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Here we present a multi-scale model for batteries based on physico-chemical properties. LiFePO4

 

(LFP) as cathode 
material offers high power characteristics and thermal stability. The two-phase behavior of LFP is described using 
elementary kinetics based on the domino-cascade model proposed by Delmas

 

et. al. [1]. Due to the importance of heat 
transport and safety issues an application to thermal runaway is

 

shown using global kinetics. 

Discharge

 

curves

 

show

 

good 
agreement

 

with

 

experiment

 

at 293

 

K in different C-rates. For higher

 

C-

 

rates

 

(2C, 4.6C, 10C) the

 

active

 

surface-area

 

of the

 

interface

 

has to 
be

 

adjusted

 

to higher

 

values

 

to reach

 

full

 

capacity. (Fig. 1)

Validation of Domino-Cascade Model

Abstract

Good agreement with experiments in discharge 
curves

Impedance spectra shows good agreement for 
wide range of SOC

Conclusion

Multi-scale Model
Transport ~20 mm scale

Heat transport

~100 µm scale
Lithium ion charge transport 

in electrolyte

 
ohmelchem QQ

y

T

yt

TCP  
















 

  V),(),( iiiii
ii

ii
i sM

y
cTcD

yRT

Fz

y

c
TcD

yt

c 






















∂
∂

∂
∂

∂
∂ 

~100-1000 nm scale
Lithium ion transport
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Kinetics

The model

 

includes

 

three

 

transports

 

in 
three

 

different 
scales. Each

 

scale

 

has 1D. 
Heat

 

source

 

is

 

calculated

 

in 
coarse

 

mesh. 
Solved

 

in 
DENIS.
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In addition

 

to transports, 
kinetics

 

of electrochemistry

 

is

 

considered

 

in the

 

model. 
Solved

 

in DENIS.

Conducted first thermal runaway simulation

Simulated a DSC curve of SEI decomposition and 
successfully reproduce curve by Spotnitz

 

et al.

EIS (electrochemical

 

impedance

 

spectroscopy): phase-transfer

 

process

 

dominates

 

at low

 

frequencies. Diffusion within

 

bulk

 

phase

 

is

 

not

 

a limiting

 

factor. 
Deviation at boundary

 

values

 

of 
SOC is

 

due

 

to thermodynamics. 
(Fig. 2)
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Fig. 5

DSC simulations

 

are

 

conducted

 

and compared

 

with

 

a result

 

by

 

Spotnitz

 

et al. [3] 
(Fig. 3 and Fig. 4). 

Thermal runaway

 

is

 

successfully

 

observed

 

at 
extreme condition 
under

 

low

 

heat

 

transfer

 

coefficient

 

and thermal 
conductivity
(Fig. 5).
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Heat

 

rate 10 K/min 

Domino-Cascade Model

This

 

mechanism

 

is

 

calculated

 

through

 

CANTERA [2] based

 

on elementary

 

reaction

 

equations

 

drafted

 

above. The heat

 

source

 

and reaction

 

rate are

 

coupled

 

with

 

DENIS. 
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Application of Multi-scale Model to Thermal Runaway
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The domino-cascade mechanism

 

describes the phase change from 
LiFePO4

 

(LFP) to FePO4

 

(FP). We assume the presence of an interface 
existing between LFP and FP. Along this interface diffusion of Li-

 

atoms

 

is considered while charge transfer reaction is assumed to take

 

place at the tree-phase boundary of LFP, FP and liquid electrolyte. 
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