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Robust Performance Analysis: a Review of
Techniques for Dealing with Infinite Dimensional LMIs

Andreas Knoblach, Mehran Assanimoghaddam, Harald Pfifer and Florian Saupe

Abstract— This paper compares three techniques for dealing
with infinite dimensional linear matrix inequalities (LMIs)
for robust performance analysis: the gridding based approx-
imation, the polytopic relaxation and the linear fractional
representation based relaxation. The latter draws on the Full
Block S-Procedure with different types of multipliers. All three
techniques are applied in two benchmark studies at the example
of an aeroelastic system. The studies are backed up by results
from the Robust Control Toolbox for Matlab.

I. INTRODUCTION

Robust performance analysis is a powerful tool to charac-
terize uncertain and linear parameter-varying (LPV) systems
based on input-output gains. The most common norm used in
this framework is the induced L2 norm, which is also known
as worst case energy-to-energy gain. Another important
performance measure is the induced L2-L∞ norm, which
specifies the worst case energy-to-peak gain. Upper bounds for
these norms can be computed by solving convex optimization
problems whose constraints are formulated via linear matrix
inequalities (LMIs), see e. g. [1], [2] and [3]. However, it is not
straight forward to derive a numerically solvable formulation
of the analysis problem. On the one hand, the decision
variables can have an arbitrary functional dependence on
the parameters of the considered system. On the other hand,
the constraints depend on the system parameters, so that they
are infinite dimensional. Both problems cause the optimization
problem to be numerical intractable. Several remedies are
proposed in the literature. The standard approach to avoid the
functional dependence of the decision variables is to assign
basis functions, restricting the function space. The coefficients
of the basis functions are the new decision variables, see e. g.
[4]. In order to yield a finite number of constraints, three
approaches are proposed in the literature: The first approach
is proposed in [4] and is based on an approximation of
the entire parameter space using a finite number of grid
points. The second one – commonly referred to as polytopic
LPV approach – is restricted to LPV systems with affine
parameter dependence, see [5]. Finally, the so called Full
Block S-Procedure can be used if the LPV model is given
in its linear fractional representation (LFR), see [2] and [6].

This paper aims on a neutral comparison of these methods
and their several options. The focus of this paper lies on a
benchmark study at the example of the performance analysis
of a flexible restrained airfoil in a heaving and bending
motion.

The authors are with the Institute of System Dynamics and Control,
German Aero Space Center (DLR), 82234 Wessling, Germany
andreas.knoblach@dlr.de.

The paper is structured as follows: Important preliminaries
are repeated in Section II. LPV and LFR models are defined
and LMI constraints representing two system norms are
presented. Section III treats how tractable constraints can
be derived from the LMIs. First, the assignment of basis
functions is discussed. The approximation based on the
gridding approach and the relaxation based on the polytopic
approach are presented. The LFR based relaxation using the
Full Bock S-Procedure is treated next. The two benchmark
studies are presented in Section IV. The studies are backed
up by results from the Robust Control Toolbox for Matlab,
see [7].

II. PRELIMINARIES

A. LPV and LFR Models

In order to introduce the class of LPV systems, differen-
tiable parameter vector trajectories with bounded rates are
defined first. The time dependent parameter vector is defined
as a function ρ : R → P , where P is a compact subset of
Rnρ and nρ is the number of scheduling signals. The vertices
of the convex hull of P are denoted P . The variation rate of
the parameters are bounded by ρ̇ : R→ Ṗ with

Ṗ = {q | |qi| ≤ νi ∀i ∈ {1, . . . , nρ}} (1)

where νi is a non negative number. Consequently, the image
space of ρ̇(t) is a hyper-rectangle Ṗ ⊂ Rnρ .

With the continuous matrix functions A : P → Rnx×nx ,
B : P → Rnx×nd , C : P → Rne×nx , D : P → Rne×nd , a
state vector x ∈ Rnx , an input vector d ∈ Rnd and an output
vector e ∈ Rne , the linear parameter-varying (LPV) system
P (ρ(t)) is according to [4] defined by

P (ρ(t)) :

{
ẋ = A(ρ(t))x+B(ρ(t))d
e = C(ρ(t))x+D(ρ(t))d .

(2)

For convenience, the explicit dependence of ρ on t is dropped
below.

Next, the linear fractional representation (LFR) is intro-
duced. Using the partitioned matrix

M =

[
M11 M12

M21 M22

]
∈ C(n1+n2)×(m1+m2) (3)

and the matrix ∆ ∈ Cm1×n1 , the upper linear fractional
transformation (LFT) is defined as

F(M ,∆) =M22 +M21∆(I−M11∆)−1M12, (4)
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see [8]. For every rational function F : P → Rn2×m2

depending on a parameter vector ρ =
[
ρ1 . . . ρnρ

]
an

LFR can be found, i. e. a matrix M and a linear function

∆(ρ) = diag(ρ1Is1 , . . . , ρnρIsnρ ) (5)

s. t.

F (ρ) = F (M ,∆(ρ)) . (6)

The positive integers si determine how often the parameter
ρi is repeated in the ∆-block. Without loss of generality,
the parameters ρi are typically scaled s. t. ρi ∈ [−1, 1] ∀i ∈
{1, . . . , nρ}, see [8] for details.

B. Robust Performance Analysis
The idea of robust performance analysis is to characterize

the properties of the LPV system by worst case input-output

‖P (ρ)‖m,n = sup
‖w(t)‖m 6=0

‖e(t)‖n
‖w(t)‖m

(7)

gains for all admissible parameter trajectories. Since the
parameter vector trajectories of the system are not known
a priori, the major idea is to check the parameter space
P×Ṗ instead of the trajectories. For that reason, the auxiliary
variables p ∈ P and q ∈ Ṗ are introduced.

For convenience, two abbreviations will be used. First, the
differential operator ∂X : P × Ṗ → Snx is defined as

∂X(p, q) =

nρ∑
i=1

∂X(p)

∂pi
qi, (8)

where X : P → Snx is a continuously differentiable matrix
function.1 The second one, [∗] will be used to denote large
symmetric matrix expressions, e. g.

[∗]TF = FTTF , where T ∈ S. (9)

With these definitions, LMI constraints for the worse case
energy-to-energy gain and for the worse case energy-to-peak
gain are given below. Constraints for further performance
measures can be found in e. g. [1] and [2].

1) Energy-to-Energy Gain: The LPV system P (ρ) is
exponential stable and its induced L2 norm2 ‖P (ρ)‖2,2 from
d to e is smaller than a performance index γ if there exists
a Lyapunov matrix X : P → Snx s. t. ∀(p, q) ∈ P × Ṗ
X(p) > 0, (10a)

[∗]


∂X(p, q) X(q) 0 0
X(q) 0 0 0

0 0 −I 0
0 0 0 1

γ2 I




I 0
A(p) B(p)

0 I
C(p) D(p)

 < 0,

(10b)

see [2]. An upper bound for ‖P (ρ)‖2,2 can be determined
by solving the optimization problem

min
γ,X(p)

γ s. t. (10) is fulfilled. (11)

Since γ does not appear affinely in the constraints, − 1
γ2 is

instead used as decision variable and as objective in practice.

1Sn ⊂ Rn×n denotes the set of symmetric matrices.
2In the LTI case, this norm corresponds to the H∞ norm.

2) Energy-to-Peak Gain: The LPV system P (ρ) with
D(ρ) = 0 is exponential stable and its induced L2-L∞
norm3 ‖P (ρ)‖2,∞ from d to e s smaller than a performance
index γ if there exists a Lyapunov matrix X : P → Snx s. t.
∀(p, q) ∈ P × Ṗ

X(p) > 0, (12a)

[∗]

∂X(p, q) X(q) 0
X(q) 0 0

0 0 −γI

 I 0
A(p) B(p)

0 I

 < 0,

(12b)

[∗]


X(p) 0 0 0

0 γI 0 0
0 0 0 I
0 0 I 0




I 0
0 I

C(p) 0
0 I

 > 0. (12c)

The proof for the linear time invariant (LTI) case in [2] can be
easily extended to LPV systems. This leads to the following
optimization problem for computing an upper bound for
‖P (ρ)‖2,∞:

min
γ,X(p)

γ s. t. (12) is fulfilled. (13)

III. DERIVING A TRACTABLE SOLUTION

It is shown first how the arbitrary functional dependence of
the decision variable X(p) can be circumvented by assigning
basis functions. Next, three different techniques for dealing
with the infinite dimensional constraints are explained and
compared.

A. Basis Functions for the Lyapunov Matrix

In order to avoid the functional dependency of the decision
variable, Wu [4] proposed to assign nf basis function

X(p) =

nf∑
i=1

fi(p)Xi, where Xi ∈ Snx . (14)

The new decision variables are the coefficients of the basis
functions Xi.

More basis functions obviously reduce the conservatism.
However, since every basis function increases the number of
the decision variables, this slows the optimization process
down or may cause severe numerical problems. Consequently,
the selection of the basis functions is an important step, which
can have a crucial effect on the results. Unfortunately, there
are hardly any guidelines in literature how to do this, but
simple polynomials lead to good results in practice.

B. Approximation Based on Gridding the Parameter Space

The simplest and maybe most popular way to circumvent
infinite dimensional LMIs is introduced in [4] and is based
on a gridding of the parameter space. This means that the
constraints are only enforced on a finite subset Pgrid ⊂ P .
Since Ṗ is a polytope and the parameter q ∈ Ṗ enters the
constraints only affinely, it is sufficient to check the constraints
only at the vertices vert(Ṗ), see [1]. This gridding approach

3In the LTI case, this norm corresponds to the generalized H2 norm.
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is thus based on an approximation of the original parameter
space P × Ṗ by Pgrid × vert(Ṗ).

Because this is a mere approximation of the original
problem, sufficiency is lost. It is thus self-explanatory that
the density of the grid must be carefully chosen. In order to
check the validity of the results, it is possible to optimize
the performance index again with the obtained Lyapunov
matrix on a second, much finer grid. A slight increase of
the new performance index indicates – but does not prove –
the validity of the results. However, the fact that sufficiency
is lost should not be overrated. Even in the µ-framework,
the analysis if often performed on a finite grid of frequency
points.

C. Relaxation Based on Polytopes

The following relaxation is restricted to LPV systems which
depend only affinely on the parameters, e. g.

A(ρ) = A0 +

nρ∑
i=1

ρiAi (15)

and analogously for the other system matrices. In contrast to
the common literature (e. g. [5]), not only a constant Lyapunov
matrix but one which depends also affinely on the parameters
is considered here. In this case, the constraints (10) and (12)
are fulfilled if the constraints hold on the vertices of the
convex hull of the parameter space P × vert(Ṗ) and if[

AT
i Xi +XiAi XiBi

BT
i Xi 0

]
≥ 0 ∀i = 1, . . . nρ. (16)

The last condition (16) enforces that the constraints are
partially convex4 in the parameter vector ρ. It is thus sufficient
to check the constraints at the vertices of the parameter space
P . A more detailed derivation can be found in [3].

D. Relaxation Based on the Full Block S-Procedure

The last relaxation method is based on an LFR of the LPV
model and of the basis functions for the Lyapunov matrix.
The Full Block S-Procedure is a result from linear algebra
which allows relaxing matrix inequalities of the from

F (p)TTF (p) < 0, (17)

where T ∈ Sn2 and F (p) = F (M ,∆(p)), see [6]. The
condition (17) holds if and only if there exists a general
multiplier Π ∈ S2n1 s. t.M11 M12

I 0
M21 M22

T

diag(Π,T )

M11 M12

I 0
M21 M22

 < 0 (18)

and ∀p ∈ P [
I

∆(p)

]T
Π

[
I

∆(p)

]
≥ 0. (19)

The relaxation is thus achieved by introducing additional
decision variables in the form of the multiplier Π.

4A constraint is partial convex if the function describing the constraint is
convex in each of its parameter.

1) Structure of Multipliers: In order to relax the still
infinite dimensional second constraint (19), the structure of the
multiplier is restricted. The two types of multipliers introduced
below are based on the structure

Π =

[
Q S
ST R

]
, where Q,R ∈ Sn1 . (20)

First, the so called diagonal multipliers are introduced.
Assuming

R = diag(R1, . . . ,Rnρ) ≤ 0, where Ri ∈ Ssi ,
Q = −R, (21)

S = diag(S1, . . . ,Snρ), where Si = −ST
i ∈ Rsi×si

and using the structure of the ∆-block (5), it is easy to prove
that the second constraint (19) is always fulfilled. A special
case is S = 0, where the number of decision variables is
reduced of the price of more conservatism.

An other type of multipliers are the full block multipliers.
Using the structure (20) with R ≤ 0, the second constraint
(19) becomes concave. Since the set of all possible ∆-blocks
is a convex hull (cf. (5)), it is sufficient to check (19) at the
vertices of this hull, denoted by P .

Note that diagonal multipliers are a subset of the full
block multipliers. Hence, the latter are supposed to be
less conservative. However, they introduce more additional
decision variables and increase the number of LMIs. Further
details on multipliers and other types of multipliers can be
found in [9].

2) LFR of Lyapunov Basis Functions: In order to use the
Full Block S-Procedure, it is necessary to write the Lyapunov
basis functions as

X(p) = FX(p)TTXFX(p), (22)

where the basis functions are defined by FX(p) and their
coefficients are collected in TX ∈ S. The differential operator
becomes

∂X(p, q) = [∗]
[

0 TX
TX 0

] [
∂FX(p, q)
FX(p)

]
.

(23)

E. Comparison of the Techniques
The severest drawback of the gridding approach is that there

are no guarantees. Another problem is that the number of grid
points (and thus the number of LMIs) grows exponentially
with the number of scheduling parameters. The drawback of
the LFR based approach is the number of additional decision
variables. Especially for parameter dependent Lyapunov ma-
trices of systems with many states, the ∆-block grows rapidly.
Since this introduces many additional decision variables, such
problems become quickly intractable. The gridding approach
is thus attractive for systems whose state space matrices
have a complex – probably non-rational – dependency on a
few parameters. For models with a simple dependence on
many parameters and a low number of states the LFR based
approach is preferable.

The polytopic approach is restricted to affine parameter
dependent LPV systems. While every LPV system can be
over-bounded by such an affine parameter dependent LPV
model, this approach is usually extremely conservative [4].
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Fig. 1. Aeroelastic system; figure adapted from [14].

IV. PERFORMANCE ANALYSIS OF A FLEXIBLE
RESTRAINED AIRFOIL

This section provides a benchmark study of the different
approaches. First, some information how the analysis is imple-
mented is presented. Next, the considered aeroelastic model
is introduced. Afterwards, two scenarios are considered.

A. Implementation of the Analysis

The analysis is performed using Matlab. In order to obtain
a minimum order of the LFR models, the DLR/ONERA LFR
toolbox is used, see [10]. The LMIs are coded using Yalmip,
see [11]. Except for three cases in the second scenario (cf.
Table III) the LMI solver SDPT3 [12] yield the best results,
while SeDuMi [13] found often only an infeasible solution.
However, in these three cases, SeDuMi obtained a feasible
solution.

B. Model of the Aeroelastic System

The considered aeroelastic system is taken from [14]. It is
illustrated in Fig. 1. The equations of motion are[

m m · xcg
m · xcg I

] [
ḧ
α̈

]
+

[
kh 0
0 kα

] [
h
α

]
=

[
−L
τ

]
,

(24)

where h denotes the vertical deflection and α the pitch angle.
The lift L and the pitching moment τ are given by[

−L
τ

]
= 1

2ρv
2
[
Qeig Qgust

] hα
w


.

(25)

TABLE I
MODEL PARAMETERS: EXPLANATION AND DEFAULT VALUES

Sym. Explanation Value

kh translational stiffness 0.04
kα rotational stiffness 0.25
m mass 1.00
I inertia 0.25
xcg location of the center of gravity 0.20

v free stream velocity 0.70
ρ air density 0.80
b half chord length 1.00
xar location of the aerodynamic reference axis −0.20

dB
(P

e
2
)

f/Hz

dB
(P

e
1
)

10−2 10−1 100
−100

−50

0
−100

−50

0

Fig. 2. Bode diagram of scenario 1 (10 values of kh)

The Theodorsen function Qeig models the relation between
the aerodynamic forces and the eigen movement. The Küssner
function Qgust maps the vertical gust velocity w on L and τ .
For both non-rational functions, R. T. Jones’ approximations
are used in order to yield a state space realization. Both
functions depend on the free stream velocity v, the half chord
length b and the location of the aerodynamic reference axis
xar. Default values and explanations for all model parameters
are given in Table I.

In the considered scenarios, the model input is the gust
velocity d = w and the outputs are the spring forces

e =

[
kh · h
kα · α

]
.

(26)

Since the parameter dependence of the resulting state space
model is highly involved, it is not explicitly given. However,
it has eight states and the feed through matrix is zero.

C. Scenario 1: Uncertain Translational Stiffness

In the first scenario, the translational stiffness is assumed
to be uncertain in the range of kh ∈ [0.01, 0.30]. In order
to allow a meaningful comparison with LTI results, the
parameter rate is set to zero. The LPV model depends only
affinely on the single parameter and the ∆-block is scalar.
The bode diagram of the resulting system is depicted in Fig. 2
for ten values of kh.

The analysis results are presented in Table II. In case of
a constant Lyapunov matrix, the constraints for both norms
are infeasible, independent of the relaxation method. The
gridding-based and the LFR-based analysis yield in all cases
the same results. For an affine parameter dependent Lyapunov
matrix, the worst case energy-to-energy gain is 5% greater
and the worst case energy-to-peak gain is 17% greater than

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2013 IEEE Multi-conference on Systems and Control.
Received February 28, 2013.



the LTI norm of the worst grid point.5 In case of a quadratic
parameter dependent Lyapunov matrix, both norms are only
slightly greater than the maximum LTI norm. Consequently,
no higher order polynomial are considered as basis function.
Although the considered model can be covered by a polytopic
model without any overbounding, the result for the energy-to-
energy gain using an affine parameter dependent Lyapunov
matrix and the polytopic relaxation is extremely conservative.
This can be caused only by the additional constraint (16) and
seems to be a systematic problem of this approach. Finally, the
results for the worst case energy-to-energy gain are compared
to results from the function wcgain of the Robust Control
Toolbox, see [7]. The result is the same as in case of the
quadratic parameter dependent Lyapunov matrix.

TABLE II
RESULTS FOR SCENARIO 1

X(ρ) Relaxation Norm
‖P ‖2,2 ‖P ‖2,∞

Const. grid-based/polytopic/LFR-based infeasible

Affine grid-based (10 points) 0.291 0.124
Affine polytopic 0.597 0.129
Affine LFR based (diag. multiplier) 0.291 0.124

Quad. grid-based (10 points) 0.277 0.107
Quad. LFR based (diag. multiplier) 0.277 0.107

Max. LTI norm of 100 grid points 0.276 0.107
Worst case gain of RCT 0.277 N/A

D. Scenario 2: Uncertain Mass und Velocity

In the second scenario, the mass is assumed to be uncertain
in the interval m ∈ [0.4, 1.5] and the free stream velocity in
the range of v ∈ [0.5, 0.8]. The parameter rates are again set
to zero. This leads to the ∆-block diag(mI3, vI7). The Bode
diagram for the resulting model family is depicted in Fig. 3
for three different values per uncertain parameter. Because
of the complex dependence of the model on the velocity v,
an enormous overbounding is necessary to yield a polytopic
LPV model. Since this causes an extreme conservatism, this
approach is not considered in the following.

The analysis results are shown in Table III. Any analysis
based on a Lyapunov matrix depending on only one parameter
yield an infeasible problem. Using Lyapunov matrices which
depend affinely on both parameters lead to results between
100% and 115% of the maximum LTI norm in case of the
gridding approach and between 105% and 150% in case
of an LFR based analysis. In case of quadratic parameter
dependent Lyapunov matrices, the LPV analysis leads to
almost the same results as the maximum LTI norms.

A first important result is that – in all cases – the grid
based results with 10× 10 points are identical to the results
with 20× 20 points. This indicates that the considered grid

5The LTI induced L2 norm is computed by the function norm of Matlab.
The LTI induced L2-L∞ norm is obtain by solving (13) for constant system
matrices. Due to speed advantages for small LMI systems, this is done by
LMI Lab, see [7]. Of course, the LTI results provide only a lower bound
for the considered norms.

dB
(P

e
2
)

f/Hz

dB
(P

e
1
)

10−2 10−1 100
−100

−50

0
−100

−50

0

Fig. 3. Bode diagram of scenario 2 (3× 3 values of v and k; the same
line style indicates the same velocity v.)
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Fig. 4. Worst case gain analysis for scenario 2

is dense enough. Since there are four times more grid points
in the second case, the analysis lasts up to nine times longer.

With respect to the LFR based analysis, it can be said that
diagonal multipliers outperform the full block multipliers.
Although the diagonal multipliers are a subset of the full
block multipliers, there is only one case in which the latter
yield better results. In most of the other cases, they perform
even worse, which is probably caused by numerical problems.
Further, the computation time using the full block multipliers
is up to 17 times longer than for the diagonal multipliers.
Consequently, full block multipliers seem to be unattractive
in practice – especially for more complex models.

Finally, it is mentioned that the default frequency grid of
wcgain yields an upper bound which is smaller than the
maximum LTI norm. In order to yield consistent results, it was
necessary to use 2000 logarithmically space frequency points
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TABLE III
RESULTS FOR SCENARIO 2

X(ρ) Relaxation Norm Comp. Time
‖P ‖2,2 ‖P ‖2,∞ ‖P ‖2,2 ‖P ‖2,∞

Const. grid-based/LFR-based infeasible N/A
Quad. in v grid-based/LFR-based infeasible N/A
Quad. in k grid-based/LFR-based infeasible N/A

Affine in v and k grid-based (10× 10 points) 0.477 0.133 8 s 12 s
Affine in v and k grid-based (20× 20 points) 0.477 0.133 37 s 64 s
Affine in v and k LFR based (diagonal multiplier) 0.710 0.169 10 s 15 s
Affine in v and k LFR based (full block multiplier) 0.499 0.172 174 s 246 s

Quad. in v and k grid-based (10× 10 points) 0.477 0.116* 10 s 18 s
Quad. in v and k grid-based (20× 20 points) 0.477 0.116* 90 s 115 s
Quad. in v and k LFR based (diagonal multiplier) 0.477 0.118* 13 s 40 s
Quad. in v and k LFR based (full block multiplier) 0.486 0.125 224 s 295 s

Max. LTI norm of 50× 50 grid points 0.476 0.116 9 s 36 s
Worst case gain of RCT (default frequency grid) 0.388 N/A 26 s N/A
Worst case gain of RCT (customized frequency grid) 0.477 N/A 262 s N/A

*This result is obtained by SeDuMi.

between 0.01Hz and 1.00Hz. The reason for the sensitivity
toward the frequency grid is the distinct resonance of the
system. See also Fig. 4.

V. SUMMARY AND OUTLOOK

Two comparative benchmark studies for the relaxation
of infinite dimensional LMI constraints are presented. The
first important result is that in the considered example the
polytopic approach – independent of any overbounding during
the modeling – is very conservative. Using the LFR based
analysis, the diagonal multipliers clearly outperform the full
block multipliers. The gridding based analysis leads to results
which are consistent with the LFR based analysis. Since the
LFR based relaxation obtains a guaranteed upper bound for
the considered norm, it is convenient to use this approach.
However, in case of models which depend very complex
on only a few parameters, this approach may yield a too
complex LMI system, see e. g. [15]. In such cases, the grid
based approximation can be a reasonable option.

The most important advantage of the LPV performance
analysis is that non-zero parameter rates can be considered.
The influence of such non-zero rates has to be investigated
in further studies. An other open questions is how the grid
density can be chosen in order to obtain reliable results. In
many cases, there appear numerical problems while solving
the optimization problems. A scaling of the constraints and
unknowns may help, but up to date no suitable strategies
have been proposed.
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