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The Ru-Ru bond length for Ru2
II,III and Ru2

II,II paddlewheel 5 

complexes containing the bulky carboxylate ligand 2,4,6-

triisopropylbenzoate was found to decrease despite a reduction in 

Ru-Ru bond order, due to increased internal rotation. 

Metal-metal multiply bonded tetracarboxylate complexes of 
general formula [M2(O2CR)4(L)2]

n+ (M = transition metal; R = 10 

alkyl or aryl group; L = solvent or anion) adopt a 
paddlewheel-type structure, and employ a wide variety of 
carboxylate and axial ligands (L).1 The metal-metal bond 
length for these compounds is dependant on a number of 
factors, such as the formal bond order between the metals, or 15 

the nature of the axial ligand. For example, Cotton, Murillo 
and co-workers successfully employed the bulky 2,4,6-
triisopropyl benzoate ligand to generate a [Cr2(O2CR)4] 
compound without axial ligation, which has a M-M quadruple 
bond that is considerably shorter than axially ligated 20 

[Cr2(O2CR)4(L)2] compounds.2 Understanding factors that 
influence metal-metal bond lengths is of relevance to multiply 
bonded species in general, and particularly important for 
metal-metal multiply bonded compounds as structural 
information is used to aid in the interpretation of physical and 25 

spectroscopic properties, and to help determine the electronic 
structure.1, 3, 4  
 Diruthenium tetracarboxylates can be isolated in a mixed 
valent Ru2

II,III form, having a formal Ru-Ru bond order of 2.5 
and three unpaired electrons, or homovalent Ru2

II,II form, with 30 

a formal Ru-Ru bond order of 2.0 and two unpaired electrons.5 
These compounds have been attracting significant attention 
recently as they have application as catalysts6, 7 and 
antitumour metallo-pharmaceuticals,8 and are good candidates 
for use in functional materials.9-11 Metal-metal bond lengths in 35 

[Ru2(O2CR)4(L)2]
0/+ species show only a small dependance on 

the nature of the axial ligand or R group. In common with 
multiply bonded compounds in general, the Ru-Ru bond 
length is inversely related to the formal bond order, with a 
small increase in Ru-Ru bond length observed upon reducing 40 

Ru2
II,III complexes (bond order = 2.5) to their Ru2

II,II form 
(bond order = 2.0).5 In this communication we present a 
reversal of this trend for diruthenium species containing bulky 
tetracarboxylates, for which a decrease in bond length is 
found upon reducing the Ru-Ru bond order. 45 

 The synthesis of Ru2
II,III(TiPB)4

+PF6
- (I), where TiPB is the 

deprotonated form of the bulky carboxylate 2,4,6-triisopropyl 
benzoic acid, proceeds via a Ru2

II,III(TiPB)4Cl intermediate. 
Attempts to synthesise Ru2

II,III(TiPB)4Cl in a standard fashion, 
by refluxing Ru2

II,III(O2CCH3)4Cl with HTiPB in a MeOH / 50 

H2O mixture, resulted in incomplete substitution. Instead a 
melt reaction at 210ºC was employed, with excess ligand 
recovered at the end of the reaction by vacuum sublimation. 
Reaction of Ru2

II,III(TiPB)4Cl with AgPF6 in methanol resulted 
in the formation of desired compound Ru2

II,III(TiPB)4
+PF6

-, I. 55 

The compound Ru2
II,II(TiPB)4 (II) was synthesised in good 

yield by reducing methanolic solutions of RuCl3⋅3H2O with 
H2 to give a “ruthenium blue” solution, that was refluxed with 
the sodium salt of the carboxylate. The synthesis of both 
compounds is summarised in Scheme 1. 60 
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Scheme 1 

 Satisfactory elemental analyses were obtained for both I 
and II, and fragments consistent with their formulation are 65 

observed in their MALDI-MS-TOF spectra. The magnetic 
susceptibility value for I of 4.0 B.M. is within the range 
observed for Ru2

II,III tetracarboxylates, and consistent with 3 
unpaired electrons in a σ2π4δ2(δ*π*)3 electronic configuration. 
In contrast, compound II has a magnetic susceptibility of 2.2 70 

B.M. that indicates 2 unpaired electrons and a σ2π4δ2δ*2π*2 
electron configuration.12 In addition, the infrared 
υCO2(symm) and υCO2(asymm) stretching frequencies 
observed at 1389 and 1458 cm-1 for I, and 1403 and 1517 cm-1 
for II, are consistent with the respective Ru2

II,III and Ru2
II,II 75 

oxidation state assignments.5 
 Crystals of I and II suitable for a single crystal X-ray 
diffraction study were grown from THF solutions. Both Ru2 
cores have an identical coordination environment, having four 
bridging TiPB ligands and two axially coordinated THF 80 

molecules, which, importantly, allows direct comparison of 
the structural parameters.  
 The crystal structure of [Ru2

II,III(TiPB)4(THF)2][PF6], 
I(THF)2, with selected bond-lengths and angles, is presented 
in Figure 1. The Ru-Ru bond length of 2.2567(3) Å observed 85 

for I(THF)2 falls at the lower end of the range observed for 
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Ru2
II,III tetracarboxylates (2.248-2.310 Å).1 In common with 

other [M2(O2CR)4(L)2] compounds, the {Ru2(O2C)4} cores of 
cationic and neutral diruthenium tetracarboxylate paddlewheel 
complexes adopt a paddlewheel structure with essentially D4h 
symmetry. The solid state structure of I shows an unusual 5 

distortion, or internal rotation, of the {Ru2(O2C)4} core. This 
results in the Ru2

II,III core having pseudo-D4 symmetry, with 
Ocarboxy-Ru-Ru-Ocarboxy torsion angles ranging from 6.68(8)° to 
8.82(8)°. The internal rotation is a result of steric effects from 
the bulky 2,4,6-triisopropylbenzoate ligand. 10 

 
Fig. 1 Molecular structure of the cationic core of 

[Ru2
II,III(TiPB)4(THF)2][PF6], I(THF)2. Hydrogen atoms have been 

omitted for clarity. Selected bond lengths (Å) and torsion angles (°) for 
I(THF)2: Ru1-Ru2 2.2567(3), Ru1-O1 2.0161(19), Ru1-O3 2.0216(19), 15 

Ru1-O5 2.0139(19), Ru1-O7 2.020(2), Ru2-O2 2.0201(19), Ru2-O4 
2.025(2), Ru2-O6 2.0147(19), Ru2-O8 2.0139(19), Ru1-O9 2.255(2), 

Ru2-O10 2.263(2), O1-Ru1-Ru2-O2 8.71(8), O3-Ru1-Ru2-O4 6.68(8), 
O5-Ru1-Ru2-O6 8.82(8), O7-Ru1-Ru2-O8 7.91(8). 

 The solid-state structure of Ru2
II,II(TiPB)4(THF)2, II(THF)2, 20 

is presented in Figure 2, along with selected bond lengths and 
angles. The Ru-Ocarboxylate bond lengths [2.058 Å (average)] 
and Ru-OTHF bond length [2.308(3) Å] are in the range 
expected for [Ru2

II,II(O2CR)4(L)2] species.5 These bond 
lengths are slightly longer than those observed in the cationic 25 

Ru2 core of compound I [Ru-Ocarboxylate = 2.018 Å (average), 
Ru-OTHF = 2.259 Å (average)], due to a reduction in the 
electrostatic interaction between the diruthenium core and 
carboxylate ligands.5 
 Ru2

II,II tetracarboxylates exhibit slightly longer Ru-Ru bond 30 

lengths than their Ru2
II,III analogues. For example, the Ru-Ru 

bond length increases from 2.248(1) Å in 
[Ru2

II,III(O2CMe)4(H2O)2]
+ to 2.262(3) Å for 

[Ru2
II,II(O2CMe)4(H2O)2].

13, 14 The relatively small increase 
observed in Ru-Ru bond lengths for these species supports the 35 

addition of an extra electron into the weakest δ* orbital, and a 
decrease in the formal bond order from 2.5 (Ru2

II,III) to 2.0 
(Ru2

II,II). Surprisingly, the Ru-Ru bond length observed for 
the Ru2

II,II complex II is shorter than observed for the 
analogous Ru2

II,III complex I. In fact, the Ru-Ru bond length 40 

for I [2.2425(6) Å] is outside the range previously observed 
for Ru2

II,II tetracarboxylates (2.252-2.311 Å), and is even less 

than the shortest diruthenium tetracarboxylate Ru-Ru bond 
length, found for [Ru2

II,III(O2CMe)4(H2O)2]
+, 2.248(1) Å.13 

Another unusual feature in the structure of compound II is the 45 

extent of distortion about the {Ru2(O2C)4} core, with Ocarboxy -
Ru-Ru-Ocarboxy internal rotation angles ranging from 11.9(1)° 
to 15.2(1)°, which is highlighted in Figure 2. Only the δ-
orbital strength in [M2(O2CR)4(L)2] species is dependant on 
the internal rotation angle,1 with the greatest overlap observed 50 

for eclipsed structures that have no internal rotation. Hence, 
the increased internal rotation angles for II are consistent with 
a reduction in the overall δ-bond order by comparison to 
compound I, and a σ2π4δ2δ*2π*2 electron configuration. The 
rotation angles observed for II are comparable to the 55 

dirhodium complexes [Rh2(TiPB)4] (13.2°) and 
[Rh2(TiPB)4(OCMe2)2] (15.7°) that also have no net δ bond 
and short Rh-Rh bond lengths.15 For I, the overall δ-bond 
order of 0.5 is sufficient in strength to restrict the internal 
rotation to relieve any steric interactions. The internal rotation 60 

angles in I are intermediate between those of II, which has no 
net δ-bond, and those of [Cr(TiPB)4] and [Mo2(TiPB)4] which 
have a δ-bond order of 1 and essentially no internal rotation of 
the {M2(O2CR)4} core.2, 16  

 65 

Fig. 2 Molecular structure of Ru2
II,II(TiPB)4(THF)2, II(THF)2, viewed 

along the Ru-Ru bond to highlight internal rotation about the Ru2 core. 
Axially coordinated THF molecules and hydrogen atoms have been 
omitted for clarity. Symmetry equivalent atoms generated using the 

symmetry operation –x, y, ½-z. Selected bond lengths (Å) and torsion 70 

angles (°) for II(THF)2: Ru1-Ru1’ 2.2425(6), Ru1-O1 2.051(3), Ru1-O2’ 
2.059(3), Ru1-O3 2.065(3), Ru1-O4 2.055(3), Ru1-O5(THF) 2.308(3), 

O1-Ru1-Ru1’-O2 15.2(1), O3-Ru1-Ru1’-O3’ 11.9(1), O4-Ru1-Ru1’-O4’ 
12.9(1). 

 The relationship between bond order and bond length for 75 

MM multiple bonds is often complicated by other factors. 
Increases in bond order that are accompanied by increases in 
the metal oxidation state often display irregular and small 
decreases in bond length.17 This is due, in part, to contraction 
of the d-orbitals upon increasing the effective positive charge, 80 

weakening the σ, π and δ components and counteracting the 
increase in bond order.18 In a rare example, this effect was 
shown to outweigh the bond-strengthening effect of increasing 
the bond order for the [Tc2Cl8]

3- ion. Oxidation of [Tc2Cl8]
3-, 

having a σ2π4δ2δ* configuration, to [Tc2Cl8]
2-, having a σ2π4δ2 85 
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configuration, results in a 0.5 increase in bond order with a 
concomitant ~0.05 Å increase in the Tc-Tc bond length.19 
Likewise, oxidisation of the Ru2

II,II core of II to give I also 
results in a 0.5 increase in the overall δ bond order, and a 
small (0.014 Å), although unusual, increase in the Ru-Ru 5 

bond length. However, the change in oxidation state cannot 
fully account for the unusually short Ru-Ru bond length in II, 
as it is shorter than observed for any other Ru2

II,II 
tetracarboxylates, and the trend is not observed for other 
Ru2

II,II/Ru2
II,III pairs, that are essentially isostructural. In this 10 

case, the lack of a net δ bond and use of a bulky carboxylate 
ligand for II causes a distortion of the Ru2

II,II core, reducing 
the effective bridging distance of the carboxylate and reducing 
the Ru-Ru bond length as highlighted in Scheme 2. The 
oxidised core of I has a net δ bond of 0.5, which is of 15 

sufficient strength to reduce this distortion and minimise this 
effect. 

 
Scheme 2 

 In summary, we report the synthesis and characterisation of 20 

Ru2
II,III (I) and Ru2

II,II (II) complexes containing bulky 2,4,6-
triisopropyl benzoate ligands. The solid-state structures of the 
THF adducts of these compounds have diruthenium cores with 
identical composition that display shorter Ru-Ru bond lengths 
for II than for I, despite a decrease in the formal bond order 25 

from 2.5 to 2.0. This is due to the relationship between 
electronic structure and internal rotation of the {Ru2(O2C)4} 
cores, which relieves steric interactions. The greater internal 
rotation for the Ru2

II,II complex (II), which reduces the 
effective bridging distance of the carboxylate ligand, is 30 

proposed to be responsible for it having the shortest 
diruthenium tetracarboxylate Ru-Ru bond length [2.2425(6) 
Å] found to date. 
The Royal Society and University of Sheffield are thanked for 
funding. 35 
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Crystal data for [I(THF)2(PF6)]: C72H108F6O10P1Ru2, M = 1480.69, 
monoclinic, space group P21/n, a = 17.8308(9), b = 25.3963(13), c = 
18.4580(9) Å, β = 117.629(2)°, V = 7405.3(7) Å3, Z = 4, T = 120(2) K, λ 45 

= 0.71073 Å, Rint = 0.0372; a total of 102554 reflections collected in the 
range 1.31 < θ < 27.59, of which 17065 were unique. GOF = 1.116, R1 = 
0.0435 [for 12943 reflections with I > 2σ(I)] and wR2 = 0.1215 (for all 
data). CCDC No. 706412. 
Crystal data for [II(THF)2]: C72H108O10Ru2, M = 1335.72, monoclinic, 50 

space group C2/c, a = 17.4405(19), b = 25.876(3), c = 17.9577(19) Å, β = 
116.524(2)°, V = 7251.1(14) Å3, Z = 4, T = 100(2) K, λ = 0.71073 Å, Rint 
= 0.0376; a total of 36056 reflections collected in the range 1.52 < θ < 
27.56, of which 8372 were unique. GOF = 1.035, R1 = 0.0533 [for 6175 

reflections with I > 2σ(I)] and wR2 = 0.1557 (for all data). CCDC No. 55 

706413. 
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