
Algorithm of the Longest Commonly Consecutive Word

for Plagiarism Detection in Text Based Document

Agung Sediyono

Informatics Engineering Department

Universitas Trisakti, Jakarta, Indonesia

Tel:+62215663232 ext 178,

Fax:+6221567001

E-mail: agung@trisakti.ac.id

Ku Ruhana Ku-Mahamud

College of Arts and Sciences

Universiti Utara Malaysia, 06010 Sintok,

Kedah

Tel : 04-9284701, Fax : 04-9284753

E-mail : ruhana@uum.edu.my

Abstract

Plagiarism is a form of academic misconduct which

has increased with the easy access to obtain

information through electronic documents and the

Internet. The problem of finding document plagiarism

in full text document can be viewed as a problem of

finding the longest common parts of strings. Moreover,

the detection system has to be capable to determine

and visualize not only the common parts but also the

location of the common parts in both the source and

the observed document. Unlike previous research, this

paper proposes a numerical based comparison

algorithm that is comparable in the computation time

without loosing the word order of common parts.

Based on the experiment, the proposed algorithm

outperforms the suffix tree in the length of observed

paragraph below one hundred words.

1. Introduction

Based on a survey in Pakistan, Canada, UK, and

India, it was found that 44.6 % of students used cut and

paste style plagiarism from the Internet [1]. Besides

creating a sense of awareness to academics and the

public, another method to prevent plagiarism is using a

detection tool. There are the detection tool of

plagiarism and each tool uses different method in

finding the part of plagiarism, but most of them use

statistical metrics of similarity to determine whether

plagiarism has been done or not. Moreover, most of the

plagiarism detection are dedicated to detect the text

based document, for instants CopyCatch, Eve2,

WordsCheck, Glatt, and the famous one TurnItIn [2].

The scope of similarity could be on the scope of

documents, paragraphs, or sentences of the observed

and source document. To determine the level of

similarity, the detection tool of plagiarism uses a

percentage of common parts syntactically [3,4,5,6,7,8]

or semantically [9,10,11,15].

The aim of the plagiarism detection tool is to help

plagiarism assessor in judging plagiarism easily.

Therefore, besides determining the suspected

document in the first step, the detection system has

also to be capable to determine and visualize not only

the common parts but also the location of the common

parts in both the source and the observed document. In

syntactic approach based on text based comparison the

common part is found by comparing character by

character [6,7]. Therefore, this approach can fulfill the

aim of creating the detection tool. The problem of this

approach is the computation time. Implementation of

the suffix tree algorithm can reduce the time

complexity to O(m); however, the suffix tree algorithm

looses not only the space complexity [12] but also the

location of the common parts in the source document.

Meanwhile, in the numerical based approach [3,4,5,8],

the common part is found by comparing chunk by

chunk of string that has been hashed. Even though, the

numerical based approach outperforms in terms of

computation time, it has a problem in determining a

suitable length of chunk, and determining and locating

a longest common part that is required in detection of

plagiarism. The problem in determining the location of

the common parts is also faced in semantic approach.

Unlike previous research that have problem in

determining the location of common parts, this paper

proposes a numerical based comparison that can

determine not only the common parts but also the

location of the common part in both source document

and observed document. In this approach, the text of

the source document is broken down into the

paragraphs, and then each paragraph is broken down

into all possible consecutive word. Every consecutive

word and its paragraph identifier are saved into the

978-1-4244-2917-2/08/$25.00 ©2008 IEEE 253

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/17046908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

special bloom filter that is designed in [13]. The

observed document is treated as the source document,

and every consecutive word of the paragraph of

observed document is checked into the bloom filter. If

it is in the bloom filter, the common part will be found.

Based on the experiment, this research outperforms the

suffix tree algorithm for length of paragraph below one

hundred words in terms of the computation time.

Meanwhile the precision of detection is loose because

of the false positive of the bloom filter.

The reminder of this paper is organized as follows.

Section 2 reviews the related work and section 3

describes the proposed algorithm. Meanwhile, the

experimental design is discussed in section 4. The

result and analysis is discussed in section 5. Finally,

the conclusion and future work are described in section

6.

2. Related Work

There are detection tools of plagiarism. The most of

them are dedicated to detect plagiarism in the text

based document environment, such as CopyCatch,

Eve2, WordsCheck, Glatt, and the famous one TurnItIn

[2]. These tools hide the method used in finding

similarly common part. Therefore, this paper explores

other references that focus on algorithm in finding

common parts either in scope of document, paragraphs,

or sentences. Based on the previous research, the

problem in finding the common parts can be solved

using two approaches: syntactically [3,4,5,6,7,8] or

semantically [9,10,11,15].

In the syntactic approach, the document is assumed

as a composition of ordered chapters, paragraphs,

sentences, words, or characters. In this approach, the

comparison is done by comparing a document either

based on chapter by chapter, paragraph by paragraph,

sentence by sentence, word by word, character by

character, or part by part in general according to the

order. From this point of view, the problem in

comparing parts of a document can be viewed as the

repetition process of string matching where the pattern

is part of the observed document and the text is the

source document. Therefore, the syntactic approach

can be viewed from the string matching algorithms.

Even though the string matching algorithm can be

applied to solve this problem it is not suitable in terms

of computation time in long texts like in a large size

document [12]. To improve this weakness, some

researchers try to apply a filter in the first stage and

then use text based comparison in finding common

parts in the second stage [6,7,8]. Meanwhile, the others

use numerical based comparison by converting text

into a numeric code in order to speed up the

comparison time [3,4,5].

Syntactic approach named sif [3] proposes to

break the file into equal length of substrings. In this

approach, the file is broken up into different

combinations which are 50-byte substrings. Then, it

converts all 50-byte substrings to fingerprints and

compares all fingerprints in one file to the other. If the

percentage of the common fingerprint is over the

threshold, two files can be assumed similar. Even

though the sif outperforms the text mode being

compared, it loses the syntactic order because the

different combination of 50-byte substrings is not the

ordering of strings. Meanwhile, instead of breaking the

document into the all possible 50-byte substrings, Brin

[4] breaks the document into chunks. The important

thing is there is a trade off between the accuracy of

detection and the size of chunk. If the size of chunk is

large, the accuracy of detection is decreased. For

example, if the chunk size is a sentence, any word

insertion or deletion only a meaningless word like a

stop word can change the result of decision. However,

if the size of the chunk is small like a word for

example, the time of comparison increases and the

system deteriorates. Moreover, in [5] the chunk size in

a word. Instead of saving all words, it just saves the

distinct chunks into an inverted index and the position

where the chunks occurs is recorded. This system can

overcome the accuracy problem in the [4]’s system.

However, the size of inverted index still cannot fit the

memory size. Therefore, the system performance is

slowed down as long as there is an increase in the

inverted index size because of the growth of the source

documents. Most importantly though, it has been

shown by the experiment that the word chunk has good

accuracy in practice; even though, it loses sequencing

information between words. A syntactic approach

using numerical based comparison has a weakness in

determining the location of the common parts.

Therefore, other researcher [5] proposes a syntactic

approach using text based comparison which is a suffix

tree algorithm. In this approach, the observed

document is indexed using suffix tree that is

implemented in the suffix array data structure. By

indexing the observed document, the suffix array can

fit into a memory. The candidate documents from the

first step are compared to the suffix array to determine

the common part

Unlike the syntactic approach that is concerned

with word by word, the semantic approach is only

concerned with words that have a meaning or words

that can represent the concept of a document. On the

other hand, this approach tries to use filtering to

remove the meaningless words or parts of document

that does not contribute to the concept of document. By

reducing the number of parts having to be compared,

researchers hope to increase the speed of comparison.

To find the concept words, researcher looks at the

254

Latent Semantic Index (LSI) comparing based on terms

of rareness. The LSI includes only a part of the terms

that can figure the concept of the document. In this

way, the computation performance can be increased.

Moreover, instead of using LSI to improve the speed of

computation, other researcher [9] proposes I-Match

using TF.IDF as a concept content of document and

use a certain number of top rank terms according to the

position of terms in a document and covert it into a

hash code like fingerprint. The weakness of this

method is the stability of the fingerprint because of the

growing size of the corpus [14]. The other detection

tool called SNITCH uses the Google Search API in

comparing the observed document and the online

source document. The observed document is

plagiarized if the percentage of plagiarized word to the

overall word count for the observed document is higher

than the threshold. The weakness of this system is it

can not determine the location of the plagiarism, so

that the assessor has to check manual to determine the

location where the plagiarism has been written [16].

Meanwhile, White and Joy in [11] propose the

semantic in a sentence scope. The algorithm is very

simple it just collects the semantic terms composing

each sentence into a set of semantic sentences. The

plagiarism detection is conducted by comparing pair

wise of sentences in a text base comparison. The

performance of this method does not outperform the

previous methods. However, this method is reluctant to

the insertion/deletion case and can recognize the

author’s style in writing.

3. Proposed Algorithm

3.1. Basic Concept

In this paper, the text of the source document is

broken down into paragraphs. Each paragraph is

labeled by document and paragraph identifier,

DocId:ParaId as a location identifier of the paragraph.

The text in each paragraph is chopped to be all possible

consecutive words. The smallest size of the

consecutive word is a single word. This smallest size is

also used by [5]. From all consecutive words, it can be

figured a triangle of consecutive word for each

paragraph. For instance, for the paragraph having m

words, there is P={P1, P2, …, Pm} as a base members

at the lowest level of the triangle. A member except the

base members can be derived from the base members.

The triangle is built level by level and each level is

related to the longest of the concatenated of the base

members. For instance, if the level is 2, the members

are P1P2, P2P3, …, Pm-1Pm. Then, if the level is 3, the

members are P1P2P3, P2P3P4, …, Pm-2Pm-1Pm. Therefore,

for level m, a member is equal to P itself.

The text of the observed document is also broken

down into paragraph, and then for each paragraph is

built a triangle of consecutive word like in the source

paragraph. In finding the commonly consecutive words

(CCWs), the nodes in the triangle of the observed

paragraph are compared to the nodes in the triangle of

the source paragraph. This comparison is conducted

paragraph by paragraph. By knowing the position of

the node in the triangle and also the DocId:ParaId, the

location of the CCW can be determined precisely. The

longest commonly consecutive word (LCCW) can be

found from the longest of the CCWs. Based on the

facts that the nodes in the triangle are naturally ordered

either in diagonal or vertical direction, the searching

process in finding the node that represent a CCW can

be conducted by using the binary search method. This

binary search is applied either in diagonal search or

vertical search. The diagonal search is applied if the

start node is in the source. Meanwhile, the vertical

search is applied if the diagonal search found the CCW

except if the CCW is the base node. By using this

approach, the sequential check node by node can be

avoided. The illustration of this method can be seen in

Figure 1 for m equal to five.

3.2. Implementation

The implementation tries to map the basic idea

discussed in Section 3.1 to the real design so the basic

idea can be implemented in the computer system. In

this section the preparation of the source and the

observed paragraph, and the search phase are

described.

Source Paragraphs Preparation

The time and space complexity in building for both

the source and the observed paragraph are ½ m(m+1),

Figure. 1. Binary search in the case of multiple CCW: P1P2P3

and P3P4P5 for the 5 words paragraph

255

where the m is the number of words in the source and

observed paragraph. The quadratic characteristic of

the time complexity in building the source triangle can

be ignored because it can be conducted in the off-line

processing. However, the space complexity can be a

big problem. Therefore, this paper proposes to use a

bloom filter in order to shrink the size of storage of the

source paragraphs. The bloom filter has weaknesses

such as the false positive and indifference of the

location where the key comes from. The false positive

can be minimized by choosing an appropriate length of

the bloom filter. Meanwhile, the indifference of the

location is overcome by implementing special bloom

filter that is designed in [13] (see Figure 2). In this

bloom filter, the key and its location are hashed

separately and then modulo by l where l is the length of

the bit vector representing the bloom filter. Finally, the

bit position of the key and its location are combined to

be a final bit position of the bit vector. By this

approach, the location identifier (DocId:ParaId) can be

processed offline since the location identifier is static.

All nodes of the paragraph triangles are entered into

the bit vector of the bloom filter using mechanism that

is figured in Figure 2. If the source is a huge document

collection that has thousands or even millions of

paragraphs, the size of the bit vector is difficult to be

implemented into the memory. To overcome this

problem, a single bit vector of the bloom filter is

broken into multiple bit vectors that have same length.

Therefore, there are a set of bit vector of the bloom

filter B={B1,B2, …, Bb} where b is number of the bit

vector of the bloom filter and a set of bit position of the

location identifier L ={L1,L2, …,Lb} where Li ={Li1,

Li2, ..,Lip) where p is number of paragraphs in Bi.

Based on the fact that the hash function take the

longest computation time in the bloom filter structure,

this paper proposes to hash and modulo only the base

member of the triangle and then rehash the bit position

of the base member to be bit position of the upper

nodes. In [3] the bit position in the upper level is

calculated by using simple polynomial hash function

like (Pi x p
i
) modulo ! where p is a prime number, !

is upper bounded hash code and P is the bit position in

the first level. Meanwhile, this paper uses a simple

arithmetic such as (i Pi) modulo ! for m-lv-1 " i " m

where lv is the level of the node and m is the m
th

 node

of the first level node.

The node on lv= i and m= j can be calculated as

follows:

=

=

=

ij

j

jPjjPi
1

,1)(, (1)

If equation 1 is implemented to the triangle of

CCWs, it can be proved that the node on lv=i and m= j

can be calculated by equation 2

Pi,j = Pi-1,j-1 + i P1j (2)

Equation 2 shows that the upper node can be

calculated based on the previous calculation of the

node below it.

Observed Paragraph Preparation and Search Phase

The observed paragraphs are treated as in the source

preparation. The hash and modulo function are used

only for the base member. Since the binary search is

not visits all the nodes, the bit positions of the upper

node are calculated only when the node is visited by

binary search. The triangle of the observed paragraph

is saved into an array where each element of the array

contains the bit position of the bit vector of the bloom

filter (see Figure 3). Based on this data representation,

finding the nearest lower node is a simple task that is

by decreasing the index of array one by one. For

Figure. 2 The bloom filter that can differentiate the location

of the key

Figure. 3. Array presentation of the observed paragraph

256

instance, if node P44 is to be calculated, the first step is

to find the nearest lower node that has been calculated

by checking whether P33 has been calculated or not. If

P33 is not calculated yet, it has to go down to node P22

and so on.

After observed paragraph has been prepared, the

LCCWs can be found by using following algorithm:

For all paragraph in the observed Document do

Prepare the triangle of observed paragraph Pk

For all member of B do

Load Bi , Li

For all member of Li do

 --Search using binary search to find the LCCW

 LCCW(Pk,Bi,Lij)

LCCW(P, B, L)

m 1 ‘m is number of words in paragraph’

while m < upper bound of P

 do diagonal search to find CCW

 if CCW is found

 increase m by 1

 do vertical search to find other CCW

 if CCW is not found

 increase m by 1

 else

 increase m by 1

4. Experiment Design

To determine whether the LCCW algorithm

outperform or not, the LCCW algorithm will be

compared to suffix tree algorithm. The suffix tree

algorithm is chosen because of its capability to

determine a longest common part and its location as

the LCCW does. Generally, the evaluation of algorithm

is conducted based on the performance of algorithm

which are the precision, the time and space complexity

metrics. In here, only the computation time and

precision will be used.

The precision of the LCCW algorithm is not

comparable to the suffix tree because the suffix tree is

exact matching, while the LCCW algorithm is

approximate matching because of false positive rate of

the bloom filter. However, the precision of the LCCW

algorithm is explored to know its characteristic.

The computation time measurement is divided into

four categories such as preparation time of pattern,

loading time of resource index, loading time of

resource, and matching time. The preparation time is

the time beginning from loading time of observed

paragraph into memory until converting to bit position

of the bloom filters. The loading time of resource index

is a time beginning from the loading set of paragraphs

identity into memory until constructing it to be a linked

list data structure. The loading time of resource is a

cumulative time loading of source document that is

represented in several fixed length of binary data of the

bloom filters into the computer’s memory. Finally, the

matching time is a cumulative time of matching

process between observed and source paragraphs.

The time measurement of the suffix tree algorithm

follows the LCCW setting. The preparation time is the

time beginning from loading observed paragraphs into

memory until constructing it to be a suffix tree data

structure. The loading time of resource index is none or

zero because there is no index in suffix tree. The

loading time of resource is a cumulative time of

reading text paragraphs of source document related to

paragraphs converted into bloom filter in LCCW

algorithm. Finally, the matching time is the time

needed in the matching process between observed

paragraphs and source paragraphs in the source

document.

A generalization is obtained by testing the proposed

algorithm using the random data test. In this

experiment, the random data tests are six data

collections, five (FBIS, FT, JWS, LATIMES, ZIFF)

from TREC and one from the RFC collection.

5. Result and Analysis

The statistics of RFC and TREC collections are

tabulated in Table 1. From this table, it can be known

that the size of the bloom filter is bigger than the

original text and the biggest ratio is FBIS collection.

 Based on Figure 4 it can be argued that the loading

time of suffix tree outperform the LCCW algorithm

except for LATIMES collection. From Table 1,

LATIMES has a smallest paragraphs size so that it has

a smallest ratio of the bloom filter size to the original

text. From this fact, it can be argued that if we have a

collection with a short paragraph we can expect that

the loading time of LCCW is lower than the suffix tree

algorithm. Based on the Figure 5, it can be concluded

that the LCCW algorithm outperform the suffix tree for

length of the observed paragraph below one hundred

words except for FBIS collection. Based on the

average length of paragraph and its standard deviation

as shown in Table 1, it can be argued that one hundred

words is enough to construct one paragraph

From Table 1, FBIS collection has a biggest ratio of

the bloom filter size to the original text. From this

finding, it is still open research to increase the

performance of the LCCW algorithm by decreasing the

loading time, for example by pipelining between

loading and matching process or by omitting the stop

word in order to reduce the paragraph size.

257

Based on the characteristic of the LCCW algorithm,

the LCCW algorithm is suitable to be implemented in

an environment of plagiarism detection whereby the

comparison can be conducted paragraph by paragraph.

This condition is properly implemented in the

distributed resources where the comparison is not in

the whole document bases but in the relevant

paragraph bases according to the concept terms of

document collection.

The precision of the LCCW algorithm is shown in

Figure. 6. Based on the Figure 6, it can be concluded

that the precision of the algorithm increases if the

density of the bloom filter decreases. Decreasing of the

bloom filter is equal to decreasing of the false positive

rate of the bloom filter. However, Decreasing of the

false positive rate will increase the size of the bloom

filter so that the loading time is increasing too.

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

4
5

0
5

0
0

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

4
5

0
5

0
0

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

4
5

0
5

0
0

FBIS FT JWS LATIMES RFC ZIFF

Collection and Number of Words in the Observed Paragraph

R
e

s
o

u
rc

e
 L

o
a

d
in

g
 T

im
e

 i
n

 N
a

n
o

s
e

c
o

n
d

LCCW SUFFIX TREE

Average of Source Loading Time

Collection N of Words in Paragraph

Algorithm

Figure 4. The Loading Time Comparison between LCCW

and Suffix Tree algorithm versus number of words in the

observed paragraph for several document collection

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

1.4E+11

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

4
5

0
5

0
0

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

4
5

0
5

0
0

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

4
5

0
5

0
0

FBIS FT JWS LATIMES RFC ZIFF

Collection and Number of Words in Observed Paragrap

P
re

p
a

ra
ti

o
n

 T
im

e
 i

n
 n

a
n

o
 s

e
c

o
n

d

SUFFIX TREE LCCW

Average of Total Computation Time

Collection N of Words in Paragraph

Algorithm

Figure 5. The Total Computation Time Comparison

between LCCW and Suffix Tree algorithm versus number

of words in the observed paragraph for several document

collections.

Collection

of words

in

the Paragraph

of

Para-

graphs

of

Doc.

Size of

Collection

(Kbyte)

Size of

Bloom

Filter

(Kbyte)

Ratio

Bloom

To Text
Av. STD

RFC 41.11 42.07 584753 4380 202938 644556 3.18

FBIS 57.85 48.72 1106966 491 493071 1962966 3.98

FT 52.63 39.19 1497288 592 591563 2002030 3.38

JWS 51.57 32.32 1250669 783 568257 1367240 2.41

ZIFF 51.64 38.84 1854136 784 799525 2500096 3.13

LATIMES 38.91 20.15 1624401 729 498360 976600 1.96

The Precision of The Proposed Algorithm versus Density of

Substring for Several Collections

0

10

20

30

40

50

60

70

80

90

100

0.05 0.1 0.2

Density of Substring

P
re

c
is

io
n

 i
n

 % FBIS

FT

JWS

LATIMES

RFC

ZIFF

Average of % Precision

density

collection

Figure 6. The precision characteristic of the LCCW

algorithm versus the density of the Bloom Filter.

Tabel 1. Statistic of the testbed

258

6. Conclusion and Future Work

Unlike a numerical based comparison, in the

previous research, that is lost the location of the

common parts, the proposed algorithms called the

LCCW can find not only the common parts but also the

location of the common parts. Therefore, the LCCW

can fulfill the aim of the creation of the plagiarism

detection tool. Moreover, the LCCW is also reluctant

to insertion or deletion of words in document. Based

on the experiment, it can be concluded that the

proposed algorithm outperform the Suffix Tree

algorithm in case of the length of the observed

paragraph below one hundred words. Therefore, the

LCCW algorithm is suitable to be implemented in an

environment of plagiarism detection whereby the

comparison can be conducted paragraph by paragraph.

The weakness of the proposed algorithm is the

loading time. There is a possibility that has to be

explored in depth in order to reduce a loading time, for

instants by selecting only the relevant paragraphs that

will be loaded or by pipelining between loading and

comparing paragraph. A selecting relevant paragraph

needs an appropriate filtering method so that the

reduction of the detection precision can be minimized.

Meanwhile, building pipelining between loading and

comparing process needs a selecting the appropriate

size of the bloom filter that has to be fragmented so

that the overall time can be minimized.

References

[1] Jafri,S. B.A., Khalid, A. and Atiq-us-Salam: Plagiarism

: Opportunities and challenges in age of the Internet.

Retrieved September 27,2004 from

http://www.basitali.com/plagiarism.html (2002)

[2] Lukashenko, Roman et al. Computer-based plagiarism

detection methods and tools: An overview. International

Conference on Computer System and Tools-

CompSysTech’07. (2007).

[3] Manber, U.: Finding similar files in a large file system.

ACM Journal (1994)

[4] Brin, S., Davis, J., & Garcia-Molina, H.: Copy detection

mechanism for digital documents. ACM Journal on

SIGMON, San Jose, CA USA (1995)

[5] Shivakumar, N. & Garcia-Molina, H. SCAM: A Copy

detection mechanism for digital documents. ACM

Journal (1995)

[6] Monostori, K., Zaslavsky, A., & Schmidt, H.: Parallel

and distributed document overlap detection on the web.

Workshop on applied parallel Computing. PARA2000,

Bergen, Norway (2000)

[7] Zaslavsky, Arkady et al.: Using copy-detection and text

comparison algorithms for cross-referencing multiple

editions of literature works. s of the 5th European

Conference on Research and Advanced Technology for

Digital Libraries (2001)

[8] Finkel, R.A, Zaslavsky, A., Monostori, K. & Schmidt

H.: Signature extraction for overlap detection in

documents. Proceedings of the 25th Australian

Computer Science Conference, Monash University,

Melbourne (2002)

[9] Chowdhury, et al.: Collection statistics for fast duplicate

document detection. ACM Transaction on Information

System Vol 20 No 2 (2002)

[10] Zhang, T., Damerau F.,&Jonhson D.: Text chunking

based on a generalization of winnow. Journal of

Machine Learning Research 2 (2002)

[11] White, D.R. & Joy, M.S.: Sentence-based natural

language plagiarism detection. ACM Journal on

Education Resource in Computing, Vol 4 No.4. (2004)

[12] Baeza-Yate, R. & Ribeiro-Neto, B.: Modern information

retrieval. Addison Wesley (1999)

[13] Sediyono, A. & Ruhana: A new architecture of bloom

filter for string matching. KMICE08: International

Conference on Knowledge Management. Langkawi,

Malaysia (2008)

[14] Conrad, J.G., Guo Xi S. & Schriber C.P.: Online

duplicate document detection : Signature reliability in a

dynamic retrieval environment. CIKM, New Orlean,

Louisiana, USA. (2003)

[15] Broder, A., Glassman, S., Manasse, S, & Zweig, G.:

Syntactic clustering of the web. In Proceedings of the

Sixth International World Wide Web Conference

(WWW6’97). Santa Clara, CA. (1997)

[16] Niezgoda, S. and Way, Thomas. SNITCH: A Software

tool for detecting cut and paste plagiarism. SIGCSE’06.

Houston, Texas, USA. (2006)

259

