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Consider the fllowing svstem of Hoear stochastic differential equations on & given prob-
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Ax{TY == A(Ox{Ldt -+ BiOdK i), P (0,40
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assumied to be sauare integrable. The initial state, xg, is a B™valoed Gaussian random

vector on {Q, F,P) with mean Xy and covariance matrix . Furthermore, A [0.77 —
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BT and B - [0,47 -+ B are continnons tunctions, The proc
stancard Bfvalucd Browrian motion ou (. F, Py with nean zerc
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FF o aly(s),0 £ s < ) Ht.:mzw, the optimal mean-square cstimate of the state given
F¥ is x{1), and the associnted error covarianee is F{£). Then, for a given ¢ € 9, the
optimal X{f) is given by the following iheorem. The proof of this theorem mayv be fovmnd
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Theorem 2.1 For cach sensor scheduie ¢ € ®, the optimol incan-square estamatc of
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We introduce o new time warinble 7 € {0, ¥ + 1 and consider the
{0,1,...,N 4+ 1}, The original time horizon 10,77
horizon g(). N+ 11 as follows:
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(H{0) =1 &)
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The original dynamics {43-(5) are transforined inio
P(7)

LTSI (10}

and
Py = Iy, {11}

be the solution

Hence, the transformed problem is staded lormally below. Let 1P{
of (1)-{11} corzesponding to (v.e) € V x 3,

v o

Problern (R). Choose v € V and o € 3} to minimize

= atrace{ P{N

aniv.o}

v.o e dr, {12}

N+io o
7 _

: A S
o i

subiect to {73-(9) and the dynamies {103-{11}, where a is a non-negative constani.

Problem (R}, an equivalent problem to Problem (P}, is o mixed diserete optimization
problem with the discrete variable v 16‘])ruum1'v the switching scquence and the
continuous variable o representing the tinme length of cach mode. We propose to selve
Problem (R) by first decomposing it into two levels. Note thai for a tized v & V,
Problemn (R) reduces to the following problem.

Problem (R,). Givenv €V, ind a ¢ ¢ ¥ fo minimize

golo

v) = adra (‘(‘(Pf N+ 1le, v)} < Z/ traced f’ i, v)la; dv, (13
=] A

subject to (7)- \Q and dynamics (10)-(11), where & is 8 non-negative constant.

Problem (R, is a standard optimal paramcter selection problem in a canonical form
suitable for the application of a stendard algorithan based on the control parameteri-
zation concept. For each given v, the optimal value of gp in {13) can be determined
irnal control software, such as MISERS.3 [9], since the switching sequence is
fL\ui Note that in MISERS. 3, the optimal parameter selection problem iy solved using
iential quadratic programming algorithm. The second problem in the proposed

u%m ary
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4  Discrete Filled Function NMethod

s
N
-

stion mcthiod which waganitiaters

i a globat up!

Ra} .‘-}i)évlj CONINRIOUS &
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115,106,117 to enbauce computational efficiency.
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Lo, rolled
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Che corresponding filled fm‘. tion can be fonnd. The
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V', the neighbourfiosd of v is defined by A{v) = {w <
1. Here, e denobes the 20h standard unid basis vecior

Definition 4.1 14
Viw.evdezen |,
of B its i-th tfnupm(f'r,r 15 equal to one and itx other eomponents are equs! ta zero,
The sot of alj feasible directions vt v € V is defined by D{v) == {d ¢ trevad s

\’\V‘} e {::’;E’.i, =1L N ]}

Definition 4.2 The sequence v™ & Vs a locad mindmizer of Jif J(v*) < J(v) for all
(vo3 I} < J(v) for '1[] v & NV v}, then v is a sirict local munimizer
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of J. The sxquence v is o globed mangmizer of J L J{v¥y < J(v) for all v ¢ V. Uf
vy 2 J(v) for sl v @ VL {v*}, theu v 8 a strict global siomizer of J.

Plefinition 4.3 visa vertex of ¥V if for each d € Blel, v +d & Vand v - d 2 V)

Lei Vodenote ihe set of vertices of V.

1. Choase an intlis) switching seqpenor v & VL

I W is o ool mdndnizer of JL then sbop. aodiserebe steepost doseont
reciton «
30 Lei v 4 d*. Go w Step 2.

Based on Definitions 41.1-4.3, we eall a function Gy @ Vo B oa discreie filled Junetion
of Jat ™ Hit satisfies the lollowing conditions:

{a} v* I8 a sirier loeal n;;;mu[-;/-»-v of Gye:

3 Perdv e Voov s vt (v Jivi) Gy hias no local minimizer i the set

715 a loeal minindzer of 0 and endy if v** iy a loeal minimizer of Gy-
Deline
(v e p v e v {
where )
N\ Rw

w > 0y a sulfic and 0 < ¢ <1 ant. The function
Granr{v)is .il.l‘ed z'l when cerial n thi parame i and

.\.

ed.
met. Note shat t
f(j»llut.l mn ;] 3

p Aare sat it has properties (a)-(¢

',1:(' fi Hcd function 1% cong

when those conditions o g and p are
sed ou the following theore

O Dee given 1 g

1 < max
vyl
ViFEva

where || - s the Eaclidean norm. Let 0 < £ < 20 be the Lipsch
W{vy) = Jiva) £ £ E v~ vo ll, for any distinct vy, ve & V7
ARSY . .

2 comstant sauch that

L

Theorem 4.1 If p > 0 and O <y < min{1, &}, then v* is o striet local warh
of U o Ifv™ s a global mindmizer of J, then G,.,.,_,-,twgv) <O Jorallv e Vi {vh

Theorem 4.2 Let v™™ be ¢ strict locel mintmazer of J with JOe™Y < Jiv*y. Ifp > 0
_ A ; P
is sufficiently small and 0 < g < 1, then v7° is g striel local mindmizer r:/ (’;«.ﬂw"

Theorem 4.3 Let ¥ be o striet local ming
feasible direction af ¥ such that | v+ d - v |
and 0 < < nindl,

ser of Gy g and l('ﬁ ﬂ
iv-vril e

Y. then v is a locol minimizer of J.
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Suppose thai p o )

Corollary 4.5 Assune that every locol witndmidzer of T 15 stri
i3 «'szf(-,fe"l’(’» smell and O <0 0 <2 yoindt, s Thewn, v' & 1Y
of B owith SNV < J(vTE i and onlyp if v is o local o

v e docal i

inizer of Gy

Interested readers are referred 1o (13| for proofs of Theorem A4.1-4.3. Clearly, Do
i of the discrete filled function def-

v the condition {
of J is strict uudm certain condit
erete Alled function G, v ffmm‘i i3 an improved point

Gorallary 4.1, G pe-
nition if ¢ :

s local ninimi ns o o and po 1Y the
local wiphmizer of the di

!

also a ocal minimizer of the orig mnvrum J. Based on the theo
: e function algorisdon f{‘r ;;} shad optiniization esn be

Aldgorithin 4.2 Discrete Filled Function Method

L. Initialise v, & < fen 1o and O < o0 L

g Algorithn 4.0t obiain g loeal mmininrizer

;N o-s

2. Start n, c frean v, i

\u

7 5 1 .
1! List the neighbonring sequenees of v¥ ax

such that /l

x40 b0 (D) bel fow.

go to {¢) bele

» Ste r) 1{a}. Otherw ise, 2o ta Step D

oo+ d and oo te

o)

5. Lot € be the obtained locs] minimizer of G, ve
(v =V, e £ fLI 6 g, go to Step 6. Otlierwise, 2o o Step 3(b].
7 7, reduce ¢ by setting e and go to Step A{1),

The current

G, Reduce p by setsing o pr. I p o py, ferminate the algorit

21 mbimizer of the problem. Otherwise,

1 and go to

alzorithim can bo lustraied ag follows.  Firstly, the

on (5, e (L5 arce initialized 1o suitable va

The wmechauisin behind 1
ers of Lthe discrete fil}
hese paramcters will be re hlwd cradually in Steps § and 6, fo ensare that G , -
{a3-{c), The reduciion factor of each parmneter is also

I N

eventially satisfies pro
specified af Step 1.
Scrondly, we choose an initial sequence vy in the feasible region and miniize the
original function ./, Recall that the value of J is conputed using MISER3.3 according to
the discussion in the previons section. The objective function value at each sequence in
the neighbourhood of v is ealeulated. The search direction leading to the most improved
objective funciion value in this neighbourhood is chosen accarding to Algorithm 4.1, The
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ated unill a local winbrizer of J, nomely v7) is found. Next, we identify

tlie neighbourhood of v* in Step 3. Oue of the peighbouring poinds of v7, denoted by
aun initial puint to minim
i’o}lm_x Dy step. Note that v* is g local ias

they diserete liled fune

on (g 0 the

ey of O o here,

In Step 4, we frst check to e i thore exists o sebghbouring sequence of v, that is an
mproveniend over the current minimizer. 1§ such a soqnence ean be found, then wes
nbm' poing W minimize the function J nsing Algoriithac 4.1 Otherwise, if we can
tion thar results inan aprovement of both Jand & (:f_;my,x:‘urmi witsh the vabies

wen we chweose the ':I;‘L’t"-l‘)l) \vhli'h ive

il
rion: does nob ex
“‘} < (;’)‘;i,;t\"{V:: i 1 none

of (v, 50 we o tu Ste

” <ch

the next poiat in N
the winnuizer of G, -
adinsted suitably o satisfy this criteria in Step 5{Lj.

arting poind o mindmize O, L 0 S

yahid be elthir an himproved poinl or o vortex.

If no hnproved sequence is found with the minhnizaiinn process si
neighbouring sequences ending up at the vertiens, we reduce g, reset. € =

arting from all
1, and wininiz

64

ue of Thie aigor 1(.111. is x<-pr:.nm until the termina-
s lower | In other s
cte Hlled finction from cvery witon from v and failed o
d point, even ihe paro all. We repeat, Algorichm 4.1
reducing the walue of p t"‘l‘u time to confirm that no better sclution can be found.
she final Jocal minimizer v* fonud is taken to be the glabal solution of J.

Gy again with the sow

tion criteria is rcached, where p reach rds, we have
windimized the dis

find an Improved

To increase the efficiency. we construct a look-up table to store each value of the ohjec-
tive function .f computed so far. Thus, we avoid repeated applicaiion of the subproblems
solution algorithny at the same peint. This s essentia

! hecause compuiing J(v} invelves
solving o complex optimal coutrol problem, which takes considerable computational thie,

Remark 4.1 Note that a sequenticl guedratie progeanuning method s empt
within MISER3.3 to sohve the subproblen (e}, This ix a local seareh wethod and
thus cannot guarantee the global optimality for the soludon of the subproblen. Tn other
words, although we abm to solve the upper level probler globally, the lower level problen
may only vield a locally opthmal sclution. Lheref
a henris

s, we consider our approach o be
ie elobal optinlization method with no implied goarantes of dnding the over

global optimmm. Nevertheless, mumerical resnlts daanonstrate that good quality solitions
ean ha determined effectively eompared with ofher methods in the fiterature, such az [5)
and [7].

5 Ilustrative Example

Clonsider a sensor scheduling problemn with six sensors and seven switches as discussed
i i7]. Let ’ 2. m
0], w =1,

~‘ ‘{I (l . f)l.“""

Tynamics:
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where

able to orabed the filled functio:
1o 107 and

For she of computation, we are
MEo 2’,11(}, MISERAS.S progriun. The algori
oo Lo 1077 st which s the best local minhmizer found e laproved, The
computation is pozfurmm'} using the madified version of MISERSZ.3 on o Windows-based
PC, with o CPU speed of 24GHz and 2G13 RAM. We solve Problern {R). which has
total number of 1,679,616 poteutial switching sequences, nging vo = 6.5, 2.6, G
as the initial sequence & LTI as the dnitial g for o, Note that
Py 1% initialized a vonatrin,  Relovaws resulis abrained
i Tohle 1. The entries in the v «:'nhn:m indicate the optiual solutions for the ol
0,0, 77649803, 0.0,6,017 for the assumned
4, and 5 wre not used in the final optimal
X sensors are turned on. The
sz 1 follewed by sensor 6,

Tng

dun is ferminaterd

are smmmarized

searches. Tram Table
global miluhmnn ndicat
solution during the teath Heration. Hence, only two out of si
obsal opmnal swn_('hmg sequence 1s to turn on sens
The mnnl)ur of original funciion cva

s thnt Sengors ’3

assuwined g

f1ons and

:lillw (uu(ll(m on ainmmus are i 'f!a and 3517, respectively. This reprosents U.32% of the
total munber of potential sequences, I\m.c.- that the objective
inchude those that were obtzined from the look-up table.
We  tested the problem with  ftive diéf(:l‘r‘nt initial  sequences. Chese  are
1,2.8.4,5.6, i _ ' TG 6, 6,86
Al using the sane .”(, ‘md oy as 1o the f‘l‘-‘ comsputation. -
ANV 14\( :‘l mininw are found during le searches fror o varions inisiad
mgified the same

ion evaluaiions do not

f2 1 FoO B
“)""‘V,'"“)‘i: N

£ each initial so
sal ihgiam HOCPUETITR of r’rn'\]b 1 {\, %15

HEYCF

s ok

sned dige 418 N rved in the firgd ¢ ket
ment, thal jg, gonsor l i3 followed by seusor G, with the cost function value JJ == 14.3 ’l 70,
Again, computational results show that only up to 4.32% of the total number of pmcnua]
sequences are evaluated, The opiimal operating schedule for the control and states are
depteted 1 Figure 1. In addition, several different choices of I are fested in onr exper-
imentation with various initial switching sequences. The opiimal uperating schemes for
Py = 0, By = 61, Iy = 107 are llustrated by Figures 2, 3, and 4, respoctively, From
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Table 1: Numerical Results fur Py o= |

= e ¥

oy

[£1.24035017, 0,6,0,0.0, 7.75:

17366501, 6.1847097
?().:2:3:31 1709, 0,4,
10.23501854, 0,0, 7.76488) 1,8, 0.0,

,_o 23502083, 0, 0, 7.7649792, 0, 0,0, D}

RRTO, (LONTOSH8593 T
3T

145043349857 10470
1433763 1406735220

14.331763102470508
F1.331763102474610

14.331763102475505

IR R R NS LA N Y

1;cf. 6,6,

i
[
[1,86,6,6.
[

1, 0,0, 77649807, U., (;;, 0,0} 1133176310247 1308
HL28501894, 0.4, T.7648811, 0,0, 0,017 L£.33176310234528)
3.23501979, 0,0, 7.7649802. 0,0, 0,617 14.351763102440
1203, 0,0, 0,007 14331763 102437604

M1, 6.5.6,6,

H,06.6,0,6,0
0, 1,6,6,6,52, 187 0.23501673,0, 1,

MR HIFTR

Made of se
.
elaments of e coy

=
o
-

i

0
13

Timwe Tane

Figure 1. Optimal Sensor Operating Scherne with Fy o= L

these graphs, only the lirst and sixth seasors are ever usad, while the other fonr are not
utilized in any optimal solution,

We also compare the selations oltained bere with those obtained from the other

methods proposed iv 5] and 7], These resulis are summarized in Table 2. Note thas
the error estimation that we sought is lower than 12,6553, the optimal solution reported

1

in |7}, whicll was obtained using a combination of a branch and bound technigue with a
gradicnt-based methad, To the best of our knowledge, Iy = 0 is used in Note ihat
non-zero choices of Py lead to even higher objective valnes when used in conjunciion with
the solution i {71,

6 Conclusions

A sensor scheduling problem is considered in this paper. It was formulated as a discrete-
valred optimal control problem and then transformad into s mixed Jdizcrete optimization
preblam. Then, it was decomposed into a bi-level problem. A new heuristic approach
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Table 2: A Comparizon of Numerical Resulty with Other Maethods,

Methods OUbjective vahies

Method in 7] with By = 0
Method in (B! with Fy = 10/

Proposed raethod with Ay == 104

Proposed methed with Iy = 61

Proposed method with Py = 1 14.331763)
Proposed method with Poo= 0 12.9949699

orporates the diserete Alled function algorithm into standard optimal control

soltware, is proposcd for finding a global sohition of this problem. Numerieal results show
that the method ig efficient, reliable, and relsust in solving a connplex discrete-valued opti-
stully ilentified significantly improved

mal control problein. The proposed method succe
solutions comparced with othor methods available 3 the Bterature.
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