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A R T I C L E  I N F O  A B S T R A C T  

Keywordr: Many real life problems can be modeled as nonlinear discrete optimization problems. Such 
Discrete filled function problems often have multiple local minima and thus require global optimization methods. 
Discrete global optimization Due to high complexity of these problems, heuristic based global optimization techniques 
Nonlinear discrete optimization are usually required when solving large scale discrete optimization or mixed discrete opti- 
Heuristic mization problems. One of the more recent global optimization tools is known as the dis- 

crete filled function method. Nine variations of the discrete filled function method in 
literature are identified and a review on theoretical properties of each method is given. 
Some of the most promising filled functions are tested on various benchmark problems. 
Numerical results are given for comparison. 
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1. Introduction 

Many real life applications, such as production planning, finance. scheduling. and operations involve integer valued deci- 
sion variables. We distinguish between discrete optimization problems, where all decision variables are integer valued. and  
mixed discrete optimization problems. where only some of the decision variables have integer values. The latter type are 
often decomposed into purely discrete and continuous subproblems. respectively, and hybrid algorithms for their solutions 
are  developed on this basis. The discrete parts of these hybrid algorithms are  similar in nature t o  the purely discrete algo- 
rithms, which w e  address in this paper. Most practical discrete and mixed discrete optimization problems are nonlinear and 
known to have more than one locally optimal solutions. This suggests the need for global optimization techniques which 
seek the best solution amongst multiple local optima. Global optimization problems may be unconstrained or  constrained. 
and different algorithms have been developed. depending on whether constraints are present as  well as on the  nature of 
these constraints. 

The challenge in global optimization is to  avoid being trapped in the basins surrounding local minimizers. Several global 
methods have been proposed for solving discrete optimization problems. These techniques can be classified into two 
main categories: exact methods and heuristic methods. The branch and bound method [ I  8.20.211, the cutting plane method 
[7.10.45]. Lagrangian relaxation (9.13). t h e  nonlinear Lagrangian relaxation method [40.41]. the discrete Lagrangian 
method (38,391, dynamic programming 1221, and relaxation techniques [3,17.29] a re  popular exact methods. These exact 
methods can ensure that a global solution is found when  solving small size discrete optimization problems. However, such 
methods require excessive computational t ime when  solving large scale problems. Furthermore, only well-structured 
problems with good analytical properties can b e  solved efficiently using these exact methods. 
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Since nonlinear discrete optimization problems are generally NP-hard. there are no efficient exact algorithms with poly- 
nomial-time complexity for solving them. Hence. a heuristic computational approach is required. especially for high-dimen- 
sional problems. The heuristic methods include greedy-search (1.4.6.81. simulated annealing (24.30). genetic algorithm 
(2.34.371, tabu search [14.23], and filled function techniques. Though these methods cannot guarantee a global solution, sat- 
isfactory results can often be found for high-dimensional nonlinear discrete optimization problems in a reasonable amount  
of computational time. 

The discrete filled function method is one of the more recently developed global optimization tools for discrete optimi- 
zation problems. Once a local minimum has been determined by an ordinary descent method, the discrete filled function 
approach introduces an auxiliary function to avoid entrapment in the basin associated with this minimum. The local min- 
imizer of the original function becomes a local maximizer of the auxiliary function. By minimizing the  auxiliary function. the 
search moves away from the current local minimizer in the hope of escaping the basin associated with this minimizer. Note 
that the auxiliary function is defined in terms of one or more parameters and needs to possess certain properties, details of 
which are discussed in Section 3. The first filled function was introduced by Ge in the  late 1980s [ I l l  in the context ofsolving 
continuous global optimization problems. In [12], Ge and Huang extended the continuous filled function concept to solve 
nonlinear discrete optimization problems. where a continuous global optimization problem is formulated to approximate 
the discrete global optimization problem. before solving it by the continuous filled function method. When a global mini- 
mizer of the continuous approximation is found. the nearest integer point is used to approximate the global solution of 
the discrete problem. However, the approximatingcontinuous optimization problem always generates more local minimiz- 
ers than the original discrete one, thus making it more difficult to  determine a global solution. Numerical results reported in 
1261 have shown that the true global minimizer is difficult to determine using this approach. A detailed analysis of the con- 
tinuous filled function can also be found in 1261. 

Zhu 1461 is believed to be the first researcher t o  introduce a discrete equivalent of the continuous filled function method 
in late 1990s. Such an approach is now known as a discrete filled function method or discrete global descent method. A dis- 
crete filled function method is able to  overcome the difficulties encountered in using a continuous approximation, as  dis- 
cussed above. However. the filled function proposed by Zhu contains an exponential term. which consequently makes it 
difficult to  determine a point in a lower basin [26.27]. Since then. several types of discrete filled functions with improved 
theoretical properties have been proposed in [16.27.28.32.33,42-443 to enhance computational efficiency. 

The discrete filled function approach can be described as follows. An initial point is chosen and a local search is applied to 
find an  initial discrete local minimizer. Then. an auxiliary function. called a filled function, is constructed a t  this local min- 
imizer. By minimizing the filled function, either an improved discrete local minimizer is found or the boundary of the  fea- 
sible region is reached. The discrete local minimizer of the filled function usually becomes a new starting point for 
minimizing the original objective with the hope of finding an improved point compared to  the first local minimizer. A 
new filled function is constructed a t  this improved point. The process is repeated until no improved local minimizer of 
the earlier filled function can be found. The final discrete local minimizer is then taken as  an approximation of the global 
minimizer. 

I f  a local minimizer of the filled function cannot be found after repeated searches terminate on the boundary of the box 
constrained feasible region, the parameters defining the filled functions are adjusted and the search is repeated. This adjust- 
ment of the parameters continues until the parameters reach their predetermined bounds; the best solution obtained so far 
is then taken as the global minimizer. Note that some filled functions have one parameter (such as those in (16.32.431). while 
the rest are equipped with two parameters. The latter filled functions often have one parameter which is partially dependent 
on the other and this requires additional steps when tuning the parameters in order to satisfy the required convergence cri- 
teria. Note that each filled function discussed here has unique characteristics. The complexity of each filled function is also 
dependent on its associated algorithm, as discussed in detail in the following sections. 

Consider the following nonlinear discrete optimization problem: 

min f(x), s.t. x E X, (1) 
where X = {x c 6 xi 6 Zn is the set of integer points in R", and xi,mi,, xi .,,,. i = 1,. . .,n. are given bounds. Let 
x, and x, be any two distinct points in the box constrained set X and observe the following assumptions: 

Assumption 1. There exists a constant K  satisfying 

1 < max JJx, -x2)) $ K < ~ o ,  
xi ,X2 EX 
XI f X2 

where JI. ( I  is the Euclidean norm. 

Assumption 2. There exists a constant L: 0 < L < m. such that 

Most discrete filled function methods are designed to solve box constrained problems. Unconstrained and more generally 
constrained problems may be converted into an  equivalent box constrained form. For example, consider the following 
unconstrained discrete optimization problem. 
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min f (x), s.t. x E Hn. ( 2 )  

Iff is coercive. i.e., Ax)-. + w as ( 1  xll-. + w. then there exists a box which contains all discrete minimizers off.  Hence. the 
formulation in (2) can be transformed into an equivalent formulation in (1 )  and thus can be solved by any discrete filled 
function method. Many discrete filled function algorithms in the literature. such as those in [16.27.28,44]. are also directly 
applicable to  linearly constrained problems a s  long as  the resulting feasible region is convex and pathwise connected. 

As for generally constrained problems. the  nonlinear constraints are  usually handled with a penalty method. Consider the 
following general nonlinear constrained discrete optimization problem. 

where A = {x E Zn : gi(x) < 0, i = I , .  . . , m )  and hn is the  set  of integer points in Rn. In 1261. the  constrained problem (3)  is 
converted into a n  equivalent box constrained problem by adding a penalty term to the  objective function f, i.e.. 

where a. is a sufficiently large parameter. Note that it is difficult to  determine an exact penalty parameter when  solving 
these NP-hard problems and thus only approximate solutions can be determined. Note also that  the discrete filled function 
method in [43] takes a different approach and incorporates constraints directly into the formulation of the filled function. 
The purpose of this paper is to  review several discrete filled functions and their associated algorithms as  proposed in the  
literature. The remainder of this paper is organized as follows. We review the basic discrete optimization concepts and pres- 
en t  a generic discrete filled function algorithm in the following section. Then, w e  discuss several individual discrete filled 
function formulations. their properties. and particulars of their associated algorithms in Section 3. The performances of se- 
lected filled function algorithms when applied to  several test problems are compared in Section 4. 

2. Discrete optimization: concepts  a n d  approach  

2. I .  Preliminary concepts 

We recall some definitions and concepts used in the discrete optimization area. 

Definition 1. A sequence { x ( ~ ) } ~ ~ ~  between two distinct points x* and x** in X is a discrete path in X if x(O) = x*. x('+') = x", 
x(') E X  for all i, x(') # xti) for i # j, and ~lx("') - x(')ll = 1 for all i. If such a discrete path exists. then x* and x*' are  pathwise 
connected in X. If every two distinct points in X are pathwise connected in X. then X is a pathwise connected set. 

Definition 2. For any  x E X, the neighbourhood of x is defined by N(x) = { w  E X(w = x f ei: i = 1.2.. . . .n). Here, e i  denotes t h e  
ith standard unit basis vector of Rn, with the  ith component equal to  one  and all other components equal to  zero. 

Definition 3. The set  of all feasible directions at  x E X  is defined by D(x) = {d E Rn : x + d E N(x)) c E = { & e l , .  . . ,&em).  

Definition 4. d E D(x) is a descent direction off  a t  x iff(x + d )  <Ax). 

Definition 5. d*  E V(x) is a discrete steepest descent direction off a t  x if it is a descent direction and fix + d*) <f(x + d )  for 
any d E D(x). 

Definition 6. x* E X  is a local minimizer of X iff(x8) <fix) for all x E N(x*). Iff(xt) <Ax) for all x E N(x*)\x*, then x* is a strict 
local minimizer off. 

Definition 7. x* is a global minimizer off ifflx*) <f(x) for all x E X. Iff(x*) <Ax) for all x E X\x*, then x' is a strict global min- 
imizer off. 

Definition 8. x is a vertex of X if for each d E D(x). x + d E X  and x - d $X. Let X denote the set  of vertices of X. 

D~finit inn 9 p* r f ic a d i c r r ~ t ~  hacin nf f rnrreznnnrliny tn x* i f  it cat icf i~s the  follow in^ conditions: 
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It is pathwise connected. - It contains x'. 
For each x E B', any connected path consisting of descent steps and starting a t  x converges to x*. 

Definition 10. Let x* and x** be two distinct local minimizers off.  Iffix'*) <fix*). then the discrete basin B" off associated 
with x** is said to  be lower than the discrete basin B* off associated with x* 

Definition 11. Let x* be a local minimizer of -f. The discrete basin of - fa t  x' is called a discrete hill off a t  x*. 

Definition 12. Let SL = {X E X:J(x) <fix*)] and SU = {x E X:flx) 2 Ax')). 

A discrete filled function is defined as an auxiliary function constructed a t  a local minimizer of the original function f. 
where the local minimizer off  becomes a local maximizer of the auxiliary function. By minimizing the auxiliary function. 
the search moves away from the current local minimizer in the hope of escaping the basin associated with this minimizer. 
Note that the auxiliary function is defined in terms of one or more parameters and needs to possess certain properties. de- 
tails of which are discr~ssed in the next section. 

2.2. Generic discrete filled function approach 

We present the generic lrarnework of a discrete filled function algorithm. The main algorithm requires repeated searches 
for a local minimum. We thus state the local search as a separate algorithm (see Algorithm 1). The global algorithm involves 
repeated construction of an  auxiliary function in the hope of escaping basins associated with local minimizers. 

Algorithm 1 (Discrete Steepest Descent Method) 

1. Choose an initial point x E X. 
2. If x is a local minimizer o f f ,  then stop. Otherwise. find the discrete steepest descent direction d' E D(x) off. 
3. Set x := x + d*. Go to Step 2. 

Remark 1.  Note that some methods in the literature, such as 132,461, merely require a discrete descent direction a t  Step 2, 
rather than a discrete steepest descent direction. 

Algorithm 2 (Discrete Filled Function Method). 

1. Initialization. 
Set the bounds of each parameter in the formulation of the discrete filled function. 
Initialize the parameters. 
Identify suitable reduction or increment strategies for each parameter. Choose an initial starting point Q EX.  

2. Local search of the original function. 
Starting from &, minimizeflx) using Algorithm 1 to obtain a local minimizer x* off. 

3 .  Neighbourhood search. 
(a )  Identify the neighbourhood of x* as N(xC) = {w,.w,. . . ..w,), where q is the total number of points in N(x*), q ,< 2n. Set 

e =  I. 
(b)  Define the current point, x, := w,. 

4. Local search of discrete filled function. 
Let G,. denote the discrete filled function associated with x'. 
Minimize G .  using Algorithm 1 starting from &. 
Let x be the obtained local minimizer of G,. . 

5. Checking the status of 2. 
If f (x)  < f (x'), set % := x and go to Step 2. Otherwise. go to Step 6. 

6. Checking other search directions. 
At this point, the algorithms in (27.28.441 will adjust the parameters of the filled function and return t o s t ep  4 i f x  E X \ 2. 
Otherwise, along with most of the remaining algorithms. they set L : =  P +  1. 
If e < q, all of the algorithms return to Step 3(b). 
Otherwise, the parameters of the filled function are adjusted before returning to  Step 3(a ) .  
If all the parameters of the filled function exceed their prescribed bounds anywhere in this step, the current value of x* is 
taken as the global minimizer. 
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Remark 2. Some methods in the literature. such as  [32,33.44]. replace N(x*) in Step 3 with M = {w,.wz.. . .,w,), where wi, 
i = 1.. . ..q, are randomly chosen from X. Also. q needs to be chosen by the  user in this case. 

Remark 3. Some algorithms [16,27.28.33.42] d o  not require a local minimizer of G,. in Step 4. Instead. in the at tempt to  
reduce G,. if any point xk is found such thatJ(xk) <Ax*), they set  & :=xk and go back to Step 2. 

Remark4. Both functions f and G,. are  minimized subject toX. except in [43]. The feasible regions off and G,. a re  defined by 
A and X. respectively. in [43]. 

Remark 5. Note that  the methods in [16.27,28.44] define X via upper and lower bounds on  the  variables as  well as  a se t  of 
linear inequality constraints. 

Remark 6. A slightly different approach is proposed in 1271 for Step 4. Iff and G,. share a t  least one  common descent direc- 
tion. the authors choose a steepest descent direction which results in the maximum reduction for f + G,.. If such a direction 
does not exist, the method reverts to  find a steepest descent direction for G,. only. 

For a clearer picture on how the  filled function algorithm works. w e  consider a n  illustrative example in the next 
subsection. 

2.3. Illustrative example 

1 
min f (x) = 2x: - 1.054 +-X; - xlx2 + x;, 

6 

s.t. xi = -2000 < y, < 2000, -1500 < y, < 1500, yl,y2 integers. 
1000 ' 

Problem (6) is the  3-hump back camel function proposed in [5] which has 1.2007001 x l o 7  feasible points. This box con- 

strained problem has a global minimum solution a t  x;,,,,, = [0, OIT with f x;,,~,, = 0. The discrete filled function method in ( 1 
[27] is used to solve this problem. The algorithm begins with a point & = 11.500.1.500]~ withJ(&) = 1.0828125. By using t h e  
discrete steepest descent method, a n  initial local minimizer of xi  = [ I  ,748, 0.8741~ is found with f (x;) = 0.2986396. Next. a 
discrete filled function, G,;. is constructed at  x;. Starting with a point in N(x;). x, = [1.749.0.874IT. Algorithm 1 is used t o  

minimize G,; and a local minimizer. x = [0.302, 0.5351~. with f(x) = 0.2984554. is found. Since f(x) < f (x;). the original 

function f is minimized once more. starting a t  & = k, and the second local minimizer x; = [0, OIT. with f (x;) = 0, is obtained. 

Next, a new discrete filled function G,; is constructed a t  x; = [0, OIT. A neighbourhood point of x; = 10, OIT, namely 

& =  [1,OIT, is chosen. and G,; is minimized starting a t  x, The local minimizer of  G,; is a vertex, x = j2.000, 1.5001~. but  

f(x) > f(x;). Other searches for a minimum of  G5 in a lower basin are then carried out. starting from [O.1IT, [-1.01~. and 
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10.-l]T, respectively. Since none of these yield an  improved point, the parameter of G,; is adjusted. The revised G,; is then 
minimized once more starting from each of these neighbourhood points in turn. When no local minimizer of C,; in a lower 

basin is Found and the  termination criteria is met, x; = (0, OIT is taken to be the global solution (see Fig. 1). 
In the next section, w e  discuss and analyze various discrete filled function methods from the literature. 

3. Discrete filled funct ion methods  

3.1. Discrete jilled finction in Zhu [46] 

Zhu is believed to be the first researcher to adapt the continuous filled function approach directly for solvingdiscrete opti- 
mization problems. Let x* denote the current discrete local minimizer. A filled function dependent on parameters 0 and p is 
defined as 

Assuming that p and B are chosen so that 

and 

where f is a n  upper bound off  over X and h < min {flxl) -f(x2)~:f(xl) #Ax2).xj E X .  J = 1.2). the filled function (7)  has the 
following properties: 

- GHpx. (XI + d) <: (x*), for all d E V(x'). - Givenflx,) 2 flx*).flx2) 3 AX*). and ((x2 - x*l12 < llx, - x*112. Ge,p,x.(~l) < G8,,.(x2) (i.e. iff increases. Ge,p,x. decreases). - For any x EX. 
- Gop,x. (x) < 0 * f (x) < f (x' ) : 
- Gep .x . (~ )>O*f (~ )  >f(x*).  - Let x, E X  such that  Axl)  2 Ax*). 
- If there exists d E Z)(x,) such that Ge,p,x.(xl + d )  < 0: or  
- If I{d E Z>(x,) : xl + d E X)J = n and there exists d E V(xl) such that Cop,. (xl + d) < Gop,,. (x,); or 
- If J{d E V : xl + d E X)] > n; then there exists some d E V(xl) such that  Gp,p,x. (xl + d) < Geptx. (x, ) < Gp,p,. (x*). - Any discrete local minimizer of the discrete filled function GQ,,. must be in the set S,  or X. 

Zhu suggests that  the algorithm should stop when all searches for a minimum of &,. starting in N(xR) terminate a t  ver- 
tices without finding an improved point off. Note that  the algorithm in 1461 does not require updating of the  parameters 0 
and p. Thus, the final x* is assumed to be the global minimum. Two numerical examples are demonstrated to test the effi- 
ciency of this filled function. However, the disadvantage of his method is that it is almost impossible to find a negative filled 
function value that would indicate that a point in a lower basin exists. This is because the discrete filled function contains an  
exponential term, making it i l l  conditioned and also leading to poor efficiency as noted in 1271. In addition, it is difficult to 
determine suitable values of h and f ,  thus making it difficult to find suitable values for parameters 0 and p. 

3.2. Discrete Jilledfinction in Ng et  01. 1281 

A new discrete filled function with improved theoretical properties was proposed in 1281 several years later. Recall that B' 
denotes a discrete basin off that contains the current discrete local minimizer x'. According to [28], a function G,,,,,. is de- 
fined to be a discrete filled function off a t  x* if it satisfies the  Following: 

x* is a strict local maximizer of  G,,,?.. - Gp,pJ. has no discrete local minimizers in B* or in any discrete basin off higher than B*. - Iff has a discrete basin B" at  x** which is lower than B*. then there is a discrete point x E B" that minimizes G,,,,. on a 
connected discrete path {x', . . . ,x, . . . ,x") in X. 

The discrete filled function proposed in [28] is 

where p and p are parameters which satisfy certain properties as detailed below. 
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- Recall the meaning of K and L from Assumptions 1 and 2. Suppose that x E SU. 
- If p > 0 and 0 < p < 5, then G ,,,. ( j i )  < 0 = G,,,,. (x*). 
- I f  p > 0 and 0 < p < &. then for each d E D(1) such that f (2 + d)  a f (x') and 1 1 %  + d - x.11 > 11% - x.11, G/t.,,- (X + d)  < 

GP.,x. (2) < 0 = G/I.py (x'). - If p > 0 and 0 < p < 3, then x* is a strict local maximizer of G,,,,.. Ifx' is a global minimizer off. then G,:,,,. (x') < 0. for all 
X E X\X*. - Let xl.x2,x* be three distinct points in X. If 11x2 - x*(l > llxl - x*ll. then 1 < Ilx2!~I~~~~-x.ll < 2 ~ ' .  - Let x,.x2 E X  be two points such that 0 < Ilx, - x*II < llx2 - x*ll and fix*) < Axl) <flx2). If p > 0 and 0 < p < A. then 
- Gp.pir. (XZ) < Gicp,x-(xl) < 0 = G/r.p,x- (x.1; 
- G,:,,.(x') has no local minimizers in B* or in any discrete basin off  higher than B*. - For every x,x4 EX, there exists d E E such that IIx+ d - x'II > llx - x*)I. - Let x* E X  and x E X  be the local minimizers off and G,,,,., respectively. If p > 0 and 0 < p < &. then 
- f (x + d)  < f (x.) for all d E D(x) when f (x) a f (x'). 
- x is in a basin B** (associated with a local minimum x") of f  which is lower than basin B* (associated with x*). 

Both p and p are initialized as 1. This filled function ensures that a local minimizer of G,,,. is either a better point in a 
lower basin or  a vertex ofX. It is not necessary to find the minimizer of G,,,;,. i f  a point x k  withflxk) <Ax*) is found in Step 4 
ofAlgorithm 2. Since x k  is an improved point, the algorithm sets x,, := q and returns to Step 2 to minimize the original func- 
tionf. If  the minimizer of G,,,,. is not a vertex. ,u is reduced via ,u := p/10 and G, , , .  is minimized once more starting at  the 
same x, When no improved point is found after the minimization process for G,,,x. ends up at  a vertex, then set e := e +  1 
and return to Step 3(b). I f  E > q, p is reduced. The algorithm terminates when the lower bound of p. p,. is met. Several test 
problems were investigated in [28] and the proposed discrete filled function was shown to be efficient in solving large scale 
problems involving up to 200 variables. Note that p L  was set to 1 for the computations in [28] and further reduction of p was 
not necessary since all test problems yielded the global solution when p = 1. According to one of the characteristics of this 
filled function. x. the local minimizer of G,.,,,,.. lies on a discrete path {x', . . . , x, . . . , x*') in X that connects the current basin 
B* at  x* to a lower basin B". However, the properties of this filled function do not guarantee that x is a true minimizer of the 
original function. A revised discrete filled function is proposed in [27] to overcome this difficulty. 

3.3. Discrete filled function in Ng et a!. 1271 

Based on the work in (281. a new discrete filled function G,,,,. at  x* is defined as follows: 

where w > 0 is a sufficiently small number and 0 < c < 1 is a constant. The function GI,.,, (x) is a discrete filled function when 
certain conditions of the parameters p and p are satisfied as detailed in the following conditions: 

- x* is a strict local maximizer of G,,,,.. - - G,,,, has no local minimizer in.the set SU \ X. - x*. E X  \ 2 is a local minimizer off  if and only if x** is a local minimizer of G,,,,.. In short. x** E SL. - If p > 0 and 0 < jr < min{l,$}, then x* is a strict local maximizer of G,,px.. If x* is a global minimizer off, then G,;,,,.(x) < 0 
for all x E X\x*. - Let d E D(X) be a feasible direction at  i E Su such that (li + d -x'JI > 1 %  - x.11. If p > 0 and 0 < p < min{l,&). then 
Gp,px (% + d) < G,,,,x- (%) < 0 = Gp,p,- (x'). - Let x** be a strict local minimizer off withflx") <fix*). If p > 0 is sufficiently small and 0 < p < 1, then x" is a strict local 
minimizer of G,,,,. . - Let x be a strict local minimizer of G,,,,. and d E V(x) be a feasible direction a t  xsuch that Ilx+ d - xx'II > Jlx - x'II. If p > 0 

is sufficiently small and 0 < p < min {I,&-), then x is a local minimizer off  - Assume that every local minimizer off is strict. Suppose that p > 0 is sufficiently small and 0 < p < min{l,&). Then. 
x'. E X  \ 2 is a local minimizer off with Ax**) <Ax*) i f  and only if x" is a local minimizer of GI,,,,.. 

This is an  improved version of the discrete filled function in [28], to ensure x coincides with x**. In other words, every 
local minimizer of the discrete filled function G,:,,. is also a local minimizer for the original functionf. Both C( and p are ini- 
tialized as 0.1. The parameter p is reduced i fx  is neither a vertex nor an improved point by setting p := p / l 0  and returning to 
Step 3(a). When all the searches end up  at  vertices, set C:= E + I and return to Step 3(b). Another parameter p is adjusted 
when e >  q. Similar to [28]. the algorithm for minimizing G,,,,. exits prematurely when an  improved point xk with 
Axk) <Ax*) is found in Step 4 of Algorithm 2. The algorithm sets xo := & and returns to Step 2 to minimize the original 
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function lr. Note that a direction which yields the greatest improvement off  + Gp,p,x. is chosen when minimizing G,,,,.,. . 
assuming that a direction for improvingfand C,,,,. does exist simultaneously. If such a direction does not exist. the algo- 
rithm chooses the steepest descent direction such that C,,,,.(x, + d') < C,,,,.(x,). The algorithm terminates when p~ = 0.1. 
Note that p is fixed a t  0.1. since all test problems yield a global solution with this setting. The filled function in (9) is shown to 
increase computational efficiency when compared with that in (28). Several test problems with up to 1.38 x l0 lo4  feasible 
points were solved using this method. 

3.4. Discrete filled function in Yang and Liang [42] 

A two parameter exponential filled function, 

1 
G0.b (XI = a + , I x  - x. , I  T(max{f(x) -f (x*) + b, O)), 

where 

is introduced in [42]. Let SM represent the set of discrete local minimizers off, a < 0, and 

Go,b,x. is a discrete filled function off if (x) has the following properties: 

x* is a strict discrete local maximizer of Go,by- 
has no discrete local minimizers in SU. 

If x' is not a discrete global minimizer off, then Co,b.x- does have a discrete minimizer x E Sr.  
For any XX* EX, there exists d E V(X) such that Ilx + d - x*ll< Ilx - ~ ' 1 1 .  
Let x,, x2, x* be three distinct points in X. If ((x2 - x*ll > /lxl - xC((, then < 1 - 4 

2 6  - 
If. for any x,, x2 E X ,  
- 11x2 - x*ll > 11x1 - x'll. 
- Ax1) > Ax*). 
- fix2) -AX*) + b > 0. 
then Co.b,x. ( ~ 2 )  < Co,b.x. (XI 1- 

The parameters a and b are initialized as 0.01 and 1,  respectively. When all the search directions from x* have been uti- 
lized but no improved point off is found (i.e.. C > q)  in Step 6 ofAlgorithm 2. the user proceeds as follows. If a > 1 o - ~ .  only a is 
reduced by a factor of 10. Otherwise, both a and b are reduced by a factor of 10. The algorithm terminates when b g lo-'. 
Note that it is not necessary to find the minimizer of Go,,,. for this algorithm. As long a s  a point x, wi th jx , )  <fix*) is found 
when minimizing Cob,.. the algorithm reverts to f to  minimize the original function. As in (28). a local minimizer of this filled 
function is not guaranteed to be a true local minimizer of the original functionf. 

3.5. Discrete filled hnction in Shang and Zl~ang 1321 

A third exponential filled function is suggested in (321. Let x* be the current local minimizer and choose any x,, such that 
A&) 2 Ax*). According to (321, G,,,,,,. is called a discrete filled function off  a t  x* i f  C,,:,. has the following properties: 

- G,:,,,. has no local minimizer in SU\(~) and G is not necessarily a local minimizer of G,,,.. 
If x* is not a global minimizer off, there exists a local minimizer x E SL of G,.,:,. such that f (x) <f(x*). 
For any x E X, if x # x,,, there exists d E D(x) such that JJx + d -%JJ < I J x  -xoll- 

A discrete filled function is defined as 

where w > 0 is a parameter to be chosen and the prefixed point x, satisfiesax,,) >AX*). The functions [(t) and t(t) have the 
following characteristics: 

. [(t) and c(t) are strictly increasing for any t E [0.+m). - ( ( 0 )  = 0 and €(O) = 0. - {it) -+ C>  0 as x + + m, where C > maxx,~i(llx - xoll). 
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In addition, the following conditions hold for G,,,.: 

. G,,?. has no local minimizer in Su\(%] for any n > 0. 

Suppose SL # 0. If m satisfies m > ' - ~ ~ ~ ~ ~ - ( ~ ~ ~ ~ . $ 1 ~ 2 ) ,  where i. is a global minimizer off. then G.,,. has a local minimizer 
in .?.~ -.. - L- 

O Suppose that E is a small positive constant and m satisfies n > w. Then. given any x* of f such that 
f (x*) 3 f (r) + E. where ? is a global minimizer off, Gw,x. has at  least one local minimizer in SL. 

Instead of  performing a neighbourhood search in Step 3 of Algorithm 2. the implementation in 1321 uses any initial point 
on the boundary of X to minimize G,;,,.. In [32]. the parameter a is fixed to 400.5(10fi + 1). where n is the dimension of a 
problem. For each subsequent initial point drawn from the boundary of X. i := i + 1. the algorithm terminates when i = 10". 
Every local minimizer of G,,,x. is assumed to be an improved point (Step 5 of Algorithm 2 is bypassed). Though this filled 
function has only one fixed parameter. the local search of G,,,,. can become computationally intensive due to the large 
number of initial points that may need to be tested before the termination criteria is met. A nonlinear box constrained prob- 
lem with up to 1.71 x 10' feasible points was solved in 1321. Similar to [28.42]. a local minimizer of the filled function G,,,. 
is not necessarily a local minimizer of the original function f. Furthermore, a prefixed point % is required a t  the beginning of 
the algorithm. resulting in the minimization process typically converging to % rather than an improved point of the original 
function. A refined formulation of this filled function is suggested in [33]. 

3.6. Discrete filled function in Shang and Zhang 1331 

Let 

ln(1 + q maxCf(x) -f (x*) + 6,0)) 
G6:q.x' (x) = 1 + Ix - x*(I 

be a discrete filled function off with q > 0 and 

0 < 6 < min If(x,) -f(xz)l. 
XI . x ~ E X  
x1 +xz 

It has the following properties: 

x* is a strict local maximizer of Gb,qx.. 
IfAx) 2 Ax*) and x # x*. then x is not a local minimizer of G6,qA-. 
If x* is not a global minimizer offlx). there exists a local minimizer x of G,,q,x. in SL. 
If x l r 2  E X  are two distinct points which satisfy 
- Axl) 3 AX*) and f x2) >Ax*), and 
- 11x1 - X*II > I IXZ - x311 > 0, 

then G6,qr. (xl)  < Gd,qx(~2)  when q > 0 is sufficiently large. 
For any x1.x2 E X which satisfy 
- Ax21 2 Ax*) >Axl), and 
- 11x1 - x*II > 11x2 - x* I 1  > 0. 
G6,q.r (XI ) < G6,q~- (XI)- 

This filled function overcomes the prefixed point issue in [32] to ensure a better point of the original function is attained 
and suggests the use of an additional parameter. The initial settings for 6 and q are 60 = 1 and qo = 100, respectively. A random 
initial point in X is used to minimize GJ,,,. instead of a neighbourhood point. as suggested in Step 3 of Algorithm 2. If no local 
minimizer of Gn,qr is found along the search from this random point, another initial point in X is drawn and i := i + 1. When 
i > 2n, q := 1Oq and q < lo5, the user sets 6 := 6/10 and q := qo in Step 6 of Algorithm 2. Then. i is reset to 1 and G6.qx. is min- 
imized again from the same starting point with the new parameter values. Similar to the approach in [42], it is not necessary 
to find a minimizer of G6,qx.. The algorithm terminates when 6 < and e = 2n. where n refers to the dimension of the prob- 
lem. Two test problems with up to 1.1739 x feasible points were solved in [33]. Since a local minimizer of this filled 
function is not necessarily a local minimizer of the original functionf, further computation is needed to find the local min- 
imizer off in a lower basin for each local minimizer of Gs,,,. (x) found. 

3.7. Discrete Jlied function in Yang and Zhang 1441 

Suppose q( t )  is a continuously differentiable function satisfying the following conditions: 

~ ( t )  = 9 when t > E: ~ ( t )  = -6' when t ,< -E. 

@(t) 3 0: -€  < t < €. . ,:(n) = n. 
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Suppose also that a function q(t) satisfies 11(0) = 0 and 4(t) > 0. for t 3 0. The filled function in 1441 is given by 

where x,, is a n  arbitrary point in X. 9 is a positive constant, and both E and v are problem-dependent parameters. The prop- 
erties for this discrete filled function are as follows: 

The function G,,,,,. has no discrete local minimizer except at  x,, in the region 5, = (x ~ X : f ( x )  2 Ax*) + E - I)), where E 2 v. 
If v = 0. G,,,,x.(x) has no discrete local minimizer except a t  x, in S2 = {x ~ X : f ( x )  3 Ax*) + 6). - If v = E. G,,,,,x. (x) has no discrete local minimizer except a t  x, in 5,. 
Given v = 0 or v = E ,  if E is sufficiently small and x' is not a discrete global minimizer of/, then G,,,.,x. (x) does have a discrete 
local minimizer x in SL. - If x* is a global minimizer off, then is the unique discrete global minimizer of G,:,,,x.(x) with v > 0. 

The functions q(t) and cp(t) in (13) must be chosen carefully to ensure computational reliability and efficiency. As a guide. 
polynomial functions are suggested in [44] for both ~ ( t )  and cp(t). Based on the characteristics of this filled function. E and v 
are initialized a s  1.0 and 0. respectively. so that there exists a local minimizer of C,.,,. in a lower basin. The disadvantage of 
this filled function is that it depends heavily on the initial point* in computing G,,,;,.. Thus, q has to be chosen carefully and 
plays a crucial role in finding a local minimizer of G,.,.,. such that f(X') 6 f (xi) + 6. where x' is the global m i n i r n ~ ~ m  of the 
original function. I f  a local minimizer of the filled function in a lower basin cannot be determined, then q is taken as its local 
minimizer, with suitable values of E and v. or x, is assumed to be the global solution of the original function. which is not 
likely to happen in practice. The algorithm terminates when E < 0.0001. 

3.8. Discrete$lledfinction in Gu and Wu [16/ 

Gu and Wu propose the discrete filled function 

where 

and 

Define p, = minx,s,Cf(x') - f(x)). I f  the function parameter p  satisfies 

O < P < P o ,  

then the following results hold: 

For all x EX, AX) 2 fix*) is equivalent to G,,. (x) > 1. 
x' is not a global minimizer off if and only if SL # 0 and Po > 0. 
x E SL is equivalent to G,,. (x) < 0. - x' is a strict discrete local maximizer of G,,.. 
If x* is not a global minimizer o f J  then there exists a discrete local minimizer of G,,. , denoted by x. - k is either in SL or 2. 
Given xl,xz E S,, G,,.(xl) > G,,.(x2) is equivalent to Ilx, - x*II < 11x2 -x*ll. 

The parameter p is initialized a s  1 .  It is updated in Step 6 of Algorithm 2 by setting p  :=@/ lo  when all searches a t  x* have 
been used (i.e. ! > q )  but no improved point off is found. The algorithm terminates when e = IO-'. The one-parameter filled 
function suggested here guarantees that the minimizer of Ge,x- is also a minimizer off. Based on this approach, a refined algo- 
rithm which is capable of dealing directly with nonlinear constraints is proposed in (431. 
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3.9. Discrete filled finction in Yang et  al. 1431 

An extended study of the filled function method in [ 1 6 ]  is given in (431 to deal with the nonlinear constrained problem 
( 3 ) .  A one-parameter discrete filled function is defined as 

where 

Y < -r, 

HrQ = (r -2)y3 + (2r-3)y2 
rz + y + l ,  - r < y < O ,  

Y > 0 ,  

and 

Y < 0.5 ,  
rb)= - l s y 3 + 3 6 y 2 - 2 4 y + 5 ,  o . ~ < y g ~ ,  i P: y > l .  

Let f i  = min{po, /J,). where 

a. = ~ p u ( x + )  - f ( x ) )  

and 

min max gi (x)  
= x c q *  ~ s l l  ..... rn) 

I f  the parameter r satisfies 

Grx. is said to be a discrete filled function at x* and the following properties hold: 

x* is a strict discrete local maximizer of G,,. on X. 
If x* is not a global minimizer off. then there exists a x  E SL such that x is a discrete local minimizer of Grx.. 
Any discrete local minimizer of G,,. is either in SL or in 2. 
Given x l , x2  EX\&. Grx.(xl) > Gr,.(x2) i f  and only if 11x1 - x ' I I  < 11x2 - ~ ' 1 1 .  
x E X\SL if  and only if Gr,.(x) > 1. 
x E SL if and only if G,.,. ( x )  = 0 .  

Unlike the other filled functions discussed earlier. this filled function is capable of solving constrained nonlinear problems 
directly. Sets A and X are the feasible regions off and G,,.. respectively. Note that as stated in 1431. the algorithm is incom- 
plete without justifying how to handle the non-feasibility issue of x, if x, E X\A happens to be used at the beginning of the 
algorithm. Based on correspondence with the main author in 143). we suggest an additional preliminary step before Step 1 in 
Algorithm 2 to check if % E A before minimizingJ If this condition is satisfied. then follow Step 1 in Algorithm 2. Otherwise. 
set x* := % and go directly to Step 3 in Algorithm 2. Since the local minimizer of the discrete filled function has to be tested 
for feasibility with respect to the original function, it is not guaranteed to be a local minimizer o f 1  Thus, further computation 
is needed for this single-parameter filled function approach for each minimizer of the filled function found. The parameter r 
is set as 1 at the beginning of the algorithm, reduced by r := r/10 when e > q in Step 6 of Algorithm 2. and the algorithm ter- 
minates when r = 1 o - ~ .  

4. Solutions of test problems 

In this section. we select several promising discrete filled function methods from those described in the previous section. 
based on their theoretical properties and algorithms. These functions are tested on several benchmark problems: Colville's 
function. Goldstein and Price's function. Beale's singular function. Powell's singular function. and Rosenbrock's function. Note 
that our aim is to simply compare the efficiency of different discrete filled function methods without necessarily solving 
high-dimensional problems. Note, though. that these methods have been demonstrated to solve problems involving up to 
200 variables [27.28].  These algorithms are as follows: 

Algorithm A extracted from [ 28 ] .  
Algorithm B extracted from [ 2 7 ] .  
Algorithm C extracted from [ 4 2 ] .  
Algorithm D extracted from [ 4 3 ] .  
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T h e  performance of each  of t he  filled function me thod  used in solving t h e  test problem is summar ized  in t he  following 

subsections.  T h e  final opt imal  solution found for each  a lgo r i t hm is recorded by x;i,,, wi th  i t s  corresponding objective value 

f (x;,,,,). T h e  to ta l  n u m b e r  of original function evaluations.  t h e  total  n u m b e r  of discrete filled function evaluations,  a n d  the  

ratio of t h e  average  n u m b e r  of original function evaluations to reach the  global so lu t ion  to the to ta l  n u m b e r  of feasible points  

a r e  represented  in Tables 1-5 by El. EG, a n d  RE, respectively. 

Table 1 
Numerical results of Problem 1. 

TY PC x, '%"a] f EJ EC RE 

Algorithm A ~l,l.O,O]T [ ~ . ~ . ~ . ~ I T  0 2095 7058 0 01 0772261 
[1.1.1.1]~ [1.1.1.1IT 0 2086 7037 0.01 0725984 
~-lO,lO.-lO,lO]T 11.1.1.1IT 0 3940 10.603 0.020259048 
[-10.-5.0.5]T [ l . l . I . l lT  0 2192 7056 0011271024 
~-lO.O.O.-lO]T [ I , I . I . I ~ ~  0 2226 7059 0.01 1445848 
[O.O.O.O]' [ ~ . l . l . l ~ T  0 2102 7060 0.010808254 

Algorithm B [l.l.O.O]T [1.1,1.11' 0 1426 5097 0007332336 
[1.1.1.1IT [ I . I . I . ~ ] ~  0 1422 5076 0.00731 1768 
[-lO.lO.-lO.lO]T [ l , l . l . l ]T  0 2674 5979 0013749415 
[-10.-5.0,51T [1.1.1.1IT 0 1567 5134 0008057342 
[-lO.O.O.-lO]T f I . l . l . l ]T  0 1557 5098 0.008005923 
(o .O.O.~]~ [ l , ~ , l , l ] T  0 1431 5099 0 007358045 

Algorithm C [I.l.O.O]T [ ~ . l , ~ . l ~ T  0 3041 35.243 0.01 5636489 
[1.1.1.1]~ [ l . ~ . l . I l T  0 2867 34.570 0.014741 800 
1-10.10,-10.10]~ [ 1 , 1 , ~ . 1 ] ~  0 4608 39.849 0023693831 
[-10.-5.0.5IT [1,1.1.1IT 0 3842 37.147 0019755143 
~-10.0.0.-10]~ [ I . I . ~ . ~ ] ~  0 31 74 35.253 0.01 6320360 
IO.O.O.OIT [1 .1 ,1 .1]~ 0 3051 35.254 0 015687908 

Algorithm D [1,1.0.0]~ [1.1.1,IIT 0 1615 15.973 0008304153 
[1.1.1.1]~ [1.1.1.1]~ 0 1435 15.312 0.007378613 
[-10.10.-10.10]~ (l . l . l . l jT 0 4145 2 1.660 0021313136 
[-10.-5.0.5]T [ I . ~ , I . I ~ ~  0 2569 17.483 0013209517 
[-lO,O,O.-lO]T [ I , I . I . I ] ~  0 1748 15.992 0.008988025 
[O.O.O.O]~ [ I . I . I . I ~ ~  0 1625 15,993 0.008355572 

Table 2 
Numerical results of Problem 2. 

Type x, Gna1 f (%"a,) Er EC RE 

Algorithm A 12.-21' [O.-llT 3 51.234 217.255 0.003200525 

[o.-I]' lo.-] I T  3 47.189 217,255 0002947838 

1-2.-21' 10. -1 I T  3 53.675 21 7.255 0 00335301 1 

1-05.-1IT [o.-l I T  3 47,189 21 7.255 0.002947838 
11.-1 5IT [0.-1]' 3 50.723 2 17.255 0 003 168603 

11.-11' lo.-11' 3 47.1 89 21 7.255 0.002947838 

Algorithm B 12.-21' 10.-1 I T  3 25,041 151.356 0 001 564280 
10,-11' [o.-11' 3 18.995 151.356 0.001186594 
[-2.-21' 10. -1 1' 3 24.472 151,356 O.Wl528736 
1-0.5. -1 IT [o.-I]' 3 20.475 151.356 0.001 279048 
11.-1.5IT 10.-]IT 3 22,533 151.356 0001407609 
[1.-1]' [0.-1]' 3 21.978 15 1.356 0 001372938 

Algorrthm C 12. -21' 10.-11' 3 50.028 1 .I 70.1 05 0 003125187 
(0.-]IT [o.-1lT 3 45.983 1.170.105 0.002872501 
I -2. -21' [o.-llT 3 52.469 1 ,I 70.1 05 0 003277673 
(-0.5. -1 I T  lo.-] I T  3 45.983 1.170.105 0.002872501 
[I.-1 5IT 10.-ljT 3 49.51 7 1 .I 70.1 05 0.003093266 

fl .- l lT 10. -7 I T  3 45.983 1.170.105 0002872501 

Algorithm D 12.-21' 10.-1 I T  3 48.030 623.910 0.003000375 
lo.-lfT [O.-1 1' 3 43.985 623.9 10 0002747688 
1-2. -21' 10, -1 I T  3 50,475 623,910 0003153111 
[-0 5.-1IT [o. -1 1' 3 43.985 623.910 0.002747688 
[I.-1.5lT 10.-11' 3 47.51 9 623,910 0.002968453 
11.-11' 10. -1 IT 3 43.985 623,910 0.002747688 



S.F. Woon, V RehbocklApplied Marhematics and Computation 21 7 (2010) 25-41 

Table 3 
Numerical results of Problem 3. 

Type x, Xi,n.~ f (%,,I) Er EC RE 

Algorithm A [lO.-lO]T 13.0.51' 0 408.1 90 1.781.788 0.001 020373 
19.997. -6.8671' 13. 0.51' 0 41 0.442 1.781.788 0.001 026002 
10. -1 1' 13.0.5]' 0 41 5.309 1,781,788 0 001038169 

11.11' [3.0.5jT 0 216.860 1 .I 40.046 0.000542096 
[-2.21' (3.0.51' 0 21 9.484 1.140.046 0.000548655 
[o.olT [3.0.5jT 0 478.1 79 2.049.532 0.001 195328 

Algorithm 8 110.-101' [3.0.5jT 0 11 9.997 1.310.251 0.000299963 
I9.997. -6.8671' [3.0.5IT 0 121.489 1.310j251 0000303692 

10. -1 1' (3.0.5)' 0 129.333 1310.251 0.000323300 
[ l . l I T  [3.0.5jT 0 107.219 723.603 0.000268021 
1-2.21' (3.0.5)' 0 105.842 723,603 0.000264579 
[O.olT (3.0.5JT 0 134.453 776.637 0.000336099 

Algorithm C 110.-10)' [3.015.0.504jTa 0.0000376 100,002 128,430 0.000249980 
19.997. -6.8671' 13.015.0 5041'' 0 0000376 100.002 123335 0.000249980 
10.-I IT 13 015.0.5041'' 0 0000376 100.001 111,165 0.000249978 
[ l . l I T  [2.989.0.497JT' 00000211 100.001 199.532 0.000249978 
[-2.21' [2.989.0.497ITa 0.000021 1 100,001 202.671 0.000249978 
[o.OlT [2.989.0.497jT' 0.00002 11 100,002 206.268 0.000249980 

Algor~thm D [lo.-101' [3.004,0 501 lTa 0.00000255 386.1 83 2.61 0.857 0 000965361 
19.997, -6 867IT 13.004.0.501 IT' 0 00000255 388.440 2.61 0.857 0 000971 003 
[Om-] IT [3 004.0.501 1'' 0 00000255 393.307 2.61 0.857 0.0009831 69 
(1.11' [2 996.0.4991'' 0.00000257 257.134 2.1 10.006 0.000642771 
1-2.21' 12.996.0.499ITa 0 00000257 276,458 2.1 10.006 0 000691 076 
l0.01' 13 004.0.501]T' 0.00000255 494.215 2.71 1.826 0.001 23541 4 

Remarks: The final solution is a local solutlon 

Table 4 
Numerical results of Problem 4. 

4.1. Problem 1: Coiviiie's function [19,27,28,31.42] 

min f ( x )  = 100(x2 -$12 + (1 - x , ) ~  + 90(x4 - $12 + (1 - x , ) ~  

+ 10.1 [(x2 - + (x4 - I ) ~ ]  + 19.8(x2 - l)(x4 - 1) 
s.t. - l O < x i < l O ,  xiinteger, i = 1 , 2 , 3 , 4 .  
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Table 5 
Numencal results of Problem 5. 

TY PC xo xinal I ( G ~ ~ ~ )  EJ EG RE 

Algorithm A 10. . ,0IT 11. . ] I T  0 211.831 682.050 1.95512 x 

13.. .3IT (1. . .]IT 0 418.536 898.526 3 86292 x 1 0-2' 
1-5. .-517 (I.. .I]' 0 21 7.435 682.050 2.00684 x 1 0-2' 
12.-2. .2.-2.2IT 11. . .1IT 0 214.231 682.050 1.97727 x 1 0-2' 
13.-3. .3.-3.31' (1.  . . l jT 0 51 0,907 1.006.01 8 4.71 547 x lo-" 
(5.-5. -5.-5.5IT 11. ..llT 0 512.802 1.006.01 8 4.73296 x 

Algonthm B 10.. ..OlT 11. . .1IT 0 171.072 444.101 1.57893 x 

13.. .3IT [I .  .I]' 0 3 12.888 644.091 2 88783 x 1 o - ~ '  
1-5. ...- 5IT 11. .I]' 0 176,624 444.101 1.63017 x lo-'' 
12.-2.. . .2. -2.2IT 11. . .I]' 0 173.472 444.101 1.60108 x 
13 .- 3. .. .3,-3.3IT (1. . l lT 0 191.402 563.646 1.76656 x 1 o - ~ '  
(5.-5. . ..5. -5.5IT [I. ..I]' 0 193.297 563.646 1.78405 x 

Algorithm C 10. .OIT 10. .OlT A 24 532.603 3.031.547 4.91571 x 

13 ... .3IT [ I .  .1IT 0 627.360 2.824.273 5.79277 x 

1-5. .-SIT 10. .0IT' 24 538.156 3.031.547 4.96696 x 1 o - ~ '  
12.-2. . .2.-2.2IT 10. . O r a  24 534.952 3.031.547 4.93739 x 

13.-3. . -3.-3.3IT 11. .]IT 0 678.295 2.920.682 6.26039 x 1 o - ~ '  
15.-5. . -5.-5.5IT (1. .1IT 0 680.1 90 2.920.682 6 27788 x 1 o - ~ '  

Algonthm D (0. .OIT (0. .0]" 24 182.636 1.493.376 1.68566 x 

13, .3IT 11. . . l lT 0 289.538 1,401 .OOO 2.67232 x 
1-5. . .-51' (0. . .o]" 24 188.189 1.493.376 1 73691 x 
12.-2. . .2.-2.2IT [O. .0ITa 24 184.985 1.493.376 1 70734 x 
(3.-3. ..3. -3.3IT (1. .I]‘ 0 339.380 1.493.460 3.13234 x lo-'' 
15.-5 .. .5.-5.5IT 11. .1lT 0 341.275 1.493.460 3.14983 x 1 o - ~ '  

Remarks: The final solution is a local solution. 

This box constrained problem has  1.94481 x 10' feasible points. The global minimum solution is x;,,,,, = [ I ,  1, 1, 11' with  

f (x;,,,,) = 0. Six starting points were considered for the algorithms. namely 11.1 .0.0IT, [ l . l . l . l ] T .  (-1 0.10,-10,101'. 

[-10.-5,0.5IT, [-10,0.0,-101'. and [0.0,0.0]~. All discrete filled function algorithms succeeded in finding the  global min- 
imum from all starting points. A summary of the computational results is displayed in Table 1. Numerical results show that  

Algorithm B has the smallest total number of original function evaluations. and the average RE is 0.008635805. 

4.2. Problem 2: Goldstein and Price's function [15.27.28,42] 

min f ( x )  = g ( x ) h ( x )  
Y. s.t. x. - - - 2000 < yi < 2000, yi integer, i = 1,2,  ' - 1000 

where 

and 

This box constrained problem has  1.6008001 x lo7 feasible points. The global minimum solution is x;,,,,, = [0, -I]' w i th  

f ( ~ , o b a r )  = 3. Six starting points were considered in the computational tests, these being (2,-2IT. 10.-1JT. 1-2.-2JT. 
[-0.5.-1]~. 11.-1.5IT. and [I .- lJT. A summary of the computational results is given in Table 2. All algorithms succeeded 

in finding the globai minimum from all starting points, where Algorithm B is shown to be the most efficient method. This 

method succeeded in identifying the global minimum solution with an average of 22.249 function evaluations. The average 

RE is 0.0013899. 

4.3. Problem 3: Beale'shnction [25,27,28.31,42] 

2 
rnin f ( x )  = [1.5 - x1(1 -x2)12 + [2.25 X I  (1 -x:)12 + [2.625 - X I  (1 -x;)] 

s.t. x . - 2  -lOOOO~yi<lOOOO, yiinteger, i = 1 , 2 .  ' - 1000 

This box constrained probtem has  4.00040001 x 10' feasible points. The global minimum soIution is xi,,,,, = [3,  0 . 5 1 ~  with 
f (%,,,,,) = 0. Six starting points were considered in the  tests: 170, -10IT, (9.997,-6.867IT. [O, -1IT, [ I ,  1IT, 1-2,2IT, and 
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[O,OJT. A summary of the computational results is shown in Table 3. Only Algorithms A and B succeeded in identifying the 
global minimum with the average number of function evaluations being 119722.2 and 358077.3, respectively. Note that 
Algorithm B is more efficient than Algorithm A. where the average RE is 0.000299275. compared to 0.000895104. As for Algo- 
rithms C and D, both yielded local minimizers close to the global solution: [3.015.0.504JT. [2.989,0.497IT. [3.004.0.501]T. 
and [2.996,0.499IT. A possible reason for this failure to converge may be that our implementation calls on neighbourhood 
points in Step 3 in a different order to that in other implementations. 

4.4. Problem 4: Powell's singular function [25.27,28.37.42] 

Yi s.t. x. - ---- - 10000 < yi < 10000, y, integer, i = 1 ,2 ,3 ,4 .  ' - 1000 

This box constrained problem has 1.60032 x 10" feasible points. The global minimum is at  x;,,~,, = [O, 0, 0, 0IT with 
f ( ~ ; , ~ ~ , , )  = 0. Six starting points were used in the tests: [ lo .  10.10.10]~. [ - lo.  -lO.-lO.-lO]T, [ l o .  -lO.-lO.lO]T. 
[l.-1, -1. l j T .  [-10.1.0.5]~. and [0.0,0.0]~. All methods succeeded in identifying the global minimum. Table 4 summaries 
the computational results. Numerical experiments suggest that Algorithm B has the smallest total number of original func- 
tion evaluations, and the average RE is 7.01735 x 10-Is. 

4.5. Problem 5: Rosenbrock's function [27,28.37.42] 

24 

min f ( x ) = C [ l ~ O ( x ~ + ~  -X : )~+(~ -X ; ) ' ]  
i= 1 

s.t. - 5 < xi < 5, xi integer, i = 1,2, .. . ,25. 

This box constrained problem has 1.08347 x lo2= feasible points. The global minimum is at  x ; ,~~, ,  = [ I ,  . . . , 11' with 
f(x; ,,,,) = 0. Six starting points were considered in the simulations: [O ... ..0IT. [3,. . .,3IT, 1-5,. . ,-5IT, [2,-2,. . ..2.-2,2IT. 
13. -3.. . ..3. -3.3jT, and [5,-5,. . .,5, -5.5IT. All algorithms succeeded in identifying the global minimum for most of the 
starting points used. A summary of the computational results is displayed in Table 5. Clearly. Algorithm B has the least total 
number of original function evaluations and the average RE is 1.87477 x 

4.6. Comparison with literafure results 

Table 6 shows the average values of a number of original function evaluations for an algorithm to terminate and compares 
this with the results from the literature. Since these test problems were not solved in [43]. we compare our numerical results 
with those in [27]. [28]. and [42] only. Recall that in our implementations of these algorithms, we construct a look-up table to 

Table 6 
A comparison'of function evaluations. 

Problem Algorithm Our lmplementat~ons Results ~n 1281 Results ~n [27] Results in 142) 

1 A 2440.17 4263.1 1 
B 1679.5 3767.78 
C 3430.5 85.705 
D 2189.5 

2 A 49533.1 7 111125.86 
B 22.249 6819629 
C 48327.17 2.125.511 
D 46329.83 

3 A 3669 14.3 939209.57 
B 1 1  9368.8 444887.71 
C 100001.5a 4.861 560 
D 365956.2' 

4 A 1818 7337207.5 
B 1123 6,731,232 
C 2574.333 ' 155.868 850 
D 1811.8333 

5 A 347623 7 32061 0.44 
B 203125.8 305712.1 1 
C 662038.3 6.282.030 
D 323397.7 

a Remarks: The final solution is a local solution. 
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store each objective function value computed so far to avoid repeated calculation of the objective function. Consequently. 
our implementations show a significantly lower number of function evaluations when compared to the results found in 
the literature. We note that in our implementation of the various algorithms. searches for a local minimum of the filled func- 
tion may be initialized with different starting points than those used in the  implementations published previously. This is 
because either the order in which the neighbourhood of x* is to be tested is not specified or  these starting points a re  not 
confined to the neighbourhood N(x*) and are chosen randomly within t he  feasible region. This difference may influence 
the observed efficiency and accuracy of the  algorithm. As can be seen from Table 6,AIgorithm B is the most efficient method. 
yielding the lowest number of function evaluations for solving all test problems. 

5. Concluding r emarks  

Various discrete filled function methods are reviewed in this paper.The fundamental idea behind the  filled function con- 
cept is to introduce an auxiliary function to move from a current local minimizer to an  improved point, if it exists. Interest- 
ingly, each filled function has its own termination and parameter updating criteria, though a generic algorithm is proposed 
here to try and capture their commonalities. Based on  their theoretical properties, only discrete filled functions in [16] and 
(271 guarantee that a local minimizer of the filled function is also a local minimizer of the original function. 

Discrete filled function methods have shown promising results in finding globally optimal solutions in several benchmark 
problems as demonstrated in the previous section, thus confirming the applicability. reliability. and efficiency of this rela- 
tively recent global optimization technique. Our intention is to adapt the technique to complex mixed discrete optimization 
problems where individual objective function evaluations are computationally expensive. Methods requiring the least num- 
ber of function evaluations are important in this context (35,361. 
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