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Abstract Trajectory planning is an essential part of systems controlling autonomous en-
tities such as vehicles or robots. It requires not only finding spatial curves but also that
dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be fol-
lowed. In this paper, we present an approach for augmenting existing path planning methods
to support basic dynamic constraints, concretely speed limit constraints. We apply this ap-
proach to the well known A* and state-of-the-art Theta* and Lazy Theta* path planning al-
gorithms. We use a concept of trajectory planning based on a modular architecture in which
spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects
to be processed during planning. Existing systems based on a similar concept usually add dy-
namics (velocity) into spatial curves in a post-processing step which might be inappropriate
when the curves do not follow the dynamics. Many existing trajectory planning approaches,
especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in
the form of regular lattices) which requires a precise knowledge of the environmental and
dynamic properties of particular autonomous entities making designing and implementing
such trajectory planning approaches quite difficult. The concept of trajectory planning we
implemented might not be as precise but the modular architecture makes the design and
implementation easier because we can use (modified) well known path planning methods
and define models of dynamics of autonomous entities separately. This seems to be appro-
priate for simulations used in feasibility studies for some complex autonomous systems or
in computer games etc. Our basic implementation of the augmented A*, Theta* and Lazy
Theta* algorithms is also experimentally evaluated. We compare i) the augmented and basic
A*, Theta* and Lazy Theta* algorithms and ii) optimizing of augmented Theta* and Lazy
Theta* for distance (the trajectory length) and duration (time needed to move through the
trajectory).
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1 Introduction

Automated planning [13] belongs to one of the important research fields of Artificial Intel-
ligence (AI). Path planning, a well known and thoroughly studied sub-field of AI planning,
deals with finding paths, usually in form of polygonal chains, connecting given positions in
an environment while avoiding obstacles. Trajectory planning, on the other hand, deals also
with dynamic aspects such as speed since a trajectory incorporates a time dimension (i.e.,
position of a moving entity with respect to time). Besides spatial constraints such as avoid-
ing obstacles a trajectory must also follow dynamic constraints (e.g. move slowly enough to
pass a curve segment with high curvature) given by a particular entity. Trajectory planning
is thus a crucial part of systems controlling mobile autonomous vehicles or robots. Even
though trajectory planning is a part of AI planning, using general planning techniques is
not appropriate in this case. It is more suitable to extend existing path planing techniques
for trajectory planning because trajectory planning can be understood as a superset of path
planning.

Informally, trajectory planning consists of two main areas. First, it is necessary to pro-
duce a spatial curve, a ‘path’, which is a result of path planning methods. Second, each point
of the curve is provided with a velocity vector, which represents current speed and direction.
Solutions (‘paths’) of the path planning problems can have many forms. The well known
form is a polygonal chain, which usually results from grid based path planning [33]. Since
the polygonal chain might not look realistic we might use the polygonal chain as a control
polygon for computing spline curves or replace the ‘faults’ by arcs. On the other hand, if
regular lattices are used [28], the solution is a chain of maneuvers forming the lattice. Aug-
menting ‘paths’ with velocities forms trajectories. Trajectories must follow physical and
entity constraints. For instance, as a physical constraint we consider continuity of trajec-
tory and its first derivative (velocity). As an entity constraint we may consider maximum
trajectory curvature for the current speed of the entity.

Trajectory planning has many practical applications such as AgentFly [30], a system
for Air Traffic Control. Another state-of-the-art system deals with trajectory planning for
autonomous helicopters [32]. However, such systems do not reflect the dynamics of au-
tonomous vehicles (such as speed limits for certain maneuvers) directly in the planning
procedure because at first they produce paths (by some of the path planning methods men-
tioned in the following section) and then in a post-processing step they add dynamics such
as velocities to produce trajectories. Such an approach, however, might not work if a path
does not follow dynamics (e.g. speed of the vehicle is too high to perform a certain maneu-
ver etc.). Moreover, such an approach might not support optimization for duration needed
by a vehicle to move from starting to ending point (it may happen that longer trajectories
can be passed through faster).

In this paper we present an approach which extends the current path planning methods
to consider simple dynamic constraints such as speed limit constraints. We pick up on [7]
(initial ideas have been introduced in [8]) where ideas of augmenting A* and Theta* algo-
rithms to handle autonomous entities’ dynamics such as speed limit constraints have been
presented in an ad-hoc way. Our approach will be presented on the well-known A* [14]
and state-of-the-art Theta* [23,9] and Lazy Theta* [25] algorithms used for path planning,
however, we believe that our approach can be used with other techniques (e.g RRTs) as
well. Even though it seems to be sufficient to encode speed and direction as new dimensions
such an approach usually causes a huge growth of the state space which must be searched.
Considering intervals of speed values rather than single speed values is a promising way
for reducing the search space. Two approaches, called lite and full versions, compromising
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between completeness and efficiency will be discussed. The lite versions are expected to
explore about the same number of nodes as basic path planning methods which is quite effi-
cient but generally incomplete. The full versions are expected to be complete but the number
of explored nodes is much higher which affects efficiency in a negative way. We use a mod-
ular architecture as a concept for implementing trajectory planning methods. It seems to be
reasonable to have a four modules: representation of the environment (e.g. grids), planning
method (e.g. augmented Theta*), trajectory representation (e.g. shape of the trajectory) and
model of dynamics (e.g. speed limit constraints). Straightforwardly, if we plan trajectories
for different entities, then only the model of dynamic should be implemented differently
for each entity. For experimental purposes we implemented a very simplified model of the
environment and entities’ dynamics where the environment representation is based upon
hexagonal or ‘honeycomb’-like grids, trajectories are constructed from sequences of lines
and arcs and the model of dynamics is based on basic laws of physics (e.g. uniformly accel-
erated motion or dependency between curvature and maximum speed).

Moreover, we extend Augmented Theta* and Lazy* Theta* (lite versions) in terms of
ability to plan from/to any position, direction and interval of speed values (i.e., positions and
directions are not restricted by grid). In trajectory planning optimization might be done not
only for distance (i.e., the trajectory length) but also for duration (i.e., time needed for a ve-
hicle to pass the trajectory through). Besides theoretical studies of the proposed augmented
path planning methods we also provide experimental evaluation of the augmented methods,
where we compare i) the augmented methods with the basic methods (velocity is added in
a post-processing step) and ii) trajectory optimization for distance and duration. Further-
more, the results are thoroughly discussed showing the reasonability and justification of our
approach.

The paper is organized as follows. Section 2 discusses related works in the area of path
and trajectory planning. Section 3 presents existing and well known path planning algo-
rithms. Section 4 introduces the trajectory planning terminology we use in this paper. Sec-
tion 5 describes our concept of trajectory planning systems which is followed by Section 6
describing how the A*-like path planning algorithms are augmented to support the concept.
Furthermore, a basic implementation of the concept is described in Section 7. Finally, we
provide an experimental evaluation of our concept in Section 8. Section 9 concludes this
paper and discusses some future research possibilities.

2 Related Works

Path and Trajectory planning is a widely studied field of AI. Many techniques and concepts
have already been proposed and developed. In many cases the core consideration is how the
(continuous) environment is discretized to define a graph. After that the well-known graph
search algorithm A* [14] is applied.

One of the oldest techniques for path planning is based on Visibility Graphs [20]. Visi-
bility Graphs are structures whose nodes are, besides starting and ending point, all corners of
obstacles. Edges connect the nodes if and only if there is a line-of-sight between them. Paths
found by this approach are optimal (shortest) in continuous 2D space. However, it has been
showed that in continuous 3D space this approach does not produce optimal solutions [6].

Continuous space can be also discretized by regular geometric tessellations (usually
square or hexagonal) where each cell is either blocked or free. In other words, we deal
with path planning on grids [33]. The biggest advantage of this approach is its simplicity.
Grids work well in environments with a smaller number of smaller obstacles. However, if
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obstacles are larger, then the path planning process might become harder because often it is
necessary to explore a larger area. Despite some shortcomings this technique is very popular,
especially in the game industry.

Besides grids the environment can be discretized by using so called Delaunay triangu-
lation [10]. Triangulation [26] is well-known in computer graphics. There is a parallel be-
tween the triangulation approach and Visibility Graphs. All corners of (polygonal) obstacles
are also connected by lines (if there is a line-of-sight) but these lines is used for delimiting
triangles. Then, the Triangle graph, in which we look for paths, is defined in such a way that
nodes are triangles and edges connect nodes representing adjacent triangles. The path might
connect centroids of triangles (centers of triangles’ inscribed circles) which does not pro-
duce optimal paths. Note that connecting centers of triangles’ circumcircles forms Voronoi
diagram. The approach [10] therefore connects points on triangle edges and optimality is
ensures by maximum possible underestimating cost and heuristic values during the search.

In robotics it seems to be useful to use a regular lattice discretization [28]. Lattices better
correspond with maneuverability of autonomous entities (vehicles), therefore paths (trajec-
tories) produced by these approaches can be very precise. Another approach [29] addresses
path planning for car-like vehicles, where trajectories must follow a continuous curvature
constraint because the vehicle cannot reorient its wheel direction instantly. Attention is also
given to path (motion) planning of multi-body entities [2]. As a multi-body entity we can
understand, for instance, a car with a trailer.

Motion planning had an important role in the DARPA Urban Challenge [11] by utilizing
a trajectory planning approach [15] for wheeled mobile robots based on numerical opti-
mization which considers also effects of terrain and robots’ dynamics. A trajectory planning
approach in multi-vehicle and dynamic environment (e.g. moving obstacles) which is also
based on numerical optimization is provided in [1]. SIPP [27] is a path (trajectory) planning
method for environments with moving obstacles. SIPP is based on the A* algorithm [14]
which in contrary to similar approaches introduces safe intervals, time periods for config-
urations without any collisions. Using safe intervals can basically eliminate the necessity
for considering time as an additional dimension. Anytime version of SIPP has been recently
introduced in [22].

As mentioned before a basic and well known technique is an application of the A* al-
gorithm [14] over a graph created by one of the above approaches. However, paths found by
the A* usually look unrealistic, especially in grid based path planning since only centers of
adjacent (or diagonally adjacent) cells in the grid can be connected. To provide more realis-
tic paths it is necessary to connect also more distant (non-adjacent) cells. This idea has been
presented in [3] where paths found by the A* are ‘smoothed’ (i.e., more distant cells are
directly connected) in a post-processing step by iterative checking whether a node can be
connected by line (i.e., the line does not intersect any obstacle) with its grand-predecessor.
A state-of-the-art path planning technique Theta* [23,9] incorporates the previously men-
tioned idea directly in the search. I.e., it checks in the node expansion phase whether a
neighbor of the expanded node can be connected by line with a predecessor of the expanded
node. Lazy Theta* [25], contrary to Theta*, postpones line-of-sight checks until they are
necessary. Both Theta* and Lazy Theta* will be described more thoroughly later in the text.
The Field D* algorithm [12] which is also not restricted on connecting only adjacent cells
but according to results published in [23] is usually slower than (Lazy) Theta*. Anytime
D* [19] is an anytime and incremental search algorithm, a variant of the A* algorithm. The
advantage of this approach is that the algorithm is iteratively improving the found solu-
tion as well as re-plans if necessary. Phi* [24] is an incremental variant of Theta* allowing
re-planning if necessary.
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It is good to mention that some of the recent works in this area use Rapidly-exploring
Random Trees (RRT) [5] (most recently [31]) which are often more efficient but less opti-
mal than the above methods. RRTs are constructed in such a way that a (random) position in
space is added by connecting it to the closest position which is already in the tree. RRTs are
usually used as a component that can be used for splitting a path planning task into smaller
ones (then common path planning techniques are applied). The Probabilistic Roadmap plan-
ning method [17] is based on a similar idea but when a (random) position is added it is tested
whether it can be connected to nearby positions (often more than one). A combination of
both (RRTs and Probabilistic Roadmaps) can be found in [32]. The RRT* algorithm [16]
overcomes the issue with less optimal solutions, which is the main shortcoming of RRTs.
RRT* follows the asymptotic optimality property, which guarantees convergence to opti-
mal solutions (paths). RRT* is an anytime algorithm, i.e., it can provide a feasible solution
quickly and then improve it. Also it has been empirically showed that RRT* does not require
significantly more computational time than RRTs. RRT* has been successfully applied in
time-optimal trajectory planning for racing cars.

3 Path Planning

As mentioned before many concepts deal with the representation of (continuous) space as
a graph-like structure and then by applying (informed) search methods (such as A*) on the
structure to refine a solution (path).

3.1 Representation

There are many possibilities for representing the discretized environment (e.g. grids, regular
lattices, triangulations etc.), though all of them can be encoded by graphs. Our terminology
is therefore based on the graph theory [21].

A directed graph ⟨N,E⟩ is a structure where N is a set of nodes (in literature also
denoted as vertices) and E is a set of edges connecting the nodes (i.e. E ⊆ N × N ). In
path planning nodes usually stand for positions in the space and edges determine whether
it is possible to directly transit between these positions. For instance, if the environment is
represented by a grid, then the underlying graph is defined in such a way that nodes stand
for free grid cells (obstacle-free cells) and edges are between nodes representing adjacent
cells in the grid.

A path p = ⟨s0, . . . , sk⟩ is a sequence of nodes (s0, . . . , sk ∈ N ) such that for all
i, 0 ≤ i ≤ k − 1 is the case that (si, si+1) ∈ E. In path planning, we look for spatial
curves (hereinafter referred also as ‘paths’). Finding a path from a given initial node to a
given goal node in the graph representing the environment is sufficient for determining the
‘path’, solution of a path planning problem. For instance, if a path is found, then the ‘path’
is a polygonal chain connecting corresponding cells of the grid. Our following notation is
derived from [23,25].
Let next be a mapping N → 2N defined in the following way:

next(s) = {s′ | (s, s′) ∈ E}

In a plain text, next(s) represents a set of nodes directly accessible from a node s. For
instance, next(s) contains all nodes referring to free cells adjacent to the cell corresponding
with the node s. Hereinafter, we denote a node from next(s) as a neighbor of s. Let p =
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Algorithm 1 Skeleton of A*-like algorithms
1: open := close := ∅ {open is a priority queue}
2: g(sinit) := 0
3: parent(sinit) := null
4: open.Insert(sinit, g(sinit) + h(sinit))
5: while open ̸= ∅ do
6: s := open.Pop()
7: [SetNode(s)]
8: if s = sgoal then
9: return ExtractSolution(s)

10: end if
11: close.Insert(s)
12: for all s′ ∈ next(s) do
13: if s′ ̸∈ close then
14: if s′ ̸∈ open then
15: g(s′) := ∞
16: parent(s′) := null
17: end if
18: UpdateNode(s, s′)
19: end if
20: end for
21: end while
22: return null

⟨s0, . . . , sk⟩ be a path, then parentp is a (partial) mapping N → N defined in the following
way:

parentp(si) = si−1, 1 ≤ i ≤ k

In a plain text, parentp(s) refers to a node preceding a node s on a path p. For example,
parentp(s) refers to a node corresponding with a cell from which the entity following a path
p came to the cell corresponding with the node s. Hereinafter parent(s) (without specifying
a path) is used when a (partial) path is obvious for the context. For informed searches we
have to define functions g : N → R+

0 , h : N → R+
0 , c : N ×N → R+

0 where g(s) repre-
sents an actual cost of the partial path from the initial node to s, h(s) represents a heuristic
estimation of the cost from s to the goal node and c(s, s′) represents an actual cost of the
transition from s to s′.

3.2 A*

A* [14] is probably the best-known algorithm for informed search in graph-like struc-
tures. Algorithm 1 shows the skeleton of the A* and A*-like algorithms (it is same for the
A*, Theta* and Lazy Theta* algorithms). Algorithm 2 refers to the A* algorithm. open is
a priority queue containing nodes to be expanded. Nodes in open are ordered according to
the sum of actual cost (g) and heuristic (h), i.e., a node s′ is placed after a node s in open

if and only if g(s′) + h(s′) > g(s) + h(s). Hence, a node s with minimum g(s) + h(s)
is on the top of the open priority queue. Note that in case that more nodes has the same
g + h we prioritize those added earlier into open. close is a set of already visited nodes.
We begin with an initial node added into open (Line 4). The main loop (Lines 5-21) lasts
until either a solution is found or open is empty (in that case there is no solution). A node



Trajectory planning: Augmenting Path Planning Methods 7

Algorithm 2 A* algorithm
1: UpdateNode(s, s′)
2: gold := g(s′)
3: ComputeCost(s, s′)
4: if g(s′) < gold then
5: if s′ ∈ open then
6: open.Remove(s′)
7: end if
8: open.Insert(s′, g(s′) + h(s′))
9: end if

10: ComputeCost(s, s′)
11: if g(s) + c(s, s′) < g(s′) then
12: parent(s′) := s
13: g(s′) := g(s) + c(s, s′)
14: end if

15: ExtractSolution(s)
16: s′ := s
17: path := ⟨⟩
18: while s′ ̸= null do
19: path.addFront(s′)
20: s′ := parent(s′)
21: end while
22: return path

Algorithm 3 Theta* algorithm
1: ComputeCost(s, s′)
2: if LOS(parent(s), s′) then
3: if g(parent(s)) + c(parent(s), s′) < g(s′) then
4: parent(s′) := parent(s)
5: g(s′) := g(parent(s)) + c(parent(s), s′)
6: end if
7: else
8: if g(s) + c(s, s′) < g(s′) then
9: parent(s′) := s

10: g(s′) := g(s) + c(s, s′)
11: end if
12: end if

s is taken from the top of the open priority queue (Line 6). Procedure SetNode (Line 7, in
square brackets) remains empty at this stage. If s is a goal node then we proceed to solution
extraction (Algorithm 2), which is straightforward since we keep information about (partial)
paths via parent(s). Otherwise, s is added to close (Line 11) and its neighbors in next(s)
are processed (Lines 12-20). If a node s′ ∈ next(s) is in close, then it has already been
expanded and hence we do not need to consider it once again. If s′ is already in open but we
have found a path to it with smaller cost, then we update g(s′) and parent(s′) according to
this path (see ComputeCost procedure in Algorithm 2). If s′ is not in open, then s′ is added
to open (Line 8, Algorithm 2).

3.3 Theta*

Theta* [23,9] is a variant of A* which focuses on path planning. Theta* allows direct
connection of non-adjacent nodes in the underlying graph. ‘Paths’ produced by Theta* are
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Algorithm 4 Lazy Theta* algorithm
1: SetNode(s)
2: if ¬LOS(parent(s), s) then
3: parent(s) := argmins′∈next(s)∩close(g(s

′) + c(s′, s))

4: g(s) := mins′∈next(s)∩close(g(s
′) + c(s′, s))

5: end if

6: ComputeCost(s, s′)
7: if g(parent(s)) + c(parent(s), s′) < g(s′) then
8: parent(s′) := parent(s)
9: g(s′) := g(parent(s)) + c(parent(s), s′)

10: end if

not paths from the graph theory point of view because it allows connecting more distant
nodes but ‘paths’ are usually shorter and more realistic than ‘paths’ produced by A*. In [3],
a check whether a node s can be directly connected by a line (a line-of-sight check) with
a ‘grandparent’ of s (parent(parent(s))) is iteratively performed in a post-processing step
(after a path has been found by A*). In Theta* (see Algorithm 3 together with the skeleton -
Algorithm 1), this idea has been applied directly in the search procedure. UpdateNode and
ExtractSolution procedures remain the same as in Algorithm 2. If we keep only Lines 8-
11 in ComputeCost procedure, then we obtain the A* algorithm. A successful line-of-sight
check (LOS) (Line 2), therefore, allows non-adjacent nodes to be connected. In general, LOS
can be understood as a binary relation between nodes. LOS can be computed in advance and
we could obtain a graph on which we could apply the A* algorithm to find a path. However,
computing LOS between all the nodes might be very expensive. Theta*, therefore, works in
a same way as the A* but retrospectively checks whether s and parent(parent(s)) can be
directly connected, which means bypassing parent(s).

LOS can be implemented in two ways. First, a variant of the well known Bresenham’s
algorithm [4] can be applied (we test whether the line intersects any blocked cells). Second,
if we use common geometric objects for obstacle representation, then it is possible to check
whether the line intersects any of the objects. The first approach is faster in general, however,
the second approach provides more realistic trajectories (the first one often avoids obstacles
in rather unrealistic distances).

3.4 Lazy Theta*

Lazy Theta* [25] is a variant of Theta* designed for reducing unnecessary LOS checks.
In Algorithm 4 it can be seen that in ComputeCost procedure it is optimistically assumed
that LOS is successful. After a node is selected from open the SetNode procedure (Line 7,
Algorithm 1) verifies the assumption (the LOS check). If the assumption is incorrect then
the situation must be reverted to the ‘A*-like’ situation, i.e., by finding an already visited
node s′ placed next to s (a possible parent of s) through which we reach s in minimum cost
(Line 3, Algorithm 4). Such a node must exist since at least one neighbor of s must have
been visited prior to visiting s. Since s′ has already been visited, a partial ‘path’ from the
initial node to s′ is feasible. s′ is directly connected with s in the underlying graph. Hence,
the new ‘path’ from the initial node to s is feasible as well.
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3.5 Additional Remarks

All the algorithms presented here output sequences of nodes determining a ‘path’. ‘Paths’,
for instance, in forms of polygonal chains, must follow given constraints such as avoiding
obstacles. Soundness of path planning methods requires that every ‘path’ follows the given
constraints. Completeness of path planning methods can be determined in more ways. In
general if a method is complete then the following must hold.

1. a complete method is sound (correct)
2. a method terminates (in a finite time) for every input
3. a method returns a solution if one exists or no solution if not

In path planning condition 3 can be understood in two main ways. First, we look for a ‘path’
in a continuous space. Second, we look for a ‘path’ in a discretized space. Obviously, if a
space is discretized, then some ‘paths’ existing in a continuous space might not be found. For
example, it may happen that some narrow passage between obstacles is blocked because of
space discretization. Therefore, completeness of path planning methods can be determined
in continuous or discretized space. For our purpose we focus on completeness in discretized
space because it depends only on a method’s ability to find a path in the underlying graph,
which represents the environment.

It is well known that the A* algorithm is complete (if performed on a finite graph).
Therefore, if the environment is represented by a graph then the path planning method using
the A* to search in it is complete. The Theta* algorithm is complete as well which has
been recently proven in [9]. For Lazy Theta*, soundness and completeness have not yet
been formally proven. The Lazy Theta* algorithm is based on the A* and Theta* which
are complete. Postponing LOS checks until it is necessary is the main difference between
Lazy Theta* and Theta*. Reverting to the ‘A* situation’ after an unsuccessful LOS check
(the SetNode procedure, Algorithm 4) is the only issue which might affect completeness of
Lazy Theta*.

Optimality can be understood in two ways, in the same way as completeness. First, a
real optimum means the shortest ‘path’ in the continuous space. Second, a graph optimum
means the shortest ‘path’ in the given graph representing the environment. For A* we are
able to find the graph optimum if we use admissible heuristics. If we use Visibility Graphs
to represent the environment, then we can also obtain the real optimum. In [25] it is proved
that for square and cubical grids (diagonally placed cells are also considered as adjacent)
the graph optima are worse than the real optima by at most ∼ 8% and ∼ 13% respectively.
Theta* provides ‘paths’ that are closer to the real optima. As the authors of [23] claim
Theta* does not ensure the real optimum. ‘Paths’ found by the Lazy Theta* can be slightly
longer than the ‘paths’ found by the Theta*. This can be fixed by re-inserting the node (if
LOS fails in the SetNode procedure) to open and continuing the main loop (Lines 5-21 of
Algorithm 1). Such an approach is called Lazy Theta*-R and can be found in [25].

In [23,25] empirical evaluation has shown the following. ‘Paths’ found by Theta* are
shorter by ∼ 5% in 2D and by ∼ 8% in 3D that the ‘paths’ found by A*. ‘Paths’ found by
the Lazy Theta are less than 0.1% longer than the ‘paths’ found by the Theta*. A* provides
solutions in about half the time of Theta*. Lazy theta* provides solutions about 30 − 50%
faster than Theta*. In fact, Lazy Theta*-R provides solutions at the same quality (‘path’
length) and almost the same running time as Theta*.
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4 Configuration Space

Definitions and notions presented in this subsection mainly draw from [18]. We consider A
as an entity moving in a physical space (environment) W which is represented as a subset
of the Euclidean space RD (D = 2 or 3). For simplification it is assumed in further text that
an entity (A) is a point mass.

The following definition introduces the notions of basic and dynamic configuration and
corresponding configuration spaces, which are familiar in Mechanics rather than in AI. Con-
figuration and configuration space can be understood in a similar way as state and state
space, well known terms in AI.

Definition 1 A basic configuration qbas of an entity A is a specification of the position of
A with respect to an environment W . A basic configuration space of A Cbas is a set of
all possible basic configurations of A. A dynamic configuration qdyn of an entity A is a
specification of the position and velocity (velocity is later decomposed into direction and
speed value) of A with respect to an environment W . A dynamic configuration space of A
Cdyn is a set of all possible dynamic configurations of A. �

Note that the above definition of basic configurations differs from the definition of con-
figurations presented in [18] by omitting entity attitude because as mentioned before en-
tities are assumed to be point masses. On the other hand, a dynamic configuration must
incorporate a direction and a speed value, forming a velocity vector describing the dynamic
component.

Remark 1 Hereinafter, a term configuration (resp. configuration space) stated without ad-
jective (i.e., basic or dynamic) is used for an abstraction and can be replaced by terms basic
or dynamic configuration (resp. basic or dynamic configuration space).

Remark 2 Let q be a configuration. Then, pos(q) refers to the position of q, dir(q) is a
unit vector referring to the direction of q and spd(q) refers to the speed value of q. Note
that spd(q) · dir(q) refers to the velocity of q, which takes place only if q is a dynamic
configuration, therefore dir(q) and spd(q) are undefined if q is a basic configuration.

The following definition introduces a configuration transition system which is inspired
by a well-known (unlabeled) state transition system.

Definition 2 A configuration transition system is a 4-tuple T = ⟨C, T, I,G⟩ where:

– C is a set of configurations (the configuration space)
– T ⊆ C × C is a transition relation
– I ⊆ C is a set of initial configurations
– G ⊆ C is a set of goal configurations

We say that T has the transition ⟨q, q′⟩ if ⟨q, q′⟩ ∈ T . �

Obviously, a configuration transition system can be represented by a (directed) graph.
Hence, a term path in a configuration transition system which is defined below is inspired
by the Graph theory [21] rather than [18].
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Definition 3 Let T = ⟨C, T, I,G⟩ be a configuration transition system. A path p = ⟨q0, . . . qn⟩
in T is a sequence of configurations such that ∀i ∈ {0, . . . n} : qi ∈ C and ∀i ∈ {0, . . . n−
1} : (qi, qi+1) ∈ T . A solution path p = ⟨q0, . . . qn⟩ in T is a path such that q0 ∈ I and
qn ∈ G. �

Path planning problems as known in the AI community can be directly represented by
corresponding basic configuration transition systems where solution paths in the systems are
in fact solutions to the corresponding problems - usually the configurations are connected
by lines (see Section 3). In trajectory planning, however, solution paths in dynamic configu-
ration transition systems provide only insights into how solutions (trajectories) might look.
Trajectory and trajectory planning problem are defined as follows.

Definition 4 A trajectory is a continuous function from a time interval [t, t′] (t ≤ t′) to
(Euclidian) space RD (in physics known as a position vector), i.e.:

ν : [t, t′] → RD

�

Definition 5 A trajectory planning problem is a tuple Φ = ⟨I,G, Z⟩ where I is a set
of initial dynamic configurations, G is a set of goal dynamic configurations and Z is a set
of constraints. Without loss of generality let ν be a trajectory defined on a (time) interval
[t0, tn]. ν is a solution trajectory for Φ if and only if C is satisfied and there exist q0 ∈ I

and qn ∈ G such that ν(t0) = pos(q0), ν̇(t0) = spd(q0) · dir(q0), ν(tn) = pos(qn) and
ν̇(tn) = spd(qn) · dir(qn). (Note that ν̇(t) stands for a first derivative of ν by t.) �

In the definition above a set of constraints Z is used in an abstract manner. A good
example of one kind of constraint is obstacles. Obstacles stand for sets of sub-spaces (sub-
environments) which no entity can pass through. Solution trajectories, therefore, must not
intersect any obstacle at all. Another kind of constraint is dynamic constraints (e.g. speed
limits, acceleration limits etc.) which are tailored to particular entities.

Configuration transition systems can be represented by graphs where we can apply the
A* or (Lazy) Theta* algorithms on (see Section 3). In path planning we use basic config-
uration transition systems while in trajectory planning we can use dynamic configuration
transition systems. However, the number of configurations in a dynamic configuration space
is much higher than the number of configurations in a basic configuration space. Therefore,
we introduce an extension of the path planning methods to support trajectory planning while
trying to keep complexity on the similar level as in path planning.

5 Concept of a Trajectory Planning System

In this section we present the general concept of a trajectory planning system in an abstract
manner as a component model. This concept can be understood as an online processing
of entities’ dynamics where dynamics properties are not directly encoded in the environ-
ment representation (offline processing) but are being verified during the search. A (basic)
implementation of the proposed concept is discussed later in the text.



12 L. Chrpa, H. Osborne

Fig. 1 The concept of a system for trajectory planning.

The concept (see Figure 1) comes from a need for a modular architecture where each
module/component has its own functionality. The Planning Method component incorpo-
rates an underlying planning procedure (such as Theta*) which must be augmented in terms
of communicating with other components. Nodes the planning procedure deals with refer
to sets of dynamic configurations having some properties in common (e.g. position and/or
direction) rather than considering single ones. Determining neighbor nodes in the node ex-
pansion phase is maintained by the Environment Representation component representing
(discretized) environments such as grids or lattices. This point is the same as in path plan-
ning, though in trajectory planning the dynamic part (e.g. speed) has yet to be determined.
Speed in nodes is represented by intervals of speed values rather than single speed values
(scalars). Verifying whether expanded nodes follow dynamic properties of the entity and
eventually determining intervals of speed values of expanded nodes is done as follows. The
Trajectory Representation component provides (spatial) curves (‘paths’) referring to a given
sequence of nodes (a partial path) and the Model of Dynamics component determines dy-
namic properties of a particular entity with respect to a given curve (‘path’) such as a speed
limit constraint (SLC), which is an interval of speed values an entity must follow prior to
starting moving through the curve, and an interval of speed values the entity may have when
exiting the curve. Particular components are described in detail in the following subsections.

5.1 Environment Representation

The purpose of the Environment Representation component is, roughly, to offer us an in-
terface which allows the Planning Method component to navigate through the (discretized)
environment and the Trajectory Representation component to create curves (spatial parts of
trajectories). The component is responsible for mapping between nodes and configuration
space. Bijection of the mapping (i.e., a single node represents a single configuration and
vice versa) is not required which means that a single node might represent a set of (dy-
namic) configurations. A set of (dynamic) configurations represented by a node s is denoted
as conf(s). This can be useful because it can make the planning process much more effi-
cient. Therefore, we extend the definitions of the functions pos, dir, spd also for nodes as
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follows (s is a node):
pos(s) = {pos(q) | q ∈ conf(s)}
dir(s) = {dir(q) | q ∈ conf(s)}
spd(s) = {spd(q) | q ∈ conf(s)}

It is reasonable that for every node s |pos(s)| = |dir(s)| = 1, i.e., s refers only to one
position and direction, and spd(s) forms an interval of values.

In our terminology the Environment Representation component provides the function
next (see Section 3.1) which determines neighbors of nodes. This component also provides
node comparison (e.g. if a node is already presented in the close list or it is a goal node) and
LOS (for the (Lazy) Theta* algorithm).

5.2 Trajectory Representation

The Trajectory Representation component is designed to provide curves referring to partic-
ular sequences of nodes (configurations). So, the component must implement a procedure
makeCurve which from a given sequence of nodes generates a curve (e.g. spline) which
must follow all spatial constraints such as avoiding obstacles. Generally speaking, there are
many different possibilities of implementing the makeCurve procedure. Generated curves
are passed to the Model of Dynamics component which according to curves’ properties (e.g.
curvature, slope) determines ranges of possible velocities (curves accompanied with veloci-
ties form trajectories). Hence, determining of curves’ properties should be computationally
easy. Also, adding a new node into the sequence should not lead to generating a completely
different curve. Assembling curves from segments, ‘primitive’ curves, referring to pairs of
successive nodes in the sequence, therefore, seems to be an efficient approach (it is discussed
in Section 7.2) because we need to compute only one segment after a new node is added to
the sequence, which is in the node expansion phase of the planning method.

5.3 Model of Dynamics

The Model of Dynamics component addresses dynamic properties of entities such as au-
tonomous vehicles, and possibly environmental properties such as terrain type. Clearly, there
is a correlation between the shape of the curve and dynamic properties of particular entities.

More specifically, the Model of Dynamics serves mainly for two purposes. From a curve
(or a curve segment) given by the Trajectory Representation component the component must
implement a getSLC procedure which is able to provide a speed limit constraint (SLC), i.e.,
an interval of speed values that the entity must follow prior starting moving through the curve
(or curve segment). The component must also implement reachableSpd procedure which
given an interval of speed values of the entity starting moving through the curve provides
an interval of ‘reachable’ speed values, i.e., the values that the entity can move at the end of
the curve (i.e., when the entity leaves the curve). Basically, reachableSpd considers bounds
of the intervals in the sense of determining maximum possible deceleration from the lower
bound of the initial interval and maximum possible acceleration from the upper bound of
the initial interval. For solution trajectory extraction purposes (explained in Section 6) the
component must implement reachableSpd−1 procedure which returns the largest inverse of
the reachableSpd procedure, i.e.:

∀⟨v, v′⟩ : ⟨v, v′⟩ ⊆ reachableSpd−1(curve, reachableSpd(curve, ⟨v, v′⟩))
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Algorithm 5 Verify procedure - verifies whether it is possible to transit from s to s′. If so
then updates speed values in s′

1: verify(s, s′)
2: curve(s, s′) := trajRepr.makeCurve(s, s′)
3: SLC(s, s′) := dynModel.getSLC(curve(s, s′))
4: tmpspd := spd(s) ∩ SLC(s, s′)
5: if tmpspd = ∅ then
6: return false
7: end if
8: spd(s′) := ReachableSpd(curve(s, s′), tmpspd)
9: return true

5.4 Planning Method

The Planning Method component consists of an augmented version of a ‘classical’ path
planning method (such as A* or Theta*). In this case, the basic configuration transition sys-
tem does not have enough expressiveness for dynamics and using the dynamic configuration
transition system might be computationally expensive. Keeping the advantage of basic con-
figuration transition systems means that the next function (provided by the Environment
Representation component) deals only with the spatial part (e.g. a position and direction).
The dynamic part (e.g. speed) is determined by the Model of Dynamics component. Having
a (spatial) curve (provided by the Trajectory Representation component) the Model of Dy-
namics component can produce SLCs (getSLC procedure) determining a set of speed values
valid at the beginning of the curve and by using the reachableSpd procedure determine a
set of speed values valid at the end of the curve.

Considering the dynamic part brings additional constraints such as SLCs. In the node
expansion phase (s is being expanded) a new node s′ is selected from next(s). Since we
have only a spatial information about s′ (i.e. pos(s′) and dir(s′)) we have to determine
whether the dynamic part is compatible with the spatial part and, eventually, compute a dy-
namic information about s′ (i.e., spd(s′)). It must be implemented within a verify procedure.
Incompatibility of the spatial and dynamic part occurs when SLC is an empty interval (the
curve from s to s′ is impassable for a given entity) or disjoint with an interval of speed
values in s (SLC is incompatible with required speed values on the beginning of the curve).
Straightforwardly, the verify procedure must be called after s′ is selected from next(s). If
the verify check fails s′ is not added to open as a successor of s thus we prevent to explore
an inconsistent sequence of nodes.

6 Augmenting A*-like Algorithms

This section discusses the main contribution of this paper, that is, augmenting basic
A*-like algorithms (see Section 3) to handle dynamic constraints such as speed limit con-
straints. This idea was introduced in [7] where augmenting A* and Theta* algorithms to
support SLCs is presented in an ad-hoc way. Here, we lay the idea on the concept (see Sec-
tion 5) and present the augmentation of the A*-like algorithms in a formal way including
theoretical studies about soundness of augmented A*-like algorithms and completeness of
the full version of augmented A*.

The idea is based on maintaining intervals of speed values which are achievable by a
given entity with respect to a (partial) ‘path’. The advantage of this approach is that using
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intervals of speed values rather than single speed values is in reducing the necessity for
handing speed as an additional dimension. An analogy can be found in SIPP [27] where
safe intervals (no collision with a moving obstacle threatens in the safe interval) rather than
single time-stamps have been used to reduce the search space.

Intervals of speed values are maintained as follows. For example, a vehicle goes 80km/h
in the initial situation. The vehicle continues going straight ahead and after some distance
its speed may range from 40km/h to 100km/h depending on whether the vehicle was decel-
erating or accelerating (maximum deceleration leads towards 40km/h while maximum ac-
celeration leads towards 100km/h). Then, the vehicle might perform a turn maneuver which
can be safely done if the speed of the entity is at most 50km/h, so the SLC is ⟨0, 50⟩. At
this point the speed of the vehicle ranges from 40km/h to 50km/h. After performing the turn
maneuver the speed of the vehicle may range from 20km/h (maximum deceleration from
minimum speed during the maneuver) to 60km/h (maximum acceleration from maximum
speed during the maneuver). The following paragraph presents this idea in a formal way.

As indicated in the previous section a trajectory planning method such as augmented A*
or (Lazy) Theta* considers also dynamic aspects (e.g. speed) during the search. The skele-
ton of the augmented A*-like algorithms is the same as for the basic ones (see Algorithm 1).
The main difference between basic and augmented algorithms is in the node expansion phase
where a node s, a neighbor s′ from next(s) is selected. At this point we know the position
and direction of s′, i.e., pos(s′) and dir(s′) (the direction of s′ depends on the position
of both s and s′ and thus dir(s′) is determined by normalizing pos(s′) − pos(s)). spd(s′)
is unknown at this point. Then, we have to verify whether transiting from s to s′ follows
also dynamic properties and if so, then we have to determine spd(s′). The implementation
of the verify procedure is depicted in Algorithm 5. At first, makeCurve(s, s′) is executed
to produce a curve segment curve(s, s′) between s and s′ (we use an approach of assem-
bling curves from curve segments, see Section 5.2). With curve(s, s′) we can determine
SLC(s, s′), a SLC related to this curve segment. Together with spd(s) which stands for a
interval of speed values an entity can achieve in s (if the entity is moving through the par-
tial ‘path’ from an initial node to s) we can determine an interval of speed values (denoted
as tmpspd) the entity can enter the curve segment curve(s, s′). Straightforwardly, it is an
intersection of spd(s) and SLC(s, s′) (i.e., tmpspd = spd(s) ∩ SLC(s, s′)). If tmpspd is
empty, then the entity cannot transit from s to s′ at the moment and thus the verify check
fails (s′ will not be then inserted to open). Otherwise tmpspd is an interval of speed values
the entity can have when entering the curve segment curve(s, s′). Then, spd(s′) is com-
puted as a interval of speed values the entity can achieve when leaving the curve segment
curve(s, s′) and thus the verify check succeeds (s′ will be then inserted to open).

Applying SLCs may cause ‘gaps’ in intervals of speed values throughout the sequence
of nodes. For instance, if a vehicle can go between 10 and 100 km/h at some point and then it
is about to perform a maneuver where the maximum speed is limited to 50 km/h, then verify
succeeds but cuts the interval to ⟨10, 50⟩ km/h before calling ReachableSpd. In a symbolic
way, spd(s) = ⟨10, 100⟩, SLC(s, s′) = ⟨0, 50⟩ and spd(s′) = ReachableSpd(curve(s, s′),
⟨10, 50⟩). Therefore, the entity cannot go more than 50 km/h in s if it is about to move to
s′ even though the maximum reachable speed in s is 100 km/h. Therefore, during the solu-
tion extraction phase we have to iteratively back-propagate the intervals of speed values as
follows:

spd(parent(s)) = spd(parent(s)) ∩ReachableSpd−1(curve(parent(s), s), spd(s))
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Algorithm 6 Augmented A* algorithm
1: UpdateNode(s, s′)
2: if verify(s, s′) then
3: gold := g(s′)
4: ComputeCost(s, s′)
5: if g(s′) < gold then
6: if s′ ∈ open then
7: open.Remove(s′)
8: end if
9: open.Insert(s′, g(s′) + h(s′))

10: end if
11: end if

Knowing an interval of speed values in each node gives an insight into how speed can
develop through the trajectory (see Section 7.6 for imagination) which can be used, for
instance, for energy consumption optimization.

However, exact speed values (scalars rather than intervals) are needed to produce a (so-
lution) trajectory. We can refine them from the (back-propagated) intervals, for instance, by
selecting a maximum value in the each interval. In general, the exact speed values are refined
as follows (v(s) denotes a (single) speed value in s):

v(parent(s)) ∈ spd(parent(s)) ∩ReachableSpd−1(curve(parent(s), s), ⟨v(s), v(s)⟩)

Knowing the exact speed values on the beginning and end of each curve segment is suffi-
cient for the Model of Dynamics component which is able to interpolate the speed values
throughout curve segments (e.g. by using the physical law of uniformly accelerated motion)
to provide solution trajectories.

Maintaining open and close in the A*-like algorithms raises a question pointing to
checking whether some node is already present in open or close. In [7] two approaches
were discussed as to how nodes can be distinguished, called full and lite versions. If we
check whether the node is present in the close or open list, i.e., s ∈ close or s ∈ open, then
the check is successful if and only if there is a node s′ ∈ close or s′ ∈ open respectively
such that:

– conf(s) ⊆ conf(s′) for the full version
– pos(s) = pos(s′) for the lite version

The lite and full versions compromise between completeness and complexity of the trajec-
tory planning process. As discussed in [7] the lite version is expected to have similar com-
plexity to basic path planning (no speed involved) at the cost of losing completeness since
it may discard some alternatives leading towards solution (see Section 8.4). Hereinafter,
the basic version denote an approach where a (non-augmented) path planning algorithm
is used and dynamics (velocity) is added in a post-processing step. The theoretical aspects
such as soundness and completeness of the augmented A*-like algorithms are discussed in
Section 6.4.

6.1 Augmented A*

Algorithm 6 depicts the augmented A* algorithm. The algorithm differs from the basic
(non-augmented) A* by using the verify procedure (Line 2), described in Algorithm 5 and
discussed in the previous paragraphs. Clearly, if verify(s, s′) fails, then it is impossible to
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Algorithm 7 Augmented Theta* algorithm
1: ComputeCost(s, s′)
2: if LOS(parent(s), s′) ∧ verify(parent(s), s′) then
3: if g(parent(s)) + c(parent(s), s′) < g(s′) then
4: parent(s′) := parent(s)
5: g(s′) := g(parent(s)) + c(parent(s), s′)
6: end if
7: else
8: if verify(s, s′) then
9: if g(s) + c(s, s′) < g(s′) then

10: parent(s′) := s
11: g(s′) := g(s) + c(s, s′)
12: end if
13: else
14: continue {jump to Line 12 of the skeleton algorithm (Alg. 1)}
15: end if
16: end if

transit from s to s′ (the interval of speed values is incompatible with the SLC), thus s′ must
not be added to open (as a successor of s). ComputeCost remains the same as in the basic
A* (Algorithm 2).

6.2 Augmented Theta*

Algorithm 7 shows the augmented Theta* (note that UpdateNode procedure is the same
as in (basic) A*, i.e., Algorithm 2). LOS check (Line 2) must be followed by the verify check
because the curve segment directly going from parent(s) to s′ is different than the curve
segments going from parent(s) to s′ via s. LOS in fact refers to spatial constraints (if
parent(s) and s′ can be connected by a curve segment which avoid obstacles) while verify
check refers to dynamic constraints (an entity can move though the curve segment). If one
of the tests fails, then the entity cannot directly transit from parent(s) to s′ and thus we
have to determine (the verify check) whether the entity can transit from s to its neighbor s′

which is the same situation as in augmented A*.

6.3 Augmented Lazy Theta*

Algorithm 8 shows the augmented Lazy Theta* (note that UpdateNode procedure is
the same as in (basic) A*, i.e., Algorithm 2). As stated before Lazy Theta* uses a lazy
evaluation paradigm to postpone LOS checks until it is necessary to perform them. Aug-
mented Lazy Theta* uses lazy evaluation paradigm also for the verify check. This means
that when s′ is a neighbor of the currently expanded node s it is initially assumed that the
LOS(parent(s), s′) and verify(parent(s), s′) checks are successful. LOS and verify checks
are performed just after s′ is selected from open (SetNode procedure). If one of the checks
fails, then the initial assumption was incorrect, thus s is set as parent(s′) (we revert to the
‘A*-like situation’) in the same way as in the basic Lazy Theta* algorithm (see Algorithm 4).
Then, verify(s, s′) is performed. If this also fails, then s′ is currently unreachable and an-
other node must be selected from open (Line 5 of the skeleton algorithm, see Algorithm 1).
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Algorithm 8 Augmented Lazy Theta* algorithm
1: SetNode(s)
2: if ¬LOS(parent(s), s) ∨ ¬verify(parent(s), s) then
3: parent(s) := argmins′∈next(s)∩close(g(s

′) + c(s′, s))

4: if ¬verify(parent(s), s) then
5: continue {jump to Line 5 of the skeleton algorithm (Alg. 1)}
6: end if
7: g(s) := mins′∈next(s)∩close(g(s

′) + c(s′, s))
8: end if

9: ComputeCost(s, s′)
10: if g(parent(s)) + c(parent(s), s′) < g(s′) then
11: parent(s′) := parent(s)
12: g(s′) := g(parent(s)) + c(parent(s), s′)
13: end if

6.4 Theoretical Aspects

Soundness is determined by an ability of a trajectory planning method to provide solutions
(trajectories) respecting all constraints in given problems (e.g. not crossing obstacles or hav-
ing an appropriate speed value in every point). Completeness of trajectory planning methods
can be understood in several different ways (as discussed in Section 3.5). Here complete-
ness depends on underlying (dynamic) configuration transition systems in terms of finding
solution paths between initial and goal configurations or proving their non-existence. Note
that soundness is a necessary condition for completeness (as mentioned in Section 3.5).

As discussed in Section 3.5 the (basic) A* algorithm (used for path planning) is sound
and complete. Therefore, if dynamic properties of entities such as speed are directly con-
sidered in the representation (i.e., we use A* to search for a solution path in a dynamic
configuration transition system) then completeness (and soundness as well) remains valid.
The other option, which some of the existing approaches apply, is adding dynamic prop-
erties such as speed in a post-processing step. However, if the spatial curve, the ‘path’, is
provided by a path planning method, then it might not follow the dynamic constraints and
thus the solution trajectory cannot be provided. The augmented A* algorithm, on the other
hand, considers dynamic constraints (e.g. SLCs) during search and discards alternatives
where dynamic constraints are violated. The formal proof of soundness of the augmented
A* follows. Without loss of generality we assume correctness of implementation of the En-
vironment Representation, Trajectory Representation and Model of Dynamics components.

Theorem 1 Augmented A* is sound.

Proof To prove soundness of augmented A* we focus on the UpdateNode procedure (Alg. 6)
because the rest of the method is the same as (basic) A*. The UpdateNode procedure is
called for every newly opened node (the node is not present in close list). The key part of
the UpdateNode procedure is the verify check (Line 2) which is described in Algorithm 5.
Every newly opened node must pass the verify check otherwise the node is not added to
open. verify(s, s′) firstly provides a curve (from s to s′) and then taking into account curve
properties provides SLC(s, s′). If the interval of speed values in s (spd(s)) is disjoint to
SLC(s, s′), then the entity cannot transit (directly) from s to s′ and the verify check fails.
Otherwise it is possible to transit from s to s′. Then, spd(s′) must be computed which is done
by applying the ReachableSpd procedure provided by the Model of Dynamics component
(we also assume correctness of the ReachableSpd procedure). The proof of the validity of
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spd(s) (for every opened node) is done by induction. Firstly, spd(sinit) is valid (it is given
in a problem description). In s the speed of the entity can reach only values from the in-
terval spd(s). Before transiting from s to s′ the speed of the entity must follow SLC(s, s′)
as a necessary precondition for the transition. Therefore, if it is possible to transit from s

to a node s′ through a curve curve(s, s′), then at the beginning of curve(s, s′) the speed
of the given entity is determined as an intersection of spd(s) and SLC(s, s′). Since spd(s)
stands for an interval of speed values the entity have in s (beginning of curve(s, s′)) and
SLC(s, s′) stands for an interval of speed values the entity must follow to successfully pass
through curve(s, s′), then intersection of these intervals stands for a necessary condition
for the entity to start moving through curve(s, s′). spd(s′) (i.e., the interval of speed values
valid at the end of curve(s, s′)) is then computed by the ReachableSpd procedure, which
is assumed to be correct.

Soundness (correctness) of back-propagation of the speed values is also proved by in-
duction. Let v(s) denote an actual speed value in s (according to notation used at the begin-
ning of this section). Selecting v(sgoal) from spd(sgoal) ∩ {spd(q) | q ∈ G} (G is a set of
goal dynamic configurations) does not cause inconsistency. Then, an actual speed in each
node is computed iteratively until sinit is reached as follows:

v(parent(s)) ∈ spd(parent(s)) ∩ReachableSpd−1(curve(parent(s), s), v(s))

v(s) is sound from assumption. Then ReachableSpd−1(curve(parent(s), s), v(s)) pro-
vides an interval of speed values in parent(s) from which v(s) is reachable by moving
through curve(parent(s), s). spd(parent(s)) consists of an interval of speed values reach-
able from sinit by passing all curve segments from sinit to s (see the previous paragraph).
Therefore, selecting an actual speed value v(parent(s)) from the intersection of both the
intervals is consistent. The intersection of the intervals cannot be an empty set because
every speed value from spd(s) has its support in spd(parent(s)) (i.e., ∀v(parent(s)) ∈
spd(parent(s))∃v(s) ∈ spd(s) : v(s) ∈ ReachableSpd(curve(parent(s), s), v(parent(s))).

In summary, an obtained trajectory in a solution trajectory and hence the augmented A*
algorithm is sound. �

This proof shows that the augmented A* algorithm expands only nodes which are con-
sistent with dynamic constraints (besides spatial constraints), and keep updating intervals
of speed values in nodes with respect to a partial ‘path’ leading from an initial node to
them. The augmented A* algorithm therefore avoids exploring alternatives not following
dynamic constraints during search in contrast of the basic A* algorithm where dynamic
constraints are not considered during the search and therefore infeasible alternatives might
be considered during the search. It might results in situations where solution ‘paths’ are not
compatible with dynamic constraints. Augmented A*, on the other hand, is able to overcome
this issue (fully in case of the full version of augmented A*) which is empirically showed in
Section 8.

Remark 3 Analogously to proving soundness of augmented A* we show that augmented
Theta* is sound as well. We have to focus on the ‘LOS part’ (Lines 2-6, Algorithm 7).
The rest of the algorithm is the same as augmented A*. LOS(parent(s), s′) (s is being
expanded) is followed by verify(parent(s), s′). The LOS check succeeds if a curve segment
connecting parent(s) and s′ follows spatial constraints (e.g. does not cross any obstacle).
The verify procedure checks if the curve segment follows dynamic constraints (i.e. SLCs)
and eventually update an interval of speed values spd(s′) (it is done analogously to the
augmented A* case).
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Augmented Lazy Theta* (Algorithm 8) in contrast to augmented Theta* considers that
when the node is opened both LOS and verify are assumed to be successful. This assump-
tion is tested after the node is selected for expansion (Line 2). If either of the checks fails,
then we find a node s′ which is a neighbor of s, present in close and having the smallest
cost (Line 3). It reverts the situation back to the ‘A* case’. verify must be called again for s′

(which is now parent(s)) and s. If verify fails, then s is unreachable in this step and cannot
be expanded (i.e., another node is selected for expansion). In fact in the Lazy Theta* case
we postpone the checks (LOS, verify) from the node expansion phase to the node selection
phase. It is analogous to augmented Theta* since by postponing the LOS and verify) checks
soundness is not affected.

Completeness of trajectory planning can be understood in several ways (similarly to
path planning, see Section 3.5). Firstly, it refers to a possibility to find a solution trajectory
in continuous space if it exists. Secondly, it refers to a possibility to find a solution path in a
dynamic configuration transition system (from which a solution trajectory can be extracted)
if it exists. We will consider the second way of understanding completeness of trajectory
planning. Since augmented A* considers sets of configurations in a single step we have to
prove that it does not miss important configurations which are part of a solution path. The
idea of proving completeness of augmented A* is therefore based on the fact that if a given
problem is solvable then there is always a node s in open consisting a configuration which
is a part of some solution path. Certainly, it also depends on how nodes are distinguished
(which is used for testing whether the node is already in open or close) and we will prove
in the following theorem that the full version of augmented A* is complete. Recall that
full versions test if s is in open (or close) if there exists s′ in open (or close) such that
conf(s) ⊆ conf(s′); lite versions, on the other hand, whether pos(s) = pos(s′).

Theorem 2 Full version of augmented A* (Algorithm 6) is complete if Lines 6-8 are omit-
ted.

Proof Augmented A* is sound (as already proven), therefore a solution found by augmented
A* is valid. It is well known that (basic) A* is complete. If there exist a solution path in the
underlying graph (transition system), then prior to the node expansion phase (Line 5, Al-
gorithm 1) there is always a node in open which is a part of a solution path. Augmented
A* works upon a dynamic configuration transition system, however, instead of single con-
figurations it considers sets of configurations (note that nodes in this case stand for sets of
configurations). We have to prove if a given trajectory planning problem is solvable that
prior to the node expansion phase there is a node s in open such that there is a configura-
tion in conf(s) which is a part of a solution path. We can prove this by induction. Clearly,
the initial node contains a configuration with is a part of all solution paths. We therefore
assume that after selecting a node s for expansion consisting a configuration being a part
of a solution path (s is removed from open) at least one of its neighbor added to open con-
sists of a configuration being a part of the solution path. next provides a set of all neighbor
nodes of s and the verify procedure provides them with intervals of speed values. Hence, we
can deduce that these neighbor nodes cover all configurations reachable from conf(s) by a
single transition. Hence, there exists a newly opened node s′, a neighbor of s, being a part
of the solution path. Each newly opened node is checked for the presence in the close or
open list (Line 13 and 14). We know that the full versions are using the rule ∃s′′ ∈ close

conf(s′) ⊆ conf(s′′) for checking whether s′ belongs to close. Existence of such s′′ ∈ close

tells that there is no need to explore s′ because all the configurations conf(s′′) and hence
conf(s′) have already been explored. Similarly for checking the presence of s′ in open. If
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the cost of s′ is worse or equal than the cost of such s′′ ∈ open, there is no need to add s′

to open. Otherwise, if the cost of s′ is better than s′′ then s′′ is not removed from open if
Lines 6-8 are omitted from Algorithm 6. If conf(s′′) ⊃ conf(s′) and s′′ is removed we might
discard a node consisting a configuration that is a part of a solution path. Summarized, if a
given trajectory planning problem is solvable, then prior to the node expansion (Line 5, Al-
gorithm 1) there is a node in open consisting a configuration which is a part of the solution
path in the underlying dynamic configuration transition system.

If the trajectory planning problem is not solvable then similarly to basic A* the aug-
mented A* algorithm terminates in a finite time if the underlying dynamic configuration
transition system is finite as well.

Hence, the full version of augmented A* is complete. �

Remark 4 Full versions of augmented Theta* and Lazy Theta* are not complete because
we always prefer (if possible) to connect more distant cells (i.e., if LOS check is success-
ful). Using the other way (if LOS check fails) may result into reaching a different (set of)
configurations. To avoid losing completeness we have to consider both ways (i.e, add both
nodes if they differ in terms of the full version to open).

Remark 5 Lite versions are clearly incomplete. By a simple consideration we can see that
when a node s is selected, then we actually work only with conf(s) but assume that we have
already explored all the possible configurations which can be positioned in pos(s). Clearly,
we can then miss some configurations which are necessary to explore to find a solution.

For practical reasons it is necessary to discuss the running time of trajectory planners.
This correlates (not absolutely) with the number of nodes which are considered during the
planning process (i.e., nodes added to open). We raise a hypothesis, which is empirically
checked (see Section 8), referring to the number of nodes considered by basic and lite ver-
sions.

Hypothesis Without loss of generality we assume that the cost and heuristic functions
are the same for both basic and lite versions. The number of nodes considered by basic and
lite versions is roughly the same (±10%) for an arbitrary trajectory planning problem.

Even though the hypothesis is presented in an informal manner it says that lite ver-
sions should be able to provide solutions in a similar running time to basic versions (no
matter which planning method is used). This hypothesis reflects the fact that nodes are dis-
tinguished in the same way for both versions. Although there are some differences between
the versions the expected solutions (trajectories or ‘paths’) are similar, therefore explored
space should be similar as well.

However, considering full versions we have to take into account also direction and inter-
val of speed values. For instance, if we enter a cell in a different direction than before, then
it is considered as a different node thus it must be counted. Therefore, we expect that full
versions consider c|dir| times more nodes than basic (or lite) versions (c is a factor repre-
senting an average number of considered intervals of speed values). However, full versions
of augmented Theta* and Lazy Theta* seem to be unusable because |dir| is very large (some
experimental results have been already presented in [7]).
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Fig. 2 Cells considered as adjacent (also ‘diagonally’ placed ones).

Fig. 3 A sample obstacle.

7 Implementation

In the previous section we introduced augmented A*, Theta* and Lazy Theta* algorithms
which implement the Planner component. This section addresses implementation details of
the other components. Moreover, we discuss implementing the heuristic function (h) which
is used to optimize either trajectory length, or duration needed by an entity to pass through
the trajectory.

7.1 Environment Representation Component

Path (trajectory) planning algorithms usually work upon grids which somehow discretize
continuous space. Commonly, grids are made from regular geometric tessellations. We use
hexagonal grids where we also consider ‘diagonally’ placed cells as adjacent (see Figure 2).
To add a 3rd dimension we have to form a honeycomb-like structure where an entity can
navigate through ‘flight levels’. The distribution of ‘flight levels’ is regular and correlated
with the density of the grid (in our case distance between adjacent ‘flight levels’ is a half of
distance between adjacent hexagonal cells).

Obstacles stand for objects or zones which must not be crossed by any trajectory. An
obstacle can be defined by a set of cells which are set as blocked (we cannot open a node
referring to a blocked cell). A more suitable method for representing obstacles is to use
geometric objects such as circles, polygons (2D) or cylinders, cuboids, spheres (3D) etc.
With geometric representations of obstacles we simply have that the cell must be blocked if
it intersects any obstacle (see Figure 3).
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Fig. 4 A sample turn maneuver. The thick line emphasize a part of a trajectory. α stands for a turn angle, d
stands for a distance between adjacent cells and r stands for a turn radius.

The underlying (dynamic) configuration space can be defined in the following way. Con-
figurations are positioned only in centers of free cells. For A* the configurations consider di-
rections pointing to adjacent cells only (i.e., 12 possible directions) while for (Lazy) Theta*
directions can point to any other ‘visible’ cell (the number of possible directions is finite if
the number of cells in the grid is finite). In our implementation, speed values are discrete
and range from given minimum to maximum speed values (given by the specific Model of
Dynamics component).

7.2 Trajectory Representation Component

In our implementation we focus on the simplest possible trajectory representation. Polygonal
chains are simple enough but it must be possible to change direction in a smooth way.
Therefore, we use two types of atomic curve segments which are used for constructing
partial curves connecting configurations. The first type is represented by (straight) lines
which are used for moving between the grid cells (Straight Maneuvers). The second type is
represented by arcs which are used for smooth changes of directions (Turn Maneuvers).

In 2D, the situation is easy to imagine. A sample Turn Maneuver is depicted in Fig-
ure 4. Turn angle α can be easily determined because the change in direction is known.
Even though α is known there is still an infinite number of possible Turn Maneuvers. It is
reasonable to keep the whole Turn Maneuver within the cell because we can be sure that the
curve representing the Turn Maneuver does not cross any obstacle (the cell is not blocked).
On the other hand, it is reasonable to have a turn radius as large as possible to keep the cur-
vature as small as possible. If d stands for a distance between (non-diagonal) adjacent cells,
then the Turn Maneuver must start (and end) a distance of d/2 from the cell center. d/2 is
a radius of hexagon’s inscribed circle and therefore the arc representing the Turn Maneuver
stays within the hexagon cell. Center of Turn Maneuver’s circle is in the point of intersection
of perpendiculars to Straight Maneuvers’ lines led in d/2 distance from the hexagon center.
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A turn radius r can be determined analytically if we know α and d in the following way:

r =
d

2
cot

α

2

Determining the turn radius, which is a reciprocal of Turn Maneuver’s curvature, is sufficient
for the Model of Dynamics which determines SLCs (see Section 7.3). Note that trajectories
often do not cross centers of cells, i.e., the corresponding configurations (e.g. Figure 4), but
this does not violate the conditions for trajectories to be solution trajectories.

In 3D, the situation can be handled similarly (in fact we generalize the 2D case). The
arc lies in the plane defined by two lines referring to preceding and succeeding Straight
Maneuvers. Besides the curvature of Turn Maneuvers a slope change can be taken into
account as well.

7.3 Model of Dynamics Component

We consider only two kinds of atomic curve segments - Straight and Turn Maneuvers (as
stated in the previous subsection). It is only possible to adjust speed (accelerate or decel-
erate) during Straight Maneuvers. The rate of acceleration or deceleration must also be
constant in any one Straight Maneuver. Practically, during a trajectory extraction phase a
Straight Maneuver which connects more distant cells (Theta* or Lazy Theta* is used) is
split into (at most) 3 parts (Straight Maneuvers). The first part ensures accelerating to maxi-
mum speed, the second part serves for moving at maximum speed and the third part ensures
the deceleration required to fulfill, for instance, a SLC for the following Turn Maneuver.
Depending on the actual situation some of the parts might be omitted (e.g. we are already
moving at maximum speed at the beginning or we must begin to decelerate before reaching
maximum speed etc.).

For Turn Maneuvers we model the physical law which requires the minimum turn radius
to vary as the square of the speed (i.e., r ∝ v2). If vtunit stands for the maximum speed for a
Turn Maneuver whose turn radius is 1 (unit), then the maximum speed for a Turn Maneuver
vtmax whose turn radius is r is:

vtmax =
√
r · vtunit

In 3D we also need to model slopes and slope changes. Constant slopes are Straight
Maneuvers and slope changes are Turn Maneuvers. A constant positive (ascending) slope
causes an entity’s rate of acceleration to decrease (the second derivative of its speed is neg-
ative) while a negative slope causes the entity’s rate od acceleration to increase.

slope > 0 ⇒ v′′ < 0

slope = 0 ⇒ v′′ = 0

slope < 0 ⇒ v′′ > 0

We do not model acceleration changes on changing slopes (v′′ = 0) but we prohibit Turn
Maneuvers with a slope change above a given threshold.
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7.4 Heuristics

There are two main options how trajectories can be optimized - on distance or duration. Ob-
viously, in basic path planning the shortest ‘path’ means the fastest ‘path’ (we are moving in
constant speed). However, if dynamic properties are incorporated, then the shortest trajec-
tory may differ from the fastest one because some maneuvers on the shortest trajectory may
require to be performed in significantly lower speed.

Optimization on distance can be done in the same way for both the basic and augmented
(A*-like) algorithms. An actual cost of a partial trajectory from the initial configuration to
a node s g(s) is computed as a real length of the partial trajectory, i.e., an ordered sequence
of atomic curve segments. A cost between nodes s and s′ c(s, s′) is computed analogously,
i.e., the length of atomic curve segments connecting s and s′. A heuristic estimation of the
distance from a node s to the goal configuration h(s) is computed as the Cartesian distance
between position of s (pos(s)) and the position of the goal configuration. Obviously, such
a heuristics is admissible because the real distance cannot be shorter than the Cartesian
distance.

Optimization on duration is applicable only for augmented algorithms because the basic
ones cannot deal with time. An actual cost of a partial trajectory from the initial node to s

g(s) is computed as a time in which the partial trajectory can be passed. However, during the
search we only have sequences of atomic curve segments, so it is necessary to extract (par-
tial) trajectories from them (by calling ExtractSolution(s)). c(s, s′) is computed similarly
for Theta*. In Lazy Theta* we do not know the exact interval of speed values in s′ (spd(s′))
because verify has not yet been called and we only assume (optimistically) that transiting
from parent(s) to s′ is possible. Thus spd(s′) can be estimated by calling the MakeCurve

and ReachableSpd procedures. Therefore a cost function c(parent(s), s′) is computed as a
minimum time needed for transiting from parent(s) to s′ but SLC is not taken into account
which may underestimate the actual cost.

A heuristic estimation of the distance from s to the goal node h(s) can be computed as
a time necessary to move directly from position in s directly towards the goal configuration
at maximum possible speed (i.e., the Cartesian distance from s to the goal is divided by
maximum entity speed). Obviously, the heuristics is also admissible.

Of course, we can optimize for a different metrics than distance and duration. A useful
metric can be, for instance, energy (fuel) consumption. Optimizing energy consumption is
very useful in reducing costs and also reducing pollution. To preserve an optimal (or nearly
optimal) energy consumption the entity should not change its speed often but also should
not move at maximum speed. Optimizing for energy consumption, we believe, might have
very similar aspects as optimizing for duration. Another example of a metric can be min-
imizing risks which an entity undergoes during moving from initial to goal configuration.
For instance, the entity could get stuck in mud, fall from the cliff edge etc. An optimal tra-
jectory in this case should avoid such places even though its length or duration needed to
pass through it might be much higher. The cost may depend on the distance the entity passes
through in the ‘risky’ environment (e.g. mud) or how many ‘risky’ maneuvers the entity
does. From this perspective providing an informative (and admissible) heuristic is needed.

7.5 Planning from/to arbitrary position, direction and speed

Discretization of continuous space provided by grids improves efficiency of the trajectory
(path) planning process. However, it certainly limits starting and ending conditions such as
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positions which must be related to centers of grid cells. Ability to plan a trajectory from
or to arbitrary position (in continuous space), direction and speed value (or the interval) is
desirable, especially for real-world applications. In fact we have to extend the configuration
space by configurations representing initial and goal situations. The basic idea for modifying
the algorithms to support this rests in adding ‘dummy’ cells - one for the initial and one
for the goal situation. Cells intersecting ‘dummy’ cells can be considered as adjacent (to
the ‘dummy’ cells). Defining the adjacency relation is sufficient for basic (path planning)
algorithms (we do not have to change the pseudo-code).

However, for augmented algorithms it is not that simple. It may happen that if the initial
speed of the entity is high, then none of cells adjacent to the initial ‘dummy’ cell is reachable
(i.e., SLCs are violated) because the entity must perform a ‘sharp’ Turn Maneuver (with a
small turn radius). In this case all (augmented) algorithms terminate without finding any
solution. For (augmented) Theta* and Lazy Theta* there is a way to handle this sort of
issue. From the initial direction and initial (minimum) speed it is possible to estimate which
cell may be reachable from the initial ‘dummy’ cell. In fact the expansion of the initial
node (sstart) might not refer to nodes positioned in adjacent cells but to nodes positioned
in cells a ‘reasonable’ distance from the starting position (following the initial direction). A
‘reasonable’ distance can be determined, for instance, as a distance needed by an entity to
slow-down to fulfill SLC for Turn Maneuver in angle π/6. While sstart is being expanded,
then the ComputeCost procedure (Theta*, see Algorithm 7) is modified in such a way that
if the test in Line 2 fails (sstart is used instead of parent(s)), then we proceed to the next
node (Line 12 of Algorithm 1). Analogously, the SetNode procedure (Lazy Theta*, see
Algorithm 8) is modified, i.e., if the test (Line 2) succeeds, then we select another node
from open (Line 5 of Algorithm 1).

In every iteration, when a node s is selected from open, reachability of sgoal is tested.
That is, performing LOS(s, sgoal) followed by verify(s, sgoal). If both the checks succeed,
then we can directly connect s and sgoal, otherwise we cannot. If we optimize for distance
and spd(sgoal) is not disjoint with the goal (interval of) speed values, then we can directly
proceed to the solution extraction phase. If we optimize for duration, we add sgoal to open

(or replace the old one if the cost is smaller) and continue (Line 5 of Algorithm 1). There-
fore, the solution extraction phase begins after sgoal is selected from open. Note that the
verify procedure must also be modified for this case. The curve, which is generated (Line 2
of Algorithm 5), consists of three atomic curve segments in the following order: Turn Ma-
neuver for changing direction towards the goal ‘dummy’ cell, Straight Maneuver for moving
towards the goal ‘dummy’ cell and Turn Maneuver for changing direction towards the goal
configuration. The last maneuver is omitted if direction is not specified in the goal situation.

7.6 Example

Figures 5,6 depict sample trajectories in the 2D environment represented by hexagonal grids
where obstacles are represented by geometric objects such as circles or polygons. Trajec-
tories are divided into atomic curve segments (Turn and Straight Maneuvers) with corre-
sponding intervals of speed values. This shows how the intervals are developing through
the trajectories (which begins at top-left corner). Straight Maneuvers allow the speed to be
adjusted uniformly. For Turn Maneuvers, speed remains constant for the whole segment.

Figures 5,6 also show both trajectories touching the obstacles. That is because of the
assumption we made before that entities are represented as point masses. Of course, real
autonomous vehicles are not point masses, therefore the vehicles must avoid obstacles at
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Fig. 5 A sample trajectory, where atomic curve segments including intervals of speed values are depicted.
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Fig. 6 Another sample trajectory. Atomic curve segments including intervals of speed values are depicted.

some distance. To incorporate entity size or safety range (i.e., a minimum possible distance
from an obstacle) the geometric objects representing obstacles must be ‘inflated’ (e.g. if an
obstacle is represented by a circle, then we must increase its radius by the safety range).
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8 Experimental Evaluation

In this section, we present an experimental evaluation where we compare how augmenting
the A*, Theta* and Lazy Theta* algorithms affect the trajectory planning process.

8.1 Setup

For evaluation purposes we implemented the proposed methods for trajectory planning (aug-
mented A*, Theta* and Lazy Theta*) in JAVA SE 6. The implementation has not been opti-
mized for performance, therefore there might be space for improvement. All the benchmarks
were performed on Core2Duo 1.86 GHz, 2 GB RAM, Windows 7. We used two scenarios
for the evaluation. Firstly, a 2D scenario was built upon an area of size 1000x1000 units and
is discretized into a hexagonal grid where the distance between adjacent cells is 10 units
(making a grid of size approx. 100x100 cells). The Model of Dynamics for the 2D scenario,
which follows the general rules described in Section 7.3, has the following properties (speed
values are provided in units per second, acceleration values are provided in units per second
squared): maximum speed is 50, maximum acceleration is 2.0, minimum acceleration (i.e,
maximum deceleration) is -2.5 and maximum speed for a unit Turn Maneuver (vtunit) is
5.0. Secondly, a 3D scenario was built upon an area of size 1000x1000x50 units which is
discretized into a honeycomb-like grid where the distance between adjacent cells is 10 units
and between adjacent ‘flight levels’ is 5 units (making a grid of size approx. 100x100x10
cells). The Model of Dynamics for the 3D scenario, which follows the general rules de-
scribed in Section 7.3 (similarly to the 2D case), has the following properties: maximum
speed is 100, maximum acceleration is 7.0, minimum acceleration (e.g, maximum decelera-
tion) is -8.5, maximum speed for a unit Turn Maneuver (vtunit) is 10.0 and minimum pitch
radius (slope change) is 20 units.

We randomly generated 100 way-points and then we plan trajectories between each pair
(giving us up to 4950 planning problems – some of them are (trivially) unsolvable, because
some points lie in the blocked cells). We have three ‘maps’ (∼ 10%, ∼ 20% and ∼ 30%
cells blocked). We also randomly generated initial and goal direction and initial speed and
maximum goal speed for every point. For every planning problem we set a timeout of 5s
(5000ms). Note that we have only one set of points for all scenarios (in 2D we just omit the
z-coordinate) and for all ‘maps’.

8.2 Basic vs. Augmented Methods

Table 1 shows the performance of the basic (pure path planning) and augmented A*, Theta*
and Lazy Theta* algorithms. The basic versions are supplemented by a post-processing step
which assigns dynamics to ‘paths’ (spatial curves) - outputs of the (basic) A*-like algo-
rithms. For augmented A* we considered both lite and full versions. For Theta* and Lazy
Theta* we considered only lite versions because the full ones are (apart from a few excep-
tions) unsolvable in reasonable time. Initial configurations are specified by a (cell) position
and speed value and goal configurations are specified by a (cell) position and interval of
speed values (initial or goal directions are not specified).

Columns are named in a self-explanatory way but some items should be clarified. Nodes
are counted in such a way that we count every node which is about to be inserted into open.
Distance stands for a trajectory length. Duration stands for a time the entity needs to pass
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Solved Timeout Running Time (ms) Nodes Distance Duration
exceeded avg vs bas avg vs bas avg vs bas avg vs bas

∼ 10% cells blocked
A* (basic) 3507 0 45 5115 525.8 30.9
A* (lite) 3917 0 46 1.04 4834 0.98 532.7 1.000 30.9 1.000
A* (full) 2589 1416 1276 63.00 94677 38.4 393.8 0.998 25.5 1.053
Theta* (basic) 3947 0 18 1344 515.1 22.7
Theta* (lite) 3957 0 19 1.07 1342 1.00 514.6 1.000 22.7 1.000
Lazy Theta* (basic) 3947 0 10 1385 515.1 22.7
Lazy Theta* (lite) 3957 0 10 1.02 1383 1.00 514.7 1.000 22.7 1.000

∼ 20% cells blocked
A* (basic) 2970 0 43 4843 532.6 31.3
A* (lite) 3337 0 44 1.03 4592 0.98 543.1 1.000 31.4 1.000
A* (full) 2197 1231 1333 65.91 96289 41.45 395.6 0.998 25.9 1.055
Theta* (basic) 3316 0 29 1713 521.8 23.9
Theta* (lite) 3361 0 31 1.08 1710 1.00 522.6 1.000 24.0 1.000
Lazy Theta* (basic) 3316 0 15 1746 521.9 24.0
Lazy Theta* (lite) 3361 0 15 0.99 1745 1.00 522.7 1.000 24.1 1.000

∼ 30% cells blocked
A* (basic) 2448 0 40 4531 553.5 32.3
A* (lite) 2805 0 41 1.06 4321 0.98 568.0 1.000 32.5 1.000
A* (full) 1786 1064 1405 74.64 99235 44.53 415.5 0.997 27.1 1.062
Theta* (basic) 2746 0 44 2077 539.1 25.4
Theta* (lite) 2815 0 46 1.06 2078 1.00 540.6 1.000 25.5 1.000
Lazy Theta* (basic) 2746 0 20 2106 539.3 25.5
Lazy Theta* (lite) 2815 0 20 1.00 2110 1.00 540.8 1.000 25.6 1.000

Table 1 The performance of basic and augmented A*-like algorithms in the 2D scenario.

through the trajectory, i.e., a span of the time interval on which the trajectory is defined. To
compare basic and augmented A*-like algorithms (columns ‘vs bas’) we used the following
normalization. Let SP be a set of problems solvable (within timeout) by both an augmented
and the corresponding basic algorithm. Let xbasi (resp. xaugi ) be a quantity (such as running
time, nodes etc.) connected with the i-th problem and the basic (resp. augmented) algorithm.
Then, the normalization is: ∑

i∈SP xaugi∑
i∈SP xbasi

The results are discussed in detail later.

8.3 Distance vs. Duration Optimization

Tables 2, 3 show the performance of the augmented Theta* and Lazy Theta* algorithms.
We compare how these algorithms behave if we optimize either for trajectory distance or
duration. Initial configurations are specified by a position (not necessarily in the cell center),
direction and speed value and goal configurations are specified by a position (not necessarily
in the cell center), direction and interval of speed values. In contrast to the previous case the
algorithms are modified according to Section 7.5 (for instance, we test reachability of the
goal every time we select a node for expansion).

The tables are organized in a similar way to the previous case but instead of comparing
to the basic versions we are comparing to distance optimization. The normalization formula
is constructed analogously to the previous case.

Results are also later discussed in detail.
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Solved Timeout Running Time (ms) Nodes Distance Duration
exceeded avg vs dist avg vs dist avg vs dist avg vs dist

∼ 10% cells blocked
Theta* (dist) 3847 0 16 504 533.6 31.1
Theta* (dur) 3847 0 1002 61.73 24336 48.29 541.6 1.01 25.9 0.83
Lazy Theta* (dist) 3832 0 7 523 534.6 32.5
Lazy Theta* (dur) 3832 0 700 102.25 26372 50.39 544.2 1.02 26.2 0.81

∼ 20% cells blocked
Theta* (dist) 3182 0 38 951 542.3 32.2
Theta* (dur) 3182 0 1014 27.01 21640 22.75 551.6 1.02 26.7 0.83
Lazy Theta* (dist) 3169 0 15 998 545.6 33.5
Lazy Theta* (dur) 3169 0 687 46.04 24466 24.52 557.3 1.02 27.3 0.81

∼ 30% cells blocked
Theta* (dist) 2596 0 62 1461 560.5 33.1
Theta* (dur) 2596 0 918 14.91 18613 12.74 570.5 1.02 28.0 0.85
Lazy Theta* (dist) 2583 0 25 1505 563.8 34.3
Lazy Theta* (dur) 2583 0 659 26.78 21993 14.61 577.5 1.02 28.8 0.84

Table 2 The performance of augmented Theta* and Lazy Theta* optimized for either distance or duration in
the 2D scenario.

Solved Timeout Running Time (ms) Nodes Distance Duration
exceeded avg vs dist avg vs dist avg vs dist avg vs dist

∼ 10% cells blocked
Theta* (dist) 3809 0 170 4123 513.8 17.3
Theta* (dur) 491 3318 2661 235.68 59731 226.74 186.1 1.05 8.2 0.85
Lazy Theta* (dist) 3809 0 66 4215 514.3 17.8
Lazy Theta* (dur) 759 3050 2842 400.51 85899 202.20 220.6 1.04 9.0 0.86

∼ 20% cells blocked
Theta* (dist) 3250 11 447 9111 518.1 18.0
Theta* (dur) 415 2846 2792 135.62 54850 136.45 182.2 1.05 8.1 0.84
Lazy Theta* (dist) 3261 0 169 9652 520.1 18.5
Lazy Theta* (dur) 693 2568 2550 234.61 83643 127.42 222.3 1.05 9.1 0.86

∼ 30% cells blocked
Theta* (dist) 2725 23 740 14419 534.8 18.6
Theta* (dur) 367 2381 2779 61.23 48203 62.84 190.1 1.05 8.4 0.84
Lazy Theta* (dist) 2748 0 296 15483 538.9 19.2
Lazy Theta* (dur) 628 2120 2554 84.88 77706 47.12 244.0 1.05 9.7 0.84

Table 3 The performance of augmented Theta* and Lazy Theta* optimized for either distance or duration in
the 3D scenario.

8.4 Discussion

The comparison of the basic and augmented A*-like algorithms (Table 1) shows the follow-
ing. In several cases the basic algorithms (dynamics is added in a post-processing step) were
not able to find a solution trajectory although the augmented algorithms were. It happened
more often in the A* case, that is because the smallest turn angle is π/6 (in a hexagonal grid
with ‘diagonal’ moves) thus the maximum speed for this Turn maneuver is quite low. There
is a correlation between the number of obstacles and the number of ‘unsolvable’ problems
by the basic versions. We have observed that the main reason why problems are ‘unsolvable’
by the basic versions is a high initial speed and an early ‘sharp’ Turn Maneuver. This means
that the entity is not able to slow-down to perform the Turn maneuver. Note that initial and
goal directions are not specified in this case, which helps the basic versions. Taking a closer
look at the results (Table 1) we can see that the hypothesis formulated in Section 6.4 is jus-
tified. The number of considered nodes was almost the same for the basic and lite versions,
in the A* case it was about 2% less in the lite versions. Running time of the lite versions
was slightly higher (up to 8%) than running time of the corresponding basic versions. This is
caused by higher overheads connected with computation of intervals of speed values and de-
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Fig. 7 Illustration of two possible trajectories between WP1 and WP2. Dash line illustrates a situation when
minimal possible turn radius is too large and the trajectory forms an ‘ear’.

termining SLCs. It is worth mentioning that the running time of the lite version of augmented
Lazy Theta* is almost the same as the corresponding (basic) Lazy Theta*. We believe that
postponing these overheads along with LOS checks which results in a significant decrease of
these overheads (in fact we have to determine SLCs and compute spd(s) only for nodes that
are to be inserted into close rather than into open). Full versions of augmented A* have, as
we expected, about 65-75 times higher running time than the corresponding basic versions.
This is also in a correlation with the number of considered nodes which is about 40 times
higher. We can see that in our case (hexagonal grid with ‘diagonal’ moves) the number of
directions is 12. We can estimate the average number of different intervals of speed values
for every considered node (c, see Section 6.4) to be 3-4. However, this estimation is inac-
curate and very dependent on a particular model of dynamics. In Theta* and Lazy Theta*
case the number of directions is very high thus running time of the full versions might be
extremely high (see [7]). Trajectories found by the lite versions do not differ much from
trajectories found by the basic versions since the differences between trajectory lengths and
duration is marginal (fractions of promile). Comparing the full versions of augmented A*
with the corresponding basic versions we can see that trajectory lengths are slightly shorter
(2-3 promiles), however, durations are about 5% higher for the full versions. This is due
to a different strategy for distinguishing nodes which often results in trajectories that con-
tain more Turn maneuvers. Even though distances (lengths of trajectories) are not (or very
slightly) affected, durations are longer because Turn maneuvers can be performed only at
reduced speed.

The lite versions were able to solve more problems than the basic versions at only a
small price. However, incompleteness of the lite version is their major shortcoming. As
discussed in Section 6.4 solutions might be lost because of comparing only positions of
nodes, therefore we might discard some essential configurations. In some cases we have
to reenter a cell as illustrated in Figure 7. A dash-lined trajectory must be considered if
the initial speed (in WP1) is too high, therefore we are unable to perform a ‘normal’ Turn
maneuver. In general if we have visited such a position (cell) once, then we will not visit
it again regardless of differences of other conditions (direction, interval of speed values).
Encouragingly we have only observed a small number of such lite version ‘unsolvable’
problems. However, if such an ‘unsolvable‘ problem occurs, then one option is to try to
solve it by the full version of augmented A*, which has been proven to be complete in
Section 6.4. Main disadvantage of this approach is quite low performance as well as rather
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unrealistic trajectories. Another option, which is still an open problem, rests in detecting
positions (cells) that must be reentered or revisited.

Comparisons of the results of using a different optimization strategy (for distance or
duration) are present in Tables 2 (for the 2D scenario) and 3 (for the 3D scenario). We used
the lite versions of Theta* and Lazy Theta*. Initial configurations in this case have arbitrary
positions (not necessarily in cell centers), directions and speed values. Goal configurations
in this case have also arbitrary positions, directions and intervals of speed values. Note that
in this case using the basic versions is quite impractical because in many cases the first
Turn maneuver, which goes from the initial configuration, has too small turn radius thus it
does not follow the dynamic properties of the entity. The results showed that we are able
to reduce trajectory durations (if we optimize for it) by about 15 − 18% while trajectory
lengths increase by about 2− 5%. However, optimization for duration turned out to be sig-
nificantly much slower than optimization for distance. There are several aspects influencing
this. Firstly, the cost of nodes (g) depends on time needed to pass through a partial trajectory
(from the initial to the current node). Obviously, it is possible for longer (partial) trajectories
to have lower cost than shorter ones. In our case the cost rises in correlation with the number
and ‘sharpness’ of Turn maneuvers which means that ‘straight’ trajectories are preferred. It
is also obvious that the number of considered nodes rises when the (partial) trajectories be-
come longer. It gives us an insight why the number of considered nodes must be higher. The
heuristic function (h), on the other hand, is directly dependent on a Cartesian distance from
the current (set of) configurations to the goal configurations (see Section 7.4). Thus, the
heuristic does not affect the number of considered nodes. Secondly, if we optimize for dis-
tance we can ‘jump’ directly to the goal when it becomes reachable (see Section 7.5). On the
other hand, if we optimize for duration and even if the goal is reachable we cannot directly
‘jump’ to it. The results show that if the number of obstacles rises then the difference be-
tween considered nodes (and running time as well) decreases. This is because having more
obstacles decreases a chance of ‘jumping’ towards the goal. The third aspect affects only
running time. It is obvious that computing the cost (g) is more time consuming because we
have to produce a partial trajectory (i.e., assign velocity to the sequence of curve segments)
in every iteration. Addressing these aspects offers potential improvements of the planning
process (optimizing for duration). The first and most important aspect can be addressed by
developing more sophisticated (admissible) heuristics that avoid the exploration of a large
number of unpromising nodes. This is also related to the second aspect because with more
sophisticated heuristics we will be able to reveal earlier whether ‘jumping’ towards the goal
is feasible with respect to duration optimization.

Comparing the results of our methods in 2D and 3D scenarios (using a different model
of dynamics) showed that there is a correlation between the number of considered nodes
and grid size in the distance optimization case. In the duration optimization case the number
of considered nodes is significantly higher. Therefore, we can see that particular model of
dynamics has a much greater effect on planning optimized for duration.

9 Conclusions

We used the concept of trajectory planning which is designed as a modular architecture al-
lowing independent and easy implementation of spatial and dynamic parts. Because spatial
aspects can be addressed by path planning methods, which are very popular, we showed,
in this paper, how these path planning methods, namely A*, Theta* and Lazy Theta*, can
be augmented to support such a concept of trajectory planning. In contrast to some existing



Trajectory planning: Augmenting Path Planning Methods 33

approaches, which after finding a ‘path’ (a curve) by path planning methods add dynam-
ics (speed and time) to obtain a trajectory in a post-processing step, our approach handles
dynamic properties (such as SLCs) during the search. We presented lite and full versions
of the augmented algorithms which differ in how they distinguish nodes. The lite version
of augmented Lazy Theta* especially achieved very good and promising results. Overall,
the lite versions were able to solve more problems than the basic versions (non-augmented
path planning methods) at the cost of a small increase in running time. Moreover, we for-
mally proved the completeness of the full version of augmented A*. However, experiments
showed that the full version is significantly slower (as we expected) than the corresponding
lite (or basic) version.

In this paper we also presented how we can extend augmented Theta* and Lazy Theta*
algorithms to plan trajectories from and to arbitrary positions, directions and (intervals of)
speed value(s). We investigated how this approach behaves when we optimize for distance
(length of a solution trajectory) or duration (a time span a solution trajectory is defined on).
Performance of planning optimized for duration was significantly lower than performance of
planning optimized for distance. We identified aspects which cause this drop of performance.
Addressing these aspects will be a part of our future work.

Future research should consist of proposing more sophisticated heuristics for trajectory
planning optimized for duration (or, for instance, energy consumption). Such a heuristic
should be able to reduce the number of considered nodes, which will address some of the
aspects we discussed earlier in this paper. Another open problem we discussed in this paper
concerns incompleteness of the lite versions of augmented (A*-like) algorithms. The prob-
lem rests in detecting positions (cells) that may be reentered or revisited, because if we have
visited such a position (cell) once, then we cannot visit it again regardless of differences of
conditions (direction, interval of speed values).

In summary, the trajectory planning concept introduced here has shown its usefulness
despite its very basic implementation of Trajectory Representation and Model of Dynamics
components. We believe that results of our work will be applied in simulations of complex
autonomous systems which can be used as feasibility studies for real-world applications.
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