brought to you by

Frame Stability of Tunnel-Structured Cryptomelane Nanofibers: The Role of Tunnel Cations - DTU Orbit (09/11/2017)

Frame Stability of Tunnel-Structured Cryptomelane Nanofibers: The Role of Tunnel Cations

The role of tunnel K+ ions on the growth and stability of tunnel-structured cryptomelane-type MnO2 nanofibers (denoted as cryptomelane nanofibers hereafter) has been discussed by means of X-ray diffraction and electron microscopy. Cryptomelane nanofibers with typical diameters of 20–80 nm and lengths of 1–6 μ m have been synthesized by means of a simple hydrothermal reaction of KMnO4 and MnSO4 aqueous solutions at 140 °C. The growth of cryptomelane nanofibers under hydrothermal conditions follows a dissolution–recrystallization process and involves a morphological transformation from a layered precursor to the tunnel-structured cryptomelane, in which the K+ ions play important roles in templating and stabilizing the tunneled framework. The presence of tunnel K+ ions also enhances the frame stability of the cryptomelane nanofibers at elevated temperatures. The formation of a layered KxMn2O4 (x \approx 0.26) with a hexagonal phase structure has been observed at about 900 °C. The transformation from tunneled cryptomelane to layered KxMn2O4 also follows the dissolution–recrystallization growth mechanism, in which the diffusion of K+ ions at high temperatures represents a critical process. The topological correlation between the tunneled and layered MnO2 materials might provide useful information for the synthesis of MnO2 nanomaterials with controlled microstructures for different applications.

General information

State: Published

Organisations: Department of Energy Conversion and Storage, Atomic scale modelling and materials, Norwegian

University of Science and Technology Authors: Gao, T. (Ekstern), Norby, P. (Intern)

Pages: 4948-4957 Publication date: 2013

Main Research Area: Technical/natural sciences

Publication information

Journal: European Journal of Inorganic Chemistry

Volume: 2013 Issue number: 28 ISSN (Print): 1434-1948

Ratings:

BFI (2017): BFI-level 1

Web of Science (2017): Indexed Yes

BFI (2016): BFI-level 1

Scopus rating (2016): SJR 0.791 SNIP 0.633 CiteScore 2.26

BFI (2015): BFI-level 1

Scopus rating (2015): SJR 0.971 SNIP 0.701 CiteScore 2.58

BFI (2014): BFI-level 1

Scopus rating (2014): SJR 1.029 SNIP 0.788 CiteScore 2.7

Web of Science (2014): Indexed yes

BFI (2013): BFI-level 1

Scopus rating (2013): SJR 1.037 SNIP 0.78 CiteScore 2.82

ISI indexed (2013): ISI indexed yes Web of Science (2013): Indexed yes

BFI (2012): BFI-level 1

Scopus rating (2012): SJR 1.188 SNIP 0.855 CiteScore 2.88

ISI indexed (2012): ISI indexed yes

BFI (2011): BFI-level 1

Scopus rating (2011): SJR 1.176 SNIP 0.824 CiteScore 2.81

ISI indexed (2011): ISI indexed yes

BFI (2010): BFI-level 1

Scopus rating (2010): SJR 1.131 SNIP 0.74

Web of Science (2010): Indexed yes

BFI (2009): BFI-level 1

Scopus rating (2009): SJR 1.106 SNIP 0.839

Web of Science (2009): Indexed yes

BFI (2008): BFI-level 2

Scopus rating (2008): SJR 1.116 SNIP 0.88

Web of Science (2008): Indexed yes

Scopus rating (2007): SJR 1.221 SNIP 1.027

Web of Science (2007): Indexed yes

Scopus rating (2006): SJR 1.101 SNIP 0.935

Web of Science (2006): Indexed yes

Scopus rating (2005): SJR 1.091 SNIP 0.811

Web of Science (2005): Indexed yes

Scopus rating (2004): SJR 1.02 SNIP 0.885 Scopus rating (2003): SJR 0.991 SNIP 0.863 Scopus rating (2002): SJR 1.237 SNIP 0.95 Scopus rating (2001): SJR 1.236 SNIP 1.04 Scopus rating (2000): SJR 1.098 SNIP 1.13 Scopus rating (1999): SJR 1.025 SNIP 1.097

Original language: English

Nanostructures, Manganese oxide, Cations, Cryptomelane, Hydrothermal synthesis

DOIs:

10.1002/ejic.201300602

Source: dtu

Source-ID: n::oai:DTIC-ART:wiley/393174205::32362

Publication: Research - peer-review > Journal article - Annual report year: 2013