Cumulative Distribution Functions and Moments of Weighted Lattice Polynomials

Jean-Luc Marichal

University of Luxembourg

Sketch of the Presentation

Part I : Weighted lattice polynomials

- Definitions
- Representation and characterization

Part II : Cumulative distribution functions of aggregation operators

- Weighted lattice polynomials
- Applications

Part I : Weighted lattice polynomials

Lattice polynomials

Let L be a lattice with lattice operations \wedge and \vee

We assume that L is

- bounded (with bottom 0 and top 1)
- distributive

Definition (Birkhoff 1967)

An *n*-ary *lattice polynomial* is a well-formed expression involving *n* variables $x_1, \ldots, x_n \in L$ linked by the lattice operations \land and \lor in an arbitrary combination of parentheses

Example.

$$p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$

Lattice polynomial functions

Any lattice polynomial naturally defines a *lattice polynomial* function (l.p.f.) $p: L^n \to L$.

Example.

$$p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$

If p and q represent the same function, we say that p and q are equivalent and we write p = q

Example.

$$x_1 \vee (x_1 \wedge x_2) = x_1$$

Disjunctive and conjunctive forms of l.p.f.'s

Notation. $[n] := \{1, ..., n\}.$

Proposition (Birkhoff 1967)

Let $p: L^n \to L$ be any l.p.f.

Then there are nonconstant set functions $v, w : 2^{[n]} \to \{0, 1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$, such that

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ v(S)=1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ w(S)=0}} \bigvee_{i \in S} x_i.$$

Example.

$$(x_1 \land x_2) \lor x_3 = (x_1 \lor x_3) \land (x_2 \lor x_3)$$

 $v(\{3\}) = v(\{1,2\}) = 1$
 $w(\{1,3\}) = w(\{2,3\}) = 0$

The set functions v and w, which generate p, are not unique :

$$x_1 \lor (x_1 \land x_2) = x_1 = x_1 \land (x_1 \lor x_2)$$

Notation. $\mathbf{1}_{S} :=$ characteristic vector of $S \subseteq [n]$ in $\{0, 1\}^{n}$.

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate the l.p.f. p, only one is isotone :

$$v(S) = p(\mathbf{1}_S)$$

From among all the set functions w that conjunctively generate the l.p.f. p, only one is antitone :

$$w(S) = p(\mathbf{1}_{[n]\setminus S})$$

Consequently, any *n*-ary l.p.f. can always be written as

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ p(\mathbf{1}_S) = 1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{[n] \setminus S}) = 0}} \bigvee_{i \in S} x_i$$

Example. $p(x) = (x_1 \land x_2) \lor x_3$

S	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
$\{1\}$	0	1
{2}	0	1
{3}	1	1
$\{1, 2\}$	1	1
$\{1, 3\}$	1	0
{2,3}	1	0
$\{1, 2, 3\}$	1	0

$$p(x) = x_3 \lor (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land x_3) p(x) = (x_1 \lor x_3) \land (x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

Particular cases : order statistics

Denote by $x_{(1)}, \ldots, x_{(n)}$ the order statistics resulting from reordering x_1, \ldots, x_n in the nondecreasing order : $x_{(1)} \leq \cdots \leq x_{(n)}$.

Proposition (Ovchinnikov 1996, Marichal 2002)p is a symmetric l.p.f. \Leftrightarrow p is an order statistic

Notation. Denote by $os_k : L^n \to L$ the *k*th order statistic function.

$$os_k(x) := x_{(k)}$$

Then we have

$$os_k(\mathbf{1}_S) = 1 \iff |S| \ge n - k + 1$$

 $os_k(\mathbf{1}_{[n] \setminus S}) = 0 \iff |S| \ge k$

Weighted lattice polynomials

We can generalize the concept of l.p.f. by regarding some variables as parameters.

Example. For $c \in L$, we consider

$$p(x_1, x_2) = (c \lor x_1) \land x_2$$

Definition

 $p: L^n \to L$ is an *n*-ary weighted lattice polynomial function (w.l.p.f.) if there exist parameters $c_1, \ldots, c_m \in L$ and a l.p.f. $q: L^{n+m} \to L$ such that

$$p(x_1,\ldots,x_n)=q(x_1,\ldots,x_n,c_1,\ldots,c_m)$$

Disjunctive and conjunctive forms of w.l.p.f.'s

Proposition (Lausch & Nöbauer 1973)

Let $p: L^n \to L$ be any w.l.p.f. Then there are set functions $v, w: 2^{[n]} \to L$ such that

$$p(x) = \bigvee_{S \subseteq [n]} \left[v(S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[w(S) \lor \bigvee_{i \in S} x_i \right].$$

Remarks.

- p is a l.p.f. if v and w range in $\{0,1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$.
- Any w.l.p.f. is entirely determined by 2ⁿ parameters, even if more parameters have been considered to construct it.

Disjunctive and conjunctive forms of w.l.p.f.'s

Proposition (Marichal 2006)

From among all the set functions v that disjunctively generate the w.l.p.f. p, only one is isotone :

$$v(S) = p(\mathbf{1}_S)$$

From among all the set functions w that conjunctively generate the w.l.p.f. p, only one is antitone :

 $w(S) = p(\mathbf{1}_{[n]\setminus S})$

Disjunctive and conjunctive forms of w.l.p.f.'s

Consequently, any *n*-ary w.l.p.f. can always be written as

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example. $p(x) = (c \lor x_1) \land x_2$

S	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
$\{1\}$	0	с
{2}	с	0
$\{1, 2\}$	1	0

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$

= $(c \land x_2) \lor (x_1 \land x_2)$
$$p(x) = (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$$

= $(c \lor x_1) \land x_2$

Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in the framework of bounded distributive lattices.

Definition (Sugeno 1974)

An *L*-valued *fuzzy measure* on [n] is an isotone set function $\mu: 2^{[n]} \to L$ such that $\mu(\emptyset) = 0$ and $\mu([n]) = 1$.

The *Sugeno integral* of a function $x : [n] \to L$ with respect to μ is defined by

$$\mathcal{S}_{\mu}(x) := \bigvee_{S \subseteq [n]} \left\lfloor \mu(S) \land \bigwedge_{i \in S} x_i
ight
brace$$

Remark. A function $f : L^n \to L$ is an *n*-ary Sugeno integral if and only if f is a w.l.p.f. fulfilling $f(\mathbf{1}_{\emptyset}) = 0$ and $f(\mathbf{1}_{[n]}) = 1$.

Particular case : the Sugeno integral

Notation. The median function is the function $os_2 : L^3 \to L$.

Proposition (Marichal 2006)

For any w.l.p.f. $p: L^n \to L$, there is a fuzzy measure $\mu: 2^{[n]} \to L$ such that

$$p(x) = \mathsf{median}ig[p(\mathbf{1}_arnothing), \mathcal{S}_\mu(x), p(\mathbf{1}_{[n]})ig]$$

Corollary (Marichal 2006)

Consider a function $f: L^n \to L$.

The following assertions are equivalent :

- f is a Sugeno integral
- f is an idempotent w.l.p.f., that is such that f(x, ..., x) = x
- f is a w.l.p.f. fulfilling $f(\mathbf{1}_{\varnothing}) = 0$ and $f(\mathbf{1}_{[n]}) = 1$.

Inclusion properties

Weighted lattice polynomials		
Suger	no integrals	
	Lattice polynomials	
	Order statistics	

The median based decomposition formula

Let $f: L^n \to L$ and $k \in [n]$ and define $f_k^0, f_k^1: L^n \to L$ as

$$\begin{aligned} & f_k^0(x) & := f(x_1, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_n) \\ & f_k^1(x) & := f(x_1, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_n) \end{aligned}$$

Remark. If f is a w.l.p.f., so are f_k^0 and f_k^1

Consider the following system of *n* functional equations, called the *median based decomposition formula*

$$f(x) = \operatorname{median}\left[f_k^0(x), x_k, f_k^1(x)\right] \qquad (k = 1, \dots, n)$$

The median based decomposition formula

Any solution of the median based decomposition formula

$$f(x) = \text{median}\left[f_k^0(x), x_k, f_k^1(x)\right] \qquad (k = 1, \dots, n)$$

is an *n*-ary w.l.p.f.

Example. For n = 2 we have

$$f(x_1, x_2) = median[f(x_1, 0), x_2, f(x_1, 1)]$$

with

The median based decomposition formula

The median based decomposition formula characterizes the w.l.p.f.'s

Theorem (Marichal 2006)

The solutions of the median based decomposition formula are exactly the *n*-ary w.l.p.f.'s

Part II : Cumulative distribution functions of aggregation operators

Cumulative distribution functions of aggregation operators

Consider

- an aggregation operator $A: \mathbb{R}^n \to \mathbb{R}$
- *n* independent random variables X₁,..., X_n, with cumulative distribution functions F₁(x),..., F_n(x)

$$\begin{cases} X_1 \\ \vdots \\ X_n \end{cases} \longrightarrow \quad Y_A = A(X_1, \dots, X_n)$$

Problem. We are searching for the cumulative distribution function (c.d.f.) of Y_A :

$$F_A(y) := \Pr[Y_A \leqslant y]$$

Cumulative distribution functions of aggregation operators

From the c.d.f. of Y_A , we can calculate the expectation

$$\mathsf{E}\big[g(Y_A)\big] = \int_{-\infty}^{\infty} g(y) \, \mathsf{d}F_A(y)$$

for any measurable function g.

Some useful examples :

g(x)	$E[g(Y_A)]$
x	expected value of Y_A
x ^r	raw moments of Y_A
$\left[x - \mathbf{E}(Y_A) \right]^r$	central moments of Y_A
e ^{tx}	moment-generating function of Y_A

Cumulative distribution functions of aggregation operators

If $F_A(y)$ is absolutely continuous, then Y_A has a probability density function (p.d.f.)

$$f_A(y) := \frac{\mathsf{d}}{\mathsf{d}y} F_A(y)$$

In this case

$$\mathsf{E}\big[g(Y_A)\big] = \int_{-\infty}^{\infty} g(y) \, f_A(y) \, \mathrm{d} y$$

Example : the arithmetic mean

$$AM(x_1,\ldots,x_n)=\frac{1}{n}\sum_{i=1}^n x_i$$

 $F_{AM}(y)$ is given by the convolution product of F_1, \ldots, F_n

$$F_{AM}(y) = (F_1 * \cdots * F_n)(ny)$$

For uniform random variables X_1, \ldots, X_n on [0, 1], we have

$$F_{AM}(y) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (ny-k)_+^n \qquad (y \in [0,1])$$

(Feller, 1971)

Example : the arithmetic mean

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]

Example : Łukasiewicz *t*-norm

$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{T_L}(y) = \Pr\left[\max\left[0, \sum_i X_i - (n-1)\right] \leqslant y\right]$$

=
$$\Pr\left[0 \leqslant y \text{ and } \sum_i X_i - (n-1) \leqslant y\right]$$

=
$$\Pr[0 \leqslant y] \Pr\left[\sum_i X_i \leqslant y + n - 1\right]$$

=
$$H_0(y) F_{AM}\left(\frac{y+n-1}{n}\right)$$

where $H_c(y)$ is the *Heaviside* function

$$H_c(y) = \mathbf{1}_{[c,+\infty[}(y)$$

Example : Łukasiewicz *t*-norm

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]

Remark. $F_{T_L}(y)$ is discontinuous \Rightarrow The p.d.f. does not exist

Graph of $F_{T_L}(y)$

Example : order statistics on $\mathbb R$

$$os_k(x_1,\ldots,x_n)=x_{(k)}$$

$$\mathcal{F}_{os_k}(y) = \sum_{\substack{S \subseteq [n] \ |S| \geqslant k}} \prod_{i \in S} \mathcal{F}_i(y) \prod_{i \in [n] \setminus S} [1 - \mathcal{F}_i(y)]$$

(see e.g. David & Nagaraja 2003)

Examples.

$$F_{os_1}(y) = 1 - \prod_{i=1}^{n} [1 - F_i(y)]$$

$$F_{os_n}(y) = \prod_{i=1}^{n} F_i(y)$$

Example : order statistics on $\mathbb R$

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]

Example : order statistics on $\mathbb R$

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]

New results : lattice polynomial functions on $\mathbb R$

Let $p: L^n \to L$ be a l.p.f. on L = [0, 1]It can be extended to an aggregation function from \mathbb{R}^n to \mathbb{R} .

$$p(x_1,\ldots,x_n) = \bigvee_{\substack{S \subseteq [n] \\ p(\mathbf{1}_S)=1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{[n] \setminus S})=0}} \bigvee_{i \in S} x_i$$

Note. $\land = \min, \lor = \max$

$$F_{p}(y) = 1 - \sum_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{S})=1}} \prod_{i \in [n] \setminus S} F_{i}(y) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{[n] \setminus S})=0}} \prod_{i \in S} F_{i}(y) \prod_{i \in [n] \setminus S} [1 - F_{i}(y)]$$

New results : lattice polynomial functions on $\mathbb R$

Example. $p(x) = (x_1 \land x_2) \lor x_3$

Uniform random variables X_1, X_2, X_3 on [0, 1]

New results : lattice polynomial functions on $\mathbb R$

Consider

•
$$v_p: 2^{[n]} \to \mathbb{R}$$
, defined by $v_p(S) := p(\mathbf{1}_S)$

- $v_p^*: 2^{[n]} \to \mathbb{R}$, defined by $v_p^*(S) = 1 v_p([n] \setminus S)$
- $m_v: 2^{[n]}
 ightarrow \mathbb{R}$, the Möbius transform of v, defined by

$$m_{\nu}(S) := \sum_{T \subseteq S} (-1)^{|S| - |T|} v(T)$$

Alternate expressions of $F_p(y)$

$$F_{p}(y) = 1 - \sum_{S \subseteq [n]} m_{v_{p}}(S) \prod_{i \in S} [1 - F_{i}(y)]$$
$$F_{p}(y) = \sum_{S \subseteq [n]} m_{v_{p}^{*}}(S) \prod_{i \in S} F_{i}(y)$$

New results : weighted lattice polynomial functions on $\mathbb R$

Let
$$p: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}$$
 be a w.l.p.f. on $\overline{\mathbb{R}} = [-\infty, +\infty]$

Notation. $\mathbf{e}_{S} := \text{characteristic vector of } S \text{ in } \{-\infty, +\infty\}^{n}$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{e}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{e}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

$$F_{p}(y) = 1 - \sum_{S \subseteq [n]} [1 - H_{p(\mathbf{e}_{S})}(y)] \prod_{i \in [n] \setminus S} F_{i}(y) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{S \subseteq [n]} H_{p(\mathbf{e}_{[n] \setminus S})}(y) \prod_{i \in S} F_{i}(y) \prod_{i \in [n] \setminus S} [1 - F_{i}(y)]$$

+ alternate expressions (cf. Möbius transform)

New results : weighted lattice polynomial functions on $\mathbb R$

Example. $p(x) = (c \land x_1) \lor x_2$

Uniform random variables X_1, X_2 on [0, 1]F(y) = median[0, y, 1]

 $F_{\rho}(y) = F(y) \Big(F(y) + H_{c}(y) [1 - F(y)] \Big)$

Graph of $F_p(y)$ for c = 1/2

Application : computation of certain integrals

Example. Given a w.l.p.f. $p : [0,1]^n \to [0,1]$ and a measurable function $g : [0,1] \to \overline{\mathbb{R}}$, compute

$$\int_{[0,1]^n} g\big[p(x)\big] \,\mathrm{d}x$$

Solution. The integral is given by $\mathbf{E}[g(Y_p)]$, where the variables X_1, \ldots, X_n are uniform on [0, 1]

$$\mathbf{E}[g(Y_p)] = g(0) + \sum_{S \subseteq [n]} \int_0^{p(\mathbf{e}_S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}g(y)$$

Application : computation of certain integrals

Sugeno integral

$$\int_{[0,1]^n} \mathcal{S}_{\mu}(x) \, \mathrm{d}x = \sum_{S \subseteq [n]} \int_0^{\mu(S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}y$$

Example.

$$\int_{[0,1]^2} \left[(c \wedge x_1) \lor x_2 \right] dx = \frac{1}{2} + \frac{1}{2} c^2 - \frac{1}{3} c^3$$

Note. Recall the expected value of the Choquet integral

$$\int_{[0,1]^n} \mathcal{C}_{\mu}(x) \, \mathrm{d}x = \sum_{S \subseteq [n]} \mu(S) \, \int_0^1 y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}y$$

(Marichal 2004)

Consider a system made up of *n* indep. components C_1, \ldots, C_n

Each component C_i has

- a *lifetime* X_i
- a *reliability* $r_i(t)$ at time t > 0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$

Assumptions :

- The lifetime of a series subsystem is the minimum of the component lifetimes
- The lifetime of a parallel subsystem is the maximum of the component lifetimes

Question. What is the lifetime of the following system?

Solution. $Y = (X_1 \land X_2) \lor X_3$

For a system mixing series and parallel connections :

System lifetime :

$$Y_p = p(X_1,\ldots,X_n)$$

where p is

- an *n*-ary l.p.f.
- an *n*-ary w.l.p.f. if some X_i's are constant

We then have explicit formulas for

- the c.d.f. of Y_p
- the expected value $\mathbf{E}[Y_p]$
- the moments

System reliability at time t > 0

ģ

$$R_{\rho}(t) := \Pr[Y_{\rho} > t] = 1 - F_{\rho}(t)$$

For any measurable function $g:[0,\infty[
ightarrow\mathbb{R}%])$ such that

$$g(\infty)r_i(\infty) = 0$$
 $(i = 1, \dots, n)$

we have

$$\mathsf{E}\big[g(Y_p)\big] = g(0) + \int_0^\infty R_p(t) \, \mathrm{d}g(t)$$

Mean time to failure :

$$\mathbf{E}[Y_{p}] = \int_{0}^{\infty} R_{p}(t) \,\mathrm{d}t$$

Example. Assume
$$r_i(t) = e^{-\lambda_i t}$$
 $(i = 1, ..., n)$

$$\mathsf{E}[Y_p] = \sum_{\substack{S \subseteq [n] \\ S \neq \varnothing}} m_{v_p}(S) \frac{1}{\sum_{i \in S} \lambda_i}$$

Series system

$$\mathsf{E}\big[Y_p\big] = \frac{1}{\sum_{i \in [n]} \lambda_i}$$

• Parallel system

$$\mathsf{E}[Y_p] = \sum_{\substack{S \subseteq [n] \\ S \neq \varnothing}} (-1)^{|S|-1} \frac{1}{\sum_{i \in S} \lambda_i}$$

(Barlow & Proschan 1981)

Thanks for your attention !