Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip - DTU Orbit (09/11/2017)

Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the transducer geometry, transducer coupling angle, and transducer actuation method (singlefrequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of $5 \mu \mathrm{~m}$ diameter beads and the results with the tunable-angle transducer are compared with the results from actuation by a standard planar transducer in order to decouple the influence from change in coupling angle and change in transducer geometry. We find in this work that the transducer coupling angle is the more important parameter compared to the concomitant change in geometry and that the coupling angle may be used as an additional tuning parameter for improved acoustophoretic control with single-frequency actuation. Further, we find that frequency-modulation actuation is suitable for diminishing such tuning effects and that it is a robust method to produce uniform particle patterns with average acoustic energy densities comparable to those obtained using single-frequency actuation.

General information

State: Published
Organisations: Department of Physics, Department of Micro- and Nanotechnology, KTH - Royal Institute of Technology Authors: Iranmanesh, I. (Ekstern), Barnkob, R. (Intern), Bruus, H. (Intern), Wiklund, M. (Ekstern)
Pages: 105002
Publication date: 2013
Main Research Area: Technical/natural sciences

Publication information

Journal: Journal of Micromechanics and Microengineering
Volume: 23
Issue number: 10
ISSN (Print): 0960-1317
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.74 SJR 0.595 SNIP 1.017
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.64 SNIP 1.211 CiteScore 1.96
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.725 SNIP 1.224 CiteScore 1.84
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.611 SNIP 1.055 CiteScore 1.74
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.856 SNIP 1.402 CiteScore 1.92
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.038 SNIP 1.437 CiteScore 2.43
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.019 SNIP 1.634
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.17 SNIP 1.517

Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.27 SNIP 1.634
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.437 SNIP 1.837
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.341 SNIP 2.118
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.28 SNIP 2.116
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.122 SNIP 1.933
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.457 SNIP 1.642
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.983 SNIP 1.439
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.765 SNIP 1.707
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.618 SNIP 1.004
Scopus rating (1999): SJR 0.986 SNIP 1.076
Original language: English
DOIs:
10.1088/0960-1317/23/10/105002

Source: dtu
Source-ID: n::oai:DTIC-ART:iop/391722479::31731
Publication: Research - peer-review > Journal article - Annual report year: 2013

