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In a rotating spherical shell, an inviscid inertia-free flow driven by an arbitrary body

force will have cylindrical components that are either discontinuous across, or sin-

gular on, the tangent cylinder, the cylinder tangent to the inner core and parallel to

the rotation axis. We investigate this problem analytically, and show that there is an

infinite hierarchy of constraints on this body force which, if satisfied, sequentially re-

move discontinuities or singularities in flow derivatives of progressively higher order.

By splitting the solution into its equatorial symmetry classes, we are able to provide

analytic expressions for the constraints and demonstrate certain inter-relations be-

tween them. We show numerically that viscosity smoothes any singularity in the

azimuthal flow component into a shear layer, comprising inner and outer layers, ei-

ther side of the tangent cylinder, of width O(E2/7) and O(E1/4), respectively, where

E is the Ekman number. The shear appears to scale as O(E− 1/3) in the equatorially

symmetric case, although in a more complex fashion when considering equatorial

antisymmetry, and attains a maximum value in either the inner or outer sublay-

ers depending on equatorial symmetry. In the low-viscosity magnetohydrodynamic

system of the Earth’s core, magnetic tension within the fluid resists discontinuities

in the flow and may dynamically adjust the body force in order that a moderate

number of the constraints are satisfied. We speculate that it is violations of these

constraints that excites torsional oscillations, magnetohydrodynamic waves that are

observed to emanate from the tangent cylinder. C© 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4736990]

I. INTRODUCTION

The study of shear layers in hydrodynamic flows has a long history. In a rotating, spherical-shell

geometry, analytic progress dates back to the seminal work of Proudman18 and Stewartson22 in

which they considered a low-viscosity system which was driven through a small relative difference,

ǫ ≪ 1, in the angular velocity of the boundary surfaces. The primary flow driven by the motion

of the boundaries is that of a simple solid body rotation, although of considerably more interest

is the secondary flow of magnitude O(ǫ) which is induced by viscous stresses at the boundaries.

This flow is axisymmetric and, due to the strong influence of rotation, essentially geostrophic (i.e.,

azimuthal and independent of the axial coordinate) except in the vicinity of certain boundary layers.

Of paramount importance is the internal boundary layer on the tangent cylinder (denoted C), the

axial cylinder tangent to the inner sphere, which divides the spherical shell into two subdomains.

Outside C the geostrophic cylinders (axial cylinders on which the flow is constant) intersect only the

outer boundary and the flow rotates as a solid body, oblivious to the differential boundary rotation

of the inner sphere. Inside C each geostrophic cylinder intersects both spherical boundaries and a

formal asymptotic treatment for small viscosity at fixed ǫ shows that the geostrophic velocity is

nonzero and intermediate between that of the outer and inner spherical boundaries, attaining that

of the inner sphere on the inner-side of C. Thus across C the azimuthal component of the flow is

0022-2488/2012/53(7)/073104/18/$30.00 C©2012 American Institute of Physics53, 073104-1
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formally discontinuous in the inviscid limit. However, by reinstating a weak viscosity, the solution

is rendered continuous by a nested sequence of free-shear (so-called Stewartson) layers.

One important application of these ideas is to the Earth’s liquid core, for which there is evidence

that the solid inner core may rotate at a different rate to the exterior mantle.20 So-called spherical

Couette flows as described above, along with their associated shear layers, may therefore play a

role in the dynamics of the Earth’s core. However, more detailed studies bound the differential

rotation by about 0.2◦/year, in many cases within an error tolerance of zero.23 Even if nonzero, such

a super-rotation of the inner core is very small when compared with the daily rotation of the planet,

corresponding to a value of ǫ = O(10− 6). Due to their small magnitude, such shear layers driven by

this process would not likely be of significant dynamical importance.

Motivated by the strong magnetic field in Earth’s core, we consider instead a flow u, driven not

by boundary effects but by an internal body force.10 The body force f comprises not only the Lorentz

force due to the magnetic field, but also buoyancy which ultimately powers the geodynamo3, 13

(for recent reviews). Both direct observations and geodynamo models indicate that the magnitude

of the body force f (for instance, as measured by the Elsasser number) is comparable to that

of rotational (Coriolis) forces5 and, being of O(1) rather than O(ǫ), can drive strong flows and

associated dynamically important shear layers. The focus of this paper is to address what properties

of f lead to the formation of shear layers; or, expressed in another way, if the system dynamically

favours a smooth flow, the manner in which f must change in order to avoid discontinuities.

Although similar in many respects, the boundary-driven case has some significant differences

from the internally forced system. From a mathematical point of view, of fundamental importance

is that inviscid solutions may be written down directly in the latter case. In the boundary-driven

system, the geostrophic flow is unspecified by the inviscid equations and is determined only by the

low-viscosity limit of an involved viscous boundary-layer solution. Furthermore, since the forced

flow depends everywhere on (the spatially dependent) f, it too may be dependent on the axial

coordinate rather than simply geostrophic. However, in both cases the flow depends on the boundary

conditions which, due to rotation, are only communicated parallel to the rotation axis (when ignoring

viscosity). Thus, even in the forced system, only inside C does the inner core have any influence

and, in general, on C any inviscid solution will have components that are each either discontinuous

or singular; indeed, by restricting the possible choices of f to a subclass which satisfies a certain

homogeneous constraint, it is possible to render continuous the cylindrically radial component of

flow, us, on C, following the work of Hollerbach and Proctor.10 This may be viewed as encoding into

f the existence of the inner core, making the solution outside C “aware” of the matching condition

that it should satisfy. However, this constraint guarantees continuity only of us: other components,

for instance, uφ (the azimuthal component of flow) may be not only discontinuous but singular on C.

The purpose of this paper is to investigate, analytically, the structure of an inviscid, inertia-free

fluid subject to a body force f, and to determine the constraints on f that are both necessary and

sufficient in order to ensure any given continuity condition on the (non-axisymmetric) flow. Indeed,

we will show that there is a hierarchy of such conditions, of which the Hollerbach-Proctor constraint

is the first, which progressively smooth the flow on C. If a sufficient number of these conditions

are satisfied then the inviscid flow will be smooth enough on C that, if the weakly viscous problem

were to be considered, any Stewartson-like shear layers would be entirely eliminated. As may be

anticipated, this ordered list of constraints progressively include information about ever higher order

derivatives of the body force and become inherently more mathematically complex statements.

For instance, although the Hollerbach-Proctor constraint involves only a certain simple average of

∇ × f over C, subsequent constraints involve a mixture of much more complex averages combined

with pointwise values of f. Although we provide a general methodology to produce constraints to

arbitrary order, in view of the complexity and typographic limitations, we provide only the first five

members of the constraint hierarchy, these being sufficient to ensure that not only the flow but all of

its first order derivatives are continuous on C. It is worth remarking that, even if the constraints are

not satisfied, the (possibly only piecewise continuous) solution for the non-axisymmetric flow can

always be found. This is quite different from the axisymmetric case in which there is no solution

unless Taylor’s constraint24 is satisfied. Even if it is, the geostrophic flow is arbitrary and requires a

further equation to close the system.
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In the MHD system, the resistance to shear of magnetic field lines embedded in the fluid has

a significant impact on the dynamics. In the Stewartson boundary-driven case, several studies have

shown that the Lorentz force, associated with induced magnetic fields in the vicinity of strong

velocity gradients, act to suppress the tangent-cylinder shear layers.4, 8, 12 In systems driven by a

body force, similar adjustments occur and indeed there is numerical evidence7 that the magnetic

field arranges itself to satisfy the Hollerbach-Proctor constraint, required for continuity of us on C.

In order for the magnetic field to have such a pronounced effect, not only must it be sufficiently

strong, i.e., comparable to the Coriolis force, but it must be of the correct geometry. This latter

qualification is important as field lines must cross C, coupling the two regions together in order to

eliminate discontinuities in the flow. In particular, owing only to symmetry, dipolar fields do not

cross C on the equator and are therefore inefficient at removing the boundary-layer stump attached

to the inner sphere.21 In this study, we discount the possibility of dynamical adjustment and simply

consider f as prescribed.

The remainder of the paper is laid out as follows. In Sec. II, we describe the model setup and

give a complete solution of the flow in the forced, inviscid, non-axisymmetric problem. In Sec. III

we derive a hierarchy of constraints on f that ensure continuity across C of any given component

of the flow, and also confirm that the solution is finite on the rotation axis. In Sec. IV we provide

some analytic examples illustrating the key ideas, and in Sec. V we explore how the singularities

and discontinuities that may arise are smoothed into shear layers of finite thickness by viscosity. We

end with a discussion in Sec. VI.

II. A COMPLETE DESCRIPTION OF THE INVISCID FORCED FLOW

We consider the forced, nondimensional Navier-Stokes equations in a frame that rotates about

the z axis:

2k × u = −∇ p + f +

[

E∇2
u − Ro

Du

Dt

]

, (1)

where k is the unit vector in the z-direction, u is the incompressible velocity, p is the pressure, and

f is a body force. Owing to the magnitude of the Rossby number (measuring the ratio of inertial

to rotational effects), Ro = O(10− 9), and the Ekman number (measuring the ratio of viscosity to

rotational effects), E = O(10− 15), in the Earth’s core,5 we neglect both viscosity and the inertial

terms in the square parenthesis. In later sections, we will discuss how the system may be altered

when these terms are added back in. In the specific application of the geodynamo, f is simply

the sum of the Lorentz and buoyancy forces, although for the present purposes it may be consid-

ered arbitrary but smooth (that is, it has continuous derivatives of all orders). We will solve (1)

in a spherical-shell geometry which is most efficiently described in spherical polar coordinates

(r, θ , φ) as the domain ri ≤ r ≤ ro, where ri and ro are the inner and outer boundary radii. However,

owing to the importance of the tangent cylinder, cylindrical polar coordinates (s, φ, z) will also be

used throughout. In our rotating frame, the physical system of interest is modelled by considering

both (stationary) boundaries as impenetrable and nonslip. However, in the inviscid case, due to the

removal of the highest derivative in (1), only impenetrable conditions may be employed and the flow

may have nonzero slip on r = ri, ro. It is assumed that, on reinstating weak viscosity, the solution

will be modified by thin Ekman layers on both spherical boundaries, which form only in order to

bring the fluid to rest and do not influence the free-stream solution (this will be justified by example

in Sec. IV). Note that this stands in stark contrast to the boundary-forced spherical Couette case in

which the secondary flow is driven entirely by Ekman pumping.

In the inviscid inertia-free limit of interest, Ro = E = 0, an explicit solution (exploiting incom-

pressibility) may be immediately written down by first taking the curl,

du

dz
= −L, (2)

where L = 1
2
∇ × f and then integrating with respect to z. In what follows, some of the ensuing

algebraic expressions will be reduced in length by the introduction of the vector L.
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FIG. 1. Regions of the spherical-shell geometry restricted to the upper hemisphere; the tangent cylinder, C, separates

equatorial regions (I) from the polar regions (II).

Equation (2) is not only linear but in fact its solutions separate into symmetry classes depending

on the equatorial symmetry of f. Recall that a vector v is equatorially symmetric (ES) if both vs and

vφ are even functions of z and vz is odd; conversely, v is equatorially antisymmetric (EA) if both

vs and vφ are odd and vz is even in z. Further, it is elementary to show that (i) ∇ × v is EA (ES) if

and only if v is ES (EA) and (ii) dv/dz is EA (ES) if and only if v is ES (EA). It follows that u is EA

(ES) and L is ES (EA) if f is EA (ES). Therefore, rather than solving (2) in the entire spherical shell,

it is expedient to solve for each symmetry separately, in each case restricting attention to the upper

hemisphere. The geometry under consideration is shown in Figure 1.

At any cylindrical radius 0 ≤ s ≤ ro, let us define the vector I as the following componentwise

integral of L:

Is,φ,z(s, φ, z) =

∫ zo

z

Ls,φ,z(s, φ, z′) dz′

with zo =
√

r2
o − s2. The solution to (2) may then be written succinctly as

u = [Is, Iφ, Iz](s, φ, z) + [cs, cφ, cz](s, φ), (3)

where cs, cφ , and cz are constants of the integration with respect to z, which depend on the remaining

variables (s, φ). Since zo marks the top of the outer boundary in both regions I and II, I is smooth

everywhere in the upper hemisphere. Note that since c is independent of z, the boundary conditions

are communicated in the z-direction and so c must be found in regions I and II separately. Thus,

the solution in region I is oblivious to the inner core, leading to possible discontinuities on C.

Furthermore, due to the vertical slope of the inner boundary surface on C, the solution in II may

even admit singular behaviour.

In region II, in which s ≤ ri, the non-penetration condition u · r = u · [s, 0, z] = 0, where r is

the position vector, at both r = ro and r = ri supply the conditions

s cs + zo cz = 0, (4)

s (Is(zi ) + cs) + zi (Iz(zi ) + cz) = 0, (5)

where zi =

√

r2
i − s2 and has solution

cs =
zo

(

s Is(zi ) + zi Iz(zi )
)

s(zi − zo)
, cz = −

s Is(zi ) + zi Iz(zi )

(zi − zo)
, (6)

where we suppress the dependence of I on (s, φ) for typographic purposes. Note that cs is everywhere

finite in region II (even at s = ri), except possibly at s = 0.

The solution in region I, in which s > ri, is found slightly differently. Since it has no boundary on

the equator, in addition to the non-penetration condition at r = ro we consider a symmetry condition

on u: if u ∈ ES then uz = 0 on the equator; conversely if u ∈ EA then us = 0 on the equator. In region
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I, the solution is then

cs =

{ zo

s

∫ zo

0
L z dz u ∈ E S

−
∫ zo

0
Ls dz u ∈ E A

(7)

with cz = − s cs/zo. The meridional flow is now completely specified in both regions; the remaining

uφ component is determined in the axially non-symmetric case by using the divergence-free property:

∂uφ

∂φ
= −

∂(s us)

∂s
− s

∂uz

∂z
= −

∂(s cs)

∂s
−

∂(s Is)

∂s
− s

∂ Iz

∂z
(8)

since cz is independent of z. By expanding all quantities into a complex Fourier series in azimuthal

wavenumbers m > 0, uφ can easily be recovered using ∂uφ /∂φ = im uφ for each mode.

In both regions I and II, if f is smooth then so is Is, φ, z. It follows immediately from (3) and (4)

that us has the same continuity properties as cs, cz, and uz. Furthermore, from (8), continuity of uφ

depends on that of us and uz. Thus we may view continuity of all three components of u (and c) as

depending only on that of us. Indeed, (4) and (8), which hold on both sides of C, show that if us has

n continuous derivatives (with respect to s) across C, then uz has n and uφ has n − 1 continuous

derivatives across C. This idea is significantly expanded upon in Sec. III.

It is worth remarking that the above construction of the meridional flow does not depend on

axial symmetry. That is, all longitudinal wavenumber components of us and uz follow directly from

(3), (6), and (7) and do not depend on (8). The azimuthal component of flow is quite different: using

the machinery above, only the non-axisymmetric component of uφ can be found. Indeed, in order

to find its axisymmetric component, although (8) provides no information, the contribution from Iφ
is known and it is only the geostrophic component of flow, cφ(s), that remains unspecified. In this

case a further solvability condition known as Taylor’s constraint24 arises through taking the average

of the azimuthal component of (1) over geostrophic cylinders,

∫

C(s)

fφ dφ dz = 0, (9)

where C(s) is any geostrophic cylinder. Unless (9) is satisfied no axisymmetric solution exists.

III. A HIERARCHY OF CONSTRAINTS

A. A series representation

In view of the central role played by us in the determination of continuity of all three components

of u, we may define the quantity

Q̃f(φ) = lim
s→r+

i

u I
s (s, φ, z) − lim

s→r−
i

u I I
s (s, φ, z) = lim

s→r+
i

cI
s (s, φ) − lim

s→r−
i

cI I
s (s, φ) (10)

in which the limits approach ri in s from above and below; this form may be extended in the obvious

way to define step changes in derivatives of us. The superscripts indicate the region of definition

of each us; by continuity of Is across C, the right-hand quantity is independent of z. Since Q̃f must

depend only on f (the only free parameter in the problem), considerations of continuity of us then

translate via Q̃f into conditions on f. In fact, our case is somewhat simpler than this difference of

two distinct limits. Since u I
s is independent of ri (from (7)), it is continuous across C and we may

consider the quantity

Qf(s, φ) = u I
s − u I I

s (11)

within region II, in which the one-sided limit of s → ri from below is of interest; Q̃f(φ) is simply

lims→r−
i

Qf(s, φ). Furthermore, any limiting dependence of Qf close to C enters only through the

variable

√

r2
i − s2, appearing in (6). Exploiting the above two observations permits the expansion
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of Qf in the Taylor series near C

Qf(s, φ) =

∞
∑

n=0

An(φ) (r2
i − s2)n/2.

The lowest term in this series is given by n = 0 as, inspecting (6) and (7), us is finite in both regions

I and II (except possibly at s = 0); thus n < 0 which would render Qf singular at s = ri is not

permitted. The first two derivatives of Qf (providing continuity conditions on us and uz) and s Qf

(providing continuity conditions on uφ by (8)) are given below,

∂ Qf

∂s
=

−s A1

(r2
i − s2)1/2

− 2 s A2 + O

(

√

r2
i − s2

)

, (12)

∂2 Qf

∂s2
=

−s2 A1

(r2
i − s2)3/2

+
(3s2 A3 − A1)

(r2
i − s2)1/2

+ 2
(

(6s2 − 2r2
i ) A4 − A2

)

+ O

(

√

r2
i − s2

)

, (13)

∂(s Qf)

∂s
=

−s2 A1

(r2
i − s2)1/2

+
(

A0 − (3 s2 − r2
i ) A2

)

+ O

(

√

r2
i − s2

)

, (14)

∂2(s Qf)

∂s2
=

−s3 A1

(r2
i − s2)3/2

+
3 s (s2 A3 − A1)

(r2
i − s2)1/2

+ 2 s
(

(10 s2 − 6r2
i ) A4 − 3 A2

)

+ O

(

√

r2
i − s2

)

.

(15)

If the structure of f is such that Qf(ri, φ) = 0, occurring if and only if A0(φ) = 0, both us and uz

are continuous. Higher order zeros of Qf (stemming from a more constrained structure of f) bestow

more continuity on u. For example, if the further condition ∂(s Qf)/∂s = 0 is imposed on C, requiring

that A1 = 0 (annulling the singularity in (14)) and A0 = 2 r2
i A2, then uφ is additionally continuous.

Note that Qf = ∂(s Qf)/∂s = 0 also gives ∂Qf/∂s = 0 which then provides continuity of ∂us/∂s and

∂uz/∂s. Overall then, continuity of all three components of u requires A0 = A1 = A2 = 0.

We define a hierarchy of conditions that leads to us becoming progressively more smooth on

C, to be the ordered list Ai(φ) = 0, i = 0, 1, 2. . . ∞; increasing smoothness of uz and uφ follows

immediately as discussed above. The upper section of Table I summarises the continuity of u on C
with both necessary and sufficient conditions that must be satisfied by the An; in each row, we assume

TABLE I. Hierarchy of continuity conditions satisfied by u on the tangent cylinder C with the associated constraints on the

expansion coefficients An (each being dependent on the forcing f). Each constraint is only active for one equatorial symmetry

of f (discussed in Secs. III B and III C), as shown in column three. In the upper part of the table, the constraints on the

meridional flow us and uz must hold for all wavenumbers m ≥ 0 individually; those for the azimuthal flow uφ only need hold

for the non-axisymmetric components m > 0, uφ being undetermined in the axisymmetric case. In the lower part of the table,

other continuity conditions are summarised.

Smoothness condition on C Constraints Symmetry

Finiteness of us, uz Automatically satisfied

Continuity of us, uz
a A0 = 0 ES

Finiteness of ∂us
∂s

, ∂uz
∂s

, and uφ A1 = 0 EA

Continuity of ∂us
∂s

, ∂uz
∂s

, and uφ A2 = 0 ES

Finiteness of ∂2us

∂s2 , ∂2uz

∂s2 , and
∂uφ

∂s
A3 = 0 EA

Continuity of ∂2us

∂s2 , ∂2uz

∂s2 , and
∂uφ

∂s
A4 = 0 ES

Axisymmetric solution exists Taylor’s constraint m = 0, ES

Finiteness of u at s = 0 Automatically satisfied

aIf A1 �= 0, then uφ is sufficiently singular on C to render the kinetic energy of the flow infinite.
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that all lower order constraints are satisfied. That is, if An = 0 then Aj = 0, j = 0, 1, . . . n − 1 are

implicitly assumed to hold. This makes intuitive sense: in order to discuss (say) continuity of ∂us/∂s,

it is reasonable to require that not only is this quantity finite on C, but that all lower order derivatives,

in this case only us, are themselves finite and continuous. As will be shown in Subsections III B and

III C, each constraint in this hierarchy involves only one “active” equatorial symmetry class, shown

in column three of Table I. The lower section of the table provides a statement of finiteness of u on

the axis s = 0; this is proved in Sec. III E.

To ensure that all three components of u are continuous on C, it is required that A0 = A1 = A2

= 0; continuity of ∂u/∂s on C further requires A3 = A4 = 0. Interestingly, if A1 �= 0 then the

singularity of uφ on C is sufficiently strong to render the kinetic energy of the flow infinite. This can

be easily seen by noting that if us ∼ (r2
i − s2)1/2, then uφ ∼ (r2

i − s2)−1/2, and |u|2 ∼ (r2
i − s2)−1

which has a divergent integral over the spherical shell.

Within our hierarchical structure, we note explicitly that any increment in the level of smoothness

imposed on u introduces only a single further homogeneous constraint An = 0 (say); this is because

the relevant derivative of Qf involves terms which are homogeneous linear functions of Aj, j = 0,

1, . . . n − 1, and if all lower order constraints are assumed satisfied then An must vanish. Further,

we remark that as ever higher derivatives of Qf are constrained to vanish, any given derivative of

a component of flow progresses from being singular, to finite but discontinuous, to continuous on

C. Finally, we note that it is possible (although non-intuitive) to construct examples in which this

hierarchy is not followed. Consider, for instance, a case where 4r2
i A4 − 3A2 = 0, A1 = A3 = 0, but

A4 �= 0 �= A2. This corresponds to an example in which ∂uφ /∂s is continuous but uφ may be itself

discontinuous.

The determination of the coefficients An, which depend on which equatorial symmetry is under

consideration, is greatly facilitated by computer algebra. To find A0, we simply need to evaluate

Qf at s = ri. We find a general An by an inductive argument, which is simply the limit of the

quotient

Qf −
∑n−1

j=0 A j (r
2
i − s2) j/2

(r2
i − s2)n/2

as s → ri from below, assuming that the Aj, j < n, are already known. For n > 0 both the

numerator and denominator of the above quotient vanish and the limit is undefined, although may be

evaluated by using L’Hôpital’s rule to evaluate the quotient of the derivatives. However, for n > 1,

a single application of L’Hôpital’s rule is insufficient and the limit remains undefined; empirically

we find that the rule must be used n times to find An (assisted by re-expressing intermediate

expressions in terms of a new numerator and denominator at each stage); see the Appendix for more

details.

B. Equatorially symmetric coefficients

In this subsection and in III C we supply the first five terms of the series expansion for Qf in

terms of An for each equatorial symmetry class. For typographic purposes, we suppress not only the

(s, φ, z) dependence of all quantities appearing in the integrands, but also the dependency on φ of the

boundary terms. For each symmetry class we give the full representation of the series coefficients

An, not including any simplifications that may arise if all lower order constraints are simultaneously

satisfied.

We begin by considering the equatorially symmetric class, this being the symmetry discussed

by Hollerbach and Proctor.10 If f is ES, then L is EA and u is ES. From (6), (7), and (11), the quantity

Qf can be written

Qf =
zo(zi + zo)

s (r2
o − r2

i )

(∫ zo

zi

[zi L z(s, z) + s Ls(s, z)] dz + (zo − zi )

∫ zo

0

L z(s, z) dz

)

. (16)
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The first five expansion coefficients are given by

ri A0 =

∫ ζ

0

(ζ L z + ri Ls) dz,

ζ A1 = A0,

2 ζ 2 r3
i A2 =

∫ ζ

0

[

2 r3
i Ls + ζ

(

3 r2
i + ζ 2

)

L z − r2
i ζ 2 ∂Ls

∂s
− ri ζ 3 ∂L z

∂s

]

dz +

ζ r2
i

(

ri Ls(ri , ζ ) + ζ L z(ri , ζ )
)

− r3
i ζ 2 ∂Ls

∂z
(ri , 0) − 2 r2

i ζ 2 L z(ri , 0),

2 ζ 3 A3 = 2 ζ 2 A2 − A0,

24 ζ 3 r5
i A4 = 3

∫ ζ

0

[

3 r4
o L z − 3 ζ 2 ri

(

ζ 2 + 2r2
i

) ∂L z

∂s
+ r2

i ζ 4 ∂2L z

∂s2
−

(

4 ζ r4
i + ζ 3 r2

i

) ∂Ls

∂s
+ r3

i ζ 3 ∂2Ls

∂s2

]

dz+

+ 12 ζ 3 r3
i

∂L z

∂s
(ri , 0) − 12 r2

i ζ
(

2 r2
i + ζ 2

)

L z(ri , 0) − 12 ζ r5
i

∂Ls

∂z
(ri , 0)

+ 6 ζ 3 r4
i

∂2Ls

∂z∂s
(ri , 0) − ζ 3 r5

i

∂3Ls

∂z3
(ri , 0) − 4 r4

i ζ 3 ∂2L z

∂z2
(ri , 0)

+ 9 r5
i Ls(ri , ζ ) − 6 ζ 3 r3

i

∂L z

∂s
(ri , ζ ) + 3 ζ 2 r4

i

∂L z

∂z
(ri , ζ )

+ 3 ζ r5
i

∂Ls

∂z
(ri , ζ ) − 6 ζ 2 r4

i

∂Ls

∂s
(ri , ζ ) + 3 r2

i ζ
(

5 r2
i + 2 ζ 2

)

L z(ri , ζ ), (17)

where ζ =

√

r2
o − r2

i . In the above, we have used the equatorial symmetry imposing that Ls(s, φ, z)

is an odd function of z and Lz(s, φ, z) is even to simplify the above expressions. Note that A3 is a

homogeneous function of (A2, A0) and A1 a homogeneous function of A0.

In this symmetry, us (and therefore) uz are discontinuous unless the constraint of Hollerbach

and Proctor10 is satisfied:

∫ ζ

0

(ζ L z + ri Ls) dz = 0. (18)

They conjectured that satisfaction of (18) leads not only to continuity of us but removal of any

singular behaviour in uφ on C. Here, we confirm this by noting that since A1 = ζ A0, it is clear that

if A0 = 0 (giving continuity of us) then also A1 = 0 giving finiteness of uφ automatically.

Furthermore, since A3 depends homogeneously on A2 and A0, it follows that if

A0 = A1 = A2 = 0 (granting continuity of u), this automatically renders A3 = 0 and ∂uφ /∂s finite

(but not necessarily continuous). We speculate that A2n + 1 is linearly and homogeneously dependent

on A2k, k < n, so that A2n + 1 = 0 automatically if all lower order constraints are satisfied; that is,

within this symmetry class, only A2n = 0 are active constraints.

C. Equatorially antisymmetric coefficients

If f is EA, then L is ES and u is EA; the quantity Qf can then be written

Qf =
zi + zo

s (r2
o − r2

i )

(

zo

∫ zo

zi

[zi L z(s, z) + s Ls(s, z)] dz + s (zi − zo)

∫ zo

0

Ls(s, z) dz

)

. (19)
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The first five series coefficients An are then given by

A0 = 0,

ri ζ A1 =

∫ ζ

0

(ζ L z + ri Ls) dz − ri ζ Ls(ri , 0),

ζ A2 = A1,

6 ζ 3 r3
i A3 = 3

∫ ζ

0

[

r3
i Ls + ζ

(

2 r2
i + ζ 2

)

L z − ζ 2 r2
i

∂Ls

∂s
− ri ζ 3 ∂L z

∂s

]

dz+

3ζ r2
i

(

ri Ls(ri , ζ ) + ζ L z(ri , ζ )
)

−

6 ζ r3
i Ls(ri , 0) + 3 ζ 3 r2

i

∂Ls

∂s
(ri , 0) − 3 ζ 3 r2

i

∂L z

∂z
(ri , 0) − ζ 3 r3

i

∂2Ls

∂z2
(ri , 0),

2 ζ 3 A4 = 2 ζ 2 A3 − A1. (20)

As before, we have used the equatorial symmetry of L to simplify the expressions, exploiting the

fact that Ls(s, φ, z) is an even function of z and Lz(s, φ, z) is odd. Note that A4 is a homogeneous

function of (A3, A1) and A2 a homogeneous function of A1. Thus it would appear that the conditions

A2n are automatically satisfied (assuming that all lower order constraints are satisfied) and so only

the constraints A2n + 1 = 0 are active within this symmetry class.

In this symmetry, A0 ≡ 0 and so both us and uz are automatically continuous on C. This occurs

because us = 0 at z = 0 on either side of C: in region II, stemming from the non-penetration condition

there, and in region I from the symmetry imposed. The behaviour of uφ is tied to ∂(s Qf)/∂s and

requires A1 = 0 to avoid singular behaviour. In fact, since A1 = ζ A2, this condition is also sufficient

to ensure that A2 = 0 and so renders uφ continuous. Thus, in this symmetry class, finiteness of both

uφ and ∂us/∂s implies also continuity of these quantities.

D. Comparison of the symmetry classes

Having derived the first few of the hierarchy of constraints for each equatorial symmetry class

individually, we briefly remark on some general characteristics. First, although we only listed the

coefficients An for n ≤ 4, it is striking that if u is ES (EA) and n is an odd (even) integer, then

An is linearly and homogeneously related to the Aj for j < n and j is even (odd). In this sense,

the hierarchy of constraints {An = 0} exactly partitions between the two symmetry classes: the ES

symmetry only requiring consideration of A2n, and the EA symmetry consideration only of A2n + 1

(see column three of Table I). Additionally, it cannot be the case that a threshold K is reached such

that Ak is homogeneously dependent on Aj for any k > K, j ≤ K (that is, progressing further down

the series of Aj fails to produce any more constraints), since as n is increased ever higher derivatives

are introduced which cannot be expressed in terms of those of lower degrees (as can be seen, for

example, in (17)).

Second, there appear to be strong links between the coefficients An from different symmetry

classes. Perhaps most apparent is the homogeneous relations satisfied between coefficients being

almost independent of symmetry class (but offset by one in the index n). For instance, it is striking to

compare the relation for A1 and A3 in the ES class with those for A2 and A4 in the EA class. Further,

it is interesting to compare the expressions for coefficients associated with the active constraints, for

example, A2 in the ES class and A3 in EA. Aside from the boundary terms evaluated on the equator

(whose form is different, owing to the different behaviour that the two symmetry classes impart), all

remaining terms are analytically identical if the preceding constraints are satisfied. For example, in

the ES symmetry class, it is easy to show that if A0 = 0 then the integral terms in A2 coincide (within

a constant factor) with those with A3 from the EA class, as do the outer-sphere boundary terms. We

speculate that the relations described above, motivated by the very restricted set of coefficients An

presented, continue to hold for any integer n.
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E. Finiteness on the rotation axis

The rotation axis is a singular location in cylindrical coordinates and it is of interest to clarify

whether or not u is guaranteed to be finite on the axis if f is everywhere smooth. Inspecting (1), it

would seem likely that a singularity of u is inconsistent with the other (non singular terms) of the

equation; here, we briefly prove that this is indeed the case.

We will assume that f is smooth everywhere, which means that Is, φ, z is also smooth and so the

behaviour of u yet again hinges on that of c.

From (6), cz is continuous as s → 0 and attains the finite value

ri

ro − ri

∫ ro

ri

L z(0, z) dz

at s = 0. Furthermore, as shown by (8), finiteness of uφ as s → 0 depends only on the behaviour of

∂(s cs)/∂s and from (6) attains the finite value

ro

ri − ro

∫ ro

ri

[

ri

∂L z

∂s
(0, z) + Ls(0, z)

]

dz

at s = 0. It remains to show that cs is finite on the axis.

Finiteness of cs is not immediately assured as, from (6), as s → 0:

cs(s, φ) =
ro ri

(ri − ro)

∫ ro

ri

L z(s, z)

s
dz + O(1) (21)

and we require that the integral above remains finite.

However, L is a smooth vector field and therefore Lz is a smooth scalar. Standard regularity

conditions1 then permit the expansion

L z =

∞
∑

m=0

∞
∑

n=0

Am,n(z) sm+2n ei m φ (22)

and therefore (21) is guaranteed to be finite when m > 0. In the axisymmetric case, we may write

2 L z = (∇ × f)z = 1
s

∂
∂s

(s fφ) and thus need to show that

∫ zo

zi

1

s2

∂

∂s
(s fφ) dz =

1

s2

∫ zo

zi

fφ dz +
1

s

∫ zo

zi

∂ fφ

∂s
dz (23)

has a finite limit as s → 0. By (9), the first integral on the right hand side is zero for all s and thus

the first term on the right is identically zero. Since (9) is valid for all s, we may differentiate it to

show that

0 =
d

ds

∫ zo

zi

fφ dz =

∫ ro

ri

∂ fφ

∂s
(0, z) dφ dz + O(s) (24)

as s → 0 where the derivative of the end points contribute the O(s) term. It then follows that the

second term on the right hand side of (23) is O(1) and therefore finite as s → 0.

IV. EXAMPLES

In this section we present some simple examples of forcings that satisfy a small number of the

derived constraints, illustrating the different levels of continuity bestowed on the flow. We fix the

inner and outer radii to be 1/2 and 3/2, respectively. We first remark that, in addition to the equatorial

symmetry already discussed, any vector of azimuthal wavenumber m > 0 that possesses cylindrical

components behaving as
[

sm+1 f (s2, z), sm+1 g(s2, z), sm h(s2, z)
]

,

where f, g, and h are arbitrary smooth functions, is guaranteed to be everywhere smooth, i.e., infinitely

differentiable (including on the z axis).14 This will constrain our forcings f when choosing examples.
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TABLE II. For the example in the ES symmetry class, the addition of free

parameters into the forcing allows an increasing number of constraints to be

satisfied.

a0 a1 a2 Constraints satisfied

0 0 0 None

− 7 0 0 A0 = A1 = 0

− 53/4 25 0 A0 = A1 = A2 = A3 = 0

− 315/16 153/2 − 103 A0 = A1 = A2 = A3 = A4 (=A5) = 0

Before embarking on the more general case, it is worth remarking that if f is both EA and

independent of z, then Lz = 0 since it is simultaneously both odd in z and independent of z. It follows

immediately from (19) that Qf ≡ 0 and all derivatives of u are automatically continuous across C.

We have not identified any such simple form of f that produces smooth flows in the ES symmetry.

We now present a family of non-trivial low-degree examples in each equatorial symmetry class.

Consider the forcing

f =

[

s2(1 + z2) + s4 z2

K
∑

k=0

ak s2k

]

cos φ ŝ + s z cos φ ẑ (25)

which drives an ES flow of the form

(us, uφ, uz) =
(

ũs(s, z) sin φ, ũφ(s, z) cos φ, ũz(s, z) sin φ
)

. (26)

Note the azimuthal phase shift between f and u. We may choose the coefficients ak to satisfy

the constraints An. Table II shows how by adding in extra degrees of freedom, more constraints

can be satisfied. For instance, choosing K = − 1 (so that there are no degrees of freedom in f)

violates all constraints An and thus us, uz are discontinuous, and uφ singular on C. If K = 0, then if

a0 = − 7, A0 = A1 = 0 and so us, uz become continuous and uφ finite (but discontinuous) on C.

Contour plots of ũs , ũφ , and ũz for these two cases (rows one and two of Table II) are shown in the

first two rows of Figure 2. Note that, following the observations in Sec. III D, each additional free

parameter allows two more constraints to be satisfied as only half the constraints are active for any

equatorial symmetry; we therefore anticipate that A5 is also rendered zero in the last row.

As a second example, consider the forcing

f = s2 z cos φ ŝ +

[

s(1 + z2) + s3 z2

K
∑

k=0

ak s2k

]

cos φ ẑ

which drives an EA flow of the form (26) and is, within some factors of s, the ES forcing with the

s and z components interchanged. This time, A0 = 0 irrespective of f so that the first constraint is

satisfied with no degrees of freedom. When K = 0 we may satisfy not only A1 = 0 but also A2 = 0

(since A2 is proportional to A1). Table III summarises how an increasing number of constraints may

become satisfied when admitting more degrees of freedom. Contour plots corresponding to the first

two rows of this table are shown as rows three and four of Figure 2.

TABLE III. Similar to Table II caption, but for the EA symmetry example.

a0 a1 Constraints satisfied

0 0 A0 = 0

2 0 A0 = A1 = A2 = 0

4 − 8 A0 = A1 = A2 = A3 = A4 = 0
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FIG. 2. Contour plots in (s, z) of (ũs , ũφ , ũz), the meridional profile of the components of u, which are ES (rows 1 and

2) and EA (rows 3 and 4), corresponding to the examples in the text. In row 1, the forcing has no free parameters and

violates all constraints on C; thus us and uz are discontinuous (but finite) and uφ is singular. In row 2, admitting a single

degree of freedom allows A0 = A1 = 0 rendering us and uz continuous and uφ discontinuous (but finite) on C. In row 3,

the forcing has no degrees of freedom but automatically satisfies A0 = 0 rendering us and uz continuous but uφ singular

on C. In row 4, a single degree of freedom allows A0 = A1 = A2 = 0 which renders us and uz differentiable and uφ

continuous.

V. THE EFFECT OF VISCOSITY

In this section we consider in what manner viscosity smoothes out any singularity or disconti-

nuity in the flow into shear layers of finite thickness. We solve

2k × u − E∇2
u = −∇ p + f (27)

numerically in the spherical-shell subject to nonslip boundary conditions, using a fully spectral

method based on spherical harmonics and Chebyshev polynomials. Although spectral methods are

not in general the method of choice for representing functions which are not smooth, the results

will show that the viscous calculations converge to the inviscid case provided they are adequately
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resolved. We write

u = ∇ ×

[

t(r, θ ) eiφ
r̂

]

+ ∇ × ∇ ×

[

s(r, θ ) eiφ
r̂

]

,

where each of the toroidal and poloidal scalar functions are further decomposed as, for instance,

t(r, θ ) =

Kmax
∑

k=1

Nmax
∑

n=0

tk,n P1
2k−1(cos θ ) Tn(x), s(r, θ ) =

Kmax
∑

k=1

Nmax
∑

n=0

sk,n P1
2k(cos θ ) Tn(x),

where Pm
n is an associated Legendre function and Tn(x) is a Chebyshev polynomial. The radial

coordinate is stretched so that x = 2r − 2 satisfies − 1 ≤ x ≤ 1 over the spherical-shell domain

1/2 ≤ r ≤ 3/2. The representation above exploits the fact that (27) separates both in azimuthal

mode and equatorial symmetry. The expression written above, involving Pm
n with n − m even for

the toroidal scalar and n − m odd for the poloidal scalar is equatorially antisymmetric. Similar

representations exist for the equatorially symmetric solutions. After projecting each term of the

(linear) Eq. (27) back onto the spectral basis,9 the matrix-vector system, for the coefficients (tk, n;

sk, n), may be found using standard Numerical Algorithms Group library routines on a shared-memory

machine. Note that the solution is found directly, rather than as a perturbation to a given (e.g., the

inviscid) background state. We found that for values of Ekman number E = 10− 7, E = 10− 8, and

E = 10− 9, sufficient resolutions were given by Kmax = Nmax of 400, 600, and 800, respectively,

for converged solutions. By equatorial symmetry, the largest spherical harmonic degree used is

Lmax = 2Kmax, taking a maximum value of 1600. Although the matrix required to be inverted is of

banded structure, at this highest truncation the inversion routines took 19 hours to run and required

in total around 92 Gb of memory (including all overhead), close to the upper limit of our available

computational resources. We therefore did not attempt to find solutions at higher truncations than

this.

It is worth remarking that although the operator ∇2
u leaves invariant not only the azimuthal

wavenumber but the azimuthal phase of u, the viscous solutions do not remain of the simple form

(26). This is because (27) combines the Coriolis operator k̂× that swaps the azimuthal phase

(compare (26) to (25)) and ∇2 which does not, so the solution must be a mixture of phases. As

E → 0 however, any components of u out of phase with solutions of the form (26) will reduce to

zero.

Figure 3 compares cross sections of the flow components (ũs, ũφ, ũz), derived using low-

viscosity, and the formally inviscid solution. We show only the component of the viscous solutions

of the form (26). The systems are driven by the equatorially symmetric body force of Sec. IV that

satisfies no constraints. As viscosity is decreased from E = 10− 7 (top row), E = 10− 8 (middle row)

to E = 10− 9 (bottom row), all three components of flow converge to the formally inviscid solution

shown in the top row of Figure 2. This plot also confirms that the boundary layers on either spherical

boundary (owing to the nonslip conditions imposed) have no influence on the free-stream solution.

A more detailed view of the shear layers is afforded by cut-through sections at z = 1, midway

between ri and ro. Figure 4 examines ũφ (leftmost plots) for our most singular examples (i.e., driven

by forces that satisfy no constraints) for both the equatorially symmetric (top row) and antisymmetric

(bottom row) symmetries. It is apparent that, as E decreases, the viscous solutions (colour) converge

to the formally inviscid solution (black) which is singular at s = ri = 1/2. Interestingly, viscosity

smoothes the singularity in uφ into a boundary layer centred on the tangent cylinder in which

the peak shear is located either outside (inside) the tangent cylinder in the equatorially symmetric

(antisymmetric) symmetry class.

Motivated by some of the known asymptotic scalings in both the boundary-driven22 and force-

driven21 problems, we plot suitably rescaled solutions in the panels on the right. In both rows, the

coincidence of the horizontal location of features a′ to f ′, rescaled from features a to f, supplies

strong numerical evidence of inner and outer boundary layers of respective thickness E2/7 and E1/4.

For the ES symmetry, uφ apparently scales as E− 1/3 within both boundary layers (as indicated by the

z-coordinate of features a′ to c′). In the EA symmetry, the leftmost plot shows that the solution in the

outer boundary-layer scales independently of E (feature f). The scaling in the z-direction suggests
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FIG. 3. Contour plots in (s, z) of (ũs , ũφ, ũz), the meridional profile of the components of u of the form (26), at E = 10 − 7

(top), E = 10 − 8 (middle), and E = 10 − 9 (bottom) for the ES example which satisfies no constraints. As viscosity is decreased,

the development of the shear layer in uφ outside C becomes apparent. The inviscid solution to which these converge is shown

in the top row of Figure 2.

that the inner solution scales as O(E1/20) (feature d′), although the peak values e′ do not then coincide.

The inset shows a z-scaling of E1/10 in which feature e′′ appears to become independent of E. This

more complex profile suggests a nested structure of boundary layers, in which the solution takes

magnitudes E− 1/20, E− 1/10, and O(1) as s increases across C. Lastly, we remark that within boundary-

layer theory as a whole, the scalings of E− 1/20 and E− 1/10 are not particularly commonplace and, in

view of their empirical determination, the reader may wonder about the accuracy of the exponents

we provide. Although they are the best fit to our data within our range E ≥ 10− 9, any scalings of the

form E− 1/k, 16 ≤ k ≤ 24 or E− 1/k, 9 ≤ k ≤ 12, respectively, are (broadly speaking) not inconsistent

with the numerical calculations. It is likely that an accurate determination of the scalings will only

emerge through a rigorous boundary-layer analysis.

VI. DISCUSSION

In this paper, we have described the analytic solution to a steady fluid driven by a body force

f in a rotating spherical shell, in the absence of viscosity and inertia. Essentially, in what may be

viewed as a generalisation of the Taylor-Proudman theorem, the impenetrable boundary conditions

on the inner sphere are communicated only in the direction parallel to the rotation axis and this leads

to singularities or discontinuities in all components of the driven flow on the tangent cylinder, C.

We have set out a hierarchy of conditions, imposed on the body force f, that progressively smoothes

the driven flow on C. The first condition, A0 = 0, ensures that us is continuous, the second, A1 = 0,

removes the singularity in uφ and if A0 = A1 = A2 = 0 then all three components of the flow are

continuous. This hierarchy of conditions on f is analogous to the nested sequence of boundary layers

found in similar problems that retain a small viscosity,12, 22 each additional layer removing a higher
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FIG. 4. Cut through at z = 1 of ũφ , the meridional profile of uφ of the form (26), of the ES (top row) and EA (bottom row)

example cases produced by f that satisfies no constraints on C, showing how the singularities are smoothed by viscosity

into shear layers of finite thickness. The leftmost plots show the raw numerical solution for three different Ekman numbers

(colour) and the analytic inviscid solution in black; the rightmost plots show rescaled solutions as indicated by the axes. In

both symmetries, the viscous boundary layers appear to have lateral extent E2/7 and E1/4, respectively, inside and outside the

tangent cylinder, as suggested by the independence in E of the horizontal position of the features a′ to f ′, rescaled from a

to f. For the ES symmetry, the magnitude of uφ appears to scale as E− 1/3 everywhere close to C and takes its peak value in

the shear layer outside C. In the EA symmetry, uφ attains its maximum value inside C and appears to scale as O(1) in the

outermost layer (feature f), O(E− 1/20) in the innermost (feature d′), and O(E − 1/10) in a mid-layer (feature e′′ as shown in the

inset).

order discontinuity from the flow. In the inviscid case considered, a smooth flow (i.e., infinitely

differentiable) on C must be driven by a force satisfying infinitely many constraints. Analogously,

in the viscously adjusted problem, a smooth flow would require an infinite sequence of boundary

layers, each ensuring the continuity of ever higher derivatives.

In this paper we have taken f to be prescribed; but in general, it will be time-dependent,

comprising buoyancy and the magnetic Lorentz force. It is this latter ingredient that, through the

resistance to shearing motion by the magnetic field lines, we anticipate will adjust f to satisfy as many

constraints as is dynamically demanded. In the equatorially symmetric case, Hollerbach7 has already

shown that indeed f is perturbed to ensure that A0 = A1 = 0, providing continuity of us and removing

the discontinuity in uφ . How many more smoothness constraints are implicitly satisfied by the action

of the magnetic field remains an open question although this is currently being investigated.

The influence of magnetic fields and their smoothing effect on shear layers may have signif-

icant consequences for the dynamics of the Earth’s core. So-called torsional waves, motions of

axially symmetric cylinders of fluid connected by magnetic field lines, have been predicted both

theoretically2, 24 and are supported by mounting observational evidence.6, 11 One interesting aspect

of the latter study, corroborated by recent low-viscosity geodynamo simulations25 is that these waves

appear to emanate from the tangent cylinder and propagate both radially inwards and outwards. To

explain this, we consider a background state of the core in which the body force satisfies enough

of the constraints to ensure that the flow is (sufficiently) smooth on the tangent cylinder. Fluctu-

ations in this state will cause violations of the constraints; hydrodynamically the system would

respond by forming shear layers, but we speculate that the resisting influence of the magnetic

field will cause (MHD) waves to propagate away from the tangent cylinder, carrying with them the
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problematic disturbance. Within our (principally non-axisymmetric) framework, we must then appeal

to nonlinear interactions to produce (axisymmetric) torsional waves. Interestingly, there is evidence

that persistent localised shear layers could spawn other observed instabilities such as geomagnetic

jerks.17

Even without the influence of a magnetic field, by reinstating linearised inertia, Ro ∂u/∂t , it is

likely still possible to obtain hydrodynamic waves propagating from the tangent cylinder. Consider

the time-dependent problem in which the initial flow is quiescent (in the rotating frame) and is at all

times driven by a steady body force f that satisfies no constraints. Assuming that the set of inertial

modes (solutions of the homogeneous equation given by f = 0) are complete, then the full-solution

is simply the discontinuous/singular flow along with an infinite linear sum of inertial modes required

to match the initial condition. The shortest length-scale modes required on the tangent cylinder, to

remove any initial discontinuity or singularity, are associated with the fastest timescales and may

effect a wavelike divergence from the tangent cylinder.

It is of interest to compare the constraints that we have derived to that of Taylor,24 particu-

larly in terms of the number of conditions to which each constraint translates within a discretised

system. Taylor’s constraint states that the azimuthal component of the body force (which reduces

to the Lorentz force assuming that buoyancy is purely radial), must vanish when averaged on each

geostrophic cylinder. Within a model discretised by spherical harmonics (of maximum degree and

order Lmax) in solid angle and a certain set of polynomials in radius of size Lmax, the number of

conditions enumerates to O(5Lmax).15, 16 In this study, our constraints involve certain averages of the

body force which, although only applying on the tangent cylinder, apply separately to each azimuthal

wavenumber 1 ≤ m ≤ 2Lmax (since f depends quadratically on the magnetic field). Accounting for

both real and imaginary components of each complex exponential mode, these enumerate to a total

of O(4Lmax) conditions. Although a very crude comparison, the number of discretised conditions

corresponding to both types of constraint scales similarly within such a discretised scheme.

We finish by describing the outstanding issues that remain unresolved. First is the puzzle of

why the equatorial symmetry classes are staggered between the constraints, each symmetry class

being “active” only in every other constraint in our hierarchy. This mathematical property may well

be tied to the remarkable similarity between the algebraic forms of the constraints between the two

symmetry classes, whose origin might be revealed by addressing the problem in a different manner.

Second is an understanding of precisely how viscosity smoothes out discontinuities or singu-

larities into a shear layer and its scaling with the Ekman number, E. In our study, we investigated

numerically the most singular examples of flows, of both equatorial symmetries, driven by a body

force satisfying no constraints. In both cases, the azimuthal component of flow has the same (invis-

cid) structure uφ ∼ (r2
i − s2)−1/2, although, under equatorial symmetry, the singularity is arguably

more severe than in the equatorially antisymmetric case, since us and uz are also discontinuous on C.

Viscosity smoothes this singularity into a shear layer comprising an inner and outer layer on either

side of the tangent cylinder. For both symmetries, these inner and outer layers have a thickness

that appears to scale as O(E2/7) and O(E1/4), respectively, scalings identical to the boundary-forced

case22 and with numerical studies of inertial waves with weak viscosity.19 Interestingly, the layer

in which the shear takes its peak value depends on the symmetry class: the ES (EA) example taking

its peak value in the outer (inner) boundary layer. Further, the magnitude of the shear appears to

scale differently between the symmetry classes, being of O(E− 1/3) for ES and of multiple scalings

O(E− 1/20), O(E− 1/10) [or thereabouts, see the comments at the end of Sec. V] and O(1) for EA

depending on the position in the boundary-layer system. We have no explanation for this strong

dependence on structure with equatorial symmetry, although it is likely to be revealed by a formal

asymptotic treatment of the problem. It would further be of interest to investigate the scaling of the

boundary layers in which derivatives of the flow change rapidly, when the system is driven by a

body force satisfying some non-zero number of constraints.

Lastly, our results have focussed primarily on the non-axisymmetric constraints as a complete

discussion of the axisymmetric flow is much more difficult. This is because the geostrophic flow

of the form cφ(s)φ̂ is formally undetermined by the governing reduced Navier-Stokes equation

(1), essentially because k × cφ(s)φ̂ = −cφ(s)ŝ which can be absorbed into the pressure gradient.

However, by considering the inviscid magnetohydrodynamical system, it is possible to show that
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cφ(s), both inside and outside the tangent cylinder, must be the solution of certain ordinary differential

equations.24 It is not immediately clear what conditions of continuity must be required to match the

two solutions on C, although a resolution of this may lead to a similar hierarchy of constraints for

the axisymmetric flow.
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APPENDIX: EVALUATION OF EXPANSION COEFFICIENTS

We briefly outline the procedure for calculating the expansion coefficients, An, n ≥ 0, for the

ES symmetry class; the EA coefficients are derived in an identical fashion. The first term in the

expansion, A0, is simply Qf evaluated at s = ri, which gives

A0 =
1

ri

∫ ζ

0

(ζ L z + ri Ls) dz.

The next coefficient is given by

A1 = lim
s→ri

Qf − A0

(r2
i − s2)1/2

.

Since both numerator and denominator are zero in the required limit, we use L’Hôpital’s rule,

A1 = lim
s→ri

d(Qf − A0)/ds

(−s)(r2
i − s2)−1/2

=
A0

ζ
− Ls(ri , 0),

reducing to ζA1 = A0 since, owing to symmetry, Ls is zero at z = 0. Hidden in the above equation is

some elementary but tedious differentiation, taking account of the fact that not only the integrands

but the limits of the integrals appearing in Qf depend on s; finding the derivative required above is a

task greatly facilitated by computer algebra. A similar procedure is followed to find A2,

A2 = lim
s→ri

Qf − A0 − (r2
i − s2)1/2 A1

(r2
i − s2)

.

Since both numerator and denominator are again zero, L’Hôpital’s rule gives

A2 = lim
s→ri

d(Qf − A0 − (r2
i − s2)1/2 A1)/ds

(−2s)
.

However, this limit is also undefined and in order to make progress the above quantity can be

re-expressed as a new fraction in which both numerator and denominator are zero at s = ri,

H

2 ri ζ s3 zi z0 (z0 − zi )
,

where H is a somewhat lengthy expression involving integrals and boundary terms. Using L’Hôpital’s

rule again turns out to give a finite limit at s = ri; the intermediate quantities in the calculation are again

lengthy. The coefficient A3 follows similarly, although we find that we need to apply L’Hôpital’s rule

three times, re-expressing the intermediate terms twice. Further coefficients in the expansion follow

similarly, and are found by applying L’Hôpital’s rule n-times and re-expressing the intermediate

terms n − 1 times.
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