
FROM PRODUCTION TO EDUCATION: AN ANALYSIS OF PIPELINE

REQUIREMENTS AND PRACTICES

A Thesis

by

BRANDON LEE JARRATT

Submitted to the O�ce of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Frederic I. Parke
Committee Members, Ann McNamara

Tracy Hammond
Department Head, Tim McLaughlin

May 2013

Major Subject: Visualization

Copyright 2013 Brandon Lee Jarratt

ABSTRACT

Animation, visual e↵ects, and video game studios have to manage complex and highly

iterative productions. The processes, tools, and data flow that carry a production

from initial idea to finished state is called a ’pipeline.’ Students in academic programs,

even ones focused on educating for digital production, often do not have a well-

defined pipeline and spend unnecessary time on technical details rather than creative

work. Through interviews with industry professionals, analysis of published works

on pipeline and digital production, and study of current academic pipelines, this

thesis presents general principles for pipelines as well as suggestions for applying

these principles in academic environments. Implementing these suggestions could

provide a foundation for a robust academic pipeline that lets students spend more

time creating and collaborating and prepares them for employment in the digital

production industry.

ii

ACKNOWLEDGEMENTS

Thank you to all the industry professionals who agreed to be interviewed. Your time

and generous discussion are the cornerstone of this thesis.

I would like to thank Dr. Parke for his guidance and patience during the writ-

ing and approval process, and my other committee members for their feedback and

suggestions about the goals of my research.

Dr. Hank Driskill was instrumental in putting me in touch with other industry

professionals for interviews. My time working with him was the inspiration for this

thesis.

Thank you to my family for letting me shut myself away to write while you were

planning a wedding. Neither my wedding nor my thesis would have happened without

you.

Finally, thanks and love to my wife Savannah for her support and patience during

this long process.

iii

v

TABLE OF CONTENTS

egaPRETPAHC

i

I INTRODUCTION . 1

I.1. Introduction to the Concept of a Pipeline 1

I.2. Motivation . 6

II RELATED WORK . 9

II.1. Defining a Pipeline . 9

II.1.1. A Conceptual Definition 9

II.1.2. Definition Applied to Industry 10

II.2. Facets of Production . 11

II.2.1. Managing a Production 11

II.2.2. Workflow, Tools, and Creative Solutions 14

II.3. Preparing Digital Artists for Industry 18

II.4. An Open-Source Pipeline Specification 18

III METHODOLOGY AND PROCESS 20

III.1. Interviews . 20

III.2. Literature Search . 23

III.3. Study of Current Systems 24

III.4. Summary . 24

IV SUMMARY OF INTERVIEWS 26

IV.1. Background Info . 26

IV.1.1. Interview 1 - Feature Animation Studio 26

IV.1.2. Interview 2 - Multi-discipline Studio 27

IV.1.3. Interview 3 - TV Animation Studio 28

IV.1.4. Interview 4 - Feature Animation Studio 28

IV.1.5. Interview 5 - Open Source Project 29

IV.1.6. Interview 6 - Video Game Studio 30

IV.1.7. Interview 7 - Video Game Studio 30

IV.2.1. Interview 1 . 31

IV.2.2. Interview 2 . 33

IV.2.3. Interview 3 . 34

IV.2. Responses . 31

IV.2.4. Interview 4 . 36

IV.2.5. Interview 5 . 38

IV.2.6. Interview 6 . 39

IV.2.7. Interview 7 . 41

V.1. Recurring Themes from Interviews 43

V.2. Findings from Publications and Literature 45

V.3. Existing Academic Pipelines 47

V.4. General Principles . 48

V.4.1. Stability . 48

V.4.2. Clarity . 49

V.4.3. Unobtrusiveness 50

V.4.4. Modularity . 51

V.4.5. Generality . 52

REFERENCES . 54

APPENDIX 1 . 58

egaPRETPAHC

v

V RESULTS AND DISCUSSION 43

VI CONCLUSION AND FUTURE WORK 53

LIST OF FIGURES

egaPERUGIF

1 Directory Structure of the Visualization Laboratory Pipeline. 8

2 Basic Data Flow in the Visualization Laboratory Pipeline. 8

3 Typical Parallelized Production Pipeline. 13

vi

CHAPTER I

INTRODUCTION

The goal of this thesis is to study pipeline practices at digital production facilities

for animation, games, and visual e↵ects to determine some general principles about

pipelines. The research is conducted through interviews, literature search, and study

of existing academic pipelines, with the goal of finding pipeline principles that can be

applied to academic practice. I will o↵er suggestions as to how these ideas might be

used in an academic setting.

I.1. Introduction to the Concept of a Pipeline

A pipeline, understood in the context of computer animation, is a set of processes

and tools that transport data through the various stages of production, to the final

product. Every major visual e↵ects (VFX) or feature animation production studio

utilizes a pipeline to manage data and workflows, enhance communication, increase

e�ciency, and aid troubleshooting when things go wrong. The end-to-end combina-

tion of workflows, with output from one stage of production becoming input for the

next, is the definition of a pipeline.

The notion of a pipeline as a linear structure, carrying items in sequence from

one end to the other, is not adequate. Digital production processes are complex and

highly iterative, requiring constant communication, extensive record keeping, version

control, and the ability to handle multiple feedback loops.

A pipeline includes everyone involved in the production, from executive producer

and director down to the artists painting textures and creating 3D models. Production

personnel work together to carry the project from the idea in the director’s mind into

1

a complex collection of assets and shots that tell the intended story. An asset is

simply a single unit of production, such as a 3D character model, set or environment,

texture, or a virtual light or camera. A shot, following the convention of live-action

films, is an action sequence that tells part of the story.

In feature animation, the process begins by creating a story script. The story

script is the basis for the project. It defines the dialog, storyboards, and overall design

of the film. The process of finalizing the story script can take years. Once the story

script is approved for production, storyboards can be made to visualize the action of

the script [23]. Designs for the film’s characters, props, sets, e↵ects, and lighting also

begin at this time.

Artists and workers with specialized skills, such as 3D modelers, programmers,

or character riggers, are grouped into departments, based on their specialization, to

handle specific stages of production. Each department has its own set of tasks that

help the production move along. For example, the modeling department will take

character designs from the art department and then create 3D models from those

designs. These models are passed to the rigging department, where they are given

skeletons and control systems for use by the animators. At each stage of production,

these assets are reviewed, tested, critiqued as needed, and may be sent back to the

artist with notes for revision.

Digital production is an iterative process. Several rounds of revision may be

required before an asset is approved and sent on to the next department downstream.

A department is ’downstream’ when its work is dependent on receiving output from

a di↵erent department in the pipeline. For example, the rigging department is down-

stream from the modeling department. The riggers need 3D character models for

which to build skeletons and control systems.

Eventually assets are used to populate shot files. The content and action of

2

each shot are dictated by the film’s storyboards. Assets, such as rigged characters,

are staged, choreographed and animated for a virtual camera, which provides the

viewpoint for the final image rendered by the computer.

Shots go through a sub-pipeline of their own, starting in layout (where the cam-

eras and movement are blocked out), moving on through animation (where character

performances are created), lighting, and e↵ects (usually non-character animation,

such as an explosion or waterfall). After the final images are rendered by the com-

puter they are passed to the editorial department where music and dialog are added

and synchronized to finish the film.

Feedback loops are common in digital productions so the pipeline should be able

to handle them accordingly. Each asset will usually be archived and catalogued each

time it is changed, building a useful revision history that charts the asset’s progress

through the production. Previous versions can be restored if the asset is accidentally

deleted, causes errors for a downstream department, or if the director wishes to go

back to an older version for creative reasons.

Before production begins a set of decisions must be made to address project

needs. Directory structures, naming conventions, revision control methods, and the

general path of data through the pipeline must be defined. Logical and predictable

directories for assets and shot files should be established.

Channels of communication should be identified. To whom should an artist

turn when he has a question? How do notes and suggestions get passed between

departments? Who decides when an asset is ready for the final shot? How should an

artist or programmer track and request bug fixes for tools? These questions are the

basis upon which pipeline tools and workflows are built.

Once the workflow is determined, tools must be created to implement it. A

recurring statement among industry professionals is that the best pipeline is the one

3

you don’t think about. It is far more e�cient for an artist to type a single command

(or even better, to click a single button) that executes a set of tasks behind the scenes

than for that same artist to manually enter a series of complex commands to achieve

the same end result. The goal is to ease the burden on the artist, making it easy for

him to create assets with limited worry about technical details like correct file naming

or the capability to retrieve an earlier version of his work. Examples of some of these

tools are discussed in section II.2.2.

Taking the technical details of file storage, naming, and revision control out of

the artist’s hands also decreases chances of making a mistake and causing problems

downstream. For example, in a system where artists are able to name their own files,

an artist might save a model file as ’Main Character Model.’ The rigging department

uses a tool that imports files matching the format ’model mainChar.’ Since the model

file is not named correctly, the rigging department will be unable to import it until

the modeler renames his file. Confining artists to a narrowly defined set of steps can

mitigate problems like these.

Many pipeline tools are designed to automate common tasks. For example, a stu-

dio might use a program that runs at night to identify any assets that have changed

since the previous night. Any shots containing these changed assets are then auto-

matically re-rendered so that updated versions of the shots are available for review the

next morning. Other tools might enhance the file saving operation by automatically

generating text notes that are sent to artists in downstream departments.

Some workers need to be given special responsibility to ensure that these tools

function correctly. These personnel need to possess a general knowledge of the artist’s

tools as well as programming skill and technical acumen. They are sometimes assigned

to a department as technical directors, or TDs. TDs assist artists with software and

workflow problems to keep production moving.

4

Most studios also have ’front-end’ tools available for the artists. These are util-

ities that provide a user-friendly way for artists to interact with underlying pipeline

systems. These tools might include navigation shortcuts (single-word commands that

select specific directory areas), scene builder menus (a graphical user interface that

allows users to choose assets for a shot), backup or file archiving commands, interfaces

that import data from upstream departments, and any other function that addresses

needs of the production.

Clear communication is essential. Communication must occur at all stages of

the production process, between all departments. Production leadership has to figure

out how to make the film using the financial and technical resources available. The

director has to communicate his vision to the artists. The artists must communicate

with each other and with the director to refine their work. Department supervisors

must communicate with production management to ensure that work is getting done

on time (and on budget). Artists must alert TDs to problems they encounter with

assets and software. TDs must articulate the needs of artists to the software engineers

who build pipeline tools. The software tools have to be able to communicate with each

other and pass data along, sometimes between formats [16]. Good communication

between all areas of production helps ensure that each asset and shot progresses

smoothly through the pipeline.

This thesis is organized as follows: Chapter II summarizes related work. Chap-

ter III discusses the methodology and process used for collecting data about industry

pipelines. Chapter IV summarizes the background and responses of each interview

participant in the research. Chapter V presents and discusses the results. Chapter VI

concludes and discusses future work.

5

I.2. Motivation

Prior to 2011, students in the Texas A&M Visualization Laboratory lacked a defined

pipeline of supporting tools to help them create and organize their projects. Students

working on short animations created their own workflow and handled their own file

directories [2]. Pipelines had been established for specific projects such as the annual

summer industry course where professionals from studios like DreamWorks, Disney,

and Pixar guided teams of students in the creation of short animated films. Project

teams of four to six people used these pipelines to create, catalog, render, and store

their thirty-second animations. But these tools and processes were generally not

re-used after each project concluded.

Following the completion of the 2011 summer course, the graduate assistants to

the Lab’s system administrator (the developers) were tasked with building a general,

lab-wide project pipeline. Both assistants had each established pipelines in previ-

ous summer courses. These pipelines provided directory structures and utilities for

automating some tasks. The developers used their experiences to combine the best el-

ements of each pipeline and provide new workflow and directory structures for student

projects.

Several tools, in the form of command-line utilities, were provided to enable users

to create and organize assets and move them into shot files in an informed manner.

The primary form of interaction between the students and the pipeline was the Linux

terminal command window. They could type simple commands to quickly perform

useful tasks and avoid tedious ones. Terminal commands were chosen primarily for

speed of user entry and execution, and to compensate for developer inexperience with

building GUI tools.

This pipeline provides a basic structure, allowing students reasonable freedom

6

to manage assets and shots as they please. Fig. 1 illustrates the directory structures

and data locations in the Lab pipeline. Fig. 2 shows an overview of the data flow in

the pipeline.

At the start of the fall 2011 semester, this pipeline was introduced and recom-

mended to all students as robust mechanism for managing projects. Students were

presented with this basic workflow model. Tools to aid and automate parts of this pro-

cess were demonstrated and discussed in presentations and Q&A sessions conducted

by the developers. However, many students did not adopt the pipeline, despite its

relative simplicity and useful utilities. As a result, many problems with projects oc-

curred such as broken references, misplaced textures, use of incorrect file versions,

incompatible path names, and so on. These could have been avoided by using the

provided pipeline environment and tools.

It is unclear whether students found the pipeline overly complicated, the workflow

creatively restricting, or were simply used to doing most of their work through GUIs

rather than typing commands into a text-based terminal window. Some investigation

was needed to determine how the pipeline could be improved to better suit the needs

of students working on projects in an academic setting.

This thesis aims to compare and contrast industry pipeline needs with those of

an academic facility, where the scale of production and consequences of user behavior

can be very di↵erent. For example, most student projects are only accessed and

maintained by one student, whereas industry projects need to be robust, support

hundreds of users, and usually require sophisticated version control schemes.

7

Fig. 1. Directory Structure of the Visualization Laboratory Pipeline.

Fig. 2. Basic Data Flow in the Visualization Laboratory Pipeline.

8

CHAPTER II

RELATED WORK

This chapter discusses previous work that applies to this thesis. Section II.1 discusses

the definition of a pipeline as determined by Bettis [3]. Section II.2 discusses the

component parts of a digital production and methods of communication between

them. Section II.3 studies existing academic programs focused on digital production.

Finally, Section II.4 examines an open-source specification for production pipelines

that is used in both education and industry [21].

II.1. Defining a Pipeline

This section examines an existing conceptual definition of a pipeline and how it relates

to industry practice.

II.1.1. A Conceptual Definition

Existing discussions of academic pipelines are scant. Bettis’ master’s thesis from

2005 [3], which sought to provide a functional high-level definition of a pipeline, is

the only published work this researcher could locate on the topic. Bettis explored the

history of computer animation and compared the traditional animation process with

the modern digital process. He performed a case study of a single animation studio,

interviewing several employees to find emergent themes related to pipelines. He used

these themes to form a conceptual definition of a pipeline.

Bettis’ definition splits the pipeline into three layers: personnel arrangement,

implementation and managing complexity, and optimization of computer systems.

The first layer concerns demarcating groups of artists, assigning responsibility, and

9

defining relationships between these groups so that the best working process can

be achieved. The second layer involves the implementation of the first layer into

computer hardware and software, to automate and aid the artist’s workflow and

communication. The third layer is a refinement of the second layer that seeks to

optimize its ability to be useful to the production. Examples of this include adding

more, faster processing capability or improving an in-house software tool to more

e�ciently perform a necessary task.

Bettis’ definition is limited in that it was based on the study of a single studio.

However, it still provides a useful conceptual framework.

II.1.2. Definition Applied to Industry

In a series of blog posts written in 2009 [1], CG supervisor Isa Alsup deconstructed the

pipeline based on his experience working in visual e↵ects. Alsup established his own

breakdown of the main pipeline into discrete related sub-pipelines - the production

pipeline, materials or data pipeline, and the approval or metadata pipeline. The

production pipeline is the assembly line collection of specialized skills that perform

tasks. Thematerials pipeline manages the flow of data and assets through the project.

The approval pipeline comprises the direction and instruction about a particular asset

or shot, which includes revision history and capacity for looped feedback.

Alsup goes on in further posts to cite and discuss Bettis’ research about pipelines

and apply those concepts to several scenarios that might occur in production. He

makes the distinction between the technology used for the production and the pipeline

itself. The tools in the pipeline are just that - tools used by the artists as part of

a workflow to accomplish tasks to be handed to the next department down the line.

He restates Bettis’ three-layer definition as three dimensions - personnel, tools, and

procedures. He uses Bettis’ work to support the points he makes in his articles.

10

Most importantly, he takes Bettis’ conceptual definition and turns it into a func-

tional description of CG pipelines, broken down into seven main points. According

to Alsup, a pipeline:

1. belongs to one of three classes: task, data, or metadata.

2. is comprised of three dimensions: personnel, tools, and procedure.

3. utilizes technology but is not the technology.

4. divides a workflow into separate meaningful tasks for to two or more persons.

5. task divisions are determined by specialization across the three dimensions

6. structure is dicated by the functional mission, resources, and company culture.

7. is malleable.

II.2. Facets of Production

This section breaks down the three parts of Bettis’ conceptual pipeline definition:

personnel management, tools, and procedures.

II.2.1. Managing a Production

In their book Producing Animation [30], Catherine Winder and Zahra Dowlatabadi

define and discuss the role and responsibilities of a producer in CG and 2D animation

projects. Production planning, scheduling, budgeting, tracking, and communication,

from beginning to end, are covered for large and small projects alike.

While this book is written from the perspective of the producer, it provided

useful insight into the top-level decisions mentioned by some of the interview par-

ticipants. For example, the producer must work with studio leadership to assemble

11

talent, identify the scale of the project, and assign roles and labor. These decisions

all shape the production pipeline.

Production management is a critical component of any pipeline. The producer

is responsible for establishing the leadership structure of the project and organizing

the reviews and approvals process. Producers work with department supervisors to

divide work among the artists to schedule a way that will get the project done on

budget. The producer is also responsible for communicating the creative needs of the

project to the visual e↵ects supervisor who determines what technology and tools are

needed to actually achieve the director’s vision.

The director is the key creative decisionmaker and storyteller for the project. He

or she is responsible for communicating the project vision e↵ectively to the artists and

the producers. The director must keep both the creative and financial needs of the

project in mind when making decisions and assigning roles. Once production begins,

the director will hand out assignments to artists, review their work, and give them

feedback until the final look of the project is achieved. Winder and Dowlatabadi also

provide an overview of the production pipeline and the creative departments involved

in the project. Their illustration of the production process is shown in Fig. 3.

The details of creating and managing digital productions are covered in other

sources as well. Chuang’s presentation on building and scaling digital studios [7]

touches on many of the same points as Winder and Dowlatabadi’s book, but focuses

more on the way that projects and studios grow over time as they face new challenges.

Chuang classifies productions into one of three growth models - centralized, semi-

distributed, and fully-distributed.

The centralized model, rooted in a single physical location, is the ’traditional’

model that most people associate with a production studio. Here, the production

team can take advantage of close proximity to communicate directly. Software and

12

Fig. 3. Typical Parallelized Production Pipeline. [30] c�2011 Catherine Winder and

Zahra Dowlatabadi. Originally Published by Elsevier Inc. All rights reserved.

other pipeline tools are very similar across the entire facility, even if multiple projects

are in production. Managing this production model is a matter of plotting personnel,

dependencies, and time in a way that will get the work done.

The ’semi-distributed’ model is becoming more prevalent, with many studios

opening smaller satellite facilities in distant locations or subcontracting work to other

studios. Semi-distributed studios employ a centralized model at each location, making

the work, growth, and sometimes tools of each facility independent of the others.

However, procedures must be defined to allow the transfer of data between locations.

In his talk ”Keeping Your Money On The Screen & O↵ The Floor” [13], Kevin

Geiger lays out good CG production principles and practices, as well as common

pitfalls that lead to wasted resources. Geiger focuses on the human factors in a

13

production, such as e↵ective managerial leadership, interpersonal communication, and

usability of the pipeline for artists. He compares serial, or linear, pipeline structues

with parallel or repository-based pipelines to show the benefits of non-linear pipelines.

As Geiger mentions, people are the most expensive and most valuable asset of

any production. Finding the right balance between pressure, engagement, and pro-

ductivity is key for getting through a project successfully. One key aspect of getting

the most out of artists is the critique and feedback process. Evan Hirsch discusses

methods for delivering creative feedback in his SIGGRAPH course notes from 2012

[15]. Hirsch states that clear, constructive feedback is crucial to helping artists feel

engaged and empowered in their work. Vague instructions are hard to act upon, and

overly negative or insensitive critique can even be counter-productive for artists.

Methods of production management have even been subject to academic research.

Naugle’s master’s thesis from 2011 explores the application of Building Information

Management (BIM) principles to animation production [19]. BIM was originally

developed to increase e�ciency in architecture projects. Naugle’s research proposed

a work management system for animation based on these principles.

II.2.2. Workflow, Tools, and Creative Solutions

The aspect of production most typically perceived as ’the pipeline’ is the toolset

employed to create and manage assets and shots. As discussed in earlier sections, the

tools are only a component part of production, but nonetheless a crucial part that

can greatly a↵ect capability and e�ciency.

From the earliest days of animation, technology and tools have been implemented

to enhance creativity and break new artistic ground. The multiplane camera used at

Walt Disney Studios beginning in the 1930s allowed for more depth in the background

and more believable camera movement through animated environments [27]. Break-

14

ing the camera view into individually movable layers is a technique that influenced

subsequent animation and compositing for visual e↵ects.

Computer systems to aid and create animation began appearing in 1970s. Cat-

mull presented an overview of these sytems and pointed out the problems and chal-

lenges of computer-assisted animation at that time [6]. Computer animation systems

then were used primarily for scanning, coloring, and creating inbetweens for 2D ani-

mated character sequences. One such system is the Computer Animation Production

System (CAPS) [26] created for Disney in the late 1980s. Disney’s The Rescuers

Down Under (1990), made using CAPS, was the first completely digitally produced

feature film.

CAPS and other computer tools were introduced as a way to improve existing

production methods, or to replace analog versions entirely. With CAPS, for ex-

ample, the expensive and time-consuming process of inking and painting cels was

replaced with a much faster and more flexible computer-based flood-fill coloring sys-

tem. In modern digital productions, computer-based tools may be incorporated into

the pipeline for similar reasons. At Mainframe Entertainment, for example, physical

note-passing was used as a method of transferring shot responsibility between artists

until the studio implemented an asset manager software tool [25].

Sometimes tools and workflows must be created to address new production needs

not previously encountered by the studio. Before working on Rango, Industrial Light

+ Magic (ILM) had never done a feature-length animated film. They had to imple-

ment a new materials library and a lighting workflow that could be re-used for many

shots in order to handle the number and complexity of the film’s assets [10].

Similarly, The Moving Picture Company (MPC) had to change the way they

dealt with assets in order to handle a large number of shots for The Chronicles of

Narnia: Prince Caspian [5], and again for Prince of Persia [18]. Rather than rely on a

15

hierarchical structure of assets based on shot number, name, and version, MPC moved

to a system based on the relationships and dependencies between assets. Instead

of treating assets such as models, rigs, and animation caches separately, they were

grouped into ’packages’ associated with a particular character, scene, or object. This

additional relationship allowed changes on one asset in the package to automatically

a↵ect other assets. In addition, these packages were categorized into di↵erent types

that could be simultaneously worked on by di↵erent departments. An approvals

system was set up to control the merging of work from di↵erent departments into

asset packages.

Assets and work will sometimes need to be created and modified in di↵erent

software applications, depending on the needs of the shot and the preference of the

artist. However, most 3D software tools (such as Maya or Houdini) have limited

support for exporting entire scenes with animation, lighting, and surface elements

intact. To allow their artists and technical directors to construct each portion of a

scene in their preferred tool, Digital Domain devised a system to import and export

scenes while handling di↵erent geometry and scene hierarchies [16].

Some projects have very specific needs driven by the story or chosen art style.

For example, the 2010 film Legend of the Guardians: The Owls of GaHoole featured a

cast of emotive owl characters that all required feathers. These highly realistic feath-

ers needed to be adjustable by the artists to create specific shapes and poses in each

shot. This required them to be modeled, articulated, and simulated. Animal Logic,

the creators of the film, already had a proprietary procedural animation and simula-

tion engine called ALF in their pipeline. But, it did not have the capability to produce

the feathers they needed for this film. Since no commercially available package ex-

isted that could meet their needs, Animal Logic extended ALF with a procedural

feathering tool called Quill [14]. Quill enabled modeling, surfacing, animation, e↵ects

16

and rendering of feathers. As an addition to Animal Logics production pipeline, it

allowed the artists to adhere very closely to the concept art for the characters and

maintain a high level of realism.

Another example of tools driven by art and story requirements are the hand-held

camera and ocean wave systems created by Sony Pictures Imageworks for their 2007

film Surf ’s Up [4]. Since the film was styled as a surfing documentary similar to The

Endless Summer or Step Into Liquid, they had to find a way to mimic the hand-

held camerawork and middle-budget production values of those films. To achieve this

look, they built a new live-action camera system for the film, dubbed the HandyCam,

which allowed a live action camera to be used to shoot an animated scene. The

camera operator would operate the physical camera and the capture system would

give instant feedback of the performance in the form of a smooth shaded virtual 3D

world fed back into the eyepiece of the camera.

Because of the film’s subject matter, the other major element needed for pro-

duction was the creation, rigging, animation, and rendering of realistic ocean waves.

Imageworks had many challenges: create a visually realistic wave, allow for a high

level of artistic control, handle the unique interdependence and overlap between ani-

mation, e↵ects and layout, and design a production pipeline to produce the wave as

e�ciently as possible.

Finally, with the recent increase in ”3D” or stereographic films, studios and visual

e↵ects houses have had to incorporate new techniques and tools into their pipelines to

support stereo imaging methods. Damien Fagnou of MPC presents a brief overview

of these methods and some of the technology used to support them [11]. The first and

most expensive option, native stereo, involves shooting a scene with two cameras that

are aligned and synchronized to capture the action from each ’eye’ viewpoint. This

method mimics the way human eyes view 3D images, but is prone to misalignment and

17

distortion and usually requires adjustment by a software program in post-production.

The second method, post-conversion, is utilized when a film shot in standard 2D is

also given a 3D release. It requires rotoscoping a large portion of the image to isolate

the parts that need to be at di↵erent depths. Post-conversion is very time-consuming

and generally does not yield the same image quality as native stereo.

II.3. Preparing Digital Artists for Industry

Multi-disciplinary academic programs geared toward digital production have existed

since the 1980s. Texas A&M’s Visualization program, for example, has sent many

graduates on to careers in animation, visual e↵ects, and related fields. With the

increasing prevalence of computer graphics in Hollywood films in the early 1990s,

several other programs, such as the University of Southern California’s Computer

Animation Laboratory [28] were founded to prepare students for work in these new

areas of production.

The common thread among these programs is a focus on collaboration and in-

terdisciplinary work. Courses taught at Purdue [9] [29], The College of New Jersey

[31], Bournemouth University [8], and Texas A&M University [17] allow students to

work together, sometimes partnered with industry or other university departments,

to complete animation, video game, or visualization projects. This thesis aims to

improve the pipelines in these kinds of programs by applying industry practices to

their design and implementation.

II.4. An Open-Source Pipeline Specification

Production studios are not the only source of information about pipeline practice.

Some e↵orts have also been made to develop open-source project pipelines. One such

18

e↵ort is openPipeline [21]. Developed at Pratt Institute’s Digital Arts Department,

openPipeline o↵ers both a specification for pipelines and a software implementation.

The specification defines elements of a production, overall directory structure, general

workflow, and rules. The software provides automatic directory structures, file naming

conventions, and revision control as part of a MEL-based Maya plug-in. openPipeline

is intended to emulate the functionality of most studio pipelines and to support

a similar level of complexity. What makes openPipeline unique is its release and

licensing as open-source software. openPipeline encourages distribution, modification,

and contribution to its source code and specification. Students have used openPipeline

to manage and produce short films. Several digital production studios have even

adopted the software and specification for use in their work [20].

19

CHAPTER III

METHODOLOGY AND PROCESS

This thesis work has three components. The first is an investigation of the structures

and functionality of di↵erent industry production pipelines. Second, these practices

are analyzed to determine general principles that may exist. These principles and

industry practices are compared with existing academic project pipelines. Finally,

guidelines for academic pipelines are suggested.

III.1. Interviews

The primary source of information for this research is a series of seven interviews with

industry professionals from di↵erent production studios. By gathering a large cross-

section, this research aims to draw conclusions about the common elements between

pipelines in feature animation, television, visual e↵ects, and games.

Participants were chosen based on their job titles and relevant experience with

production pipelines. In many cases participants were referred to the researcher by

previously-established industry contacts. Each participant was contacted by email

with an overview of the research goals and the primary interview questions (listed

below).

After asserting their initial willingness to participate, each interviewee submit-

ted their written permission to be interviewed and audio recorded, in keeping with

the human subjects research protocol approved by the Institutional Review Board

(IRB). In some cases, approval from the studio legal department was required before

participants were allowed to proceed. In all cases, interviewees and their employers

were given the right to review the interview transcript and redact any information

20

they deemed inaccurate or proprietary.

Each interview lasted between thirty and sixty-five minutes, depending on the

complexity and length of the participant’s answers. After talking briefly about their

background, experience, and position at their studio, the participants were all asked

the same set of basic questions, along with any relevant follow-up questions the re-

searcher felt were appropriate in the course of the interview. The questions posed by

the researcher were as follows:

• How would you define a pipeline?

• What characterizes a good pipeline?

• What kinds of feedback loops and/or communication tools make a pipeline

e↵ective?

• How important are version control and/or change-tracking methods?

• What kind of flexibility do you need in a pipeline to handle di↵erent project

requirements?

• Who decides what’s part of a pipeline? Are these consensus decisions, or dic-

tated by small groups of people?

• How have your pipeline systems evolved since you started? Are there things

you’d like to improve about it?

Interview data was coded to preserve confidentiality and to prevent preconceived

notions about the studios from a↵ecting the analysis. Participant names, studios, and

film titles were replaced according to the IRB protocol. These changes are reflected

in the full interview transcripts presented in the appendices.

21

Upon completeing the interviews, a full text transcript was created from each

audio file to be analyzed for patterns in the responses. Some questions that help to

frame this analysis:

• Who are the stakeholders in a pipeline?

• What factors influence the decisions that are made about pipelines?

• Who makes the decisions about pipelines?

• Are there identifiable patterns in basic structures across di↵erent studios?

• What common threads can be drawn between large, department-based studios

and smaller visual e↵ects shops?

• What are the types of tools that artists need to most easily move production

from one stage to the next?

• What sorts of feedback loops are typical in the production process?

• What methods of version control do studios employ?

• How do the various levels of personnel communicate during the production?

Each transcript was condensed into a shorter summary focusing on the partici-

pant’s answer to each of the research questions. Finally, these summaries were broken

down further and compiled into a list of questions, with a one-sentence paraphrase of

the most important point stated by each participant. These paraphrased responses

are included in section IV.2. Condensing and quantizing the data in this way allowed

the researcher to quickly see the main patterns and di↵erences in the responses.

22

III.2. Literature Search

Most studios are reluctant to divulge much information regarding their proprietary

systems, but they sometimes share high-level information about processes, tools, or

challenges related to their pipelines. Production studios often give talks or publish

papers at the annual ACM SIGGRAPH conference. It is in these talks and papers

from SIGGRAPH and other venues, such as the Eurographics conference and ACM

Communications Journal, where most of the background literature related to this

research was found.

Published papers that deal with production pipeline challenges, implementation,

and concepts were mined for useful principles. Because the nature of production

technology changes constantly, research focused on publications from the last decade,

but important papers predating that time were found as well.

The Texas A&M University library system proved invaluable in locating papers

and several textbooks for this research. The online catalog system and access to the

full ACM digital archives provided a flood of material matching the search keywords.

Much of this material was not relevant to the research - for example, a search for

the keyword ’pipeline’ returned 15,164 results, mostly papers on microprocessor ar-

chitecture or embedded systems research. Refining the search by adding the terms

’animation,’ ’production,’ and ’project communication’ yielded more useful results.

Many of the papers focused on a specific sub-pipeline, as mentioned by Alsup in

section II.1.2, or discussed a software tool implemented to solve a production prob-

lem. While this information was useful as a component part of a pipeline, publications

concerned with the larger aspects of communication, approval, feedback, and organi-

zation for digital productions were harder to find.

Fortunately, much of this perspective was found in the book Producing Animation

23

by Winder and Dowlatabadi [30], and SIGGRAPH presentations from Geiger [13] and

others, which were discussed in section II.2.1.

III.3. Study of Current Systems

As mentioned in section I.2, the needs and goals of industry productions are not

always the same as student projects. To apply any principles from industry practice

to academics, an understanding of existing systems in academic programs must be

obtained.

Having designed and built a project pipeline for students in the Texas A&M

Visualization program, this researcher had full access to the details of that imple-

mentation and the consequences of its deployment. At the time of this writing, the

Visualization Lab pipeline has been available to students for over one year. It has

been used to create and manage a large number of projects, providing much data

about successes and problems with the pipeline.

The Visualization department has an internal help ticket system which is used by

students and faculty alike to report problems with systems and software. The help

system has been in continuous use since 1996 and provides an enormous, detailed

database to comb through. A search for the category tag ’pipeline’ yielded over fifteen

tickets ranging from bug fixes and feature requests to group projects and tool usage

questions. These results and their implications for this research will be discussed in

the next chapter.

III.4. Summary

The methodology and process for this thesis can be summarized in three parts:

• First, a series of interviews with seven di↵erent industry professionals was con-

24

ducted. Each of the participants was asked the same set of questions, and their

answers to each were broken down into short summaries.

• Second, a search was conducted for supporting and related literature about an-

imation pipelines and digital production management. This search was done

through the Texas A&M University library system and on the internet. Rele-

vant papers were categorized as relating to one of the following: pipeline defini-

tion, production management, tools and workflow, education, and open-source

projects.

• Third, an example of a project pipeline for education was studied, combining

personal experience from the development, deployment, and maintenance of the

pipeline with a log of email-based help tickets. These contained suggestions and

problems voiced by students about the pipeline tools.

25

CHAPTER IV

SUMMARY OF INTERVIEWS

The researcher followed a plan of interviewing participants from studios with diverse

size, focus, and discipline. Seven interviews were conducted with professionals from

feature animation, television animation, and video game studios. In addition, the

researcher contacted and interviewed the creator of the previously mentioned open-

Pipeline project to get the perspective of open-source projects in relation to industry

practice.

Each of the interviews was conducted according to the project protocol approved

by the Texas A&M IRB. Interviews lasted between thirty-five and sixty-five minutes.

The following subsections present interviewee backgrounds and a summary of each

interview. Full text transcripts are included in the Appendices.

IV.1. Background Info

The first section will discuss each participant’s background, to provide some context

for their experience relevant to this research.

IV.1.1. Interview 1 - Feature Animation Studio

The first interview was with a lead technical director at a feature animation studio.

As outlined in the project protocol approved by the IRB, the interview started with

questions about his background and how he came to work in his current position.

This subject studied symbolic systems in college, with a concentration in human-

computer interaction. Symbolic systems is a multidisciplinary degree combining el-

ements of computer science, philosophy, linguistics, and psychology. He initially

26

became interested in computer graphics through his work with a university virtual

interaction lab. After graduating, he applied for a job as an apprentice Technical

Director at his current studio, and eventually moved into the lighting department

as a lead TD. For this job, he worked with the supervising TD to help decide the

technology direction of his assigned film. His responsibilities allowed him to manage

other TDs, but to also write code and develop tools as well.

This interview discussed pipeline concepts and the rest of the topics outlined in

the project protocol, including technology challenges for films he’s worked on and

ideas for future pipeline tools. This interview served as a good starting point for

thinking about pipeline concepts. This interview provided several helpful analogies for

how pipelines should work and gave this researcher ideas to discuss with subsequent

interviewees.

IV.1.2. Interview 2 - Multi-discipline Studio

This interview subject started out working technical support at a feature anima-

tion studio, doing everything from system administration type work to phone hotline

support. Eventually he moved into software development and wrote 3D graphics

translator tools to integrate CG imagery into 2D films.

He worked on some outside projects before moving on to a more supervisory role

at another studio, where he oversaw pre-production sequence work for several films.

He then went freelance for a while, doing consulting work for several clients. The

up-and-down nature of the work led him to return to feature animation production

as a CG supervisor, overseeing the design and construction of a new pipeline for his

studio.

At his current job, he is now the manager of project engineering. His team man-

ages central technology used by the studio’s projects across multiple media platforms.

27

He was a big proponent of building pipelines and tools with the Unix philosophy in

mind and much of the discussion centered around ways to uncouple parts of the

pipeline and make things more modular.

IV.1.3. Interview 3 - TV Animation Studio

After earning his bachelor’s degree in computer science, this subject worked at a large

visual e↵ects house for several years, building pipeline tools to help the studio handle

larger productions. He then got a job at his current studio, which had never employed

any programmers or people interested in putting together a real production pipeline.

The systems there had formed organically around the needs of the artists for

many years, and were not well-defined. He came in and demonstrated the value of

having programmers, and of setting up a pipeline structure to make artists more

e�cient. Very soon after that, more programmers were hired and he became the

team lead. He eventually was given charge of all the technical means of the studio,

encompassing the I.T., programming, and engineering departments.

His discussion of the protocol questions provided insight into the culture and

approach of his studio, which typically has to turn around projects extremely quickly.

Many pipeline decisions are based on what the artists need, and a conscious e↵ort is

made to keep instructions to the artists from feeling authoritarian.

IV.1.4. Interview 4 - Feature Animation Studio

This subject engaged in a broad range of academics as an undergraduate. While

working on his graduate degrees, he volunteered at the annual ACM SIGGRAPH

conference and made good contacts in the CG industry. His graduate research got

him noticed by several studios, and he began working at a visual e↵ects studio after

graduation.

28

Working in visual e↵ects proved to be exciting and challenging, but it took its

toll on family life. After a long period of intense production crunch, he moved on to

work at a feature animation studio. The saner working environment and keeping of

every part of the production process in-house appealed to him. He has worked there

ever since.

He further discussed some of the disadvantages of the visual e↵ects business

model, building pipelines for 80% of possible cases, and the evolution of pipelines over

the years. This interview provided several useful concepts to the research, including

some practical application of the Unix philosophy described in interview 2 in regards

to the data model at his studio.

IV.1.5. Interview 5 - Open Source Project

The next interview focused on e↵orts building and growing the openPipeline project,

which is discussed in greater detail in section II.4.

This subject studied biological anthropology in college, then decided to go to art

school and get an MFA in a multidisciplinary program similar to the Texas A&M Vi-

sualization Program. He took a job at a feature animation studio soon after finishing

graduate school and worked as a character TD on several of their films.

Eventually, he returned home to work on other projects. He wrote a textbook,

started his own studio, freelanced at other studios, and did some teaching. It was

during this time that he started forming the specification and ideas for openPipeline,

eventually taking the project with him into academia when he was hired to run a new

academic research lab.

After several years he returned to the same feature animation studio and spent

a year and a half doing character setup (rigging) for one of their films. More recently,

he moved into global development, creating tools and workflows to be used across all

29

shows and researching tools and technology for future shows.

Getting a more academic-centric view of the pipeline was crucial in forming the

suggestions developed by this research. This interview provided good insight into the

most important aspects of a pipeline for students.

IV.1.6. Interview 6 - Video Game Studio

This subject did his graduate work in computer graphics and then worked as a soft-

ware engineer for several feature animation studios. He worked on several projects,

including the CG rendering pipeline used for 2D films. His work moved closer and

closer to production, making tools for the modeling and look development depart-

ments until eventually he became a lighting TD.

He then made the change to video games to write tools for the cinematics group,

which makes all the cut scenes and in-game movies for the studio’s games. Despite

the fact that the content produced is very di↵erent, he found feature animation and

video game cinematics to be very similar. Most of their current projects are shorter,

so his role tends to focus more on artist support.

This interview provided more insight into the di↵erences between large, long-term

productions and smaller ones that finish just as the teams are hitting their stride and

figuring things out. This subject also echoed some of the concepts mentioned in

interview 2 regarding de-coupling the pipeline from data specifics.

IV.1.7. Interview 7 - Video Game Studio

This subject is the CG supervisor and head of pipeline and tools for a major video

game franchise. He has the most artistic background of all of the interviewees. He

graduated from college with an art degree, focusing on sculpture, but had his interest

in CG sparked by one computer art class o↵ered at the time.

30

He started doing cut scenes and animation for a small video game studio, followed

by some work in the research division of a PC game studio. He created a lot of art

assets for one of their early games and began to learn some of the basics of database

programming to help organize all the artwork. He began doing more software tools,

shaders, and generally technical work for their games before moving on to a di↵erent

job as a senior technical artist at a large video game studio.

In the handheld games division, he wrote some tools to generate game assets,

manage player profile pictures for sports games, and port geometry from one console

format to another. Eventually he started working on the game engine for one of the

studio’s next-generation console titles, which needed to be upgraded from an older

version to take advantage of the hardware technology on the new platform. When

that project was complete, he shifted to his current position overseeing the tools for

one of the studio’s popular game franchises.

This interview provided a good look at how making games di↵ers from films and

animation, but also illustrated the crucial role of communication in all forms of digital

production.

IV.2. Responses

As stated in Section III.1, each interview was broken down into a short summary and

a further one-sentence paraphrase of the participant’s answer to each question. The

following subsections present these short summaries.

IV.2.1. Interview 1

This subject defined a pipeline as the ’secret sauce’ of a studio - all of the project’s

processes and workflows, realized or embedded in software. He stated that a good

31

pipeline ensures the integrity of production data and facilitates collaboration between

people. He cited email as the most-used communication tool at his studio because of

its ability to be specifically directed to groups of people. Shot or sequence mailing

lists allow relevant information to be sent only to those who need to see it.

He did not elaborate on version control methods, but did stress the need for

studios to be able to retrieve specific configurations of shots. For example, a director

may ask to see a shot the way it had been rendered five months prior. Under current

systems, this request is very di�cult to fulfill because all of the assets and their

dependencies have changed. He described a version control system that might be

able to achieve this through parsing more metadata about an asset.

On the concept of flexibility in a pipeline, he made an analogy to the layout

of a grocery store. The aisles are placed based on market and social research, but

as the store owners observe people moving around the store, adjustments are made

to increase the visibility of some products or subconsciously guide shoppers to move

through the aisles in a certain way. A pipeline should be flexible enough to change

based on observations about the artists’ behavior and their daily use of the tools.

At his studio, pipeline decisions for each film are made by a committee of TDs and

supervisors. This group discusses the big-picture needs for the project and comes to a

consensus on the major development initiatives that will need to be started. Smaller,

more reactive decisions based on artist’s needs are handled by individual TDs later

on during production.

The biggest evolution of the pipeline at his studio was the expansion to incorpo-

rate stereo renders for 3D release of their films. Significant changes had to be made in

the development, layout, and rendering workflows to create and finish shots in stereo

without doubling the amount of work.

32

IV.2.2. Interview 2

Interviewee 2 had a broader definition of a pipeline than Interviewee 1. He saw it as a

Venn diagram combining the circles of production management, creative (the artists),

and technology. Production management runs the show, organizes the teams, and

figures out how the work is going to get done. Creative makes the story, the art, the

animation - anything that’s going to show up on screen. Technology supports the

artists’ needs and the policies of production management. The intersection in the

middle of all of that is the pipeline.

To him, a good pipeline reacts to the artist’s conscious actions, automatically

supporting them. He compared it to breathing - most of the time a person doesn’t

even think about it, but they can control their breath if necessary when the situation

calls for it. The pipeline should be out of the way and let the artist focus on the

creative work.

When asked about feedback loops and communication, he posited that email

is inherently noisy and should take a back seat to other forms of communication.

Databases, for example, allow a user to filter and find the information they want

when they want it as opposed to getting an email every time something changes.

Face-to-face interpersonal communication is better still, because it captures the full

context of what’s being said in a way that text-based notes cannot.

This subject took a more global view of data management not limited to version

control, but expanded to a stack. The top level is policy, usually a decision between

push or pull methods chosen by the technical leadership on the project. The next layer

is the software tools artists use to do their work. Beneath that is asset management

- for a particular circumstance, what versions of the assets should be combined to

make a shot? The next layer down is version control. These systems should be

33

content-agnostic and handle only generic blobs of data, rather than expecting certain

file types or storing anything other than file version history and logs for each file. The

bottom layer is the hardware and software upon which everything runs, such as the

operating system, file system, network location, and so on.

As with many of the research questions, this subject related his answer about

pipeline flexibility to the Unix philosophy and good software engineering practice.

The best way to be flexible is to leave the pipeline dumb and configuration-based

so that it’s not hard-wired to any specific production data. Meta-data, attached to

assets or software tools, can be used to define things on the fly.

Relating to his earlier answer about data management and its top layer of policy,

he described the hierarchy for pipeline decisions as a tiered system. The producer

and executive producer define the expectations and needs of the project. The pro-

duction manager, visual e↵ects supervisor, CG supervisor, and technical supervisor

get together to actually figure out how to execute those needs in policy and software.

Finally, discussing pipeline evolution and future systems, he predicted more

movement toward databases as the backbone of a pipeline. However, systems using

these databases should not be fully dependent on them. That way, if the database

goes down for maintenance or technical problems, production doesn’t have to grind

to a halt.

IV.2.3. Interview 3

This interviewee defined a pipeline, broadly, as a communication technique between

two di↵erent groups of people who have di↵erent goals and needs. The pipeline must

mediate between those sets of needs and serve the requirements of individual artists.

The best pipeline is the one that annoys the artist the least, because the goal is for

the artists to be as creative as they can, as much as they can, rather than worry

34

about technical details.

Unlike other, larger facilities, his studio relies primarily on physical, face-to-face

communication and eschews email almost completely. Unless they are very simple

directions, text-based notes do not capture the full meaning and context of most

feedback. This is especially true of feedback about animation. Having the director

’act out’ his intent is much clearer than trying to accurately describe the same action

in text.

Because of the speed of production at the studio, this interviewee and his team

decided to enforce a ’moving forward’ system of version control. There is no time

to backtrack, so new versions of assets are automatically pushed out to artists. On

shows with many assets, there is never more than one version of a given asset unless

it is a main character.

The most pressing factor for his studio is limited production time. An important

way for their pipeline to be flexible is to use only tools that can get quick and easy

support. In almost all cases, this means writing software in-house because a third-

party software company would not be able to meet the time demands required for

the project. Being rigidly confined to programs that someone else wrote, and being

unable to change or fix them, is an unacceptable scenario when the project has to be

completed in days or hours.

He approached pipeline decisions from a more artist-driven position. Because of

the studio’s small size, the speed of production, and the culture of the workplace, any

decisions handed down about pipeline or workflow need to be given very carefully so as

not to feel authoritarian. Some details, like naming conventions, are decided by tech

leadership at the top level, but nearly everything else comes from conversations with

the artists about what annoys them and what would help them work more e�ciently.

His studio also has the benefit of very low employee turnover, so their systems can be

35

more deeply tailored to individual needs. They don’t have to train a new employee

every few days or weeks to learn the pipeline.

Building the pipeline in a small-problem, piece-by-piece way was crucial to his

opinion of pipeline evolution. He felt throwing out the existing system usually causes

more headaches than it’s worth. Instead, the pipeline designer(s) should focus on

fixing small, solvable problems with an eye towards the eventual completed system.

Each component should also be able to pass data in and out of the rest of the pipeline

so that they can be swapped in a modular way.

IV.2.4. Interview 4

This subject defined a pipeline as the backbone of the production process. It’s a way of

establishing a structured, compartmentalized approach to tasks to make things more

e�cient and carry a shot from a bunch of drawings on paper out to the final rendered

frames. Every pipeline has its strengths and weaknesses, but the best pipeline is one

that handles 80% of the work e↵ortlessly, which gives you the time and resources to

deal with the other 20% of cases.

On the subject of feedback and communication, he agreed that email is noisy and

intrusive, but added that the intrusiveness is sometimes a good thing. For example,

as a technical supervisor, he receives upwards of six hundred emails a day, so writing

mail filters becomes critical for filing away messages that don’t require immediate

action. Anything not captured and archived by the filters demands attention, and

sometimes it’s necessary. He also echoed Interview 2’s point about allowing users

to filter and find the information they want - through web forms, graphs, and even

iPhone applications that let them check the status of renders.

He described how asset management and version control are taken completely

out of the artist’s hands at his studio, which has moved toward a true ’push’ system

36

where the latest asset versions are automatically pushed out to artists. If the new

version breaks something, then it breaks for everyone, and the asset can be reverted

or fixed quickly. Old versions are maintained for archival purposes.

The key to a flexible pipeline, according to this interview, is the ability to inte-

grate new techniques and data into the process, sometimes in the middle of a pro-

duction. For example, on a recent feature animation project, the layout department

decided to start incorporating captured hand-held camera work into their shots, even

though the project had not been set up to use that technology. This change required

the engineers to write new software to handle the capture data and put it in a format

that worked with the existing pipeline. At this studio in particular, last-minute story

changes may introduce a new special e↵ect or visual element that the current pipeline

does not have a way of creating. In those instances, new tools have to be written to

achieve the desired e↵ect in service of the story.

The people responsible for making the decisions about how to make these changes

and integrate new technologies are the visual e↵ects (VFX) supervisor and the tech-

nical supervisor. The VFX supervisor’s job is to interpret what the director and art

director want to figure out how to make that happen from a production standpoint.

The technical supervisor works with the VFX supervisor and advises them on the

process, pipeline, and tools that will help achieve the director’s vision. These two

supervisors then define the rest of the leadership structure based on how best to ap-

proach the project. Some pipeline decisions (such as naming conventions) are decided

at this level, but there is always input from the production departments who may

have suggestions about better ways to work.

The biggest evolution in the pipeline during his time at the studio was the de-

coupling of the data model from the shot workflow. Initially, the shot data and assets

were passed along in an assembly-line fashion, which led to some complications in

37

the production because the data had changed hands so many times. Eventually they

determined that a hub-and-spoke model would be more stable. In this model, all of

the show’s assets are stored in a central repository and are checked in and out as

necessary. This made it easier for departments to work out of order without causing

problems for each other.

IV.2.5. Interview 5

This subject described the pipeline as the glue between all the artist’s stations in a

studio. It’s the software and processes that brings in the elements an artist needs

to get started on their work. The pipeline then takes that work data, converts it,

and sends it o↵ in a usable format for other people in the facility. Most of this is

happening behind-the-scenes. The artists don’t see this when they work. A good

pipeline has a well-defined structure, but is modular in construction so that pieces

can be swapped out. It’s scalable so that it can handle varying volumes of data and

users.

On feedback loops and communication, he said that email lists were an e↵ective

way to reach the appropriate parties with questions or problems, but the best feedback

usually comes from direct, verbal communication with the artists. Co-location with

the artists is important for software engineers because they can get better information

than a simple bug report, or even look over an artist’s shoulder as they work to see

what they’re doing to cause an error.

According to him, a studio’s version control strategy depends on their priorities

and available resources. A visual e↵ects studio serving an external client may need to

be able to give the client whatever shot version they ask for, from any point in time.

A feature animation studio that is its own client may not care about older versions

because they’re focused on moving forward with whatever changes the director asks

38

for. They may store older versions for archival purposes, or to restore if something

goes wrong, but they don’t have any intention of going backwards in versions.

According to him a flexible pipeline is one that is less aware of the specifics of

what data actually means. The pipeline simply carries data from one location to

another, and can respond to queries about its contents and the software required to

handle it. A pipeline that looks for a defined number of things, of a specific data type,

in a specific hard-coded location, will not be able to handle any change or expansion

very well.

Those kinds of pipeline decisions are usually a power struggle between the studio

at large and a specific production. Decisions about tools and process will be either

studio-centric or show-centric. If technical leadership is on the studio side, then each

production uses the tools and policies dictated by the studio. If an individual pro-

duction has some specific demands for resources or tools, development can be driven

by the needs of that production. Ideally the facility can find a position somewhere

in the middle, where the studio has a coherent global strategy for the pipeline, but

individual shows can ask for and try new things to improve on current systems.

This back-and-forth between the studio and the shows drives the evolution of

the pipeline. Reacting to problems on previous productions creates new tools and

methods, which may or may not carry over onto the next show depending on its needs

and the success of the previous project.

IV.2.6. Interview 6

This subject’s definition was similar to the answer given in Interview 2. A pipeline

is a combination of the production’s ecosystem and culture. The ecosystem is simply

the structure and framework in which the production lives - the show’s hardware,

software, personnel, and processes. The culture of the production is the rules of

39

behavior - the policies that dictate how the project will be done. A good pipeline

handles version control, asset management, and communication in a clear and simple

way that does not confuse the artists.

Artist notes are incredibly important to communication in a production. They

help chart an asset’s history and enable asynchronous interaction across departments

or even across time zones. Free-form notes unrelated to revisions, such as to-do items

or warnings about potential problems are important as well. These kinds of notes

should ideally trigger an email to get people’s attention when things change. An even

better system would be an integrated operating framework that allowed artists to see

changes to data in real time, similar to a day trader watching stocks.

Version control for openPipeline was made deliberately simple - artists simply

save their work and a new version is automatically created in a defined location.

openPipeline keeps the last ten versions and has functionality to recall old versions

if the user wishes. For small-scale projects, a web-based revision control system can

be used to store assets and work collaboratively with o↵-site artists.

Pipelines should be flexible - to a point. They need to have a set of basic, rigid

rules and be flexible in small, smart ways. For example, generating metadata about

a shot or asset that’s easy to read by multiple software programs. Once production

begins, there can’t be a lot of flexibility in the pipeline. The aim is consistency, and

any customizations or adjustments for flexibility need to be made with care.

In production studios, decisions about pipelines are made after many meetings

between TDs and production supervisors. They are confirmed or adjusted by depart-

ment heads who are in tune to their department’s needs. The top-level supervisors

have a more global view that might not necessarily be available to a specific depart-

ment concerned with its own corner of production.

Over its lifespan, the openPipeline project has evolved from a specification to a

40

Maya implementation in MEL to a host of other implementations for di↵erent software

programs with support for a myriad of data formats. It has grown from use exclusively

at small studios and academic institutions to mid-sized production studios all across

the world. It has even formed the basis for some notable commercially-produced asset

management systems.

IV.2.7. Interview 7

This interviewee di↵erentiated between pipeline and workflows in his answer. Ac-

cording to him, pipeline is the tools or applications for creating the game’s assets and

putting them in the right format for the console or destination platform. Workflow

involves the artists and approvals systems, and the processes that guide assets from

concept to final product. To him, the word ’pipeline’ means technology and ’workflow’

means the human factors and policies used to get the project done. A combination

of these two things is required to get a game made.

A good pipeline is dependent on a studio culture where it’s okay to speak up

and identify problems. Having people who voice their opinions about solutiions and

don’t accept temporary workarounds is key to building strong, robust tools. A good

pipeline does not break easily, and is well-documented.

This subject felt that the communication and feedback methods used in produc-

tion depends heavily on the team and how well they are functioning. Video games

tend to have less stringent feedback loops, but rather broad art direction for the en-

tire build of a game. Face-to-face communication is great because it’s immediate and

delivers the full context of that feedback. But, it’s not documented the way email is.

Being able to go back and refer to previous communications through email is useful.

He described an ideal ’living document,’ an editable wiki-style page or resource that

documents solutions to problems and points out people to ask about certain issues.

41

Having assets logged with good version notes is important, and the same goes

for software development and deployment. If a pipeline tool is updated and new

problems appear, the engineers can look to a particular version of the code to see if a

bug was overlooked before deployment. His studio makes use of relational databases

to store assets and their connections, so that if one asset changes it automatically

a↵ects any child assets in the database.

Pipelines for video games are usually very production-specific, unless they make

use of broad, well-documented engines such as Unity or Unreal. A studio can make one

game with one pipeline because the tools are built for specific production challenges,

and flexibility outside of that is a low priority.

Decisions about the pipeline are a collaboration between the run-time engineers

making the tools and the artists creating the game. The engineers need certain

things to make the game run, and the artists generate assets and data that have

to be conditioned in a certain way to run in the game. The challenge comes in

figuring out the easiest and most direct way to make that translation. Any tools that

are developed have costs - they must be maintained and documented. As the CG

supervisor, he has the final say on which tools are worth the time and e↵ort.

Video game pipelines have evolved exponentially in their complexity and per-

formance to keep up with the demands of newer games. At his old jobs, games did

not have many assets, so keeping track of everything was not an issue. Now a game

may have thirty or forty di↵erent asset types and many in-house software tools and

packages for the graphics cards needed to handle increasingly complex geometry.

42

CHAPTER V

RESULTS AND DISCUSSION

This chapter discusses the general principles discovered during the course of the re-

search. Educational environments could benefit most from applying these principles.

V.1. Recurring Themes from Interviews

When asked to define a pipeline, each interviewee gave di↵erent answers, sometimes

using creative analogies to describe what they thought of as a pipeline. However,

nearly all of them considered a pipeline to be a combination of, or the glue between,

all the areas involved in the project. Production management, creative (the artists),

and technology must work together to communicate, establish structure, and meet the

artistic and budgetary needs of the project. Interview 2 even described the pipeline

as the intersection of a Venn diagram of these three main areas.

When it came to describing a ’good’ pipeline, two main threads of conversation

emerged. First, a good pipeline should automatically support what the artist is doing

without requiring any of their time or energy. Artists shouldn’t have to worry about

where to save their files, or how often, or what to do when they’re finished working.

The behind-the-scenes tools and the chains of communication/approval should reflect

this. Second, a good pipeline should be designed and structured in a modular way

so that it’s simple to swap pieces out without drastically a↵ecting the rest of the

pipeline.

Interviewees were highly divided on the subject of email as a method of commu-

nication and feedback in a pipeline. Some, such as Interview 3, stressed the richness

and context of physical communication, especially in the area of feedback for artists.

43

A director physically acting out what he wants in a character performance is more

useful for an animator than text-based notes. On the other hand, email is ubiquitous,

and can be automatically triggered by the system to notify artists when something

needs their attention. Group mailing lists (for artists working on the same sequence

or shot) can be used to direct feedback more locally without filling up everyone else’s

inbox with irrelevant messages.

Version control strategy is defined at the management level and depends on the

studio’s priorities and available resources. For example, Interview 1 brought up the

scenario of a director wanting to recreate a shot from six months back. If the ability

to do that is important to the studio, then systems will be put in place to store and

track all those old versions of assets so that they can be called up at a moment’s

notice. Like other pipeline tools, versioning should be taken out of the artist’s hands

and performed automatically.

Two main points emerged from the discussion of flexibility in the pipeline. First,

whenever possible, use software tools that can get quick, responsive tech support.

Relying on external third-party support can be problematic under a tight deadline.

It is for this reason that most studios write their own proprietary tools. Second,

use metadata like scene descriptions or configuration files to keep the pipeline more

general, rather than closely tying the tools to data. Interview 2 used an example

where his studio had some very complicated shots with over ten thousand assets.

Rather than trying to reference each asset into the shot file, they used a text file

to define which objects belonged in the scene and then only loaded the ones they

needed at any given time. Keeping things generalized with scene descriptions allows

the studio to readily handle shots of varying size.

The decision-making process for pipelines varies from studio to studio, but for

the most part the answers from each participant were consistent. Decisions about

44

versioning, push vs. pull, and leadership and approvals structure are typically made

by upper-level management including the producer, visual e↵ects supervisor and tech-

nical supervisor. This group has a more global ’big picture’ view of the project com-

pared to a department supervisor, who may be most concerned with his department’s

immediate needs. However, this does not mean that everything is handed down in

a forced, authoritarian manner. The needs and suggestions of each department are

taken into account to give everyone an agreeable set of processes to follow.

The final interview question covered the evolution of pipelines. Discussion on

this topic was all over the map. Interview 1 talked about the increased importance of

stereo for CG productions, and the necessity to plan and optimize for stereo images.

Interview 3 charted the progress of his studio from having no established pipeline, to

implementing components one at a time, to having a very e�cient set of tools and

processes that allow very fast turnaround on projects. Interview 4 spoke about the

process of decoupling the data model from the shot workflow to eliminate dependen-

cies and bottlenecks. All of the answers, though, could be boiled down to a search

for greater e�ciency in production.

V.2. Findings from Publications and Literature

The literature search portion of the research yielded nearly forty references across

many publications. Articles and papers from SIGGRAPH, SIGCHI, SIGCSE, ACM,

IEEE, Computer Graphics World, and published books on animation production

provided useful insight into the various topics of this thesis.

One important insight provided by the literature search was the critical role

of the producer and top-level studio leadership in forming a pipeline. Winder and

Dowlatabadi’s book gave the most detailed look at the organization and direction

45

required to assign leadership and parcel out labor in a way that will get the production

finished on budget. While academic pipelines do not necessarily contain a ’producer,’

establishing responsibility and chain of command is important to ensure that systems

are maintained and updated to meet student needs.

Scalability is another important concept touched on in both Chuang’s and Geiger’s

SIGGRAPH presentations [7] [13]. Setting up a pipeline that can be easily scaled is

necessary in academic environments, where students may work on individual projects

or collaborate with others in teams. Geiger in particular emphasized the concept

of people being the most valuable part of any pipeline. Allowing students to easily

collaborate taps into this value.

The capacity for clear, constructive feedback is a crucial part of the pipeline.

This is especially true when artists have to deal with others who have di↵ereng ex-

pectations or disparate levels technical knowledge. Hirsch’s SIGGRAPH presentation

[15] about delivering creative feedback, as well as Phalip’s paper on communication

challenges in film scoring [22], were both useful in this regard. Phalip o↵ers an

interaction design approach to bridge the gap between collaborators with di↵erent

backgrounds, and to address ambiguities in communication. This approach was help-

ful in formulating suggestions for communication tools in an academic pipeline, as

was Fussell and Weisband’s research into instant messaging as a tool for multitasking

and collaboration [12].

The majority of publications found dealt with creating tools to meet specific

production challenges. These have already been covered in Section II.2.2, but the

overarching point of the papers remains - that a pipeline should be able to accommo-

date the integration of new tools and data in order to meet production needs.

46

V.3. Existing Academic Pipelines

Re-examining the Visualization Lab pipeline in the context of this research provided

fresh perspective on which parts of it worked, and which needed improvement. The

biggest problem for students seemed to lie in the versioning system. Students are

accustomed to using the ’File–Save As’ dialog in Maya to create a new incremental

version of their work when they reach a significant milestone. The workflow defined in

the Lab pipeline required that they save their work and then use a command line tool

to manually perform a backup with some check-in notes. This extra step, along with

the introduction of the command line interface, was initially confusing to students

and led to the creation of duplicate project folders in their work areas.

The Visualization Lab pipeline requires students to type in commands for tasks

like asset and shot creation, and for starting their Maya sessions. However, the

utility of making artists use the command line to perform tasks is open to debate. If

the goal of an education program is to prepare students for industry, and industry

does not require artists to use the command line, do students reap any benefit from

having to learn to use it? Both Interview 3 and Interview 4 stated that artists do

not use command line tools at their studios, but instead use GUIs for all their tasks.

Command-line versions of these tools exist, but mostly for debugging and testing

purposes. They are not used by artists.

Most projects in the Visualization Lab are individual assignments where only

one student is modifying assets and tracking his or her progress. However, for cases

like the summer industry course or some directed-study projects, group access for

small teams may be required. Team members are added to a Linux user group and

given access to a project directory. The structure and tools for groups are the same

as for individual projects, and the only group-specific features are utilities to fix file

47

permissions in the project creation and shot publishing commands.

Studying the log of help emails was also useful. Some of the pipeline features

regularly used by students, including the ’make asset’ command, were not part of the

initial pipeline distribution but were suggested by students and incorporated later.

V.4. General Principles

Based on the results from interviews, study of published works, and experience de-

veloping a small project pipeline for academics, pipeline practice can be broken into

the following five principles: stability, clarity, unobtrusiveness, modularity, and gen-

erality.

V.4.1. Stability

Stability in a pipeline is most closely related to the technology used for production.

It means maintaining data integrity, providing working tools, and functioning in con-

sistent way that does not surprise its users.

There are two key steps to ensuring stability in an academic pipeline: sanity-

checking input, and software testing. Sanity-checking input is a basic software de-

velopment practice and is easy to implement. A sanity check is a basic test to see

if the input is rational and rule out an obviously incorrect results. For example, if a

program accepts only numeric integers as input and the user enters a string of let-

ters, the input is incorrect and the program should output an error message. This

type of check is typically placed at the beginning of a software program before other

operations, so that no calculations are wasted on incorrect input.

Testing, however, can be more di�cult. Most academic facilities do not have the

resources to do extensive testing so most e↵ort is usually spent on fixing bugs that

48

are reported by students.

In this respect, academic environments are most like the situation Interview 3

described, where his team takes summers to write and test new tools. Individuals re-

sponsible for academic pipeline development should take advantage of breaks between

semesters to test their tools and identify as many bugs as possible. This testing time

is important, because if something breaks during student production that interferes

with their work, it puts a burden on both the students and the support sta↵.

Money is not typically at stake when delays are caused for students, but time is.

They do have project deadlines to meet. Time wasted fixing errors prevents students

from engaging in more creative work, and prevents support sta↵ from developing new

tools or implementing new features.

V.4.2. Clarity

Clarity involves both the software and personnel aspects of a pipeline. Data flow

should be well defined so artists know what they should expect to receive as input

and what to deliver as output. Approvals should be well structured so artists know

who to report to for feedback about their work. The feedback itself should be well

delivered so that ambiguities are minimized. Tool interfaces should be well designed

so they can be used easily by artists. These tools should also be well documented so

artists can find information quickly if they have a problem.

Most projects in academic environments are done by individuals. Students han-

dle all aspects of production themselves and do not have to worry about passing data

to others (though there are exceptions in the case of group projects). It is important

to instill good practice by defining the flow of data through any pipeline students use.

Having a well defined set of steps that makes sense is more important to students

than the details of push systems versus pull systems.

49

The approvals structure in academic pipelines is straightforward and takes one

of three forms: instructor approval, self approval, or team leader approval. The most

common form of feedback loop is the one between the instructor and the student, and

sometimes between students during class critiques. Making instructors and students

aware of feedback techniques such as those presented by Hirsch can lead to better

critique sessions and more useful feedback.

Interface design for academic pipelines is a struggle between GUIs and command-

line tools. The preference for one or the other comes down to the goals of the institu-

tion. Does that program see a benefit to making students use the command line, or

do they prefer familiarity and ease of use? Based on the interview responses, and to

ensure usability for all students, GUIs should be created where possible. Using GUIs

allows the pipeline designers to limit user access to data and decreases the chances of

student errors through incorrect input or careless clicking. As mentioned by Interview

4, ideally the commands performed by the GUIs can also be run from the command

line for testing purposes, or by users who prefer to do so.

All of these aspects must be well-documented so that students (and instructors)

can find information about them quickly. The easiest way to implement this is through

an editable wiki-style web page. Command lists, articles, how-tos, screen shots, and

code snippets can all be accessed and updated on a wiki through simple interfaces.

V.4.3. Unobtrusiveness

An obtrusive pipeline that gets in the students’ way or makes them do extra work is

antithetical to the purpose of a pipeline. An academic pipeline should allow students

to spend the maximum amount of time creating and working instead of dealing with

technical details or repetitive, insignificant tasks.

This un-obtrusiveness can be achieved by taking certain tasks behind the scenes

50

for students. For example, one of the strengths of openPipeline is its automatic

handling of file versions when users click the ’save’ button in Maya. The file is saved

with a new version number in the correct project location, without making the user

perform any extra steps. The ’make shot’ command in the Visualization Lab pipeline

is another example of this behind-the-scenes work. Users simply select the assets they

want added to a shot, and all the file creation and referencing is performed for them

automatically.

Being unobtrusive carries over to production tracking, as well. Students should

not be bombarded with emails at every change or publish. A better approach, and

one that fosters more collaboration, might be to generate data that could be easily

imported into a Google Doc spreadsheet. That way students can open a tracking

sheet and see any changes that have been made.

V.4.4. Modularity

The principle of modularity is a tenet of the Unix philosophy and focuses on making

software cleaner and simpler. Eric Raymond, in his book ”The Art of Unix Program-

ming,” [24] wrote:

The only way to write complex software that won’t fall on its face is to

build it out of simple modules connected by well-defined interfaces, so

that most problems are local and you can have some hope of fixing or

optimizing a part without breaking the whole.

As a pipeline increases in complexity, the need for ’well-defined interfaces’ be-

tween the tools becomes greater. Rather than writing a large program to perform

multiple tasks, pipeline designers should break these tasks down into individual pro-

grams and ensure that they can pass data easily between them. When implementing

51

a modular approach, the designer should ask: if one of the pipeline tools was updated

or replaced, would all the other tools still work?

Academic pipelines do not have the benefit of a team of engineers working year-

round to improve and update their tools. Since students come and go, having a set

of organized, easily-connectable tools makes it easier to continue development even

after the original designer has graduated or moved to another institution.

V.4.5. Generality

This principle could also be called ’reusability.’ Building a pipeline that is re-usable

across projects can help students be productive more quickly since they do not have

to learn new tools. In the case of academic pipelines, generality is crucial because it

is unlikely that the school or the students have the time or resources to build pipeline

tools and protocols for every individual project.

An academic pipeline should be suitable for many kinds of projects, not just

animation. Multi-disciplinary academic programs often encourage many di↵erent

types of projects ranging from live-action films to animation to data visualization to

interactive pieces. Handling many di↵erent types of project data requires a pipeline

that is content agnostic and not tied to the specifics of data, as described in Interview

2.

Part of being generalized is being scalable. Academic pipelines should be able to

scale from individual students to small or mid-sized teams. Group projects require

special considerations for file permissions. Specific implementations depend on the

operating system running on that institution’s computers.

52

CHAPTER VI

CONCLUSION AND FUTURE WORK

Developers and interested students should be able to use the results of this research

to build their own pipeline, or contribute to existing projects like openPipeline. In

places where a production pipeline already exists, new tools or interfaces could be

added based on the presented suggestions. The work presented here could also inspire

other master’s theses concerned with implementing and testing these suggestions in

a substantive way.

Digital production is increasingly globalized, with studios sometimes having sev-

eral international branches or subsidiaries. Working with an overseas facility presents

new challenges for pipelines, such as how to sync and manage production assets be-

tween studios. This thesis does not discuss how studios handle remote collaboration.

An investigation into these practices would be a useful extension of this research.

53

REFERENCES

[1] I. A. Alsup, “#0020: The technology is not the pipeline,” Aug. 2009. http:

//cgsupervisor.blogspot.com/2009/08/0020-technology-is-not-pipeline.html

[2] N. T. Bajandas, “A post-mortem analysis of production process: The bricklayer’s

disaster,” Master’s thesis, Texas A&M University, College Station, TX, USA,

December 2011.

[3] D. E. Bettis, “Digital production pipelines: Examining structures and methods in

the computer e↵ects industry,” Master’s thesis, Texas A&M University, College

Station, TX, USA, May 2005.

[4] R. Bredow, D. Schaub, D. Kramer, M. Hausman, D. Dimian, and R. S. Duguid,

“Surf’s up: The making of an animated documentary,” in ACM SIGGRAPH

2007 Courses. New York, NY, USA: ACM, 2007, pp. 1–123.

[5] G. Butler, A. Langlands, and H. Ricklefs, “A pipeline for 800+ shots,” in ACM

SIGGRAPH 2008 Talks. New York, NY, USA: ACM, 2008, p. 72.

[6] E. Catmull, “The problems of computer-assisted animation,” in Proceedings of

the 5th annual conference on computer graphics and interactive techniques. New

York, NY, USA: ACM, 1978, pp. 348–353.

[7] R. Chuang and D. g. DeBry, “Creative collaboration: E↵ective CG pipelines:

any size, any place,” in ACM SIGGRAPH ASIA 2009 Courses. New York, NY,

USA: ACM, 2009, pp. 1–68.

[8] P. Comninos, L. McLoughlin, and E. F. Anderson, “Educating technophile

artists: Experiences from a highly successful computer animation undergrad-

54

uate programme,” in ACM SIGGRAPH ASIA 2009 Educators Program. New

York, NY, USA: ACM, 2009, pp. 1–8.

[9] D. S. Ebert and D. Bailey, “A collaborative and interdisciplinary computer an-

imation course,” SIGGRAPH Comput. Graph., vol. 34, no. 3, pp. 22–26, Aug.

2000.

[10] L. Estebecorena, N. Sepulveda, and K. Sprout, “Rango: A case of lighting and

compositing a CG animated feature in an fx-oriented facility,” in ACM SIG-

GRAPH 2011 Talks. New York, NY, USA: ACM, 2011, p. 16.

[11] D. Fagnou, “Stereofx: Survey of the main stereo film-making techniques,” in

ACM SIGGRAPH 2011 Studio Talks. New York, NY, USA: ACM, 2011, p. 6.

[12] S. R. Fussell, S. Kiesler, L. D. Setlock, and P. Scupelli, “E↵ects of instant mes-

saging on the management of multiple project trajectories,” in Proceedings of the

SIGCHI conference on human factors in computing systems. New York, NY,

USA: ACM, 2004, pp. 191–198.

[13] K. Geiger, “Keeping your money on the screen & o↵ the floor,” in ACM SIG-

GRAPH ASIA 2009 Courses. New York, NY, USA: ACM, 2009, pp. 1–51.

[14] D. Heckenberg, D. Gray, B. Smith, J. Wills, and C. Bone, “Quill: Birds of a

feather tool,” in ACM SIGGRAPH 2011 Talks. New York, NY, USA: ACM,

2011, p. 34.

[15] E. Hirsch, “Delivering creative feedback,” in ACM SIGGRAPH 2012 Courses.

New York, NY, USA: ACM, 2012, pp. 1–10.

[16] D. Maskit and C. Fong, “Production-grade scene translation pipelines,” in ACM

SIGGRAPH 2003 Sketches & Applications. New York, NY, USA: ACM, 2003,

55

p. 1.

[17] A. McNamara, J. G. Montalvo, D. Walvoord, and M. Friedman, “Revolution -

evolution: The collaboration forges on,” in ACM SIGGRAPH 2011 Studio Talks.

New York, NY, USA: ACM, 2011, p. 5.

[18] G. Meeres-Young, H. Ricklefs, and R. Tovell, “Managing thousands of assets for

the Prince of Persia city of Alamut,” in ACM SIGGRAPH 2010 Talks. New

York, NY, USA: ACM, 2010, p. 30.

[19] N. D. Naugle, “BIM principles to practice: Using BIM to create a new model for

producing animation,” Master’s thesis, Texas A&M University, College Station,

TX, USA, December 2011.

[20] R. O’Neill, “Building the perfect production pipeline one student at a time,”

Computer Graphics World, vol. 32, no. 8, Aug. 2009.

[21] R. O’Neill, P. Mavroidis, and M.-H. Ho, “openPipeline: Teaching and implement-

ing animation production pipelines in an academic setting,” in ACM SIGGRAPH

2007 Educators Program. New York, NY, USA: ACM, 2007.

[22] J. Phalip, M. Morphett, and E. Edmonds, “Alleviating communication chal-

lenges in film scoring: an interaction design approach,” in Proceedings of the

19th Australasian conference on computer-human interaction: Entertaining User

Interfaces. New York, NY, USA: ACM, 2007, pp. 9–16.

[23] Pixar, “How we do it,” April 2011. http://web.archive.org/web/

20110414200925/http://www.pixar.com/howwedoit/index.html#

[24] E. S. Raymond, The Art of UNIX Programming, 1st ed. Boston, MA, USA:

Addison Wesley Professional Computing Series, 2003.

56

[25] A. Rempel, D. Broadland, S. Struben, and F. D. Fracchia, “E↵ective asset man-

agement for episodic television and features,” in ACM SIGGRAPH 2003 Sketches

& Applications. New York, NY, USA: ACM, 2003, p. 1.

[26] B. Robertson, “Disney lets CAPS out of the bag,” Computer Graphics World,

vol. 17, no. 7, pp. 58–64, Jul. 1994.

[27] “Disneyland, episode 63: Tricks of our trade,” Walt Disney Studios, Feb. 1957,

premiered on ABC. http://www.imdb.com/title/tt0833037/

[28] R. Weinberg, “Producing content producers [computer animation],” Communi-

cations Magazine, ACM, vol. 33, no. 8, pp. 70–73, Aug 1995.

[29] J. Whittington and K. J. Nankivell, “Group projects: Issues and practices in

computer graphics technology,” in ACM SIGGRAPH 2004 Educators Program.

New York, NY, USA: ACM, 2004, pp. 3–4.

[30] C. Winder and Z. Dowlatabadi, Producing Animation, 2nd ed., T. Miller-

Zarneke, Ed. New York, NY, USA: Focal Press, 2011.

[31] U. Wolz and S. M. Pulimood, “An integrated approach to project management

through classic CS III and video game development,” in Proceedings of the 38th

SIGCSE technical symposium on computer science education. New York, NY,

USA: ACM, 2007, pp. 322–326.

57

APPENDIX 1

INTERVIEW TRANSCRIPTS

58

INTERVIEW 1

BRANDON: I’m here with Interview 1 from Studio Alpha and, um, we are gonna

talk a little bit about pipeline stu↵. Uh, the point of the questions and the point of

the thesis is really to investigate di↵erent pipelines at di↵erent studios and see what

the similarities are, what the di↵erences are...how they compare and especially across

di↵erent mediums like video games or television, movie production and visual e↵ects.

So the idea is to look at all of them and see, um, to assemble, I guess the best parts

from each and figure out what’s common so that I can take those pieces and hand

it to somebody who may be building a pipeline for an open-source project or for an

academic institution or whatever so, um, that’s kind of the idea. So, um, since you’re

the first person and you’re working in feature animation, talk to me a little bit about

your background. What is your position at Studio Alpha and how long have you been

there?

INTERVIEW 1: My background, um, so I graduated from [university] with

a bachelor of science from, uh, in symbolic systems, which is an interdisciplinary

major combining computer science, philosophy, linguistics, and psychology, so it’s

like it’s kind of like a cognitive science. Um, you can choose multiple concentrations

like natural language processing, artificial intelligence, human-computer interaction

- I did HCI, um, and I did a little bit of work, how I got into CG is I did a lot of

psychological lab work in this virtual human interaction lab, it was all virtual reality

research. Um, and it was a lot of fun, and then I applied for a job at Studio Alpha

as an apprentice TD. Um, and all TDs at Studio Alpha are basically pipeline people.

They can be in di↵erent parts of the pipeline like di↵erent departments, but they are

not image-producing people in movies, so we’re unique that way compared to other

studios. And so I started as an apprentice TD and then became a lighting TD, um,

59

was a lighting TD for about four or five years, and then, and I’ve been there now

for almost, I guess I would say yeah almost seven years, and so and I’ve been a lead

TD for um, I got promoted to a lead TD and then I’ve been there for about three

years now, and I just wrapped up Big Film Two which is my first major production

as a lead TD. And so, um, as a lead TD, we basically, we work directly under the

supervising TD which is, he’s the, or he or she is the head of the department for the

production and they make the, the major decisions in terms of um, the technology

direction of the show and all of the major initiatives of development that needs to

happen. The lead TD gets to co-manage with the supervising TD but gets to be the

lead, the tech lead of those projects. So, um, I really enjoy the position because it lets

me manage, but also program and develop, um, not spend all my time in meetings.

And so, um, and then uh that’s basically the position.

B: Cool. Well that’s, yeah that is nice that you get to do a little bit of both,

you know you’re not just, not just stuck behind, behind a desk the whole time or

something like that, so. Um, great! That’s, that’s good, we know a little bit about

um, your background, so I guess we’ll move into the, more of the meat of the questions

that we’re looking at. Um, so you’ve talked a little bit about your position there.

What, in your experience, at Studio Alpha in the almost seven years you’ve been

there, how would you define what a pipeline is?

I1: Um, and, what’s great is that you’ve already heard some of these answers,

but um, a pipeline is, in like one sentence, is like the secret sauce for a studio. Um,

it’s basically all of the di↵erent processes and workflows um from beginning to end all

realized or embedded in software. Um, that that’s basically a one-sentence definition

of what I believe a pipeline is.

B: [writing]...embedded in software.

I1: Yeah.

60

B: So there’s, um, a tool-based element and also a time-based element, is that

right?

I1: Time, workflow, procedure, I mean so many dif – like, the pipeline is basically

how one thing gets from one place to another. All embedded and realized in tools or

software or workflows.

B: So, now that we have sort of a rough definition, what, what, so you have a

pipeline that starts things, you know, you have your assets and things like that and

they move towards the final production of the shot. What makes a good pipeline?

I1: There’s so many things that make a good pipeline. Um, depending on how

big your project is, because that will better inform how, the di↵erent factors of what

makes a good pipeline. Um, you basically want to make sure that all of your assets

and your data, that, that your pipeline ensures their integrity, um, they can’t be you

know overwritten, um, no matter how many artists are working on the same data

at the same time. Um, you have to be able to facilitate, uh, smooth collaboration

between all sorts of di↵erent people working at the same time in di↵erent parts of the

pipeline, um, if you’re obviously on the same project. Um, the pipeline’s all about

you know organizing huge amounts of data, because you’re gonna have, depending on

how large your project is, lots of data, and you’re gonna need to have each person be

able to quickly access di↵erent parts of that data easily. Um, and that’s definitely a

huge challenge the bigger your project gets. Um, another thing is that a good pipeline

has to be, has a has to have a solid enough foundation but yet be flexible enough to

be adaptable to new technical needs or new creative needs, um, because you, you’re

not gonna want, if you’re in a big studio you’re not gonna want to reinvite a, reinvent

a pipeline every time you start a new project. You want to build a foundation and

then, if you move from one movie to another, you have that foundation, then you

can, you know, enhance it, you can develop on top of it, change it a little, just for

61

the specific creative needs for the new project.

B: Right.

I1: Um, I think the other things are, you know, I I’ve kind of alluded to this,

but it just can’t get in the way of artists. It has to, the whole part, the whole reason

a pipeline exists is to make things more e�cient, so, um, you know, in, in my career

I’ve discovered that that that goal is never gonna be 100% complete because, I mean,

everything is always being improved upon. I mean in every industry and in every

part of life, life, right? So, and if it was 100% solved, I wouldn’t have a job, so...

B: Right. [laughs]

I1: Um, but, but yeah, I mean that, those are basically the, the top top things

I would say a good pipeline needs to have.

B: Cool. Yeah and you talked about, um, having to have multiple people work-

ing on the same data, and you know not tripping over each other, not overwriting

things...um, so what kind of feedback loops or communication tools make that possi-

ble, so that artists aren’t always redoing the same things or overwriting each other’s

stu↵.

I1: Yeah. It sounds prehistoric, but email.

B: [laughs]

I1: Email’s really good. Um, asset tracking software of course. Um, you know

it’s interesting because there are definitely, di↵erent studios, I mean in my limited ex-

perience because I’ve only worked at one studio, but from what I hear from colleagues

who’ve worked at other studios, um, just so many di↵erent people have di↵erent types

of asset tracking software that scale di↵erently, and ours doesn’t scale as well as we’d

like, and we’re definitely developing new software to, you know, adapt to larger scale

projects. So we really do rely on a lot of email. Um, we rely on things like, um, they’re

sometimes called command flows or action flows, um they’re, there are certain types of

62

basic tools that are unit-based that are, um, specialize in deliveries and hando↵s from

department to department, so um, we’re constantly reevaluating whether or not our

system of, you know, handing o↵ deliverables is a push system or a pull system. And

I’m sure, like, every single studio goes through this challenge, um on, from project to

project because some departments prefer you know, pushing something out you know

like, ”here’s my deliverable, you’ve got new models for something, you take them.”

um, or some people just want a pull system where they, they put it in some staging

area and then the person who needs it just pulls it whenever they need it.

B: Ok.

I1: Um, and so that’s a constant challenge. You might, hopefully you’ll hear

about that a lot, with, as you go through your interviews, but, um, those are types of

feedback loops that, that really help and they’re constantly being developed. I mean,

I can’t even say if they’re even good enough yet, like they’re, they’re just always being

developed, because there’s always these human factors that you can’t predict, that

these tools can’t predict. So that’s why I always go back to email, because email’s

like the easiest thing to do because you’re like, oh, this is totally, this is ready, this is

final, you can take it. Or, this is not yet ready, there’s three things here that are not

yet final, now you can take it when you, if you need it.

B: And that’d be an email, like, to the next person down the line?

I1: Down the line, yeah.

B: Or to the department, like a Shotgun-type thing?

I1: Oh yeah, it could be, it could be either or, yeah. So it could be down the line,

or it could be to, um, let’s say you’re working on a shot or a sequence, it could be to

that whole sequence mailing list, just so that everyone who’s at least in that bubble

is aware. I mean, you don’t necessarily need to make the whole production aware,

but there’s always people, subsets of people working on di↵erent shots or di↵erent

63

sequences. And, um, yeah a lot of the times our emails will revolve around those sets

of people.

B: Cool. So, yeah, I i guess, grouping, having people in di↵erent departments

working on things, it makes it easier when you can, when you can tell them all at the

same time, like, ”hey this thing is ready.”

I1: Right.

B: That makes sense. Um, you talked a little bit earlier about the need, like one

of the top things for a pipeline being the flexibility, and the ability to adapt to new

shows and new technologies and integrate those things so that you can use them for

production. What, what areas of a pipeline need to be flexible?

I1: That’s a good question. Um, fle–the, the generic answer to that is everything.

[laughs] So I’m trying to think of ways to be more specific. Um, the areas that need

to be flexible are, especially the, um, man, let me just think a little bit about this

answer before I get, make it too confusing. Um, anywhere where you need to be able

to integrate a new technology needs to be flexible. Um, you know, a new technology

could be, uh, a package inside a third-party piece of software or could be a completely

new third-party piece of software, kind of like, um, I know that, you know there’s

all types of packages for maya, and there’s, you know, other software like HoudinI,

things like that that other studios are constantly trying to, um, adopt, and so being

able to be flexible in that way, that, if you’re using, for example at Studio Alpha

we use proprietary, um, file systems and file structures. Being able to do the whole

export/import type of workflow, um, that type of stu↵ needs to be flexible, because

if you’re not, if you have your own proprietary file, files and file systems and file

structures and you can’t be flexible in adapting new technologies, then your’e screwed.

You’re basically stuck to what you’ve done for the last 20 or 30 years or whenever

you, you know, started that, um, that proprietary stu↵.

64

B: Right. So if you’re, like say you’re maybe, I don’t know, writing out some

animation data to a particular proprietary file format, you want to be able to plug

that into di↵erent software packages?

I1: Exactly. You need to be able to, um, what we call condition the data from

one package to another, in this case, from the third-party package to your proprietary

system. So, that, that’s basically, when I talk about flexibility that’s the main thing

I talk about. Um, uh, flexibility also in just, um, being able to not, um, how do I

say...being able to not necessarily dictate how you want an artist to work; being able

to, um, provide a solid foundation but also, you know, be like, your, observe how

people work in whatever system they’re working in or whatever workflow, and not,

not being stuck to, you know, what you decided for them. They, they have to be able

to inform you. It’s a two-way street. Um, that was super-ineloquent. But, um, but...

B: [laughs] no, that’s great and that, that kind of leads onto the next thing

we’re...

I1: It’s kind of like, okay, so...if I can think of a good analogy, actually this

will make it much clearer. So, you know, when you go into a grocer or supermarket,

someone’s engineered how the aisles go, you know? Someone’s actually thought about,

you know, ”the milk goes here, the eggs go here, the cereal goes here.” um, and they’ll

place it, and they’ll, they’ll be informed. They’ll do some research, they’ll do some

social engineering research on what, what constitutes the best layout for this grocery

store. Um, and then, as they open the grocery store, they’ll watch and they’ll observe

how people move about the grocery, right? And so, for example, you know, if I put

the milk over here, and I put the cereal on the other side of the, on the other side

of the building, it forces people to walk through all the aisles, and maybe you’ll sell

something else, you know? Maybe something that they never, you know, intended to

buy in the first place. Um, and as you watch them, you know, shop, you’ll be able to

65

move things around, as, like, you know, given your observations. And that’s kind of

what I’m talking about with the pipeline. You have to be flexible enough to observe

what you’ve already implemented and change it, and not, you know, get stuck in a

place where you can’t change anything, because, you know, then you’re stuck. Then

you’re stuck with an obsolete pipeline that people are unhappy with.

B: And you want to keep moving people through the store, so to speak, you

know?

I1: Exactly. Yeah.

B: Cool, that makes sense.

I1: Ok. [laughs]

B: No, that’s good, that was a really, that was a great analogy actually, yeah.

I1: Good, thanks.

B: Awesome. Um, I guess, you...from that, um, you talk about s–, um, instead

of just sort of handing...so you have the person who engineers the grocery store, and

they decide where the aisles are, and how things are laid out. Who, who does that?

Who decides, who’s the engineer that decides, ”the milk goes here, the cereal goes

here?” like, is it one person, do they sort of hand it down from on high, or is it sort

of a committee thing that...

I1: Um, it’s definitely a committee thing. Um, in the case of, you know, our

studio, we have a group of, you know, pipeline people that are, you know, heads of

pipeline or supervisors of pipeline. Um, we have all the supervising TDs, um, also,

and we have a head of TDs. And we, they all get together, and they discuss these

things. Um, you know, I know that, you know, at the beginning of productions,

major productions, one of the biggest things people need to come to a consensus

with, um, and these are the consensus-driven decisions that you kind of allude to,

um, are whatever the big-picture or big-target development things that they require

66

for that production, you know? So, um, let’s say you needed a - I’m gonna speak

from Big Film Two since I had most of my experience from there - but we had to,

and this kind of goes back to your whole flexibility thing - um, Big Film One, our

previous movie at Studio Alpha, we developed this whole city metropolitan system,

to kinda build and, procedurally build a, um, a grid city system, and in Big Film

Two it took place in Europe and European cities are not grid-based, so we needed

a way to at least leverage o↵ of some of the technology built on Big Film One, and

this is the whole flexibility thing - we have to be able to pull that in, but also build

upon it to make sure that, you know, the cities don’t look like, you know, New York.

They need to look like Paris, they need to look like Rome, they need to look, um,

like London.

B: Yeah.

I1: And so, um, that was, that, that’s kind of one of the things that the

consensus-based drivens, or, consensus-driven decisions are done in the beginning

of the show. One of the tools, for example, that we know from the beginning of

production that we’ll need is something to take that old city system and make it so

that it looks more European, um, and in the case of the Big Film One world it looks

more whacky - we call them ’whack passes,’ you know - we have a, like a modeling

facade type of, um, tool that, um, that took like a regular piece of geometry, like a

square piece of geometry and whacked it up, and so that the proportions were all

funky. And that’s kind of what we do with Big Film One. Um, so those are the types

of decisions that are made at the beginning of the film, and then later in the film,

um, decisions are more reactive. Um, you’ve already developed the big systems that

you need, like a level-of-detail system we did on Big Film Two, we did, you know, the

modeling facade system that I told you about, and we did many systems, but towards

the end, you know, or towards the middle, you’ll start getting the, the decisions that

67

are based by, you know, what artists are encountering, kind of roadblocks they’re

encountering, um, things that they’re requesting, because they’re not as e�cient as

they could be. Um, I’m trying to think of an example. So we had, for example, a

system for our layout team to propagate level-of-detail changes in the buildings. Um,

we call them ’scatters,’ and so they’re, um, buildings that will change depending on,

you know, how far they are from camera...

B: Right.

I1: But also they’re art-directed. And a lot of people don’t do level-of-detail

art-direction. And so, that kind of stu↵ was...we anticipated in the beginning to

change not as often as it actually ended up changing. And so, we needed to develop a

system later on that prevented lighting renders from getting trounced upon by these

propagated changes. So that’s one of those pipeline decisions or developments that

happened after the fact, and so those are kind of, two distinctions, in terms of who

informs decisions.

B: Nice. And is there a lot of granularity as far as...you talked about those

reactive decisions later in production, um, and when I say granularity I mean like

farther down, like, to individuals saying, ”hey I need x.” you know, and then you just

whip up something quickly for them.

I1: Yeah, because what I, what I’m talking about are the big big decisions...and,

of course a huge part of the TD’s role, especially at Studio Alpha - I mean, I’m sure

everywhere else, a pipeline TD - um, are just the little tiny things that an artist

requests. I mean, ”hey this, um, the circular motion blur on this wheel looks funky,

can you fix something?” um, and then you write up a quick script or you find a way

to hack it such that it looks good according to the art director or something like that.

Um, and those type of little tiny things are also, you know, they’re informed decisions

based on your artist that you’re supporting. Um, and that happens all the time, and

68

those are like the very little one-o↵s that take, you know, maximum a week.

B: Right, right. Very cool. Um, I guess then, you know you’ve, you, like you

mentioned you’ve been there for almost seven years. Um, how, how has the pipeline

evolved over the course of your time there? What was it like at the beginning, um,

what are the kinds of changes that you’ve had to make? Um, talk, just talk about

those for a little bit.

I1: Ok. Um, I can talk about how much I can reveal.

B: Right, yes, of course.

I1: Which is, this one’s the more sensitive one. But, um, you know, as I kind

of said in the beginning, and I have some notes here, they’re just, everyone’s always

trying to make their processes and workflows more e�cient. I mean, and that job is

never going to be 100% complete. It’s always gonna change, it’s just like how intel is

constantly making smaller-nanometer processor, like, things like that, it’s just always

gonna evolve. Um, I do know that the pipeline has changed, uh, once majorly since

I’ve been there, which is not bad. It’s maybe averaging every three or four years.

Um, and they’re currently, um, and what I’m not allowed talk, to talk about is our

next-gen pipeline, and that’s coming soon. And so, what we did work on on Big Film

Two was a new pipeline to me, as of two or three years ago, and it’s, it was moving

towards a more hierarchical scene graph type of, um, way of thinking about assets

and shots. Um, and it was way, it, it was basically a new way of organizing shot

data. Um, it was a better way of packaging, um, assets like geometry and rigs into

higher-level types of entities, um, for the sole purpose of having more portability and

better reuse of assets. Um, it was much harder to do those type of things in our older

pipeline, um, and I think people felt that, and so this was dev–this type of pipeline,

this scene graph-type pipeline, was developed by all of our pipeline engineers, um,

that are brilliant, um, in order to make things way more abstracted, in a better way.

69

B: Right.

I1: Um, and make more flexible...and it, it was, it was meant to improve, just,

the way artists work, because you were able to dictate, um, groups of things and

assets in a given shot that you wanted to bring in to your environment or to your

render. Um, previously you’d have to load everything, um, and so this was a way

of, you know, one department can load these group of assets and change things.

Another department can load another group of assets in the same shot, it doesn’t

have to be the same set as the previous department, um, they can make changes, um,

and, and, and they won’t hurt the upstream department, and they can propagate it

to the downstream department. And those were kind of, um, it was a better way

of, you know, it was a way of increasing complexity in the scene, but reducing the

management that you needed in the scene.

B: Right.

I1: Um, and so that was kind of the new pipeline, as of two of three years

ago. I believe it started with, um, Big Film Three, um, which was [came out a

few years ago]. Um, and so the other major thing that changed in our pipeline

was stereo—stereographic, um, rendering, um, because monsters vs aliens was our

first, um, stereographic production, and so, it was, it was definitely a huge change

because we’re used to, you know, having deep files and, um, like, just, you know,

one-eye renders, you know, just mono-eye renders, and now we have to render two

di↵erent eyes, and, um, we have to figure, we had to figure out a way to rasterize

our geometry, um, such that you’re not wasting double the resources to rasterize the

left eye geometry in space and the right eye geometry in space. We had to come

up with a way, and these were r&d engineers, of rasterizing both eyes together, and

then rendering out one camera versus another camera, which is another eye. And, I,

I don’t know the exact, exact numbers, but, it, it was definitely not double the cost.

70

B: Right.

I1: It was much less, and that was a huge change in our pipeline workflow. And

so, those are, I mean those go back to all of your questions about how flexible you

need to be. I mean, never in a million years probably ten, fifteen years ago did they

ever expect to do 3D ever again, because they thought it was, I mean back in the day

it was such a fad, um, and then, suddenly it became this technology that we could

actually realistically do, um, and then we decided to, from that point on, make all

of our films in 3D. So that was, that was a big decision and that required a huge,

significant change in development of our pipeline.

B: Yeah, yeah.

I1: So those were the two biggest changes that occurred while I was at Studio

Alpha. And now, we’re constantly, I mean, like I said we’re constantly trying to

evolve, and so we’re already thinking about not just our next-gen pipeline, but the

next-next-gen pipeline, and so people are thinking up to five, ten years ahead, um,

because I think the ultimate goal in, in feature animation production is being able to,

like - it’s kinda like gaming - being able to light and render in real time, and animate

in real time. I mean, that, that can’t happen with our current processing power, it’s

just not gonna happen, especially to the quality that, that feature animation requires,

because, you know, it’s a supremely iterative process. I mean, it’s already an iterative

process no matter where you go - gaming, animation, TV - but in feature animation

everything, you know, it’s blown out to, like, the big screen, so everything has to

be pitch-perfect. And so, um, being able to animate and light in real time is the

ultimate goal, and that’s what these pipelines are trying to, um, ultimately achieve

when they’re making things more e�cient.

B: Yeah, I, I just watched the new film trailer yesterday and...

I1: Oh cool, did you like it?

71

B: Yeah, it was gorgeous. It was really really cool. I, it’s hard to imagine

something like that running, running in real time, but I guess that’s the goal.

I1: That, yep, that’s the goal. Um, but other things I can talk about in terms

of, um, what, I mean I can probably speak for everyone in the industry, just for

future pipelines, you know, everyone’s trying to improve their asset tracking, just

like I mentioned before. Um, even being able to integrate it better, better in your

environment. Like, right now, most people’s asset tracking, or at least our asset

tracking, is outside of our production space, it’s just a separate piece of software.

B: Okay.

I1: Um, it would be awesome if, if, you know, artists could work, you know, in

one area and see like, ”oh here are the things I’m working on, let me launch them”

or, ”here are the things that are handed o↵ to me or were handed o↵ to me, and what

I need to hand o↵.” um, if this was all in like one, like if you can think of like, just

iOS, like the iPad, and just one area where you can just click around and manipulate

all the stu↵ that you need to do, um, as opposed to an operating system like linux

or unix, where you have pieces everywhere and you have to navigate to them and it’s

a little bit more di�cult. So that’s something that, um, I’m sure everyone wants to

achieve.

B: Yeah.

I1: Um, smarter assets is another thing that people want. Um, you should be

able to, you know, I think when I first started we weren’t able to just query an asset

and be like, ”tell me about yourself. What materials do you have?” what, I mean, this

goes back, it goes back to like referencing, like how, what kind of, how deep you’re

referencing, you wanna be, um...just being able to ask an asset, like, ”what kind of

variants you have? What, where can I use you? Where are you being used right now?

How long do you take to render in this lighting environment? How long do you take

72

to render in that type of environment?” being able to package all of that into one

asset, in one smart asset, is something that I know people are trying to achieve.

B: Huh.

I1: Um, I’m sure people have, I mean we’ve achieved it to some level. And,

so, I know that in my seven years at Studio Alpha, we’ve definitely gradually, um,

made use of more metadata in files, and...so, metadata can just keep track of a lot of

di↵erent things, like statistics of renders and things. I mean, we can, with metadata

we can kind of predict, you know, how long a particular character is gonna take to

render in a shot and kind of cost-project how much it’s going to take or how long

it’s gonna take or how much it’s gonna cost to render our a major character through

90 minutes of footage. And so that type of stu↵ you weren’t able to do before, and

that’s another thing that pipeline, is pipeline related. So, um, yeah, that’s, that’s a,

that’s a big one.

B: Very cool.

I1: And, and actually, following through with that, you know, adding to that,

like, the more smart your asset is, the better you’re able to reproduce various things,

um, in your shot. So if you’re working in a shot or sequence, and you’ve got multiple

iterations, and you’ve got smart assets, you can say ”hey, I wanna render this shot with

this version of this asset, this version of that character, this version of that, exactly

how I rendered it six months ago.” right now, I’m guaranteeing you that every studio

will say to you that’s almost impossible to do. You can’t say to someone, ”please

render out this shot exactly how it looked five months ago,” because everything’s

changed, you know? Like, everyone’s assets are di↵erent, everyone’s files are di↵erent.

I mean, they are version-controlled, but it’s almost impossible to, to gather...

B: To go back and grab them.

I1: Yeah, exactly. Especially since people’s software, software maps are changing,

73

too. So, um, that’s another goal of future pipelines is being able to have a smart

enough pipeline that you can reproduce anything you want at any given time given

a few variables or factors or specifications. And so that’s a, that’s a big one.

B: And I guess, in terms of...like for a director, that’s probably really useful if

they wanna...

I1: It’s so useful, because can you imagine, like, you know, our new film has

released its second trailer, it’s not coming out [for a while]. Um, you can imagine

like, later down the line, let’s say they’ve iterated on some shots in the trailer and the

director says, ”hey I really wanna see that shot, the way it looked in the trailer. Like,

can you get it for me?” like, that’s something that, that’s a very common request.

Um, obviously trailer is a very definitive or defined milestone, so that’s something

that’s probably easy to reproduce among all studios because they’ll save that data

somewhere. Um, but other types of very minimal-type things like, um, ”oh, a dailies

session last tuesday afternoon, like, please reproduce this.” no one’s gonna be like,

sure i’ll do that. It’s gonna be a very challenging task, so. I’m gonna get more water.

B: Yeah, great. Oh, thanks. Okay, well you’ve talked a lot about the improve-

ments that, you know, that are being dreamed up, and things like smarter assets,

and, stu↵ to shoot for. Are there any, are there any things that you would personally

like to see, that, that have, may, has or hasn’t been discussed? Like anything that

you, any particular tool or anything like that?

I1: No, I mean, all the stu↵ that I discussed are things I wanna see. Um, that,

that type of stu↵ would make everyone’s lives easier, plus it would make things just

more fun because the, the benefit you get from a more, more e�cient pipeline and

a vastly, vastly improved pipeline like that, um, is that you get to do way more

iterations. So you can make your movie look even better than it could have been

before because you can do, let’s say 50 iterations in the same amount of time you

74

were previously able to do 20 iterations. And so, that just makes everyone live,

everyone’s lives better, and so that’s something I definitely want to see. Um, yeah, I

mean that, there’s nothing else I can probably add to that, so.

B: Cool. Alright, well, um...i guess that’s the end of the questions I have written

down. Um, is there anything that you, that maybe I, that I didn’t ask about that I

might have, um, I’m trying to remember if there was something I talked to you about

maybe previously when you were in college station or something that...uh, was there

anything else that you had?

I1: No, I, I’ve gone through all of my notes, which is great.

B: Good. Me too, I actually managed to fill up a page with some notes as well,

so [laughs] this is good, it’ll help, help guide when I transcript this thing and get it

all printed out.

I1: Great, hopefully it’ll guide, um, the, how you ask the questions to others,

too.

B: Yeah, yeah. I, that, that’ll be helpful as well. So, um...ok. I guess that’s

pretty much it then.

75

INTERVIEW 2

BRANDON: Ok, uh, this is the second interview today. I’m here with Interview 2

and uh, he’s going to talk a little bit about pipeline stu↵.

INTERVIEW 2: Hello.

B: [laughs] cool. Um, ok. Well the first thing, I’ll ask about just so that we can

sort of get an idea about your experience and the–the things that you’ve done. Talk

a little bit about your background in the industry, um, what your position is, um,

how long you’ve been there and kind of how you got–got into the industry.

I2: Ok, uh, so my most recent position is manager of project engineering at

Studio Beta. And uh, my responsibilities are basically to manage central technology

for all the di↵erent projects that we run there. We have two episodic TV shows,

uh, feature film and we also support games. Um, so I have a team of about five

people that are uh, engineers–software engineers–and we work very closely with the

productions to figure out what their needs are.

B: Cool.

I2: Uh, as far as how I got into the industry, I started back in [the 90s] at Studio

Delta in tech support. Um, they were expanding a lot back then, so uh, it wasn’t easy

to get your hands on 3D computer graphics software or hardware back then–It was

very expensive. So I was happy to get in just anywhere and then be able to stay later

and just kind of absorb and learn. Ah, and being in tech support, it was for pretty

much everything–so everything from system admin kind of stu↵ to front–front–hotline

support.

B: Taking calls?

I2: Yeah, it was like ”uh, my Netscape is broken!” Um, I’ll see what I can do.

B: [laughs] yeah.

76

I2: To questions about Alias and SoftImage that I’m like thumbing through the

manuals and like figuring out like here they are–shouldn’t you already know this?

But I will figure this out.

B: Yeah.

I2: Um, graduated from that into software development. And um, wrote all kinds

of 3D computer graphics sort of translator software. Um, pipeline software. Um, back

at the time, they were transitioning from an old pipeline to a newer pipeline, so a lot

of discussions and things with a group. Um, the last thing I did at Studio Delta was

write, with a bunch of other people, and incline renderer. Because at the time it was

integrate CG into 2D hand drawn films. Um, I wanted to get over into production.

And not just be considered a, you know, programmer. And uh, so on the side, working

with a few other people, we made some short films and learned how to model and

rig, animate, write shaders, light and that became my demo reel and then I got into

Studio X [later], uh, as a shading artist on Adventure Film One because they had to

do the whole film in about nine months. [laughs]

B: Yeah, because of the–they had like a big crash or something–didn’t somebody

remove–

I2: Uh, that was–that was not why they had to finish the whole movie so quickly–

It was because they retooled the whole story–like they had a di↵erent team working on

that direct to video project and then we–yeah, and then [director] finished Adventure

Film Five and took a look and said, you know, I think we want to make this a lot

better. And then he took over and basically re-did the whole story. And so production

was yeah, less than a year to do everything, um, which is pretty crazy.

B: Um, well I mean it turned out great, obviously.

I2: Yeah, and it was an awesome time. It was like 300 or 400 people at Studio

X at the time–still in [location], so it was very small, relatively small, uh, compared

77

to how it is now [laughs].

B: Yeah, got–I actually haven’t been up there, but hopefully I–I’ll be able to go

visit it maybe. At least swing by the building and see what it looks like.

I2: Yeah, um. So, I ended up being sort of the last shader writer on the show

just supporting everything, um, because I guess I–I did well, uh, so then they let me

do some sort of r&d in-between shows and then on Adventure Film Three, I got to do

character shaders for like the main characters. Um, [character] and [character] and a

bunch of the secondary characters. And then I said I’d like to light...I haven’t done

that before. And they said sure. Uh, so I got to light shots on Adventure Film Three

ah, after that, I went into r&d for a while. It’s a long...we’re covering a long period

of time here.

B: No, that’s awesome.

I2: Um, so basically, we’re getting ready for Adventure Film Four which is a

very di↵erent kind of show than they’d done there before. It was humans, it was a lot

more e↵ects, a lot more sim, a di↵erent style of storytelling–a lot of shows up until

then were, you know, a few locations, um, and you just kind of kept coming back to

those main locations. This show had tons of locations, it had montage sequences, it

had big action sequences, it had cities... yeah, and so we were uh, concerned about

how to pull that o↵ with the existing pipelines, and so a lot of what I did was figure

out how to pull o↵ Adventure Film Four on the budget that they had, with the people

that they had, so I was uh, pre-production, uh–I forget what they called me in the

credits–but at the time it was more like sequence supervisor. So anything that was

not characters was my responsibility. So um, modeling, lighting, um, set dressing,

layout, all that stu↵ up front was uh, my responsibility. And we ended up looking

at alternative ways of doing stu↵ other than take the main pipeline. What if we had

these little, sort of rebel unit kinds of teams, um, that could do stu↵ with more o↵

78

the shelf and just be nimble and uh, so that was a big experience there. I also worked

in a more sequence oriented manner. Um, lots of changes to sort of workflows as well

as technology.

B: Yeah, yeah.

I2: Um, after that, I ended up going sort of freelance for a while. Um, ended

up with a few other ex-Studio X kind of guys and we ran a small little boutique CG

shop, did consulting for other people. Tried to get some creative stu↵ going, too,

which is really di�cult. Um, and then we ended up–our biggest client was like the

Orphanage, so we did a bunch of r&d for them and ran shots and stu↵ like that. Uh,

it was a little too up and down being independent, so then I went back to Studio

Delta as a–a...

[car noise]

I2: Wow. Pulling right up to the shop–that works. Uh, as a CG supervisor for

Adventure Film Two. Uh, because this was when they were basically starting a whole

new studio to basically do the [sequels], so it was starting a studio up from scratch

with a bunch of people that had been at Studio Delta for a while and also a lot of

people who we had to recruit from other–other places, so that was a real melting pot

of ideas and um, we got to basically look at the Studio Delta pipeline at the time and

say can we use that to produce the level of imagery that they want. Um, at the price

point and with the sta�ng level that we have. At the time, the answer was no, we

don’t think so. Uh, it took a lot more people to maintain the pipeline than we would

have had. So, we ended up building some pipeline stu↵ from scratch and running into

a lot of opposition of course [laughs].

B: Yeah, yeah. I bet.

I2: So... yeah. Um, then they bought Studio X and they shut us down, so

a bunch of the core team of us got absorbed back into the main body of Studio X

79

and we worked on other shows, but kept sort of tinkering with our pipeline in the

background and eventually got to do a short and then the Adventure Series Two TV

shows. And uh, now it’s basically sort of–you know we branched and merged back

together and so the pipeline now at Studio Delta is now sort of some of the really

nice tools that they have, but also a lot more of the back-end stu↵ from the other

pipeline. Um, and uh, and then I came to Studio Beta. They were starting up an

animation studio to do feature films, and so here we are. Basically the same thing

[laughs]. There you go.

B: Very cool. That’s awesome. Well y-you clearly have a lot of experience in

it sounds like a lot of di↵erent areas, too. That’s really great and that’ll hopefully

provide some good perspective. So, based on–well, how long have you been at–at

OverStudio now?

I2: Uh, so I’m not technically at OverStudio. Like OverStudio is a bunch of

di↵erent divisions.

B: Okay, so you hover between them kind of.

I2: Eh, animation is its own thing–we use a lot of technology...so, one of our

shows is using basically the OverStudio pipe, so I go back and forth a lot for meetings

and coordination and stu↵ like that, but yeah, if you had to go technically, I’m

employed by Studio Beta, because it’s like... but anyway, I’ve been there for two and

a half years–almost three years now.

B: Okay. Cool. Well in, talking from your–from your experience from all these

di↵erent places and all the things that you’ve done, how would you define a pipeline?

I2: Ah, I guess, for me, it feels like there are a lot of di↵erent definitions for

pipeline, depending on who you talk to and how they think about the process. Um,

so that’s why actually I drew this thing while I was waiting.

B: Oh, awesome. Interview 2 has drawn a Venn diagram that might even well–

80

some version of it might make it into the documentation for the thesis paper. Uh,

but this is–this is good to look at. So go ahead and talk about it.

I2: Okay, so in this bubble, we’ve got production management, so they–they run

the show, organize the teams, figure out how, uh, the work is going to get done. You

have the creative which is art, animation, you know, the people who are doing the

story who eventually what’s going to show up on screen–we’ve got technology that’s

supporting that. Right in the middle is pipeline, right? It’s figuring you how to use

technology to support the policies that they have, how many people you’ll have, what

kind of people you’ll have and then you’re trying to solve the creative problem as

well. Like I said, on Adventure Film Four, oh, we’re going to do humans for the first

time, so we need to have process tools, and uh, workflows that support getting that

on the screen. So, it’s uh, sort of where all those things come together–that’s what I

think of as pipeline.

B: Awesome. Well, that’s–that’s really helpful to look at, actually.

I2: A lot of people think that, you know, that some of these parts are the

pipeline, uh, because that’s what they’re exposed to–like if you talk to an artist,

and say what’s the pipeline? They’ll talk a lot about their tool–they’ll say well, my

lighting tool does this and here’s this is how I get my shot. It’s like okay, it touches

on some of the pipeline stu↵, but a lot of what they’re talking about is just sort of

their daily workflow. Um, I think the other thing to me about pipeline–It’s really

talking about how you share work with other people, right? Because if you’re just

doing it yourself, sitting in Maya or Max or something, and you’re just modeling,

rigging, lighting, I guess technically you could have a pipeline, but because you’re not

really sharing work with anybody, um, you might just be working in one file, it’s just

a workflow. Um, so, I think for me, the pipeline comes in when you really have to

start thinking about scaling it up and involving more than one person, department...

81

B: Cool. That’s–yeah, that’s great because I know when I started, um, thinking

about this thesis, and–and, I’ve built, um, basically like a set of directories and tools,

um, for–I did it for our summer course last year. You get sort of trapped into thinking

about the pipeline as being here’s the directories where everything goes and here is

um, the set of commands that you use to move data along the pipeline. But it’s–it’s

more than just that.

I2: Yeah, I think so–because if I talk to a production person, they tend to

think of the pipeline as being the departmental workflow. It’s like well modeling goes

first, then rigging, then they tend to think of it very linearly. It’s like hey–here’s our

di↵erent departments and I have a deliverable and uh, you know I have some iterative

loop here and then when it’s all approved and moved down to the next thing and so

they–you even see some pipeline software out there that’s like–build your workflow

with nodes, and I’m like augh! Because it doesn’t work that way. Because, you

know, modeling and rigging it’s like uh, well, I can model and I can refine it. I can

get approval. But if I send it to rigging and they send it back because my OSA

params are in the wrong place... or uh, the legs are too short and he walks funny

because we haven’t put a rig in it yet, um, then you get into loops like this, right?

Where it’s going back to modeling, more iterations and then, so it can get confusing–

especially the more departments you have that are woking in parallel. Like lighting

and rigging could work–I mean–like surfacing–the shaders could work in parallel, and

so now you have these multiple loops... and I need to send that there because I want

to see if textures are going to stretch and when it’s deforming and so now it’s like

this spaghetti. If you’re trying to track every single dependency explicitly, it gets

really hard. Um, and you have to expend a lot of energy and engineering and told to

actually manage all of that.

B: Mmhmm.

82

I2: And then the poor artist is like, I...I got a new update? [laughs] do I use it?

Do I not? And so it can be challenging.

B: Yeah. Cool. So what–what do you think makes–what do you think are good

characteristics of a pipeline? What makes a pipeline good?

I2: [sighs] uh, my best analogy should be like your heartbeat and your breath-

ing. Most of the time, you don’t even think about it, right? Heartbeat you don’t

even control, really. It just sort of reacts to what you’re consciously doing. It’s sup-

porting you. Um, your breathing–most of the time, you don’t think about it. But

if something’s going on like a fire and you need to hold your breath or you’re going

underwater, you can control it. But most of the time, you’re not even consciously

aware of it. That, to me, is the best pipeline. Right, it’s just out of your way–not

noisy, um, and lets you focus on the creative work because that’s really what we’re

all trying to do.

B: Yeah, yeah. Cool. That’s a–that’s a really good analogy. Interview 1, the

last interview talked about the pipeline being sort of like a grocery store, so we’re

getting all kinds of fun–fun analogies about what a pipeline is. That will make for

good–good work I think.

I2: [laughs]

B: So you mentioned, when you were drawing your diagram, touched a little

bit about feedback loops, so, that kind of stu↵, like you say, can spiderweb and get

complicated kinda quickly. What kind of communications tools do you use to keep

track of that, to manage it, to make it easier for people to know what’s going on?

I2: Um, [sighs] well, a lot of people like email.

B: Yeah?

I2: Uh, I’m–I have mixed feelings about email. [laughs] Because it’s inherently

noisy, and uh, if I’m an artist and I’m getting an email every time there’s some update

83

to an asset in my shot, I can be getting lots of emails every day, every time somebody

checks something in–and most of the time, that’s just noise. Um, I don’t care. When

I really care is if something broke–then I want to see well, what was the last thing

that changed? Um, so, you know databases would be better–with easy ways to query.

Uh, RSS feeds, so it’s like, it’s all there and I can go back to it, but not...

B: Necessarily showing up in your inbox automatically.

I2: Yeah, yeah. Um, [sighs] yeah, I don’t know. I guess it depends on the

context. There’s lots of di↵erent kinds of communication that goes on. Like if I just

want to see notes for my shot, well that’s review. Well then chances are I want to go

to my production tracking database tool, um, and pull up a page or something, my

particular information–you know, filter stu↵. So I guess for information, I tend to

think of for the day to day stu↵, let the user–end user pull and filter how they want

to see stu↵. And the only time you push information to them is when it’s like you

really need to know this, or yeah, something bad is going to happen.

B: Right, yeah.

I2: So it’s like oh, the rig’s changed. And they’re not backwards compatible.

Then, we might notify everybody, versus, um, the rig has been updated and that

weird crease in the elbow is not there anymore. It’s like I don’t care about that. Does

it change the way I animate? No... so, yeah.

B: Cool.

I2: And then there’s just coordinators walking around actually checking in with

people, um, that... more than any tools, I think, makes a di↵erence in how smoothly

production can run.

B: So those are–those are just people who are supervising or?

I2: Um, they’re not necessarily even supervisors. They’re–they work with the

department manager or the production manager and they have sort of the status of

84

everything sort of in their head. And they might do some data entry later and make

sure it’s in the database, but they’ll check in on people and see how they’re doing.

It’s like so, you know, are your shots going to be ready for review this afternoon?

Something like that you need to review. Emails and other things like that really, uh,

it’s just actually faster and easier to have somebody with a clipboard going around

gathering information and then making sure that everything happens. I guess–that’s

what I’ve found.

B: Yeah.

I2: I know other people have ways of like oh, go to this page or type in this

thing and submit a shot to dailies and it’ll automatically make a playlist and that

stu↵. And that’s stu↵ I see more of as an aid to the person who has to actually

like run the dailies and like go around and collect all that information, because if

they’re just looking at the list of stu↵ after people have submitted it, they’re missing

context. They’re missing if I stop by and ask what’s going on, they say, ”well, I’m

going to show this, but these things are broken or I only need feedback on this” so...

and unless they’re taking extra time to put those notes in–and some systems don’t

even allow that, you know, then it’s–It’s a mechanical help. It solves you–It saves

you from some extra data entry. But, actually making sure that the right things get

put in context for the person doing reviews, um, or–you know, prodding people to

say, ”you know what? That’s good enough to review. You don’t really need to wait

another day.” That kind of stu↵. You’re not really going to get somebody actually

walking around talking to people.

B: Yeah, that’s cool. So there’s–there’s more of a–more of a human element that

makes communication easier.

I2: Yep.

B: That’s under that production management circle in the Venn diagram you

85

drew. That’s very cool. That was um, I mean, Interview 1 talked a little bit about

that, um, from the last, but there was much more emphasis on that from what you’ve

been saying. That’s cool to get that di↵erent perspective.

I2: Sometimes I think it’s because artists are, sometimes introverted, and so

they’re like oh, if I can just type it in, I don’t have to talk to somebody and that

should be, um [laughs] easier. I know we had it, in some cases... um, there was

actually, both at Studio Beta and Studio Delta, they had a, um, playing your dailies’

playlist and as you go through, it’s like IM-ing somebody or broadcasting like ”Hey,

your shot is coming up next. Please come into the room.”

B: Yeah, yeah. They have something like that at Studio Delta–I’ve seen it. It’s

like you’re on deck, you know.

I2: Yep.

B: You’re coming up next.

I2: Yeah, which is nice, but I kind of miss–when it was like a Studio X when it

was smaller and you were just all in the room, and hearing everyone’s notes for shots

that weren’t yours, but were related and you can sort of head o↵ things and see what

the director is getting at–Instead of just getting your notes–or the person before you

and after you’s notes...

B: So it’s a little less self contained?

I2: Yeah, because a lot of what we do for the film is about context. It’s what

is the director or the art director trying to achieve? And if they have to repeat

themselves, you know, for every single artist, somethings just get lost because they

get tired and they won’t say the exactly the same thing to everybody–

B: Right.

I2: If they say it once to everyone, then I think it helps foster the notion of

the team. It helps everybody, um, sort of get on the same page, um, um, and really

86

understand what’s important. Because you can noodle anything in a shot for–forever.

So sometimes it really does help to be all in a room and hearing notes at the same

time.

B: Cool. Um, you mentioned a little bit about–talking a little bit about the

communication and feedback loops, um, and a–a need for version tracking and asset

management. Um, what are di↵erent methods that you’ve come across in your time

for the version tracking or what are–what do you think is I guess an e↵ective way to

do that? I know that’s kind of a global question, but...just talk about version tracking

and how important it is.

I2: [laughs] um, that’s my other diagram.

B: Alright, sweet! I’m hitting all the diagram questions here.

I2: So... I–this is sort of data management as a stack. Uh, and it’s not a purely

technical stack. I dunno have you done any network like protocol kind of...?

B: I did in one of my classes.

I2: So they have like a network protocol stack...

B: Yeah, yeah, yeah.

I2: At the bottom’s a physical layers...Yeah, so it’s a–this is loosely inspired by

that.

B: Okay, okay.

I2: Except for the top part–there’s no tag. What this is is policy. It is what you

decide are the rules of the road for your show. Um, so, up here could be something

as simple as–have you heard the terms push, pull?

B: Yes.

I2: Yeah, so up here, just say well our policy for this piece of data or department

is push, but for this department, it’s pull. Um, so... that is more of a people and

organizational kind of thing. Below that, then you actually have your user tools. So,

87

um, RenderMan, Maya, whatever... and those are going to talk through some sort of

pipeline API just to bu↵er you from having to know, what’s your file system? Is it

Linux or Windows? Ideally you have just something that is agnostic.

B: Right.

I2: Under that, you have asset management which is where you get to more of

the pipe–technical pipeline stu↵. To me, asset management is sort of like software

configuration management. It’s saying for this particular circumstance or situation,

what versions of everything do I want to combine together into these things that I’m

actually going to use. Right, so I’m, um, going to need version five of the character

with version two of the props and version six of the lighting and so ah, all that

combinatorial stu↵, uh, is asset management and it’s pretty–can be tightly coupled

with version tracking, but you don’t always want it to be the same thing. Um, because

production tracking status of like approved or not really doesn’t have very much to

do with data. Um, it might say which version is the approved one, uh, so that I can

verify that I’ve got the right version. But if I combine the systems, then I’ve got like

all of a sudden uh–what if I want to use a di↵erent–uh, unapproved version because

I’m testing or other types of things, so you actually have to be careful how you do

pipeline stu↵.

B: Mmhmm.

I2: Under that layer, then you have revision control. And this is, um, ideally

content agnostic. You don’t care what is in the files, you just want to say, um, I’ve

got a blob of data and I want to revision control it, so just destroy the version history,

logs, be able to check-in, check-out. Um, very classic software revision controlling.

And the very bottom, we’ve got tech. Uh, which is just the hardware, um, your

os–Linux or Windows, or Mac OS–whatever you want to use. Uh, what kind of file

systems am I using? What network and I using? Uh, am I distributing stu↵ between

88

sites or is it just internal? Um, all that stu↵ is sort of at the very, very bottom.

So revision control–It’s super important because, um, you always get asked to go

back, [laughs] um, but you have to also be careful about guaranteeing reproducibility

because a lot of systems jump through a lot of hoops to say I want to be able to go

back three weeks to that shot and get exactly what I got out of it before–just hit

render and–It sounds like a good idea, but I think the return on investment, based

on how much engineering has to go into guaranteeing that–uh, it’s not really worth

it.

B: Really?

I2: At least not to me in the end. Because I can actually have a good artist go

back to a shot, pull the data, and if it doesn’t work right o↵ the bat, they can fix it.

I mean, they know what they’re going for... I think the–the big issue is if you want

to go to the director and say it’s not exactly the same, and then they’re like, ”No! I

want it to be exactly the same!” so a lot of it–that comes back to policy. It’s well,

do you really need to keep it exactly the same or it’s okay if if it’s mostly the same

because you’re going to give more notes anyway. And we could spend three man-years

engineering something, or we could spend three months engineering something and

focus on building tools that make your pictures look better. Plus, you have, uh, stu↵

that’s not even part of your movie that’s part of your equation like–uh, what version

of Maya was it? You know, and we patched everything. Who knows? You can have

so many di↵erent variables in there that yeah, to me is just... in some ways it’s like

somebody asking–I want to control every beat of my heart.

B: [laughing]

I2: It’s like do you really want to or would you rather just, you know, jog your

lap or whatever you’re trying to do, so...it’s sometimes very hard to come up with

the right ways to explain to people–you really don’t want that. It just sounds like it

89

would be safe. Was that, uh...along the lines of...I think I drifted a little bit.

B: No, that’s absolutely great because, you know, actually one of the things that

I discussed with Interview 1 was that–that ability to go back and be able to find

something exactly the way that the director wants it from, you know–like say they’re

using something from a trailer, and they’re like we want this shot exactly like it was

in the trailer even though it might have been iterated a couple of times since then.

Um, so that’s–It’s good to hear sort of a di↵erent take on the–on the utility of that.

I2: Yeah, I think that it–It does come back to the people equation...and, the kind

of project that you’re on because if you’re working for a client you want to guarantee

that I can go back exactly because I need to make the client happy, verses um, at

Studio X or Studio Delta where the director is internal, um, you’re iterating on the

whole film over a long period of time. It’s like well, maybe you don’t have to come

back to it exactly, because when you come back to it, you actually want the latest,

greatest thing because it has fixes in it, uh, they might have changed some of the

creative, so it’s like well, it would be nice if I didn’t have to manually update every

single shot.

B: Yeah.

I2: Um, which is one of the reasons I tend to like push–managed push, not just

everything updating all the time. But um, it really saved us a lot of heartache. Like

on Adventure Series Two, we had finished animating the first sequence of the show,

and they decided they wanted to change one of the characters.

B: Oh no.

I2: Um, so we were able to um, update that one character’s model and rig

and leave the animation there and just re-render the whole sequence, uh, without

having to manually touch every shot. We just said, you know, give us a list of all

the sequences, fire it o↵ on the farm. Comes back, look at the movies and say oh,

90

these five shots need to be fixed–the rest are okay. Um, so that kind of flexibility and

avoiding the need for manual intervention, I think for me is–that’s what you want a

pipeline to help you with.

B: Mmhmm.

I2: Right? You don’t want to say, ”well, I have to go touch now 50 shots in this

sequence and I’ll write a script or something to go update everything.”

B: [laughs] yeah.

I2: It’s like well, technically that is pipeline and the end result is the same, but,

you know, I have to now pay somebody to write a script, they have to babysit it, they

have to check to if they did it right, verses if the pipeline has already taken care of it

through referencing or whatever, it’s like oh–I just update the released thing and go.

So, uh, yeah. A little bit of preaching here. [laughs]

B: [laughs] That’s okay–that’s what I–that’s what I want. I want you to preach.

I want you to get on your soapbox and–and–talk about what should–what should be

there and what you have found is good and e↵ective, so...

I2: Um, the other thing you were saying–what’s the sign of a good pipeline?

B: Yeah.

I2: Have you looked at Unix philosophies? At all?

B: Um, briefly, yeah.

I2: Mk, because that was one of the things that, when we were collecting ideas,

and trying to convince in the face of a lot of opposition, was well these are a lot of

good things that make sense for pipelines. Um, so I think if you like Google online for

Unix philosophies and Eric Raymond, you can come up with–I forget how many rules

there are, I made a little note, rather than misquote, I will look it up. So it’s a lot of

things that are just nice engineering principles in general...uh, it’s not downloading.

[laughs] But it’s things like modularity. Um, build simple programs that can do one

91

thing really well, but can talk to other programs and um, basically if you have to fail,

fail early, fail noisily. Yeah, rather than hiding problems, um, well, that’s a shame.

[laughs]

B: It’s not downloading?

I2: No. [laughs]

B: Well, I’ll definitely–I’ll definitely go look that up and look at those later on.

That could be useful.

I2: I can also send you a link later on.

B: Yeah, that’d be great.

I2: Um, but we... at the time, we were reacting to a lot of systems in our mutual

histories from di↵erent studios that were very monolithic, that uh, it’s like well I like

the revision control, but it’s tied in the production tracking, so now I can’t use a

di↵erent, you know, way of tracking, or revision control. It’s like well, we want to

update from CVS to Subversion or something and it’s like oh we can’t because it’s

tied into our tracking database. Right, so building things to be modular, I think–also

at the time, we were really just trying to make things small, simple, um, simple not

necessarily meaning easy, but pared down to the basics, just what you need to get

the job done, avoiding a lot of extra complexity.

B: Yeah.

I2: Um, but yeah. Okay, I lost my... [laughs]

B: [laughs] no yeah, that’s–that’s great. Well, you, um, you talked a little bit

about flexibility and you talked about the transition, you know, at–at–Studio X like

having to handle new types of–of, uh, character needs and technology and things like

that. Um, I guess talk a little bit about, uh, flexibility in a pipeline and what kinds

of things it needs to be able to handle. Like how–how flexible can a pipeline be before

you just need to tear it down and build a new thing?

92

I2: Hmm. [sighs] well, that’s actually coming back to Unix philosophy. So

if you have modular pieces, then they’re fairly easy to swap out. Um, if you have

well defined interfaces between the di↵erent modules, then you can replace it with

something because now you know how to talk to the rest of the pipeline. Or else

what’s happening to the other side of that interface. Um, another one of the Unix

philosophies is build for the future, so um, make sure that, uh, you don’t hardcode

business logic into your code, but uh, the code is actually pretty stupid and it’s just

reading config files that are telling it what to do, and that sort of thing. Um, yeah.

So a lot of the really strong pipelines that I’ve worked with tend to use metadata

to describe their assets. So, like a character–you’ve got, I don’t know, a Maya file

for instance, but that’s not necessarily the way you build your shots. You don’t just

take Maya files and reference them directly. You come up with a little text file that

is easy to read, easy to change and says ah, for this shot, these three files belong in

there, and it’s pointing at those files. Ah, and then you can get fancier and say well,

every asset has di↵erent representations for di↵erent packages that we use, so there’s

a uh, you know, a Houdini format or a Maya format, so I–I can read that same scene

description and go into any app and load up my assets and shots and still do whatever

work I need to do, and then update that metadata with whatever I’ve added back

into the equation and now anybody else can go back into that–that little recipe and

pull stu↵ out.

B: Yeah, yeah.

I2: It also allows you to, um, work with things that wouldn’t fit into your

machine’s memory. Like back in–on Adventure Film Three, I think on the scare

floor, we talked about having tens of thousands of assets because everything down to

the push pins on the desk for the bulletin board, and there was like 12 stations and

every piece of paper is its own asset, you know, these are complicated things that

93

actually, if you tried to load the whole thing, it would kill your machine. But by

having that little, sort of metadata way of saying well this is all ten thousand things

in the shot–that fits into memory. And I can say, ”well, what’s important to me

today is the character in the floor because I’m animating him and that’s all I need.”

right? And RenderMan can handle a lot more, so you need, you can say, feed it the

whole description and it can load in the geometry and process it and give you out the

complex picture. And that was one of the striking things to me–going from Studio

X to other places–was that they were talking about a complex shot being like 50-100

assets. I was like what?! This is killing your machine? [laughs]

B: [laughs] Yeah.

I2: Right? And then looking at how they put it together, it’s like, okay, I see

why. Um, because they didn’t do that sort of abstraction where as, I think, like

Studio X and Studio Alpha and people who had built their own pipelines in the late

80s and early 90s, uh, had to do something like that because otherwise, they could

never actually do the work they were asked to do. Um, and so that was really striking

to me. I’m still wrestling with things like that–of direct representation versus levels

of epic–of abstraction. Um, because a lot of pipelines are built by artists who happen

to know how to uh, you know, sling a little code. Not necessarily people who are

software engineers. Um, yeah, so I think [sighs] my experience has given me a little

bit of interesting perspective that not a ton of people have–I mean, there’s definitely

more than there used to be.

B: Right, right.

I2: Um, but, being in a software department, it’s like okay, how do you engineer

stu↵? What’s possible with computers? Uh, what are good practices? Uh, being

an artist, you say well, you know, I’m–I’m being asked to turn this around in, you

know–I get my note in the morning. I need to turn this around by afternoon because

94

I have another review. So what’s important? What’s going to be in my way? What’s

going to make my life easier? And then being a manager and a supervisor and saying

well, for the artist, this is kind of an annoyance, or, it seems like it would suck, but

on the global scale for the show, it actually makes running the show easier. Um,

so...yeah. Bringing all those perspectives to the table, it’s one of the reasons why I

had to come up with this kind of thing–because it was...a lot of times, you optimize

for one thing...or maybe–maybe two things if you’re lucky, but trying to find that

balance of everything working in harmony and being able to make the trade-o↵s like

oh yes, yes your work is a little bit harder in this case, but it’s easier for you to get

data from the person before you. So, you know, is that worth it?

B: Yeah. Awesome. Yeah–yeah. That’s great I think. It’s is unique to come

from all three of those areas, um, because, um, most of what I talked to Interview

1 about was probably more tech related, uh, because that’s kind of what TDs at

Studio Alpha do is tech related stu↵. So, um, that’s really cool– it kind of expands

the definition.

I2: One of the other things that we... in talking about flexibility. Remember I

talked about people making these node graphs of like hey–and then data flows from

a to b and all that stu↵. Uh, the thing that we kind of looked at was more of a

software thing–paradigm where this is the show. And in the show, you might have a

shot or you might have an asset, um, and those are comprised of even smaller pieces–

individual files. But, this is the show, um, and rather than say you have this linear

thing, you take it out, you work on it in your sandbox where you can make changes

without a↵ecting anybody else and then you check it back in. And somebody else

working out here, if they don’t have the particular piece that, um, they are editing,

then it just pulls from like a global pool. So it’s more like, um, you sample the data

that you need from this ever-changing mass of stu↵.

95

B: Yeah.

I2: And it’s super flexible because now it’s like oh, we added a new department

in the node-to-node thing is like well, add a new department in the ins and outs, define

the way you can do something. And it’s like well, what if the software department is

busy or the TD is busy and I just want to test–I don’t know what I need yet. Um,

this allows you to test those workflows and ideas, um, without having to change the

entire pipeline. Because it really is just like hey, there’s a defined slot for stu↵, you

can define those on the fly because you’re using metadata or something. Um, and

you can do local testing without having to globally go to the core tools and update

them. So anyway, it’s a very di↵erent, once again, philosophy.

B: Yeah, and the diagram that he’s drawn is sort of like a–It’s a circle with some

like you said assets and shots in it and then you have individuals outside who sort of

check things in and out and, uh, and back into those predefined slots like you said,

so...

I2: But this is pretty much classic SVN, Recurial...you name it. That’s pretty

much how they mostly think. Uh, and it’s just trying to take that paradigm and get

artists use to it because it is–It feels very foreign. Um, especially when you say to

somebody, uh, the file is named foo and no matter how many versions you make of

that file, it is not foo under bar one, because the revision control system takes care of

all the versioning for you. You can have notes for what the revisions are, uh, but you

still have people that don’t trust the revision control system, uh, and sometimes for

good reason because whatever studio build a custom one, uh, and it’s database and

all of a sudden the database goes ah I can’t get to my file! [laughs] it’s a good thing

I kept foo number two in my home directory! Um, so, I think, that’s kind of like

this legacy because of the way things have evolved is not necessarily the way things

are today, especially with more modern revision control systems. So I think, that’s

96

something that I can still see–can still see some evolution happening there–at least

at the places I’ve been.

B: Yeah, yeah. Um, yeah, I kinda know what you’re talking about because

last–last summer, we had, you know, some published commands and things for shots

to be done and people were saving like three or four di↵erent versions of a shot as

they were working on it and we have a–you know a snapshot backup running in the

background all the time anyway. And so they were saving like eight versions of the

same shot and then when they published it, they published shot.ma and the one

they wanted to publish was shot06.ma and so it screwed up the stu↵ down the line

because they had forgotten to rename something and so, yeah. I can speak to the

level of mistrust of, uh, systems that are in place. Um, you talked about...so, you

touched on the production management sphere a little bit, and how they come up

with policies, right? That’s the production management branch that sort of comes

up with a policy? Or...

I2: Um, sort of. Right. Says you know, I guess at the top of the heap would

be sort of the... the producer, the executive producer on the show and they’ll say

well we have this much money, and we have this much time, and then it’s sort of the

production manager and the visual e↵ects supe and the CG supe’s responsibility to

go figure out well, I have this constraint now–how do I actually organize the people to

go do that? So, in the, more successful collaborations that I’ve had, it’s usually been

department supervisor along with like a technical person or artistic kind of person

that’s experienced in that discipline, and they’re uh, department manager who is

more uh, I guess more of a management type position. Uh, and they collaborate on

figuring out the best way to meet the time and sta�ng and results they’re supposed

to get. Uh, on bigger shows, you’ll also have a technical supervisor–like the tech–like

Interview 4 is a tech supervisor. Um, and he’ll work with all department heads to

97

figure out um, is that really the best way to go? Have you considered that they have

to do this other thing and then so... and balance all the department tool designers

and eventually come up with sort of a way for the show to go, but, uh... I don’t know

how specific you want to get.

B: No, I mean, I–I guess the question–you know, you talk about the decisions

of how–how data is structured, what metadata is attached to things, how assets flow

through um, or are checked out in the pipeline, and I was just kind of wondering

who–who decides these things–who says–this is–we’re going to use a push system and

here are the–here’s the set of software we’re going to use for, you know, who makes

those decisions and is it sort of like this committee of–committee of people or...

I2: Uh, a lot of times, it’s already established, right? Because you’re at a studio

that’s been running for a while, so... there’s already departmental procedures and

things in place and you’re not going to change those too much. So, I’d say in most

cases, it’s already decided because it’s been done before, and it’s not worth it to

go redo it. Um, I’ve been, for better or worse, in the position of trying to have to

challenge some of those assumptions, um, and that’s where it’s really tricky. It is sort

of–It’s not necessarily a committee, uh, but there’s a lot of discussion. And [sighs] you

kinda need buy-in at a lot of di↵erent levels, right? You need the supervisor’s lev–

like the visual e↵ects supervisor’s buy-in, the tech supe’s buy-in, um, the individual

department leads have to buy in, or else it doesn’t have a great shot of working

because they’re not invested in making the show, but things move...then it’s just

tough. Um, so, yeah, not necessarily a committee, but certainly a lot of discussion

between di↵erent parties and who would get a↵ected and who would have to do the

work. Yeah, when we were talking about push-pull, it was like everybody–I mean, it

was like every supe in the building [laughs]

B: [laughs]

98

I2: Right? Uh, before I came to Studio Delta, they had just finished, uh, a long

series of meetings on naming conventions and directory structure. So...yeah, I guess

maybe not o�cially a committee, necessarily, but a lot of people trying to figure out

what’s best. And one of the problems is there’s no one right answer, and so, some of

it just gets into [sighs] personal preference–this is what I’m familiar with–and some

of it is what are you trying to optimize for? I’m trying to optimize for readability or

I’m trying to optimize for parsing, you know, um, for an automated thing to go. It’s

like–It’s all over the place. Yeah, I–I wish there were one right answer. But I think

that’s why when we were talking earlier about being flexible and not making decisions

in your code, but actually coming up with, uh, a configuration kind of method,

B: Right.

I2: That then your code can just execute, then that allows you to be flexible.

So if you have, like at Studio Beta, we have episodic shows, so we have seasons and

episodes, then sequences and shots. But on a feature film, you just have sequences

and shots, maybe an act if you really wanna do–you know, look at that level. Um,

but then as soon as you talk about directory structure, it’s like well, I have a season

episode, uh, sequence and then shot, so for some people to then go say, ”I will”–do

you know Python?

B: Yeah.

I2: So ospath.split–fifth thing in is the shot. Well, I can’t use that code on my

feature. But if you said give me the shot name and use this API, then it doesn’t

matter what the directory structure is and your code is reusable. So it’s that kind of

thing, so... it’s really easy to go ah, ospath.split because then I’m done, versus looking

up the API and, you know, I’ve got my supervisor going uh how come that script

isn’t done yet? [laughs] then you take a short cut and it works and nobody cares

because it’s like well, the shot got through. Or you fixed that problem. But then we

99

come to the next show and it’s like oh–you now I remember this thing we used on the

last show and now I want to use it on this show and it’s like ok, we can’t. We have to

write it again. So, those costs are hidden. So a lot of people don’t account for them,

but they do add up. And for pipelines that have been running for a while without a

lot of oversight, like technical oversight, um, you can get in a pretty awkward place

where the maintenance costs of doing stu↵ or incremental improvements of things take

forever. And uh, you know, it hampers your ability to be, especially in this industry,

nimble and agile and do things that nobody else is doing because you’re spending

time writing things to parse directory structure instead of writing, you know, a new

simulator or something like that.

B: Right. Yeah. And I guess the last–the last thing that we–the last thing I have

written down anyway is, uh, just evolution–you’ve been–you’ve been in industry for

a while, um, how–there might not have been any kind of see change or anything, but

how have pipelines at di↵erent places evolved over the period that you’ve been in the

industry? And I know it’ll be di↵erent in every studio, but, um, have you noticed

any trend of evolution as you’ve been at di↵erent places?

I2: Um. Hmm. Hard to say. I guess on pattern that I’ve noticed is that

everybody would like to be doing stu↵ other than pipeline. And so... pretty much

every couple of years, we go investigate some o↵ the shelf solution, and find out that,

okay, it–It demos really well, but it doesn’t hold up for the specific work flows, um,

and tailoring it to our specific studio work flows would almost be like writing another

pipeline. But it’s just–you’re using a, uh, third party framework. But then, now

you’ve got challenges there because now you’re like eh I could really use this change

in the API, but they’re not going to want to change it verses where if it was in house,

you could, um, and sometimes they just don’t scale very well–they’re not–you know,

they’ve been tested at studios that are like a medium sized studio, and when you try

100

to throw a Studio Delta sized project at it, or a Studio Beta sized project at it, it’s

like ah–It just chokes! So...um, but we keep coming back in the hopes that someone’s

crafted... [laughs]

B: [laughs] in the hopes that someone’s going to figure it out. Yeah.

I2: Um, I’ve also seen it go back and forth between, well I guess it’s more of an

evolution, so back in the early days of the pipeline, a lot of stu↵ was based on just

the file system, and disks and being able to, uh, find things because it was pretty

robust. Problem is, it didn’t necessarily scale very well because, you know, you have

your disk servers being hammered by these, the shows got bigger, render farms got

bigger and all of a sudden, these poor disk filers are just dying. So a lot of stu↵ has

moved more to databases. Um, which is nice, but then it also has happened where

the database goes down, and then all of a sudden, all production stops because now

you can’t get the data that you need. Um, so I think for me, like finding that nice

balance of like the database helps you when it’s there but isn’t required to be there

to get your file and just keep working. Um, that’s something we keep trying for.

B: Right.

I2: [sighs] some–some of the later things that are going on are just like how to

deal with uh, more, um, multisite kinds of problems. So, instead of everything being

in-house, now you’ve got Studio X and Studio X Remote Location, and they might

need to share data. Or, Studio Beta and Studio Beta Remote Location, or we have a

Global Location as well. Um, you know, Studio Delta doesn’t really have any vendors

for the CG stu↵, but they did on Adventure Film Six for 2D. So dealing with data

interchange, security, um, being more platform agnostic because sometimes venders

are Windows and we’re on Linux...so it’s nice if you have like–like a web app that like

and then you don’t care what it’s implemented in–you can just go visit the site and

do whatever you need to. Um, that’s–that’s real–a later trend, I guess.

101

B: Yeah, uh-huh. That’s cool. Great. Um, just, you know, was curious about

what–what things you’d seen. If there were cropping up patterns like you’d mentioned

of things people were trying to implement.

I2: [sighs] yeah, overall, I guess the audience is changing.

B: Yeah.

I2: Like, in the early days, your artists were fairly technical because they had

to be. And now it’s more and more people that really don’t understand, you know,

a computing environment–they just kinda know their tools. Uh, and there’s only like

so far drag-and-drop can take you. Especially when you’re dealing with lots of files

and lots of data. Um, right. Unless somebody writes you a drag and drop application

that you can drop a whole bit–a whole lot of things in, and then rename all your

files, it’s still going to be faster to just go to the command line and, you know, do

something. But that is one of the things people found challenging is you know–like

supporting an animator who’s usually pretty non-technical. Um, and getting them

to publish something correctly. It’s like well, they could probably do it more easily if

it was drag-and-drop really basic. But uh, you know, and it takes time to write GUIs

and all this other stu↵. It’s like depending on how much time you’ve got to build

the software, it’s like well, can you just type publish? We’ll take care of everything

else. Um, so in the adventure series two pipeline, that’s basically what we did. And

it worked out pretty well.

B: Yeah.

I2: I think, uh, people take a little time to get used to it, but it was actually less

steps than their–or, um, GUI kind of publish method that they had before. So, um,

yeah. But then at Studio Beta I was–I can’t get people to type for the life of me, so

[laughs] more kudos to the Studio Delta animators being flexible. [laughs]

B: Yeah, I don’t know. I–I guess I would have just pictured it being the other

102

way around, uh, with the Studio Delta folks needing more GUI stu↵, but that’s...

interesting. Yeah, and I’ve–I’ve–I’m familiar with the Prep pipeline and being, Inter-

view 4 and I built something that was sort of based on Lean, uh, when we worked

together last summer, uh, so it’s coming in handy now because our current, uh, intern

environment for our group project is very similar, so I already have some familiarity

with that and that can get all of our artists up to speed and say okay, you have to

run this command before you do anything else. Um, you know, so.

I2: [laughs] that’s cool. It’s nice to see it living on.

B: Yeah. No, it’s–It’s nice. Um, there are some things about it that I really like–I

think it was, um, it might have been a little bit much for our five person project last

summer. Um, and of course we wrote like a really small version of it–like a really–

the lean, lean pipeline. But uh, even so having like a department based work flow

was a little bit of a challenge for just five people because–we didn’t–It would have

been better to just maybe have like an asset and release area and not have it be so

department–linear department based.

I2: Right. Where it’s like here’s the model directory, and here’s the look direc-

tory.

B: Yeah. And you have to publish to look and you have to publish to rig and

you have to do all that sort of stu↵, so, um, I think I–I learned a little bit about

scalability. Like what works well with larger environments verses...

I2: Yeah, yeah. I guess that pipeline is sort of a medium sized pipeline–It can

scale down, but it’s got more overhead than you’d want. And it can scale up to a

certain point, but then it’s like okay, some of those paradigms start to fall down when

you get like a whole feature team looking at it. So...um, yeah.

B: Cool. Okay, well I guess I’ve only got one more questions then. Um, if you–If

you could have a–If you have a wish feature–a feature wish list for a pipeline, or uh,

103

I guess like a pipeline pipe dream. What goes–what goes in that?

I2: Huh. [pause] well, gosh. Uh, maybe time for more diagrams.

B: [laughs] great. This is all–It’s gonna have its own page in the thesis docu-

mentation.

I2: We’ll see. I dunno, uh, how I’ll draw this. I guess I’m starting to think more

along the lines of distributed kinds of pipelines and also scalability, but that’s–[sighs].

Uh, I don’t even know where to start. Okay, so in the middle, we’ve got some sort of

event manager.

B: Okay.

I2: So this helps us–I mean actually we just set up one at Studio Delta. I mean

I don’t know how widely it’s used now, but like if you had, uh, the database–the

production tracking database, that’s keeping track of status, and then you’ve got

your asset management system, here, uh, a lot of systems–basically, these two talk

to each other in order to say hey this status and these things belong and what we’d

like to do is decouple that so that I check in something into my asset management

system or I change the status in my database, and we can just send and event to

the event manager and then it just broadcasts that event out to whatever happens

to be listening, and then you can go o↵ and do whatever you need to do. So rather

than say, um, I changed the status in the database and I want to trigger like a movie

thing... a lot of times you’d have this database have some trigger and it would call

a script and it would go make a movie. I would much rather be able to say hey

database broadcaster, there’s been a status update and I have some tool out there

that’s listening for that and then it goes o↵ and makes the movie. Like because then,

if I also need to make an editorial update, then I can just hang that o↵ of there, too,

and have it do its work. Um, rather than coupling myself down to the database.

B: Mmhmm.

104

I2: We talked about being able to swap out stu↵.

B: Right.

I2: Well, what if I need to use Shotgun tomorrow instead of my custom one?

Well, then, I would–It’s much easier to add things to Shotgun that said broadcast this

message than it is to integrate all this other workflow stu↵. Um, the other thing that

I think I’d like to do is, so–underneath–asset management being part of this stack,

so at the very bottom instead of having NFS or sums or a Unix file system, actually

build a virtual file system bu↵er so that we don’t care what storage mechanism is

underneath here. Uh, Studio Delta already does something kinda like that because,

you know, we have fast storage for textures that are gonna get handled by the farm

verses slower storage for um, you know, temp files or something like that. Um, but

even then it’s like we had to–you kind of know like–you have to manage your mounts

correctly, um, or symlink into the right thing to say this volume actually points there.

Um, and also, when we talked about episodic verses uh, feature directory structures–

just di↵erences in naming conventions or whatever, you know, it would be nice not

to have to care what my path is, and just have that say, well, um, one of the iss–one

of the issues we have right now is when you make a–a directory, depending on where

you are, you have to create a virtual volume for the–for the um, net app.

B: Right.

I2: Um, ideally, you wouldn’t have to act–ask anyone to do that for you first–

you’d just say make this directory and it triggers whatever it needs to do to create

the right stu↵. So the VFS–virtual file system could help insulate you from all that

and talk to a more complicated back end that it’s like oh, this data is from Remote

Location–and I will download that for you [laughs]. And you know, your directory

can show some stubs in the meantime and then–uh, eventually the data gets filled in.

Or, you know–basically a lot of that [sighs] if we can put it in the file system, then it

105

doesn’t have to be in the application, right? And so instead of open up this special

file dialog in Maya to do the right thing, let’s just use the file dial. And under the

hood, all the right stu↵ happens. So that, for me, is uh, also something that could

be pretty interesting. So it’s–

B: More of that heartbeat stu↵.

I2: Yeah, it’s really driving stu↵ lower level and um, shielding people from the

complexity of whats’s going on so that you have a clean mental model, um, as a user

of the pipeline.

B: Awesome. [laughs] that would be pretty cool. Okay, um, well that’s all I

can think of, um, I guess–you touched a little bit on the di↵erences between like

say, episodic production verses–verses feature. I mean, they–obviously they require

di↵erent things, right–as far as turn around and everything else goes. Can you–can

you speak about some of those di↵erences real quick?

I2: Huh. Well, let’s see. It’s interesting, I mean, it’s–because Adventure Series

Two is technically a TV pipeline. Um, a lot of it just comes down to the size of the

crew and how much time you have to do something. The tasks are mostly the same.

Like even for Action Series. The tasks are pretty much the same. It’s like you have to

do um, story, pre-viz, layout, build the models, rig everything...you just might have

two days to turn around something instead of a month. [sighs] Uh, for Action Series,

there’s an added wrinkle of–you have um, a lot of production happening in Global

Location–and at multiple vendors, uh, so you have to basically account for not only

your own revision control and asset management, but other studio’s, too, and come

up with really good standards. I think, especially with outsourcing it’s like the more

you can come up with a tight specification, the better o↵ you will be–even if people

think it’s overly restrictive. Um, for the pace that you have to go at, you kind of need

to be on rails. You have to be like um, this is it and um, there’s these special cases

106

that you just have to handle the special cases, but the 80% of these stu↵ is just set

then forget. There’s, you know–that’s the way for better or for worse. Um, because

otherwise, you have to have a lot of smart people to deal with all the exceptions, um,

and that costs money and time.

B: Right, right.

I2: Um, yeah. I think for TV, more than anything it really is just how much

polish can you put into something, um, [sighs] yeah. Feature it’s scale–It is the scale

and iterations. Right? It’s just being able to come back to this like, we thought

that sequence was in the can, but they suggest something and we have to go back

and revisit. Um, so...yeah. Scalability and just robustness. And to a certain extent,

being on rails, again, it uh, just helps with that kind of thing. And so, you want to

be flexible in-between shows, um, so you can configure the machine however you need

it to be for your particular project. But once you’re running, that’s like it’s kinda

locked in. [laughs]

B: It needs to be locked, yeah. That makes sense. Okay. Now–now I’m done.

Now I can’t think of any more questions.

I2: Well, games is the other–

B: Oh yeah yeah yeah, games.

I2: Um, games is a little bit di↵erent because it actually is more like that model

that I showed you this–because this is your game engine. So everything has to go into

the game engine before it’s usable. So you can be working in Maya on your rigs and

geometry and everything, but eventually, you have to get it into the game engine. So,

a lot more of the pipeline is oriented around a software engineering kind of process

where, you happen to be working on an asset–It might be digital asset verses code–but

eventually, it’ll go into revision control, Perforce or something and then stu↵ed into

the game engine, you know, built and tested um, overnight or something. So, very

107

di↵erent kind of philosophy. But if you look at the artist workflows, they’re almost

the same as how they would be operating on a feature or a TV show. It’s like I still

build my geometry and I just have a di↵erent publish process and a di↵erent way to

look at my–my result in the end. Um, so...yeah, to the artist, it’s not as much of

a change as it is to the data management. It’s interesting–because those artists are

very used to revision control, [laughs] versus the feature people who are not.

B: Awesome. Okay, well thanks very much for your time.

I2: Yeah.

B: And uh, I appreciate it. This has been very helpful–very useful information

despite the background noise we had.

I2: Yeah, hopefully you–If you have any questions, you can just email me.

B: Thank you. I will continue on that as the research goes, so...that is all we

need for now.

108

INTERVIEW 3

BRANDON: Hey I’m here with Interview 3. We’re gonna talk a little bit about his

work and the, some of the pipeline stu↵ here at the studio. So Interview 3, if you’d

start by talking a little bit about your experience, um, how you got here, that, that

kind of stu↵. Just a little background so that I can understand where you’re coming

from.

INTERVIEW 3: Okay. Uh, let’s see, I came out of College One, uh, with a

computer science degree, and then moved down to Location One for about five years

where I worked at VFX Studio One, uh, though out Big VFX Film One and their

sort of expansive phase where they moved from being a single-project studio for, uh,

John Director’s personal films to a more, uh, spread out VFX studio doing stu↵ for

lots of di↵erent people. And I stayed with them on through their Big VFX Film Two

ramp-up, which was a major revamp of an entire pipeline to be able to deal with,

sort of Big VFX Film Two’s insane, um, uh, poly-dense systems and all the sort of

stu↵. Uh, and after, after we finished that pipeline up I left Location One and came

back out to Location Two and, uh, was just looking for work and uh, found a good

place here at TV Studio One where, uh, had never had any kind of programming, uh,

positions at all, never had anyone here who was really focused on putting together

the pipeline. It all just grew very very organically around the needs of the people

because of this sense of, ’hey, shit, no one’s gonna let us keep doing this very much

longer.’ and it wasn’t, you know, itthey were eleven seasons in, and after eleven years

I’m like ’whoa, maybe we should start treating this like it’s a serious studio and hire

some programmers.’ and I, uh, I came in, sort of demonstrated that value, and after

a year - or, a little bit less than a year, more like eight months - um, we hired two

more people, which I sort of became the team lead there. Uh, and then after about

109

two years of that they gave me, uh, sort of, control over the whole technical means

of the studio, and now I operate as the CTO.

B: Wow.

I3: Uh, yeah, keep the whole studio running and keeping the I.T. and program-

ming and engineering, uh, departments sort of connected, moving forward.

B: Very cool. Awesome, well, um, what would you define a pipeline as? I know

that’s a very broad question.

I3: It’s a very broad question. Uh, I would, sort of, because I’m a very, sort

of, individual-orientated kind of programmer and that I sort of see, not the problem

in an abstract sense and not in a, um, sort of problem-to-be-solved sense but rather

as a relationship between two people. Or, in the, in the larger studios more than

two people, but between, sort of two departments which you can sort of think of as

two people. And then what I define a pipeline al-, as is really just a communication

technique between two di↵erent, disparate groups of people who have di↵erent goals

and di↵erent needs, and you sort of mediate these need, those needs together based on,

usually, um, very specific individual requirements. Uh, maybe not even to, necessarily

to, sort of, this, the role, the job, the role of the individual person. And that, uh, it’s

always very important to me that a pipeline, uh, serves the needs of the individuals

who are working on it. And that it’s very driven by the artist’s needs and the artist’s,

uh, requests. And so, I, uh, am very very strict about not imposing things from on

top and not, sort of saying ’you’re gonna work like this’ and ’you’re gonna do this’

and ’you’re gonna talk like this’ and sort of, a pipeline is to me, I go somebody, an

artist, and say ’what do you need?’ ’what’s annoying?’ ’how do you, sort of, what’s

the easiest way to get this done?’ and then I go to the next stage and say, ’well, what

do you need?’ and you can mediate those two things together.

B: That’s interesting. So it’s more of a bottom-up approach, as opposed to

110

I3: Yeah.

B: Right. Because some of the other folks I’ve talked to at studios, you know,

there’s kind of like a tech group or whatever, and they define some conventions or

something like that and then they kind of pass it down from on high.

I3: Yeah. And some of that stu↵ you need to pass down from on high, especially

things like naming conventions are, it’s a good example of something that, look,

nobody really cares what it is except for the tech nerds and all you need to do is say

’okay, just do it like this.’

B: Right.

I3: And you just, but you also need to be able to hand that to them in a way

that doesn’t feel authoritarian, it doesn’t make people feel like, ’why do I have to

do all this crap?’ uh, and, um, just based on the needs of a place like this, where,

uh, something that even if it can save you ten minutes down the line, if it takes two

minutes, it’s a hard sell. Because two additional minutes is two additional minutes

that can really matter! [laughs]

B: Yeah.

I3: And, uh, and so we always have to be very very light with our touch and very

very, um, uh, responsive to the needs of, on an individual level. But that’s something

that, it’s a luxury we have because we don’t have a lot of turnover, as well. I don’t

have to train someone new to use the pipeline every three days, or every two months.

You know, we get a new person in maybe once a year.

B: Wow.

I3: And everybody else is, sort of, they know their job and they know how

they’re gonna work, so I can work with them in a very, uh, personal way and say,

’man, let’s just give this thing whatever it needs to, to make your life easier’ while

of course always maintaining that sense of ’well all right, let’s not get crazy, though,

111

you can’t, I can’t give you a one-button solution and I can’t let your needs trounce

everyone else’s farther down the line.’ So, yeah.

B: Sure, sure. Awesome. Um, what do you think makes a good pipeline? Because

there’s lots of di↵erent examples of, you know, workflows or directory structures and

things like that. What, what makes a pipeline good and useful?

I3: And again, I would go - and I think this one of the ways I’m di↵erent from

a lot of people who do this kind of thing - I would say the best pipeline is the one

that annoys the artist the least. Because, in the end you’re not creating a pipeline to

serve itself. And a lot of people I’ve encountered, especially talking, going to industry

meetings and talking to people, they get the sort of idea of the pipeline as this living

creature that exists to serve its own needs. And I think that’s a really really bad way

to think about these things because what you end up getting is these people, these

artists who just hate the pipeline and they get so frustrated with these little things

they’ve gotta do, and it’s got, if it does, if it’s a capital p instead of a lowercase

p, everything breaks and everything dies. And those little annoyances can create

massive frustrations in people’s workflows that, uh, I ha-, I love to avoid those things,

and I love to go to an artist and say ’you know, you’ve been working for two weeks,

do-, working real hard. What was the thing that annoyed you the most? What were

you so frustrated with that you just wanted to shake the computer?’ and, and attack

those problems directly.

B: Right.

I3: Because I really do think the pipeline that, and[laughs]. This is gonna be a

weird phrase, but a pipeline that pipelines least is the best. The one that requires

the fewest number of, little, like, annoying changes or, uh, requirements on the artists

and the least time, uh, from them outside of their work. Because what they want to

do is be as creative as they can, as much as they can. And all that time they have

112

to spend making the creative stu↵, sort of, fit into this mold that you’ve created, uh,

is stu↵ that, that they hate doing. And, when they hate doing it, they do the things

they like less, and they get more frustrated and then the work su↵ers.

B: And stu↵ breaks.

I3: Yeah. Yeah. And so, um, the lightest touch, I think is the most important

thing in a good pipeline. Uh, and it, I, ideally - and this is almost never possible -

but ideally, you can create a really simple workflow where people are conforming to

the pipeline and they don’t even know they’re doing it.

B: Mhm.

I3: All they’re doing is just, ’I just know I have to save it in this folder and give

it this really simple name’ and all this other stu↵ is done for them, and that, they,

they’re brought into the system, they’re brought into the databases, they’ve got all

their naming, they’ve got all this sort of stu↵ that just sort of came naturally as a,

um, as a result of them doing their jobs. And one of my favorite things we do here

is, uh, as you construct a scene within, um, within Maya, as an example, uh, you

just give things the names that work to describe things that they are, and then once

you move out of your stage all that stu↵ gets a m-, automatically ingested into a

searchable database that you can sort of find them later and know where they are.

And people don’t even see that. They don’t have to do any work and it’s just handed

to them. And, um, again that’s a luxury of a small studio, more time, uh, but it’s

great for us, so.

B: Yeah, one of the guys I talked to at a, another studio compared a good

pipeline to, like a beating heart. Like, it’s there, it’s working, but you don’t really

think about it?

I3: Yeah. That’s a good one.

B: Or like breathing. You know, it’s something that you’re doing, but it comes

113

naturally to you and it’s not really

I3: I would completely agree, I would love to meet that guy and have a drink

with him. [laughs] because I’ve met a lot of people who don’t think like that, and, uh,

but that, yeah, that’s what I think is the best one. That it’s, that it comes naturally.

B: What kind of, uh, feedback loops, or communication tools are used in a

pipeline, or are critical for a pipeline, do you think?

I3: I think in a lot of ways that can depend on the size of the pipeline and, umthe

critical ones for us is physical communication. [laughs] And that, that’s another one

of those things that people can forget, and sort of try and engineer away the need

to ever talk to anyone. And, but, um, I’ve found, those are the loops, and those are

the feedback loops that hit the most, um, the most sort of points of communication.

Because you know, of course you always get more that way. The sarcasm comes

through, the, the, all that sort of stu↵. And that, to, to not eliminate those is

crucial. And when you have people working in di↵erent buildings or stu↵ like that

it’s important to have some, some point of physical communication.

B: Ok.

I3: But, that being said. Uh, the tools that we use, that are most important,

umand again, uh, I know we want to be agnostic, but the feedback loops and sort of

the um, the return to, uh, of information to the artists for instance, and uh, what we

call retakes and where they go through the exact same, um, uh, iterations of the shot

at the most times, umit’s important that, again, be reasonably transparent to the

people doing the reviewing, as far as feedback loops, and, um, uh, retakes. And that,

sort of, you can w-, because the way our pipeline is designed, people will just do their

work, it automatically appears in the list of to-be-checked, it automatically appears

in the list of here-are-all-the-notes-for-it, and then it just goes back out to them, so

it’s all very, um, very automated, but most of that, that’s easy. There’s nothing very

114

revolutionary there.

B: Right.

I3: What we find, are, and one thing we’re working on now that is, sort of, more

interesting is that animation notes don’t come through very well, um, in text. And,

the, I know lots of animators who constantly are complaining about how they get

these notes that come back and they, they think they address the notes and then a

the note comes back and it’s either the same thing or it’s like, ’more excited!’ and

you sort of, like, ’well you just said more excited before, and now you’re doing it with

capital letters!’ and sort of, what does that really mean? Um, we’ve got now an

interesting setup where we actually hooked a Kinect up to one of our rigs.

B: Oh, wow.

I3: Where - and we’re gonna try implementing this, this is brand new - we’re

gonna try implementing it now where they sort of, where Sam Director or one of the

other animation directors can act out what they’re looking for, and sort of go, like,

’It wants to be like this!’ and sort of, and it’ll actually give you, not, of course not

final animation but this sort of sense of what it is. Because, again going back to that

human interaction, the most valuable notes we get don’t come from anything that’s

ever written down. It comes from the animation director going over to the animator

and literally acting out what he wants. Because he’s in there with the creators, he’s

seeing what he wants and he just goes, ’okay, now it wants to be like this. When he’s

digging it goes in and it stays, but then he sort of shoves it sideways because he’s

being a really crappy digger.’ and all this sort of, those kinds of notes, um, don’t

come through very well in text, and we’re, we’re working on ways, again with the

Kinect and all that, to, to digitize that but also make it recorded and not have it just

be in someone’s head. But it’s, uh, it’s hard to do because, you know, feedback is the

most important thing, especially at the animation level.

115

B: Right.

I3: Uh, but there’s just, uh, not much, not much that can really convey that

really important information.

B: Mhm. So, email is kind of, like, on the back burner then?

I3: We don’t email at all. We use IM, chat a little bit, but not much. Most

of it is just, um, it comes through our little proprietary system which is essentially

the same as email, but, uh, the text-based notes, unless they’re really simple, like,

’change that jacket to be green,’ um, they don’t capture, the notion of it. And, um,

and you can’t, and they never will, I don’t think. I don’t think you can get that in

text. Uh, and sometimes you can work with audio, you can work with other kinds of

systems that try to capture more of the cues, but really they’re notI don’t, I don’t

think there’s a solution there, really. I’m, I, uh, I would love for there to be one. But,

it’s a, a, yeah. It’s an ongoing problem, I think.

B: And, um, to - obviously something, you know, any kind of digital media, any

kind of show is gonna have lots of iterations, uh, for shots, for sequences, things like

that. What - and, and the assets as well probably go through di↵erent phases - uh,

how do you keep up with version tracking? And how do you, um..I guess the question

is, what are some good methods for version tracking? Like, ways to keep up with

those things.

I3: Um, we, we work with a very specific, what we call, what I call the moving

forward system here, which is essentially a heroing system where you have the heroes,

and then subversions that sort of, uh that are just backtracked a little, but we almost

never go backwards in versions. It’s always going forward. So you’re never gonna have

anything where it’s like, ’well version 3 is the hero, but there are 6 other versions that,

you know, we’re not working with’ and you sort of work with symlinks and all these

sort of complicated systems to make the artist not, to, to make that transparent and

116

to make the artist not have to see that. Um, because we iterate so quickly - and we

iterate through a shot in, um, usually we, yeah we can go from script to ready shot,

like, airable, in under an hour.

B: Wow.

I3: Which is, yeah. That’s the, that’s it’s literally been storyboarded, created,

had the artists you know, the, had the, um, concept art created, had that brought

into Maya, rigged, animated, done, out there, in an hour.

B: Wow.

I3: It can be done. And, the, so that means a lot for most of our stu↵. There’s

not any real concern with, ’well what’s the right version?’ because it was all there,

and it was all, we all worked on it in, uh, you know, in a very shot amount of time.

You don’t have those weeks and weeks and weeks of, ’well it got changed, which note

is the right note? What’s the newest one?’ so what we do with that simplified system,

and again, because we never want to create complications. We never want to create

a needless complexity, that we don’t really bother, almost, with versioning. [laughs]

B: Yeah. [laughs]

I3: Uh, we just sort of say, ’look, if there’s a change. It’s just version6.’ you just

go forward. And if there’s, you know, and if we end up with 30 versions of a thing

even though we’ve only been working on it for four days, that’s, you know, that’s fine,

um, because it’s just, you know, it’s version five, it’s, it’s in the naming convention,

it’s in the, uh, system, but really it’s just, the thing is the thing and you go forward

with using it. Um, and as much as anything we just - even if more notes come down

there comes a point when the producers tell the creators or anyone, they say, ’look,

no more versions of this. You can’t have more, we don’t have time, there’s just, no

time to work with that.’ um, so, I think that is another unique thing about this, is

that we don’t have time to work with that, we don’t reallyI know it’s a huge issue

117

for so many other places, uhbut for us, it’s so, it’s so minuscule a part of our system

because, um, it just goes forward so quickly. Yeah.

B: Yeah. Well I can imagine, you know, like, at Studio Delta, they have, some-

thing like 180 characters in Big Animated Film, you know, and it’s just such a massive

thing to keep up with, but, um, I guess the advantage of being smaller is that, you,

that you don’t necessarily have to keep up with that number of assets or anything

like that.

I3: Yeah. And it’s also, I mean it’s worth mentioning that our, our heavy asset,

den-, our asset-dense shows, which happen occasionally, we have lots and lots of new

stu↵, there’s never more than one version. Because it doesn’t, like it, if you wanted

a change to it - unless it was a really crucial, main character sort of thing, there’s

absolutely no time for us to make a second version, because there’s ten other things

that have got to, that have to be worked on, have to be converted to Maya, have to

be rigged, have to be done with, have to have all this stu↵ done to them so that,

um, uh, the things that you would think of as being the most di�cult are in fact the

easiest, because whatever the ver-, whatever it is, it is.

B: Yeah.

I3: Never time for a second version. Um, whereas the light things, like, where

we maybe only have two or three main characters, or just the boys, that can be a

concern because he’ll want di↵erent things, we want to make sure we get the right

ones, but it’s not that big a deal just because we have our, you know, our basic library

and whatever the shot is, the shot is. [laughs]

B: And I think there’s probably, uh, something about the aesthetic of the show

that you can get away with that pretty easily too.

I3: Some of it, yeah. I mean, we definitely make mistakes sometimes. Uh, and,

get called out on it by the fansbut, uh, it’s not that big a deal.

118

B: Yeah. Cool. Um, well, I haven’t seen ’Behind-the-Scenes Movie,’ but uh,

I thought about watching it before I came over, because I didn’t know if there was

anything relevant in it or not. But

I3: Yeah, I guess not, it’s, it’s very much a, uh, it’s about the creative process,

not the technical process of making it. Um, it’s a - which is a unique process, just

given that, even, even Behind-the-Scenes Movie is a little bit of a misnomer because

generally those first two days of work get thrown out. So we do it in about four days

of really intense work. I mean, the last three days are essentially, you know, 18-hour

day, sleep, come right back in. 20-hour day, sleep, come right back in, 30-hour day.

[laughs]

B: Wow.

I3: And then sleep for two days, come back in and do it again.

B: [laughs]

Umand, and, that level of, of, just, intense crunch time means two important

things for us programming. One is that we don’t have test time.

B: Hm. Yeah.

I3: And I mean that. There’s no time to test any of our code. Uh, we get, you

know, four months o↵ in the summer, when nobody’s here it’s like this. We’re, it’s

just us, the programmers, I.T. crew, we’re working our asses o↵ doing everything we

can. But, we’re not really using the systems. No one’s testing anything. There’s

no time to do, like, a versioning of code, or like, you have, you put it out there,

production-ready, stu↵ that hasn’t been touched in three months and then you say

’okay, what’s wrong? Okay, fix it.’ development cycles happen in hours, and you sort

of say, ’okay I want a whole new version of this that does this, this, and this, you

have four hours. Do it, get it.’

B: Wow.

119

I3: And then, uh, and it’s gotta be working, and you’ve gotta be able to make

sure people can do their job and, and make sure everything goes forward in a time

that is just ludicrous, because there’s just no opportunity and any other way. And

then, of course, once the run starts, everything is locked down. Unless it’s a major

bug, we don’t touch the code.

B: Right.

I3: Uh, we’re just here making sure everything goes forward and works. And,

uh, that’s unfair to the developers to a point that, no one really understands how

unfair that is here, except the developers. We’re sort of like, okay, this is exact, if you

were to write a course on how not to develop software, you’d do it like we do it here.

B: Right.

I3: Uh, and yet that’s how we do it. And, uh, and everything we do has to

have a, this, really, this thing I keep telling our developers, that, uh, you know, if

it, even if it gains you ten minutes, it can’t cost someone else two minutes. Every

second counts, and every second that we add to somebody’s workflow, unless it is

game-changingly good, it can’t be added. It’s gotta take away, it’s gotta take away.

Uh, and which we’ve managed to do. And at this point we’ve got, you know, our

iterations are insane, but we’ve managed, since in the last three years which we’ve

completely re-written the pipeline, we’ve taken it down a whole day of time. So, it’s

been really great.

B: And I guess, with that level of, of rapid development you probably need a lot

of flexibility in the pipeline.

I3: Absolutely. All of our in-house tools are, are in-house written. We don’t

make use of any external code, uh, well, I - that’s not, to be fair, we use external

source code, bring it in and work with it, but we don’t use any products in our

pipeline that are not custom-built. We tried for a long time, or before I got here they

120

did, and, um, and it was just a nightmare. It, just cause, no one could appreciate

the fact that when you, once you find a bug that adds two minutes to your workflow,

that’sthat’s a game-changer.

B: Right.

I3: And you can’t, you can’t call someone at a development house, like, who’s

running Shotgun, who’s putting together Katana or something like that, which are

awesome systems, but if you find stu↵ and it breaks, and you’re like, ’I need this

fixed today. Absolutely, I need a whole new revision, a whole new build, I need it

fixed.’ they’ll, they laugh at you. They, they’re right to laugh at you, but, umour

biggest, uh, piece of a-, non-in-house software is Maya, and, uh, it’s a scary, scary

beast. Because even as customizable and programmable as Maya is, it’s not enough.

B: Mhm.

I3: It’s not enough to really have core access to that machine and be able to do

whatever you can with it. Butyeah. That’s, sort of where we are.

B: Awesome. Um, well we talked a little bit about, my next question was, sort

of, thinking about, you know, pipeline decisions and stu↵ thatwe kinda talked a little

bit about that earlier, like there’s, there’s not necessarily a, uh, a group of, a secret

cabal of people that, like, hands down everything.

I3: Yeah.

B: We, we talked about that a little bit. Um, can you talk a little bit about the

evolution of the pipeline, uh since you’ve gotten here, things that, things that, um,

have changed for the better, and things that maybe you miss or that, um, have, like,

has it gotten better? Has it

I3: Well it’s ju-, I mean, it wasn’t anything when I got here. It was completely

cobbled-together from code written by someone who had taught themselves to code,

who like, who wasn’t a programmer. He was doing the best he could with what he

121

had.

B: Right.

I3: But, um ,and I, I, like out-of-house software and sort of, whatever they

could sort of find that would allow them to do the job. Now we have a much more

streamlined system, so it’s, it’s much much better. But there’s always room for

improvement of course.

B: Mhm.

I3: But, um, the evolution was really, um, it wasn’t as natural as I could have

hoped because, you know we, there was no ramp-up to try out the system. It had to

be very, um, very component-based. So, you know, we sort of started with assets, and

we moved on to shot tracking, and now we’re sort of, and we moved on to revision

tracking, and sort of, all, uh, internal asset tracking within, assets within shots. And

now we’re looking at management from a more, um, generalized perspective. Um,

but really what it all came back, what it all comes back to, uh - and I think this is

always the case - is the database. The database is the heart of any pipeline.

B: Yeah.

I3: And, um, we keep going through revisions of the database to sort of smooth

it out and make it simpler and faster just because we don’t have a very complex,

sort of and the need for a complex system. Uh, but, the um, the database sort of,

it became the heart, we bring up some, sort of, easier protocols around that, and

then we focus on, again, the individual users and what they need, and what we need

to do the shows. And, and really what we looked at initially was, ’what’s taking

the most time? What’s the most annoying thing, the thing that breaks the most,

the thing that sort of causes us to, you know, rack our, rack our brains?’ along the

entire pipeline, let’s slot something in that works for them, focus on getting them

working. Ok, what’s the next thing? We’re gonna slot something in, we’re gonna

122

make sure it talks to this other thing. Ok, let’s, what’s the next, what’s the next.

And that’s what we ended up doing, is on an application level, we slotted those in

individually as we moved forward, just making sure each application was able to sort

of communicate with all the other stages of, of the pipeline, until, eventually, and it

- it was interesting, because, to a lot of people at first, if sort of seemed like, ’I just

have one little thing here, he’s got one little thing here, there’s nothing really going

on.’ it wasn’t until the whole system, like, you know you’ve got the last stone in the

arch into place that suddenly it was like ’oh, ok now it’s all connected, it’s all talking

to each other, and we have this streamlined thing.’

B: Nice.

I3: But yeah, for the first two years it was very much, let’s just solve individual

small problems that are causing issues and then sort of use that to expand the eventual

idea of what we want to have. But that’s uh, what I would say is the most important

thing for evolving a pipeline, is to not be obsessed with the entire thing, but rather

to focus on the individual small, solvable problems that you can work on. Then,

but with the view, with you, being the pipeline designer, having the eye towards the

eventual completion but really, you know, solve the individual problems first.

B: Right. Not coming in and saying, ’we have to throw all of this out and start

over!’

I3: [laughs] yeah, exactly. That will cause more headaches than it’s worth. Yeah.

B: Sure. Yeah. Uh, I guess I just have a couple more questions. I’ll throw some,

some ideas at you that some of the other interviewees mentioned. Um, one of them

was smart assets, and using metadata in assets.

I3: Mhm.

B: Um, what do you, like he, he was talking about that, sort of becoming a

bigger part of, of the pipeline at Studio Alpha, and, um, trying to, um, you know,

123

just add more and more metadata to characters so that you can pull things, specific

assets like, say, from, the version you used from a trailer or something like that.

I3: Yeah. And that sort of stu↵ is really, is really great and I’m, um, sort ofwe

ended up sort of writing a system like that back when I was at VFX Studio One and

then that was a really important aspect of what I wrote, was sort of, model packages.

Models come not as an individual, um, like, Maya file as you might think of, but

rather as this big old grouping of metadata, and di↵erent versions and all the, like

di↵erent polygon density versions so you can work with them and all these sort of

things, that, now is pretty standard. A lot of, really everyone uses it. Back, you

know, 5 or 6 years ago, it was very new and no one was really working that way.

B: Yeah.

I3: Um, again, the, uh, the problem I have with those sort of model packages -

it, it’s not a problem, it’s just a statement of what I think is a statement of fact, you

can take it or leave it - um, is that, they require a great deal of human intervention

to manage, and that it’s not. That, that idea I had of, or of, that I believe strongly

in of the transparency of the, of the pipeline, um, means that, you know, you don’t

want to have people having to sort of manage their own assets too strongly, and like,

ok it’s this, and it came from this and it has this in it. Um, it’s hard to, sort of, to

keep the information from and automated system, uh, relevant and, uh, searchable,

which is a, you know, the most important thing is that you gotta be able to find it

later. And being able to sort of say, being able to find that trailer asset, like you said,

um, is, you know, that’s as important or more important than having it actually be

recorded, because the biggest problem we had with asset packages and tracking assets

was not getting them into the system. That’s easy.

B: Mhm.

I3: It was making that system usable in such a way that people could easily find

124

what they were looking for without having to be like, ’oh, you know, where do we

find that beaten-up version of Main Guy? Where is that?’ ’oh, well, he was in this

show, well and we beat him up at that time.’ and that sort of thinking is not helpful.

But also, like, you know, the reason we couldn’t find him is because it wasn’t called

beaten up, it was called, you know, uh, destroyed or something like that, you know.

B: Yeah.

I3: And, uh, working with things like synonyms, and stu↵ like that can be a

major problem. We’re moving right now into one of our new projects, into what we

call the Show Location map. And that’s where we’re making an asset system that’s

subordinate to geography, and sort of saying that, ’we’ve got this really, we, this

unique system where we have a very specific area, we’re working with Show Location.

Let’s, instead of working with trying to find search-ability via text, which is sort of the

accepted method, we’re gonna move it to a map where we literally have a Google Map

of Show Location and we say, ’If you want to find something, it would be wherever it

is on the map.’ So if you want to find the school, you go to the school on the map.

If you want to find businesses, go to the business district, and all that sort of thing.

And it provides a kind of easy shared reality that um, allows assets to be much more

easily found and categorized, because you don’t have to think about the ten things

that you might be thinking of later, all you’ve gotta think of is where it would be,

that’s the only thing that’s important. And that provides a, what I hope will be a

very, um, unique opportunity to be able to find things and search for them in an easy

way.

B: Yeah, that’s really cool. I’ve never heard of any, anybody doing anything like

that.

I3: I don’t think we’ve, uh, like, most places wouldn’t be able to.

B: Well, sure.

125

I3: Because like, yeah, there aren’t many, ten, you know, animated shows with

ten years of backlogged assets that, so, uhbut I think that’s, that will be a good thing

that we’re gonna move forward on, yeah. So, yeah, we’re testing it out this run, as

well. So we’ll see how it works.

B: Very cool. Um, I guess the only other thing, uh, I would ask about is,

umthe second guy I interviewed talked about, um, he drew a little diagram talking

about checking, checking things in and out, basically, like, having, um, like an asset

repository almost, where people come in and they check something out, they do

something with it and then put it back in, and then the other piece, like, can grab

that and, and start working on it.

I3: Yeah. And that’s, umI think those are a mistake, personally. I think they’re

a mistake, not because they’re not good ideas, they are good ideas. They’re how

all software development is done now, but you’ve got to have a software developer’s

perspective on how that works to do that. Uh, and this is one of those things that,

especially programmers forget a lot of the time, which was how conceptually di�cult

were some of the things that they now think are just completely obvious were to

grasp initially. Because if you ask a programmer ’how long did it take you to grasp

pointers the very first time you were told about them?’ it took some people months,

of, of like really trying to figure out, ’what does this even mean? What does it?’ and,

um, versioning systems, to me, work the same way in that the first time I was trying

to work with a versioning system and sort of conceptualize what ’checking out’ even

meant, and how that sort of, and how merging even worked, and all that, which is

now, it, it’s obvious to me. But back then, it was very very complicated. And getting,

um, artists conceptually, to sort of, to view a) the potential of that system and b)

how to not screw it up, can be really really hard. And I, uh, I have never seen the

benefit of, of forcing that system on them because it frustrates the crap out of them.

126

B: Mhm.

I3: And even though it’s sub, you know, it’s suboptimal not to use it because

they’re so powerful, there’s so much you can do with them and it prevents so much

trouble, it allows for these automatic, um, ingests of, of new versions into, sort of,

older versions, and all this great stu↵. That’s great - if everyone knows how it works

and it works properly. But in the instances where it doesn’t, man, it creates major

headaches. And I, uh, that’s just why I, I would be very reluctant to implement a

system like that. Uh, because, man, even if you know how it works, if the artist

doesn’t it’s no use to anybody. But, uh, but they’re good systems, they’re really

neat, but, uh, they’re scary. [laughs]

B: Yeah. Well that made me think of another, another question, umon artist

usability and making things, you know, easy for them, do, are the people at TV

Studio One required to do any command-line stu↵, or is there, is there a lot of, is

everything GUI-based?

I3: It’s all GUI-based. And it’s interesting that you bring that up, because it’s

one of thesethis is a conversation that I had three years ago at a tech meet up that

was talking about this very thing. And the, the banner headline of this whole talk,

from this very, like, well-known guy, who was doing some major pipeline stu↵ at sony,

was, ’artists have to be comfortable with command lines.’ and I said, ’well all right,

that’s great - no they’re not!’ [laughs] you can scream that from the rafters until the

day you die, and they will not be. And they’ll be frustrated with it and they’ll call

your support sta↵, and I, and they will say, you know, you can’twell, let me put it

this way. In my environment I can’t enforce that. It’s just not possible. Uh, I can’t, I

don’t have the support sta↵ to deal with the questions that would come in from ’why

doesn’t this work? Why isn’t this thing doing what I want to do?’ I can’t, um, I

don’t have the time to train, to pay the artist to train them in how to do it, because,

127

you know, we’ve only got these set amount of time, and we’re working and they need

to be on the ground rolling. And, um, and at this point anyway, you knowfive years

ago, eight years ago, when I started in this business, maybe that’s something you

needed. That’s not true anymore. Writing GUI tools is fast, it’s easy, it’s not hard.

Um, handing all, writing ugly-ass code - using things like regular expressions and all

those sort of text-processing things, it used to be a big no-no because they were so

slow, they would slow down your tools - is not true anymore.

B: Right.

I3: You can write ugly-ass programs with workable UIs that, um, that anyone

can use and will send, will not be an issue. And, and I can’t go to my producers and

say, ’look, they have to be comfortable with the-, UI, with a command line because

I don’t have any options’ or ’there’s no way for me to do my job unless they can use

the command line.’

B: Right.

I3: I don’t, just, don’t think that’s true anymore. Um, and, you know, if you

can, if you can make them do that, that’s fine. It’ll save your programmers time, but

not much. And, uh, and I think the time you’ll lose to support calls, and, again if

you’ve got ten wranglers doing support calls 24 hours a day, then that, that’s not an

issue for you. For me, at a small studio like this, no way I can handle that level of

calls, so I’ve gotta be able to just sort of say, ’look - it’s all GUI. Everything.’ it’s um,

they don’t even know where the terminal is, most of my artists. And, uh, and really

even though I very rigorously ride the programmers, saying, ’everything is terminal,

command line interface to terminal.’ so like, we can run all of our tools from the

command line and for de, debugging, we can separate all of our tasks from, ’this is a

GUI issue slash this is a command line issue.’ That’s very very important.

B: Yeah, definitely.

128

I3: So that, for debugging we have that kind of, um, that capability, but, uh,

the artists don’t even know it’s there. And they’ll, they never will. [laughs]

B: [laughs]

I3: So yeah, that’s where we are on that one. But I, uh, I don’t want to sound

like a militant about that, I would love to be able to use the command line for some

things, just because it’s faster, it’s easier, and once they’re used to it, it’ll be, it’ll

make the artist’s life use, easier. But, not here. [laughs]

B: Yeah. Okay, well, that’s all I can think of. Um, thank you very much for your

time, I appreciate it.

I3: Yeah, thanks for coming by.

129

INTERVIEW 4

BRANDON: Hey I’m on with Interview 4 at Studio Delta. Um, we’re gonna chat

a little bit about, uh, some pipeline stu↵. So, Interview 4, uh, to start with, I have

some questions about, uh, like, your background, um, just so we can get an idea of

where you’re coming from, uh, how long have you been at Studio Delta?

INTERVIEW 4: Fifteen years this month.

B: Oh wow, congratulations.

I4: [laughs] I started here right after Big VFX Film Three, so, [90s].

B: And you, so you worked on Big VFX Film Three. You were at...

I4: I was at VFX Studio One before that for three years. Three years-ish, yeah.

B: And, um, your education, stu↵ like that, where...

I4: I did my undergraduate in computer science, astronomy, math, physics at

[university 1], and, uh, I did my [graduate] work at [university two], in computer

science.

B: So what brought you to VFX Studio One?

I4: Um, I, I actually since high school knew I wanted to make movies, so I,

uh, and wanted to get into computer generated imagery, so, um, my undergraduate-

graduate I was aiming in that direction. Uh, while I was a student at [university 1]

I started volunteering at SIGGRAPH as a student volunteer, uh, so I was a student

volunteer for, uh, [the early 90s], uh, and then during those years I was making a

lot of contacts, you know, meeting folks and, uh, and sort of, you know, the research

work I was doing in grad school got me noticed, and, so I had VFX Studio Two and

VFX Studio One both talking to me my final year of grad school, so.

B: Cool.

I4: And then I ended up deciding on VFX Studio One because they were just

130

barely started. They had, uh, they were working on Action Film when I was out

there interviewing with them, and they just, it was such a young company, they were

hiring a lot of A-level talent to do A-level work, but they weren’t set in their ways

and everything. It seemed like a good place to come in and do cool stu↵. You know,

had a lot of flexibility.

B: Yeah. So why, why jump from there to Studio Delta, after Big VFX Film

Three?

I4: Um...there’s a bunch of reasons. Visual e↵ects houses tend to be kind of,

they, they’re service bureaus by nature. Uh, they bid against one another to land the

work, they undercut one another a lot of the time so they end up getting very little

money, very little time to do the work. Uh, it turns into not a lot of opportunity to do

things right. You end up having to do things however you can get them done. And,

there’s, I mean there’s some appeal to that. There’s some challenge and some fun to

that but there’s also a lot of blood on the floor when it’s done, so, uh, it culminated,

I...Studio Delta had been after me for a while, they started talking to me [early] about

coming over, and I had, I had declined the first few conversations and then I rode this

wave of production from Blockbuster Film to Action Film to Big VFX Film Three,

uh, where by the, by the crest of that wave I was working 100-hour weeks.

B: Wow.

I4: And, uh, for several months, and my daughter went from 12 months old to

16 months old without me seeing her awake. And, I just said, I don’t want to do this,

and, uh, looking at what Studio Delta had to o↵er, the notion that every part of the

production process is done in-house, you know, from the germ of a story idea all the

way to color timing, uh, meant that they had, they had more time, and they had

the ability to do it right, or to try to anyways, so. There’s more planning involved,

there’s more structure involved, and that translates into, uh, a little bit less abuse.

131

You know, uh, a little bit saner work environment.

B: Mhm.

I4: The production environment’s crazy to begin with, and there’s an aspect

of that that’s necessary because you’re making art. You know, if there isn’t some

amount of blood on the floor then you weren’t working hard enough, is the mentality

I think everyone in this business shares to varying degrees. So, but at Studio Delta

we work, you know we get into our crunch period, we get up into 60 and 70 hour

weeks for, you know, for some number of weeks at the crest of the production, it gets

a little bit crunchy. But, um, it’s still considerably saner than a lot of our peers in

visual e↵ects. Um, and that’s part of the appeal. Uh, there’s a lot of other aspects,

but that’s certainly a piece of it. I get to go home and see my kids, so.

B: Yeah. Well that’s good. Um, I guess then, you’ll have a little perspective

from both of those approaches at work and maybe some of the di↵erences in the way

that, they, they do things. Um...

I4: Well, also in my role here, I, it’s part of my role here to understand how

other facilities are functioning. Um, because, we’re, we’re always trying to improve,

I mean, as are, as are, every other facility who do the same work, we’re all trying to

learn from one another, all trying to get better at our craft, and a lot of the questions

don’t have right answers necessarily. The answer changes. If there was one right

answer as to how to build a pipeline or how to build a toolset, then somebody would

have done it by now and we’d all be using the same tools. And we’re not, and there’s

reasons for that, so. Um, we’re always reevaluating, we’re always seeing how we can

do better the things we do, and how can we learn to do new things. So.

B: Well based on your work, and your experience, how would you define a

pipeline? And I know that’s a really broad, broad thing to throw out there, but...

I4: It means a lot of things to a lot of di↵erent people, I mean, for us, the pipeline

132

is kind of the backbone for the production process. It’s the, uh, we have individual

departments, we’re a relatively large house, so we tend to compartmentalize. Uh, the

smaller mom and pop shops, knocking out commercials, things like that don’t do that

nearly as much. They could have small groups of people that are working completely

freeform. But, uh, just like, you know, small-scale auto production goes from a group

of guys standing around a frame, you know, bolting parts on to something like the

assembly line. Uh, the bigger houses have moved towards, uh, a compartmentalized,

structured approach to the tasks and who does what, and when, uh just because it

makes them more e�cient. And, at the end of the door when we’re clocking out, an

entire animated movie that has 1600 shots that have a variety of di↵erent challenges

to them, uh, the more sane and structured we keep the production process, the better.

And so, to me, the pipeline is about all of that. It’s about, how do we get a shot from,

you know, from a bunch of drawings coming out of story and visual development, uh,

into assets and shots and all the way out to the 2K frame. Um, and there’s, you

know, a vast variety of components involved in that, so.

B: Mhm. So there’s obviously lots of di↵erent approaches and, and things for a

pipeline. What do you think makes for a good, or an e↵ective pipeline?

I4: [laughs] um, it’s funny, I mean, my definition of that’s changed over the

years, several times over. We’ve gone through a number of pipelines here. Uh, there

was a period of time where, and, and this is somewhat sad to say, but there was

a period of time where each show was its own little island to some extent. There

wasn’t a lot of cross-show communication, and, uh, a team would roll onto the show

relatively early, uh, they didn’t know a lot about what story they were making yet,

because the story was still way too early and they, and, time and again if you started

into asset creation too early, you’d end up getting very bitten, because you’d end up

burning a lot of resources building assets that would end up not being in the movie.

133

B: Right.

I4: Just because the movie changed. Um, so you try to delay that as long as you

can. At some point you have to start building things, or you run out of time to get

the movie made, so you have to start making guesses as to what you think has the

best shot of being in the movie and start building. But there’s still this period of time

early on, a number of years ago where you had a team of really smart, really creative

people who would be rolled on, and they didn’t know what movie they were making.

And, pipeline becomes and easy target. They start to think about the things that

were hard on the previous movie, or two movies ago, and they start to think about,

’well, we could do that di↵erently, we could try this new way of doing this.’ and,

that’s not, that’s not a horrible thing in and of itself, but it did translate into a lot

of churn. A lot of, you know, reinventing big pieces of the production process with

every movie. And we learned a lot from it, but the term we coined at the time, kind

of, watching all this, time and again, we kept making pipelines that were di↵erently

broken.

B: [laughs]

I4: Uh, as I said earlier, no pipeline is perfect, and every pipeline has its strengths

and its weaknesses and so we kept replacing components with components that had

di↵erent flaws. They were stronger at some of the things the previous one had been

weak at, but they were weak at new things. And in some cases, things that clearly the

previous pipeline had been better at. Um, and then you would revisit and you would

go, ’oh, well let’s try to do that and that, and be strong at both of those things,’ and

then a third thing you’d be weak at. Um, because, you know, again - if there was a

right way to do it, we’d all be doing it.

B: Sure.

I4: There’s, every approach we take is going to have those strengths and weak-

134

nesses, and you just try to arrive at something that’s good enough. At the end of the

day, it needs to be, uh, the pipeline needs to be good enough to get the data through

without undue hardship to the artists, and it needs to be strong enough to, for the,

uh, we refer to it a lot in, in the last few years, the 80% case. You know, 80% of your

work should go through e↵ortlessly, and the last 20%, the more you try to optimize,

improve, all that, the - you end up causing, uh, your systems become bloated you

end up causing, you know, these pathological cases, you start to chase down, start

to introduce weaknesses in other things. And so we ended up in recent years, two

main di↵erences here. One was moving towards a single pipeline for all productions

where we are evolving the toolset in a concerted manner and more of a continuum of

development between productions, so each production is, is constantly communicat-

ing with the show behind them and the show after them about the changes they’re

making and, and, there’s some degree of consensus between them. That’s one aspect,

and the other is that recognition of the 80% case, that there, we’re gonna try and

build a pipeline that is e↵ective for the 80% case and just be okay having to handle

the other 20%. Be okay with the, the, keeping the pipeline relatively lightweight, and

have some degree of hand-holding. And, and knowing that because we kept it rela-

tively lightweight, we’ll have the bandwidth to do that hand-holding for the things

that don’t fit.

B: Sure.

I4: So, that’s sort of where we’ve landed, in real broad strokes, with our pipeline.

And it, and it’s already panned out, you know, the, having a singular pipeline over,

over several productions in a row now has led to a strengthening of overall artist

e↵ectiveness, having a pipeline that’s relatively light on its feet has made us very

nimble, uh, with challenges that have popped up that we had no way of anticipating.

Uh, and it’s enabled us, as more shows are ramping up, to put more energy and

135

thought toward the new cool stu↵ because we’re not reinventing pipeline and process.

B: And I imagine it’s easier for artists too, to be able to go in the same environ-

ment between shows.

I4: Absolutely. They can go from one show to the other. When artists rolled o↵

of Funny Movie onto Family Movie, they could immediately start lighting test shots

and started to play around with the new challenges of Family Movie, because the

tools that were starting to be built for those new challenges were layered on top of

a toolset they were familiar with and made it considerably easier because the tools

were very very much the same.

B: Mhm. Uh, what kinds of, well, communication’s a big part of a pipeline. Um,

what methods of communication, what kind of feedback loops do you, do you find

e↵ective, uh, at Studio Delta?

I4: Um, as I mentioned earlier we, we like planning, uh, we like, because we have

a longer turnaround on our projects. We have, you know, sometimes three years for a

movie instead of - a visual e↵ects production, for instance, will sometimes, sometimes

land the project when principal photography is already halfway done and they are

in crisis mode from day one - we have a lot of lead time to, well not a lot, but some

amount of lead time to plan the movie, so we start to lay down our communication

pipes relatively early. Um, the production management team in particular, because

they’re the ones at the end of the day that are tracking the progress of data. Uh, from

my perspective we’re worried more about the quality of data and the survivability of

data, that it get through the pipe intact and it arrive without flaw.

B: Right.

I4: They track the productivity of data, the, the artists in a given department

are clocking out work at a su�cient pace to get the movie made on time. And so,

they, they do a ton of tracking and communication. Um, we use, we use shotgun as a

136

production foundation, um, and then have layered a ton of custom tools on top of it

to, to, facilitate the di↵erent things they want to query, the di↵erent kinds of reports

they want to build so that they’re communicating to everybody exactly the state of

the show from the various perspectives people want to see it from.

B: So, um, would something like email be, a big part of how people keep track

of things, or...?

I4: Email’s absolutely a way for that, um, we’ve done a variety over the years,

you know, web forms and all kinds of...uh, email, we, and we do, today, all of those

things. You know, we’ll populate web forms with charts, we’ll, um, and we do emails,

we do pages, you know, we do a lot of di↵erent ways of passing information along.

Uh, nightly reports and graphs, and all kinds of things you pull up when you get in

in the morning. Email is fairly intrusive, um, so those of us who are, kind of, in that

inner loop where we’re being, we’re in a spot we need to be communicated to a lot,

uh, we end up being very very good at writing filters, um because I get on the order

of probably 600 emails a day.

B: Sure.

I4: Um, and some are really really important and absolutely need my attention

immediately, and email is absolutely a good communication mechanism for that. Uh,

that’s why, you know, a lot of us are carrying around our iPhones and iPads and

are in constant communication. But, there’s also a lot of it that is stu↵ that you

need to know but you don’t need to know right that instant, and a lot of it gets, we

filter away into folders and when we get back to our desk, we take a look whenever

we have a moment to breathe, uh, we take a look at the other things we need to be

paying attention to. Or, for instance, things that we know need to be paid attention

to but we also know there are people doing it for us, right? Uh, for instance, the

main frontline support mailing list, the prod support mailing list. I filter that into

137

a folder and I look at it when I can, because I’m busy all day long running around,

I’m not on the floor solving those problems, but I need to be aware of them and I

need to at least have, you know, the pulse of where we’re at within an hour or two.

And so whenever I get a free moment, I’ll crack open that subfolder where all those

got filtered to and I’ll read them, at, at, not at my leisure because that...leisure is a

luxury we don’t have, but when I have a moment to breathe I will crack that open

and read it. But, so, anything that survives my filters and makes it into my inbox,

uh, becomes something worth immediate action, so.

B: Mhm. Well, the reason I ask about email is cause I, some of the people that

I’ve talked to, you know, like, uh, like Interview 1 at Studio Alpha, and, and Interview

2, were talking about email, um, and had varying opinions on its e↵ectiveness.

I4: Yup. It’s really easy to get buried.

B: Yeah, it’s noisy. Interview 2, that was Interview 2’s main point, is that it is

inherently noisy. And, uh...

I4: And so we filter the hell out of it.

B: Right, right. Well I talked to, um, to Interview 3, uh, over at TV Studio One

yesterday, and, they, they don’t use email at all, which, I found interesting, um, but

I guess you can probably get away with that in a studio that’s much smaller.

I4: Uh, there cert-, I mean there’s certainly other communication mechanisms

that are functional, you know, like I said, we have graphs that we look at every

morning, we have web forms that are populated constantly so if you’re at your desk

you can pop them open, we have, uh, iPhone apps to look at the status of the queue,

you know, we have a, we have a lot of things, um, other ways of communicating, but

email is deliberately intrusive. You know, when you open up your iPhone and you

see that box has five unread messages, and you know, like I said, that your filters are

throwing away all the stu↵ that doesn’t require your attention, you have to open it.

138

You have to open that up and look at it right in that moment, and so it’s, you know,

shy of texting people it’s the, it’s the most intrusive form of communication, and so,

there’s times when that’s necessary, when you have to get people’s attention.

B: Yeah.

I4: Um, worst case are things like, leaving people voicemail. You know, there’s,

I, there are days I never see my desk, because I’m just, I, I get in in the morning and

I’m immediately running o↵ to go do stu↵, and I just never make it to my desk, and so

there have been days where I make it to my desk the next day and see that red light on

my phone that’s glaring back at me and go, ’ah, crap.’ because yesterday something

happened that needed my attention and I didn’t even know about it because I never

made it to my desk to check it. So, we’ve definitely gotten more mobile. Uh, a decade

ago we were using walkie-talkies...

B: Oh, wow.

I4: Uh, we were carrying walkie-talkies around the building just specifically so

you could be grabbed at a moment’s notice, so somebody could get your attention

to ask a question. Uh, email, email is the primary method for that now and then

texting is the crisis mode, ’i need you right this second,’ uh, mode of communication

for most of us.

B: Yeah, yeah. Um, another, another part of, of pipelines and any production

is, you know, keeping track of your assets, and version tracking, and stu↵ like that.

What, what methods of version tracking have you found to be...e↵ective, I guess?

I4: We used to version control the heck out of everything. We used to do very,

very detailed version control. And, um, and expose all of that so that, uh, everyone

had access to any version of any asset and, unfortunately that led to, uh...assets have

a lot of moving parts. Assets and shots have a lot of moving parts, and, uh, you end

up spending a lot of energy making sure that model a goes with rig b goes with, you

139

know, surfacing technique thr-, c, and that those are all in sync at the time it lands

down in lighting, and, uh, and that they stay in sync. You know, that a new model

doesn’t come along and then now it’s out of sync again, and suddenly a shot that

the artist is in the middle of breaks down. Our current methodology, we’ve removed

versioning from the artist. So we’ve moved closer to what’s called a push mechanism

where a new asset comes along, it gets put out in everybody’s face. And, if it’s

broken, well, it breaks everybody. But, then it gets addressed. It’s part of being a

little lighter and more nimble, is, you will have more breakage but you will be on top

of the breakage and you’ll resolve it quicker.

B: Mhm.

I4: Um, we still do versioning, we just hide it from the artist. We have versioning

under the hood so that we can revert to older versions of assets when something goes

wrong, and for archival, you know, purposes, we can resolve what version of an asset

was used for a shot that was rendered and finaled three months ago and we need to

bring it back up for a, you know in the o↵ case which does happen, where, and it’s

three months later and they want to do a publicity frame from that shot, and you

bring that shot back up and it renders di↵erently. Because the asset that’s in the

shot changed since it was finaled. And so you need to go, there’s absolutely times

you need to go back to an older version of an asset, um, to recover a given look or a

given, you know, a given environment. And so we keep all of that versioning control,

we just don’t expose it. The artists just get the latest and greatest all the time.

B: Ok.

I4: Unless, unless we go and we expose it at the TD level. TDs can go in and

wire them up by hand to an older version if we really needed to get a given shot out

the door, but we’ve gotten rid of the nuanced version control and all the complexity

that brought. Um, the, we got rid of all that being exposed to the artists just because

140

it was, it was too cumbersome. And that lead to a lot of heartache chasing down

version mismatches.

B: Right. Um, what...in a production that may change over time, um, what kind

of flexibility needs should be built in to a pipeline? Like if, um, your, like say they

add more minutes onto the movie or something. What, what considerations do you

need to build in to your pipeline to handle that kind of stu↵.

I4: Um, usually that sort of thing doesn’t need a lot of change to pipeline.

Adding more minutes just means more shots, and adding more shots just means,

you know, new assets will be coming along if the new shots involve those, uh, and

then just, you know, uh, it’s more about pipeline, from a production management

standpoint, organizing artist, you know, man-weeks and things like that to figure

out how to get the movie made. Uh, when they add, when they add more minutes

that throws all of that into chaos for a moment while you try and figure out how

you’re going to accommodate that, and that in the end of the day, it, you know, it

translates into more work hours which translates into either overtime for people or, uh,

bringing in more bodies. And then that’s a whole con-, a whole set of conversations

that occurs, about how, whether, whether bringing people in to accommodate this

is going to be helpful, right, because there’s a training curve to get them up on the

toolset. There’s a productivity curve in getting them used to working with the people

and the processes. Um, often, and especially if it’s fairly late in the production, the

answer ends up being that it’s, it’s actually better just to turn up the OT knob, uh,

on the artists that already know what they’re doing than to try and bring in more.

B: Right.

I4: So that’s usually how minutes, uh, comes into things. But there’s lots of

other things, uh...absolutely we try to keep the pipeline nimble, absolutely we try to

have a firm understanding of what we’re expecting out of every department and in

141

what form we’re expecting it, how the next department down is gonna be consuming

it, um, just to understand the basic components so that we can be flexible, uh, when

something changes. You know, when suddenly we go, ’let’s get into, uh, captured

camera work’ instead of layout artists laying out cameras and now we’re getting all

our cameras from the live sessions in a lab and we come back with fifty di↵erent

cameras, and we have to do camera editing and all that stu↵, and that requires new

tools to be written and all that stu↵...and, that’s an example that happened partway

through Ralph, is they started really getting excited about the, the benefits of the

camera capture lab that was being built. And they started getting excited about

using it even though originally their show had no intentions of using it.

B: Right.

I4: And so, then, suddenly, a whole lot of stu↵ had to be written to accommodate

that in their pipeline, accommodate a new set of data, a new delivery mechanism for

the data. Um, so they adapted. They write, they wrote the tools and now future

shows can leverage o↵ those tools and improve them and polish them up a bit. And

Family Movie is already using camera capture stu↵ for some of their work, and for the

film after Family Movie we’re already starting to talk about, in the next few months,

getting into capture for all of that as well.

B: Cool. So I guess flexibility in a pipeline is less about the volume of work than

it is about integrating new tools or work methods in? Because it sounds like you’re

just trying to, if you’re getting more minutes out you’re putting more, uh, down the

same pipe, but you don’t have to change the pipe.

I4: Usually, yeah. Usually it’s just about productivity and usually you try your

best to optimize the pipe to begin with, and so, by the time you’re in the throes

of shot production, there aren’t really a lot of easy knobs to turn to become more

productive at a given facet of the production pipeline, because if they existed you

142

would have turned them already.

B: Right.

I4: Uh, if you were aware of them, and then, you know. So we still look for

those all the time, we’re looking...there’s an entire team on, on Funny Movie called

the tactics team, and their whole job is to optimize, optimize, optimize. They look at

render, you know, they look at render stats coming through the pipeline, they look at

sets arriving. They look at everything. They look at rigs and they look at all these

things and figure out ’how can we make those a little bit faster?’ right, but they’re

doing that regardless of how many minutes are added, they’re just doing that because

we want, we already know the movie will be crunchy at the end, and so we want as

much of that pain and anguish to end up on screen as possible, and so, that means

making everything run as fast as it can so the artists can get the most out of their

time at their desks.

B: Yeah.

I4: So we’re already turning those knobs as much as we can find them and tune

them. Uh, we’re already looking for ways to optimize the production process all the

time. And so, when they come along and they say, ’we’re adding 6 minutes to the

movie,’ you just kinda go, ’oh, hell.’ you know, and then you figure out, what does

that mean, and it almost always is going to translate into more man-weeks one way

or the other. Either more OT or new artists needing to be hired.

B: Yeah. But it’s not something that would require you to rewrite some part of

the pipeline.

I4: Ah, no, not...again, not unless those new minutes incorporated some new

e↵ect or something that you didn’t have a way of doing, right? Which does sometimes

happen, that some new idea will come along, not even necessarily new minutes added,

but story rewrites. The story remains...one of the strengths of this place, as well as

143

one of the headaches, is that the story is flexible. They’re always trying to hone

the story to make the best movie they can, and so they can be relatively far into

production when they pull the plug on something.

B: Right.

I4: And that is a recognized part of the Studio Delta way. And, uh, [other studios

have] touted that as, they got that from Studio Delta, you know, that concept, it goes

back to [the founder] himself. And around here, you know, back to the 2D days, they

touted that a lot, you know. Traditionally Animated Film, there was a whole sequence

where, uh, [the plot was di↵erent from the final film]. But they decided that wasn’t

playing well, and they wanted to bring [the hero in] earlier to have more breathing

room to tell the [story] so that it, so that it felt less forced. Um, so they gutted it.

They had already boarded, they had already drawn it, it was done.

B: Wow.

I4: They gutted that and re-drew it all and, and made it work with [the hero]

instead and changed the story around in the final year of production. They did all

that rework, and then it went on to be [very successful], and they, they point at that

as one example of why this works, why constantly spending the energy to revisit your

story and make sure you’re telling the best story you can, and when you, when you

can think of a better way of doing something, making the hard choice, you know,

certainly the monetarily di�cult choice of going back and revisiting it. Um, it’s a

really cool thing. You know, it’s really cool that all the way to the finish line they’re

trying to always make the movie better.

B: Yeah.

I4: It absolutely translates into more work. You just, there’s no, there’s no

ways about that. I mentioned earlier the notion of, you don’t want to get started on

your assets too early because they may end, you’re, cause then you’re just guessing.

144

They may not end up in the movie. Um, that happens all, all the way to the finish

line. You can be a few months from done and they, and they have a revelation of a

di↵erent way to do the opening sequence or something like that, and all of that hard

work, some of which will already be animated and lit and completely finales and, and

sealed up somewhere, uh, they could throw it all away and re, uh, and, and redo it

all, just because it makes the movie better. And that’s, that’s a really cool thing, but

it absolutely means a lot of work.

B: Sure. Well, um, you talked about transitioning from an old pipeline to a

new pipeline. Um, who makes the decisions about how it should function and what

problems it should address, like, what the new functionality should be. Is there like

a, a top group of people that gets together and has, you know, meets about this kind

of stu↵ and passes it down, I guess?

I4: At, at the end of the day the visual e↵ects supervisor is the final say on

everything that’s happening on the floor for a given show, right? The visual e↵ects

supervisor’s job is to interpret what the director and art director and, and character

designer and all that want to make, movie-wise, and how are we going to actually

accomplish that. So the visual e↵ects supervisor runs the floor. Um, the, on our

films here we have a technical supervisor that, that works alongside the visual e↵ects

supervisor, you know, for them as an advisor on the geeky stu↵. Right, on, on things

like process and pipeline and how, how new tools and things like the, new tools and

evolution of tools and all that are going to help, help enable the director and art

director’s vision. So, the answer’s kind of both. The, the VFX supe and the tech

supe are a, are absolutely the, you know, eyeballs-deep in solving those problems, uh,

figuring out how we’re going to make the movie, including any pipeline changes that

are necessary, new tools that need to be written, etc. etc.

B: Mhm. And does that go down all the way to the level of, like, picking naming

145

conventions for things, or...?

I4: Absolutely. I mean, there’s a whole leadership team on a show, uh, all of

whom report to the VFX supe. You know, sometimes through a couple of levels,

uh, depending on the complexity of the given part of the process, uh, and there’s

actually flexibility in how that’s structured movie to movie. Uh, the names of the

supervisors and their areas, their spheres of influence will change movie to movie

based on how the visual e↵ects supervisor thinks this particular project might best

be attacked, uh, or even the skill set of the people involved, right, based on who

the visual e↵ects supervisor’s bringing on into leadership roles a↵ects how they’re

structuring the leadership, uh, buckets.

B: Right.

I4: And that in turn adjusts the conversations about how those di↵erent buckets

need to communicate with one another and how data needs to travel, and, which will

eventually influence pipeline in various ways. So, um, naming conventions, all that

sort of thing are settled, you know, either they come from the top down, the visual

e↵ects supervisor has a strong inclination of how they wan the show to function, or

sometimes from the bottom up, you know, an individual artist or department head

or something will say, ’we need to change this to make our lives better.’ And they’ll

pass that up, and then see if that gets approved or not.

B: Right. [laughs] that’s good. So there’s, there’s, can be input from everywhere.

I4: Everybody. Everybody has a voice, that’s another one of the very many

things I like about this place is, everybody has a voice. It doesn’t mean you’ll get

listened to. I mean, you’ll get listened to, absolutely. We always, we, we very much

want to hear new ideas. We’re always trying to reexamine how to make ourselves

better, but the people, you know, and, an individual artist in an individual department

doesn’t have the full picture of everything that’s involved in getting the movie made

146

in terms of where resources are and all that, so they could have a really cool idea

and it may not end up getting made for that movie because, you know, the resources

are all on more important things and we just don’t have the bandwidth to tackle it,

right?

B: Mhm.

I4: We write it down o↵ to the side as a really cool idea, you know, we mark

it down for something to work on for the future, but it may not get tackled for the

movie they’re on in that moment. Um, or, something they think’s a really neat idea,

sometimes even ideas that will even help a given department be more productive, uh,

will cause hardship on other departments. There’s cert-, you know, the flip side of

that, there’s certain tasks that are a pain in the butt for certain departments to do,

but them doing that step makes other, several other departments’ lives easier. And

so, we make them do that step. We have conversations about ways to make it as,

the, least amount of pain possible, but we’re not gonna take that step away to make

their lives better, because that’s gonna make it harder on other people. And pipelines

have a lot of moving parts, and, you know, not everyone on the floor in any given

department has that full picture of how it all functions. And so, we’re always looking

for input on ways to improve it, but their input can sometimes be myopic. It can be

focused on their little facet and on how to make that better, and that’s not always

going to be for the best.

B: Right. Uh, I guess I’ve just got, uh, one or two more things I’ll throw at

you from, from the other interviews. Um, uh, when I talked to Interview 1, he was

talking about the concept of smart assets and having, incorporating more and more

metadata into assets. Um, can you, talk about that at all? Is that something that

you think people are moving towards, or...?

I4: Um...oh yeah, no no no. And, we absolutely do tons of it. You know, all

147

kinds of things. Um, you know, the more the context the asset was created in and

the intent of the artist, the more you can capture that, uh, the better able you are to

understand how it needs to be used correctly. And so we use a lot of metadata just to

store attributes on things and carry along, just, pieces of, the snippets of data. Um,

either from artist’s intent, or even just, uh, production byproducts. You know, for

instance we have a, we have a little attribute that gets tagged on, uh, cloth meshes

that have been up-rezzed. You know, when they’re in the cloth department they up-

rez the mesh to,uh, you know, refine it so there’s more control vertices in the mesh so

that the cloth sim can generate more smooth motion and whatever, they will up-rez

that mesh and it gets heavier. Um, that mesh then gets passed downstream. That

mesh no longer matches the one in the stockroom. It no longer matches the original

asset, but there’s a correspondence. And so, that’s a little piece of data they, a little

piece of metadata that they tag and say, ’oh, by the way I up-rezzed this twice.’ and

then when it arrives in lighting and they start trying to stitch it all together to make

a render, they go, ’okay, go grab the look from the stockroom, and wait a minute,

this doesn’t match, but oh! This attribute’s here, they up-rezzed this twice. Okay,

so if I up-rez this twice in the surfaces, and then we know with [our systems] and

everything how that all aligns, then, ok yay! Now it matches. Plop. Render. Done.’

B: Yeah.

I4: Uh, with little things like that, even, are just purely a part of the production

process, metadata gets tagged onto it to help communication, right? Just to help pass

that information along, uh, without them having to pick up the phone and go, ’what

the hell were you thinking when you did this?’ you know, it, it’s to help describe

intent a lot of the time. So, yeah we use it all over the place for little, little things

and big things.

B: Mhm. Well, uh, one thing that Interview 2 talked about was, uh, moving

148

towards - and I think this is more of a, like, pie-in-the-sky note, more than anything

else - um, moving towards kind of a check-in, check out philosophy with assets?

I4: Uh-huh. Yep.

B: Um, you know, with an asset they’ll grab something, they’ll do something

with it and they’ll put it back in, and...

I4: That’s very much the way we’re working, it’s a hub-and-spoke data model.

Yeah. We used to work purely assembly-line. Uh, a, a given piece of data was created

and then passed to the next person, and they did stu↵ with it and passed to the next

person, and so on. Um, and then when it went back, it became a challenge to figure

out how to do things, and, you know, and, where the data was living in any given

moment, and the state of the data was funky, and, and sometimes because of that

data, and because of the localization aspect, sometimes problems are getting solved

in di↵erent ways, and if they’re not, if they’re not doing a good enough job talking

to each other then the data goes through state transitions as it’s passing along. And

the data in the downstream department may not even have the same form as it did

in an upstream department. There are strong aspects to the production process that

benefit from the assembly line. The benefit from that passage of a given shot through

departments. Um, sometimes it needs to move back, though, for a variety of issues,

you know, quality control kinds of issues just like that sometimes happens on an

assembly line. The di↵erence is that we were using that model at the time both to

describe the flow of a shot through a department and the departmental structures,

but also the flow of data on disk and how it was all stored and accessed and all of

that. It was all following that same paradigm.

B: Mhm.

I4: And eventually we just said, ’they don’t have to be coupled.’ and so, even

though department A will work on something, then department B, then department

149

C, then department d usually, um, we’ve changed it to the data model under the

hood being a hub-and-spoke model. So department A checks out the data, makes

their changes, checks it back in. Department B checks out the data, makes their

changes, checks it back in. Oh wait, department A needs to do a little more work -

they just check it out, do some more work, check it back in, and so on. And so it

makes it more flexible for departments to work out of order, uh, while still the normal

workflow begin assembly line. A, an assembly line style of work. But the data under

the hood is all check-in, check-out.

B: They’re not necessarily getting it from the upstream department, they’re

getting it from...

I4: Right. It, it’s not passing the baton from department to department like a

relay, it’s, yeah, it’s going and checking data out of a central hub. So it’s a hub-and-

spoke data model. Um, it’s been very nice for us. We’ve done, we moved to that

for our data model about two years ago and, um, even though for the most part the

shows are still working assembly-line, it’s made the exceptional cases considerably

easier, uh, and it’s enabled certain things like auto renders. You know, the notion in

that, because we’ve moved to a more common storage mechanism, even, for the kinds

of data, we got, we squashed out state transitions almost entirely. And so, uh, as soon

as layout pushes out a version of the shot with really rough models, with the really,

you know, the beginnings of the camera move, with characters kind of, really really

really roughly animated because the animators haven’t even touched them yet, just

the layout artists did some basic posing to kind of suggest intent in given shots, it’s

renderable, right? Everything’s renderable from the very beginning. And so we’ve

used that, uh, to enable what we call auto renders, which is, any step of the way,

any state transition, from a production process standpoint, a new, a da-, a piece of

data changes, a given asset changes, uh, layout revisits the camera, you know, any

150

department makes a change - animation pushes out their rough blocking - anything,

uh, tells the auto render toolset that something has changed about this shot. And

they go o↵ and re-render it. So, a new version of the primary character comes along

and they push out a new version of, [hero], let’s say on Funny Movie, or [sidekick] -

half the movie re-renders, because they’re in so many shots.

B: Right, yeah.

I4: So, uh, so hundreds, sometimes a couple thousand renders go out on the

queue at night, uh, at very low priority to re-render the entire movie, and we use that

to sanity check the assets.

B: That’s crazy.

I4: So if some change happen to an asset that makes that asset heavier in some

regard - take more memory, take more time, whatever - uh, we catch it very quickly

now, because it, we, we see it in a whole bunch of shots often before artists have even

had a chance to pick it up. So it’s been very very nice. And the hub-and-spoke data

model helped make that easier, because everything gets checked in in a renderable

state.

B: Ok. Well that makes sense. I can imagine that would help a lot, actually.

[laughs] um, I guess I just have one more question. Uh, when I was talking to, to

Interview 3 at TV Studio One I asked him about command-line and GUI stu↵. Um,

they, they don’t use any command line stu↵ at TV Studio One. It’s all, it’s all GUIs.

Um, and he said that, you know, the time where it was di�cult and cumbersome to

write GUI interfaces has passed. And like, there’s no, there’s no need to force an

artist to use the command line. So, what...do artists at Studio Delta have to use the

command line? Are there GUIs for things? Is it a combination...?

I4: It’s still a combination. For the most part, uh, they have UIs for most

everything nowadays at the artist level. We build command-line tools more for TDs

151

than anything else because there’s a lot of times, absolutely you can build a UI, but

the UI is cumbersome in and of itself. It’s sometimes easier to just go, uh, this, on

really flexible components of the pipeline, and I want to do this publish with just the

camera, and I want to do this and I want to name it foo, and blah blah blah...it’s

sometimes just fast to just type it. And, and so we have command-line interfaces

for a lot of things. Mostly those are for TDs. It, it’s relatively rare that artists are

touching the command line anymore. It’s very much artist tools, you know, layered

on top of maya for the most part. We use maya as an application framework and

build tons of tools on top of there. Um, and yeah, it’s relatively rare that they have

to go down to the command line for anything.

B: And that’s just, sort of, to, so they don’t have to worry about that kind of

thing, right?

I4: Yeah. Yeah, I mean, it’s, it’s...it enables, it enables a certain level of ease of

use, uh, through the UI. It also constrains them in some regards. Uh, they, we are

controlling the access they have to data and the state they get the data in, because

they have these set of buttons to press to get the thing they want. Um, whereas,

when it was more command-line in the past, they had a lot of, they could do a lot on

their own and they could get themselves into trouble if they didn’t understand what

they were doing.

B: Sure.

I4: Um, UIs often make that a little easier because it’s, it contains the artist’s

experience a little bit as well as enables the artist to experience. It makes it friendlier

and easier for them to do the things we expect them to do, it keeps them from doing

the things we don’t expect them to do. So, it’s good for both of those things.

B: Okay. Cool, well that’s all I have so thanks very much for your time. I

appreciate it.

152

I4: Cool. Absolutely!

B: And hopefully I’ll talk to you again.

I4: Awesome.

153

INTERVIEW 5

BRANDON: Hey Interview 5, it’s Brandon.

INTERVIEW 5: Hey Brandon, how are you?

B: Doing well. How’s it going?

I5: I’m going–it’s going alright. Sorry we had to move this a few times, but...

B: No, it’s okay. Uh, I understand. Meetings can [laughs] can–can happen all of

a sudden, so...

I5: Yeah especially–yeah, when I looked at my calendar earlier in the week and

Friday was wide open, I though ah, this is too good to be true...but, um. So yeah,

I’m glad we’re able to still find time.

B: Great, great. Well, thanks for taking some time to talk to me–I–I appreciate

it.

I5: Sure.

B: Um, did you have a chance to look over the questions list I sent you?

I5: Yeah, I did. Yeah, yeah, they look–they look good and I actually have them

up here...

B: Oh, okay, cool.

I5: Uh, just to cheat a little bit. [laughs]

[discussion of recent internship, not relevant to the research]

I5: So yeah, we can start whenever you want to start.

B: Very cool. Um, I guess we’ll start with the background portion. You know,

kinda talk about uh, your current position, how long you’ve been there...kind of some

things that you’ve done. How you got to the–to–to–to Studio Alpha and kind of the

things you’ve been working on. Talk about that first.

I5: Sure. Okay, so I’m um, currently a character TD, um, at Studio Alpha. I’m,

154

um, right now I’m on what’s called global development which means, um, that I’m

sort of developing tools and workflows and um, that support all of the shows and then

also looking into tools and technology um, either developed internally or externally

that we can implement, um, in the future to support, um, future shows. Things that,

you know, tools, technology related to character setups that, um, we might need in

the future–let’s say before–that’s why I’ve been doing–that’s why I’ve been on global

development for just a month. Before that, I spent 18 months on uh, setting up

characters on [a movie], um, which comes out next year. Um, and actually, that’s

right around then, so I’ve been back at Studio Alpha for um, a little over–a little over

18 months.

B: Okay.

I5: Um, I had worked uh, at Studio Alpha in the [early 00s], on things like Film

A and Film B and um, the [theme park] ride. Um, and then between those times, I

actually went back to Metro City where I’m from and did a variety of things. I wrote

a book, um, I um started my own studio. Um, I freelanced around at di↵erent studios

before that. I also did some teaching. I ran a research lab at University One, um, so...

yeah. Um–just to go back a little further in case it’s interesting... my undergraduate

degree is in biological anthropology.

B: Oh that is interesting. [laughs]

I5: Well I studied, uh, sorry, my phone is ringing, but it’s not–not important.

Uh, so I studied biological anthropology–essentially um, human anatomy and human

evolution, um, from like a really functional point of view. Um, and so I did that for

a long time–I actually started in a phd program in evolutionary anatomy and uh,

decided that I actually wanted to go to art school. So...[laughs]...so from there, I

went to Design School One and I got an MFA in uh, program there that they have

called Design and Technology–which is kind of like the–the Viz Lab, but, uh, maybe

155

more geared towards the sort of design world, but you know, like heavy programming,

heavy animation. Um, technical, but–but always in the service of your design goals.

So and then you know I worked a little bit around Metro City for about a year and

then I went o↵ to Studio Alpha right after grad school–probably less than a year after

I graduated. Yeah, so, yeah sorry that’s a–sort of a–like non-linear non–

B: No, it’s okay. It’s nice to get a get an idea of where everyone’s coming from,

get a di↵erent idea of their experiences and stu↵ like that.

I5: Yeah, yeah. Absolutely.

B: I’ve talked to some interesting folks, so...

I5: I’m sure–yeah, I’m looking forward to reading your–your thesis when it’s all

done.

B: Thanks–me too! [laughs] Um, okay. I guess the next thing talk about, um,

talk to me a little about openPipeline–like what it is, um, maybe the motivation

behind it, um–and I know a lot of this is covered in the literature that I’ve read and

I know in some talks that you’ve given, but just kind of briefly, just so that I have it

in this–this interview document, um, kind of talk about what openPipeline is.

I5: Sure. So openPipeline, um, was my attempt to uh, create an open source um

specification for how an animation/visual e↵ects pipeline could be organized. Um,

it–the motivation for it was that I had been freelancing around in Metro City and–and

um had been exposed to di↵erent pipelines and I kept on um, being tasked with the

idea of creating a pipeline tool, because most studios in Metro City don’t–or at least

years ago, did not–have pipelines. The pipeline was ”don’t save this on your desktop,

save it on this server.” Sitting here in the corner and put–ideally put it in this project

directory, um, and ideally name it something useful. Um, and just yell out when it’s

there. [laughs] basically.

B: [laughs]

156

I5: Um, so there was no real sense of structure–there was no real sense of–um, you

know–organization. And um, so then I landed, um, I spent a about a year at a studio

called Small Studio One, um which doesn’t really have a studio anymore, but it’s

an art and technology center in Metro City. Part–part of its old structure was that

they had this production lab where uh, we would–where the lab would essentially

do visual e↵ects and animation for fine art projects. So things that weren’t like

necessarily heavily funded and they weren’t um, headed necessarily to your standard,

uh, visual e↵ects/animation/games sort of delivery platform. So, um, they were going

into galleries, they were going into museums, they were indie indie films that were

being created by artists, and so this was kind of like an experimental center for–at

the time, you know, heavily into doing visual e↵ects and animation, and even a little

bit of interactive programming.

B: Right.

I5: And so I was the, um, studio technical director there. And um, they were

also really into open source software. So I said well, um, you know so I’m going to

start writing this tool to manage these projects and I’d like to make it open source.

They were like that’s great. Let’s go for it–because they were a non-profit. So they

were really into the idea of sharing and building community around things. And

so it started there and then um, we–I was–I’d been adjucting–adjunct teaching at

University One on the side and all of a sudden, they decided to open a research lab

and they hired me as one of the first researchers. And I said well, I’m going to take

this project and keep working on it there. And so then it became something that I

really was creating for my students too, because I realized, okay, that I hadn’t taught

in a while and I’m a pipeline nerd... and I’m pipeline obsessive...and I just felt like

it had saved me and I wish I had had it in school and so I started developing it with

my students in mind. And so it sort of took on there–I also started working with–I

157

had a grad um, I had a graduate research assistant who worked on it with me.

B: Mmhmm.

I5: And I–and we started putting it out–we started putting out versions and

then we started realizing that okay, we thought it would just kinda be for really,

really small indie projects or for students. And that would have been fine and then

it started to build momentum when we found out lots of studios were using it. And

before we knew it, we realized that many studios, particularly in Metro City, were

using it because it was word of mouth. Um, and so it really, then, took o↵. Studios

started to contribute to it, and it reached this you know almost 1.0 state and um, it

just sort of reached this point of stability that got really nice. There’s still like always

little bugs and they’re I have a long list of feature requests that either I’ve, um, put

together or people have sent me. Um, but the goal now for it, eh, um, it got used–it

gets used quite a bit. Like eh–I, you know, I, you know I’ll go to studios I’ve never

heard of, walk in, and all the artists there are using it. Um, and, um, people have

extended it in some ways. Like there are some studios that have done like some really

interesting–like there are some studios that have done like have created some really

interesting custom versions that they don’t reintroduce back into the code base...

B: Right.

I5: Um, but you know it sort of reached this point where the–because it had been

developed in this pre-Python uh, inside of Maya era, um, it’s just this massive MEL

behemoth. So the idea was we were going to stop development on it in terms of MEL

and maybe just do both fixes as possible. But to really completely re-architect it in

Python because um, production pipelines are inherently an object oriented problem,

so...it’s um–It would just be much more suited for that and it would just be so much

easier. And as we started, we realized that we would be able to create all the same

functionality with more and it would probably be like a quarter of the size in terms

158

of actual code. Um, so yeah, that’s kinda where it’s at–and it’s out there and people

still use it and um, sort of uno�cially, I’ve heard that the folks at Tank–um, they–

there’s an asset manager called Tank–um, and it’s created by the same folks that

make um,–what the heck’s it called–Shotgun?

B: Oh, yeah, Shotgun.

I5: Shotgun. So Tank is their asset manager and–and at SIGGRAPH, you know,

I didn’t hear this–I mean, I spoke to–to the creator of it directly. And without really

saying it, he kinda insinuated that they had pretty much based a lot of the ideas of

Tank on–on openPipeline.

B: Oh wow. That’s cool.

I5: [laughs] Yeah, so that’s interesting. And I took it as a huge compliment and

uh, so yeah–so that’s kinda the history and the motivations for it.

B: Yeah, that’s great. Um, that’s all good to understand as we will discuss kinda

some more things about pipelines it kinda helps frame that stu↵ out.

I5: Great, great.

B: Um, okay let’s launch into the other questions then. Um, we’ll start o↵ with

the big one–in your experience, how would you define a pipeline?

I5: So–so a pipeline is–is two things. Um, I always consider it um, both the

ecosystem in which the production, uh, lives in um, and it’s also the culture of the

production and by culture I mean sort of the rules for behavior. Right? It’s–it’s it

dictates um, how the project is done and it answers the questions, um, that the–it

essentially–it answers the questions that the production has sort of come up with.

All the questions that they’ve raised–the answers then become part of the pipeline.

And so that they don’t have to be answered again. Um, and by ecosystem, I just

mean that it’s–it’s creating the structure and framework, um, and interdependencies

and connections, um, between all of the assets and the relationships to shots and um,

159

you know, basically everything from art to output. Um, so and then with regard to

culture, it’s–it’s really about like where do files live? What do I name them? You

know, all those kinds of things that you need to know in order to understand how

to speak the language of that production, um, and to relate to it on a day-to-day

basis. So, in a very–that’s my sort of like [laughs] philosophical description of what a

pipeline is, and–and from there, you know, everything varies widely. But–but to me

that–that is what a production pipeline is.

B: So what–what characterizes then a good pipeline?

I5: Um, something that’s really, really clear. Um, something that’s–it’s very

well described and thought out. Um, I think that it can take many, many shapes,

and it really depends on what works for the studio, but a good production pipeline

um, essentially handles your version control, asset management, um, artist commu-

nication, um, you know all of those things, um, basically without being confusing.

Right? It’s intuitive, um, and–and a lot of this is insinuating that there’s a tool–let’s

say that’s used with the production pipeline and I don’t think that necessarily has

to be the case–as long as um, you know the rules are very, very clear about where

things–about where things go.

B: So then, um, you mentioned some things about asset management, um, ver-

sion tracking, communication tools, what–what kinds of things–what kinds of–well,

let’s start with communication. What kinds of communication tools have you found

to be e↵ective–both in your experience at Studio Alpha and, you know, looking at

how people use openPipeline?

I5: Sure. Um, so I think, you know, artists notes on an asset are incredi–are

incredibly important. You know, just being able to say this is what I did when it was

saved. So that when you–you really just understand that that object has a history

and you can travel back and read its history. Um, so that as a very basic thing is

160

good because lots of times, a production pipeline is a-synchronous with regard to the

users actually interacting with it, right? It’s not a–it’s not a thing that everyone is

using at the very same moment and there’s opportunities for chat um, and even um,

just talking, right? Just uh, you could be working on a project here with a sta↵

in India–12 hours di↵erence and you’re never on the box at the same time. Um, so

being able to really associate information with–with revisions is really just a basic

thing that needs to be there. Um, I think, you know, any time that you can just

provide people with a place to just sort of write notes in a freeform way that is not

related to revision I think is also really, really useful. So we ended up adding, you

know, a pipeline sort of like notes category so you could say here are the things I

think need to be done–um, or, you know, new model is coming soon–keep an eye out.

Um, and then triggering these things with email, I think, is always important.

B: Right.

I5: Um, you know, and just being able to–as something’s changed, um, or

someone makes a comment on something, then you’re able to just get and email

just in your inbox and it just sort of triggers you to–to sort of look at it. Um, I think

those are useful. I have this challenge at one point to–for people here to describe our

production pipeline without ever using the word email. And people really couldn’t.

That’s still–that’s still like a problem–I think there needs to be something that goes

beyond that.

B: [laughs] Yeah.

I5: Um, and so, I think that, uh, you know, that we’ll see how that sort of

progresses over time. But you know, I envision a time when there is sort of an

integrated production operating framework that you’re working in. That everything

else sits inside of–like your Maya session sits inside of and all these other things. Um,

and so that you’re actually able to like see–see things happening and just see live

161

changes and–and just see all of this, you know, almost the way a day trader on the

stock exchange is gonna be able to see a huge amount of data going by...like I would

love for us to have a tool that just allows us to see everything that’s going on–when

you want to, you know, or...

B: Rather than a–getting an email notification about something.

I5: Yeah–exactly. Hey this file changed. Go–go check it out. Like you know and

then you have to stop everything you’re doing and–and–and uh, you know, update or

do whatever it is–whatever the action is that’s associated with receiving that email–

whether it’s automatic or manual. Um, yeah. Kinda, kinda tricky.

B: [laughs] yeah, I–several other people that I mentioned kinda mentioned the–If

not the need, but definitely the desire for something other than email just because

it’s inherently noisy and um, yeah. It’s just not ideal by any means. And uh, I talked

to David over at South Park Studios and he said that–they’re obviously a very small

studio there, but, you know, he said that they usually just shout at the guy, you

know, and kind of communicate things face to face as much as possible just because

they can sort of more clearly convey what they need to–

I5: Oh yeah, when that’s possible, it definitely helps. I mean, when we had Small

Studio Two in Metro City, we were small enough that yeah, we could–you know we

had this very strong infrastructure/production pipeline, but yeah, it was just super

easy to say okay, file saved–go get it. Yeah.

B: Yeah. Um, talk a little about feedback loops in a pipeline. Um, what–first

of all what is a feedback loop and how–how are they used and um, I guess if you can

provide and example of something like that that exists in openPipeline, um, and talk

about that as well.

I5: Yeah, I don’t—in terms of openPipeline, I don’t think there’s really the–

the–the true sense of the feedback loop because there’s no real way that the client

162

inter–ever interjects with something like openPipeline. Um, but, we–we have–like at

Small Studio Two, we did develop other systems that were sort of uh, more sort of

client centric and so clients could sort of do draw overs on, you know, a thumbnail

or a output image and then feed it back into the system. Um, and then that would

become part of the–the asset history for that. It’s like here’s a revision note, here’s

a series of notes related to this asset and you would have comments, you would have

revisions, you might have snippets of emails, um. You know, whatever it–whatever it

took. And I think that can be very, very valuable. And we do have some systems her

for things like that, but uh, I think there’s still yet to be, that I’ve seen, like the–the

end-all be-all kinda of like visual feedback system, um, that you can relate to a client.

And that it’s easy for them to use and it–and on your side, it really interfaces with

your assets, right? Because your clients don’t necessarily need your assets–they just

need what becomes of your assets, whatever that may be.

B: Mmhmm.

I5: Um, so, yeah, I think, you know, but I think that there’s–there’s a lot of need

for that. And it’s good, especially on long-term, large productions, it’s really good to

just have like a long–you know, however big that history ends up being, it’s good to

have all of that trackable. Because then you can really see how long things took and

then it’s like oh wait–this took–you know, doing an asset of this style or of this type,

you know, ended up taking us a lot longer than we thought. And here’s why–here’s

the same feedback on all these di↵erent things. And so from an asset point of view,

I think feedback loops, um, and feedback documentation is really, really useful and

hard to wrangle because it, a lot of times, comes in such disparate forms. It’s like oh,

here’s a chat session. Here’s an email. Here’s when a guy walked over to the desk

and drew on a piece of paper. And like, you’re getting feedback in so many di↵erent

ways, um, that it would be good to have all of that logged into some kind of catch-all

163

system, especially if the whole thing was digital to begin with. But, uh, but yeah,

no–never really had that sense–It was just like here are my 800 revisions to get to

this file, and I can go back and get any of them, but, um, yeah, it was sort of a closed

system for internal production as opposed to something that has like uh, output to a

client for feedback.

B: Right. So like a–a–say if a student were using it, they would sort of be their

own internal feedback loop. Like–I like this, so I’m going to publish it.

I5: Yeah. Yeah, or here’s the notes I got from my class or my professor when I

showed it in class yesterday, and you know, the next, you know version reflects that in

some way. But–but it’s not all that information isn’t inherently inside of that system,

um, because it is meant to just just simple. You know, like, but–that’s something

that’ I’ve always sort of thought about–that it would be nice if you could reference

in other notes and other forms of data.

B: Um, talk a little bit about the version tracking solutions that you have as

part of openPipeline and um, as well as um, I guess any other–any other thoughts

you may have about version tracking.

I5: Sure, yeah. So openPipeline went for the simplest possible solution which

was just to–a–everything you made a new version, it–it put a copy of that file in the

correct place, named appropriately for that new version. So you never, ever, ah, hit

”save as” and then named it something. You should basically save a new version,

it would put it in the right place, if you double clicked the asset, it would open the

latest version and you would go from there. The reason for that was that we wanted

it to be really, really simple. And all that it needed to do was you just pointed it to a

root directory and it handled all the directory structure underneath for you. So a lot

of times, an artists didn’t even need to look into where the directory structure was.

They just opened the asset and made their changes and, you know, saved the version

164

or mastered it, um, which would create a published version and they–and they would

just sort of um, go from there. And, you know, of course, you’re taking–you’re making

the assumption that disk space is cheap, um, at that point, um, which generally it

is, um, but we did–we did have to put in–and this was like feature requests that were

put in–we had to put in um, functionality to just call old versions, right? Um, so

you’re just sort of getting–getting rid of–of just save the last ten versions–and that

usually was fine because for the most part, you know, you had enough backup or

things really hadn’t changed so dramatically you needed to go back to some previous

version.

B: Right.

I5: You considered every previous version to be–to be, um, revision history or

I should say like, yeah, just history on the final object as opposed to oh here’s a

whole new character. So sometimes when characters when through a big um, ah,

design change on projects that were using openPipeline, they would just create a new

version–a new asset, or something slightly di↵erent and they would just start from

there, so, you know, it’s just everyone kinda does these things di↵erently, especially if

it was so dramatic that it didn’t look anything like the original–the original character

design. Um, and so, you know, but in other cases, you know, I’ve–I’ve y–Implemented

and been exposed to more heavy duty version control–things like Subversion or Git–

other, uh, systems that are–are not um, sort of duplicated based, but are repository

based and basically you’re just saving di↵erences between files. Um, at that tends to

be nice and I have done whole like, you know, 30-second commercial spots, uh, using

a web based SVN server. And that’s been kind of interesting.

B: Yeah.

I5: Um, especially if we were were working for a client or delivering assets or, you

know, we had a couple of people working o↵-site. Um, that was kind of nice because

165

we could just check-in or out files and that actually worked pretty well–better than

I thought it would. But it wasn’t a suit–the models weren’t like giant Zbrush files–

like everything–we were able to keep things like really, really modular and small and

uh, yeah and we pushed binary into SVN and it a–it just worked. Uh, I wouldn’t

recommend it for everything, but, you know, this sort of cloud-based idea ended up

working pretty well, um, for certain projects. Um, certainly here at Studio Alpha, we

have our own revision control system and–and a few more in development and um,

so I mean there’s just a long tradition here of–of solid revision control systems.

B: Mmhmm. Yeah, one thing that I remember Interview 1 talking about was,

you know, maybe the situation where a director says, I want um, this version of say

Hero, like from the first trailer that was released, and by that time, Hero has iterated

three or four times and doesn’t look that way anymore. And so, um, you’ll be able

to go and grab those things, you know, t–um, for whatever reason they may have a

marketing shot or whatever.

I5: Right. Yeah and yeah, that’s kind of–we can get back to previous versions

of characters, um, but that doesn’t necessarily–for us it’s the kinda thing that–um, it

definitely takes a little bit of work. There’s interdependencies with shared resources

really, with the characters. So it’s not always like oh yeah, we’re working with version

80 of this character. Let’s just go back to 50 and expect it to work. Um, a lot of

times, there’s–there’s a few interdependencies that are related to those things.

B: Right. Um, what kind of flexibility do you need in a pipeline to handle

di↵erent project requirements?

I5: Yeah, you know–this is definitely a tricky thing because that’s–that’s one of

the hardest things about openPipeline–Is everyone wants flexibility. Um, everyone

wants it to work in their particular way. And we’ve definitely said no to people at

times just because they want it to work in a completely di↵erent way than it already

166

does. And so I think that like, flexibility in a pipeline is something that only can go so

far, right? It’s only the kinda thing that, you know, the pipeline needs to inherently

be rigid. It needs to like, have some basic rules. Um, and then, you know, flexibility

has to come in sort of smart and small ways, right? It’s like oh we need to override

something in a shot or we need to override something um, you know, on a particular

case for this character, only when it’s in this variance state or something like that.

And so I think the flexibility is one of these things that–it just–I would say that once

the production is rolling, you really can’t have a whole lot of flexibility.

B: Mmhmm.

I5: Um, you know and of course like once it gets into lighting and stu↵ like that,

you know, they’ll do whatever it takes to get the shot. But up til that point, like,

ideally, you want it to be as–I would say inflexible only to–to emphasize the word

consistent, right? Because every–every asset needs to behave the same way, every

shot needs to be set up in a very, very similar way so that anyone, you know, we have

hundreds of artists here all working on the same movie, so that anyone needs to be

able to open a shot and say oh, yeah. Right. This is why this isn’t working. Not like

oh, let’s see what’s custom is–what’s customization here that I need to sort of strip

out so it behaves like all the other shots. Um, so I think flexibility is one of those

things that, um, I think is sort of more like a long term, sort of evolving thing, where

it’s like oh you know on that show they did it that way, but on this show, we want to

do it a little bit di↵erently. Um, or we want to build in for flexibility here and let’s

put in a hook at this point so that we can branch in some way and have a little bit

of flexibility. Um, but I think that has to be done like–in a very sort of like careful

and considerate way. And I think the point of the pipeline is just–is again to just set

up the rules for how this is going to work and then ideally enforce them. Um, so I

think pipeline and flexibility–well, I think there’s definitely room for them to coexist.

167

I think it’s always–it has to be done in small ways.

B: Yeah. Well like you’re not gonna try to integrate a new software package

halfway through a show or something like that.

I5: Right. Even if everyone wants it, you know, it’s a really hard thing to–to

do. Yeah.

B: But I think there is some–If I remember correctly, there’s like some XML

based stu↵ that–that is part of openPipeline that creates some data that I guess can

be grabbed by, you know, not just Maya, it might be some other package or something

that’s...

I5: Yeah. Yeah, absolutely. And so, so I think, you know, flexibility can come

from data access. I think that’s a really important part of–of what openPipeline does

which is to say let’s put as much of this data outside of–of the sort of standard binary

or Maya specific file formats and let’s put things into XML wherever possible so that

you can access it from the outside. Um, yeah, absolutely. And you know, there’s a

preferences page in openPipeline that used to be like there were two options and now

it’s like as big as the whole UI there are so many di↵erent things that people want to

configure. Um, so I think, you know, we’ve definitely tried to make it customizable,

in a way. Um, but we’ve always sort of stressed that once you’ve customized it for a

project, you should basically leave it as-is for the extent of that project. Then on the

next project if you want to change it, then, go for it, but you know, it’s kind of like,

each project needs to, you know, each projects needs to have it’s own sense of rules.

B: Right. Um, so who–who decides–who makes those decisions about, you know,

file naming and–and directory structures and what–what the parts that make up the

pipeline? Like who makes those decisions?

I5: Sure. It’s definitely a consensus thing. I would say that there’s, meetings

upon meetings and layered sub-meetings upon sub meetings and [laughs] higher level

168

executive conversations, and it’s sort of–at a large studio, as I’m sure you’ve seen,

it’s not something that changes quickly. And so, a lot of times, this is oh, we’re

talking about changing the pipeline for a movie that is, you know, five movies out

or something. Because you don’t necessarily want to break everything that’s been

put in place already. Um, so I would say consensus by far–you know, that comes

from the td’s and even higher level than that, um, and then all the sort of relevant

departments need to sort of vet these things. And make sure that it works for them

because sometimes each department needs to change their code base in order to work

with it. Yeah, so it’s yeah, consensus for sure.

B: Yeah, that makes sense because if you had, you know, individual departments

saying it should be this way or this way, they may not, necessarily, have the global

view of what needs to happen. And...

I5: Yeah, yeah. And you can assume we’re the only people or we know, you

know, our downstream department and we know what, you know, our upstream

department. But you don’t always know, like who’s kind of like tapping into your

code, or tapping into your shots or setups in some weird way, you know, that you

never anticipate. Like I’ve just been learning how lighting sort of taps into our setups

a lot and the things that they actually need out of our setups, um, that we would

never even think about. Like we expect them to just be looking at our models that

we’re churning out, but there is some aspects of setup that they’ll need to look at at

times.

B: Um, okay. Then I guess we only have a couple more things to–to cover. Um,

how has–from the beginning of openPipeline till now, how has the project evolved–

how as the um, I guess the main structure and the kinda purpose of it hasn’t changed

necessarily–but, how would you say the project has evolved over however many years?

It’s I guess like six or seven years at this point?

169

I5: Yeah. Just about, yeah. I would say that the flexibility is where it’s evolved.

It’s that you know, it’s where it’s provided lots of di↵erent options for how people

want to do things like, you know, what file format do they want to save files in, what’s

the path, you know, what’s the path? Um, what do you want to call these paths and

that sort of thing? Um, I would say that that’s where a lot of the evolution has really

come from. Um, I think in the beginning it was basically just like a glorified asset

browser that you could just like, you know, here’s where my stu↵ is, I want to open

it. And then we sort of integrated the shots and sequences and stu↵ like that into

it. And um, so, I would say yeah, I think the core mission remains in tact. And

one thing that–I–you know, it started as a specification for a pipeline. The MEL

version in Maya was just supposed to be an example of that. [laughs] And so that we

have heard about people building um, Nuke versions, building After E↵ects versions,

building Blender versions based on the specifications. I’ve never seen any of them,

but I’ve heard that they’re out there or studios have made them. Um, and so, yeah, I

mean the initial idea was just this specification and then over time, it sort of became

synonymous with this Maya version. And hopefully, you know, hopefully, it keeps

going. I know that there are people who are working on, you know I don’t really have

tons of time these days to work on the Py–Python version, but I have heard that

there is some–some activity on there. I don’t know if it’s making its way into the

Google Code repository, but, um...you know, the last time I checked on it was before

I came back to Studio Alpha.

B: Yeah, yeah.

I5: But, yeah, who knows. And we’ll see kinda of how it goes, but I would

say that flexibility and customization has been where its really um, where it’s really

ended up where I didn’t expect. In the beginning, I just wanted it to be like this is

my world view of how a pipeline should work and everyone–whoever wants to adopt

170

it, adopt it and that’s it. Like this is going to be what it is and then it definitely

became more of the sort of let’s make all of these potential users like, happy, you

know. Um, we definitely went through about six months of that.

B: Um, how–I guess this is sort of the last point–and how do you think a col-

laborative open source environment, um, not necessarily an academic–well, yeah talk

a little about how the academic project environment di↵ers from um, a commercial

production environment at a sm–maybe a small studio, versus say somewhere like,

Studio Alpha, that’s big and does sort of feature films. How do those things di↵er

and what kind of challenges are kinda presented in each of those environments?

I5: Yeah, I think they–they di↵er in many ways based on their sense of urgency.

You know, a small studio, a small commercial studio is looking for solutions imme-

diately, right? Um, I think an academic environment is looking for solutions maybe?

Right? They’re like yeah, we could–that–it’d be cool if it did that. But like, we’re

not really expecting anything and we’re certainly not willing to pay. So, if it could be

there, that’d be great... and I think a large studio is looking for solutions soon. Like,

you know, whenever, you know, as soon as possible. Um, and so I think, to me, hav-

ing worked in all these settings, I think that that’s kind of–the sort of–um, the main

di↵erence, um, you know I think when you’re building something that’s open source,

then you’re trying to make lots of di↵erent people in di↵erent scenarios happy. Um,

I think when you’re at a stu–a large studio, you’re sort of trying to make something

that’s consistent and long term, right? It’s something that’s going to last for a long

term–and doesn’t necessarily have to be too flexible is because all the shows are going

to work similarly. Um, and then when you’re dealing with, um, you know, like again

an academics scenario where you’re sort of building a tool for sort of academic use,

they’re sort of just happy to have anything. [laughs] Whatever exists. And so yeah,

I think that the others, there’s all of this kind of like little interrelated, um, sort of

171

sets of needs, um, that I think are all, yeah, I think that they’re probably all very

similar, um, in their tone. But I would say that’s really the major thing. Um, and I

think, you know, the open source thing was definitely interesting because at first, you

put something out and make it for free and everyone’s like hey this is so cool–this is

great. Hey–It would be great if it did this. That would be great, you know, if you

get the chance, and if I get the time, I’ll try to put it in myself and I’ll let you guys

know.

B: Yeah.

I5: That’s kinda how it always starts. And then later on, you definitely have

studios who will write you and say, ”openPipeline is broken. You–you need to tell us

how we’re going to fix it.” [laughs] ”Like, right now.” That’s like wow, okay. And you

know, I would really try whenever possible. And a lot of times it was just like, you

know, a user deleted the XML file, or a user just hand-saved a file in a di↵erent place

and that’s why it’s not showing up. I mean, it’s–I never encountered a situation–and

luckily, like knock on wood, considering how many lines of code it is, where it would

just went out there and it was just completely broken, or it was something that we

completely missed or, you know, and so we had to do like a lot of like super safety

things like we made this decision early on that openPipeline would never delete a file.

It didn’t have the ability. It would move it, fine, but it would never delete it, because

we didn’t want to be responsible for that. [laughs]

B: [laughs] well that makes sense.

I5: And so yeah, it’s just like all these things and like you like start to take

on like the responsibility of other people’s projects that you have no–no knowledge

of some Romanian studio making, you know, a full American TV show is like using

this thing. And you’re sort of like on call for no pay and no responsibility. So yeah,

it’s just sort of a weird thing that starts to like take o↵. And as soon as you’re like

172

hey–you know–is there kind of a freelance. It sort of sometimes the support would

turn into a situation where we’d say, you know, is this something that you want to

contract us for. You’re asking for some sort of a new feature that we can add in, you

know, just for you guys and of course, they like disappear. [laughs]

B: [laughs] Of course.

I5: But yeah, it’s kind of an interesting thing. It definitely–what I loved about

openPipeline is that it got me, um, exposure into lots of di↵erent pipelines and like

getting to talk to people and like even at SIGGRAPH, like I would schedule time to

like meet up with di↵erent studios that were using it and just like pick their brains

and introduce them to other studios that were using it, and building this sort of like

ad hoc user group, um, just so that they knew each other and they could support

each other, as well, but it yeah, it definitely–definitely got me involved in projects

that I would not have seen had I not made it, so. Yeah, that was kinda–I don’t–yeah,

that was–I didn’t expect it. I guess I should just say that was an unexpected benefit,

you know. I thought it was just going to be this little quite thing that would go out

into the world and people would use, maybe. Um, but it ended up being something

that sort of introduced me to a lot–to a lot of people. Like I even went to Singapore

for a week, um, just to do like some lectures and stu↵ like that. And I walked into a

studio there of a friend–kind of an internet friend–someone that, um, I knew through

pipeline had developed a bunch of stu↵ for openPipeline. And he took me to like a

few di↵erent little studios and they were all using openPipeline.

B: Oh wow, that’s cool.

I5: It’s kinda crazy. Yeah. Yeah. It was really weird–it was just weird. Like

they don’t ever write you and say hey we’re using this and it’s great. It’s just people

just use it and it works and I guess that’s why I never heard from them is that they

didn’t have problems. [laughs]

173

B: [laughs] Right. Well, in that case, that’s a good thing I guess.

I5: Yeah. That’s kind of the way it always goes.

B: Yeah. Um, I guess one more thing, and I don’t know–this is probably for

my own vanity–um, did you have a chance to kind of poke around with the pipeline

system we have at the lab, here, while you were...?

I5: Not hands on, but I was definitely impressed um, by it for sure. Had you

done the summer class–like had you worked on that in the past or...?

B: Yeah. I–I took the summer class uh, in 2011–um, last summer.

I5: Oh, okay–gotcha. Yeah, no definitely I kind of just watched over the shoulder

and I did kind of have a few of the guys kinda walk me through it. At one point to

kind of like show me the code. And yeah, it was nice. I mean, it definitely, you know

I guess that was introduced by Pipeline Mentor a few years ago here?

B: Yes. Some of that code uh some of it is his and some of it is things we

wrote that kind of work with it. We have a structure that’s similar to that, and we

incorporated a few things from the Studio Delta pipeline that we built last summer,

um, and kind of tried to make it the best of both worlds from those things.

I5: Yeah, definitely. It looked good. I mean, it definitely–and it behaved nicely.

Ant it was very reminiscent of the way we do things here. Um, for sure. So yeah,

and um, it definitely–it was cool. You know–it’s the kind of thing where, you know,

it would be nice to have a UI like inside of Maya. [laughs]

B: [laughs] Yeah, that’s one thing I will pass on to whoever comes after me.

I5: Yes, that’s exactly what I was going to say–pass on that note. Um, but

yeah, I think that’s–with that it would be so nice because then you would sort of

have this command line tool and you’d have this GUI and if you built like a Python

API around the whole thing, then you would just have this real Python pipeline sort

of code base that you could really, like, manipulate from anywhere and that could

174

be really cool. You know like–I’m going to–oh I need to batch process all my shots,

or you know, I need to run this–I need to send all the shots to the farm now and

you could just write Python little code and tools and stu↵ around it and um, that

would–that would–I dunno if there is such a thing like that right now, but, um, just

sort of like an API around the whole thing I think could really like, take it to the

next level.

B: Yeah, that’d be pretty cool.

I5: Just being able to batch process or saying oh–yeah, we need to–we have a

review coming up, so we need to, you know, just, whatever, output–output versions

of all the models or something like that. Or you know, who knows or I want to try

this cloth simulator, so I need to output–like a geocache or something. And you have

to run, like run pipeline.rungeocache on this file and it just outputs the cache–you

don’t even have to open it–like you know, that kind of stu↵–stu↵ starts to be like

really powerful and really, really easy. So, but yeah it was cool. Yeah, definitely I

was like really impressed, for sure, that there was a pipeline at all which is great.

B: Yeah, well, it was, um, definitely a nice project that my boss put us on last

summer after the summer course was over and we, um, kind of tried to give something

that students could use, you know, for future summer courses maybe and have the,

you know, save them some time so they didn’t have to build something from the

ground up. Um, and also, we just have it year-round, kind of available for students to

uh, do projects and, you know, use that basic structure to kind of organize themselves

and I’d really–yeah–I’m glad you mentioned the GUI–I would really like to avoid them

having to ever, you know, use the file dialog or have the reference editor or any of

that kind of stu↵ and just have almost like an asset browser type thing.

I5: Yeah. Yeah, I mean hey–integrate it with openPipeline–write it in Python.

[laughs]

175

B: [laughs] I would be happy to contribute to the code base.

I5: I was going to say I’ll help you guys out if you go down that road. We could

just build something that works for both sort of underlying–underlying methodologies.

That could be pretty interesting. In your free time.

B: Right–of course. All of the free time that I have. [laughs]

I5: Exactly. So um, when are you done with school?

B: I’m, you know, working pretty hard to finish all this thesis stu↵ up so that

I can defend sometime next month, and then, um, hopefully graduate in December.

And job stu↵, hopefully is–is looking up, I think I’ve got some good–a good shot to

go for a job at Studio Delta or I saw that there are actually some TD positions open

at Studio Alpha.

I5: Yeah, I was going to say definitely, you know, keep in touch with Interview

1. I think he’s–I think he’s on vacation right now, but as you’re sort of going down

that road, um, you know, by all means, like definitely let us know how school is

going and all of that. And if you can’t get in touch with Interview 1, just give

me a call–or get in touch and say um, I think I’m–I think I’m gonna be done. I

defended and uh, I think they liked it, and so, yeah and for sure and I think... yeah, I

think you should definitely keep and eye–especially since you’ve had the Studio Delta

experience already, like uh–there’s a lot–there’s an amazing pipeline crew here, um,

in every respect, um, like in every department. So I think, um, it should be a good

learning experience if that was something you’re interested in.

B: Oh, yeah, yeah. I’m interested in being there [laughs].

I5: Alright, well that’s cool. But yeah, feel free to get in touch if you have any

other questions or, yeah, if there’s anything you want me to read or give you feedback

on.

B: Awesome. Thanks a lot, Interview 5. I really appreciate it.

176

I5: Sure, no problem, yeah. Have a great day and I’ll talk to you soon.

B: You, too. Talk to you later.

I5: Okay, bye.

177

INTERVIEW 6

BRANDON: Hey Interview 6 this is Brandon.

INTERVIEW 6: Hey.

B: How’s it going?

I6: Okay.

B: Good, good. Uh, finally I got to, uh, catch up with you. Glad we got the

chance to speak. So did you have a chance to look over the preliminary question list

that I sent you?

I6: Uh, yeah. The one you had sent a while back?

B: Yeah, yeah.

I6: Mmhmm.

B: Okay, cool. Um, well then I guess you know what we’re in for, so we’ll go

ahead and get started. Um, just go over real quick sort of your background, uh, your

position there at Game Studio One, what you do, how you go there, um, that kind

of stu↵.

I6: Ok, um, well I started as a, um, software engineer at Animation Studio One,

no, I should go back even further. Um, undergraduate at University One, graduate

student at University Two at the, uh, graphics lab there. Um, and then I got a

job at Animation Studio One as a 2D/3D software engineer. Um, and that was

for Adventure Film One and then I worked on Adventure Film Two as a technical

director at uh, mostly just a title change–I mean my actual work didn’t change much.

Um, so Animation Studio One wound down a bit, so I went over to Studio Delta

as a software engineer, um, and I was there for eleven years. And um, some of my

later assignments, I was working closer and closer with production...and so my last

gig I actually moved over to become a technical director on Adventure Film Three,

178

working in the lighting department there.

B: Yeah.

I6: Um, I’d worked variously on the 2D films, um, and also, um, I worked on

[Studio Delta’s old], um, pipeline for doing CG rendering on their 2D films. And

then I worked with, um, with look, dev and modeling on the 3D films with tools for

that and then eventually sort of worked my way back into lighting. Um, and then

after Adventure Film Three, um, I went to Game Studio One as a technole–technical

director and I’ve been here at Game Studio One for, um, a year and a half? A little

over a year and a half, um, working on tools for the lighting department.

B: Ok, cool. Um, so wh–does your role at Game Studio One di↵er significantly

from what you did at Studio Delta as a technical director? Like does that job de-

scription change a lot between those two places?

I6: Um, well the job title can mean a lot of di↵erent things at a lot of di↵erent

places. Actually it’s pretty similar between Studio Delta and Game Studio One. Um,

it’s just a matter of emphasis, so...um, at Game Studio One, there’s a little bit more–

It tends to be more support work. I think that’s just because they had more shorter

projects going through for a while. Um, right now we’re in a little bit more of ah, a

lull as the next project is ramping up, so now it’s more tool work. But that’s kind of

the usual cycle is–you start out doing...scripts and tools and as things start getting

busy, you start doing more and more support.

B: Right. Okay, ah, well that kind of gives us an idea of where you’re coming

from. Ah, so...we’ll launch right into it with the big question first–how would you

define a pipeline?

I6: [sighs] um, so a pipeline...so, to sort of define something else a little bit–

there’s the tools that an artist uses to create, um, whatever their work is...um, and

then the pipeline is the part of that that, um, takes their data and converts it and

179

sends it o↵ so that it’s usable by other people elsewhere in the facility. Um, it’s also

the part that bring in what they need to–to get them started so that they can do

their work. So the pipeline is sort of the glue between each of the artists’ stations,

uh, in a way. And it’s–and it’s a little hard to draw the line because some of those

connections and threads sort of percolate all the way up to where they’re–like some

of the work they do is setting things up so that the pipeline can do its work. Um,

but by–mostly the pipeline is all the stu↵ that’s sort of sitting behind what they see

when they’re doing their stu↵.

B: Mmhmm. Yeah, one of the other–[Interview 2] said it’s sort of like uh, like a

heartbeat. That, you know, it’s something that’s necessary, but it’s not necessarily

something that you’d think about. But it’s doing a lot of work in the background.

I6: Right I mean–w–yeah. The best kind of pipelines are ones that you don’t

talk about because you don’t need to. Nobody wants to spend time on pipeline.

B: Yeah, yeah, uh, no artists, certainly. [laughs] Not any ones that I know,

anyway. Um, on that, what–what kinda things do you think make up a good pipeline?

I6: [laughs] um...so I think, um, one thing is, uh, structure. So...that you sort

of know ”If I do this, it’ll be okay. Things will work.” um, that you know that you’re

gonna get, um. And there’s checks and things that can sometimes happen and people

and–and indivi–and individual shows can go all over the map–all over the map on

something like that. Um, the data you pass through–you do want it to show up in a

sort of standard place. You do want it to sort of be in a standard form. It’s–It’s the

more it’s understandable, the more it can be automated. Um, on, on the other hand,

um...you do want some flexibility, so that if like something odd happens or you’re

trying to do something unusual, um, you can cu–get that to go through, too–and it’s

not so locked down that as soon as you try to do something a little bit di↵erent–or

you–or–or you try to start making changes and improvements, you don’t start running

180

into that your–the fact that you’re fighting against the way everything works.

B: Mmhmm.

I6: Um, so, um, one of the ways you can do that is by decoupling. So, um,

there’s like a monolithic pipe and everything sort of gets carried through in one great

big sort of process-munge. Um, decoupling means okay, i’ll do this piece. I’ll do

this piece. And if you change one piece, then hopefully you’re not, um, throwing a

monkey wrench into anything other than the things that might just connect to that

piece. It’s usually not quite so clean, but in a way, it’s almost better to have dumb

processes where if I put this data in–and–and i’ll check and make sure that it’s good

data when I put it in–then things will just pick it up. The thing like way down on the

other side will just pick it up and then it’s there and all the stu↵ in-between doesn’t

really care–I mean, they’ll make sure it gets through, but um they won’t freak out

if it looks a little bit di↵erent than usual because it’s not real–really their job. Um,

so, um, also the less you have to reprocess files, usually the better, um because if

you have to do a lot of conversion and extraction and chewing and munching, then

anytime you make a change that has a lot of–of knock-on e↵ects.

B: Right–because you’d have to just do that process again every time you made

a change to that.

I6: Right. Um, scalability. Um, where if you if you load up ten things, if you

load up 100 things, or if you have to do something like a–a few time it might work.

You start getting to 1,000, 10,000 then if things start breaking down, then you’ve

got problems. Um, and usually things don’t start out scalable. That’s one of the

things that you have to develop over time–and sometimes you have to pay–you end

up bringing in more complexity to get more scalability. Where you get higher level

tools and more sophisticated tools, to manage the complicated scenes, um, but you

do want to try to keep the simple things simple, as much as you can and only pay for

181

the complexity when you want to use it.

B: Right.

I6: But uh, it’s usually like the feature animation studios are much more like

assembly lines–where if you say hey I just want to do five shots. Okay, it’s gonna

take a really long time–it could take a really long time to set things up so you can do

just those five shots because of all the things you have to set up to get going. I mean,

they’re geared toward much larger scope of work and to just sort of pop something

in an whip something out–the pipeline might not be quite so suitable for stu↵ like

that, whereas, like a smaller place, working on a smaller scale, they may be a little

bit more agile.

B: And how, um, how does that translate into–I don’t know a whole lot about

game development. How does that kind of thinking translate into when you’re working

on–on games.

I6: Um, so, the group I work with actually does the um, like the short two or

three minute pieces.

B: Oh, okay, like the cinematic stu↵?

I6: Yeah, I g–the cinematics. It’s actually the cinematics group. Um, they do

those movies, that go with the games. So they don’t actually get involved in with the

game development.Um, there is a smaller unit that we have that does like in-game,

so they might get some in game assets and run them through like the game engine to

get out the images and then, and then, put that together into these clips that play

as you you’re wondering through the forest or whatever. You might stumble across

one of these events when you’re doing a quest or something.

B: Right.

I6: Um, the game teams tend to–I mean–In a lot of ways, they have similar

problems–they’ve got assets that they’re trying to build to put into their system that

182

are available, um, for the game to consume–the same way that you might have an

asset that you want to render. Um, there’s usually a little bit of di↵erent emphasis on

things, um, just in terms of the games have–might–have a lot of people putting things

in, so they need to have people watching what kind of work is coming in at–at any

point. So I might check something in that might sort of mess up the quality of the

game–um, usually, I mean, the same thing too might happen in the cinematic, but

that will come out in the render. That won’t come out in like the middle of someone

playing like the third act of some game.

B: Mmhmm.

I6: Um, so, but you do–you do want to have good quality control because if

someone puts stu↵ in that’s broken and it just brings you to a halt and you have

to go back and like get it fixed and um, so you have to have a way to sort of deal

robustly with ”hey maybe this data that you gave me–the character’s hair is missing

or it’s o↵ in the wrong place or his suit turned pink” or something like that. Okay,

um, what do you do? And some places it’s like well we have everything versioned, so

let’s go back to the last working version and other places you’re like well, let’s fix it

quickly and get–just get it back to something good. And it’s sort of a di↵erence in

philosophy because you may want to be able to have–like Sony for example has a lot

of projects coming through a visual e↵ects house where they’ve got a paying client

and they say hey I like the look of the thing last month. You ought to be able to give

them the thing last month and they can bring that up.

B: Yeah.

I6: Other places it’s like we’re our own clients, we’re our own place, we just

need it to look like the way they told us to make it look and it doesn’t really matter

how it looked a month ago because that’s not really what they wanted–they wanted–

they want whatever look they have now to get adjusted however they want it to get

183

adjusted, so they just sort of live in the present and you can maybe look back at how

things looked in the past, but, they’re always kinda moving forward.

B: So then that would mean that those version tracking tools wouldn’t necessarily

be as robust as a–like a visual e↵ects place where they might need to call up something

that they had a month ago and get that exact asset.

I6: Well, they, they may not even exist. So I know, at Studio Delta, um, they’ve

gone to pretty much a versionless system where if you say ”hey I want to render with

a look from a month ago,” people look at you funny like–but that was last month.

And they’ve, they’ve out and up decided we don’t want to work that way. If you ask

for a change, you’ll get the change.

B: Yeah.

I6: Now–now something–they do have a little bit of a version control system

where if something goes out broken they can say okay, let’s revert, but everybody

gets it. So, and they’ve also continuously rendering everything that changes, so they

always know hey, you asked for this change this is how the change looks–Is this how

you wanted it? The answer’s yes, we’ll move on, if the answer’s no, we’ll fix it. Um,

so, they’re always kind of living in the present. Um, and not–they keep track of the

past just because you never want to ever lose data, but they don’t ever go back to

the past, I mean, um, unless he’s like hey I want, turns out, three versions ago. Like

we’ve introduced something where like our render times go through the roof, they’re

like okay, let’s go back to the last time we didn’t have that problem. Roll that out,

fix it and then we’ll update it.

B: Mmhmm.

I6: Um, other places, you can pick and choose versions. They may not work

together very well. Um, things may act–act up strangely, but–they let you do that.

So, I mean, and there’s reasons for each philosophy. And–and it’s [sigh] if–If you look

184

at some places, usually they work is a reaction to the problems they had last time.

So, if you have a fresh studio and they’re having a problem with hey–ar–they–they

gave us new assets and they’re–they’re broken and they’re broken and they’re broken

and we’re having trouble being able to do our work because we can’t get on to some

working assets and stay there long enough to do any work. It’s like okay, let’s version

control–so, we can stay on the one we know works and when they push out something

we don’t have to take it. We can–we can wait until we know it’s good and then we’ll

go up to it. Well, then the problem is hey–we made this change–we’re not seeing the

change. Why is that? Oh, we just haven’t updated our assets. Well, are you on the

latest version? Eh, not sure. We don’t know. We don’t know what version everyone’s

on because they can pick anything.

B: Mmhmm.

I6: Like okay, we need to make sure everyone’s on the latest version. Okay. So

we make sure everyone’s on the latest version and it’s like why are we versioning?

Everyone’s on the latest version all the time...well...maybe we can get–but like it’s

dangerous to get rid of versions. Well let’s make sure that when we push stu↵ out,

it’s good. So you–you make that process more robust and then you can choose to

get rid of versions. Or you may say you know what? It’s a–it’s important to us as a

facility that when a client says I want I want this previous version. I love this previous

version on this previous film. I want–I want a Marvel Avenger’s feel. Um, you’re like

okay, we’ll give you Marvel Avenger’s feel. Just like they had it. Um, this is valuable

to us–It’s worth money to us. We’re going to put an investment in that–so that we

can do this, then you have a place that makes a di↵erence choice. As a–as opposed

to some place that says we want to work in the present. We always want to be on the

latest version. If someone asks for a change, we want to make sure it happens and

we don’t want to pay the pipeline complexity for maintaining versions that we never

185

use.

B: Yeah.

I6: We want to put our money elsewhere. And neither answer is wrong. It’s a

matter of given–given what your–your, uh, studio priorities are, what is important

to you in the pipeline? And what can you do now? Because it may be that someone

looks at like Sony’s pipeline or Studio Delta’s pipeline and says, ”I want to work that

way.” and it’s like well, we don’t have the infrastructure to do that. What can we do

now that may not be everything that they do, but works for us here and we’ll start

working that way. Uh, and and until you have the infrastructure and the support

and the foundation, some of the choices aren’t even available to you... or they may

not work very well.

B: Those kinds of decisions, like the uh, you know, doing the push versus pull or

making those architecture choices, um, who–who decides those things, um, is there

just like a secret cabal, you know, that kinda sits in a dark room and kinda figures

those things out or how–how are those decisions made?

I6: Um, so that goes to sort of the power struggle of some of the technical

leadership between the facility and the show. Um, so if you have a facility where the

technical leadership is on–Is in the studio side, so your–your–your software group,

your tools group, um, if they’re the ones sort of dictating this policy, in terms of how

the structure is in that stu↵, and the show is merely a client of it. Or if they take

the tools and they use the tools and they like them. Whether they like them or not,

then, um, then the studio dictates that policy. There’s other places where the show

is all powerful. If they want something, they get it. Um, up unto the point where

they’ve consumed all the resources they have available to them.

B: Right.

I6: Um, if a show’s–it may be one show comes by and is like you know what, we

186

want to work in a way that is completely push. We want everyone to always be on

the latest version. If you didn’t want them to get that version, you shouldn’t have

published it. The next show may come by and go oh, that worked horrible. We’re

going to be mostly pull. So, your scene won’t change until you hit the button and

it gets updated. And it can go back and forth between a couple of shows depending

on who’s the technical leadership on the show and the tools group may be throwing

up their hands and saying can you please pick one? Or they may just sort of make

it like uh, ok, whatever you want to do–our tools support like either flavor–like we’re

agnostic. We’ve built in some flexibility because we’ve lived through these wars long

enough. Um, so it sort of depends where the leadership is–technically where those

decisions happen.

B: Right.

I6: Ideally, it’s somewhere in-between, uh, where there’s some coherent studio

strategy or or philosophy that’s evolving. And it may be that people use a show as a

um, a soap box to make their pitch that the studio should pick a new direction. Um,

this happened at Studio Delta where there’s a couple of projects that came up where

they’re like you know what? The way we’re working’s way complicated–you should

simplify our pipeline. And–and, so I mean, there’s political kerfu✏e, of course, with

that,

B: Sure.

I6: But eventually, the–the they decided we’ll keep the tools. We like our tools,

but we’ll simplify our process and make–and rip code out of the tools so we stop

supporting some of the stu↵ we used to support. So they actually got rid of capability

and made things simpler, um, as part of this change over. Um, other places, it’s like

you know what? What if–what if this happens, what if that happens, what if this

happens, you know, let’s build something that can handle any of those. So you sort

187

of building tools on sort of a more complex case, a what-ifs case. Um, it’s debatable

sometimes whether or not like that’s necessary, but other times it’s like yeah you

know what, well, you know it might go one way, might go the other. They might

decide they want to push. They might decide they want to pull. They might decide

to go back versions. They might–someone might ask for something and we don’t want

to have to say well, that’s gone.

B: Right.

I6: We can’t do that, so, build it more complicated to handle that stu↵, because

we don’t want to be looking silly. And that’s what you build to. And–and so the–

that’s just how the dynamic works at a studio. And sometimes they’re not really

playing it though–they’re just trying to get stu↵ done show after show after show and

the pipeline they have is the pipeline they’ve got. Um, and then eventually, it’s like

you know what–this is really painful. We should–we should–we should do a project or

something to get this fixed up. Um, and then you have the series of either successful

or failed projects to try to make it better. And then the projects to replace those

projects because obviously they did it wrong the first time around.

B: And those–those kinds of projects–I guess the evolution of a pipeline like re-

acting to a previous show making those kind of changes, uh, that would be something

like, I don’t know, Short Film. They wrote a new thing for Short Film maybe or for

you know, another shorter production, maybe? It would just be for something like

that?

I6: Well, one of the examples, like Studio Delta, they were a 2D shop for a

while and then they decided to do chicken little and they said you know what? We

know our pipeline doesn’t have the capability to do a full 3D movie. So, we need a

pipeline upgrade. And that’s not even an evolution thing or a reaction thing. It’s

just a plain old hey we don’t have the capability to do what we want to do. Um, and

188

then, then there’s some evolutionary changes over the next couple of films and then

for Adventure Film Three they were like you know what, we’ve been using mostly

the same pipeline for a few shows now. It’s getting a little long in the tooth. We

want to try to do this–try to clean up some of the things that haven’t been working

so well and sort of redo our pipeline. And then sort of out of that, there was sort of

a reaction, okay, you sort of built it that way, but maybe if we simplified it, it would

work better. We might have sort have overshot a little bit. And so it–It’s dialed back

to something that still had the sophisticated tools, but just the way everyone worked

was a little bit simpler, um, and a little more streamlined.

B: What kind of feedback loops, um, happen in a pipeline? What kind of

communications tools are there that–that aid in that kind of process–the feedback

and iteration? Talk a little bit about that kind of stu↵.

I6: Um, Studio Delta for example–If an artist is having a problem, there’s an

email list they send stu↵ out to. And a bunch of support people see that. And if

nobody answers them after a certain amount of time, then there’s people who will

start poking to make sure they’re getting it–a response. And that’s sort of their

front-line support, um, aside from someone walking over and saying hey–I’ve got this

problem. But those are like immediate day-to-day issues. If something comes up and

was like hey, this was a bug or hey I’d like these new features, usually those come

up, um, either from people talking or someone sending in an issue with some sort of

bug tracking system. Or it comes from, say, the leadership looking at things saying

you know what, we will–we have these ideas of how we want to work or we’ve been

hearing these things, we’ve been–this is di�cult–or could even be just they scheduled

r&d saying hey we’ve got–we want to put all these plants in our scenes and the

software developers come back with guess what we’re going to change your pipeline

to make this work out because we’ve scoped out the work and we realize these are

189

the ten things that need to happen to get this all to sail smoothly.

B: Mmhmm.

I6: So it even might come from the people developing the pipeline themselves

saying hey we’ve seen this–we’ve seen what’s going on in your pipeline, we’ve got

these ideas for how to make your pipeline better. Or, you know, work with this. Um,

so that’s part of it. Um, at Game Studio One, there’s mostly it’s um, uh, someone

sends in an issue and then it’s um, for upgrades and improvements, it’s usually the

people who are working on it who have the ideas. It’s like hey–hey we should change

it to be like this. But they also periodically go to each department and sit them

down. It’s like okay, what are the things you’d like to see happen? And they–they

get everyone together and it’s like okay, these are the things we’d like worked on and

these are the top–top three. So they go through and ask each department sort of,

”what do you want?” And the problem with that is they tend to look department

centric and you want to also be looking sort of across the whole studio.

B: Right. I guess because I guess each department may not have that global

view of what’s happening.

I6: And if you ask someone what they want, you’re always going to get an

answer. Um, and then you have to decide what’s important... Because you almost

never have enough resources. Um, there’s also the problem where people will, people

will tell you their solution. And what you really need is for them to tell you their

problem. That’s kind of a tricky thing to negotiate. It’s like hey I want this–well,

hold on. I mean sometimes it’s like oh sure, i’ll let you have that, but other times

it’s like why do you want that? Because that’s kind of a strange request. I’m not

understanding why that makes sense to you. And then they explain it and it’s like

ooooh. And usually it’s–It’s hard to do x, so I would like you to do y.

B: Right.

190

I6: And sometimes the answer is well, what if I made it easier to do x? [laughing]

or what if I made it so you didn’t even have to do x? We can–we can make x just

happen for you like it’ll just magically happen and you’ll never have to worry about

x again. Oh, that’s fine–that’ll be okay. And so–or other times it’s like you know,

you’re right–you–you it’s hard to do x, and so I will give you y. And I will give you

the thing you asked for. Um, and other times, it’s like x is hard, so I want you to do

y and someone else wants z and it’s like okay wait a second. For the sake of sanity,

we need to sort of settle on which way you guys want to work.

B: Mmhmm.

I6: And so that get’s them to–there’s kind of this triangle between, um, work

flow and pipeline and the tools, um where the way they work is influenced by the

tools they have.And the tools they have is sort of influenced by–by the pipeline and

how it interacts and that influences the way they work. It’s like if all you have is a

hammer, everything’s a nail. It’s like well, what if we had a more screwdriver driven

pipeline? Okay, but we’ve got no screws because everything’s a nail. Well okay, we

need to bring in some screws. Well, okay, now we’ve got some screws, but we have

no screwdriver. Okay, we need–so it’s kind of this chicken and egg thing that tends

to happen where, especially with a big pipeline change, where you can’t get anything

done at the very beginning because you don’t know what needs to be done–or you

don’t know how people want to work, and they don’t know how to work because they

don’t know what their tools are.

B: Right.

I6: And sometimes the answer is okay, let’s just take a stab at it. Get something

done, and then they’ll start telling us what we did wrong and then we can get on with

our lives. And part of the reason that can get complicated is often you have di↵erent

people in di↵erent parts of that interface. So that the tool people may be software

191

engineers o↵ in a di↵erent building who rarely descend onto the floor to talk to a

um, an actual living artist. Now the TDs might be in with the artists hearing about

the complaints everyday and try to sort of glue the pipeline around and working

to patch things together, but working almost completely in the dark from what’s

coming on the tool front. And so there’s–there’s kind of this, um, it–it really helps

to get people together on a–if they’re even co-located on a production, because of

the communications. Um, software development, broadly speaking, on production is

almost unlike any other place, because no one else is going to use your software and

your customer is just down the hall.

B: Right.

I6: Right. The whole–”hey I got a bug report and it doesn’t make any sense”–

you can go over and look over their shoulder and say what were you doing? and

watch them do whatever it was that was breaking. Which is extremely rare. And

they can come to you and say–or you could just overhear people talking and say hey

this sort of sucks and you can–whoa, I’m right next to you. I’ve heard this. I’ve

gotten information that most people wouldn’t bother to send in something about but

because I keep talking to people, I’ve got a better understanding, so. Um, taking

advantage of these things helps a lot with your pipeline development because you

start getting a better feel for what’s going on. And–and just where people sit can

make a huge di↵erence.

B: Yeah, I talked to, uh, I talked to [Interview 3] and he was talking about the fact

that, you know, if somebody sends an email, like, there’s kind of a problem because

everyone’s so close together, it’s really easy to just–just yell at the guy you need to

and–and get some help, um, or have him come look at things. Um, speak a little bit

about the the di↵erences between doing something on the scale of the cinematics for

Game Studio One versus like a feature film, like Adventure Film Three.

192

I6: Mmhmm. So, for–for the Game Studio One cinematics, usually the projects

are a couple of minutes. But, they’ll do, um, a lot of art design and sort of concepting

and just try to come up with the look and the story and the asset–and de–do all the–

design assets. And then they’ll start doing it, and then they’re done. So, in right

about the time that a feature animation would start like hitting its economies of scale

and figuring out the process and being able to start turning the crank on the assembly

line, the cinematic is over. So it’s–it’s uh–It’s kind of di�cult to do short projects

because you never–you never really get to hit your full stride. Like about the time

you’ve figured it all out, it’s over. Um, and–and it can also happen that like all your

shots are coming to you with in just a few weeks of each other. And on a feature

animation, that’s never gonna happen. You’re gonna–you’re gonna finish over the

course of months.

B: Right.

I6: Um, and you’re mostly like on a feature animation, you have to really... be

doing planning and scheduling and all of that stu↵ because if someone sort of decided

at the last minute that they want to change the way a couple of the characters look,

that has a major implication because you’ve got 70-80 minutes of footage that might

be a↵ected by [laughing] someone changing their mind about something, as opposed

to um, okay, we’ll–we’ll just kinda slug the farm and re-render it because it’s only

two minutes and we can re-render all the shots that have those characters in them.

And that really–we can get away with some of that stu↵ because we’re on a smaller

scale.

B: Right.

I6: Um, I’ve–I’ve occasionally thought that doing a feature animated film wasn’t

so much of about doing a film–It was a data management problem. And is o–is exercise

in logistics. Um, where as you can sort of squash that over a bit more with the shorter

193

projects, but in the end it’s kind of–you do need to be wary about it. Um, even at

two or three minutes, you can overwhelm your resources and not get everything you

want into the project if you don’t sort of plan it out and think it through. You’ve

just got a little bit more give, usually.

B: So, um, being like you said not really hitting your stride, just kind of figuring

things out, is that just because of the uh–amount of work, or is the–the time window

for the whole project just much shorter...?

I6: Um, be–part of it is because it’s less work. Part of it is because your visual

development is in a way almost overlapping with your–actually doing the shots. So

your exploration of like okay, we have these ideas–how do they look? What are we

gonna settle on? By the time you–on a feature animation do a couple of test shots or

do some explorations, and they might use–have a sequence of like okay, this is our first

sequence we’ll get our first look at this stu↵–we’ll start really gelling it. With this,

well, that’s the whole cinematic short. It’s just a sequence of a feature animation.

Um, in terms of size, so by the time you’ve sort of settled on what you want, it’s over.

And by the time you’ve actually seen everything, uh, clearly, it’s time to–to send it

on to the game.

B: Right.

I6: So–It’s kind of–most–most feature animation studios you’ll hear people say,

”I wish we could do more shorts to experiment with something. I wish we could

do more shorts to sort of try things out without committing to this like 18 month

long journey.” Um, where yeah, you can make some changes along the way. You can

innovate. You can say hey, you know what? Animation wants to work this way–we’ve

got the flexibility. We can sort of add this in. But that’s–that’s–there’s a lot of other

things that’s like well, we’re on the course we’re on and we can’t really change too

much because we’ve already got 20 minutes under our belt. So 25% of the way in,

194

you’re pretty committed on a feature animation project. 25% in on a two or three

minute short, meh. I mean, you’ve got a lot of assets that you’ve built and you may

not have many people to rework everything, but um, you can sort of iterate–and even

if it’s like–even if you’re sort of stuck, well then there’s the next project and the next

project, so you might actually be doing two or three projects in a year as opposed to

like 0.7 projects in a year. So, you’ve got a chance to evolve things and try things out

and see them in their final form and decide you know what, hey–we’re gonna–we’re

gonna change the way we work.

B: Yeah, you mentioned, uh– flexibility, uh, and being able to handle di↵erent

things. Does–what kind of processes does that involve? Just like being able to plug in

di↵erent software packages or maybe change the way that, um, shots bring in assets

like what–when you say more flexible, what do you mean?

I6: Um, so if you’ve got a pipeline that’s sort of–you hit a button and it goes

looking for things in a particular place with a particular name and it’s gonna pick

these four things and use them to do whatever it does, if you want to add a fifth

thing, then you need to go in and tell it hey there’s this fifth thing. It’s this new type

of data. You need to handle it this way, it needs to be carried through this way and

you might need to percolate it through your pipeline that way where it need like–a

lot of di↵erent things need to be aware of this so that it gets fro–gets from one end

to another. A more flexible pipeline just says hey, I’ve got some stu↵. Turns out I’ve

got four things. You tell it oh surprise, I’ve got five things. Ah, okay, you’ve got five

things, whatever.

B: [laughs]

I6: And it just throws them all in a bucket. And it just carries that bucket

along and at various points, someone can say hey, what’s in your bucket? And it’s

like here, I’ve got these five things and it’s like oh, I’m only used to four things; I’m

195

just going to look at the four. And finally you get to the thing that’s looking for the

fifth thing. It’s like hey oh you’ve got this fifth thing. I’m a new process I’m going

to use that new process you’ve got there. Oh, okay. So in a sense, it’s–that’s a more

flexible pipeline where it’s less aware, in a way, of what anything means, but it can

still keep track of things that it doesn’t really know about. And the things that need

to be aware can pick up on it.

B: Mmhmm.

I6: Um, so, at Studio Delta that was like their blackboard system, where, um,

to use a more specific example–If you have a character there’s–you could add a block

of data on a character or an asset or something that says hey, you’ve got hair or

you’ve got–I’ve got data here for the hair system. Um, and there’s a whole lot of

stu↵ that wouldn’t even care that you’ve got hair because they don’t–they don’t have

anything–they’re looking for your animation, they’re looking for hey, what shaders

do you have... but every once in a while, something would come in and say hey, I

care about hair. Do you have hair? Oh, yes. Okay, well let me do my thing.

B: Right.

I6: Um, if you added a new kind of hair or you added yet another piece of data

for like say I’m gonna grow leaves. I’ve got a very special leaf growing tool. And

I’ve added data to it. It would be very easy to have that in have that get carried

through. Um, there’s other systems where it’s like hey I want to know everything

about what’s going on. I want to be able to keep track of it. That would be harder

to do just because you have to tell it about hey I’ve got this new type of data, it’s

this new type of thing. This is the way it looks. This is how you store it. This is how

you get it back out. Um, and in a way because it’s–It’s keeping closer track of things,

um, it’s harder to make changes. But there may be reasons why you want to work

that way. There may be certain value where you can say hey, on all my shots, I need

196

to know more information about them and it might be hard to do that if you don’t

know what you’ve got in all your shots. Um, so for example, like a database based

system, for managing your shots, um, might need to know more details about the

assets it’s containing because it can’t store them in the database because it doesn’t

know what–what this thing is.

B: Mmhmm.

I6: It’s like how do you even store it if you don’t know what it is? Um, a more

flexible system like Studio Delta’s, may not have database space, but, um, so there’s

certain things you may not be able to do very easily but in that case they don’t care.

Just because of the way their pipeline works. And they do use databases. They just

don’t use databases for shots, or for shot data.

B: Right. Okay, um, that’s pretty much the list that I guess I’d sent and a

few other things I’d thought about. Um, is there anything that we didn’t address

specifically that you were kinda thinking about and maybe wanted to fill me in or is

that pretty much it?

I6: Um, hmm. The things like, hmm, the pipeline you have in a place, like

there’s no one right pipeline. You’re generally not going to be able to go and it’s like

okay, if everyone just did it this way, it would work, because usu–usually you’re not

starting a pipeline from scratch. You’re coming into a pre-existing situation and the

first thing that happens is okay, how do we make it work with what we have when

what you have is based on what you’ve been doing? So if you come in and it’s like

hey, everyone’s going to work this way and all this–like you either have to be like

such a small shop that you can just sort of drop in a solution like that, or it has to be

just a so immensely flexible that it’s almost useless and you have to customize and

configure it a lot yourself.

B: Mmhmm.

197

I6: Um, so if you have a pipeline that can do anything at all, then everyone

will do anything at all and then no one will know how to talk to each other because

one person is doing one thing and another is doing another. So in a way, having–It’s

kind of balancing between having some limitations and some structure, and having

flexibility and support. Um, the more pipeline stu↵–and the best pipeline is the

pipeline you never talk about. A lot of pipeline stu↵ boils down to hey can you guys

name things consistently? Can you build your hierarchies of your models consistently?

And then, as soon as you get into that, then animation and rigging say well wait a

second, you need to re-arrange things for our purposes. Hey, we need to name things

for our purposes. And it’s figuring out how you can do–how you can let people be as

flexible as they want to be without contaminating the rest of the pipeline with their

flexibility.

B: Right.

I6: Like kinda confine do whatever you want in your box, but don’t spread it to

everybody else. And as much as you can contain the cor–the chaos and as much as

you can keep things consistent, the more you can automate things and the more you

can script things and the more–the more, more power you can give–and the sm–the

more the building blocks that you’re using to do your pipeline, the easier it is for

people to build complicated new snazzy things as opposed to sort of anytime I want

to send something up to the GUI, I have to write these scripts for composing the job

and finding the data and assembling it all into this list and then handing it o↵. It’s

like hey, just ask the system what the data is and hand it o↵ to the GUI system and

tell it to render and it’s gone.

B: Right.

I6: Right, so. Hey, 15 minutes of work versus three days. Um, and again it’s not

the sort of thing that happens overnight, but it’s something you evolve towards. And

198

then someone says that you–all of your ideas are stupid and they’ve got it better and

they throw it out and they star over from scratch and they realize oh, this is more

complicated than I realized. The infamous case of discovered work. People always

underestimate how complicated something is when they look at like–this is–why is this

so complicated? Sometimes the answer is we’re just doing it a dumb way. Sometimes

we realize well, we needed to do it that way. Maybe now we can change it, but most

of the time it’s like hey, we’ll just make it simple. And then people will say hey, it’s

not possible. Hey I can’t do this thing I need to do. Or hey, the first system data

is getting dropped because you forgot all about that. That was one of my favorite

examples. Everyone would try to simplify things and then like what about the first

system. Oops! I guess that complicates things.

B: Yeah. Okay, well, uh, I think that’s about it. Thanks very much for your

time. Uh, I appreciate it. Glad we finally caught up with each other.

I6: Yeah, sorry it took so long to sort of wrangle all the okays and stu↵.

B: Yeah, it’s okay I–I kinda had to jump through some hoops at some other

places as well, so I’m uh, glad we got that all sorted out.

I6: Okay.

B: Thanks a lot, Interview 6. Appreciate it.

I6: Yeah.

B: Have a good day.

I6: Bye.

199

INTERVIEW 7

BRANDON: Hello?

INTERVIEW 7: Hey Brandon.

B: Hey Interview 7.

I7: Yeah. Hey what’s up?

B: I was just calling to, uh, to get this interview started. How’s everything

going?

I7: Good–busy. [laughs]

B: Yeah. I suspected as much. Uh, did you have a time to look at the questions

list that I sent earlier?

I7: Yeah I had a look at them.

B: Okay, cool. Um, well let’s get rolling I guess. Um, I gue–we’ll ask background

questions first, so I guess talk about your position there at Game Studio Two, um,

how long you’ve been there and kind of your educational background and experience.

I7: Okay. So um, so my position at Game Studio Two is um, associate CG

supervisor. Um, I’ve been there seven years... and before I was at–I’ll tell you how,

um–my educational background is just um, art–is just an art degree. Um, kind of

sculpture mostly is what it was. I did some 3D stu↵ in school. Um, I graduated, [in

the early 90s] from college so there wasn’t that much, you know, it was kind of uh,

the industry wasn’t as built up as it is–there weren’t that many computer art things

as there are now. So...there was this one computer art class in my college and I um,

you know, was really into it–me and a couple of guys were really into it–and um,

eventually I did–you know, I got an art degree. I worked a little bit in advertising

and then I went to a–a–school of communication arts. It’s like a degree school for,

you know, 3D stu↵ and I did that and then I got a job at Small Game Studio was

200

my first game industry job in Location One.

B: Yeah. How did you get, uh, from there to Game Studio Two?

I7: So then I–at Small Game Studio for two years I did animation, um, and then

I did–I did mostly like cut scenes–I mean, it was like generalist work back then.

B: Right.

I7: Things weren’t as specialized. I did everything, but kind of focused on

animation and cut scenes. And then, then I went to Company Three. First, at

Company Three [division], where they were doing, um, Joe Network who was the guy

who invented ethernet. That’ll–yeah, and he did this early [game]–I mean it was an

early, early, early game and it was really cool, but he made that game and um, they

were–back then they were looking at retained mode for Tech One–this was kind of

like a research project for, you know, retained mode and how it might work with, you

know, um, gaming and so they just needed artwork so I did all kinds of artwork for

it. It was there–like we had, um, I had to do a bunch of power–like little power-up

things. The game was a space shooter, um, and it actually got published. It wasn’t

supposed to get published, but it did. It actually turned out pretty good. It got all

kinds of awards and stu↵. Um, but there were all these like you can fly after you blow

something up–all these power-ups might fly out of them and I think you can buy stu↵

when you get to–I don’t know. We had to manage–or I had to manage really, all of

those little power-ups.

B: Yeah.

I7: So um, I’m at Company Three, right? So everyone’s a really good program-

mer. So they helped me–and at [division] which is um, the best people there–so they

helped me, um, with uh, doing this like database thing how to organize all the art-

work um, so I could find all the power-ups and everything and you know, keep them

together. And I thought oh, this is really cool and I kind of started down that path

201

of technical art. And I don’t even know if they had it back then–it was like the new

thing; things were di↵erent back then–they were more simple. Um, so, you know, I

wasn’t the first technical artist or anything, but it was way back in the day before

it was an established thing. So um, then after that game did really well and I got

moved into the regular gaming, you know, Company Three games, um, and I worked

on, um, we called it Magic Game and it was RPG um, you know, MMO RPG. And

uh, you know, I worked on that for like two more years or three more years, and um,

it–then they–they in the middle of–right at the end of making Space Game, they, um,

had the idea of making Tech Two. And um, so we started working on Space Game–I

mean, um, Magic Game and you know, at that same time, the hardware people were

developing Tech Two–and a couple of years into it, they reorganized all the games

and they wanted to focus on, you know, Tech Two. And they also wanted to focus

on developing out-of-house instead of development in-house because they had a lot of

in-house development–development going on for PC. They’re like okay, we’re going to

digress from PC and we’re going to put our dollars into Tech Two, but we’re not going

to do it in-house, we’re join to do it out-of-house, so they laid-o↵ almost everybody.

I was–I was not everybody–they kept Old Game and I think one more thing. They

kept Sub-Studio and they kept Old Game and I think everybody else they kicked out,

so...

B: That’s brutal.

I7: Then I was like okay. That’s when I went to Game Studio Two. Um, and

um, I’ve been at Game Studio Two for like seven years. I started with–oh and while I

was working on Magic Game, um, I started doing more–you know, I was doing more

and more of the tools, you know, pipeline stu↵. Pipeline wasn’t as much of a big deal,

but it was more about tools, um, at that point. Um, I did some stu↵ for shaders. I

forget, um, what this thing was at this point, um, I did some shaders, um, I worked

202

with some of the people who were developing the level editor, um, that kind of thing.

Then when I went to Game Studio Two, I was–I got hired as a senior technical artist

and it had become at that point, you know, a real job. Um, so, yeah.

B: Awesome. Um, and you–you said you’ve been at Game Studio Two for seven

years now, right?

I7: Yes, I think maybe even eight–seven or eight. I started as a senior technical

artist–started–what they hired me for, um, they were–there were two big things going

on. They were ramping up a lot of people for Movie Game and they were, um, they

were doing–they were also moving into like handhelds. So I got hired to go into the

handhelds group, but it wasn’t formed yet. I guess they were just, you know, getting

people together. I worked a little bit, you know, starting out on like Racing Game,

and I think I did some stu↵ on Sports Game. Then we got the um, I did tools. I did

like a tool for making this special kind of little edge walls that they make in the, you

know, Racing Game tracks. They wanted to procedurally make that–you know, it’s

just like a barrier–a bar, and then little posts. You know, obviously [laughs] instead

of making those, somebody should make a tool.

B: [laughs] Right.

I7: Yeah, so I did that. Um, I forget what I did–it had something to do with, um,

the–um, um, file pictures for the players. You know, they got millions of them for the

players for Sports Game. I did something with that to help get that together–make

it easier to edit them or something like that. Um, I moved in to the handheld–you

know where we started up our little handheld division, um. And um, it was, I think

the first thing was, um, Action Game for Portable Console–and Portable Console

had just come out. It was a launch title–I think it might have been a launch title.

But you know, Portable Console was just coming out and we were basically porting

Action Game from, I don’t know–Home Console I guess? Over to um, to Portable

203

Console. It was mostly like the assets, you know, and being able to rebuild all the,

you know, levels and everything into the–no, into the di↵erent format for Portable

Console. Hold on my son’s here–’what’s up, buddy? Yeah. Yeah we can do that later

buddy, I’m on the phone... after...’

B: [laughs]

I7: So, um, yeah, so that was that. Then they move the group, um, the um, the

handheld group–they moved all that up to Location Three. You know, Game Studio

Two has Small Division down in Location Two and they have the really big Game

Studio Two studio is up in Location Three, and then there’s a couple of other ones,

but they moved all the development up to Location Three so, um, then I moved on to

Di↵erent Sports Game. And at that time, they were doing Tech Three or they were

getting ready to do the Tech Three and it was the big um, kind of push for–um, you

know it was next year, so I got on Di↵erent Sports Game and that was like basically

taking um, the Di↵erent Sports Game engine um, they had done, um the initial like

port of the Home Console or you know Tech Two version to Tech Three, so, um

they brought it over to Small Division and we kind of redid the engine underneath–

you know, all the art assets, which really is a big deal. So...uh, yeah. So we had

to remake pretty much everything and redo pretty much everything and you know,

it was a great thing because you could basically re-think everything–you know, the

entire game–how we produce everything. You get a change to re-think and keep the

good and re-do you know, the–pick another step for the things that weren’t working

out. So, that was a good time. I was on there for like for or five years and then on

to Sports Game.

B: Great. Uh, well that’s good. I think we got a pretty good idea of your

background at this point, so um, we’ll move on to the second set of questions. In

your experience working at Company Three and Game Studio Two, um, how would

204

you define a pipeline? And I know that’s a pretty broad question.

I7: No, it’s good. I would say there’s two things–there’s a workflow and there’s a

pipeline. And the pipeline is–the pipeline is the tools, um, you know, be it, [app] or the

applications for creating the art, the um, you know code for pushing the art from the

source to um, on console or on the destination platform. I think the more important

thing is the workflow. And that’s the people, how you–you know, the sign-o↵s, where

it goes from–you know where the asset starts like in concept to the customer. I think

that’s the most important thing. I think people really, um, sometimes focus too much

on the tech and not the people because there can be lots of–a lot can go wrong um,

handing assets from one group to another not knowing who’s in charge, who’s owning

the asset or knowing who you’re–you know, who you’re serving when you’re making

them, so you know, I think, the pipeline–when I hear pipeline, I think of tech. When

I hear workflow, I think of really–the real whole process of making the, you know, the

assets for a game.

B: Mmhmm. So it’s a combination of the communications processes and the

technology.

I7: Yeah, the communications and the people and the personalities. I mean,

you know, just put–really putting real people in there is important. You know, the

documentation, you know, um, how the art leads work with the assets, you know,

how the uh, you know technical directors work with the assets, you know, all of that.

So yeah.

B: What characterizes a good pipeline? What are some things that–that make

a pipeline–that make that whole process e↵ective–or make it better?

I7: Okay, so I think one of the most important things, like in my experience,

one of the most important things of making a good pipeline is–really is–again, it’s a

personality thing. It’s having people who are involved in the pipeline speak up and

205

talk about what’s not working–not work around problems, but speak up and insist–

and say look there’s a problem with the process here–I want it fixed. You know, um,

because what I’ve found, I mean, that’s kind of how you get to a good pipeline is

having people who speak up and don’t accept problems and issues and don’t find

work arounds and just use those work arounds. If they say okay, I’ve worked on this

for a week and at the end of the week, I want this fixed–that’s how you get to a

good pipeline. A good pipeline is just um–you know, it’s easy to use and it–it doesn’t

break. You know, it’s robust, easy to use, well documented.

B: Um, what are–well you talked a little bit about working on cinematics for

games, um, what are the main di↵erences between a games pipeline and a di↵erent

kind of pipeline–like for cinematics or for–for animation?

I7: Yeah, I think the main di↵erence is just how–you know, how–specific it is.

Like if you’re doing cinematics, it’s, you know, Photoshop, you know .PSDs and you

know .TGAs and just doing textures and putting out, um, you know, frames and,

you know, TGA frames or whatever. And, you know, compressing them and it’s not

very specialized, you know, it’s all very–very o↵ the shelf. And with um, games, it’s

extremely specialized. You know, you might use Maya, but you’re using special tools

written especially for um, you know, what you’re doing. Oh–yeah, so you know with

the games like um, you know, it’s all–and you need it to be really specialized, right?

Because you’re trying to save memory and load time and all that stu↵, so it’s all

really specialized knowing the games pipeline–it’s just harder. It’s harder to work

with and generally only because–you know you have to do more–you know, like you

have to–there might be a need for, you know, some custom format that eventually,

um, you’re bringing your assets into and that might be, you know, whatever pipeline

engineer writes that, um, you know, maybe the tool to compress it or whatever, you

know, it’s unlikely–that’s not really productized–you know what I mean?

206

B: Yeah.

I7: It’s not completely every case gets handled, it’s not completely robust, it’s

not super well documented, more–more–more likely than not, so you know, that’s

where the um, conflict and the problems can come. How much time do you spend

kind of productizing that, um, how much time do you spend documenting it and

making it bullet-proof versus the return because the game–we’re not in–in the game

business, we’re not in the middleware business, we’re not in the software business,

we’re in the entertainment business, so you really don’t want to spend, you know,

all your time making pipelines, um, you want to make–you want to spend your time

making um, making um, you know, entertainment.

B: Mmhmm.

I7: You know, I kind of think of–I think of like tools and pipelines–I try to

explain to [laughs] like um, you know, with Hollywood, you know, you’re making the

film. You know, you’re making entertainment and the experience.

B: Yeah.

I7: And that’s what you need to be focused on. But, you know, it’s like the

camera is, you know, the lens is–you don’t–you don’t skimp on that stu↵. You use

the best camera you can get, you use the best lenses you can get, and that’s kind

of what the tools and processes are. They’re not, you know, Hollywood isn’t in the

camera making business–they have other people do that, but they’re in the editing

software and all that, but you don’t skimp on that stu↵. You really get the best that

you need for that job.

B: Right. Yeah, and I guess that when you’re making an animation or a film or

something, your–you really only have to worry about what it looks like through that

camera for that duration of time. Where as in games, you’re seeing–you’re going to

see stu↵ from every angle for a lot more time, usually.

207

I7: Every angle for a lot more time and more likely than not, you’ll need to use

it again and again and again where in Hollywood, you know, it’s once and then it’s

done. And if you make that movie two, you remake the whole thing. In games, um,

you export it once and then you export it again in two weeks and you export it again

in two more weeks and then it still needs to hold up when you do the next version of

the game. If the game’s any good, there’ll be a sequel, you know. That next year or

that next product cycle, you want to use those same assets again, so they really–it’s

really just a very di↵erent, you know, thing where they really need to be, you know,

well constructed and well thought out.

B: Yeah. What kinds of feedback loops and communication happens during the

production of a game?

I7: Yeah, that’s key. Um, that’s key. And, you know, it really depends on the

team and how well that team is functioning. Um, you know, there’s generally this–

there’s concept and there’s a loop inside of concept of getting the concept down right.

Um, and then–then it’ll go o↵ to be executed–go o↵ to production to get done and I

think that’s where it can break down. You know, I think the art directors and stu↵

can be very comfortable in that, um, real creative soft, um, you know loose process

of um, concept, but when it gets to execution, um, sometimes it just gets made and

then it gets shipped without a lot more oversight. It really depends on the team, but

I’ve seen that that’s kind of where the art direction ends. And maybe there’s kind

of broad art direction on the whole build, but not asset by asset–you know, dailies,

that kind of thing. You don’t always see that.

B: Yep. And do you–how do you keep people in the know? Is there just–is

it email based or do you kind of sit down in meetings with people? What kind of

methods of communication do you use?

I7: That can be really hard. Um, email is really–can be really good because you

208

know, you can–first of all, you can refer back to it however long you want and it’s not

like–a really good way to get your message across is to go up to someone and to stand

there and have a conversation with them. You have instant feedback and that’s great,

but you lose–there’s no documentation of that, so email is good. I like to have, um,

ideally I think, you know, everything you need in terms of production pipelines and

workflows and stu↵ is kind of documented in one place. It’s like a living document.

People are comfortable going in there adding, removing, editing. You know, not like

a big monolithic like comb, more of a wiki style thing where people keep it up to date.

Um, that’s ideal. You can really end up with a lot of tribal knowledge. I think that’s

kind of how it ends up a lot–where there are experts who have done this process tons

of times, you know, and know, you should do it this way. If you have a question about

that process, you go talk to that person. Um, again in that sort of way, it just–if you

don’t do anything that’s what you end up with and it works. That’s e↵ective except

for when the person isn’t there [laughs].

B: Yeah [laughs].

I7: Um, so yeah. So, that’s what I think is the best kind of compromise is like a

loose living document kind of thing. I think–a super good idea that, um, you know,

we’ve–I’ve done on a couple of projects that is kind of a natural things is like a gotchas

page where it’s like unexpected–like a wiki page is sort of document–unexpected stu↵

that happens a lot where you can just go and oh yeah–there was this weird thing and

I know, oh yeah, I know–you know it’s on that page. And that’s real stu↵ where you

can go through the documents and be like oh well I–but like the weird gotchas–they’re

all in one place.

B: Mmhmm. How important are version control and change tracking methods?

I7: Super–yeah, really super important–and the same thing with deployment,

too, of with pipelines and having things hopefully logged so you have good version

209

notes, you have a release kind of mechanism or um, a way or releasing the pipeline so

that you know everyone has the latest pipeline; everybody knows what changes have

been made in it, so if there’s some weird behavior... oh well yeah, there was code put

in around that thing so maybe there’s a bug or something we didn’t think about. So,

um, like what kind do we use or?

B: Yeah, well, talk about maybe some version control methods and some things

that work well for keeping track of assets and version and making sure everybody

knows what the latest version of an athlete is or something.

I7: Well, we use a lot of–you know, Perforce is something we use all the time,

obviously. You’re familiar with that, right?

B: Perforce? Um, no I’m not, actually.

I7: Oh, okay. So there’s, um, software called Perforce which is more code–it’s

more used for code, but um, you know, it’s a database where you can, you know,

have assets in there and it versions everything you can get the latest and that’s a

good way to do it. At Game Studio Two recently, we’ve been using, um, databases

like um, databases for keeping assets–you know, relational databases so you know hey

this asset a↵ects this asset, um, you know, all that business. So we’re using relational

databases right now. We have internal kind of technology for–that was developed

for, you know, keeping track of assets and um, you know it has relationships between

the assets so you know if you touch relationships between the assets–if you touch one

thing, all the child assets can be taken care of.

B: Yeah.

I7: Um, so that’s kind of what we use for assets themselves. We used to use–

what was that one? Um–there was an art-centric, um, like version control thing back

in the day that we used to use. I forget what it was called. Um, but we kind of

got away from that one, so it’s perforce or this internal tack that we have. For the

210

pipeline and stu↵, in terms of keeping people up to date, um, we try to have a lot of

stand up meetings, um, where you kind of go around and we’ll have the TA’s and the

artists kind of all together in there and production managers and just be like what

you’re working on, you know, so people will know what’s being touched. So that kind

of thing.

B: Okay. What kind of flexibility do you need to have in a pipeline to be able

to handle di↵erent project requirements?

I7: Um, in my experience, I mean I guess if you’re using like Game Engine or

whatever, you need a whole lot of flexibility. I’ve only really worked with dedicated,

you know, pipelines that are like project based that we don’t, you know, have–you

know, we have like our sports pipeline with all the tools and workflows around our

sports that we can make Sports Game with, we can make Sports Game Two with, but

we couldn’t make Di↵erent Sports Game or anything like that with. [laughs] so we

don’t have a lot of flexibility, but this is Game Studio Two and Company Three and

Small Game Studio, you know, in my experience, they’ve all been that way–where

you can make the one game with the one pipeline and the one set of tools. But,

you know, it’s great obviously if you have Game Engine or any of those other–we’ve

used Game Platform a little bit on Di↵erent Sports Game and that was really great–I

mean those are really great pipelines, but there’s a give/take, you know?

B: Yeah, cool. Um, so I guess you–because you’re dealing with such specific

needs for a project, you’re not necessarily going to need to say add a new software

package in to be able to make stu↵, you know, later on?

I7: Yeah, exactly–and we’re real feature based, so, you know, we don’t need

to do, you know, wings. Anything in–actually, we do–we have birds. We have our

basic system, we have our–our skeletons. We have x number of skeletons you can use.

We have the player skeleton, we have higher res skeletons for our, you know, hero

211

character and you know, our really high level characters. We have a quadruped for,

you know, horses and stu↵ and I guess we have wings somewhere for that eagle and

then uh, you know that’s it for if you want another type of character, it would be a

whole big engineering thing to get that all–the same thing with everything, so it’s all

real specific. But we get the specific and it’s very tailored to those types of assets,

but it’s also very e�cient, you know. We get exactly what we want, um, and nothing

else. So...

B: Right. Who makes the decisions about pipelines? About the kinds of tools

that you need? About the things like–even down to naming conventions? You know,

who makes those decisions?

I7: That’s a good question. Um, I make those decisions, but not–not in a

vacuum–by no means in a vacuum. Obviously there are tools engineers who have

a lot–you know it’s between–it’s basically between the run-time engineers and the

artists, right? The run-time engineers need XYZ in order to make their game go.

The artists, you know, have ABC to work with, so how do you get ABC translated

to XYZ? What’s the easiest, most direct, simple way to do that? That’s kind of

my–you know, how I do it. That is my call, that is my job to say alright, the naming

convention will be like this and I’ll consult with whoever. If we’re going to use–I’m

not a fan of naming conventions; I avoid them where possible, but you know, if it has

to be data in the name, then we’ll try to figure out the best way to do that. Um,

tools I try to, you know, do the least with tools that I possibly can get away with only

because you’re adding–there’s a cost to tools–they’re not free, right? You’re giving

yourself some added functionality or added benefits, but you know, that’s something

that you’re putting in your backpack that you’re going to have to drag around the

mountain for the foreseeable future. You’ve got to make sure that that’s something

you really want to maintain and keep because you want it to be–it’s got to be A+,

212

you know?

B: Right.

I7: Um, so are you going to be able to maintain that, keep it A+ and it’s going

to be worth it? All the e↵ort you put into, you know, into just making that tool–

keeping it up and keeping it documented and fixing bugs–so many things. So that’s a

call I make–it’s really those–that’s why we have CG supervisors–to make those calls.

B: Mmhmm. Now how have–and you don’t have to stay specific on Game Studio

Two with this questions–but how have the pipeline systems for productions evolved

since you first started working?

I7: When I started at Small Game Studio, I don’t think I knew there was a

pipeline. I’m trying to think back–I mean, this was in the 90s... specifically back to

how we got things in the game. But this was not an issue–we didn’t have that many

assets. Um, you know keeping track of them wasn’t an issue, keeping them updated

wasn’t an issue. I think we used–actually, if I remember, I think we might have used

the Company Three [proprietary] format.

B: Oh, okay.

I7: Yeah, because we were making PC–I think we might have used that. It’s

just–oh–then you gotta export it, okay. I think we worked in Softimage a lot and

they’ve evolved to be real monsters. About to be a problem if they’re not–if they’re

not done really well to the point where we probably like, I don’t know how long it

takes to build the game. On a single machine to build Sports Game would take days–

all the assets on a single, you know, formal build machine. It’s just, you know, I don’t

know how many di↵erent asset types we have–maybe 30 or 40 di↵erent, you know,

asset types. Um, we have three major pipelines–complete major pipelines. All kinds

of packages, you know, Tech One and uh, the Nvidia stu↵ and our own Game Studio

Two and millions–tons of our own Game Studio Two packages, so they’ve–they’ve

213

just–they’ve evolved in complexity in the geometric way that the performance and

the fun and playability has involved–you know, the pipelines have evolved that much.

B: Right. Well that’s uh, that’s the end of the main questions list that I have. Is

there maybe anything I didn’t cover–anything I didn’t ask about that you, um, any

thoughts that you have about pipelines that maybe we didn’t get to talk about?

I7: No, I think you had a good set of questions.

B: Okay. Well, good. [laughs]. Thanks for taking some time to talk to me–I

really appreciate it. I know you’re pretty busy.

I7: No problem at all–take care. And hey–email me back or whatever if you

have follow up questions or whatever.

B: Okay. Thanks a lot, Interview 7.

I7: Cool, no problem. Good luck.

214

