing the HPS electron veto

• ≥ 2 τh’s passing the HPS decay mode finding

• ≥ 2 τh’s passing the HPS isolation

Topological selections:

• 1st Leading Jet separated from τh’s (∆R(j1, τh) > 0.3)

• 2nd Leading Jet separated from τh’s (∆R(j2, τh) > 0.3)

• ∆φ(j2, H/ T ) > 0.5

• ≥ 1 τh pair with ∆R(τh,i, τh,j) > 0.3

Figure 7.2 shows pT distributions for the highest pT jets for an mSUGRA bench-

mark point (m0 = 360,m1/2 = 560, tanβ = 40,A0 = −500 GeV) as well as the major

SM background contributions. This distribution shows that the requirement of a first

and second leading jets to have a pT > 100 GeV achieves a very good discrimination

against backgrounds. Even though a higher threshold could be applied, the lower

threshold of 100 GeV is kept to maintain a high signal acceptance and allow the

highest possible sensitivity to BSM processes.

Figures 7.3-7.4 show the E/ T and H/ T distributions, respectively, after the re-

quirements of the leading and next-to-leading jets. It is observed that the H/ T > 250

GeV requirement achieves very good discrimination against SM backgrounds while

maintaining high signal acceptance. Also the H/ T > 250 GeV requirements is robust

in terms of systematics because it allows the signal region to stay away from the

trigger turn-on curve (Fig. 7.1) where systematic effects can be large.
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In QCD events, a non-zero measurement of H/ T or E/ T is due to mismeasurements

in jet energies so a back-to-back correlation between E/ T or H/ T and leading jets is

expected. Thus, applying the requirement of |∆φ(j2, H/ T )| > 0.5 is very effective in

removing the QCD contamination in the signal region. A simulated event passing

all selection criteria is shown in Figures 7.5–7.6.

Fig. 7.2. p
T

distribution for 1st leading jet.
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Fig. 7.3. E/ T distribution.

Fig. 7.4. H/ T distribution.
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Fig. 7.5. Simulated SUSY event: 3D Lego View.

Fig. 7.6. Simulated SUSY event: 3D View.
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8 BACKGROUND ESTIMATION

In order to ensure robustness of the analysis and our confidence in the results,

whenever possible we rely on the data itself to understand and validate the efficiency

of reconstruction methods as well as the estimation of the background contributions.

For that purpose we define control regions with most of the selections similar to

what we use in our main search but enriched with events from background processes.

Once a background enhanced region is created, we measure selection efficiencies in

those regions and extrapolate to the region where we expect to observe our signal. In

cases where a complete data–driven method is not possible we make use of scale fac-

tors, ratio between observed data events and expected MC events in the background

enhanced region to estimate the background contribution in the signal region. Fig-

ure 5.1 displays the general methodology for obtaining the various control regions.

In general, a few key discriminating variables are used to define control regions with

most of the selections similar to what we use in our main search. This ensures con-

fidence that our selections do not bias our ability to measure correct efficiencies. In

cases where this is not immediately clear, cross-checks are made and discussed in

detail.

8.1 Estimation of tt̄ Events in the Signal Region

The fact that b-jets are contained in 99% of tt̄ events can be exploited to create a

tt̄ enhanced region. To obtain such a control sample one can require the presence of

one or more tagged b-jets. In the case of this analysis, to reduce a contribution from

W + jets events the presence of two jets tagged as b-jets is required when selecting

the tt̄ control region. Modifications to the final signal selections outlined in section 7

can be made to enhance the statistics of the tt̄ enhanced region, allowing for a more

precise measurement of the expected tt̄ contribution in the SUSY signal region.
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Therefore, the tt̄ enhanced region is defined by making the following modifications

to the final signal selection criteria:

• Remove the isolation requirement on τ ’s

• Require ≥ 2 jets tagged as a b-jets using the track counting high efficiency

”medium” discriminator (TCHEM)

Figures 8.1– 8.8 show various relevant distributions obtained using events in the

tt̄ control region. The figures show a high purity of tt̄ events in the control region.

A good agreement between collision data and MC simulation is observed as well,

even though this is not a requirement since the techniques employed to extract the

background contributions are based on collision data. Additionally, agreement is not

expected due to the difficulties related to the correct modeling of jet fragmentation,

pile-up, and material budget. However, the fact that agreement is indeed observed

points to the robustness of the analysis and signal selections.

Table 8.1 shows the number of observed events in collision data as well as the

expected number of MC simulation events in the tt̄ control region. The statistical

uncertainty on the predicted rate in MC simulation is due to the statistics of the

simulated samples, while the systematic uncertainty comes from the uncertainty

on the tt̄ cross-section. According to MC simulation, the fraction of the events

in the tt̄ control sample which contain one real τh and one jet mistagged as the

second τh is Aτ+j = 0.166 ± 0.011(stat) ± 0.005(syst), while the fraction of the

events in the tt̄ control sample where two jets are mistagged as the two tau legs is

Aj+j = 0.834± 0.025(stat)± 0.005(syst). Therefore, the number of tt̄ events in the

signal region can be calculated as follows:

NSignal
tt̄ = Aτ+j

NCR
tt̄

P (2 b-jets)
ετ iso

∞∑
N=1

P (N)
N∑

n=1

C(N, n)fn(1− f)N−n

+ Aj+j
NCR

tt̄

P (2 b-jets)

∞∑
M=2

P (M)
M∑

m=2

C(M,m)fm(1− f)M−m (8.1)
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Fig. 8.1. E/ T .

Fig. 8.2. ∆φ(j1, H/ T ).
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Fig. 8.3. HT .

Fig. 8.4. H/ T .

44



Fig. 8.5. 1st Leading Jet pT .

Fig. 8.6. 2nd Leading Jet pT .
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Fig. 8.7. τ pT .

Fig. 8.8. τ η.
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where C(N, n) is the combinatoric of (N, n) (i.e.the number of possible ways for n jets

to pass isolation given N possible jets), f is the “fake rate” for jets to get tagged as

τh (probability for a jet to pass the “very loose” HPS isolation requirement), ετ iso is

the probability for a τh to pass the “very loose” HPS isolation requirement, and P (N)

(P (M)) are the probabilities for an event to have N (M) jets (“fake” τh candidates)

considered as possible τh candidates. The “fake rate” f and jet multiplicities P (N)

are measured/extracted directly from the tt̄ control sample.

The fake rate f has the following definition:

f =
Jets Passing Decay Mode Finding, Lepton Vetoes, and VLoose Isolation

Jets Passing Decay Mode Finding and Lepton Vetoes
(8.2)

The probability to tag both b-jets, P (2 b-jets), is given by ε2
b-tag where εb-tag

is the b-tagging efficiency as measured in [14]. Figures 8.9–8.10 show the isolation

distributions obtained from the tt̄ control sample which are used to measure the “fake

rate” f . One can see from Fig. 8.9 that the probability for a jet to be mistagged as a

tau in collision data is different from the fake rate as determined by MC simulation.

However, it is important to note that the jet→ τ fake rate is not expected to be

well modeled by MC simulation due to the difficulty of modeling rare fluctuations

in jet fragmentation and other effects such as pile-up. For this reason we measure

the probability for a jet to be misidentified as a tau directly from the control sample

and use it to estimate the predicted rate in the signal region. Therefore, agreement

between MC and data is not required.

Table 8.2 lists the relevant values used to estimate the tt̄ contribution in the signal

region. The isolation efficiency has a measured value of ετ iso = 0.55± 0.006(stat)±

0.04(syst) [15]. The probability for a jet to be mistagged as a tau has a measured

value of f = 0.022 ± 0.003(stat) ± 0.002(syst). The probability to tag ≥ 2 b-jets

using the track counting high efficiency “medium” working point is 0.468± 0.02 and

is determined using the b-tagging efficiency (0.684± 0.021) as measured in [14], ε2
b .
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Fig. 8.9. Number of photons.

Fig. 8.10. Number of tracks in the τ isolation cone.
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Table 8.1
Events in the tt̄ control region for data and MC.

Sample Events

Data 394
QCD —
W + Jets —
tt̄ 357.5± (55.4)syst ± (9.8)stat
Z → νν + Jets —

Therefore, the estimated tt̄ contribution in the signal region is NSignal
tt̄ = 2.03±0.46.

The uncertainty in the predicted rate is determined by propagating the uncertainties

in the parameters listed in Table 8.2 and assuming uncorrelated uncertainties. A

more detailed discussion of the systematic uncertainties used in the estimation of tt̄

is presented in Section 10.1.1.

Table 8.2
tt̄ extraction efficiencies.

Cut Data

Aτ+j 0.166± 0.011(stat)± 0.005(syst)
Aj+j 0.834± 0.025(stat)± 0.005(syst)

ετ iso 0.55± 0.006(stat)± 0.04(syst)
f 0.022± 0.003(stat)± 0.002(syst)
εb−Tagging(TCHEM) [14] 0.684± 0.021(stat+ syst)
Probability to tag ≥ 2 b-jets (TCHEM) 0.468± 0.02(stat+ syst)
Expected Number of Events 2.03± 0.46

Since measuring the tt̄ contribution to the signal region makes use of b-tagging

to obtain the control sample a natural concern is whether the use of b-tagging will

produce a bias on the measured efficiencies. To answer this question cross-checks

were carried out to determine if any possible bias was introduced in the b-tagging

requirement. It was found that no bias was introduced due to the requirement of at

least 2 b-tagged jets. The details of this study are presented in Appendix A. A second
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possible concern is whether the use of the b-tagging efficiency as measured in [14]

is applicable to the present analysis and selections. Thus, the use of the b-tagging

efficiency has been validated by selecting a sample of events with a high multiplicity

of jets, this allows a semi-clean tt̄ control sample to be obtained in which the given

efficiency can be validated. Further details on this study are presented in Appendix

B, in which is shown that the use of the b-tagging efficiency as measured in [14] is

indeed applicable to the present analysis.

8.1.1 Upper Limit on the Real τhτh tt̄ Estimate

In the discussions above and in equation 10.1, the contribution from tt̄ events

with two real hadronically decaying taus was ignored. A more accurate equation

for the estimation of tt̄ should contain a term which corresponds to the real τhτh tt̄

contribution:

Aτ+τ
NCR

tt̄

P (2 b-jets)
ετ isoετ iso (8.3)

The reason this term was ignored is because it gives a negligible contribution to

the signal region since Aτ+τ = 0 according to simulation. From simulation it was es-

tablished that 0 out of the 1352 MC events are real τhτh events. Although a negligible

contribution it is important to set an upper limit on the real τhτh contribution. To do

this, an uncertainty of 1 to the 0 out of 1352 events is assigned to the above equation.

Then, the upper limit on the real τhτh contribution to the signal region is given by

NSignal
τhτh tt̄ = 1

1352
· 394

0.468
· 0.552 = 0.19. This is then assigned as an additional systematic

uncertainty to the tt̄ estimation of 2.03 ± 0.46. Therefore, the final estimate of the

tt̄ contribution in the signal region is NSignal
tt̄ = 2.03± 0.46± 0.19 = 2.03± 0.50.
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8.2 Estimation of Z (→ νν) + Jets Events in the Signal Region

Z(→ νν)+ Jets events become a background when jets in the events fake tau

leptons. Since the probability for Z(→ νν)+ Jets events to contain four jets, two of

which pass all tau tagging criteria, is very small, these type of events can only have a

very small contribution to the signal region. However, the contribution of Z(→ νν)+

Jets events in other background enhanced control regions is not negligible. As events

with jets faking taus are difficult to model in MC, a data-driven method is used to

extract the number of Z(→ νν)+ Jets events in the signal region.

Since there is no method to obtain a clean sample of Z(→ νν)+ Jets events in

collision data, from which efficiencies can be measured and used to extrapolate to

the signal region. Instead, the contribution from this background is determined by

applying a selection criteria similar to those used in the final analysis to obtain a

sample of Z(→ µµ) + Jets events with two clean muons. These muons are then

treated as neutrinos in order to properly model the large H/ T values associated with

Z(→ νν) + Jets events. It is easier to obtain a clean sample of Z(→ µµ) + Jets

events due to the much lower probability for a jet to fake a muon as compared to

that for a jet to fake a hadronically decaying tau. Once a clean control sample of

Z(→ µµ) + Jets events is obtained, efficiencies for the Z(→ νν) + Jets events can

be measured. Correcting the number of observed background events for the muon

efficiencies and the ratio of the branching fraction of neutrinos to muons, the expected

contribution of Z(→ νν) + Jets in the signal region is extracted.

To obtain a clean sample of Z(→ µµ) + Jets, the final signal selections are

modified as follows:

• Select events using the µτh cross-triggers

• Remove the requirement on H/ T in order to recalculate H/ T by treating the

muons as neutrinos.

• Remove the tau identification criteria.
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• Require exactly 0 jets tagged as a b-jets using the track counting high efficiency

”medium” discriminator (TCHEM).

• Require ≥ 2 global muons with pT > 20 GeV/c, |η| < 2.1, and passing the µ

identification criteria outlined in section 6.4

Since the branching ratio of muons B(Z → µµ) is ∼ 6 times smaller than the

branching ratio to neutrinos B(Z → νν), then the tau tagging criteria is removed

to obtain a statistically significant sample. The requirement of zero b-jets is used

in this case in order to minimize the contribution from tt̄ events. Also, to properly

model the topology of Z(→ νν) + Jets events, jets considered for the 1st and 2nd

leading jet requirements must not be identified as muons. Finally, because the H/ T

must be recalculated by treating the muons as neutrinos, events are selected using

the µτh cross-triggers. Figures 8.11–8.14 show the distributions for relevant variables

obtained with the above selections. A very pure sample of Z(→ µµ) + Jets events

is obtained (∼ 99% purity) with a very good agreement in both shapes and event

rates. Table 8.3 shows the number of observed events in data as well as the expected

number of MC simulated events in the Z(→ µµ) + Jets control region. The Z(→ νν)

+ Jets contribution in the signal region can be calculated as follows:

NSignal
Z(→νν)+Jets =

NCR
Z(→µµ)+Jets

A2
µε

2
µ

B(Z → νν)

B(Z → µµ)

εTrigger
H/T

εTrigger
µτ

εH/T

∞∑
N=2

P (N)
N∑

n=2

C(N, n)fn(1−f)N−n

(8.4)

where Aµ is the muon acceptance efficiency, εµ the muon identification efficiency,

B(Z → νν) the branching ratio for Z → νν, B(Z → µµ) the branching ratio for

Z → µµ, εTrigger
H/ T

the HLT PFMHT150 trigger efficiency at the plateau, εTrigger
µτ the

µτ cross-trigger efficiency, εH/T the efficiency for H/ T > 250 GeV, C(N, n) the com-

binatoric of (N, n) (i.e.the number of possible ways to n jets pass the tau selections

given M possible jets), f the “fake rate” for jets to get tagged as taus, and P (N)

(P (M)) the probabilities for an event to have N(M) jets (“fake” tau candidates)
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Table 8.3
Events in the Z(→ µµ) + Jets control region for data and MC.

Sample Events

Data 738
QCD —
W + Jets —
tt 6.81± 1.20stat ± 1.06syst

Z(→ µµ) + Jets 709.5± 15.43stat ± 38.61syst

considered as possible tau candidates. The acceptance efficiency Aµ is taken from

the simulated samples and has a value of 70.07 ± 0.4 ± 2.9%. The muon identifi-

cation efficiency εµ is measured using standard tag-and-probe methods and has a

value of 86.78 ± 0.14 % per muon [16]. The “fake rate” f , jet multiplicities P (N),

and εH/ T are measured/extracted directly from the Z(→ µµ) + Jets control sample.

Table 8.4 lists the relevant values used to estimate the Z(→ νν) + Jets contribu-

tion in the signal region. Figures 8.17–8.18 show the isolation distributions obtained

from the Z(→ µµ) + Jets control sample and which are used to measure the “fake

rate” f . The probability for a jet to be mistagged as a tau has a measured value of

f = 0.0164± 0.00193(stat)± 0.001(syst). Therefore, the estimated Z(→ νν) + Jets

contribution in the signal region is NSignal
Z(→νν)+Jets = 0.03± 0.03.

8.2.1 Upper Limit on the Z(→ νν) + Jets Estimate

The predicted rate for Z(→ νν) + Jets is negligible in simulation (0.0 ± 0.07).

Additionally, this has been further validated by employing a data driven estimation

of Z(→ νν) + Jets where the probability for a jet to be mistagged as a τh is measured.

The main reason this background is expected to increase in collision data compared

to the estimate from MC simulation is because of the high probability that the MC

simulation does not accurately model the j → τh mistag rate. Since the mistag rates

are measured directly from data and since the mistag rates measured in the tt̄ and
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Table 8.4
Z(→ νν) + Jets extraction efficiencies

Cut Data

Npure
Z(→µµ)+Jets 738

B(Z → νν) 0.20± 0.0006
B(Z → µµ) 0.03366± 0.00007
εTrigger

µτ 0.87± 0.04(stat+ syst)

εTrigger
H/T

0.989± 0.025(stat+ syst)

εH/T 0.0081± 0.0033(stat)± 0.004(syst)
Aµ 0.7007± 0.004(stat)± 0.029(syst)
εµ 0.8678± 0.0014(stat+ syst)
f 0.0164± 0.00193(stat)± 0.001(syst)
Expected Number of Events 0.03± 0.03
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Fig. 8.11. HT distribution in the Z(→ µµ)+ Jets control region.
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Fig. 8.12. H/T distribution in the Z(→ µµ)+ Jets control region.
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Fig. 8.13. 1st Leading Jet pT distribution in the Z(→ µµ)+ Jets control region.
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Fig. 8.14. 2nd Leading Jet pT distribution in the Z(→ µµ)+ Jets control region.

W + Jets control regions agree with those measured in the control sample of Z +

Jets, this is a strong validation that the contribution is indeed small. However, to

provide with additional confidence in the estimate, in this section an upper limit on

the Z(→ νν) + Jets contribution in the signal region is determined. The equation

used to estimate the Z(→ νν) + Jets contribution is listed below:

NSignal
Z(→νν)+Jets =

NCR
Z(→µµ)+Jets

A2
µε

2
µ

B(Z → νν)

B(Z → µµ)

εTrigger
H/T

εTrigger
µτ

εH/T

∞∑
N=2

P (N)
N∑

n=2

C(N, n)fn(1−f)N−n

(8.5)

The probability for a Z → νν event to have H/ T > 250 GeV, εH/ T , is small (<<

1%). Additionally, εTrigger
H/ T

is approximately equal to εTrigger
µτ . Therefore, an upper

limit on the estimation of Z(→ νν) + Jets can be determined by only considering the
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branching ratios for Z (which are known to good accuracy) and the j → τh mistag

rate, f :

NSignal
Z(→νν)+Jets << NCR

Z(→µµ)+Jets

B(Z → νν)

B(Z → µµ)
f 2 (8.6)

Using the above equation, an upper limit for Z → νν of NSignal
Z(→νν)+Jets <<

738 · 6 · 0.012 ∼ 0.5 is obtained. This is an extremely conservative upper limit on

the Z(→ νν) + Jets contribution in the signal region since the fact that εH/T is a

very small quantity (< 1% in both MC simulation and collision data) has been ig-

nored. This upper limit is assigned on the Z(→ νν) + Jets prediction as a systematic

uncertainty on the predicted rate.

8.3 Estimation of Z(→ ττ) + Jets Events in the Signal Region

Z(→ ττ)+ Jets becomes a background mostly when: (1) both taus from the

decay of the Z boson pass the tau tagging criteria, provide large H/ T from their

decays to neutrinos, and two additional jets pass the jet criteria; (2) one tau from

the decay of the Z boson passes the tau tagging criteria and an additional jet is

mistagged as a tau.

Like in the case of Z(→ νν) + Jets, there is no method to obtain a clean sample

of Z(→ ττ)+ Jets where efficiencies can be measured and used to extrapolate to

the signal region. Therefore, the contribution from this background is determined

using the same sample of Z(→ µµ) + Jets events used to estimate Z(→ νν)+ Jets.

However, in this case the muons are treated taus in order to properly model the large

H/ T values associated with Z(→ ττ) + Jets events. Figures 8.15–8.16 shows the H/ T

and HT distributions obtained using events from the Z(→ µµ) + Jets control sample

and applying this method of treating the muons as taus. Efficiencies for Z(→ ττ)

+ Jets events can be measured from this sample and the number of observed events

can be corrected for the muon efficiencies and branching ratios to muons in order
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to determine the expected contribution of Z(→ ττ) + Jets in the signal region.

Therefore, Z(→ ττ) + Jets contribution in the signal region can be calculated as

follows:

NSignal
Z→ττ = NCR

Z→µµ

B(Z → ττ)B(τ → τh)

B(Z → µµ)

εTrig
H/T

εTrig
µτ

εH/T [
A2

τε
2
τ

A2
µε

2
µ

]

+ NCR
Z→µµ

B(Z → ττ)B(τ → τh)

B(Z → µµ)

εTrig
H/T

εTrig
µτ

εH/T [
A2

τ (2ετ (1− ετ ))

A2
µε

2
µ

×
∞∑

N=1

P (N)
N∑

n=1

C(N, n)fn(1− f)N−n]

+ NCR
Z→µµ

B(Z → ττ)B(τ → τh)

B(Z → µµ)

εTrig
H/T

εTrig
µτ

εH/T [
2Aτ (1− Aτ )ετ

A2
µε

2
µ

×
∞∑

M=1

P (M)
M∑

m=1

C(M,m)fm(1− f)M−m]

+ NCR
Z→µµ

B(Z → ττ)B(τ → τh)

B(Z → µµ)

εTrig
H/T

εTrig
µτ

εH/T [
(1− Aτ )

2

A2
µε

2
µ

×
∞∑

K=1

P (K)
K∑

k=1

C(K, k)fk(1− f)K−k] (8.7)

where Aµ is the muon acceptance efficiency, εµ the muon identification efficiency,

Aτ the tau acceptance efficiency, ετ the tau identification efficiency, B(Z → ττ)

the branching ratio for Z → ττ , B(τ → τh) the branching ratio for tau leptons to

hadrons, B(Z → µµ) the branching ratio for Z → µµ, εTrigger
H/T

the HLT PFMHT150

trigger efficiency at the plateau, εTrigger
µτ the µτ cross-trigger efficiency, εH/ T the ef-

ficiency for H/ T > 250 GeV, C(N, n) the combinatoric of (N, n) (i.e.the number of

possible ways to n jets pass the tau selections given M possible jets), f the “fake

rate” for jets to get tagged as taus, and P (N) (P (M)) the probabilities for an event

to have N(M) jets (“fake” tau candidates) considered as possible tau candidates.

The “fake rate” f and jet multiplicities P (N) are measured/extracted directly from

the Z(→ µµ) + Jets control sample. Table 8.5 lists the relevant values used to
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Table 8.5
Z → ττ + Jets extraction efficiencies

Cut Data

Npure
Z(→µµ)+Jets 738

B(Z → ττ) 0.03367± 0.0008
B(τ → τh) 0.6479± 0.0008
B(Z → µµ) 0.03366± 0.00007
εTrigger

µτ 0.87± 0.04(stat+ syst)

εTrigger
H/T

0.989± 0.025(stat+ syst)

εH/T 0.00271± 0.00192(stat)
Aτ 0.503± 0.001(stat)± 0.014(syst)
ετ 0.649± 0.007(stat)± 0.045(syst)
Aµ 0.7007± 0.004(stat)± 0.029(syst)
εµ 0.8678± 0.0014(stat+ syst)
f 0.0164± 0.00193(stat)± 0.001(syst)
Expected Number of Events 0.21± 0.20

estimate the Z(→ ττ) + Jets contribution in the signal region. The tau isolation

efficiency has a measured value of ετ = 0.55± 0.04 [15]. Figures 8.17–8.18 show the

isolation distributions obtained from the Z(→ µµ) + Jets control sample and which

are used to measure the “fake rate” f . The probability for a jet to be mistagged as a

tau has a measured value of f = 0.0164± 0.00193. Therefore, the estimated Z → ττ

+ Jets contribution in the signal region is NSignal
Z(→ττ)+Jets = 0.21± 0.19.

8.4 Estimation of QCD Events in the Signal Region

Though QCD has the largest cross section of all the backgrounds affecting this

analysis, it plays only a minor role after tau identification. Nonetheless, an under-

standing of QCD is important for other background estimations and minimizing our

total uncertainty. Additionally, because the QCD contribution in the signal region

depends on the probability for a jet to fake a τh, it is important to validate and/or
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Fig. 8.15. H/ T obtained from events in the Z(→ µµ) + Jets control
sample and treating the muons as taus to model Z(→ ττ) + Jets
events.
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Fig. 8.16. HT obtained from events in the Z(→ µµ) + Jets control
sample and treating the muons as taus to model Z(→ ττ) + Jets
events.
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Fig. 8.17. Track isolation distribution for ”taus”/jets in the Z(→
µµ) + Jets control region.
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Fig. 8.18. γ isolation distribution for ”taus”/jets in the Z(→ µµ)
+ Jets control region.
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measure that the signal contribution is indeed small. To obtain a good purity QCD

control region the following cuts are applied:

• pT > 100 GeV and |η| < 3.0 for 2 leading jets

• H/T > 250 GeV (To eliminate trigger bias)

• ≥ 2 “τh’s” passing the light lepton vetoes (To minimize W+Jets and tt̄ back-

grounds)

• ∆φ(H/T, jet2) < 0.10

Since H/ T tends to be quite small for QCD events, H/ T is greater than 250 GeV

almost exclusively in QCD events in which a jet is mismeasured. As a result, H/ T

tends to align with the second leading jet of most QCD events surviving theH/ T > 250

GeV cut. After applying the event selections above, a data sample is obtained with

1678 events and ∼ 86% purity according to MC simulation. Table 8.6 shows the

number of observed events in data and the expectations based on the MC simulated

samples. In order to estimate the QCD contribution to the signal region, a data-MC

scale factor (SFQCD) can be applied to the QCD expectation in MC simulation. This

results in a scale factor of 0.74 ± 0.02. Since the QCD simulation samples are limited

by low statistics, the predicted QCD rate in MC is obtained by slightly relaxing the

H/ T criteria such that it remains unbiased to the remaining selection efficiencies and

provides enough increase in statistics to obtain a MC simulated prediction to the

signal region. The estimated QCD contribution to the signal region is then calculated

as follows:

NSignal
QCD = SFQCD ×NMC

QCD (8.8)

This method gives a QCD estimation of NSignal
QCD = (0.74±0.02)×(0.024±0.024) =

0.018± 0.018. As expected, the QCD contribution to the signal region is small. The
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∼ 86% purity of this QCD dominated control sample is shown in Figures 8.19–

8.20, which show the distributions for Nvtx and H/ T . Since a full data-driven method

is not employed and since the control sample is obtained with selections similar

to the signal region, the figures provide a degree of confidence in the usage of the

data-MC correction factor by showing that the MC accurately describes the bulk of

the distributions in collision data. In the following section, an upper limit on the

predicted rate is calculated and used to assign an additional systematic uncertainty.

8.4.1 Upper Limit on the QCD Background

The final event selection requires a ∆φ(H/ T , jet2) > 0.50. To obtain a control

region of high QCD purity, the requirement applied is ∆φ(H/T, jet2) < 0.10. A full

data-driven QCD estimate would employ the following:

NSignal
QCD = NControlRegion

QCD × ε(∆φ(H/T, jet2) > 0.50)

ε(∆φ(H/T, jet2) < 0.10)
× ετFake

2 (8.9)

where ετFake is the probability of a jet faking a tau (approximately 1%). (QCD events

in the signal region require two fake taus.) Since ε(∆φ(H/ T , jet2) > 0.50 is approx-

imately 10% and ε(∆φ(H/T, jet2) < 0.10) is approximately 80%, a very conservative

upper limit of the QCD contribution in the signal region can be calculated.

NSignal
QCD << NControlRegion

QCD × ετFake
2 (8.10)

This bounds the QCD contamination in our signal region to be less than 0.1678

events. Since a full data-driven estimate for QCD is not performed, this upper limit

is applied on the QCD prediction as a systematic uncertainty.
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Table 8.6
Events in the QCD control region for data and MC.

Sample Events

Data 1678
QCD 1847.5± 37.6stat ± 286.22syst

W → lν + Jets 242.0± 19.7stat ± 12.04syst

tt 66.2± 3.6stat ± 10.26syst

Z → νν + Jets —
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Fig. 8.19. Distribution for number of primary vertices obtained
using events from a control sample enriched with ∼ 86% purity of
QCD events according to MC.
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8.5 Estimation of W + Jets Events in the Signal Region

W + Jets events become a background due to recoil jets or jets from initial and

final state radiation faking one or both of the tau legs. In order to enhance the

contribution of W + Jets events, the tau isolation criteria, which discriminates τh’s

from other jets, is removed. On the other hand, the lack of a tau isolation requirement

causes the presence of other backgrounds to increase in the W + Jets control region

since most of the backgrounds arise due to jets faking τh’s. To reduce the tt̄ event

contribution to the W + Jets control sample, events are required to have zero jets

tagged as b-jets via the TCHEM discriminator. This requirement will minimize the

contamination from tt̄ events to ∼ 5%, however the presence of other backgorunds

is not negligible. Furthermore, no aditional requirements can be imposed to reduce

the remaining backgrounds while allowing an unbiased extraction of efficiencies. In

this case a subtraction technique is employed where each background contribution

to the W + Jets control region is calculated from MC samples:

N control = NW+Jets enhanced
tt̄ +NW+Jets enhanced

QCD +NW+Jets enhanced
Z(→νν)+Jets +NW+Jets enhanced

W+Jets

(8.11)

NW+Jets enhanced
W+Jets = N control −NW+Jets enhanced

tt̄ −NW+Jets enhanced
QCD −NW+Jets enhanced

Z(→νν)+Jets

(8.12)

where NW+Jets enhanced
tt̄ is the tt̄ contribution, NW+Jets enhanced

QCD the QCD contribution,

and NW+Jets enhanced
Z(→νν)+Jets the Z(→ νν) + jets contribution in the W + jets enhanced

region.

Table 8.7 lists the observed and expected number of MC simulated events in this

W + Jets enhanced region while Figs. 8.21–8.24 show the relevant distributions

obtained from these events. The number of W + Jets events in collision data would
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Fig. 8.20. Distribution for H/T obtained using events from a control
sample enriched with ∼ 99% purity of QCD according to MC.

Table 8.7
Events in the W + Jets enhanced region for data and MC.

Sample Events

Data 2874
QCD 194.3± 32.1stat ± 30.1syst

W + Jets 1734.3± 87.8stat ± 86.3syst

tt 116.2± 7.2stat ± 18.0syst

Z → νν + Jets 549.9± 73.8stat ± 29.9syst
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Fig. 8.21. H/ T .

Fig. 8.22. E/ T .
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Fig. 8.23. First leading jet pT .

Fig. 8.24. Second leading jet pT .
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then be data − non W + Jets background which is 2013.6 events. Hence, the data-

MC scale factor is 2013.6/1734.3 = 1.16 ± 0.10. Figures 8.25–8.28 show the resultant

distributions after performing the subtraction of BGs in the W + Jets events CR

as outlined on Equation 8.12. In order to extrapolate from the W + Jets control

region to the signal region we can use the following equation:

NW+Jets
signal =

NW+Jets enhanced
W+Jets × ετiso

Pb−Tagging(0)
(8.13)

where NW+Jets enhanced
W+Jets is the number of events in data after the subtraction (equa-

tion 8.12), ετiso is the efficiency to find≥ 2 jets/taus passing isolation, and Pb−Tagging(0)

is the probability to get zero jets tagged as b-jets. We find that the measured effi-

ciency ετiso to find ≥ 2 jets/taus passing isolation is ετiso = 6/2874 = 0.21 ± 0.09%.

The probability to mistag zero jets as b-jets is calculated by determining the following

quantity:

P (N, n) = C(N, n) ∗ fn
0b ∗ (1− f0b)

N−n (8.14)

where P (N, n) is the probability to tag n fake b-jets given N jets, C(N, n) the

combinatoric of (N, n) (i.e. the number of possible ways to obtain n given N), and

f0b the fake rate for non-b jets to get tagged as b’s. The value of N = 4 chosen

for the above calculation represents the mean number of jets in the control region.

Therefore, the probability to tag zero jets as b-jets is given by:

P (0) = 1− P (4, 1)− P (4, 2)− P (4, 3)− P (4, 4) (8.15)

Using the fake rate f0b = 2.8% as measured in [14], the calculated probability

to tag zero jets as b-jets is 83.0 ± 8.0%. The quoted uncertainty is determined by

varying N in the above equations by the RMS of the jet multiplicity distribution,

RMS(N) = 1. Therefore, the total number of expected W+Jets in the signal region

is 4.7 ± 1.9. This number is consistent with the prediction in the signal region using
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the data-MC scale factor of 1.16 ± 0.10. We find 7.4 ± 3.7 events using the data-MC

scale factor.

The W + jet events in the signal region is also calculated using the following

equation (“fake rate method”):

NSignal
W+Jets = Aτ+j

NAfter subtraction
W+jets

P (0 b-jets)
ετ iso

∞∑
N=1

P (N)
N∑

n=1

C(N, n)fn(1− f)N−n

+ Aj+j
NAfter subtraction

W+Jets

P (0 b-jets)

∞∑
M=2

P (M)
M∑

m=2

C(M,m)fm(1− f)M−m (8.16)

where, Aτ+j is the fraction of events in the W + jets control sample which contain

one real tau and one jet mistagged as the second tau, Aj+j is the fraction of events

in the W + jets control sample where two jets are mistagged as the two tau legs,

C(N, n) is the combinatoric of (N, n) (i.e.the number of possible ways for n jets

to pass the isolation condition given M possible jets), f is the “fake rate” for jets

to get tagged as taus (probability for a jet to pass the “very loose” HPS isolation

requirement), ετ iso is the probability for a tau to pass the “very loose” HPS isolation

requirement, and P (N), (P (M)) are the probabilities for an event to have N (M)

jets (“fake” tau candidates) considered as possible tau candidates. Table 8.8 shows

the values obtained for each variable in the above equation. Figures 8.29–8.30 show

the isolation distributions obtained from the W + jets events control sample which

are used to measure the “fake rate” f . The fake rate f has the following definition:

f =
Jets Passing Decay Mode Finding, Lepton Vetoes, and VLoose Isolation

Jets Passing Decay Mode Finding and Lepton Vetoes
(8.17)

The number of expected W + Jets events in the signal region is cross checked

using the tau isolation fake rate, as was done in section 8.1 for the tt̄ estimation

in order to reduce the systematic uncertainty. The fake rate is measured to be
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Fig. 8.25. H/ T distribution after subtracting contributions from
other SM backgrounds.

Fig. 8.26. E/ T distribution after subtracting contributions from
other SM backgrounds.
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Fig. 8.27. First leading jet pT distribution after subtracting contri-
butions from other SM backgrounds.

Fig. 8.28. Second leading jet pT distribution after subtracting con-
tributions from other SM backgrounds.
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Table 8.8
W + Jets events extraction efficiencies

Cut Data

Aτ+j 0.149± 0.016(stat)± 0.004(syst)
Aj+j 0.851± 0.038(stat)± 0.004(syst)

ετ iso 0.649± 0.007(stat)± 0.045(syst)
f 0.019± 0.001(stat)± 0.001(syst)
Probability to tag 0 b− jets 0.83± 0.08(stat+ syst)
Expected Number of Events 5.20± 0.89

0.019±0.001(stat)±0.001(syst). Combining the two types of events in the W + Jets

events control region which consist of events with one real hadronic tau and one jet

faking a tau or events with two jets faking two taus, the contribution from W + Jet

events is estimated to be 5.20 ± 0.89. This number is used for the W + Jets events

estimation in the signal region.

8.6 Summary of Background Estimations

As presented in the previous sections, a careful study was done on the major SM

processes that could impact the signal region. However no study was done for WW,

WZ and ZZ processes because they provide negligible contributions to both the signal

region and the control regions. To validate this, the process with the largest cross

section of the three is considered, WW events. Events with direct WW production

are expected to be negligible because of the much smaller cross-section [17] than e.g.

tt̄ events where the topology is similar to that of the signal region. In addition, unlike

the tt̄ case, WW is not expected to have a large jet multiplicity, thus significantly

reducing the chance of jets being tagged as τh leptons. Table 8.9 shows a summary

of the background estimations with their respective statistical uncertainties.
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Fig. 8.29. Number of photons.

Fig. 8.30. Number of tracks in the τ isolation cone.
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Table 8.9
Summary of background predictions with statistical uncertainties.

Process Signal Region

tt̄ 2.03 ± 0.36
Z(→ νν) + Jets 0.03 ± 0.02
Z(→ ττ) + Jets 0.21 ± 0.13
QCD 0.02 ± 0.02
W + Jets 5.20 ± 0.63
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9 STATISTICS

9.1 CLs Method

The CLs is the CMS recommended method of calculating the 95% Confidence

Level (CL) upper limit on the cross section. The method uses a log-likelihood ratio

(LLR) as a test statistic:

LLR = −2ln
p(data|H1)

p(data|H0)
(9.1)

where H1 denotes the test hypothesis under the assumption that both signal and

background are present, H0 is the background only test hypothesis, and p the Poisson

probability of observing events νi in data for bin i, given an expectation of µi:

p =
µνi

i e
−µi

νi!
(9.2)

9.2 Bayesian Method

For the statistical interpretation of data and evaluation of signal significance a

Bayesian fit of data against the expected mass distribution is performed to calculate

the binned likelihood:

L(ε1, ε2, .., εn) =
Nbins∏
i=1

Li(µi, νi) (9.3)

where Li is the Poisson probability of observing events νi in data for bin i, given an

expectation of µi(σ) = [Background + Signal(σ)]i:

Li =
µνi

i e
−µi

νi!
(9.4)

The likelihood distribution is used to obtain the 95% CL limit for the signal cross

section. For sensitivity studies, pseudo-data samples are generated from background
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only distributions, using a Poisson based random event generator. Systematic un-

certainties can affect the global normalization of the event rate and also create an

uncertainty in the knowledge of the mass shape. To incorporate systematic uncer-

tainties into the likelihood calculation, MC numerical integration methods are used

to integrate over nuisance parameters. The nuisance parameters, αk, are generated

according to a log normal probability density function for normalizations and Gaus-

sian for mass spectrum uncertainties. If εn is an efficiency with systematic error δε,

the likelihood integral becomes:

∫
L(ε1, ε2, .., εn)dnε = N−1

N∑
j=1

L(ε1 + αj
1δε1, ε2 + αj

2δε2, .., εn + αj
nδεn) (9.5)

To incorporate the effects of possible variations in shape, a “morphing” proce-

dure is applied on default, unsmeared mass templates, Ddef
i , to generate variated

templates, Dj
i . Taking into account the smeared templates, the likelihood integral

is modified to:

N−1
N∑

j=1

L(ε1 + αj
1δε1, .., εn + αn

jδεn, D
def
1 + αj

1δD
j
1, ..., D

def
n + αj

nδD
j
n) (9.6)

where δDk
i = Dk

i − Ddef
i is the difference between the default and the deviated

shape for the kth systematic effect. The fitting framework also takes into account

correlations between systematic uncertainties considered in each channel and across

channels. For example, to incorporate correlations across channels, the nuisance

parameters can be modified as such:

αk = f ∗ αf + g ∗ αg (9.7)

where f and g represent the correlated and uncorrelated terms respectively.
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10 SYSTEMATIC UNCERTAINTIES

Both signal and background systematic uncertainties must be taken into account

for this analysis and are described separately. The systematic uncertainty in the

backgrounds is described in section 10.1 while the systematic uncertainty in the

signal is described in section 10.2 Both signal and background are affected by the

uncertainty in the identification of the τh candidate. The systematic uncertainty for

τh identification is obtained by using a fit of data in a Z → ττ enhanced region and

fixing the cross section to that measured using ee/µµ. This is uncertainty is validated

on a control sample of Z → ττ events which is selected using a criteria similar to that

used for the signal region described in section 5. The difference between collision

data and Monte Carlo simulation is at the level of 7%.

10.1 Systematic Uncertainties on Backgrounds

The dominant source of systematic uncertainties on the background estimations

are due to uncertainties in the correction factors, the statistical uncertainty on the

number of observed events in the CR’s (δn 6=
√

N), uncertainties in the measured

jet → τh misidentification rates, and the level of agreement betwen predicted rates

and observed number of events in the CR’s.

10.1.1 Systematic Uncertainties on the tt̄ Prediction

In section 8.1, the tt̄ contribution to the signal region was estimated by obtaining

a control sample enriched with a high purity of tt̄ events where the jet multiplicity

and j → τh mistaging rate could be measured directly from data. The following

equation was utilized to obtain our tt̄ signal prediction:
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NSignal

tt
= Aτ+j

NCR
tt

P (2 b-jets)
ετ iso

∞∑
N=1

P (N)
N∑

n=1

C(N, n)fn(1− f)N−n

+ Aj+j

NCR
tt

P (2 b-jets)

∞∑
M=2

P (M)
M∑

m=2

C(M,m)fm(1− f)M−m (10.1)

The fraction of events with one real tau, Aτ+j, and the fraction of events with

two tau fakes, Aj+j, were taken directly from MC simulation and have values of

Aτ+j = 0.166 ± 0.011 and Aj+j = 0.834 ± 0.025. These values correspond to 224

out of 1352 events with one real tau and 1128 out of 1352 events with no real

taus. The uncertainty of 0.011 on Aτ+j = 0.166 and of 0.025 on Aj+j = 0.834

are both purely statistical (
√

224
1352

= 0.011 and
√

1128
1352

= 0.025, respectively). Since

these values represent the fraction of events with real taus in a control sample where

the tau identification selections have been removed, they are driven by branching

ratios (W → τν vs. W → qq̄) and biases from the H/ T and jet kinematic selections.

Therefore, collision data vs. MC discrepancies are not used to assign a systematic

uncertainty to these values. Instead jet energy correction uncertainties are considered

as well as tau energy scale systematics in order to quantify how the changes inH/ T and

jet kinematics results in systematic shifts in the measured values of Aτ+j and Aj+j.

An uncertainty of 2−5% due to jet energy corrections (2−5% depending on jet pT /η)

results in an uncertainty 2.7% on Aτ+j and 0.5% on Aj+j. Similarly, an uncertainty

of 3% due to tau energy scale results in an uncertainty 1.3% on Aτ+j and 0.3% on

Aj+j. The final values for Aτ+j and Aj+j are Aτ+j = 0.166±0.011(stat)±0.005(syst),

Aτ+j = 0.834± 0.025(stat)± 0.005(syst).

The probability of tagging at least 2 jets as b-jets is calculated by utilizing the

b-tagging efficiency as measured in [14], εb = 0.684 ± 0.021. The uncertainty of

∼ 3% on the b-tagging efficiency is considered as a systematic uncertainty in the tt

estimate. Therefore, the systematic uncertainty on the probability to tag ≥ 2 b−jets

using the track counting high efficiency “medium” working point is determined by
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propagating the uncertainty of ∼ 3% on the b-tagging efficiency to the determination

of P (2 b-jets) = ε2
b . This results in a systematic uncertainty of 4.3% on P (2b-jets).

The tau isolation efficiency, ετ iso, is determined by taking the efficiency in MC

simulation and applying a data/MC correction factor. In this case, comparisons

between collision data and MC in Z → ττ and W → τν control samples are used

to assign systematic uncertainties on ετ iso = ετiso
MC ·SFτh

. Z → ττ events were

used to show that the level of agreement between data and MC was ∼ 6 − 7%.

Additionally, the τh ID scale factor was extracted directly from data by fixing the

cross section to the value measured by CMS in the electron and muon channels,

σ(pp→ ZX) ·B(Z → ee, µµ) = 0.931±0.026(stat.)±0.023(syst.)±0.102(lumi.) nb.

The extracted value of the τh ID scale factor is 1.04±0.068. Therefore, the systematic

uncertainty on the tau isolation efficiency, ετ iso, is ∼ 7%. Since the tau isolation

efficiency in MC is ετ iso
MC = 0.55, a systematic uncertainty of 0.07 · 0.55 = 0.04

→ ετ iso = 0.55± 0.04 is assigned.

The j → τh mistag rate is determined directly from data by determining the

percentage of “τh” candidates (which are ∼ 100% jets) within the tt̄ control sample

which pass the tau isolation criteria. The measured mistag rate f is 0.022 ± 0.003.

The uncertainty of 0.003 is entirely statistical in nature, driven by the number of jets

used to calculate the mistag rate. It is important to note the mistag rate has been

measured “on average.” The standard strategy employed by the CMS collaboration

when “fake rate” methods are employed is to utilize a QCD enriched sample of jets to

measure the mistag rates vs. pT and η. The reason the mistag rates are determined

in bins of pT and η is because the topology and kinematics of the QCD dominated

control sample are not necessarily similar to the kinematics of the background being

estimated. In fact, in most cases, they are entirely different. However, the approach

taken in this analysis is to measure the mistag rates directly from background en-

riched control samples where the proper kinematics are naturally considered. There-

fore, the measurement of the mistag rates can be measured “on average” and do
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not need to be measured in bins of pT and η. Since fake rates can be measured “on

average”, the strategy employed in this analysis has the added advantage that sys-

tematic uncertainties on the measured mistag rates are minimized since the number

of degrees of freedom have themselves been minimized. Additionally,the correct per-

centage of gluon jets, light quark jets, etc. is ensured in the sample used to measure

the mistag rates. This is an added advantage because mistag rates vary depending

on the jet type/structure. This is a complication that often results in large sys-

tematic uncertainties in “standard” CMS fake rate techniques due to differences in

jet type/structure between the QCD dominated control sample and the background

being estimated. Having mentioned the advantages of the strategy pursued in this

analysis, a very conservative approach is taken to assign a systematic uncertainty

on the mistag rates by studying the dependence with pT and η. Figure 10.1 shows

the j → τh mistag rate as a function of pT . No strong dependence is observed with

pT . A fit of the data points to a “flat line” results in a fit value of 0.02± 0.002 with

χ2/NDOF = 2.6/6 = 0.4. The uncertainty on the fit value is used as the systematic

uncertainty on the mistag rate (∼ 10%). Therefore, the final value for the j → τh

mistag rate is f = 0.022± 0.003(stat)± 0.002(syst).

10.1.2 Systematic Uncertainties on the W + Jets Prediction

In section 8.5, the W + Jets contribution to the signal region was estimated by

obtaining a control sample enriched with a high purity of W + Jets events where

the jet multiplicity and j → τh mistag rate could be measured directly from data.

The following equation was utilized to obtain our W + Jets signal prediction:

NSignal
W+jets = Aτ+j

NAfter subtraction
W+jets

P (0 b-jets)
ετ iso

∞∑
N=1

P (N)
N∑

n=1

C(N, n)fn(1− f)N−n

+ Aj+j

NAfter subtraction
W+jets

P (0 b-jets)

∞∑
M=2

P (M)
M∑

m=2

C(M,m)fm(1− f)M−m (10.2)
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Fig. 10.1. j → τh mistag rate vs. pT obtained from the tt dominated
control sample.

The fraction of events with one real tau, Aτ+j, and the fraction of events with

two tau fakes, Aj+j, were taken directly from simulation and have values of Aτ+j =

0.149 ± 0.016 and Aj+j = 0.851 ± 0.038. These values correspond to 90 out of 605

events with one real tau and 515 out of 605 events with no real taus. The uncertainty

of 0.016 on Aτ+j = 0.149 and of 0.038 on Aj+j = 0.851 are both purely statistical

(
√

90
605

= 0.016 and
√

515
605

= 0.038, respectively). Since these values represent the

fraction of events with real taus in a control sample where the tau identification

selections have been removed, they are driven by branching ratios (W → τν vs.

W → qq̄) and biases from the Hsl and jet kinematic selections. Therefore, collision

data vs. MC discrepancies are not used to assign a systematic uncertainties to these

values. Instead the same strategy discussed in section 10.1.1 is used while taking into

consideration jet energy correction uncertainties, and tau energy scale systematics

to determine the systematic uncertainties on Aτ+j and Aj+j. An uncertainty of
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2 − 5% due to jet energy corrections results in an uncertainty 2.2% on Aτ+j and

0.3% on Aj+j. Similarly, an uncertainty of 3% due to tau energy scale results in an

uncertainty 1.1% on Aτ+j and 0.2% on Aj+j. The final values for Aτ+j and Aj+j are

Aτ+j = 0.149± 0.016(stat)± 0.004(syst), Aτ+j = 0.851± 0.038(stat)± 0.004(syst).

The probability to mistag zero jets as b-jets, P (0 b-jets), is calculated by utilizing

the j →b mistag rate as measured in [14], fb = 0.028, and determining the probability

to tag n fake b-jets given N jets as described in section 8.5. A central value of N = 4

jets (as determined by the observed jet multiplicity distribution in data) is used to

determine the central value of the probability to mistag exactly zero jets as b-jets,

which has a calculated value of P (0 b-jets) = 0.83. To assign a systematic uncertainty

to this value, a variation to the mean of jet multiplicity distribution of ±1 is applied

to then quantify how much the calculation of P (0 b-jets) varies from the central

value obtained with N = 4. A systematic uncertainty of 9.6% is calculated on the

measured value for P (0 b-jets).

The systematic uncertainty on the tau isolation efficiency, ετ iso, is determined

using the same argument/method described in section 10.1.1. Therefore, since

the tau isolation efficiency in MC is ετ iso
MC = 0.649, a systematic uncertainty of

0.07 · 0.649 = 0.045 → ετ iso = 0.649± 0.045 is assigned.

The systematic uncertainty on the j → τh mistag rate is determined using the

same argument/method described in section 10.1.1 by studying the dependence with

pT and η. Figure 10.2 shows the j → τh mistag rate as a function of pT . No strong

dependence is observed with pT . A fit of the data points to a “flat line” result in a

fit value of 0.018± 0.001 with χ2/NDOF = 6.2/7 = 0.9. We use the uncertainty on

the fit value as the systematic uncertainty on the mistag rate (∼ 5.6%). Therefore,

the final value for the j → τh mistag rate is f = 0.019± 0.001(stat)± 0.001(syst).
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Fig. 10.2. j → τh mistag rate vs. pT obtained from the W + Jets
dominated control sample.

10.1.3 Systematic Uncertainties on the Z + Jets Prediction

In sections 8.2 and 8.3, the Z + Jets contribution to the signal region was esti-

mated by obtaining a control sample enriched with a high purity of Z(→ µµ) + Jets

events, where efficiencies for Z + Jets events are measured and used to extrapolate

to the signal region after proper corrections for the muon efficiencies and branching

fraction to muons.

The branching fractions for Z are taken from the CMS collaboration Particle Data

Group (PDG). Therefore, the uncertainty on the branching fractions as referenced

by the PDG serves as a systematic uncertainty in the estimation of Z + Jets.

The determination of the trigger efficiency for HLT PFMHT150, εTrigger
H/T

, is de-

termined by utilizing a tt̄ control sample (see section 7). The systematic uncertainty

on εTrigger
H/T

is determined by fitting the trigger turn-on curve to an error function

and extracting the uncertainty on the fit parameter corresponding to the plateau. A
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systematic uncertainty of ∼ 2.5% is calculated. Additionally, since the uncertainties

on the fit parameters are correlated and are often constrained by the values and

uncertainties in the other parameters (constrained by the high statistics of the rising

slope) through the error matrix, an additional validation to the ∼ 2.5% systematic

uncertainty is done by fitting the region H/T > 250 GeV to a “flat line” and extracting

the uncertainty on the constant fit parameter. This approach also validates the use of

∼ 2.5% as the systematic uncertainty on the trigger efficiency for HLT PFMHT150,

εTrigger
H/T

.

The determination of the trigger efficiency for the µτ cross-triggers was performed

as part of the H/Z ′ → ττ analyzes [18]. The strategy consists of using standard tag

and probe methods in Z → µµ to determine the efficiency on the HLT Mu and uti-

lizing a control sample of Z → ττ → µτh events selected with single muon triggers to

measure the efficiency for HLT PFTau. The trigger efficiency εTrigger
µτ has a measured

value of 0.87 ± 0.04. The uncertainty of ∼ 4.6% contains a systematic uncertainty

due to HLT Mu (∼ 1.15%) and a systematic uncertainty due to HLT PFTau (∼ 4%).

Therefore, the systematic uncertainty of ∼ 4.6% on εTrigger
µτ is treated as a systematic

uncertainty in the background estimation.

The muon acceptance Aµ is determined from MC simulation. In this case, the

level of agreement between collision data and MC is used in the Z(→ µµ) + Jets

control sample to assign a systematic uncertainty on Aµ. The observed number

of events in collision data is 738, while the predicted rate for Z(→ µµ) + Jets

and tt from MC simulation is 709.5 and 6.81 respectively. Therefore, the level of

agreement between collision data and MC is (738.−6.81−709.5)
709.5

∼ 3%. The level of

agreement between collision data and MC in this control sample is driven by much

more than just the muon acceptance. Therefore, a systematic uncertainty of ∼

3% is very conservative. Also, to remain on the conservative end, the systematic

uncertainty on the muon momentum scale (MMC ∼ 1%) and jet energy corrections

(JEC) is used to assign an additional systematic uncertainty on Aµ. It was found
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that a ∼ 1% systematic uncertainty on the muon momentum scale results in <<

1% uncertainty on the muon acceptance. Similarly, a 2 − 5% uncertainty due to

jet energy corrections results in an uncertainty of ∼ 1.5% on Aµ. Therefore, the

quoted value for Aµ is 0.701±0.004(stat)±0.027(data−MC)±0.01(JEC/MMS) =

0.701 ± 0.004(stat) ± 0.029(syst). These uncertainties are propagated through the

estimation of the Z + Jets contribution in the signal region. A similar approach

is taken for Aτ : the systematic uncertainty on tau energy scale (∼ 3%) and jet

energy corrections (JEC) are used to assign a systematic uncertainty on Aτ . A

∼ 3% systematic uncertainty on the tau energy scale results in 2% uncertainty on

the tau acceptance. Similarly, a 2 − 5% uncertainty due to jet energy corrections

results in an uncertainty of ∼ 1.8% on Aτ . Therefore, the quoted value for Aτ is

0.503± 0.001(stat)± 0.01(TES)± 0.009(JEC) = 0.503± 0.001(stat)± 0.014(syst).

The muon identification efficiency, εµ, is measured using standard tag and probe

methods in Z → µµ. They validated as part of the H/Z ′ → ττ analyzes [18]. The

efficiency εµ is known to very good accuracy as muons are fairly well measured objects

and control samples of Z → µµ have high purity high statistics. The collision data

to MC agreement in the Z(→ µµ) + Jets control sample provides a very conservative

upper limit on the systematic uncertainty on εµ. However, as this has already been

included in the systematic uncertainty for Aµ, it is not included in εµ.

The efficiency forH/T > 250 GeV, εH/T , is determined by calculating the percentage

of events from the H/T distributions in the region H/T > 250 GeV. Therefore, for

Z(→ νν) + Jets the efficiency has a measured value of εH/T = 6
738

= 0.0081± 0.0033.

The uncertainty of 0.0033 represents the purely statistical uncertainty
√

6
738

= 0.0033.

To be conservative, the level of agreement between collision data and MC is used

in the region H/T > 250 GeV to assign a systematic uncertainty on εH/T . Since ε
H/T

MC

in MC is 0.004, while ε
H/T

Data in collision data is 0.008, a systematic uncertainty of

0.008−0.004
0.008

= 50% to εH/T is assigned. Therefore, the quoted value for εH/T in Z(→ νν)
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+ Jets is 0.0081±0.0033(stat)±0.004(syst). This uncertainty is propagated through

the estimation of the Z(→ νν) + Jets contribution in the signal region.

The systematic uncertainty on the j → τh mistag rate is determined using the

same argument/method described in section 10.1.1 by studying the dependence with

pT and η. Figure 10.2 shows the j → τh mistag rate as a function of pT . No strong

dependence is observed with pT . A fit of the data points to a “flat line” results in a

systematic uncertainty on the mistag rate of ∼ 5.6%). Therefore, the final value for

the j → τh mistag rate is f = 0.0164± 0.0019(stat)± 0.001(syst).

10.2 Systematic Uncertainties on Signal

One of the main sources of systematics is due to the uncertainty in the calculation

of the backgrounds and the imprecise knowledge of the luminosity (2.2%). Sources of

systematics such as trigger efficiencies, identification efficiencies, energy and momen-

tum scale, parton distribution functions, and initial and final state radiation have

been included. In all cases, the values used are the ones recommended by the CMS

collaboration and the corresponding physics objects group (POG). Scale factors for

τh identification are taken from the tau POG and obtained using a fit of data in a

Z → ττ enhanced region and fixing the cross section to that measured using ee/µµ.

Systematic uncertainties on the triggers are measured using a tt̄ enhanced region ob-

tained by selecting data with the µτh and eτh cross-triggers as described in section 7.

Tau and jet energy scale systematics also affect the knowledge of the signal accep-

tance. The E/T scale uncertainties contribute via the jet energy scale (2-5% depending

on η and pT ) and unclustered energy scale (10%), where unclustered energy is de-

fined as the energy found “outside” the reconstructed leptons and jets with pT > 10

GeV.The unclustered energy scale uncertainty has a negligible systematic effect on

the signal acceptance and Meff shape. Uncertainties that contribute to the Meff

shapes include tau energy scale, jet energy scale, and the E/T scale. The systematic

effect due to the imprecise knowledge of the parton distribution functions (PDFs)
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is determined by comparing CTEQ6.6, MRST2006, and NNPDF10 PDFs with the

default PDF and variations within the family of parameterizations. The PDF4LHC

recommendation is employed to determine the overall systematic uncertainty due to

the parton distribution functions. The systematic effect due to imprecise modeling

of initial and final state radiation is determined by re-weighting events to account for

effects such as missing α terms in the soft-collinear approach [19] and missing NLO

terms in the parton shower approach [20]. Table 10.1 summarizes the sources of

systematics considered and their effect on the acceptance. Figures 10.3–10.6 show

the effect of τh/jet energy scale on signal for the mSUGRA benchmark point. In

order to quantify the systematic effect of pile-up on the signal acceptance, the accep-

tance efficiency is parametrized as a function of the number of reconstructed vertices.

Figure 10.7 shows that the signal acceptance is constant as a function of the number

of vertices. To determine the systematic effect of PU on the signal acceptance, the

dependence of εsignal(Nvtx) is fitted to a constant factor. The resultant fit value is

denoted as Xavg. To determine whether there is a systematic deviation of the signal

acceptance from a “flat” dependence, the spread of the points in Figure 10.7 are

calculated from the central fit value:

σ2
A =

1

N − 1

N∑
i=1

(X2
i −X2

avg) (10.3)

where N is the number of points used in the fit and Xi is the signal acceptance for

point i. To untangle the statistical uncertainty from the systematic uncertainty due

to a possible dependence of the acceptance on PU, σ2
A is compared to the spread due

to the known statistical uncertainties δX2 on the points:

σ2
B =

1∑N
i=1

1
δX2

i

(10.4)
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If σA > σB,a systematic uncertainty σsys =
√
σ2

A − σ2
B is assigned. The entire

parameter space was scanned for the benchmark SUSY models and it was found that

the systematic uncertainty due to PU is negligible in all cases.

Table 10.1
List of systematic uncertainties for signal and background estimates.

Source of Systematic Systematic Uncertainty

Luminosity 2.2%
H/T Trigger 2.5%
Tau ID 6.8%
Parton Distribution Functions 11.0%
Initial State Radiation Negligible
Final State Radiation Negligible
Tau Energy Scale (3.0%) 2.3%
Jet Energy Corrections (2-5%) 4.6%
Pile-up Negligible
Background Estimation 15.6%
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Fig. 10.3. Depiction of the systematic effect of tau energy scale on
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11 RESULTS

11.1 Data in the Signal Region

The largest sources of background in this analysis come from SM top-pair pro-

duction events and from W + jets events. A counting experiment was performed to

compare the SM background predictions from the collision data collected at the CMS

detector in 2011. Table 11.1 lists these SM background predictions and the number

of observed events in the signal region. Figure 11.1 shows the HT distribution in the

signal region while Fig. 11.2 shows the Meff(= H/ T +HT ) distribution in the signal

region. The background distributions in Figs. 11.1–11.2 are taken from MC simula-

tion and are normalized to the predictions based on data over the full spectrum. The

estimated number of events due to the SM background processes are in agreement

with the number of observed events in the signal region. Thus, no deviation from

SM physics was observed in this analysis.

Table 11.1
Number of data events and estimated background rates with statis-
tical and systematic uncertainties, respectively.

Process Signal Region

QCD multijet events 0.02± 0.02± 0.17
W+jets 5.20± 0.63± 0.62
tt̄ 2.03± 0.36± 0.34
Z(→ τ τ̄)+ jets 0.21± 0.13± 0.17
Z(→ νν̄)+ jets 0.03± 0.02± 0.50
Estimated

∑
SM 7.49± 0.74± 0.90

Data 9
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11.2 Limits to New Physics

11.2.1 CMSSM

Limits are set using the CLS criterion in the context of CMSSM. The parameter

space with tanβ = 40, A0 = -500 GeV, µ > 0 and Mt = 173.2 GeV is chosen as a

possible scenario with a light τ̃ and a value of ∆M ≤ 20 GeV. The limits are set

using a counting experiment where systematic uncertainties are treated as nuisance

parameters and marginalized. The signal contamination is taken into account. In

this analysis a common gaugino mass (m1/2) of < 495 GeV is excluded at 95% CL for

a common scalar mass (m0) of 400 GeV. A gluino with mass < 1.15 TeV is excluded

at 95% CL in this region. Figure 11.3 shows the excluded regions, the solid red line

denotes the experimental limit and the dotted red lines represent the uncertainty on

the experimental limit due to scale variations by a factor of two, and PDF effects on

the theoretical cross sections. The blue band represents the expected uncertainties.

11.2.2 SMS

The results are also interpreted in the context of a simplified scenario (SMS)

[21]. The ττ SMS scenario (T3tauh) is studied where gluinos are produced in pairs

and subsequently decay to τ lepton pairs and a LSP via neutralino (g̃ → qq̄χ̃0
2 →

τ + τ̃ + LSP) and the mass of χ̃0
2 is the average of the masses of the gluino and the

LSP. A Feynman diagram for this scenario is shown in Figure 11.4.

In the SMS scenario a gluino mass of < 740 GeV is excluded at 95% CL for LSP

masses up to 290 GeV. This results are shown in Figure 11.5 where the limits of the

gluino and LSP are shown with a solid black line.
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Fig. 11.3. Exclusion limit in the CMSSM plane at tan β = 40.
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Fig. 11.4. Feynman diagram for the ττ SMS model.
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Fig. 11.5. 95% CL cross section upper limits for the T3tauh model
where the solid red line represents the limits on the mass of the gluino
and the LSP.

Fig. 11.6. 95% CL cross section upper limits as a function of gluino
mass in the GMSB scenario.
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11.2.3 GMSB

In the simplified gauge mediated symmetry breaking (GMSB) scenario, the τ̃ is

the NLSP and decays to a τ -lepton and a gravitino (G̃) with a mass of the order of

keV [22–24] (χ̃0
2 → τ τ̃ → ττG̃). The topology for this simplified GMSB is similar to

that of the T3tauh except for the assumption that both gluinos decay to τ -lepton

pairs with a branching fraction of 100%. Then the results can also be interpreted in

the GMSB scenario using the T3tauh scenario by correcting the signal acceptance to

account for the final state containing up to four τs. In this scenario a gluino mass <

860 GeV is excluded with 95% CL, this is shown in Figure 11.6 as a function of the

gluino mass.
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12 CONCLUSIONS

A search for SUSY in events with two or more highly energetic jets, two or more

hadronically decaying taus and a large momentum imbalance was performed. The

data used corresponds to 5 fb−1 of CMS data from 7 TeV proton-proton collisions

at the LHC. The observed number of events is consistent with the SM background

contributions from tt̄, W + jets, Z (→ νν) + jets, Z (→ ττ) + jets and QCD events.

Thus, there is no evidence of physics beyond the standard model.

To reduce the reliance on simulation the SM backgrounds were estimated using

robust data driven methods. The largest uncertainties are of a statistical nature.

Upper limits on the cross sections for CMSSM, GMSB and SMS scenarios were set

to 95% CL. Within the CMSSM framework at tanβ = 40, a gaugino mass m1/2 <

495 GeV is excluded at 95% CL for scalar masses m0 <400 GeV. This results places

a lower limit in the mass of the gluino at 1.15 TeV with 95% CL at the peak. For

the T3tauh simplified scenario a gluino mass of less than 740 GeV is excluded while

for the GMSB scenario a gluino mass < 860 GeV is excluded at 95% CL.
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APPENDIX A

EFFECT OF B-TAGGING ON CONTROL REGIONS

The use of b-tagging plays a major role in the creation of a high purity tt̄ events

control region. To show that the b-tagging requirement does not introduce a bias in

the measured efficiencies it is necessary to determine the effect of b-tagging in the

tau isolation. The study presented here uses MC simulated events to show that the

requirement of two jets tagged as b-jets does not bias the isolation and kinematic

distributions. To show this the relevant distributions are made with no b-tagging

requirement as well as with the requirement of more than 1 jet tagged as a b-jet.

The Figures A.1–A.4 below display the tau isolation distributions as well as the

tau kinematic distributions for tt̄ events within the constraints of this study. These

distributions show that the b-tagging requirement does not produce a bias on the

measurement of the efficiencies in the tt̄ events control region.

Similar cross-checks were made for all control regions to validate the use of b-

tagging. In all cases it was found that the use of b-tagging produces negligible effects.

For example, Figures A.5–A.6 show the the tau isolation distributions and kinematic

distributions for QCD events with and without the b-tagging requirement. As ex-

pected, the b-tagging requirement does not produce any bias on the measurement of

efficiencies in the QCD control region.
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Fig. A.1. τ track isolation.
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Fig. A.2. τ γ isolation.
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Fig. A.4. τ η.
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Fig. A.5. τ track isolation.
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Fig. A.6. τ γ isolation.
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APPENDIX B

VALIDATION OF THE B-TAGGING EFFICIENCY IN A HIGH

MULTIPLICITY JET SAMPLE

Since the b-tagging efficiency as measured by [14] is used to estimate the signal

contribution from tt̄, it is necessary to validate the use of said measurement in the

present analysis. To do this a semi-clean tt̄ sample is selected using a selection for a

high multiplicity of jets. Once the sample is created, the probability to tag > 1 jet

as a b-jet as measured in this region can be compared to the one in [14]. Figure B.1

shows the number of jets tagged as b-jets using the TCHE “medium” working point.

The selections used to obtain the tt̄ sample for this study are similar to those used

in the calculation of the tt̄ events contribution to the signal region 8.1:

• Begin with the signal selections

• Remove the isolation requirement on τh’s

• Require ≥ 7 jets with pT > 30 GeV/c and |η| < 3

The expected number of MC tt̄ simulated events is 69.18 ± 1.59. The expected

number of MC simulated W + Jets events is 15.12 ± 1.83. The number of observed

events in data is 76. Therefore, the probability to tag > 1 jets as a b-jet can be

measured as follows:

P (2 b-jets) =
N control

>1 b-jet −NW+jets

>1 b-jet
N control −NW+jets

(B.1)

The measured probability to tag > 1 jet as a b-jet is 40.15 ± (8.17)stat ± (1.86)stat.

This is to be compared to the value obtained if the b-tagging efficiency measured

in [14] is used: 45.83 ± 7.76. This validates that the use of the b-tagging efficiency,

as measured in [14] is valid for this analysis.
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Fig. B.1. Number of jets tagged as b-jets using the track counting
high efficiency “medium” working point.
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