-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by City Research Online

Booth, T. & Stumpf, S. (2013). End-user experiences of visual and textual programming
environments for Arduino. Lecture Notes in Computer Science, 7897 L, pp. 25-39. doi:
10.1007/978-3-642-38706-7_4

CITY UNIVERSITY City Research Online
LONDON

FST 1894

Original citation: Booth, T. & Stumpf, S. (2013). End-user experiences of visual and textual
programming environments for Arduino. Lecture Notes in Computer Science, 7897 L, pp. 25-39.
doi: 10.1007/978-3-642-38706-7_4

Permanent City Research Online URL.: http://openaccess.city.ac.uk/2740/

Copyright & reuse

City University London has developed City Research Online so that its users may access the
research outputs of City University London's staff. Copyright © and Moral Rights for this paper are
retained by the individual author(s) and/ or other copyright holders. All material in City Research
Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact
with the author(s) of this paper, please email the team at publications@city.ac.uk.

https://core.ac.uk/display/17041703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

End-User Experiences of Visual and Textual
Programming Environments for Arduino

Tracey Booth and Simone Stumpf
City University London

{tracey.booth.2, simone.stumpf.l}@city.ac.uk

Abstract. Arduinois an open source electronics platform aimed at hobbyists,
artists, and other people who want to make things buintloecessarily have
background in electronics or programming. We report the results ofptora

tory empirical study that investigated the potential for aaliguogramming
environment to provide benefits with respect to efficacy and ugeriexce to
end-user programmers of Arduino as an alternative to traditionabased
coding. We also investigated learning barriers that participants encountered in
order to inform future programming environment design. Our studyides a

first step in exploring end-user programming environments for openesourc
electronics platfors

Keywords: End-user programmers, Arduino, Visual Programming

1 Introduction

Open source hardware platforms such as Arduino [23] and RagtdB2] have
reinvigorated interest in hacking and tinkering to create interactive electr@ses-b
projects. These platforms present an opportunity for end usersvi lmegond being
mere consumers of technology to being producers of it. Arduibaded on a simple
microcontroller board (Figure 1) that was designed for use in persmjatts, even
by people with little electronics or programming experiencartists, hobbyists, or
children.

However, although easier to learn than many other programming lasgubge
Arduino programming language still requires some skill to masterf@anpotential
end-user programmers of Arduino this means getting to gripsaeiling. Recently,
visual programming languages (VPLs) for Arduino havenbeeveloped andve
wondered whethea visual representation might provide an easier route of entry into
programming This fits with the rise of other visual programming environments
aimed, for example, at children to engage them and facilitate the legmtiogss.
Would a VPL have similar benefits fadult users beginning to learn to program an
electronics platfor Similarly, some work has started to emerge to investigate-lear
ing barriers for specific end-user programming environmentsl15,12] Conse-

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

quently, we wondered what barriers end users encounter when proigaeiectra-
ics platforms.

In this paper we describe and discuss findings from an empirical sitidyadult
novice end-user programmers of Arduino, using textual an@Msagramming eriv
ronments. The overall aim of our research was to investigate whethsua po-
gramming language for Arduino offers benefits over a tratifiaext-based language
for adult end-user programmers, specifically in terms of effiead user experience.
We were also interested in what barriers end users currently face with #oviiew
proving these environments.

Our study is the first of its kind (as far as we know) to itigage a VPL for Ardi-
ino. We contribute novel insights into understanding how end irgeract with these
programming environments in the growing area involving physiaatopmping and
study their benefits, costs and learning barriers. Our findingpiavide the basis for
improving the design of visual programming environmentstlier Arduino, and @
tentially also programming environments suitable for other related domains.

Fig. 1. Example of a prototype using an Arduino microcontroller board

2 Related Work

A visual programming language (VPL) uses a visual representation ireftead
in addition to, more traditional textual representations of program soodesExam-
ples of VPLs are Forms/3 [4] in the spreadsheet paradighVIEW [31] for instu-
ment control and industrial automaticas well as Scratch [18] for teaching children
how to program using animations.

There have been numerous investigations to substantiate the benefitsso\@EL
generally and in certain application are®¢hitley [20] found that visual notatien
have potential for making information explicit and providing better orgéois,

which may help with program design, problem-solving and peidoce, even more

so as the size of problems increases. However, there is still a lack of evidance th
they are generally easier to learn, understand, use and shard [&]adition it @-

pears that the benefits of a notation are relative to a particular application akea (tas
[8]).

One area where visual notations have been used with great success isinmg teach
children and young people to program. Scratch uses a building-block metppuh
grams are created by snapping graphical blocks of different colodrstapesa-
getherto form “stacks” (procedures). These blocks represent commands, datatypes
etc. and users can choose them from a palette of available blocks.apeddlthe
blocks determines what they can connect with. In this way syntacticatlyctetag-
ments and programs are encouraged: the shapes of the blocks toinfee is &-
pected and thus provide a guide to the user as to what is po$sibte is a growing
body of research into the efficacy of Scratch as a tool for learning¢wgmn. Several
studies report that children and young peogboth boys and girls - find Scratch-e
gaging and fun to use, while successfully familiarising them futidamental po-
gramming concepts without the distraction of syntax [7, 131&UThere is also év
dence of continued engagement with computer science. A positive fiystience
with programming in an environment with a low barrier to enlike Scratch can
sustain enthusiasm and ease transition to more sophisticated languabeas Java
and C [13, 21]The visual programming environment used in our studylktd27],
was heavily influenced by Scratch and uses a similar building-lhetkphor. Md-
kit has been used in workshops teaching children how to progrduino [17]. Yet
while Scratch has been studied to some extent, so far there are no sintles to
investigate the benefits of ModKit or other VPLs for the Arduino.

There are also some concerns about the habits Scratch engendéd¥sl[@®]ng a
constructivist philosophy of learningy-making, Scratch both supports and emeou
ages a bottom-up approach to program construetiprogramming by bricolage [19]
rather than design. This can lead to a trial and error approachgyapnming with
extreme decomposition and, in turn, this can make the code highturrent and
difficult to debug. However, this type of opportunistic constructiotinkering and
experimenting- is often characteristic of prototyping that involves electronic aemp
nents [3, 10]so an environment explicitly designed to support this style of pmogra
creation may provide a good route into programming Arduino.v@uk is the first
step to investigate barriers that end users encounter in the area ofrpniggaof
physical prototypes.

3 Study Design

We recruited participants for our empirical study through the MzTEK 3]
London Hackspace [25] mailing lists. We used a within-subjbitk-aloud design,
comprising eleven participants (8 female, 3 male, mean age 36.18%irex@ach
participant to both a visual and textual environment. None of the participants had
previous experience of programming an Arduino or were professpyogrammers

but they were required to have some previous programming erper{declaring and

using varidles and ‘if statements’ in at least one procedural programming language)
Particpants used both a textual and visual environment for Arduino progiag

in our study. The textual environment was the default Arduinorpnogiing eni+

ronment v1.0.1 [24] (Figure 2), which contains a text editor,easage area (for

compiler messages), a text console (for text input and output duringe)né tod

bar containing frequently used commands and various menus fatioper

@ Blink | Arduino 1.0.1 FEIEIEIES

File Edit Sketch Tools Help

Blink &

/4 Turns on an LED on for one second, then off for one second, repeatedly. -

int led = 13;

void setup() {

pinMaode (led, OUTPOT):
i

void loopi() {
digitallrite (led, HIGH):
delay {1000y ;
digitallWrite(led, LOW)
delay(l000)

}

| port'COM4* not found. Did y ectthe right one from the Toc Fort menu?

Fig. 2. Arduino IDE (textual programming environment)

The visual environment used witodkit Alpha Editor (preview version) [28]t
supports multiple code representations, with both a Blocks view (Figunehgye
users manipulate coloured, graphical blocks representing code, and a Sewce
which provides a textual representation of the current program(s), alabledThe
Hardware view allows users to configure hardware setup visually. WHeéle tare a
number of other visual programming environments for Arduiwe chose to use
Modkit for this study because in terms of terminology, commanesadne, feature
set and code constructs it matches the Arduino language and IDE mogt, dlusel
facilitating isolation of the visual component to the programming é&pes.

<

m - (5 looout

(MODKIT) & s ca | Lo e0onpoxmy [y [m]

pirwode (GEIERD (IR e] o]
)
(stovreos 0T |

1)

i)

digitalWrite {3(rRd ELN{Ed

\ digitalWrite
=
G
digitalread ([IF39

Fig. 3. Modkit Alpha Editor IDE - Blocks view (visual programming environment)

Study sessions took place in the Interaction Lab at City Universitgdrgrasting
approximately 2 hours per participant. Each session was video-recormgdigsae
[29], capturing all on-screen activity, verbal comments and noralvdrbhaviour
Mouse-clicks, keystrokes and mouse movements (in pixels) were gigedi@ub-
matically. Participants were asked to ‘think aloud’, to provide us with insight into
their thought processes.

At the start of the session participants completed a background quastoand
semi-structured interview regarding their previous programming exmper. We then
familiarized the participants with the Arduino platform and key Arduinogm-
ming concepts and constructs. The tutorial also included a printed hamfcadist
of key commands, which the participant was able to refer to during thie sssion.

For the main part of the study, participants completed two tasks (countenbglanc
was used to counter any order effects of environment). In tés&ylwere asked to
modify an existing program, extending it to meet new requirésnérhe original
prototype contained a single LED and a proximity sensor. Theajdhke original
program was to light the single LED when an object reaahgdcific ‘closeness’ to
the proximity sensor. The second prototype exdéengoon this with the addition of
four more LEDs. Each LE@wvas associated with a specific proximity threshold and
only when that threshold was reached must the LED be lit. Whehbjaaot seached
the ‘closest’ threshold, all of the LEDs must be lit. In task 2 they were asked to create
a new program from the ground up. The participant was shownt@tywe thatcon-
tained a single LED and a tactile switch. The program must light the L the
switch is pushed dowrHardware prototypes of the circuits required for each task
were prepared in adveg participants therefore did not have to understand and co
struct electronic circuits. The facilitator demonstrated the desired resultsthsing
hardware prototype so that the participants were able to view the wqnataype
and desired result. Participants were given twenty minutes to complete each task.

We captured two sets of data to investigate efficacy and user expekémesked
participants to think-aloud while they were completing the tasks and weictedda
qualitative analysis of transcribed video recordings for task 2, basdéideoset of
Learning Barriers [11]. The coding scheme used in the stuglyés in Table 1. Ho
lowing each task, each participant was presented with a set of 92 wetidirezards,
based on the Microsoft Desirability Toolkit [1], capturing their user expegiém a

qualitative way.

Table 1. Coding scheme used to identify learning barriers in programmingrthen®.

Code

Applied when...

Example application in this study

Design barrier

The user does no
know exactly what
they want the om-
puter to do.

A user not knowing whether they ne
to connect the tactile switch pin
input or output.

Selection barrier

The user knows wha
they want to do, bu
does not know which
tool to use.

A user not knowing which block to us
to achieve a particular goal, whig
operator to use in a conditional &a
ment, or which command to use to re
the value of a digital pin.

Coordination
barier

The user knows wha
tools to use, but no
how to make then
work together.

A user not knowing how to use bloc
or functions in conjunction with on
another. The user may know that th
need to declare variables and read p
but not how to get them to worlo-t
gether.

Use barrier

The user knows wha
tools to use, but doe
not know how to use
them properly.

A user not knowing how to usgin-
Mode to set input or output for a digita
pin, or how to use theligital-
Write command to write a value t
one; also not knowing how to declg
variables or use an if-else statement.

Understanding
barier

The user thought the
know how to use
something but it did
not do what they
expected.

A user unable to correctly interpret
compiler error or understand wh
something did not happen when it w
supposed it, e.g. an LED does fight
up when a switch is pushed.

Information ba-
rier

The user has an ide
or hypothesis abou
why their program
did not do what they
expected, but they d
not know how to
check.

A user not knowing how to use th
serial monitor for debugging, ¢
whether there is a code verification tg
they can use.

We used two quantitative measures to evaluate potential benefits and casts. Fir
we used a self-efficacy questionnaire [6] whigtthered participas’ levels of conif
dence with regards to completing programming tasks in progragnemivironments.
Participants filled in this questionnaire at the start of the session prtioe toartic-
pant undertaking any task and then following each of the two takksinitial self-
efficacy questionnaire provided a baseline score against which post-tasKisaty
could be compared. Further, the NASA-TLX questionnaire [9] was complsted
each participant following each task, which measured the perceived loadsif ia
terms of mental, physical and temporal demand, performance, effioitusstration.

4 Results

4.1 Effectson End-User Programming Efficacy

We wondered if using the Arduino VPL would have any benefitseiping end-
users to program compared to the textual programming environivenfound that
task completion rates were low in both environme@sly two participants out of
eleven completed both tasks that were set in the studycompleted one task and
seven did not complete any task. However, the four participantsavhpleted tasks
were more successful using the visual programming environmelt:two tasks
were completed using the textual environment whereas four tasks were completed
using the visual environment (Figure 4, left).

© ©
®® BB BB

Textual

QO
OO0 |60 ©O
Visua %%@@@ QOB OB

All Modify Create

Fig. 4. Participant completion using programming environments for all tasks (fedt)fa
create/modify task types (right)

Most of the problems, which we explore more fully in sectighldarning Barir
ers, that seemed to prevent completion, were due to difficulties with siyntae
textual environment:

“I just can’t remember what all the little coding mean [sic], you know, whether
it’s an exclamation mark or an equals and then the curly brackets”.

One explanation for the low task completion scores in the textual environment may
therefore be that participants were focusing more on syntax ratheorthgrogram

design. As participant 1 reflectetif was too busy worrying about where it should go
and not what was acilly in it”.

We also noticed that the kinds of tasks mattered: visual programming helped
slightly more in the modification task than the creation task (Figurght) Again,
this difficulty may have been compounded by the visual progiagienvironment,
which may encourage less focus on overall design and only encoutsagé and
error approach [19].

This suggests visual programming environments may provide a slitgja for
successful programming over textual programming environménisers have rel-
tively little programming experience. However, visual programmimgy be most
helpful if users do not have to write the program from scratch.

4.2 Effectson User Experience

In addition to contributing to actual programming efficacy, the typprofjran-
ming environment may lead ferceivedbenefits which in turn can determine prefe
ence and encourage continued U8e. measured the effects on participants’ experi-
ence through three aspects: their perceived workload and success, trefiiceely
ratings and their reactions to the two programming environments.

Participants in our study generally rated their perceived workload as higther in
textual environment, although they rated the visual environment as more physicall
demanding (Figure 5; a higher score indicates either higher workloddcoeased
performance). Although this may seem initially perplexing wenébthat participants
carried out vastly more mouse clicks and mouse movements in the visuanen
ment, which may explain this perceived cost.

®1 8 $ 8o 8% (00| o
o % ® ° g0 3
HE THES PSR RS
niog |®g 00 8 %0 | %
.8 e 3% e ® o
log | ¢ § 29 o e
6 - . ‘ 8 . <> O
I ' ' S o 8
. o °8 .8 e
Mental Physical Temporal Performance Effort Frustration
demand demand demand

Fig. 5. Participants TLX scores for textual (diamonds) and visual (circles) environments. The
mean score was always higher for the textual environment, except relaé@hgsioal demand.

Furthermore, as the performance scores show, in addition to beihtystigpre
successful in actual programming efficacy, participants also perctiigetselves to

perform better using the visual programming environment. THéstebn perceived
efficacy was also reflected to some extent by participants’ self-efficacy scores, which
suggest that these benefits may carry over to future tasks. ¥éevetl that while
self-efficacy scores improved from their initial self-assessments (m&&i id both
environments (mean textual 7.38, mean visual 7.90), participants ratedetives as
slightly more capable of completing similar tasks after encountering thel \d@av-
ronment. This is summarized well by the following comment from ppsitti1:

“l think | would quite happily play with that oneigual] and see if | could get
something going and'i got stuck...but I'm really confident I could make something
work without getting stuckgnd, you know, be able to build from there.”

Task type mattered in participants’ self-efficacy rating (Figure 6) and echoes our
findings for observed efficacy. Participants felt more confident mimdjfa program
using the visual environment than creating one. In contrast, wegrethployed the
textual environment the reverse tended to be true; creating programs madeehem
more confident than modifying existing onds program reuse is a common strategy
for novice programmers, visual programming environments nexgfibreprovide an
initial boostto learningby increasing an individual’s confidence in their ability to
successfully modify existing programs.

10 <>
| &8 8,
8 - @
SRR o
6 - @ 'K
s| 5 | @ ¢ e
4 4

3 |

2 -

1 -

’ Initial Modify Create

Fig. 6. Participants’ self-efficacy scores initially (triangles) and after completing a task using
the textual environment (diamonds) and visual environment (circlesanMcore for visual
environment is higher than textual environment in the modify task tvet lm the create task.

We also noted differences in the type of reactions to the environntgots the
set of word reaction cards, to describe the textual environment, participargs6éhos
postive words and 69 negative words. This means that theyaHaily balanced
experience. Contrast this to the visual environment which receiveddiitive word
descriptions and only 37 negative wordparticipants viewed the visual progra
ming environment much more favourably.

Looking at the meaning of the words that participants chose proftidésr in-
sight about qualitative differences in user experience. Figures 7 sinom8a visual
representation of the wasdbarticipants selected, their frequency (size) and type
(postive vs negative). On the positive side, participants found the visuabement
‘fun’, ‘attractivé and ‘easy to learh whereas they found the textual environment
‘cleari, ‘familiar and ‘understandable This suggests that the visual environment is
much more emotive, particularly for someone beginning to pragrvemereas the
textual environment is seen as more practical, as this comment &diigant 1
suggests:

“It looks the same as every other blank bit of paper programming environment.

But | know that that’s efficient.”

On the negative side, the main complaint in the textual environmenhatas was
‘unsupportivg the visual programming environment was seefcasfusing. Part of
the challenge in the visual environment may have been due tpuhae-like” nature
of the screen elements which lock together, mentioned by both participan#9 and

“At the same time, for me, it’s like a puzzle on top of a puzzle.”

“You feel like you’re solving a puzzle here, but yeah, I'm not sure what the solu-
tion to the puzzle is.”

m!.?.s.!;nouvatmg Annoying R|g|d

Stressful Unfriendly Frustrating™ Daunting

Unresponsive

ot i Unsupportlvenme -consuming

Unnatural t Conf using Convent|0 nal
aaunawlnggﬁggﬂ'e"t Unintuitive

Difficult to learn

=" Unhelpful , Unappealing >a)
Limiting Ulgpproachable o Difficult to use

Fig. 7. Textual environment reactions, positive (in grey) and negativadik)

Unintuitive
Annoying
i< V8 il earm .~Inconsistent |
Ditactin | Time-consuming
Unclear Simplistic | Unsafe :
Limiting saresponsive peftie -
D.sorganlsed
s : £Confusing *
Unsupportive

Difficult to use

Fig. 8. Visual environment reactions, positive (in grey) and negativeldck)p

When asked in the post-session debriefing interview which of the emaents
they would choose to use for learning to program Arduino, Hréicjpants were
overwhelmingly in favour of the visual environment, with sevethefeleven cha®
ing it. However several participants commented that graphical and textual represent
tions of the same programlike the Blocks view and the Source view in Modkit -
might prove useful for different activities or stages of a programmioig¢ir

43 Learningbarriers

We wanted to explore the reasons for some of the negative user espenen
ported and also how to facilitate improvements to these programmifigrenents
We therefore looked at what learning barriers our participants faced in the rereatio
task (recall that thisvas the more “difficult” task to complete). Recall that we na-
domised the order of programming environments over tasks; tassrthat six pa
ticipants encountered the visual environment whereas only five used tine! -
ronment in the creation task. On average, participants encountered 16.82glearnin
barriers (15.4 textual, 18 visual). Figure 9 shows the percentagecuofrences of
each learning barrier in the respective environments; in the remainither pdper we
show raw counts of barriers encountered. In our analysis weostlsfon four lear
ing barriers— Use, Understanding, Coordination, and Selectiobecause this is
where the main differences between the environments occurred

Information
Understanding
Use
Coordination

Selection

Design

0% 10% 20% 30% 40% B0% a0%

Fig. 9. Percentage ofelning barriers observed during the create task for texual (grey) and
visual (black) environment.

Use barriers proved to be a big challenge for participants but mordteotaxtual
environment (40/77 textual, 46/108 visual). As already mentioned fioisecl, a lot
of instances for this type of barriers were caused by a lack of fatyildth the syn-
tax of the textual notation, for example:

“If, then, else... It’s a standard, conditional thing which you use in every single
programming language, but it’s always different. It always appears to come with
some extra thing which you don’t know about.” (Participant?)

This barrier is somewhat lessened by the visual environment but sthil elo-
ronments could provide users with better instructions for correct upagsibly
through context-sensitive instructions which some other IDEs alreadydp. (The
most recent version of Modkit - Modkit Micro - now provides tooltips).

Similarly, understanding barriers encountered in the textual envirdronémm-
bered those found in the visual environment (15/77 textual, 12/B0@l), as this
quote from participant @emonstrates:

“So it’s doing output of zero and one. Oh, ok. So now it’s obvious that the problem
is that [squints at the screen and shakes her $iggtudly] it needs some sort of delay.
But that still doesn’t make sense, because it shouldn’t be doing anything; it should
Jjust be in an off state. So why is it flashing on and off?”

This suggests that the textual environment could provide more $uppggers in
understanding information received at runtime or on compile, anthghttlem aware
how to check any hypothesis they may have about the reasorcdengler or run-
time error, including the facilities available for testing.

Coordination barriers proved to be a more challenging aspect for pamtiip the
visual environment than the textual environment (2/77 textual, 15/108 viSeveral
of these related to the unsuccessful docking together of blocksh whme partic
pants struggled with, suggesting that this interaction could perhapspbeved. In
some cases participants were not sure whether blocks had connectedarfgie
participant 5 remarked

“Did it fit? Yes...No... I'm not sure if it’s fitting in the loop, in the If case. It
doesn’t look like it does.”

Some participants, such as participant 2, also did not understand why Isckte b
did not fit together when they thought they should:

“What I really want to do is put it there, in the forever loop, [tries to dock digital-
Read again wuccessfully...] but that’s not going to happen is it?”

A frequent barrier for participants in the visual environment prdodoka selec-
tion barrier (12/77 textual, 27/108 visual), as this participant stated:

“It’s a shame you can’t find anywhere like a help or thingy what’s... what those
[the operator blocks] aré(participant 4)

This is somewhat surprising, as we had anticipated that making the biquics
itly available might make it easier for people to decide what to use. Howexay it
be that in fact people felt confused because the tool provided both a proliferitio
choices yet no clue as which one was the right-omgin, a “puzzle on top of a puz-
zle”. Future work could concentrate how to guide users in selecting the rigks lixo
use.

5 Discussion and future work

Our study suggests that task type, such as creation and modifigddipm, role in
the success of using a programming environment. Participants iriuolyr adso felt
more confident using the visual programming environment inmbdification task.
This may explain the effectiveness of using VPLs for teacltfign novices start out

by reusing existing solutions and modifying thena task for which a visual eilv
ronment may be better suited. Consequently, there may be an additioost” to
learners to continue using VPLs for this and similar tasks. Arddiaws in adults
with little programming experience and how best to teach these individuals toplevelo
physical prototypes, possibly through ‘prototype repositories’ which they can reuse,
would be an interesting area for further study.

We have started to identify the barriers end users may encounter wigeanpro
ming an electronics platform, however, this work could benefit fommparative
studies both between application areas (e.g. intelligent agents, spreadsicdetas
well as other visual programming environments for Arduino, siscB4A (Scratch for
Arduino) [33], Minibloq [26], ArduBlock [22] and Modkit. The Bé&s view in Mal-
kit, while graphical, uses similar terminology to the default Arduino IDEeOifsual
environments, such as Miniblog, differ more radically in their presentatigoro-
gramming constructs and their approaches to program constructimulét be useful
to evaluate these empirically for learning barriers, usability and user exgeerien

Finally, our participants hinted at the effect of visual and textual envirasnoan
programmingactivities stating that visual may be good to get them started but that
they may want to switch. It could be that debugging in particular rispbeed in
VPLs: our findings show that Coordination barriers were especialhg ifirequent in
the visual environment. One possible solution is to probita representations at the
same time, to provide information to the end user in combination in tovdera-
come this learning barrier. Future work may be able to explore this soluti@o-
gramming effectiveness, or how certain programming activitiesddoe bettersup-
ported in visual programming environments.

6 Conclusion

The overall objective of this project was to investigate whether a visualaprogr
ming language for Arduino offers benefits over a traditional -besed language for
adult end-user programmers. We learned that:

e Visual environments seemed to help but possible more to modifygmsghan
create them. Further studies are necessary to look into this in more detail.

e Visual environments provided a more positive user experience,sideng e-
duced perceived workload and higher perceived success, both faskisein the
study as well as future tasks. This may entice beginners to continuethesieg
environments even in the absence of actual benefits.

e Both environments are not perfect, and may be perceived as unsupportiv
confusing. We showed that this may be due to Use, Understandingj@etew
Coordination barriers. Addressing these may help to improve sufgpoend-
user programmers.

Taken together, visual programming languages appear to hold préoniadult
novice end-user Arduino programmers but further work isie@¢o fully understand
how best to support end users to achieve both actual and perceivats b@uefstudy
is a first step in this direction.

Acknowledgements. We thank Ed Baafi and the Modkit team, who kindly gave us
access to the Modkit Alpha Editor for use in our study. Thankaysaol to our study
participants.

References

1. Benedek, J., Miner, T.: Measuring Desirability: New methods for evaguatin
desirability in a usability lab setting. Presehte the Usability Professionals’
Association Conference 2002 , Orlando, Florida, USA July 8 (2002).

2. Blackwell, A.F.: Metacognitive Theories of Visual Programming: What do we
think we are doing? , IEEE Symposium on Visual Languages, 12@gee-
ings. pp. 240-246 (1996).

3. Brandt, J. et al.: Opportunistic Programming: How Rapid Ideation artdtfye
ing Occur in Practice. Proceedings of the 4th international workshopauger
software engineering. pp-& ACM, New York, NY, USA (2008).

4. Burnett, M. et al.: Forms/3: A First-Order Visual Language to Explore the
Boundaries of the Spreadsheet Paradigm. Journal of Functional Proggammin
11, 02, 155206 (2001).

5. Cao, J. et al.: End-User Mashup Programming: Through the Desiughn Po-
ceedings of the 28th international conference on Human factors in camputi
systems. pp. 1009018 ACM, New York, NY, USA (2010).

6. Compeau, D.R., Higgins, C.A.: Computer Self-Efficacy: Development of
Measure and Initial Test. MIS Quarterly. 19, 2, 1391 (1995).

7. Franklin, D. et al.: Assessment of Computer Science Learning in a Scratch-Based
Outreach Program. Proceeding of the 44th ACM technical symposiummn Co
puter science education. pp. 336 ACM, New York, NY, USA (2013).

8. Gilmore, D.J., Green, T.R.G.: Comprehension and Recall of MiniBnagrams.
International Journal of Man-Machine Studies. 21, £481(1984).

9. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index):
Results of empirical and theoretical research. In: Hancock, P.A. and Meshkati, N.
(eds.) Human Mental Workload. pp. 22%0 North Holland, Amsterdam (1988).

10. Hartmann, B. et al.: Hacking, Mashing, Gluing: Understanding Oppdtitunis
Design. IEEE Pervasive Computing. 7, 3;-84 (2008).

11. Ko, A.J. et al.: Six Learning Barriers in End-User Programming Systeros
ceedings of the 2004 IEEE Symposium on Visual Languages -ah@entric
Computing. pp. 19206 IEEE Computer Society, Washington, DC, USA
(2004).

12. Kulesza, T. et al.: Fixing the Program My Computer Learned: Barriersrfdr
Users, Challenges for the Machine. Proceedings of the 14th internatiofet con
ence on Intelligent user interfaces. pp. 4896 ACM, New York, NY, USA
(20009).

13. Malan, D.J., Leitner, H.H.: Scratch for Budding Computer Scientists. &toce
ings of the 38th SIGCSE technical symposium on Computer science education.
pp. 223227 ACM, New York, NY, USA (2007).

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24,
25.
26.
27.
28.
29.
30.

31.
32.
33.

Maloney, J.H. et al.: Programming by Choice: Urban Youth LearRiogran-
ming with Scratch. Proceedings of the 39th SIGCSE technical symposium o
Computer science education. pp. 3871 ACM, New York, NY, USA (2008).
Meerbaum-Salant, O. et al.: Habits of Programming in Scratch. Proceedings
the 16th annual joint conference on Innovation and technology ipuemsé-
ence education. p68-172 ACM, New York, NY, USA (2011).
Meerbaum-Salant, O. et al.: Learning Computer Science Concepts with Scratch.
Proceedings of the Sixth international workshop on Computingagidn -
search. pp. 696 ACM, New York, NY, USA (2010).

Millner, A., Baafi, E.: Modkit: Blending and Extending Approachable Platfor
for Creating Computer Programs and Interactive Objects. Proceedfinie
10th International Conference on Interaction Design and Children.50p223
ACM, New York, NY, USA (2011).

Resnick, M. et al.: Scratch: Programming for All. Commun. ACM. 5260167
(2009).

Turkle, S., Papert, S.: Epistemological Pluralism and the Revaluation obthe C
crete. Journal of Mathematical Behavior. 11,-133(1992).

Whitley, K.N.: Visual Programming Languages and the Empirical Evidence Fo
and Against. Journal of Visual Languages & Computing. 8, 11418 (1997).

Wolz, U. et al.: Starting with Scratch in CS 1. Proceedings of the 40th ACM
technical symposium on Computer science education.3AZM, New York,

NY, USA (2009).

ArduBlock, http://blog.ardublock.com/.

Arduino, http://www.arduino.cc/.

Download the Arduino Software, http://arduino.cc/en/Main/Software.

London Hackspace, https://london.hackspace.org.uk/.

Miniblog, http://blog.miniblog.org/.

Modkit, http://www.modKk.it/.

Modkit Alpha Club, http://www.modk.it/alpha.

Morae usability testing software, http://www.techsmith.com/morae.html.
MzTEK: A learning community in technology and arts for wommen
http://www.mztek.org/.

National Instruments LabVIEW, http://www.ni.com/labview/.

Raspberry Pi, http://www.raspberrypi.org/.

S4A: Scratch for Arduino, http://seaside.citilab.eu/scratch/arduino.

