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SUMMARY

Heterotrimeric guanine nucleotide-regulatory (G) proteins
are associated with a variety of intracellular membranes
and specific plasma membrane domains. In polarized
epithelial LLC-PK1 cells we have shown previously that
endogenous Gai-2 is localized on the basolateral plasma
membrane, whereas Gai-zislocalized on Golgi membranes.
The targeting of these highly homologous Gai proteins to
distinct membrane domains was studied by the transfec-
tion and expression of chimeric Gaij proteinsin LLC-PK1
cells. Chimeric cDNAs were constructed from the cDNAs
for Gai-3z and Gai-2 and introduced into a pM XX eukary-
otic expression vector containing a mouse metallothionein-
| promotor. Stably transfected cell lines were produced
that expressed either Gai-2;3 or Gai-z2 chimeric proteins.
Chimeric and endogenous Gai proteins were detected in
cells using specific carboxy-terminal peptide antibodies.
Immunofluorescence staining was used to localize en-
dogenous and chimeric Gai proteinsin LLC-PK 1 célls. The
staining of chimeric proteins was detected as an increased

intensity of staining on membranes containing endogenous
Gaj proteins. Using confocal microscopy and image
analysis we localized Gai-2 to a specific sub-domain of the
lateral membrane of polarized cells, the chimeric Gai.z2
protein was then shown to colocalize with endognenous
Gai-2 in the same lateral plasma membrane domain. The
chimeric Gai.z3 protein colocalized with endogenous Gai-3
on Golgi membranesin LLC-PK1 cells. These results show
that chimeric Ga; proteins were targeted to the same
membrane domains as endogenous Ga; proteins and the
specificity of their membrane targeting was conferred by
the carboxy-terminal end of the proteins. These data
providethefirst evidencefor specific targeting infor mation
contained in the carboxy termini of Ga; proteins, which
appears to be independent of amino-terminal membrane
attachment sites in these proteins.
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INTRODUCTION

Heterotrimeric guanine nucleotide-regulatory (G) proteins are
involved in the modulation of signal transduction for an
increasingly diverse number of receptor-effector systems.
These G proteins are composed of a GTP-binding a subunit
and a By complex, with the specificity for receptor-effector
interactions residing largely in the a subunits. The non-
membrane spanning GaPy proteins remain associated with the
cytoplasmic surface of membranes through a series of attach-
ments that may be mediated by one or more of the subunits
(Jones et al., 1990; Juhnn et a., 1992; Mumby et a., 1990;
Simonds et al., 1991; Sternweiss, 1986). During the activation
of G proteins and the dissociation of the a subunit from By, the
o subunit (with the exception of transducin) remains tightly
associated with membranes (Mumby et al., 1990). It has been
demonstrated that post-translational modifications for these
non-membrane spanning proteins, specifically fatty acyl mod-
ifications, are required to sustain membrane attachment for at
least one family of a subunits, the Gai proteins. Myristoyla-
tion of residues at the amino terminus of the ai subunits of the

pertussistoxin-sensitive category of G proteins, G and Go, was
found to be obligatory for membrane attachment since mutant
forms lacking the myristoylation site resulted in the loss of
their membrane association (Mumby et al., 1990).

The presence of Gai proteins, once thought to reside solely
on the plasma membrane, has now been described on the
membranes of intracellular organelles, such as the endoplas-
mic reticulum (Audigier et a., 1988), the Golgi complex (Stow
et a., 1991a), endosomal membranes (Ali et a., 1989) and
possibly the nucleus (Crouch, 1991). Different G protein a
subunits may also be segregated into specific sub-domains of
plasma membranes. In rat kidney, different Gas and Gai
proteins have been localized to either the apical or basolateral
plasma membrane domains of individual epithelia cells aong
the nephron (Stow et al., 1991b). This geographic diversity
presumably dictates the functional consequences of many
receptor-G protein-effector systems in selective membranes.
The targeting of these highly homologous Ga proteins, partic-
ularly the Gaj proteins, to such a variety of intracellular
membranes and sub-domains of the plasma membrane thus
presents a complex trafficking problem.
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While the sequences required for myristoylation and
membrane attachment of G protein subunits are known (Jones
et a., 1990; Mumby et a., 1990), there are no data to define
the specific regions of Gai subunits required for targeting to
distinct plasma or intracellular membranes. We have demon-
strated recently that two homologous a subunits of the Gi
family, Gai-2 and Gai-3, are selectively targeted to distinct and
specific membranes in rena epithelial cells (Ercolani et al.,
1990; Stow et al., 1991@). In LLC-PK; cells, the Gai-2 is
targeted to the basolateral plasma membrane, whereas Gai-3 is
targeted to Golgi membranes. The pertussis toxin-sensitive
Gai-2 protein is the probable mediator of inhibition of adenylyl
cyclase at the plasma membrane (Ercolani et al., 1990;
Skorecki et al., 1987). In contrast, both native and overex-
pressed Gai-3 on Golgi membranes are involved in regulating
trafficking through the secretory pathway (Stow et al., 19914).

The present study was undertaken to define the regions of
the Gaij2 and Gai.3 subunits that are necessary for specific
targeting to plasma and Golgi membranes, respectively.
Chimeric Gai proteins were stably expressed in polarized
epithelial LLC-PK1 cells. These studies revealed that the sites
for specific targeting to intracellular membranes and plasma
membranes reside within specific segments of the carboxy
termini of the Gai proteins. Thus, the signals for targeting and
membrane attachment in these proteins are different.

MATERIALS AND METHODS

Construction of plasmids and production of stably-
transfected cell lines.

LLC-PK1 cells, a polarized epithelia cell line derived from pig
kidney, were grown as described previously in Dulbecco’'s modified
Eagle’s medium with 10% FCS, in 5% CO2 (Ercolani et a., 1990).
Vectors for the transfection of cDNAs of rat Gai.2 and Gai-3 were
constructed as described previously (Ercolani et al., 1990; Stow et a.,
1991a). Chimeric Gai-3 and Gai-32 cDNAs were constructed as
described in Fig. 1 and cloned into pMXX, a vector containing a
mouse metallothionein-1 inducible promoter, as we have described
previoudly (Ercolani et al., 1990). The vectors were cotransfected with
pSV2neo into LLC-PK cells by the calcium phosphate precipitation
method (Gorman et a., 1982). Cells containing stably integrated
plasmids were selected by resistance to geneticin (G418) (GIBCO) at
1.5 mg/ml. To identify stable transfectants containing rodent chimeric
genes, genomic DNA from geneticin resistant cells were utilized as
templates in the polymerase chain reaction. Rodent-specific oligonu-
cleotides for Gai-2 and Gai-3 flanking the BamHI ligation site for
chimeric Gai-zz or Gai.zz cDNAs were utilized. Amplification
products of 262 bp ensured specificity of rodent chimeric cDNAs as
these primers would potentially amplify larger porcine DNA products
due to interruption by introns 5 and 6 in both the porcine Gai.2 and
Gai-3 genes:

Rat.Gaj-2 mRNA forward primer: 5-GGATGTGCTGCGGACC-
CGT-3

Rat.Gai-2 mMRNA reverse primer: 5-AGATGTTCTTCGGAC-
GAGA-3

Rat.Gai-3 mRNA forward primer: 5-GGATGTGCTGCGGACC-
CGT-3

Rat.Gai-3 mRNA reverse primer: 5-AAACCATTTGTTGTTA-
CAA-3

LLC-PK1 cell lines stably transfected with pMX X Gaij-2/3 were des-
ignated as LLC-PK1(/3) cells and stable cells lines transfected with
pPMXX Gai-3/2 were designated as LL C-PKyzy2) cells.

Antibodies

Polyclona antibodies to specific decapeptides from Gaii subunits were
obtained from Allen Spiegel, NIH or were purchased from Dupont
(Wilmington, DE). The AS antibody recognizes a carboxy-terminal
epitope of Gai-2 (Spiegel et d., 1990) and thus also recognizes the
chimeric Gai-z2 protein, which contains the same peptide. The EC
antibody specifically recognizes the carboxy-termina epitope of Gai-3
(Spiegel et a., 1990) and it can be used for specific immunoblotting
and immunolocalization of Gai.zin LLC-PK1 cells (Stow et al., 1991a);
the EC antibody al so recognizes the chimeric Gai-2/3 protein. The mon-
oclonal antibody to the a-subunit of the Na*,K*-ATPase (Caplan et al.,
1990) was obtained from Dr Michael Caplan, Yae University and the
antibody to the ZO-1 tight junction protein (Stevenson et d., 1986) was
provided by Dr Dan Goodenough, Harvard Medical School. Goat anti-
rabbit 1gGs conjugated to FITC, rhodamine or akaline phosphatase
were obtained from Vector Laboratories (Burlingame, CA).

Immunofluorescence staining and western blotting

Immunofluorescence staining of Gaij proteins in cells was carried out
as described previously (Ausiello et a., 1992; Stow et al., 1991a).
Cells on coverslips were fixed either in 4% paraformaldehyde for 1
hour or in methanol/acetic acid (3:1 ratio). After fixation, cells were
permeabilized with 0.1% Triton X-100, incubated sequentialy in
diluted specific Gai peptide antibodies, followed by second antibod-
ies conjugated to FITC or rhodamine. Stained cultures were mounted
in PBS/glycerol with 1% n-propyl-gal late and viewed by conventional
epifluorescence on a Nikon Microphot microscope or by confocal
imaging on a Bio-Rad MRC 600 system.

Total microsomal membranes (100,000 g pellet) and cytosol
fractions (100,000 g supernatant) were prepared, as described (Stow et
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Fig. 1. Gai cDNAs. Plasmids Gi-f2 and Gi-f3 encoding rodent
cDNAsfor Gai-2 and Gaij-3 were kindly provided by R. Reed (Johns
Hopkins). A BamHI restriction site was identified in the coding region
of each cDNA that would alow for thein frame trandation of the
amino acids WIC at positions 785 and 716 in Gaij-2 and Gai-3,
respectively. Each rodent cDNA was derived by digesting Gi-f2 and
Gi-f3 with EcoRil, followed by purification of the respective 1748 bp
and 3072 bp fragments. BamHI full digestion of 1748 bp Gai-2
cDNA yielded a 785 bp fragment (encoding 151 bp of 5' untranslated
region and 634 bp of amino-terminal coding region) and a 963 bp
fragment (encoding 433 bp of carboxy-terminal coding region and
530 bp of 3’ untranslated region). BamHI partial digestion of 3072 bp
Gai-3 cDNA yielded a 716 bp fragment (encoding 85 bp of 5'
untranslated region and 631 bp of amino-terminal coding region) and
a 2356 bp fragment (encoding 433 bp of carboxy-terminal coding
region and 1923 bp of 3' untrandated region). Untrand ated regions of
each cDNA are depicted as black lines whereas rectangular open
boxes are Gai.2 coding region and rectangular striped boxes are Gai-3
coding region. For construction of Gai-32 CDNA the 716 bp Gaij-3
fragment was ligated to the 963 bp Gaii-2 fragment. For construction
of Gai-2;3 cDNA the 785 bp Gaii-2 fragment was ligated to the 2356
bp Gai.3 fragment. Each cDNA was then ligated into the EcoRlI
polylinker of the pMXX eukaryotic expression vector containing a
mouse metallothionein | promoter-enhancer. Sense orientation for
each plasmid was confirmed by Kpnl digestion of pMXX (ai-3/2) and
Kpnl/Pstl digestion for pMXX (ai-2/3) followed by dideoxy nucleic
acid sequencing. Each Gai cDNA isdrawn to scale.



al., 1991a), from cultures of stable LL C-PK1/3) and LL C-PK 132 cell
lines to analyze chimeric proteins by western blotting with specific
antibodies. Aliquots of membranes and cytosols, matched for protein
content, were electrophoresed on a 12% SDS-polyacrylamide gel and
then transferred electrophoretically to Immobilon-P  membrane
(Millipore Corporation, Bedford, MA). Western blotting was
performed with peptide antibodies to the Gai subunits followed by
alkaline phosphatase-labeled secondary antibody (Stow et al., 19914).

In al immunofluorescence and western blotting experiments,
untreated L L C-PK1(2/3) and LLC-PK 1(3/2) cells, expressing only native
Gaj subunits, were compared to cells exposed to 5 UM CdCl> for 16
hours, to induce additional expression of the transfected, chimeric
cDNAs. Chimeric proteins in both procedures were detected with the
AS antibody to recognize both endogenous Gai.> and chimeric
Gaij-32 proteins or with the EC antibody to recognize both endoge-
nous Gai-3 and chimeric Gai.z/3 proteins.

Quantitation of fluorescent signals on membrane domains
using confocal microscopy

In order to quantitate the intensity of the fluorescent signal generated
by immunofluorescence labelling of Gaj proteins, multiple, random
images of stained cells were collected on the laser confocal micro-
scope as described previously (Ausiello et al., 1992; Stow et a.,
19914). Histograms were generated for each image to quantitate pixel
intensity in a designated perinuclear area (for Golgi staining) or along
alineintersecting cell borders (for plasma membrane staining) using
the Bio-Rad MRC 600, CM software (Bio-Rad Microsciences,
Cambridge, MA). To make direct comparisons between plasma
membrane staining or Golgi staining in induced versus uninduced
cells, the pixel intensities of 15-20 images for each condition were
measured and used to calculate a mean fluorescence intensity. Some
images were also pseudocoloured to highlight the distribution of
staining at two different intensity ranges within cells.

RESULTS

Localization of native Gaij.2

In order to examine the targeting of chimeric Ga; proteins to
membrane domains it was necessary to know the precise dis-
tribution of native and overexpressed Gai-2 and Gai-z in LLC-
PK1 célls. In previous studies we have established, by immuno-
cytochemistry at the light and electron microscopy levels, that
native and overexpressed Gai-3 are localized on the cytoplas-
mic face of Golgi cisternae membranes (Stow et al., 1991a).
We have previously localized both the native and overex-
pressed Gai-2 on basolateral plasma membranes of LLC-PK1
cells using epifluorescence microscopy on cell monolayers
(Ercolani et al., 1990). However, using this technique it was
not possible to precisely define the localization of Gaij-2 within
sub-domains of the basolateral plasma membrane. Now, using
confocal microscopy, we have been able to more accurately
determine the locdization of Gai-2 in a sub-domain on the
lateral plasma membrane of polarized LLC-PK1 cells. LLC-
PK1 cells grown as confluent monolayers on filters were
stained by immunofluorescence with the AS antibody and then
examined on a confocal scanning laser microsocpe. Optical
sections were produced at 1 pm intervals through the
monolayer to construct a Z-series of images showing staining
at each level of cells from the apex to the base. Analysis of the
images (Fig. 2) showed that Gai.-2 is not distributed randomly
over the basolateral membrane; staining was generally absent
from the basal membrane and was confined to the lateral cell
membrane. The localization of Gai-2 was compared to that of
two other membrane proteins. The ZO-1 proteinislocalized in
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tight junctions and the a-subunit of Na*,K*-ATPase is a baso-
lateral membrane protein on polarized epithelial cells. The
images shown in Fig. 2 represent a Z-series of optical sections
taken at 1 um intervals through three separate L L C-PK 1 mono-
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Fig. 2. Localization of Gai-2 by immunofluorescence staining and
confocal imaging. Confluent monolayers of LLC-PK1 cells grown on
filters, were stained with specific antibodies and examined by
confocal laser microscopy. A set of imagesat 1 um intervals was
created to form a Z-series through the cells from the basal membrane
(image 1) through to the apex of the cells (image 12) for cultures
stained with each antibody. The staining in each image represents
membrane staining around the circumference of each cell. The ZO-1
tight junction protein (first strip) islocalized in aband around the
lateral membranes (images 6-9) of the cells. Thereis intense staining
of the lateral membrane outlining each cell, thereis no staining of the
apical or basal membranes, nor any intracellular staining. The
staining of Gaij-2 (center strip) is also most intense on the lateral
membranes (images 6-9), with no staining on the apical membrane
and wesker staining in more basal sections. The Gaij-2 antibody gives
aweak cytoplasmic staining, as also seen by epifluorescence
microscopy (see Fig. 4). Thereis Na" K*-ATPase staining (last strip)
on the basal membranes (images 2-4) of these cells, which appears as
more diffuse staining across the sections, as well as staining all along
the lateral membranes. The bracket indicates the portion of the lateral
membrane, beginning at the level of the tight junction (images 9-6),
in which thereis staining of Gai-2, overlapping with staining of ZO-1
and Na* K*-ATPase.
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layers that were stained with antibodies to the membrane
proteins ZO-1, Na" K*-ATPase, and Gai.o, respectively. ZO-
1 was found, as expected, in a relatively compact area of the
lateral membrane at the level of the tight junctions and was
absent from the apical and basal membranes. Nat,K*-ATPase
o subunit was distributed over most of the basal and the lateral
membranes, with the greatest concentration on the basa
surface of these LLC-PK 1 cells. Gai-2 staining was absent from
the apical membrane and from the basal membrane but was
present on the lateral cell membranes. Staining of the Gai-2
subunit was most heavily concentrated in a4 pm band on the
lateral membrane, in a location that largely overlaps with the
Z0O-1 staining at the tight junction. The concentration of
Gai-2 in this lateral membrane band was most clearly demon-
strated when images were projected in the XZ plane (Fig. 3).
These data confirm our previous observation that Gai-; is a
basolateral membrane protein in LLC-PK1 cells (Ercolani et
al., 1990). However, we can now see that the Gai-2 subunit is
not distributed randomly over the basolateral membrane but is
targeted to a specific sub-domain, near the tight junction on the
lateral membrane of these cells.

The analysis of staining by confocal Z-series images was
also used for accurate localization of chimeric Gai proteins on
plasma membranes. However, since confocal Z-seriesimaging
was not informative for analysis of Golgi staining in these
cells, the staining of Gaj-z or chimeric Gai proteins on the
Golgi membranes was performed by direct epifluorescence
microscopy.

Expression of chimeric proteins

Stable clones of LLC-PKyr3) and LLC-PKyg2) cells were
tested for expression of chimeric Gai proteins by western
blotting of microsomal membranes. The proteins encoded by
endogenous and chimeric cDNAs were expected to be of

Fig. 3. Confocal imaging of Gai-2 staining in an XZ projection. A
series of images of LLC-PK1 cells stained with the AS antibody were
collected. Single images were projected as an XZ image constructed
of 14 steps (1 um) with 15 scans/step from the apical to the basal
membrane of the cells. Thereis weak staining along lateral and basal
aspects of three adjacent cells. There isintense staining in an area of
the lateral membranes of each cell corresponding to the location of
Gai-2.

similar size, thus Gai-2 and Gai-z3 were 40 kDa while Gaij-3
and Gai-z2 were 41 kDa, respectively. Indeed, protein bands
corresponding to native and chimeric Gais were not resolved
from each other and were superimposed on SDS-polyacry-
lamide gels. Expression of the chimeric proteins was seen as
increased intensity of the stained, overlapping protein bandsin
membranes from CdCl2-induced cells compared to uninduced
cells (Fig. 4), as shown previoudly for the induced expression
of native Gai.2 and Gai-z in LLC-PK cells (Ercolani et a.,
1990).

Membrane fractions from both the LLC-PK 23 and LLC-
PK1a2) cell lines showed a 2-3 fold increase in gel band
intensity following induction of expression of the chimeric
proteins, consistent with the presence of newly expressed
chimeric proteins in the induced cultures (Fig. 4). This aso
verifies that induction of the chimeric cDNA results in
expression of the appropriate chimeric protein. Neither the
chimeric proteins nor the native proteins were found in cytosol
fractions, indicating that the chimeric Gai proteins remain
completely associated with membranes.

Localization of chimeric Gai proteins

The specific carboxy-terminal peptide antibodies were used to
localize chimeric Gai proteins by immunofluorescence staining
in transfected LLC-PK1 cells. Overexpression of the chimeric
proteins was only detected as a change in the intensity or
position of staining in CdCly.induced cells compared to
staining of native proteins alone in uninduced cells. The local-
ization of chimeric proteins was analyzed by regular epifluo-
rescence microscopy of monolayers on coverdips (see Figs 5
and 8) and quantitated by confocal laser imaging (see Figs 6,
7 and 9).

In uninduced LLC-PKai2) cells, staining with the AS
antibody detected only the native Gai-2, which was found pre-
dominantly on the basolateral plasma membrane (Fig. 5a). The
immunofluorescence staining of Gai-2 in whole monolayers,
viewed by epifluorescence microscopy appeared as intense
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Fig. 4. Western blot analysis of native and chimeric Gai proteins.
Microsomal membranes were prepared from LLC-PK cells,
electrophoresed on SDS-PAGE gels and transferred for
immunoblotting. Membranes from the LLC-PK 1 (/3) cells were
probed with the EC antibody to label native Gai-3 (41 kDa) and the
Gai-2/3 chimeric protein. Membranes from LLC-PK1 (312 cells were
reacted with the AS antibody, which recognizes the native Gaij-2 (40
kDa) and the Gai-3/2 protein. In both cell lines the amount of
immunoreactive protein was compared in membranes from
uninduced cells () and in membranes from cells treated with 5 pM
CdCl2 (+) to induce expression of the chimeric proteins. In both
cases there was amore intense staining of the 40 kDa and 41 kDa
bands in induced cells, which is consistent with the appearance of the
chimeric proteins superimposed over the native Ga protein bands.
This also shows that the chimeric proteins have been correctly
processed and are migrating at the expected molecular masses.
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Fig. 5. Immunofluorescence localization of
chimeric Gai-g2 protein. Untreated LLC-PK1 (312)
cells (—Cd) and cells treated with 5 uM CdCl>
(+Cd) were fixed and stained with the AS antibody.
(a) In uninduced cells, there is staining of native
Gai-2 on the basolateral membranes (arrow), which
appears as aline around the border of the cells, and

faint diffuse cytoplasmic staining. (b) Following induction and expression of the chimeric proteins, there is staining of both the native Gai-2 and
chimeric Gai-z/2 proteins on the basolateral membranes. The membrane staining is now more intense due to the superimposition of the two Ga

proteins (arrow). Bars, 10 pm.

staining of the cell bordersin a cobblestone-like pattern that is
typical of plasmamembrane staining. Ininduced LLC-PK1(3/2)
cells, now expressing both the endogenous Gai-2 protein and
the Gai-3;2 chimeric protein, there was also staining of the
basolateral cell membranes and this staining was notably more
intense than staining in comparable monolayers of uninduced
cells (Fig. 5b). The staining of the endogenous and chimeric
proteins appeared to be completely superimposed, there was
no de novo staining of Golgi membranes or any other
membranes in these cells following induction of the expression
of the chimeric protein. There was some cytoplasmic staining
with the AS antibody, as we have previously reported, and the
staining was the same in both induced and uninduced cells.

Monolayers of induced LLC-PK(3/2) cells, stained with the
AS antibody, were also examined by confocal microscopy, to
compare the staining of the Gai.3/2 chimeric protein, with that
of the endogenous Gai.2 protein in sub-domains of the plasma
membrane (Fig. 6). Confocal images, analyzed as a Z-series,
confirmed that in induced LLC-PKy/2) cells the staining of
both the endogenous Gai-2 protein and the newly expressed
Gaij-312 protein was completely superimposed (Fig. 6); the most
intense staining was found in a4 pm sub-domain of the lateral
plasma membrane, which corresponded exactly to the most
concentrated staining of Gai-2 in normal cells (as seen in Figs
2 and 3).

The immunofluorescent staining of plasma membranes in
induced and uninduced LL C-PK1(3/2) cultures was quantitated
by image analysis on the confocal microscope. The average
maximum pixel intensity in uninduced cells and induced cells
was 101 and 189, respectively (Fig. 7), confirming that there
was indeed more intense staining of plasma membranes
following expression of the chimeric protein, and consistent
with the additive presence of the chimeric protein detected in
these cells by western blotting. Also, following induction in
the LLC-PK 32 cells, there was no increase in Golgi staining
with the EC antibody and no staining with this antibody of the
plasma membrane (Fig. 7 and see also Fig. 5b). The EC
antibody recognizes only the carboxy terminus of native
Gaij-3 and does not recognize the chimeric Gai-z/2 protein.
Treatment of mock-transfected, or untransfected LLC-PK;
cells with CdCl» did not result in any ateration or increase in
theintensity of staining with AS or EC peptide antibodies (data
not shown). These data show that: (i) the endogenous Gai-2
protein and the chimeric Gai-3/2 protein, which share the same
carboxy-terminal sequence, are both recognized in intact cells

by the AS antibody; (ii) staining of both proteins is superim-
posed on the plasma membrane resulting in an increase in flu-
orescence intensity of plasma membrane staining; (iii) there
was no staining of Gai.z2 protein detected on any other
membranes in the cell; and (iv) the native Gai-2 and Gai.3/2
proteins are colocalized on the same sub-domain of the lateral
plasma membrane of LLC-PK1 cells.

The localization of the converse chimeric protein, Gai-z/3,
was carried out by immunofluorescence staining in LLC-
PK123) cells with the EC antibody, which recognizes the
Gai-3 carboxy terminus. This demonstrated that the overex-
pressed chimeric Gai.x3 protein is targeted, along with native
Gai-3, to Golgi membranes (Fig. 8). In uninduced LLC-PK 1(2/3)
cells, where there is only endogenous Gai-3, there was staining
of the perinuclear Golgi complex, and faint staining of the
cytoplasm (Fig. 8a) as we have demonstrated previously (Stow
et a., 1991a). Following CdCl2 induction, the Gaij-2/3 chimeric
protein was expressed and its staining was superimposed over
the endogenous Gai.z protein on the perinuclear Golgi
complex (Fig. 8b). There was an increase in the intensity of
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Fig. 6. Confocal localization of
chimeric Gaij-z2 on lateral cell
membranes. LLC-PK1 (312 cellswere
treated with 5 uM CdCl> to induce
expression of the Gaij-3/2 chimera.
The cells were fixed, stained with the
AS antibody and examined by
confocal imaging. A Z-series of
images was produced, as described
above and the panels corresponding
toimages 6-9 in Fig. 2, are shown
here. The lateral membrane staining
of Gaij.3;2 and Gai-2 is superimposed
and islocalized in the same images as
native Gaij-2 alone (see Fig. 2),

; showing that Gai-32 is targetted to

} the same sub-domain of the lateral
membrane as the native subunit.
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Fig. 7. Quantitation of fluorescence intensities. LLC-PK1 (/3) and
LLC-PK1 (312) cells were treated with CdCl2 overnight to induce
expression of the Gaii-z/3 and Gai-z/2 chimeric proteins, respectively.
Untreated cells, expressing only native Gai subunits, were used for
comparison. Cells were stained with the AS and EC antibodies,
images were collected on the confocal microscope and image
analysis, using the MRC 600 software as described in the text, was
performed to quantitate plasma membrane and Golgi staining. The
graph shows average maximum pixel intensities recorded from 15-25
measurements for each antibody and each site. The AS antibody
stained the Gai-2 and Gaij-3/2 proteins on plasma membranes but did
not give any Golgi staining, conversely the EC antibody recognized
both Gaij-3and Gai-z3 on the Golgi but did not stain plasma
membranes.

the perinuclear Golgi staining following expression of the
chimeric protein. Quantitation of images by confoca
microscopy reveaded that the average fluorescence intensity
increased from 151 to 280, respectively, following induction
of chimeric protein expression (Fig. 7). There was no evidence

Fig. 8. Immunofluorescence staining of chimeric Gai.2/3 protein.

(a) Untreated LLC-PK1 (2/3) cells (-Cd), stained with the EC
antibody, show staining of native Gai.3 on the Golgi complex, which
appears as a perinuclear patch of membranes (arrow). (b) Following
induction with 5 uM CdCl; (+Cd) there is expression of the Gai-z/3
chimera, which is also localized on Golgi membranes superimposed
on the endogenous subunit and there is now more intense staining of
the perinuclear Golgi complex (arrow). Bars, 10 um.

that the chimeric protein, labeled with the EC antibody, was
localized on plasma membranes or any membranes other than
Golgi membranes (Fig. 7 and see Fig. 9). As expected, there
was no increased staining in LLC-PK1(2/3) cells with the AS
antibody, which recognizes the carboxy terminus of native
Gai-2 (Fig. 6). The confocal imaging of EC staining in LLC-
PK1(2/3) cellsis shown in the pseudocoloured images in Fig. 9.
The images are coloured with yellow to show less intense
staining and red to show the most intense staining obtained
with the EC antibody. There is staining of native Gai.3 in per-
inuclear Golgi regions (Fig 9A), and the staining of Gai-3 and
Gai-z3 are superimposed (Fig 9B) resulting in an increase in
fluorescent intensity and a change from yellow to red in most
of these Golgi regions. These images show very clearly that
thereis no staining of Gai-2/3 on the plasma membrane or other
membranes in these cells.

These findings reflect all of the same parameters found for
the expression and locali zation of the Gaii-3/2 chimera described
above. The major difference being that, while Gai.z2 was
targeted to the plasma membrane, we now find that the Gaii-2/3
chimeric protein is targeted to the Golgi membranes, in the
same manner as the native Ga;-s.

DISCUSSION

We have demonstrated previoudy that, despite the high
homology between the rat Gai.2 and Gai-3 subunits, there is
selective targeting of these ai subunits to distinct membranes
in developing and polarized renal epithelial cells (Ercolani et
a., 1990; Holtzman et a., 1991; Stow et al., 19914). In the
polarized LLC-PK1 cells, Gai-zis on Golgi membranes and
Gai-2 is on the basolateral plasma membrane. In previous
studies, using epifluorescence microscopy, it was not possible
to determine whether the Gai.2 was distributed over the entire
basolateral plasma membrane, or whether it had a more
restricted distribution. Now, by using confocal laser
microscopy, we show that Gai.2 isindeed concentrated within
arestricted sub-domain of the lateral membrane of these cells
and that the targeting of this subunit is a highly selective
process. The functional consequences of having Gai-2
localized to this particular domain of the plasma membrane are
not known. However, because this Gai.2 is believed to be
involved in regulation of adenylyl cylcase (Ercolani et d.,
1990; Skorecki et a., 1987), it suggests that the adenylyl
cyclase and associated receptor(s) may also be localized in this
domain. It is not currently known how Gai.2, or other G
proteins, are retained within a restricted domain of a
membrane. The interactions of Gai.2 with its By subunits and
with other membrane proteins may well be important for
initially capturing and then maintaining Gaj-2 at its membrane
attachment site.

Having established that the endogenous and overexpressed
Gai-2 and Gai-3 proteinsin LLC-PK 1 cells are targeted to such
well-defined and distinct membrane domains, this then
provided a system in which to study the targeting of chimeric
proteins. Other functional domains of Ga; subunits have been
studied using chimeric proteins. Chimeras made between Gas
and Gai-2> were found to be functional and able to activate
adenylyl cyclase (Osawaet al., 1990; Woon et al., 1989). Some
studies have aso investigated the intracellular distribution of
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Fig. 9. Pseudocoloured images of staining in LLC-PK1 (/3) cells. Untreated cells, expressing only native Gai-3 (A), or cells induced with

CdCly, to express both Gai-3 and Gaij./3 proteins (B) were stained with the EC antibody and confocal images were collected. Images were
pseudocol oured to show areas of specific immunofluorescence staining at two intensity ranges with yellow (representing pixel intensities 85-
120) and red (representing pixel intensities 120-255). Most of the perinuclear Golgi staining (arrow) of Gai-3 shows as yellow with only small
patches of the most intense staining (red) (A). Co-expression of Gaij-/3 resultsin only staining over the Golgi areaagain (B). These images
clearly show that the chimeric protein is superimposed over the staining of native Gai-3 around the scattered, perinuclear Golgi complexes. Asa
result the pixel intensity of this staining is increased and now shows in the red range.

mutant or chimeric Ga proteins with respect to their distribu-
tion in total membranes or cytosol fractions (Juhnn et al., 1992;
Mumby et al., 1990). To date however, these studies have not
provided any information about the specificity of membrane-
domain targeting of chimeric Ga proteins.

High levels of overexpression of Gaj subunitsin LLC-PK1
cells can result in mis-targeting of the Gai subunits, but at the
low levels of expression achieved with the MT-1 promoter, the
chimeric proteins were found to be consistently targeted to the
same membranes and were all appropriately membrane-asso-
ciated, since no chimeric proteins were recovered in cytosol
fractions from transfected cells. The results of immunofluo-
rescence staining experiments show that the chimeric proteins
bearing the carboxy terminus of Gaij, are targeted to the
plasma membrane, conversely chimeric proteins bearing the
carboxy terminus of Gaij-3 are targeted to the Golgi membrane.
In both cases targeting of the chimeric proteins was faithful to
the sites of the endogenous Gai proteins, since staining of the
chimeric proteins was superimposed over the staining of

endogenous Ga; proteins on these membranes and there was
no staining of other membranes throughout the cells. Analysis
by confocal microscopy showed that the Gai.z2 chimeric
protein was localized in exactly the same domain of the lateral
plasma membrane as the endogenous Gai-2 protein.

These data now demonstrate that the sequence encoding
40% of the protein, at the carboxy-terminal end of the Gai.2
and Gai-3 subunits, is responsible for targeting to the latera
plasmamembrane and the Golgi membranes, respectively. The
membrane targeting signal encoded by this region appears to
be independent of general membrane attachment signals for
myristolyation, shown previously to be at a glycine residue in
the amino terminus of these Ga; proteins (Jones et al., 1990;
Mumby et a., 1990). The chimeric proteins were fully
competent to attach to membranes. This suggests that the
amino-terminal myristoylation signals are multipotent and are
able to attach equally well to either plasma membranes or
Golgi membranes. From these studies we cannot ascertain
whether the chimeric Ga; proteins retained their ability to

BamH!
*
Gla 213 HCFEGVTAIIFCVALSEYDLVLAEDEEMNRMHESMKLFDSICNNKWFTDT
G2 214 HCFEGVTAI IFCVALSPIYDLVLAEDEEMNRMHESMKLFDSICNNKWETDT
nsert-3 Region

Gla 263 su|LFLNKKDLFEEKlanerlcgpevre NEvEIEAADY 10 FEDL N
G2 26 4 StILFLNKKDLFEEK IfRYsPLTIClEPEY TolInDdvinieaalBy 10iiFEDL N
Gl3 313 RKDTKEVYTHFTCATDTKNVQFVFDAVTDVIlKNNLK@OOLg
Gl2 314 AKDTKEWIYTHFTCATDTKNVQFVFDAVTDV I I KNNLKIDICG LIg

Fig. 10. The amino acid sequences of Gai-2 and Gai-3 from the BamH| site to the carboxy terminus are shown. Differences between the
sequences are highlighted with conservative substitutions shown in grey and non-conservative substitutions shown in black. The region labelled
Insert-3 isaregion that is non-homologous to p21-RAS and is predicted to be on the surface of the protein away from its By association region.
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interact with appropriate By subunits or other proteinsin their
respective membranes. Previous studies in different systems
have concluded that the amino terminus of Ga proteins is
either essential for, or at least involved in, By subunit interac-
tions (Neer et al., 1988; Graf et a., 1992). However, By
complexes have been shown to interact with different Ga
subunits, suggesting that heterotrimer formation may be fairly
promiscuous (Gilman, 1987). Thus, if different By subunits
reside on Golgi and plasma membranes, it is quite likely that
the endogenous and chimeric Ga; protein will form the het-
erotrimeric affy complex equally well. Further studies on the
ability of the chimeric Gai subunits to be ADP-ribosylated by
pertussis toxin, which requires heterotrimer formation, and
functional studies, will be required to relate the membrane
domain specificity of the endogenous Gaj proteins to the
chimeras.

Signals for targeting and membrane attachment of cytoplas-
mic, membrane-associated proteins are only beginning to be
understood. The nature of the targeting signal(s) in Gai
proteinsis not known. In the related, monomeric families of G
proteins, some candidate targeting signals have been identified.
Such signals for targeting and membrane atttachment are also
often found in the carboxy terminus of these proteins. In
mammalian ras proteins, a carboxy-terminal CAAX box in
combination with either a polybasic region or a pamitoylation
site, is required for both attachment and targeting of the
proteins to the plasma membrane (Hancock et ., 1991). Inthe
rab G protein family, a carboxy-terminal cysteine motif is
essential for membrane attachment but an additional hyper-
variable domain, also in the carboxy terminus, was found to be
necessary for targeting different rabs to selective membranes
(Chavrier et ., 1991). Different members of the rho G protein
family aretargetted to the plasma membrane and to membranes
in the endocytic pathway by specific carboxy-terminal
sequences and by interactions with other proteins mediated
through the rho effector domains (Adamson et al., 1992). Thus
severa factors may specify the membrane attachment and
targeting of these monomeric G proteins, which unlike the Gai
proteins, exist in the cytosol aswell as attached to membranes.

Of particular interest in the present study, is the high degree
of homology between the carboxy termini of rat Gaj» and
Gai-3, there being only 14 differences in amino acid identity
and only 7 amino acids reflecting non-conserved substitutions
in this region (Fig. 10). It is therefore reasonable to speculate
that differences in membrane targeting are encoded by these
specific amino acids, between the BamHI site (amino acids 213
and 214 in Gai-3 and Gai.2, respectively) and the carboxy
terminus, which produce differences in the structures of Gai
proteins. Berlot and Bourne (1992) have modeled the structure
of the a subunit of Gs onto the coordinates derived from the
structure of the GTP-bound form of p21's, In this analysis,
severa regions of Gs have no similar regions in the p21'&
structure and were termed insert regions. Insert region 3 is
predicted to be on a solvent-accessible surface of the Ga
subunit. If one applies this modeling to the carboxy-terminal
regions of Gai-2 and Gai-3 shown in Fig. 10, then 5 of the 7
non-conserved amino acid substitutions between these subunits
lie within insert region 3, on an exposed face of the protein.
One can further speculate that either single amino acids in this
region, or unique structures resulting from the density of
sequence differences in this region, might be likely candidates

for targeting signals. The presence of targeting signals in this
region of the Gaj sequence would be consistent with the
membrane targeting phenotypes of the chimeric proteins used
in the present study.

It also remains to be shown whether or not selective
membrane targeting is the result of a direct interaction of Gai
with the respective membranes, additional proteins, or through
interaction with By subunits. However, since Gai proteins are
presumably made on free ribosomes and must move through
the cytoplasm to their respective intracellular and plasma
membrane domains, it seems probable that the specificity of
targeting resides within the Gai subunit itself and involves
interactions with other proteins, in addition to the By complex.
Site-specific mutagenesis will now be required, as well as
knowledge of receptor and effector systems in plasma
membranes and intracellular membranes, to define the
targeting process.
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