
Booth, T. & Stumpf, S. (2013). End-user experiences of visual and textual programming

environments for Arduino. Lecture Notes in Computer Science, 7897 L, pp. 25-39. doi:

10.1007/978-3-642-38706-7_4

City Research Online

Original citation: Booth, T. & Stumpf, S. (2013). End-user experiences of visual and textual

programming environments for Arduino. Lecture Notes in Computer Science, 7897 L, pp. 25-39.

doi: 10.1007/978-3-642-38706-7_4

Permanent City Research Online URL: http://openaccess.city.ac.uk/2740/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/17041703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

End-User Experiences of Visual and Textual
Programming Environments for Arduino

Tracey Booth and Simone Stumpf

City University London

{tracey.booth.2, simone.stumpf.1}@city.ac.uk

Abstract. Arduino is an open source electronics platform aimed at hobbyists,
artists, and other people who want to make things but do not necessarily have a
background in electronics or programming. We report the results of an explora-
tory empirical study that investigated the potential for a visual programming
environment to provide benefits with respect to efficacy and user experience to
end-user programmers of Arduino as an alternative to traditional text-based
coding. We also investigated learning barriers that participants encountered in
order to inform future programming environment design. Our study provides a
first step in exploring end-user programming environments for open source
electronics platforms.

Keywords: End-user programmers, Arduino, Visual Programming

1 Introduction

Open source hardware platforms such as Arduino [23] and Raspberry Pi [32] have
reinvigorated interest in hacking and tinkering to create interactive electronics-based
projects. These platforms present an opportunity for end users to move beyond being
mere consumers of technology to being producers of it. Arduino is based on a simple
microcontroller board (Figure 1) that was designed for use in personal projects, even
by people with little electronics or programming experience – artists, hobbyists, or
children.

However, although easier to learn than many other programming languages, the
Arduino programming language still requires some skill to master and for potential
end-user programmers of Arduino this means getting to grips with coding. Recently,
visual programming languages (VPLs) for Arduino have been developed and we
wondered whether a visual representation might provide an easier route of entry into
programming. This fits with the rise of other visual programming environments
aimed, for example, at children to engage them and facilitate the learning process.
Would a VPL have similar benefits for adult users beginning to learn to program an
electronics platform? Similarly, some work has started to emerge to investigate learn-
ing barriers for specific end-user programming environments [5, 11, 12]. Conse-

quently, we wondered what barriers end users encounter when programming electron-
ics platforms.

In this paper we describe and discuss findings from an empirical study with adult
novice end-user programmers of Arduino, using textual and visual programming envi-
ronments. The overall aim of our research was to investigate whether a visual pro-
gramming language for Arduino offers benefits over a traditional, text-based language
for adult end-user programmers, specifically in terms of efficacy and user experience.
We were also interested in what barriers end users currently face with a view to im-
proving these environments.

Our study is the first of its kind (as far as we know) to investigate a VPL for Ardu-
ino. We contribute novel insights into understanding how end users interact with these
programming environments in the growing area involving physical prototyping and
study their benefits, costs and learning barriers. Our findings can provide the basis for
improving the design of visual programming environments for the Arduino, and po-
tentially also programming environments suitable for other related domains.

Fig. 1. Example of a prototype using an Arduino microcontroller board

2 Related Work

A visual programming language (VPL) uses a visual representation instead of, or
in addition to, more traditional textual representations of program source code. Exam-
ples of VPLs are Forms/3 [4] in the spreadsheet paradigm, LabVIEW [31] for instru-
ment control and industrial automation, as well as Scratch [18] for teaching children
how to program using animations.

There have been numerous investigations to substantiate the benefits of VPLs, both
generally and in certain application areas. Whitley [20] found that visual notations
have potential for making information explicit and providing better organisation,

which may help with program design, problem-solving and performance, even more
so as the size of problems increases. However, there is still a lack of evidence that
they are generally easier to learn, understand, use and share [2] and in addition it ap-
pears that the benefits of a notation are relative to a particular application area (task
[8]).

One area where visual notations have been used with great success is in teaching
children and young people to program. Scratch uses a building-block metaphor; pro-
grams are created by snapping graphical blocks of different colours and shapes to-
gether to form “stacks” (procedures). These blocks represent commands, datatypes,
etc. and users can choose them from a palette of available blocks. The shape of the
blocks determines what they can connect with. In this way syntactically correct state-
ments and programs are encouraged: the shapes of the blocks hint as to what is ex-
pected and thus provide a guide to the user as to what is possible. There is a growing
body of research into the efficacy of Scratch as a tool for learning to program. Several
studies report that children and young people - both boys and girls - find Scratch en-
gaging and fun to use, while successfully familiarising them with fundamental pro-
gramming concepts without the distraction of syntax [7, 13, 14, 16].There is also evi-
dence of continued engagement with computer science. A positive first experience
with programming in an environment with a low barrier to entry, like Scratch, can
sustain enthusiasm and ease transition to more sophisticated languages, such as Java
and C [13, 21]. The visual programming environment used in our study, Modkit [27],
was heavily influenced by Scratch and uses a similar building-block metaphor. Mod-
kit has been used in workshops teaching children how to program Arduino [17]. Yet
while Scratch has been studied to some extent, so far there are no similar studies to
investigate the benefits of ModKit or other VPLs for the Arduino.

There are also some concerns about the habits Scratch engenders [15]. Following a
constructivist philosophy of learning-by-making, Scratch both supports and encour-
ages a bottom-up approach to program construction – programming by bricolage [19],
rather than design. This can lead to a trial and error approach of programming with
extreme decomposition and, in turn, this can make the code highly concurrent and
difficult to debug. However, this type of opportunistic construction – tinkering and
experimenting – is often characteristic of prototyping that involves electronic compo-
nents [3, 10], so an environment explicitly designed to support this style of program
creation may provide a good route into programming Arduino. Our work is the first
step to investigate barriers that end users encounter in the area of programming of
physical prototypes.

3 Study Design

We recruited participants for our empirical study through the MzTEK [30] and
London Hackspace [25] mailing lists. We used a within-subject, think-aloud design,
comprising eleven participants (8 female, 3 male, mean age 36.18), exposing each
participant to both a visual and textual environment. None of the participants had
previous experience of programming an Arduino or were professional programmers

but they were required to have some previous programming experience (declaring and
using variables and ‘if statements’ in at least one procedural programming language).

Participants used both a textual and visual environment for Arduino programming
in our study. The textual environment was the default Arduino programming envi-
ronment v1.0.1 [24] (Figure 2), which contains a text editor, a message area (for
compiler messages), a text console (for text input and output during runtime), a tool-
bar containing frequently used commands and various menus for operation.

Fig. 2. Arduino IDE (textual programming environment)

The visual environment used was Modkit Alpha Editor (preview version) [28]. It
supports multiple code representations, with both a Blocks view (Figure 3), where
users manipulate coloured, graphical blocks representing code, and a Source view,
which provides a textual representation of the current program(s), also editable. The
Hardware view allows users to configure hardware setup visually. While there are a
number of other visual programming environments for Arduino, we chose to use
Modkit for this study because in terms of terminology, commands available, feature
set and code constructs it matches the Arduino language and IDE most closely, thus
facilitating isolation of the visual component to the programming experience.

Fig. 3. Modkit Alpha Editor IDE - Blocks view (visual programming environment)

Study sessions took place in the Interaction Lab at City University London, lasting
approximately 2 hours per participant. Each session was video-recorded using Morae
[29], capturing all on-screen activity, verbal comments and non-verbal behaviour.
Mouse-clicks, keystrokes and mouse movements (in pixels) were also logged auto-
matically. Participants were asked to ‘think aloud’, to provide us with insight into
their thought processes.

At the start of the session participants completed a background questionnaire and
semi-structured interview regarding their previous programming experience. We then
familiarized the participants with the Arduino platform and key Arduino program-
ming concepts and constructs. The tutorial also included a printed hardcopy of a list
of key commands, which the participant was able to refer to during the whole session.

For the main part of the study, participants completed two tasks (counterbalancing
was used to counter any order effects of environment). In task 1 they were asked to
modify an existing program, extending it to meet new requirements. The original
prototype contained a single LED and a proximity sensor. The goal of the original
program was to light the single LED when an object reached a specific ‘closeness’ to
the proximity sensor. The second prototype extended upon this with the addition of
four more LEDs. Each LED was associated with a specific proximity threshold and
only when that threshold was reached must the LED be lit. When an object reached
the ‘closest’ threshold, all of the LEDs must be lit. In task 2 they were asked to create
a new program from the ground up. The participant was shown a prototype that con-
tained a single LED and a tactile switch. The program must light the LED when the
switch is pushed down. Hardware prototypes of the circuits required for each task
were prepared in advance; participants therefore did not have to understand and con-
struct electronic circuits. The facilitator demonstrated the desired results using the
hardware prototype so that the participants were able to view the working prototype
and desired result. Participants were given twenty minutes to complete each task.

We captured two sets of data to investigate efficacy and user experience. We asked
participants to think-aloud while they were completing the tasks and we conducted a
qualitative analysis of transcribed video recordings for task 2, based on the set of
Learning Barriers [11]. The coding scheme used in the study is given in Table 1. Fol-
lowing each task, each participant was presented with a set of 92 word reaction cards,
based on the Microsoft Desirability Toolkit [1], capturing their user experience in a
qualitative way.

Table 1. Coding scheme used to identify learning barriers in programming the Arduino.

Code Applied when… Example application in this study
Design barrier The user does not

know exactly what
they want the com-
puter to do.

A user not knowing whether they need
to connect the tactile switch pin as
input or output.

Selection barrier The user knows what
they want to do, but
does not know which
tool to use.

A user not knowing which block to use
to achieve a particular goal, which
operator to use in a conditional state-
ment, or which command to use to read
the value of a digital pin.

Coordination
barrier

The user knows what
tools to use, but not
how to make them
work together.

A user not knowing how to use blocks
or functions in conjunction with one
another. The user may know that they
need to declare variables and read pins,
but not how to get them to work to-
gether.

Use barrier The user knows what
tools to use, but does
not know how to use
them properly.

A user not knowing how to use pin-
Mode to set input or output for a digital
pin, or how to use the digital-
Write command to write a value to
one; also not knowing how to declare
variables or use an if-else statement.

Understanding
barrier

The user thought they
know how to use
something but it did
not do what they
expected.

A user unable to correctly interpret a
compiler error or understand why
something did not happen when it was
supposed it, e.g. an LED does not li ght
up when a switch is pushed.

Information bar-
rier

The user has an idea
or hypothesis about
why their program
did not do what they
expected, but they do
not know how to
check.

A user not knowing how to use the
serial monitor for debugging, or
whether there is a code verification tool
they can use.

We used two quantitative measures to evaluate potential benefits and costs. First,
we used a self-efficacy questionnaire [6] which gathered participants’ levels of confi-
dence with regards to completing programming tasks in programming environments.
Participants filled in this questionnaire at the start of the session prior to the partici-
pant undertaking any task and then following each of the two tasks. The initial self-
efficacy questionnaire provided a baseline score against which post-task self-efficacy
could be compared. Further, the NASA-TLX questionnaire [9] was completed by
each participant following each task, which measured the perceived load of a task in
terms of mental, physical and temporal demand, performance, effort and frustration.

4 Results

4.1 Effects on End-User Programming Efficacy

We wondered if using the Arduino VPL would have any benefits in helping end-
users to program compared to the textual programming environment. We found that
task completion rates were low in both environments. Only two participants out of
eleven completed both tasks that were set in the study, two completed one task and
seven did not complete any task. However, the four participants who completed tasks
were more successful using the visual programming environment: only two tasks
were completed using the textual environment whereas four tasks were completed
using the visual environment (Figure 4, left).

Fig. 4. Participant completion using programming environments for all tasks (left) and for
create/modify task types (right)

Most of the problems, which we explore more fully in section 4.3 Learning Barri-
ers, that seemed to prevent completion, were due to difficulties with syntax in the
textual environment:

 “I just can’t remember what all the little coding mean [sic], you know, whether
it’s an exclamation mark or an equals and then the curly brackets”.

One explanation for the low task completion scores in the textual environment may
therefore be that participants were focusing more on syntax rather than on program

design. As participant 1 reflected: “I was too busy worrying about where it should go
and not what was actually in it”.

We also noticed that the kinds of tasks mattered: visual programming helped
slightly more in the modification task than the creation task (Figure 4, right) Again,
this difficulty may have been compounded by the visual programming environment,
which may encourage less focus on overall design and only encourage a trial and
error approach [19].

This suggests visual programming environments may provide a slight edge for
successful programming over textual programming environments, if users have rela-
tively little programming experience. However, visual programming may be most
helpful if users do not have to write the program from scratch.

4.2 Effects on User Experience

In addition to contributing to actual programming efficacy, the type of program-
ming environment may lead to perceived benefits which in turn can determine prefer-
ence and encourage continued use. We measured the effects on participants’ experi-
ence through three aspects: their perceived workload and success, their self-efficacy
ratings and their reactions to the two programming environments.

Participants in our study generally rated their perceived workload as higher in the
textual environment, although they rated the visual environment as more physically
demanding (Figure 5; a higher score indicates either higher workload or decreased
performance). Although this may seem initially perplexing we found that participants
carried out vastly more mouse clicks and mouse movements in the visual environ-
ment, which may explain this perceived cost.

Fig. 5. Participants’ TLX scores for textual (diamonds) and visual (circles) environments. The
mean score was always higher for the textual environment, except relating to Physical demand.

Furthermore, as the performance scores show, in addition to being slightly more
successful in actual programming efficacy, participants also perceived themselves to

perform better using the visual programming environment. This effect on perceived
efficacy was also reflected to some extent by participants’ self-efficacy scores, which
suggest that these benefits may carry over to future tasks. We observed that while
self-efficacy scores improved from their initial self-assessments (mean 7.26) in both
environments (mean textual 7.38, mean visual 7.90), participants rated themselves as
slightly more capable of completing similar tasks after encountering the visual envi-
ronment. This is summarized well by the following comment from participant 1:

“I think I would quite happily play with that one [visual] and see if I could get
something going and if I got stuck…but I’m really confident I could make something
work without getting stuck, and, you know, be able to build from there.”

Task type mattered in participants’ self-efficacy rating (Figure 6) and echoes our
findings for observed efficacy. Participants felt more confident modifying a program
using the visual environment than creating one. In contrast, when they employed the
textual environment the reverse tended to be true; creating programs made them feel
more confident than modifying existing ones. As program reuse is a common strategy
for novice programmers, visual programming environments may therefore provide an
initial boost to learning by increasing an individual’s confidence in their ability to
successfully modify existing programs.

Fig. 6. Participants’ self-efficacy scores initially (triangles) and after completing a task using
the textual environment (diamonds) and visual environment (circles). Mean score for visual
environment is higher than textual environment in the modify task but lower in the create task.

We also noted differences in the type of reactions to the environments. From the
set of word reaction cards, to describe the textual environment, participants chose 62
positive words and 69 negative words. This means that they had a fairly balanced
experience. Contrast this to the visual environment which received 101 positive word
descriptions and only 37 negative words – participants viewed the visual program-
ming environment much more favourably.

Looking at the meaning of the words that participants chose provides further in-
sight about qualitative differences in user experience. Figures 7 and 8 show a visual
representation of the words participants selected, their frequency (size) and type
(positive vs negative). On the positive side, participants found the visual environment
‘fun’, ‘attractive’ and ‘easy to learn’, whereas they found the textual environment
‘clean’, ‘familiar’ and ‘understandable’. This suggests that the visual environment is
much more emotive, particularly for someone beginning to program, whereas the
textual environment is seen as more practical, as this comment from participant 1
suggests:

“It looks the same as every other blank bit of paper programming environment.
But I know that that’s efficient.”

On the negative side, the main complaint in the textual environment was that it was
‘unsupportive’; the visual programming environment was seen as ‘confusing’. Part of
the challenge in the visual environment may have been due to the “puzzle-like” nature
of the screen elements which lock together, mentioned by both participant 9 and 4:

“At the same time, for me, it’s like a puzzle on top of a puzzle.”
“You feel like you’re solving a puzzle here, but yeah, I’m not sure what the solu-

tion to the puzzle is.”

Fig. 7. Textual environment reactions, positive (in grey) and negative (in black)

Fig. 8. Visual environment reactions, positive (in grey) and negative (in black)

When asked in the post-session debriefing interview which of the environments
they would choose to use for learning to program Arduino, the participants were
overwhelmingly in favour of the visual environment, with seven of the eleven choos-
ing it. However several participants commented that graphical and textual representa-
tions of the same program – like the Blocks view and the Source view in Modkit -
might prove useful for different activities or stages of a programming project.

4.3 Learning barriers

We wanted to explore the reasons for some of the negative user experiences re-
ported and also how to facilitate improvements to these programming environments.
We therefore looked at what learning barriers our participants faced in the creation
task (recall that this was the more “difficult” task to complete). Recall that we ran-
domised the order of programming environments over tasks; this means that six par-
ticipants encountered the visual environment whereas only five used the textual envi-
ronment in the creation task. On average, participants encountered 16.82 learning
barriers (15.4 textual, 18 visual). Figure 9 shows the percentage of occurrences of
each learning barrier in the respective environments; in the remainder of the paper we
show raw counts of barriers encountered. In our analysis we will focus on four learn-
ing barriers – Use, Understanding, Coordination, and Selection – because this is
where the main differences between the environments occurred.

Fig. 9. Percentage of learning barriers observed during the create task for texual (grey) and
visual (black) environment.

Use barriers proved to be a big challenge for participants but more so in the textual
environment (40/77 textual, 46/108 visual). As already mentioned in section 4.1, a lot
of instances for this type of barriers were caused by a lack of familiarity with the syn-
tax of the textual notation, for example:

“If, then, else… It’s a standard, conditional thing which you use in every single
programming language, but it’s always different. It always appears to come with
some extra thing which you don’t know about.” (Participant 2)

This barrier is somewhat lessened by the visual environment but still, both envi-
ronments could provide users with better instructions for correct usage, possibly
through context-sensitive instructions which some other IDEs already provide. (The
most recent version of Modkit - Modkit Micro - now provides tooltips).

Similarly, understanding barriers encountered in the textual environment outnum-
bered those found in the visual environment (15/77 textual, 12/108 visual), as this
quote from participant 3 demonstrates:

“So it’s doing output of zero and one. Oh, ok. So now it’s obvious that the problem
is that [squints at the screen and shakes her head slightly] it needs some sort of delay.
But that still doesn’t make sense, because it shouldn’t be doing anything; it should
just be in an off state. So why is it flashing on and off?”

This suggests that the textual environment could provide more support to users in
understanding information received at runtime or on compile, and making them aware
how to check any hypothesis they may have about the reason for a compiler or run-
time error, including the facilities available for testing.

Coordination barriers proved to be a more challenging aspect for participants in the
visual environment than the textual environment (2/77 textual, 15/108 visual). Several
of these related to the unsuccessful docking together of blocks, which some partici-
pants struggled with, suggesting that this interaction could perhaps be improved. In
some cases participants were not sure whether blocks had connected, for example
participant 5 remarked:

“Did it fit? Yes…No… I’m not sure if it’s fitting in the loop, in the If case. It
doesn’t look like it does.”

Some participants, such as participant 2, also did not understand why some blocks
did not fit together when they thought they should:

“What I really want to do is put it there, in the forever loop, [tries to dock digital-
Read again unsuccessfully…] but that’s not going to happen is it?”

A frequent barrier for participants in the visual environment proved to be a selec-
tion barrier (12/77 textual, 27/108 visual), as this participant stated:

 “It’s a shame you can’t find anywhere like a help or thingy what’s… what those
[the operator blocks] are.” (participant 4)

This is somewhat surprising, as we had anticipated that making the blocks explic-
itly available might make it easier for people to decide what to use. However, it may
be that in fact people felt confused because the tool provided both a proliferation of
choices yet no clue as which one was the right one – again, a “puzzle on top of a puz-
zle”. Future work could concentrate how to guide users in selecting the right blocks to
use.

5 Discussion and future work

Our study suggests that task type, such as creation and modification, play a role in
the success of using a programming environment. Participants in our study also felt
more confident using the visual programming environment in the modification task.
This may explain the effectiveness of using VPLs for teaching: often novices start out

by reusing existing solutions and modifying them – a task for which a visual envi-
ronment may be better suited. Consequently, there may be an additional “boost” to
learners to continue using VPLs for this and similar tasks. Arduino draws in adults
with little programming experience and how best to teach these individuals to develop
physical prototypes, possibly through ‘prototype repositories’ which they can reuse,
would be an interesting area for further study.

We have started to identify the barriers end users may encounter when program-
ming an electronics platform, however, this work could benefit from comparative
studies both between application areas (e.g. intelligent agents, spreadsheets, etc.), as
well as other visual programming environments for Arduino, such as S4A (Scratch for
Arduino) [33], Minibloq [26], ArduBlock [22] and Modkit. The Blocks view in Mod-
kit, while graphical, uses similar terminology to the default Arduino IDE. Other visual
environments, such as Minibloq, differ more radically in their presentation of pro-
gramming constructs and their approaches to program construction. It would be useful
to evaluate these empirically for learning barriers, usability and user experience.

Finally, our participants hinted at the effect of visual and textual environments on
programming activities, stating that visual may be good to get them started but that
they may want to switch. It could be that debugging in particular is hampered in
VPLs: our findings show that Coordination barriers were especially more frequent in
the visual environment. One possible solution is to provide both representations at the
same time, to provide information to the end user in combination in order to over-
come this learning barrier. Future work may be able to explore this solution on pro-
gramming effectiveness, or how certain programming activities could be better sup-
ported in visual programming environments.

6 Conclusion

The overall objective of this project was to investigate whether a visual program-
ming language for Arduino offers benefits over a traditional, text-based language for
adult end-user programmers. We learned that:  Visual environments seemed to help but possible more to modify programs than

create them. Further studies are necessary to look into this in more detail.  Visual environments provided a more positive user experience, alongside a re-
duced perceived workload and higher perceived success, both for the tasks in the
study as well as future tasks. This may entice beginners to continue using these
environments even in the absence of actual benefits.  Both environments are not perfect, and may be perceived as unsupportive or
confusing. We showed that this may be due to Use, Understanding, Selection and
Coordination barriers. Addressing these may help to improve support for end-
user programmers.

Taken together, visual programming languages appear to hold promise for adult
novice end-user Arduino programmers but further work is needed to fully understand
how best to support end users to achieve both actual and perceived benefits. Our study
is a first step in this direction.

Acknowledgements. We thank Ed Baafi and the Modkit team, who kindly gave us
access to the Modkit Alpha Editor for use in our study. Thank you also to our study
participants.

References

1. Benedek, J., Miner, T.: Measuring Desirability: New methods for evaluating
desirability in a usability lab setting. Presented at the Usability Professionals’
Association Conference 2002 , Orlando, Florida, USA July 8 (2002).

2. Blackwell, A.F.: Metacognitive Theories of Visual Programming: What do we
think we are doing? , IEEE Symposium on Visual Languages, 1996. Proceed-
ings. pp. 240 –246 (1996).

3. Brandt, J. et al.: Opportunistic Programming: How Rapid Ideation and Prototyp-
ing Occur in Practice. Proceedings of the 4th international workshop on End-user
software engineering. pp. 1–5 ACM, New York, NY, USA (2008).

4. Burnett, M. et al.: Forms/3: A First-Order Visual Language to Explore the
Boundaries of the Spreadsheet Paradigm. Journal of Functional Programming.
11, 02, 155–206 (2001).

5. Cao, J. et al.: End-User Mashup Programming: Through the Design Lens. Pro-
ceedings of the 28th international conference on Human factors in computing
systems. pp. 1009–1018 ACM, New York, NY, USA (2010).

6. Compeau, D.R., Higgins, C.A.: Computer Self-Efficacy: Development of a
Measure and Initial Test. MIS Quarterly. 19, 2, 189–211 (1995).

7. Franklin, D. et al.: Assessment of Computer Science Learning in a Scratch-Based
Outreach Program. Proceeding of the 44th ACM technical symposium on Com-
puter science education. pp. 371–376 ACM, New York, NY, USA (2013).

8. Gilmore, D.J., Green, T.R.G.: Comprehension and Recall of Miniature Programs.
International Journal of Man-Machine Studies. 21, 1, 31–48 (1984).

9. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index):
Results of empirical and theoretical research. In: Hancock, P.A. and Meshkati, N.
(eds.) Human Mental Workload. pp. 239–250 North Holland, Amsterdam (1988).

10. Hartmann, B. et al.: Hacking, Mashing, Gluing: Understanding Opportunistic
Design. IEEE Pervasive Computing. 7, 3, 46–54 (2008).

11. Ko, A.J. et al.: Six Learning Barriers in End-User Programming Systems. Pro-
ceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric
Computing. pp. 199–206 IEEE Computer Society, Washington, DC, USA
(2004).

12. Kulesza, T. et al.: Fixing the Program My Computer Learned: Barriers for End
Users, Challenges for the Machine. Proceedings of the 14th international confer-
ence on Intelligent user interfaces. pp. 187–196 ACM, New York, NY, USA
(2009).

13. Malan, D.J., Leitner, H.H.: Scratch for Budding Computer Scientists. Proceed-
ings of the 38th SIGCSE technical symposium on Computer science education.
pp. 223–227 ACM, New York, NY, USA (2007).

14. Maloney, J.H. et al.: Programming by Choice: Urban Youth Learning Program-
ming with Scratch. Proceedings of the 39th SIGCSE technical symposium on
Computer science education. pp. 367–371 ACM, New York, NY, USA (2008).

15. Meerbaum-Salant, O. et al.: Habits of Programming in Scratch. Proceedings of
the 16th annual joint conference on Innovation and technology in computer sci-
ence education. pp. 168–172 ACM, New York, NY, USA (2011).

16. Meerbaum-Salant, O. et al.: Learning Computer Science Concepts with Scratch.
Proceedings of the Sixth international workshop on Computing education re-
search. pp. 69–76 ACM, New York, NY, USA (2010).

17. Millner, A., Baafi, E.: Modkit: Blending and Extending Approachable Platforms
for Creating Computer Programs and Interactive Objects. Proceedings of the
10th International Conference on Interaction Design and Children. pp. 250–253
ACM, New York, NY, USA (2011).

18. Resnick, M. et al.: Scratch: Programming for All. Commun. ACM. 52, 11, 60–67
(2009).

19. Turkle, S., Papert, S.: Epistemological Pluralism and the Revaluation of the Con-
crete. Journal of Mathematical Behavior. 11, 1, 3–33 (1992).

20. Whitley, K.N.: Visual Programming Languages and the Empirical Evidence For
and Against. Journal of Visual Languages & Computing. 8, 1, 109–142 (1997).

21. Wolz, U. et al.: Starting with Scratch in CS 1. Proceedings of the 40th ACM
technical symposium on Computer science education. pp. 2–3 ACM, New York,
NY, USA (2009).

22. ArduBlock, http://blog.ardublock.com/.
23. Arduino, http://www.arduino.cc/.
24. Download the Arduino Software, http://arduino.cc/en/Main/Software.
25. London Hackspace, https://london.hackspace.org.uk/.
26. Minibloq, http://blog.minibloq.org/.
27. Modkit, http://www.modk.it/.
28. Modkit Alpha Club, http://www.modk.it/alpha.
29. Morae usability testing software, http://www.techsmith.com/morae.html.
30. MzTEK: A learning community in technology and arts for women,

http://www.mztek.org/.
31. National Instruments LabVIEW, http://www.ni.com/labview/.
32. Raspberry Pi, http://www.raspberrypi.org/.
33. S4A: Scratch for Arduino, http://seaside.citilab.eu/scratch/arduino.

