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Abstract. Arduino is an open source electronics platform aimed at hobbyists, 
artists, and other people who want to make things but do not necessarily have a 
background in electronics or programming. We report the results of an explora-
tory empirical study that investigated the potential for a visual programming 
environment to provide benefits with respect to efficacy and user experience to 
end-user programmers of Arduino as an alternative to traditional text-based 
coding. We also investigated learning barriers that participants encountered in 
order to inform future programming environment design. Our study provides a 
first step in exploring end-user programming environments for open source 
electronics platforms. 
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1 Introduction 

Open source hardware platforms such as Arduino [23] and Raspberry Pi [32] have 
reinvigorated interest in hacking and tinkering to create interactive electronics-based 
projects. These platforms present an opportunity for end users to move beyond being 
mere consumers of technology to being producers of it. Arduino is based on a simple 
microcontroller board (Figure 1) that was designed for use in personal projects, even 
by people with little electronics or programming experience – artists, hobbyists, or 
children.  

However, although easier to learn than many other programming languages, the 
Arduino programming language still requires some skill to master and for potential 
end-user programmers of Arduino this means getting to grips with coding. Recently, 
visual programming languages (VPLs) for Arduino have been developed and we 
wondered whether a visual representation might provide an easier route of entry into 
programming. This fits with the rise of other visual programming environments 
aimed, for example, at children to engage them and facilitate the learning process. 
Would a VPL have similar benefits for adult users beginning to learn to program an 
electronics platform? Similarly, some work has started to emerge to investigate learn-
ing barriers for specific end-user programming environments [5, 11, 12]. Conse-



 

quently, we wondered what barriers end users encounter when programming electron-
ics platforms. 

In this paper we describe and discuss findings from an empirical study with adult 
novice end-user programmers of Arduino, using textual and visual programming envi-
ronments. The overall aim of our research was to investigate whether a visual pro-
gramming language for Arduino offers benefits over a traditional, text-based language 
for adult end-user programmers, specifically in terms of efficacy and user experience. 
We were also interested in what barriers end users currently face with a view to im-
proving these environments. 

Our study is the first of its kind (as far as we know) to investigate a VPL for Ardu-
ino. We contribute novel insights into understanding how end users interact with these 
programming environments in the growing area involving physical prototyping and 
study their benefits, costs and learning barriers. Our findings can provide the basis for 
improving the design of visual programming environments for the Arduino, and po-
tentially also programming environments suitable for other related domains. 

 

Fig. 1. Example of a prototype using an Arduino microcontroller board 

2 Related Work 

A visual programming language (VPL) uses a visual representation instead of, or 
in addition to, more traditional textual representations of program source code. Exam-
ples of VPLs are Forms/3 [4] in the spreadsheet paradigm, LabVIEW [31] for instru-
ment control and industrial automation, as well as Scratch [18] for teaching children 
how to program using animations. 

There have been numerous investigations to substantiate the benefits of VPLs, both 
generally and in certain application areas. Whitley [20] found that visual notations 
have potential for making information explicit and providing better organisation, 



 

which may help with program design, problem-solving and performance, even more 
so as the size of problems increases. However, there is still a lack of evidence that 
they are generally easier to learn, understand, use and share [2] and in addition it ap-
pears that the benefits of a notation are relative to a particular application area (task 
[8]). 

One area where visual notations have been used with great success is in teaching 
children and young people to program. Scratch uses a building-block metaphor; pro-
grams are created by snapping graphical blocks of different colours and shapes to-
gether to form “stacks” (procedures). These blocks represent commands, datatypes, 
etc. and users can choose them from a palette of available blocks. The shape of the 
blocks determines what they can connect with. In this way syntactically correct state-
ments and programs are encouraged: the shapes of the blocks hint as to what is ex-
pected and thus provide a guide to the user as to what is possible. There is a growing 
body of research into the efficacy of Scratch as a tool for learning to program. Several 
studies report that children and young people - both boys and girls - find Scratch en-
gaging and fun to use, while successfully familiarising them with fundamental pro-
gramming concepts without the distraction of syntax [7, 13, 14, 16].There is also evi-
dence of continued engagement with computer science. A positive first experience 
with programming in an environment with a low barrier to entry, like Scratch, can 
sustain enthusiasm and ease transition to more sophisticated languages, such as Java 
and C [13, 21]. The visual programming environment used in our study, Modkit [27], 
was heavily influenced by Scratch and uses a similar building-block metaphor. Mod-
kit has been used in workshops teaching children how to program Arduino [17]. Yet 
while Scratch has been studied to some extent, so far there are no similar studies to 
investigate the benefits of ModKit or other VPLs for the Arduino. 

There are also some concerns about the habits Scratch engenders [15]. Following a 
constructivist philosophy of learning-by-making, Scratch both supports and encour-
ages a bottom-up approach to program construction – programming by bricolage [19], 
rather than design. This can lead to a trial and error approach of programming with 
extreme decomposition and, in turn, this can make the code highly concurrent and 
difficult to debug. However, this type of opportunistic construction – tinkering and 
experimenting – is often characteristic of prototyping that involves electronic compo-
nents [3, 10], so an environment explicitly designed to support this style of program 
creation may provide a good route into programming Arduino. Our work is the first 
step to investigate barriers that end users encounter in the area of programming of 
physical prototypes. 

3 Study Design 

We recruited participants for our empirical study through the MzTEK [30] and 
London Hackspace [25] mailing lists. We used a within-subject, think-aloud design, 
comprising eleven participants (8 female, 3 male, mean age 36.18), exposing each 
participant to both a visual and textual environment. None of the participants had 
previous experience of programming an Arduino or were professional programmers 



 

but they were required to have some previous programming experience (declaring and 
using variables and ‘if statements’ in at least one procedural programming language).  

Participants used both a textual and visual environment for Arduino programming 
in our study. The textual environment was the default Arduino programming envi-
ronment v1.0.1 [24] (Figure 2), which  contains a text editor, a message area (for 
compiler messages), a text console (for text input and output during runtime), a tool-
bar containing frequently used commands and various menus for operation.  

 

Fig. 2. Arduino IDE (textual programming environment) 

The visual environment used was Modkit Alpha Editor (preview version) [28]. It 
supports multiple code representations, with both a Blocks view (Figure 3), where 
users manipulate coloured, graphical blocks representing code, and a Source view, 
which provides a textual representation of the current program(s), also editable. The 
Hardware view allows users to configure hardware setup visually. While there are a 
number of other visual programming environments for Arduino, we chose to use 
Modkit for this study because in terms of terminology, commands available, feature 
set and code constructs it matches the Arduino language and IDE most closely, thus 
facilitating isolation of the visual component to the programming experience.  



 

 

Fig. 3. Modkit Alpha Editor IDE - Blocks view (visual programming environment) 

Study sessions took place in the Interaction Lab at City University London, lasting 
approximately 2 hours per participant. Each session was video-recorded using Morae 
[29], capturing all on-screen activity, verbal comments and non-verbal behaviour. 
Mouse-clicks, keystrokes and mouse movements (in pixels) were also logged auto-
matically. Participants were asked to ‘think aloud’, to provide us with insight into 
their thought processes.  

At the start of the session participants completed a background questionnaire and 
semi-structured interview regarding their previous programming experience. We then 
familiarized the participants with the Arduino platform and key Arduino program-
ming concepts and constructs. The tutorial also included a printed hardcopy of a list 
of key commands, which the participant was able to refer to during the whole session.  

For the main part of the study, participants completed two tasks (counterbalancing 
was used to counter any order effects of environment). In task 1 they were asked to 
modify an existing program, extending it to meet new requirements. The original 
prototype contained a single LED and a proximity sensor. The goal of the original 
program was to light the single LED when an object reached a specific ‘closeness’ to 
the proximity sensor. The second prototype extended upon this with the addition of 
four more LEDs. Each LED was associated with a specific proximity threshold and 
only when that threshold was reached must the LED be lit. When an object reached 
the ‘closest’ threshold, all of the LEDs must be lit. In task 2 they were asked to create 
a new program from the ground up. The participant was shown a prototype that con-
tained a single LED and a tactile switch. The program must light the LED when the 
switch is pushed down. Hardware prototypes of the circuits required for each task 
were prepared in advance; participants therefore did not have to understand and con-
struct electronic circuits. The facilitator demonstrated the desired results using the 
hardware prototype so that the participants were able to view the working prototype 
and desired result. Participants were given twenty minutes to complete each task.  



 

We captured two sets of data to investigate efficacy and user experience. We asked 
participants to think-aloud while they were completing the tasks and we conducted a 
qualitative analysis of transcribed video recordings for task 2, based on the set of 
Learning Barriers [11]. The coding scheme used in the study is given in Table 1. Fol-
lowing each task, each participant was presented with a set of 92 word reaction cards, 
based on the Microsoft Desirability Toolkit [1], capturing their user experience in a 
qualitative way. 

Table 1. Coding scheme used to identify learning barriers in programming the Arduino.  

Code Applied when… Example application in this study 
Design barrier The user does not 

know exactly what 
they want the com-
puter to do.  

A user not knowing whether they need 
to connect the tactile switch pin as 
input or output. 

Selection barrier The user knows what 
they want to do, but 
does not know which 
tool to use.  

A user not knowing which block to use 
to achieve a particular goal, which 
operator to use in a conditional state-
ment, or which command to use to read 
the value of a digital pin. 

Coordination 
barrier 

The user knows what 
tools to use, but not 
how to make them 
work together.  

A user not knowing how to use blocks 
or functions in conjunction with one 
another. The user may know that they 
need to declare variables and read pins, 
but not how to get them to work to-
gether. 

Use barrier The user knows what 
tools to use, but does 
not know how to use 
them properly.  

A user not knowing how to use pin-
Mode to set input or output for a digital 
pin, or how to use the digital-
Write command to write a value to 
one; also not knowing how to declare 
variables or use an if-else statement. 

Understanding 
barrier 

The user thought they 
know how to use 
something but it did 
not do what they 
expected.  

A user unable to correctly interpret a 
compiler error or understand why 
something did not happen when it was 
supposed it, e.g. an LED does not li ght 
up when a switch is pushed. 

Information bar-
rier 

The user has an idea 
or hypothesis about 
why their program 
did not do what they 
expected, but they do 
not know how to 
check.  

A user not knowing how to use the 
serial monitor for debugging, or 
whether there is a code verification tool 
they can use. 



 

We used two quantitative measures to evaluate potential benefits and costs. First, 
we used a self-efficacy questionnaire [6] which gathered participants’ levels of confi-
dence with regards to completing programming tasks in programming environments. 
Participants filled in this questionnaire at the start of the session prior to the partici-
pant undertaking any task and then following each of the two tasks. The initial self-
efficacy questionnaire provided a baseline score against which post-task self-efficacy 
could be compared. Further, the NASA-TLX questionnaire [9] was completed by 
each participant following each task, which measured the perceived load of a task in 
terms of mental, physical and temporal demand, performance, effort and frustration.  

4 Results 

4.1 Effects on End-User Programming Efficacy 

We wondered if using the Arduino VPL would have any benefits in helping end-
users to program compared to the textual programming environment. We found that 
task completion rates were low in both environments. Only two participants out of 
eleven completed both tasks that were set in the study, two completed one task and 
seven did not complete any task.  However, the four participants who completed tasks 
were more successful using the visual programming environment: only two tasks 
were completed using the textual environment whereas four tasks were completed 
using the visual environment (Figure 4, left). 

 

Fig. 4. Participant completion using programming environments for all tasks (left) and for 
create/modify task types (right) 

Most of the problems, which we explore more fully in section 4.3 Learning Barri-
ers, that seemed to prevent completion, were due to difficulties with syntax in the 
textual environment:  

 “I just can’t remember what all the little coding mean [sic], you know, whether 
it’s an exclamation mark or an equals and then the curly brackets”.  

One explanation for the low task completion scores in the textual environment may 
therefore be that participants were focusing more on syntax rather than on program 



 

design. As participant 1 reflected: “I was too busy worrying about where it should go 
and not what was actually in it”. 

We also noticed that the kinds of tasks mattered: visual programming helped 
slightly more in the modification task than the creation task (Figure 4, right) Again, 
this difficulty may have been compounded by the visual programming environment, 
which may encourage less focus on overall design and only encourage a trial and 
error approach [19]. 

This suggests visual programming environments may provide a slight edge for 
successful programming over textual programming environments, if users have rela-
tively little programming experience. However, visual programming may be most 
helpful if users do not have to write the program from scratch.  

4.2 Effects on User Experience 

In addition to contributing to actual programming efficacy, the type of program-
ming environment may lead to perceived benefits which in turn can determine prefer-
ence and encourage continued use. We measured the effects on participants’ experi-
ence through three aspects: their perceived workload and success, their self-efficacy 
ratings and their reactions to the two programming environments.  

Participants in our study generally rated their perceived workload as higher in the 
textual environment, although they rated the visual environment as more physically 
demanding (Figure 5; a higher score indicates either higher workload or decreased 
performance). Although this may seem initially perplexing we found that participants 
carried out vastly more mouse clicks and mouse movements in the visual environ-
ment, which may explain this perceived cost.  

 

Fig. 5. Participants’ TLX scores for textual (diamonds) and visual (circles) environments. The 
mean score was always higher for the textual environment, except relating to Physical demand. 

Furthermore, as the performance scores show, in addition to being slightly more 
successful in actual programming efficacy, participants also perceived themselves to 



 

perform better using the visual programming environment. This effect on perceived 
efficacy was also reflected to some extent by participants’ self-efficacy scores, which 
suggest that these benefits may carry over to future tasks. We observed that while 
self-efficacy scores improved from their initial self-assessments (mean 7.26) in both 
environments (mean textual 7.38, mean visual 7.90), participants rated themselves as 
slightly more capable of completing similar tasks after encountering the visual envi-
ronment. This is summarized well by the following comment from participant 1:  

“I think I would quite happily play with that one [visual] and see if I could get 
something going and if I got stuck…but I’m really confident I could make something 
work without getting stuck, and, you know, be able to build from there.”  

Task type mattered in participants’ self-efficacy rating (Figure 6) and echoes our 
findings for observed efficacy. Participants felt more confident modifying a program 
using the visual environment than creating one. In contrast, when they employed the 
textual environment the reverse tended to be true; creating programs made them feel 
more confident than modifying existing ones. As program reuse is a common strategy 
for novice programmers, visual programming environments may therefore provide an 
initial boost to learning by increasing an individual’s confidence in their ability to 
successfully modify existing programs. 

 

Fig. 6. Participants’ self-efficacy scores initially (triangles) and after completing a task using 
the textual environment (diamonds) and visual environment (circles). Mean score for visual 
environment is higher than textual environment in the modify task but lower in the create task. 

We also noted differences in the type of reactions to the environments. From the 
set of word reaction cards, to describe the textual environment, participants chose 62 
positive words and 69 negative words. This means that they had a fairly balanced 
experience. Contrast this to the visual environment which received 101 positive word 
descriptions and only 37 negative words – participants viewed the visual program-
ming environment much more favourably.  



 

Looking at the meaning of the words that participants chose provides further in-
sight about qualitative differences in user experience. Figures 7 and 8 show a visual 
representation of the words participants selected, their frequency (size) and type 
(positive vs negative). On the positive side, participants found the visual environment 
‘fun’, ‘attractive’ and ‘easy to learn’, whereas they found the textual environment 
‘clean’, ‘familiar’ and ‘understandable’. This suggests that the visual environment is 
much more emotive, particularly for someone beginning to program, whereas the 
textual environment is seen as more practical, as this comment from participant 1 
suggests:  

“It looks the same as every other blank bit of paper programming environment. 
But I know that that’s efficient.” 

On the negative side, the main complaint in the textual environment was that it was 
‘unsupportive’; the visual programming environment was seen as ‘confusing’. Part of 
the challenge in the visual environment may have been due to the “puzzle-like” nature 
of the screen elements which lock together, mentioned by both participant 9 and 4:  

“At the same time, for me, it’s like a puzzle on top of a puzzle.”  
“You feel like you’re solving a puzzle here, but yeah, I’m not sure what the solu-

tion to the puzzle is.” 

 

Fig. 7. Textual environment reactions, positive (in grey) and negative (in black) 

 

Fig. 8. Visual environment reactions, positive (in grey) and negative (in black) 



 

When asked in the post-session debriefing interview which of the environments 
they would choose to use for learning to program Arduino, the participants were 
overwhelmingly in favour of the visual environment, with seven of the eleven choos-
ing it. However several participants commented that graphical and textual representa-
tions of the same program – like the Blocks view and the Source view in Modkit - 
might prove useful for different activities or stages of a programming project.  

4.3 Learning barriers 

We wanted to explore the reasons for some of the negative user experiences re-
ported and also how to facilitate improvements to these programming environments. 
We therefore looked at what learning barriers our participants faced in the creation 
task (recall that this was the more “difficult” task to complete). Recall that we ran-
domised the order of programming environments over tasks; this means that six par-
ticipants encountered the visual environment whereas only five used the textual envi-
ronment in the creation task. On average, participants encountered 16.82 learning 
barriers (15.4 textual, 18 visual). Figure 9 shows the percentage of occurrences of 
each learning barrier in the respective environments; in the remainder of the paper we 
show raw counts of barriers encountered. In our analysis we will focus on four learn-
ing barriers – Use, Understanding, Coordination, and Selection – because this is 
where the main differences between the environments occurred.  

 

Fig. 9. Percentage of learning barriers observed during the create task for texual (grey) and 
visual (black) environment.  

Use barriers proved to be a big challenge for participants but more so in the textual 
environment (40/77 textual, 46/108 visual). As already mentioned in section 4.1, a lot 
of instances for this type of barriers were caused by a lack of familiarity with the syn-
tax of the textual notation, for example:  

“If, then, else… It’s a standard, conditional thing which you use in every single 
programming language, but it’s always different. It always appears to come with 
some extra thing which you don’t know about.” (Participant 2) 



 

This barrier is somewhat lessened by the visual environment but still, both envi-
ronments could provide users with better instructions for correct usage, possibly 
through context-sensitive instructions which some other IDEs already provide. (The 
most recent version of Modkit - Modkit Micro - now provides tooltips). 

Similarly, understanding barriers encountered in the textual environment outnum-
bered those found in the visual environment (15/77 textual, 12/108 visual), as this 
quote from participant 3 demonstrates:  

“So it’s doing output of zero and one. Oh, ok. So now it’s obvious that the problem 
is that [squints at the screen and shakes her head slightly]  it needs some sort of delay. 
But that still doesn’t make sense, because it shouldn’t be doing anything; it should 
just be in an off state. So why is it flashing on and off?”  

This suggests that the textual environment could provide more support to users in 
understanding information received at runtime or on compile, and making them aware 
how to check any hypothesis they may have about the reason for a compiler or run-
time error, including the facilities available for testing.  

Coordination barriers proved to be a more challenging aspect for participants in the 
visual environment than the textual environment (2/77 textual, 15/108 visual). Several 
of these related to the unsuccessful docking together of blocks, which some partici-
pants struggled with, suggesting that this interaction could perhaps be improved. In 
some cases participants were not sure whether blocks had connected, for example 
participant 5 remarked:  

“Did it fit? Yes…No… I’m not sure if it’s fitting in the loop, in the If case. It 
doesn’t look like it does.” 

Some participants, such as participant 2, also did not understand why some blocks 
did not fit together when they thought they should:  

“What I really want to do is put it there, in the forever loop, [tries to dock digital-
Read again unsuccessfully…] but that’s not going to happen is it?”  

A frequent barrier for participants in the visual environment proved to be a selec-
tion barrier (12/77 textual, 27/108 visual), as this participant stated:  

 “It’s a shame you can’t find anywhere like a help or thingy what’s… what those 
[the operator blocks]  are.” (participant 4) 

This is somewhat surprising, as we had anticipated that making the blocks explic-
itly available might make it easier for people to decide what to use. However, it may 
be that in fact people felt confused because the tool provided both a proliferation of 
choices yet no clue as which one was the right one – again, a “puzzle on top of a puz-
zle”. Future work could concentrate how to guide users in selecting the right blocks to 
use. 

5 Discussion and future work 

Our study suggests that task type, such as creation and modification, play a role in 
the success of using a programming environment. Participants in our study also felt 
more confident using the visual programming environment in the modification task. 
This may explain the effectiveness of using VPLs for teaching: often novices start out 



 

by reusing existing solutions and modifying them – a task for which a visual envi-
ronment may be better suited. Consequently, there may be an additional “boost” to 
learners to continue using VPLs for this and similar tasks. Arduino draws in adults 
with little programming experience and how best to teach these individuals to develop 
physical prototypes, possibly through ‘prototype repositories’ which they can reuse, 
would be an interesting area for further study.  

We have started to identify the barriers end users may encounter when program-
ming an electronics platform, however, this work could benefit from comparative 
studies both between application areas (e.g. intelligent agents, spreadsheets, etc.), as 
well as other visual programming environments for Arduino, such as S4A (Scratch for 
Arduino) [33], Minibloq [26], ArduBlock [22] and Modkit. The Blocks view in Mod-
kit, while graphical, uses similar terminology to the default Arduino IDE. Other visual 
environments, such as Minibloq, differ more radically in their presentation of pro-
gramming constructs and their approaches to program construction. It would be useful 
to evaluate these empirically for learning barriers, usability and user experience. 

Finally, our participants hinted at the effect of visual and textual environments on 
programming activities, stating that visual may be good to get them started but that 
they may want to switch. It could be that debugging in particular is hampered in 
VPLs: our findings show that Coordination barriers were especially more frequent in 
the visual environment. One possible solution is to provide both representations at the 
same time, to provide information to the end user in combination in order to over-
come this learning barrier. Future work may be able to explore this solution on pro-
gramming effectiveness, or how certain programming activities could be better sup-
ported in visual programming environments.  

6 Conclusion 

The overall objective of this project was to investigate whether a visual program-
ming language for Arduino offers benefits over a traditional, text-based language for 
adult end-user programmers. We learned that:  Visual environments seemed to help but possible more to modify programs than 

create them. Further studies are necessary to look into this in more detail.  Visual environments provided a more positive user experience, alongside a re-
duced perceived workload and higher perceived success, both for the tasks in the 
study as well as future tasks. This may entice beginners to continue using these 
environments even in the absence of actual benefits.  Both environments are not perfect, and may be perceived as unsupportive or 
confusing. We showed that this may be due to Use, Understanding, Selection and 
Coordination barriers. Addressing these may help to improve support for end-
user programmers. 

Taken together, visual programming languages appear to hold promise for adult 
novice end-user Arduino programmers but further work is needed to fully understand 
how best to support end users to achieve both actual and perceived benefits. Our study 
is a first step in this direction. 
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