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Abstract

This thesis contains two separate bodies of research, both in terms of the period of time in which the

work was done and their content, and as such is presented in two parts each of which are summarised

below.

The first part concerns work on entropy production in stochastic systems and describes the breakage

of time reversal symmetry that arises in irreversible stochastic processes that one can associate with

an entropy production contribution for a single realisation. The paradigm utilised is that of Markovian

dynamics expressed using master equations and stochastic differential equations. By generalising some

previously reported concepts so as to explicitly concern odd variables, some recent advances in non-

equilibrium thermodynamics are refined which are then illustrated with several examples. The place of

such results within the existing literature, particularly the extensive literature on fluctuation theorems,

is emphasised allowing us to simultaneously demonstrate some of the widely celebrated symmetry rela-

tions to emerge from the field in recent years.

The second part concerns the construction and implementation of a new Markov chain sampling

algorithm called spatially local parallel tempering which improves the scaling of computational effort

with system size of the well known thermal equilibrium sampling algorithm, parallel tempering. Parallel

tempering accelerates thermal equilibrium sampling by performing regular sampling techniques on a

composite system of replicas, each possessing a different temperature, and introducing configurational

exchanges between those replicas so as to acquire configurations that would otherwise take a long time

to reach. However, as the system size increases, the number of replicas required, and therefore com-

putational effort, increases faster than linearly. To avoid this we propose local variations where this is

not the case. We demonstrate these claims on several simple one dimensional models and show that the

algorithms can reproduce thermodynamic accuracy in one and two dimensions.
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Foreword regarding the structure of work on entropy production in stochastic systems

The following work describes and illustrates a novel division of the entropy production for stochastic

systems with a particular emphasis on such a formalism’s place within the literature on fluctuation

theorems. After an introduction, the requisite theory on stochastic processes, particularly that which we

find crucial in order to define central quantities in later chapters such as the definition of path probability

functionals and the subtleties surrounding stochastic integration, shall be addressed in chapter 2. In

chapter 3 a literature review is given by means of general derivation of some key identities along with

applications to important results in the literature and leads into a motivation for the main body of the

thesis. In chapters 4 and 5 the main results are presented and specifically concern the novel division

of entropy production; chapter 4 focuses on discrete stochastic processes whilst chapter 5 focuses on

continuous processes. Most properties are shared between such approaches, however some points of

discussion are delayed until chapter 5, where proceeding is slightly more intuitive and allows a closer

alignment with the literature. Several illustrative examples are then presented in chapter 6 including

under-damped Langevin particles under the influence of a non-conservative force, where we consider

various models for the nature of the damping and in the relativistic limit, and in a spatially varying

temperature field along with some discrete state space models. A brief discussion is then given in chapter

7.
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Chapter 1

Introduction

Long after the classical works on equilibrium statistical mechanics, much of the nature of matter out

of equilibrium remains elusive. Whilst classical thermodynamics qualitatively states that an irreversible

process must increase the entropy of the universe, the result of course being the second law of thermody-

namics, surprisingly little else can be said about such a procedure despite non-equilibrium phenomena

being ubiquitous throughout the physical world. Of course the relative difficulty in describing such

processes could quite easily be interpreted as a monument to the success that equilibrium statistical

mechanics has enjoyed in describing systems of such a large magnitude. The classical theory’s predictive

power is made possible by its ability to reduce extraordinary numbers of degrees of freedom into several

simple functions of state; we can describe the behaviour of a gas without concerning ourselves with the

motion of its constituent atoms. When dealing with a system driven out of equilibrium however, no such

simplification exists and so we resign ourselves to a consideration of how the system evolves rendering a

description far more challenging [1].

The gap in our knowledge between our understanding of the underlying microscopic processes that

allow us to describe physical phenomena and the macroscopic concepts of irreversibility and entropy (and

indeed of time) is well known and can be summarised by the reversibility paradox usually attributed to

Loschmidt. In response to Boltzmann’s H-Theorem it was postulated that no measure of irreversibility

can be obtained when the underlying dynamics are reversible since for every entropy producing path

there must be an equally valid entropy destroying path. This is of course at odds not only with classical

theory, but with our experience of the world. For example, one would be equally alarmed to observe

a cloud of smoke spontaneously reform from dispersed particles in the air as if one were to observe a

clock running backwards. Within the last twenty years however, several disarmingly simple relations

have been derived that concern the properties of recognisable thermodynamic quantities which we can

associate with a measure of irreversibility by explicitly exploiting the time reversibility of the underlying

equations of motion [2–12]. The origins of these relations can be traced back to a result due to Evans

et al. who described, originally for sheared two dimensional fluids in the steady state in the long time

limit, a symmetry relation explicitly detailing the probability of an increase in a generalised entropy in

relation to the probability of the same amount of entropy being destroyed [2] of the form

p(−A) = p(A) exp (−A). (1.1)

This description was the first quantitative account of how irreversibility can arise from reversible dynam-

ics and has been claimed to solve Loschmidt’s paradox [13], though perhaps most would still, strictly,
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remain unconvinced. Furthermore it confirmed, in a quantitative sense, that for small enough systems

one should expect to observe an entropy decrease with a non-vanishing probability; for small enough

systems we should expect, occasionally, for them to run in reverse. Of equal note is that, compared to

most results in modern statistical mechanics, no assumption of proximity to equilibrium is required in

its derivation as it relies only on the underlying dynamics. The existence of the fluctuations described

in such a relation, of which the negative ones are sometimes called ‘second law violations’ [14], require

us not to think of thermodynamic quantities such as work, heat and entropy as sharp singular values as

is so familiar in the usual thermodynamics, but rather consider them to be described by distributions

where the exact values they take must depend on how the system has evolved as a result of some non-

equilibrium influence. This notion, whilst conceptually straightforward for mechanical quantities such as

the work done, is less straightforward when considering the usually ensemble quantity of entropy, but has

now become commonplace, encouraging discussion of thermodynamics explicitly in terms of fluctuations.

Such treatments have paved the way for a vast body of work, from which the most notable results are

in the spirit of the symmetry in observed second law violations and include asymptotic and finite time

relations for generalised entropy productions, particle currents and some well known non-equilibrium

work relations [8, 10]. All however, are underpinned by the exploitation of the same property of the

underlying dynamics, namely that of micro-reversibility, which in such a context is interpreted as the

fact that both the underlying dynamics and their time reversed counterpart permit the same solutions.

The similarity that exists between the members of this family of relations has led to some broad gener-

alisations and unifying descriptions which has allowed, as something of an umbrella term, such results

to be collectively known as fluctuation theorems or fluctuation relations.

As arguably one of the only real developments in thermodynamics for some 50 years it would be fair

to say there has been something of an explosion of interest in such descriptions. Indeed, a quick online

search of the phrase ‘fluctuation theorem’ will return a number of articles running into the thousands

and certainly one could not reasonably hope to account for every development. However, we make

note of many excellent review articles which give well rounded accounts from particular perspectives, be

that theoretical, with a view towards stochastic or deterministic behaviour, or experimental [6, 13, 15–

25]. Broadly speaking however, the progress in the field has branched into several illuminating parallel

descriptions dependent on the particular model utilised to describe the underlying dynamics with fluctu-

ation theorems having been developed for Hamiltonian dynamics [3, 4, 26], several classes of stochastic

dynamics [25, 27, 28] and some excursions into quantum descriptions as well [29, 30] along with relevant

examples and applications. Perhaps an avenue of enquiry which has been most productive in terms of

novel results is the application to stochastic systems where theoretical treatment is more tractable and

where such a description is most readily applicable to the length and timescales typically available in

experiment. As alluded to, treatment in such models can be discussed because the property that led

to the original fluctuation theorems, that of micro-reversibility, can be defined in a quite general sense

and so allows progress in the context of models without explicitly time reversible equations of motion.

As such the goals of such stochastic approaches are not to identify irreversibility per se, but rather to

describe its properties in, potentially experimental, systems where practically one is forced to view the

dynamics as uncertain and dissipative. Historically, the path taken to arrive at the descriptions we shall

utilise is somewhat complicated. Following the original results of Evans et al., an asymptotic relation

concerning the phase space contraction, identifiable as a dynamical entropy production, but differing

from the argument of the original fluctuation theorem by boundary terms for chaotic, deterministically

thermostatted systems was derived by Gallavotti and Cohen [31, 32]. This asymptotic description was

then applied to commonly used Markovian models by Kurchan [27] and then for a more general glass of
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Markovian systems by Lebowitz and Spohn [28]. More recently, an argument for the inclusion of such

boundary terms, whose absence resulted in the asymptotic results, was offered [12]. Such an approach

has then allowed a general thermodynamic description of such stochastic systems which has come to be

known as stochastic thermodynamics [12, 33]. Drawing strongly on the concepts used in defining fluc-

tuation theorems for stochastic dynamics, and by utilising ideas from a body of work first performed by

Sekimoto [34] which assigned dissipative and work quantities to terms in a Langevin equation, a central

concept in such a unifying relationship is that of an individual, path dependent, fluctuating value of

entropy production. More recently still, by making connections with an axiomatically proposed division

of heat dissipation [35], such that one can meaningfully discuss the thermodynamics of non-equilibrium

steady states and the transitions between them, several distinct results have been brought together into a

further unifying thermodynamics, investigating the precise origins of entropy production, couched firmly

in the language of fluctuation theorems [36].

The following work amounts to a continuation of these ideas for stochastic systems by examining

the stochastic entropy production a little more closely and exploring some of its consequences. After a

brief review of the stochastic processes we shall utilise, we present an overview of some of the key results

that emerge from stochastic thermodynamics along with relevant developments in the literature. Such

an overview is, as much as is possible, designed to make the work self contained rather than to be an

exhaustive review, with the latter goal simply being impractical given the volume of inter-related work.

Reflecting upon some of the recent developments we revisit the connection between entropy and time

reversal and then seek to generalise the quantities and results which have used a more narrow definition

and so introduce a new formalism for the division of entropy production in stochastic systems. We then

consider some example systems in our proposed operational thermodynamics which we find necessary to

fully describe certain models of heat conduction and distinguish between variants of Brownian motion,

such as dynamics that include dry friction.
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Chapter 2

Theory on Stochastic Processes

2.1 Stochastic Processes and Brownian Dynamics

2.1.1 From Determinism to Chaos & Stochasticity

In dealing with non-equilibrium phenomena no longer can we consider a system in terms of its functions

of state. Instead we are obliged to consider the microscopic dynamics of our system. At or near room

temperature (which includes the circumstances of a vast array of processes one may wish to consider)

these dynamics can quite readily be supposed to be classical such that we consider them to be governed

by Newton’s equations. Such a system, for example, could be the archetypal Brownian motion of a single

pollen grain suspended on the surface of water. The behaviour of the pollen grain is theoretically uniquely

determined by constructing Hamilton’s equations for the water molecules and of the grain. In reality

however, understanding the dynamics in this way would be hopeless. Not only are the mathematics

intractable, but also non-linear and thus chaotic and as such incredibly sensitive to the complete initial

conditions of the pollen grain and the water molecules. In practice the construction or even specification

of these initial conditions would be impossible to achieve. In order, then, to make any progress at all,

we cease to think of the system as a set of equations between all the water molecules and the pollen

grain, but as the pollen grain under the influence of an environment of which we are uncertain such

that we do not concern ourselves with its precise dynamics. Couched in this way, if we measured the

trajectory of the pollen grain at a specified time after releasing it from a known initial position we would

record a different path with each repeated measurement. We would observe an apparent randomness in

its behaviour. Accordingly we abandon any sense of a deterministic solution, but instead consider the

evolution in terms of probabilities and expected values.

2.1.2 The Chapman-Kolmogorov Equation

Specifically we now consider properties of any such particle (for example position and/or velocity) to be

stochastic variables. The evolution of these variables is now considered to be a stochastic process. Such

a process can be very generally defined (for any t2 > t1 > t0) by the use of joint probabilities of any path

(x0 → x1 → x2) as the product of conditional probabilities used as transition probabilities and simple

probability distributions as initial conditions, where we note that in the approach used here strictly all

are probability densities, such that

p(x2, t2;x1, t1;x0, t0) = p(x2, t2|x1, t1;x0, t0)p(x1, t1|x0, t0)p(x0, t0) (2.1)
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which describes the joint probability density of observing a state x0 at time t0, x1 at t1 and x2 at t2.

One can then find the marginal probability distribution by integrating the left hand side with respect

to x1 giving ∫

dx1 p(x2, t2;x1, t1;x0, t0) = p(x2, t2;x0, t0). (2.2)

Similarly this marginal distribution can then be expressed as a joint distribution using a conditional

probability and a one time distribution such that

p(x2, t2;x0, t0) = p(x2, t2|x0, t0)p(x0, t0). (2.3)

Considering now the right hand side we integrate to find

∫

dx1 p(x2, t2|x1, t1;x0, t0)p(x1, t1|x0, t0)p(x0, t0) =

p(x0, t0)

∫

dx1 p(x2, t2|x1, t1;x0, t0)p(x1, t1|x0, t0). (2.4)

Comparing the integral of both the left and right hand sides leads to the Chapman-Kolmogorov equation

which is generally given by

p(x2, t2|x0, t0) =

∫

dx1 p(x2, t2|x1, t1;x0, t0)p(x1, t1|x0, t0). (2.5)

If we now allow ourselves to consider the stochastic process as independent of the stochastic variable’s

history we can consider the process to be Markov. For a Brownian particle this would be equivalent

to considering the medium so complex that the force incident on the particle is not correlated on any

time scale allowing us to think of the stochastic process as memory-less. To describe a general Markov

process we start with the Markov property

p(xn, tn|xn−1, tn−1; . . . x1, t1;x0, t0) = p(xn, tn|xn−1, tn−1). (2.6)

Noting its importance in relation to the Chapman-Kolmogorov equation we identify

p(x2, t2|x1, t1;x0, t0) = p(x2, t2|x1, t1). (2.7)

Accordingly the Chapman-Kolmogorov equation for a Markov process reduces to

p(x2, t2|x0, t0) =

∫

dx1 p(x2, t2|x1, t1)p(x1, t1|x0, t0) (2.8)

which is a fundamental identity of a Markov process along with

p(x1, t1) =

∫

dx0 p(x1, t1|x0, t0)p(x0, t0) (2.9)

which is found by integrating Eq. (2.3) again to find the marginal probability and relabelling.
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2.1.3 The Master Equation

Taking the Chapman-Kolmogorov equation (Eq. (2.8)) we Taylor expand p(x2, t2|x1, t1) for small dt =

t2 − t1 and so approximate

p(x2, t1 + dt|x1, t1) = δ(x1 − x2)(1− a(x1)dt) + T (x2|x1, t1)dt+O(dt2) (2.10)

where we define T (x2|x1, t1) to be the transition probability density per unit time, or simply the tran-

sition rate density, at time t1 and

a(x1) =

∫

dx2T (x2|x1, t1) (2.11)

ensuring normalisation and which corresponds to total mean escape rate from state x1. Inserting this

into Eq. (2.8) yields

p(x2, t1+dt|x0, t0) = p(x2, t1|x0, t0)+dt

∫

dx1T (x2|x1, t1)p(x1, t1|x0, t0)−dta(x2)p(x2, t1|x0, t0). (2.12)

Since we may write

a(x2) =

∫

dx1T (x1|x2, t1) (2.13)

we have, in the limit dt → 0,

∂p(x2, t1|x0, t0)

∂t
=

∫

dx1 [T (x2|x1, t1)p(x1, t1|x0, t0)− T (x1|x2, t1)p(x2, t1|x0, t0)] . (2.14)

Given an initial distribution we may employ Eq. (2.9), relabel t1 → t, x2 → x and x1 → x′ and write

the master equation
∂p(x, t)

∂t
=

∫

dx′ [T (x|x′, t)p(x′, t)− T (x′|x, t)p(x, t)] (2.15)

with the two terms corresponding to transitions into and out of x respectively. Such a description allows

a very general account of stochastic phenomena and allows, in principle, discussion of any Markovian

process given that one can identify the transition rate densities T (x|x′, t). More often, a master equation

is used to model a system of discrete states, for which there is an equivalent form, simply rewritten using

transition rates, T , as

dP (x, t)

dt
=
∑

x′ 6=x

[T (x|x′, t)P (x′, t)− T (x′|x, t)P (x, t)] . (2.16)

If we then utilise the notation

T (x|x′, t) =

{

T (x|x′, t) x 6= x′

−∑x′′ 6=x T (x
′′|x, t) x = x′,

(2.17)

thus defining a mean escape rate T (x|x, t), we can write it in the equivalent matrix form

dP (x, t)

dt
=
∑

x′

T (x|x′, t)P (x′, t), (2.18)

such that Ṗ (t) = T (t)P (t) where Tx,x′ = T (x|x′, t) which is the form of the master equation we shall

use to model stochastic motion on sets of discrete states throughout.
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2.1.4 Kramers-Moyal Expansion of the Chapman-Kolmogorov Equation

As an alternative treatment to the master equation which, in principle, describes the entire probabilistic

behaviour, we may seek a differential form based on not only a small increment in time, but also in the

stochastic variables. Taking the Chapman-Kolmogorov identity (Eq. (2.8)) we do so by taking the time

interval t2 − t1 = dt → 0 as before and proceed by taking this limit and integrating over an arbitrary

function f(x2) which vanishes at ±∞ so that

∫

dx2 f(x2)p(x2, t1 + dt|x0, t0) =

∫

dx2

∫

dx1 f(x2)p(x2, t1 + dt|x1, t1)p(x1, t1|x0, t0). (2.19)

Since we are taking the limit dt → 0 we can expand the left hand side up to first order in dt such that

we have

∫

dx2 f(x2)p(x2, t1 + dt|x0, t0) ≃
∫

dx2 f(x2)

[

p(x2, t1|x0, t0) +
∂

∂t1
p(x2, t1|x0, t0)dt

]

. (2.20)

Now crucially, we demand that x is a suitably chosen stochastic variable such that when dt is small

we can expect dx also to be small so that we can simultaneously expand the arbitrary function f(x2)

around a nearby point x1 so that

f(x2) ≃
∞∑

n=0

1

n!

dnf(x1)

dxn
1

(x2 − x1)
n. (2.21)

At this point we define a set of coefficients Mn(x, t) known as the Kramers-Moyal coefficients or jump

moments as

Mn(x1, t1) = lim
dt→0

1

dt

∫

dx2 (x2 − x1)
np(x2, t1 + dt|x1, t1) (2.22)

with their physical meaning becoming more transparent when written as

Mn(x, t) = lim
dt→0

〈[x(t+ dt)− x(t)]n〉
dt

. (2.23)

Using this definition we now express the right hand side as

∫

dx2

∫

f(x2)dx1 p(x2, t1 + dt|x1, t1)p(x1, t1|x0, t0)

≃
∫

dx1

[
∞∑

n=0

Mn(x1, t1)

n!

dnf(x1)

dxn
1

p(x1, t1|x0, t0)dt

]

≃
∫

dx1

[

f(x1)p(x1, t1|x0, t0) +

∞∑

n=1

Mn(x, t)

n!

dnf(x1)

dxn
1

p(x1, t1|x0, t0)dt

]

. (2.24)

We can then equate this to the right hand side from Eq. (2.20) with the label x2 changed for convenience

to x1 so that

∫

dx1f(x1)
∂

∂t1
p(x1, t1|x0, t0)dt =

∫

dx1

∞∑

n=1

Mn(x1, t1)p(x1, t1|x0, t0)

n!

dnf(x1)

dxn
1

dt. (2.25)
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Evaluating the integral on the right hand side using integration by parts n times we obtain

∫

dx1

∞∑

n=1

Mn(x, t)p(x1, t1|x0, t0)

n!

dnf(x1)

dxn
1

dt

=

∞∑

n=1

[
n−1∑

i=0

(−1)i
∂i

∂xi
1

(
Mn(x1, t1)p(x1, t1|x0, t0)

n!

)
dn−1−if(x1)

dxn−1−i
1

]+∞

−∞

+

∞∑

n=1

∫

dx1f(x1)
(−1)n

n!

∂n

∂xn
1

Mn(x1, t1)p(x1, t1|x0, t0)dt. (2.26)

Assuming compact form in both f(x1) and p(x1, t1|x0, t0) such that their values and derivatives vanish

at infinity we find

0 =

∫

dx1f(x1)

[

∂

∂t1
−

∞∑

n=1

(−1)n

n!

∂n

∂xn
1

Mn(x1, t1)

]

p(x1, t1|x0, t0). (2.27)

Since f(x1) is arbitrary we can then identify

∂

∂t1
p(x1, t1|x0, t0) =

∞∑

n=1

(−1)n

n!

∂n

∂xn
1

Mn(x1, t1)p(x1, t1|x0, t0) (2.28)

which is an infinite order partial differential equation which describes the evolution of the conditional

probability called the Kramers-Moyal expansion.

2.1.5 A Fokker-Planck Equation

Eq. (2.28) exactly models the stochastic process laid out above although, however it is an infinite order

partial differential equation and so a question arises as to how many terms one should utilise in practice.

A theorem by Pawula [37] showed that either the sequence terminates after the first or second term

or not at all and that if any even terms vanish all n > 2 terms vanish. Consequently the first two

terms are usually retained as either an exact representation of the process or as an approximation to

a process whose Kramers-Moyal expansion does not terminate and is usually referred to as a Fokker-

Planck equation or more generally a forward Kolmogorov equation. Additionally it can be shown that

the Kramers-Moyal equation reduces to a Fokker-Planck equation when the random variable on which

the process is based has a continuous sampling path [38]. Consequently the Fokker-Planck equation is

written as

∂p(x1, t1|x0, t0)

∂t1
= − ∂

∂x1
[A(x1, t1)p(x1, t1|x0, t0)] +

∂2

∂x2
1

[D(x1, t1)p(x1, t1|x0, t0)] (2.29)

where A(x, t) and D(x, t) are the first and second Kramers-Moyal coefficients respectively. Although

Eq. (2.29) describes conditional probabilities, the Fokker-Planck equation can equally describe one time

probabilities p(x, t) using the relation

p(x1, t1) =

∫

dx0p(x1, t1|x0, t0)p(x0, t0) (2.30)

as long as an initial condition is satisfied

p(x, t)
∣
∣
t=t0

= p(x, t0). (2.31)
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Consequently we can write down the Fokker-Planck equation in a more usual form

∂p(x, t)

∂t
= − ∂

∂x
[A(x, t)p(x, t)] +

∂2

∂x2
[D(x, t)p(x, t)] . (2.32)

In this form, we see that the equation describes the time evolution of a probability density function

as the sum of two contributions: a drift term dependent on A(x, t) and a diffusive term dependent on

D(x, t). We can loosely consider the two terms as contributions from the deterministic and diffusive

elements of the dynamics respectively since D(x, t) controls a parabolic term which regularly arises in

diffusive behaviour such as the heat equation and by recognising that in the case of D(x, t) = 0 the

equation resembles the Liouville equation of Hamiltonian mechanics.

2.1.6 A Theory of Brownian Motion

It is observed that the motion of a Brownian particle whilst stochastic is continuous and, as a reasonable

approximation, can readily be assumed to be Markovian. As such one should expect to be able to

describe it with a Fokker-Planck equation. We simply need to determine the relevant coefficients

A(x, t) = lim
dt→0

〈x(t+ dt)− x(t)〉
dt

(2.33)

and

2D(x, t) = lim
dt→0

〈
[x(t+ dt)− x(t)]2

〉

dt
. (2.34)

We understand that the first coefficient corresponds to the particle’s deterministic behaviour for which

we turn to the particle’s equation of motion. This is the motion we should observe when fluctuations

are unimportant such as relatively massive particles and is given by

mẍ+mγẋ = F(x), (2.35)

where m is the mass of the particle, γ is the damping or friction coefficient due to the medium and F
is the macroscopic force experienced by the particle. The Fokker-Planck equation however is a function

of only one stochastic variable x, but not v and as such we take a limit in which we can ignore the

velocity. This is the over-damped limit and corresponds to γ → ∞ and allows us to consider that there

is instantaneous acceleration acting upon the particle leaving us with

ẋ =
F(x)

mγ
. (2.36)

Considering the deterministic contribution or equivalently the motion of a large particle we can now

associate the evolution of x with the mean of the distribution in Eq. (2.32). To obtain this we multiply

by x and integrate over all space and assume a well behaved density function such that p(x, t) and its

gradient vanish at ±∞. Additionally, for simplicity, we consider a spatially uniform coefficient for B(t)

corresponding to a homogeneous medium giving

∫ +∞

−∞

dx
∂

∂t
xp(x, t) = −

∫ +∞

−∞

dx x
∂

∂x
[A(x, t)p(x, t)] +

∫ +∞

−∞

dx xD(t)
∂2

∂x2
p(x, t). (2.37)
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Evaluating all integrals whilst taking the time derivative outside of the first then gives

d

dt
〈x〉 = − [xA(x, t)p(x, t)]

+∞
−∞ +

∫ +∞

−∞

dxA(x, t)p(x, t)

+

[

xD(t)
∂

∂x
p(x, t)

]+∞

−∞

−
∫ +∞

−∞

dxD(t)
∂

∂x
p(x, t). (2.38)

Finally, by discarding surface terms we can write

d

dt
〈x〉 = 〈A(x, t)〉 (2.39)

which allows us to identify A(x, t) by comparison with Eq. (2.36) giving us

∂p(x, t)

∂t
= − ∂

∂x

[F(x)

mγ
p(x, t)

]

+D(t)
∂2

∂x2
p(x, t). (2.40)

Now imagining such a system confined within a potential which is not pathological, in as much as a

stationary solution exists, we should expect the Fokker-Planck equation to be consistent with the usual

Boltzmann formula from statistical mechanics. We would generally require that when stationary we

have

0 = −F(x)

mγ
p(x, t) +D(t)

∂

∂x
p(x, t) (2.41)

and therefore that

p(x, t) ∝ exp

[∫ x
dx′F(x′)

kBT

]

. (2.42)

If we substitute this expression for the density function into the result for the stationary state we obtain

D(t) =
kBT

mγ
(2.43)

allowing us to determine the expected diffusivity. The expression is often further prescribed by the use

of Stokes’ Law such that if the particle is spherical with radius r and the fluid has viscosity η we can

describe the friction coefficient as mγ = 6πrη. This relation is often referred to as the Einstein relation

or Stokes-Einstein relation when used in conjunction with Stokes’ Law. Its application now allows us to

write down the Fokker-Planck equation and thus describe the Brownian motion

∂p(x, t)

∂t
= − ∂

∂x

[F(x)

mγ
p(x, t)

]

+
kBT

mγ

∂2

∂x2
p(x, t). (2.44)

An important interpretation of the result in Eq. (2.43) is that it provides a connection between the size

of the fluctuations at equilibrium due to the medium and the particles deterministic behaviour, namely

the ‘dissipative’ damping that particles experience within it. As such this relation is an example of

a so called fluctuation-dissipation relation and is a powerful tool allowing us to describe certain non-

equilibrium behaviour with a simple equilibrium result. We are able to make this extension because the

system cannot distinguish between perturbations away from equilibrium due to fluctuations that arise

whilst in thermal equilibrium and perturbations arising externally meaning the system will relax back

to equilibrium in the same way. Such results strictly only hold in the linear regime, but provide a good

starting point for model behaviour.
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2.1.7 The Langevin Equation

Whilst Eq. (2.44) gives a full description of the Brownian motion outlined so far it itself is a deter-

ministic equation which describes the probability distribution of the particle’s position. An alternative

description first used by Langevin [39] considered a microscopic description of the particle’s motion. The

construction is phenomenological in nature and starts with the deterministic behaviour of the particle

seen in Eq. (2.35), but then includes a force term (Γ(t)), controlled by a constant parameter b′, which

describes the effect of the medium upon the particle such that

mẍ+mγẋ = F(x) + b′Γ(t). (2.45)

The force Γ(t) that would accurately describe the medium ultimately is unknown and so we must proceed

largely with intuition. As the force term (usually called noise) is modelling the environment, which we

do not intend to consider deterministically, it inherits a stochastic treatment and as such we describe it

by specifying its statistical properties. The Fokker-Planck treatment revealed that for an homogeneous

medium the mean of the distribution is governed by the particle’s deterministic behaviour so we should

expect no further contribution on average due to the fluctuations. Consequently we can say that the

mean of the noise must be zero

〈Γ(t)〉 = 0. (2.46)

We next further describe the noise term using its auto-correlation function which in turn gives a measure

of its variance. At this point we make an approximation analogous to that of the Markov property used

in Eq. (2.6). We consider the collisions from the surrounding molecules to be occurring so rapidly that

the force is entirely uncorrelated with itself on any non-zero macroscopic timescale. This can be specified

by allowing the auto-correlation to be a delta function

〈Γ(t)Γ(t′)〉 = δ(t− t′). (2.47)

This specification is called white noise and is the idealisation of a fluctuating force that varies on an

infinitely small timescale. The white noise property is of course impossible to realise in any real system

and indeed the real dynamics of the environment must have some finite correlation, however the ideali-

sation is in line with viewing the process as Markov and allows us to make contact with an equivalent

Fokker-Planck equation (Eq. (2.44)) by suitably choosing the parameter b′ and calculating the Kramers-

Moyal coefficients of the resulting process [40].

These two statistical constraints despite being the most cited properties of the stochastic term are

not enough to fully determine Γ(t) and therefore x(t) as there is no mention of higher moments. Conse-

quently the form of the distribution of Γ(t) is usually taken to be Gaussian. This has the advantage that

the distribution is uniquely described by only the mean and variance allowing all the statistical proper-

ties of the noise to be determined by b′. Further justification is based on the postulation that the result

of a very large number of independent collisions (or more generally interactions with the environment)

will produce a normal distribution because of the central limit theorem.

To establish the so far unfixed parameter b′ we once again take the over-damped limit meaning our

Langevin equation is given by

ẋ =
F(x)

mγ
+ bΓ(t), (2.48)

where b = b′/mγ. We see that to calculate the Kramers-Moyal coefficients given by Eq. (2.23) we require

25



an integration of Eq. (2.48) of the form

x(t+ dt)− x(t) =

∫ t+dt

t

dt′
1

mγ
F(x(t′)) +

∫ t+dt

t

dt′ bΓ(t′) (2.49)

where F(x) is the force due to the potential. Expanding about F(x(t)) and averaging gives

〈x(t+ dt)− x(t)〉 = 1

mγ
F(x(t))dt+O(dt)2 (2.50)

in agreement with A(x, t) from Eq. (2.44). The second coefficient in the expansion is given by

(x(t+ dt)− x(t))2 =

[
∫ t+dt

t

dt′
1

mγ
F(x(t′)) +

∫ t+dt

t

dt′ bΓ(t′)

]2

. (2.51)

Upon averaging this yields

〈(x(t+ dt)− x(t))2〉 =
[

1

mγ
F(x(t))dt+O(dt)2

]2

+ 2b

∫ t+dt

t

dt′
∫ t+dt

t

dt′′
〈

1

mγ
F(x(t′))Γ(t′′)

〉

+ b2
∫ t+dt

t

dt′
∫ t+dt

t

dt′′ 〈Γ(t′)Γ(t′′)〉. (2.52)

The first term is immediately identifiable as O(dt)2 and the second term can be expanded such that

2b

∫ t+dt

t

dt′
∫ t+dt

t

dt′′
〈

1

mγ
F(x(t′))Γ(t′′)

〉

=
2b

mγ
F(x(t))dt

∫ t+dt

t

dt′ 〈Γ(t′)〉

+
2b

mγ

dF(x(t))

dx

∫ t+dt

t

dt′
∫ t+dt

t

dt′′ 〈(x(t′)− x(t)) Γ(t′′)〉 (2.53)

of which the terms either vanish or are O(dt)2 leaving

〈(x(t+ dt)− x(t))2〉 = b2
∫ t+dt

t

dt′
∫ t+dt

t

dt′′ 〈Γ(t′)Γ(t′′)〉

= b2
∫ t+dt

t

dt′
∫ t+dt

t

dt′′ δ(t′ − t′′)

= b2dt. (2.54)

A similar approach then shows that all higher moments are at least order (dt)2 and therefore vanish in

the limit dt → 0 meaning the probability distribution for dynamics of the form in Eq. (2.48) corresponds

to the Fokker-Planck description of Eq. (2.44) if we choose the parameter b by comparing Eq. (2.54) to

Eq. (2.43) such that

b =

√

2kBT

mγ
. (2.55)

The Langevin equation that is represented by the relevant Fokker-Planck equation is therefore given by

ẋ =
F(x)

mγ
+

√

2kBT

mγ
Γ(t). (2.56)

This equation now allows us to describe single realisations of the dynamics of the Brownian parti-

cle that collectively produce probability distributions described by the Fokker-Planck representation of
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Eq. (2.44). In this sense, despite the differing nature of the approaches, the two descriptions are con-

sidered equivalent. The key difference between them is that the Langevin formulation considers the

stochastic behaviour as being completely wrapped up into a new idealised noise term which effects a

normal deterministic equation of motion. As such this noise term must then have some rather un-

comfortable properties owing to the white noise approximation in order to ensure the process is both

Markov and continuous. Using this approach however, allows us to produce single trajectories by using

a single realisation of the noise term which allows a further understanding and a direct consideration

of distributions. One should exercise caution however because the Langevin equation or rather a gener-

alised Langevin equation in which an arbitrary deterministic equation is altered by noise controlled by

some other general function b is not guaranteed to relate to the observed stochastic behaviour x as it is

not derived from a master equation such as Eq. (2.15). Instead care must be taken to ensure that the

Kramers-Moyal coefficients given by the Langevin description faithfully represent the expected values

from the macroscopic stochastic process. Specifically this can cause ambiguity when dealing with a noise

strength dependent on the stochastic variable. This issue is further explored in Sect. 2.2.1.

2.2 Basic Properties of Stochastic Differential Equations

2.2.1 The Wiener Process and Stochastic Differential Equations

One of the most important processes in the study of stochastic systems allowing us to mathematically

formalise equations such as Eq. (2.56) is also one of the most simple. Known as the Wiener process, it

is described as a continuous random process with no drift such that all Kramers-Moyal coefficients are

equal to zero except the second being equal to one. Consequently it obeys the forward equation

∂p(x1, t1|x0, t0)

∂t1
=

1

2

∂2p(x1, t1, x0, t0)

∂x2
1

. (2.57)

We can solve this equation by defining the Fourier transform of p(x1, t1|x0, t0) as

p̃(k, t1) =

∫ +∞

−∞

dx1 p(x1, t1|x0, t0)e
ikx1 (2.58)

allowing us to transform Eq. (2.57) to find

∂p̃(k, t1)

∂t1
= −k2

2
p̃(k, t1). (2.59)

This then gives the solution in reciprocal space

p̃(k, t1) = p̃(k, t0)e
− k2

2 (t1−t0). (2.60)

Applying the appropriate initial condition, p(x1, t0|x0, t0) = δ(x1 − x0) we have

p̃(k, t0) = eikx0 . (2.61)
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The solution is then given as an inverse Fourier transform

p(x1, t1|x0, t0) =
1

2π

∫ +∞

−∞

e−ik(x1−x0)−
k2

2 (t1−t0)dk

=
1

√

2π(t1 − t0)
exp

[

− (x1 − x0)
2

2(t1 − t0)

]

. (2.62)

This then demonstrates the fundamental properties of the Wiener process. The probability density

function is Gaussian with zero mean and variance proportional to the elapsed time. Relabelled such

that for the Wiener process x(t) = W (t) from an initial condition W (t0) = W0 this means we have

〈W (t)〉 = W0 (2.63)

and

〈(W (t)−W0)
2〉 = t− t0. (2.64)

Further we shall find use for the variance of (W (t)−W0)
2 which is straightforwardly

〈((W (t)−W0)
2)2 − (t− t0)

2〉 = 〈((W (t)−W0)
2)2〉 − (t− t0)

2

= 〈(W (t)−W0)
4〉 − (t− t0)

2

=

∫ +∞

−∞

d(W (t)−W0) (W (t)−W0)
4

×
√

1

2π(t− t0)
exp

[

− (W (t)−W0)
2

2(t− t0)

]

− (t− t0)
2

= 3(t− t0)
2 − (t− t0)

2

= 2(t− t0)
2. (2.65)

Another, somewhat uncomfortable, property of the Wiener process is that it is non-differentiable. This

property is the result of an unbounded variation in the sampling path of W (t) (that is to say total

accumulated motion of its projection on the W (t) axis with time) arising from a self similar, almost

fractal, behaviour consistent with it being both continuous and Markovian whilst having the same mean

and variance characteristics on any timescale. As a result, various limits, when taken in the form of

a gradient, diverge and do so depending on precisely how that limit is taken [41]. If we were now to

consider the Wiener process in terms of its corresponding Langevin equation we would have

Ẇ = Γ(t). (2.66)

This now contains Γ(t) as the derivative of the supposedly non-differentiable function with such a contra-

diction reflected in the white noise idealisation and corresponding infinite variance. To proceed without

this explicit contradiction we must form integral equations from the corresponding Langevin equation

such that Eq. (2.66) is interpreted as

W (t) =

∫ t

0

Γ(t′)dt′. (2.67)

This avoids the derivative of the Wiener process by using an integral which is, in principle, well defined.

Similarly the Langevin equation

ẋ = a(x, t) + b(x, t)Γ(t) (2.68)
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should also be interpreted as an integral equation, a fact first pointed out by Doob [42],

x(t)− x(0) =

∫ t

0

a(x, t′)dt′ +

∫ t

0

b(x, t′)Γ(t′)dt′. (2.69)

Following from the interpretation of Eq. (2.67) we identify a small change in the Wiener process as

dW = W (t+ dt)−W (t) = Γ(t)dt. (2.70)

Doing so then allows us to consider the evolution of Eq. (2.69) in terms of the Wiener process such that

x(t)− x(0) =

∫ t

0

a(x, t′)dt′ +

∫ t

0

b(x, t′)dW (t′). (2.71)

This is now known as a stochastic integral equation. Whilst Eq. (2.67) avoided the use of the differential

of the Wiener process this ambiguity is still manifest in the second integral of Eq. (2.71). In the above

form the interpretation of the first integral is unambiguous and independent of any limiting summation

procedure since dt behaves smoothly and with bounded variation, reflecting the usual deterministic

behaviour. The second integral, however, requires extra care. Since dW is non-differentiable it has

unbounded variation and so is not a smooth function on any timescale. As such there is an inherited

ambiguity as to where to evaluate the function b(x, t) when it too depends on the non-differentiable

Wiener process through x. Considering a Riemann-Stieltjes integral representation of the second term

in Eq. (2.69), by writing it as the limit of a discrete sum of the partition t = t0, t1, t2 . . . tn = t+ dt, we

can write

∫ t+dt

t

b(x, t′)dW (t′) = lim
n→∞

n−1∑

i=0

[(1− α)b(x(ti), ti) + αb(x(ti+1), ti+1)] (W (ti+1)−W (ti)). (2.72)

Crucially, the result is not independent of the choice of α. This is because neither b(x) nor dW behaves

smoothly as dt → 0 and b(x(ti+1), ti+1) is correlated with the corresponding increment of the Wiener

process whilst b(x(ti), ti) is not. Consequently to make Eq. (2.71) well defined we much choose a set

of integration rules with the most common being that of Itō and that of Stratonovich corresponding to

α = 0 and α = 0.5 respectively, but also more recently that of Hänggi and Klimontovich corresponding

to α = 1.0. We now understand that to properly specify processes described by Langevin equations such

as Eq. (2.56) we must consider their integrated form for which we then choose an integration scheme.

Eq. (2.68) is therefore described properly by Eq. (2.71) supplemented by a choice usually between Itō,

Stratonovich and Hänggi-Klimontovich. We write this choice in short hand as

dx = a(x, t)dt+ b(x, t)dW (2.73)

for the Itō interpretation,

dx = a(x, t)dt+ b(x, t) ◦ dW (2.74)

for the Stratonovich interpretation and

dx = a(x, t)dt+ b(x, t) • dW (2.75)

for the Hänggi-Klimontovich interpretation with each producing a different path for x owing to the degree

of correlation of the integrand with the integrator under the chosen scheme. Considering a small time

step dt we now consider them as stochastic differential equations (SDEs) and allows us to unambiguously
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define continuous stochastic processes mathematically. Interpreting a Langevin equation in this sense

allows us to consider the microscopic behaviour of the Brownian particle much more robustly. We now

consider individual trajectories as solutions to a stochastic differential equation which are dependent

upon the increment of a well understood process, namely the Wiener process. Interpreting Eq. (2.56) as

an Itō stochastic differential equation we would formally have

dx =
F(x)

mγ
dt+

√

2kBT

mγ
dW. (2.76)

2.2.2 Properties of Stochastic Differential Equations Under Different Inter-

pretations

The Itō Integral and Itō Calculus

The Itō interpretation of the stochastic integral can be thought of the limit of a sum where the random

force or Wiener increment occurs at the beginning of the time step and can be represented as

∫ t+τ

t

f(x)dW = lim
n→∞

n−1∑

i=0

f(xi)(Wi+1 −Wi) (2.77)

for the partition t = t0, t1, . . . , tn = t+ τ where xi = x(ti) and Wi = W (ti) used throughout. Examining

its form we notice that if the function f(x) is non-anticipating, that is if it does not depend on any

information following time ti, the increment in the Wiener process is uncorrelated with the value of the

function f(x) at each time step. Consequently an advantage often associated with the Itō interpretation

is the intuitive result

〈∫ t+τ

t

f(x)dW

〉

= lim
n→∞

n−1∑

i=0

〈f(xi)(Wi+1 −Wi)〉 = lim
n→∞

n−1∑

i=0

〈f(xi)〉〈(Wi+1 −Wi)〉 = 0 (2.78)

which follows simply from the statistical properties of the Wiener process. This property can be exploited

not only when considering the mean of a stochastic process, but by naturally forming the basis of a simple

numerical integration scheme where the integrals are approximated for a short time dt as

∫ t+dt

t

b(x, t′)dW (t′) ≃ b(x, t)

∫ t+dt

t

dW (t′) ≃ b(x, t)(W (t+ dt)−W (t)) (2.79)

and
∫ t+dt

t

a(x, t′)dt′ ≃ a(x, t)dt. (2.80)

A numerical solution can then be constructed by allowing us to imagine the process as the limit of a

forward Euler integration scheme consisting of both a deterministic and a stochastic component. The

details of such a numerical approach are given in appendix A.

Now considering a physical process f that depends on the stochastic variable dx given by a stochastic

differential equation one would expect that the physical process too is non-deterministic and will obey

its own stochastic dynamics. Ordinarily one could describe the evolution of this resultant process simply

using the chain rule of normal calculus, however the evolution of x over some time dt depends upon

the Wiener process which is the result of an infinite number of fluctuations and as shown above obeys

the scaling shown in Eq. (2.64). In some sense we can therefore expect a small change in the Wiener
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process to be proportional to dt1/2. The specific case of Itō interpretations of the stochastic integral

illustrates how we can treat this dependence upon the Wiener process most clearly since the integrand

is uncorrelated with the update in the Wiener process and as such depends the most trivially upon it.

Using the Itō interpretation yields an important result called the Itō isometry [41] which we shall not

formally derive here, but is stated as

〈(∫

xdW

)2
〉

=

〈∫

x2dt

〉

(2.81)

where we can think of the result arising from Eq. (2.64) or rather restated in the limit dt → 0, 〈(dW )2〉 =
dt. This result can crucially be extended further to the properties of a specific realisation of the Wiener

increment given an infinitesimal time step as opposed to equality just in expectation. We can heuristically

demonstrate this by understanding that any increment in the Wiener process, however small, is still

the result of an arbitrarily large number of independent contributions, and examining the statistical

properties of the square of an increment in the Wiener process of arbitrary size, (∆W )2. Since 〈∆W 〉 = 0,

the mean of (∆W )2 is simply equal to the variance ∆t, whilst the variance of (∆W )2 is given by

Eq. (2.65). Consequently as we reduce the time step ∆t → dt the variance of the corresponding increment

in the Wiener process vanishes faster than the mean such that for an infinitesimal step dt we can consider

the variance to vanish so we have (dW )2 = dt valid for all dW . If we now consider the process f(x) to

be uncorrelated with an increment dx when considering multiplications of the form f(x)dx such that the

Itō interpretation is followed this has the consequence of introducing extra terms into the usual chain

rule producing a result known as Itō’s Lemma. It can be informally derived by Taylor expanding the

function f(x, t) but retaining higher order terms until application of the statistical properties of the

Wiener process. Starting from the Taylor expansion about f(x, t) for small time dt we have

df =
∂f

∂x
dx+

1

2

∂2f

∂x2
(dx)2 +

∂f

∂t
dt+

1

2

∂2f

∂t2
(dt)2 +

∂2f

∂x∂t
dxdt. (2.82)

Now inserting an Itō SDE of form Eq. (2.73) for the small increment (dx)2 and cross term dxdt we have

df =
∂f

∂x
dx+

∂f

∂t
dt+

1

2

∂2f

∂t2
(dt)2 +

1

2

∂2f

∂x2
(a2(dt)2 +2abdtdW + b2(dW )2) +

∂2f

∂x∂t
(adt+ bdW )dt. (2.83)

Only now can we ignore terms higher than order one in dt by heuristically considering (dW )2 = dt

argued above and thus dW ∼ dt1/2 and dtdW ∼ dt3/2. We note more rigorous proofs for these results

exist by explicitly considering summation limits of the integral forms which dx represents [38]. Retaining

terms that are then only first order in dt or lower we find

df =

(
∂f

∂t
+

1

2
b2
∂2f

∂x2

)

dt+
∂f

∂x
dx (2.84)

which acts as a chain rule for Itō SDEs and is known as Itō’s Lemma. The application of the heuristic

rule dW ∼ dt1/2 can be extended to deal with other situations encountered within normal calculus. A

further consequence of keeping higher terms is the retention of a cross term in the Itō product rule. This

states that for two functions X and Y that depend on the same stochastic variable the difference of their

product is given by

d(XY ) = XdY + Y dX + dXdY (2.85)

assuming the stochastic process for both functions follows the same Wiener process.
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Stratonovich Integrals

Application of the above rules is generally referred to as Itō calculus since the results are readily applied

under Itō integration because of the associated lack of correlation in its formulation. Integrals formulated

under Stratonovich do not follow the Itō calculus as they do not possess this property. However, since the

Stratonovich integral is just an altered summation over the same increments in the Wiener process we

can relate the two by constructing the value of the integrand under Stratonovich using Itō calculus rules

[38]. We then use such a procedure as an example for how one can relate an arbitrary stochastic integral,

that is any choice α ∈ [0 : 1], using the same procedure. As a first case we consider the Stratonovich

integral found in an SDE written in the shorthand dx = adt+ b ◦ dW such that we explicitly have

∫ t+τ

t

b(x, t) ◦ dW = lim
n→∞

n−1∑

i=0

[
b(xi) + b(xi+1)

2

]

dWi

= lim
n→∞

n−1∑

i=0

[

b(xi) +
db(xi)

2

]

dWi

= lim
n→∞

n−1∑

i=0

[

b(xi) +
1

2

(
∂b

∂x
dxi +

1

2
b2

∂2b

∂x2
dti +

∂b

∂t
dti

)]

dWi

= lim
n→∞

n−1∑

i=0

[

b(xi) +
1

2

(
∂b

∂x
(adti + bdWi) +

1

2
b2

∂2b

∂x2
dti +

∂b

∂t
dti

)]

dWi (2.86)

where dWi = Wi+1 −Wi, dxi = x(ti+1)− x(ti) and dti = ti+1 − ti. By ignoring all terms higher than dt

by considering dW ∼ dt1/2 we find

∫ t+τ

t

b(x, t) ◦ dW = lim
n→∞

n−1∑

i=0

b(xi)dWi + lim
n→∞

n−1∑

i=0

1

2
b(xi, ti)

∂b(xi, ti)

∂xi
dti

=

∫ t+τ

t

b(x, t)dW +

∫ t+τ

t

1

2
b(x, t)

∂b(x, t)

∂x
dt. (2.87)

Consequently, after returning to the shorthand notation, we can arrive at the important identity

dx = a(x, t)dt+ b(x, t) ◦ dW =

[

a(x, t) +
1

2
b(x, t)

∂b(x, t)

∂x

]

dt+ b(x, t)dW. (2.88)

This means that an Itō and Stratonovich SDE will produce the same solution x(t) from the same Wiener

process dW if related in this way. More importantly it provides a method for us to transform between

the two different interpretations. Generalising by considering the arbitrary stochastic increment dx we

can ask how the integral over an x dependent function g(x, t) is related to the manner in which we choose

to integrate. By introducing the Stratonovich integral

∫

g(x, t) ◦ dx (2.89)

we first note we can construct dx as the increment in an Itō process since we are only relating the

correlation of f(x) and dx which if produced under Stratonovich rules could easily be transformed to an
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Itō form anyway. As such we construct

∫ t+τ

t

g(x, t) ◦ dx =

∫ t+τ

t

g(x) ◦ (adt+ bdW )

= lim
n→∞

n−1∑

i=0

[

g(xi) +
dg(xi)

2

]

(adti + bdWi)

= lim
n→∞

n−1∑

i=0

[

g(xi) +
1

2

(
∂g

∂x
dxi +

1

2
b2

∂2g

∂x2
dti +

∂g

∂t
dti

)]

(adti + bdWi)

= lim
n→∞

n−1∑

i=0

[

g(xi) +
1

2

(
∂g

∂x
(adti + bdWi) +

1

2
b2

∂2g

∂x2
dti +

∂g

∂t
dti

)]

(adti + bdWi).

(2.90)

By dropping all terms higher than dt we then obtain the general relation

∫

g(x, t) ◦ dx =

∫

g(x, t)dx+
1

2

∫
∂g(x, t)

∂x
b2dt. (2.91)

Once again we point out that this result is independent of the nature of the SDE generating the increment

dx a fact clarified by the fact that the correction term doesn’t contain the drift (or modified drift) a.

Returning once again to the shorthand notation this result has a specific consequence if we choose

g(x, t) = ∂f(x, t)/∂x giving
∂f

∂x
◦ dx =

∂f

∂x
dx+

1

2
b2
∂2f

∂x2
dt (2.92)

which when substituted into Itō’s lemma gives

df =
∂f

∂t
dt+

∂f

∂x
◦ dx (2.93)

such that if we follow the Stratonovich summation conventions the normal rules of calculus are obeyed.

Connection with Generalised Fokker-Planck Equations

It was shown before that a simple Langevin equation possesses the same Kramers-Moyal coefficients as

the Fokker-Planck equation for the case of an inhomogeneous medium when the forcing term due to

the environment was considered as white noise. However the connection between continuous Markov

processes and deterministic partial differential equations can be derived much more directly and generally

by formulation as stochastic differential equations which we know how to manipulate much more robustly.

Taking the general form of an Itō SDE

dx = a(x, t)dt+ b(x, t)dW (2.94)

we can use Itō’s lemma to describe the evolution of a arbitrary spatially dependent function f(x)

df =
∂f

∂x
adt+

1

2
b2
∂2f

∂x2
dt+

∂f

∂x
bdW (2.95)

and then use the favourable quality of the Itō integral to trivially calculate the rate of change of the

mean of f(x) such that
d〈f(x)〉

dt
=

〈
∂f

∂x
a

〉

+

〈
b2

2

∂2f

∂x2

〉

. (2.96)
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We can then perform the averaging of the terms on the right hand side by integrating by parts over the

probability distribution function p(x, t). Doing so yields

d〈f(x)〉
dt

=

∫ +∞

−∞

dx p(x, t)a(x, t)
∂f(x)

∂x
+

1

2

∫ +∞

−∞

dx p(x, t)b2(x, t)
∂2f(x)

∂x2

= [p(x, t)a(x, t)f(x)]
+∞
−∞ −

∫ +∞

−∞

dx f(x)
∂

∂x
[a(x, t)p(x, t)]

+
1

2

[

p(x, t)b2(x, t)
∂f(x)

∂x

]+∞

−∞

− 1

2

∫ +∞

−∞

dx
∂f(x)

∂x

∂

∂x

[
b2(x, t)p(x, t)

]

= [p(x, t)a(x, t)f(x)]
+∞
−∞ −

∫ +∞

−∞

dx f(x)
∂

∂x
[a(x, t)p(x, t)]

+
1

2

[

p(x, t)b2(x, t)
∂f(x)

∂x

]+∞

−∞

− 1

2

[
∂

∂x

[
p(x, t)b2(x, t)

]
f(x)

]+∞

−∞

+
1

2

∫ +∞

−∞

dx f(x)
∂2

∂x2

[
b2(x, t)p(x, t)

]
. (2.97)

Discarding surface terms we then equate with the simple form of the mean of f(x) given by

d〈f(x)〉
dt

=
d

dt

∫ +∞

−∞

f(x)p(x, t)dx =

∫ +∞

−∞

f(x)
∂p(x, t)

∂t
dx (2.98)

which gives

0 =

∫ +∞

−∞

dx f(x)

[

−∂p(x, t)

∂t
− ∂

∂x
[a(x, t)p(x, t)] +

1

2

∂2

∂x2

[
b2(x, t)p(x, t)

]
]

. (2.99)

Consequently we can describe the probability distribution of the random variable x given by an Itō SDE

dx = adt+ bdW by the partial differential equation

∂p(x, t)

∂t
= − ∂

∂x
[a(x, t)p(x, t)] +

1

2

∂2

∂x2

[
b2(x, t)p(x, t)

]
. (2.100)

The adaptation to a Stratonovich SDE is simple and is performed using the transformation formula of

Eq. (2.88) and gives

∂p(x, t)

∂t
= − ∂

∂x

[(

a(x, t) +
1

2
b(x, t)

∂b(x, t)

∂x

)

p(x, t)

]

+
1

2

∂2

∂x2

[
b2(x, t)p(x, t)

]

= − ∂

∂x
[a(x, t)p(x, t)] +

1

2

∂

∂x

[

b(x, t)
∂

∂x
[b(x, t)p(x, t)]

]

. (2.101)

Similarly, the equivalent Fokker-Planck equation for a Hänggi-Klimontovich interpretation is given by

∂p(x, t)

∂t
= − ∂

∂x

[(

a(x, t) + b(x, t)
∂b(x, t)

∂x

)

p(x, t)

]

+
1

2

∂2

∂x2

[
b2(x, t)p(x, t)

]

= − ∂

∂x
[a(x, t)p(x, t)] +

1

2

∂

∂x

[

b2(x, t)
∂p(x, t)

∂x

]

. (2.102)

Multidimensional Processes and General Stochastic Integrals

One may generalise the above to multidimensional Itō processes which are generally of the form

dx = A(x)dt+B(x)dW (2.103)
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where all bold quantities are vectors of the form x = (x1, x2 . . . xn) and all Wi are independent uncor-

related Wiener processes, except B(x) which is a matrix so that one can write the evolution for one

variable as

dxi = Ai(x)dt+
∑

j

Bij(x)dWj (2.104)

noting that dWj here is taken to mean an increment in the independent Wiener process labelled j

rather than the increment in the Wiener process corresponding to the jth increment dtj of an ap-

proximated integral as written elsewhere, implicit in the absence of such a summation structure. The

corresponding Fokker-Planck equation then is governed by the diffusion matrix D = (1/2)BB
T so that

Dij = (1/2)
∑

k BikBjk. We may then proceed to find the relevant conversion formulae for an arbitrary

stochastic integral denoted ∗ characterised by evaluation point (1− α)xi + αxi+1 noting that

∫ t+τ

t

g(x) ∗ dW = lim
n→∞

n−1∑

i=0

[g(xi) + αdg(xi)] dWi, (2.105)

dWidWj = δijdt and using the same reasoning to find the analogous conversion formulae

g(x) ∗ dxi = g(x)dxi + α
∑

j

∂g(x)

∂xj

(
∑

m

Bjm(x)dWm

)(
∑

n

Bin(x)dWn

)

= g(x)dxi + α
∑

j

∂g(x)

∂xj

(
∑

k

Bik(x)Bjk(x)

)

dt

= g(x)dxi + 2α
∑

j

∂g(x)

∂xj
Dij(x)dt (2.106)

and

∑

j

Bij(x) ∗ dWj =
∑

j

Bij(x)dWj + α
∑

j

[(
∑

k

∂Bij(x)

∂xk

(

Ak(x)dt+
∑

n

Bkn(x)dWn

))

dWj

]

=
∑

j

Bij(x)dWj + α
∑

j

∑

k

∂Bij(x)

∂xk
Bkj(x)dt (2.107)

leading to a drift term correction

Ai(x) → Ai(x) + α
∑

j

∑

k

∂Bij(x)

∂xk
Bkj(x). (2.108)

The Itō-Stratonovich Dilemma

Examining the form of Eqs. (2.108), (2.100) and (2.101) we observe that each interpretation of the

stochastic integral produces measurably different behaviour in the stochastic variable when there is mul-

tiplicative noise which occurs when b is x dependent even if the form of the SDE is obtained from a

seemingly unambiguous single Langevin equation. This situation can arise in the case of diffusion in an

inhomogeneous medium for example. The question that arises is how should one interpret this Langevin

equation as an SDE? This is the Itō-Stratonovich dilemma and is the decision about which integration

scheme is suitable in which situation because of the idealised white noise approximation. Much work has

been done on which choice is optimal in which situation with arguments suggesting the Stratonovich in-

terpretation is more suitable for systems where the white noise is an approximation of a noise with finite

correlation [43]. This is frequently the case in real physical systems since the Langevin equation is often
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a coarse grained form of a process under the influence of a correlated force. On the other hand when the

SDE is a continuous approximation to a discrete process or when the noise exists as a series of separated

pulses the Itō form may be more appropriate. However there are strong arguments that suggest when

the noise is intrinsic to the model, or rather internal, such that it cannot be trivially switched off (as is

the case for Brownian motion) no choice is correct as a Langevin equation is not sufficient to describe

the behaviour [40]. The argument loosely states that in such a case the Kramers-Moyal coefficients

are unspecifiable when it is impossible to conceive of the system with the noise ‘switched off’ which if

possible would allow one to measure the underlying drift and when there is no physical argument to

justify the somewhat arbitrary additional drift from a non-Itō interpretation. Consequently one must

exercise caution when faced with a system with multiplicative noise.

Of course for the case of a homogeneous medium we have the special case of additive noise which

exists when b has no x dependence meaning any interpretation of the stochastic integral produces the

same result. When this is the case both formulations are equivalent and the choice is essentially arbitrary.

A question that does arise in this situation, however, is how one should utilise the random increment dx

in conjunction with other x dependent functions, for example multiplications of the form f(x)dx. Here

despite there being no ambiguity in the generation of the increment dx one must specify an integration

choice over other functions. It is in this situation that for the modelling of physical systems where each

part of the summation limit of a stochastic integral represents some kind of coarse graining of a finite

process with finite correlation that the strictly non-anticipating quality of the function f(x) in the Itō

integral is deemed inappropriate [44, 45]. Consequently when these situations arise the convention of

Stratonovich is usually followed along with a Stratonovich interpretation of the underlying SDE as a

starting point for more complex behaviour. These specific issues are revisited in Sect. 3.3 when such

multiplications are attributed to thermodynamic quantities such as work done.

2.3 Constructing Path Probability Functionals

2.3.1 Master Equations

We will find later that we wish to discuss and compare the likelihood of certain sequences or trajectories

occurring in time in probabilistic terms. To do so we must write such a quantity in terms of the behaviour

of the system. We may describe such a quantity as a functional of a general trajectory which we define as

~x = x(t) for a suitable interval in time, where an instantaneous value x represents a general state label

which may specify any number of individual system properties such that x = (x0, x1 . . . xn). Considering

a master equation of the form in Eq. (2.18), we must realise that as it is in continuous time, the exact

probability of observing any one particular trajectory is strictly zero. Consequently the quantity we

consider is necessarily a probability density with dimension proportional to the number of transitions

which occur in the path ~x. Considering again a master equation of the form in Eq. (2.18) we may

describe the trajectory explicitly by the discrete sequence xi where transitions from xi−1 to xi occur at

times ti. For a sequence of N transitions between N + 1 configurations between times t = t0 = 0 and

t = tN+1 = τ we can construct the probability of observing the sequence xi with transitions occurring

within an infinitesimal time dti around each transition time ti as the product of a single initial probability

distribution, N probabilities of jumps occurring within the infinitesimal time dti and N +1 probabilities
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of observing no jumps in the resultant intervals so that

P [~x] = Pinitial(x0, t0)Pno transition(x0, t0 → t1)
N∏

i=1

Ptransition in dt(xi|xi−1, ti)Pno transition(xi, ti → ti+1).

(2.109)

The initial condition can be arbitrary, however the probability of a transition, within an infinitesimal

time dti, must be related to the rate appearing in the master equation such that

Ptransition in dt(xi|xi−1, ti) = T (xi|xi−1, ti)dti. (2.110)

As such we can then write the total probability in terms of the probability density associated with the

path

P [~x] = Pinitial(x0, t0)Pno transition(x0, t0 → t1)
N∏

i=1

T (xi|xi−1, ti)dtiPno transition(xi, ti → ti+1)

= p[~x]

N∏

i=1

dti. (2.111)

The probability of having no transition between times ti−1 and ti, given no transition by time ti−1, is

equal to the integral from ti to infinity of the exponential probability density function as it is the only

distribution which is memory-less so as to align with the Markov property. This can be illustrated simply

for an homogeneous process with mean escape rate λ = −T (xi|xi). In this instance the probability

density function is

p(t) = λ exp (−λt). (2.112)

First we consider the probability of not having made a transition by a time t0, equal to the integral of

the distribution from t0 to infinity, thus given by

P (t > t0) = exp (−λt0). (2.113)

In order to be Markovian, the probability of the transition occurring at some time t > t0, both measured

from an arbitrary time origin s0, should be independent of s0. If we let s > (s0 + t0) be the time of the

same transition measured from an earlier origin then this is described by the quantity P (t > t0|s > s0).

As such we may write

P (t > t0|s > s0) = P (s > t0 + s0|s > s0)

= P (s > t0 + s0, s > s0)/p(s > s0)

= P (s > t0 + s0)/p(s > s0)

= exp (−λ(t0 + s0)) exp (λs0)

= exp (−λt0)

= P (t > t0) (2.114)

as required. By considering a spatially and temporally inhomogeneous processes such that we have

T (xi|xi, t) = −λ(xi, t) again as function of time and current state we can identify the particular ex-

ponential form by constructing the probability of having no transition as the limit of a product of

infinitesimal probabilities of having no transition each over a short time dt. The probability of a transi-

tion in an interval dt by the above methods is λ(xi, t)dt+O(dt2) meaning that, for division of the finite
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interval ti = t′0, t
′
1, . . . , t

′
N = ti+1 with dt′j = t′j+1 − t′j , we have

Pno transition(xi, ti → ti+1) = lim
N→∞

N−1∏

j=0

(1− λ(xi, t
′
j)dt

′
j)

= lim
N→∞

N−1∏

j=0

(1 + T (xi|xi, t
′
j)dt

′
j)

= exp

[∫ ti+1

ti

dt′ T (xi|xi, t
′)

]

. (2.115)

Consequently we write the probability density of observing the trajectory ~x

p[~x] = P (x(0))e
∫ t1
t0

dt′T (x0|x0,t
′)

N∏

i=1

T (xi|xi−1, ti)e
∫ ti+1
ti

dt′T (xi|xit
′). (2.116)

2.3.2 Stochastic Differential Equations

Similarly, we can construct a similar quantity in terms of the continuous approach utilised in stochastic

differential equations. For the SDE given by Eq. (2.76) the probability density function is given by the

Fokker-Planck equation of Eq. (2.44) and as such we should be able to describe the statistics of a path

using conditional probabilities derived from that formalism. Generalising Eq. (2.44) in operator form

we have
∂p(x, t)

∂t
= L̂p(x, t). (2.117)

We expect from our formulation of the stochastic process outlined in Sect. 2.1.2, specifically Eq. (2.9),

that p(x, t) can be written as a path integral solution using the transition probability p(x, t|x′, t′) which

yields

p(x, t) =

∫

dx′ p(x′, t′)p(x, t|x′, t′). (2.118)

We recognise this as the conditional probability which acts as the Green’s function of Eq. (2.117). A

system in which the conditional probability can be readily derived is that of the harmonic oscillator in

the over-damped limit where V (x) = 1
2κx

2. The probability density function describing the evolution of

such a system therefore obeys the Fokker-Planck equation

∂p(x, t)

∂t
=

∂

∂x

[
κx

mγ
p(x, t)

]

+
kBT

mγ

∂2

∂x2
p(x, t) (2.119)

identified as being of the same form as the Ornstein-Uhlenbeck process. We can obtain the Green’s

function by Fourier transforming Eq. (2.119) and then using the method of characteristics to find a

solution given by

phar(x, t|x′, t′) =

√

κ

2πkBT (1− e−
2κ
mγ

(t−t′))
exp




−

κ
(

x− x′e−
κ

mγ
(t−t′)

)2

2kBT (1− e−
2κ
mγ

(t−t′))




 . (2.120)

One can then construct a path probability utilising the Markov property by multiplying many of these

solutions together. In general however, it is not possible to find a general conditional probability and so

we necessarily rely on so-called short time propagators of Eq. (2.44) to construct the path probability

and then formally reduce the time step in order to use the continuous limit where they hold exactly. We
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consider the Fokker-Planck Eq. (2.117) in the conditional form seen in Eq. (2.29) so that we have

∂p(x, t|x′, t′)

∂t
= L̂(x, t)p(x, t|x′, t′) (2.121)

which has general solution

p(x, t|x′, t′) = C +

∫ t

t′
L̂(x, t1)p(x, t1|x′, t′)dt1. (2.122)

Considering a path probability the initial condition for t − t′ = 0 must be a delta function therefore

giving

p(x, t|x′, t′) = δ(x− x′) +

∫ t

t′
L̂(x, t1)p(x, t1|x′, t′)dt1. (2.123)

This is first approximated by substituting the form of p(x, t|x′, t′) in for the integrand producing

p(x, t|x′, t′) ≃ δ(x− x′) +

∫ t

t′
L̂(x, t1)

[

δ(x− x′) +

∫ t1

t′
L̂(x, t2)p(x, t2|x′, t′)dt2

]

dt1. (2.124)

This procedure is then iterated to obtain the formal solution known as a Dyson series [46]

p(x, t|x′, t′) = δ(x− x′) +

∫ t

t′
dt1 L̂(x, t1)δ(x− x′) +

∫ t

t′
dt1

∫ t1

t′
dt2 L̂(x, t1)L̂(x, t2)δ(x− x′) + . . .

=

[

1 +

∞∑

n=1

∫ t

t′
dt1 . . .

∫ tn−1

t′
dtn L̂(x, t1) . . . L̂(x, tn)

]

δ(x− x′). (2.125)

For small times ∆t = t− t′ ≪ 1 this can be approximated as

p(x, t′ +∆t|x′, t′) ≃ (1 + L̂(x, t′)∆t+O(∆t2))δ(x− x′) ≃ e∆tL̂(x,t)δ(x− x′). (2.126)

By utilising a Fourier representation for the delta function

δ(x− x′) =
1

2π

∫ ∞

−∞

dλ eiλ(x−x′), (2.127)

we are then able to write

p(x, t′ +∆t|x′, t′) =
1

2π

∫ ∞

−∞

dλ (1 + ∆tL̂(x, t′))eiλ(x−x′). (2.128)

We then proceed by inserting the Fokker-Planck operator

L̂(x, t′) = − ∂

∂x
A(x, t′) +

∂2

∂x2
D(x, t′). (2.129)

However, there is a well documented freedom associated with the evaluation point utilised in the functions

A and D. Risken [46], for example, demonstrates that since they are immediately followed by the delta

function one may exploit the identity

f(x)δ(x− x′) = f(x′)δ(x− x′) (2.130)
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and thus arrive at two equivalent results depending on the evaluation point used for A and D. We

generalise, in the spirit of previous sections and more transparently than in [47], by writing

L̂(x, t′) = − ∂

∂x
A(r(x, x′), t′) +

∂2

∂x2
D(r(x, x′), t′), (2.131)

where we define r ≡ r(x, x′) = ax + (1 − a)x′ and where a ∈ [0 : 1]. Substituting in with this form we

find we then have to first order in ∆t

p(x, t′ +∆t|x′, t′) =
1

2π

∫ ∞

−∞

dλ eiλ(x−x′)

×
[

1− ∂A(r, t′)

∂x
∆t− iλA(r, t′)∆t+

∂2D(r, t′)

∂x2
∆t+ 2iλ

∂D(r, t′)

∂x
∆t−D(r, t′)λ2∆t

]

(2.132)

which again to first order in ∆t can be represented by an exponential function

p(x, t+∆t|x′, t′)

=
1

2π

∫ ∞

−∞

dλeiλ(x−x′)e−
∂A(r,t′)

∂x
∆t−iλA(r,t′)∆t+

∂2D(r,t′)

∂x2 ∆t+2iλ
∂D(r,t′)

∂x
∆t−D(r,t′)λ2∆t. (2.133)

This can now be readily solved by standard methods to give

p(x, t′ +∆t|x′, t′)

=

√

1

4πD(r, t′)∆t
exp




−

[

(x−x′)−A(r, t′)∆t+ 2∂D(r,t′)
∂x ∆t

]2

4D(r, t′)∆t
− ∂A(r, t′)

∂x
∆t+

∂2D(r, t′)

∂x2
∆t




.

(2.134)

By application of the chain rule we then find

p(x, t′ +∆t|x′, t′)

=

√

1

4πD(r, t′)∆t
exp




−

[

(x−x′)−A(r, t′)∆t+ 2a∂D(r,t′)
∂r ∆t

]2

4D(r, t′)∆t
− a

∂A(r, t′)

∂r
∆t+ a2

∂2D(r, t′)

∂r2
∆t






(2.135)

which acts as a short time propagator for a general Fokker-Planck equation and is a conditional proba-

bility density.

One can then consider the continuum limit by repeatedly applying the Chapman-Kolmogorov equa-

tion, integrating over a product of such quantities, in order to construct the conditional probability valid

for any time τ as

p(x(τ), τ |x(0), 0) = lim
∆t→0, n→∞

∫

dx1 . . .

∫

dxn−1

n−1∏

i=0

√

1

4πD(ri, ti)∆t
(2.136)

× exp




−

[

(xi+1−xi)−A(ri, ti)∆t+2a∂D(ri,ti)
∂ri

∆t
]2

4D(ri, ti)∆t
−a

∂A(ri, ti)

∂ri
∆t+a2

∂2D(ri, ti)

∂r2i
∆t




.

(2.137)
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This can then in turn be written in terms of a functional integral in a form first used by Onsager and

Machlup [48], where one generally assigns a weight to each path, exp
[∫ τ

0
dt L(x, ẋ)

]
, such that one writes

p(x(τ)|x(0)) = lim
∆t→0, n→∞

∫

dx1 . . .

∫

dxn−1

n−1∏

i=0

√

1

4πD(ri, ti)∆t
(2.138)

× exp




−

[

(xi+1−xi)−A(ri, ti)∆t+2a∂D(ri,ti)
∂ri

∆t
]2

4D(ri, ti)∆t
−a

∂A(ri, ti)

∂ri
∆t+a2

∂2D(ri, ti)

∂r2i
∆t






=

∫

[Dx]P[~x|x(0)]

=

∫

[Dx] exp

[∫ τ

0

dt L(x, ẋ)

]

. (2.139)

As indicated, P[~x|x(0)], which we call the path probability functional, can be written explicitly in a

functional form by writing it in terms of an exponentiated integral of a quantity, L, known as the

Onsager Machlup function, stochastic Lagrangian or rate function. We also mention the notation [Dx] =

lim
∏

i dxi(4πD(ri, ti)∆t)−1/2 which forms a measure for the functional integral and may be thought of

as being defined as the limit of a sequence of many regular integrals over the time interval formed in a

procedure called ‘time-slicing’. Here the limit indicates ∆t → 0 as the number of integrals over position

variables xi approaches infinity. This approach is used when performing path integral averages, such

as when finding expectation values, in addition to integrating over the initial and final positions and

including an initial probability density function. These path integrals would then be of the form

∫

dx(τ)

∫

dx(0) p(x(0))p(x(τ)|x(0)) =
∫

dx(τ)

∫

dx(0)

∫

[Dx] p(x(0))P[~x|x(0)]

=

∫

dx(τ)

∫

dx(0)

∫

[Dx] P[~x]

=

∫

d~x P[~x] (2.140)

where we have introduced the notation of a total path integral d~x symbolising integration over the end

points and path probability functional and where we denote P[~x] = p(x(0))P[~x|x(0)] the total path

probability functional.

We note however, that we shall avoid using this path integral formalism when explicitly considering

the individual probabilistic behaviour of certain trajectories for the sake of clarity. This is because

the additional terms in a in Eq. (2.135) can appear to lead to spurious terms in the continuous limit

because, in this limit, there is no explicit distinction between r and x. As such one strictly needs to

include a discretisation prescription not explicit in its form which can be easy to deal with improperly.

This ambiguity arises since the functional, when written in terms of the Onsager Machlup function L,

can be seen to depend on the undefined ẋ. As such we consider the path probability functionals as

being constructed from the short time propagators. These may then be generalised to multidimensional

correlated process in N dimensions, such that we have x = (x1, x2, . . . xN ) and r = (r1, r2, . . . rN ), where

the Fokker-Planck operator is of the form

L̂(x, t′) = −
∑

i

∂

∂xi
Ai(x, t

′) +
∑

i,j

∂2

∂xi∂xj
Dij(x, t

′). (2.141)
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Specifying an initial condition δ(x− x
′) =

∏

i δ(xi − x′
i) the short time propagator becomes

p(x, t′ +∆t|x′, t′) =
√

1

(4π∆t)NDet [D(r, t′)]

× exp




∑

i,j

− 1

4∆t

(

(xi−x′
i)−Ai(r, t

′)∆t+ 2a
∑

m

∂Dim(r, t′)

∂rm
∆t

)

D−1
ij (r, t′)

×
(

(xj−x′
j)−Aj(r, t

′)∆t+ 2a
∑

n

∂Djn(r, t
′)

∂rn
∆t

)

−
∑

i

a
∂Ai(r, t

′)

∂ri
∆t+

∑

i,j

a2
∂2Dij(r, t

′)

∂ri∂rj
∆t



 (2.142)

where Dij are the elements of the matrix D with inverse D−1 with elements D−1
ij satisfying DD−1 = I.
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Chapter 3

Stochastic Thermodynamics and

Fluctuation Theorems

We now provide a short review of the relevant literature on fluctuation theorems for stochastic dy-

namics necessary for appreciation of the original contributions offered in the subsequent chapters and

understanding of their place within the literature. Owing to the extensive body of work on fluctuation

theorems, rather than an historical account, a general formulation of the common underlying concepts,

along with some minor generalisations and appropriate notation, are offered which are then given context

by application to the advances we deem pertinent which have occurred over the past 20 years. We start

by consolidating a consistent notation and identifying a quantity which possesses the basic symmetry

required for the relations in the literature. We then provide a description of how such a quantity can

be understood as an entropy production in general terms and how this can be interpreted as a physical

quantity for a commonly used paradigmatic model. Application of the general fluctuation symmetry is

then used in the context of this model to illustrate some well known results, such as the Crooks relation

and Jarzynski equality, before an account of a thermodynamically revealing division of the total entropy

production is given which we aim to generalise by considering time reversal more broadly, for which the

motivating definition in the literature is also given.

3.1 A General Fluctuation Theorem

Fluctuation theorems that arise in stochastic dynamics are, in short, relations that describe symmetries

in the averages and distributions of observed functionals of the stochastic paths or trajectories that the

stochastic dynamics themselves generate. These symmetries arise specifically because one can define

such a functional based on the probabilistic nature of the dynamics themselves. In a physical setting

the existence of such a functional is sometimes referred to as micro-reversibility and is often cited as

the explanation for the relations. In such a setting the physical significance of these functionals must of

course be justified and naturally depends on how one comes to define them. However, the symmetries

themselves are more general and can be defined mathematically without such considerations. As such we

derive the key fluctuation symmetries in general terms in order for an appreciation of their common basis

which we intend to use as a recipe for the construction of specific relations that one may subsequently

consider physically relevant.

The starting point for all the relations we consider is to consider a quantity which is a functional of

43



the path ~x ≡ x(t) produced by some stochastic dynamics where 0 ≤ t ≤ τ . Proceeding using notation for

a continuous probability space, but noting the proofs for discrete spaces are entirely analogous using the

relevant path probability densities, this path then has a corresponding total path probability functional

written PF[~x]pF
0
. Importantly, the superscript provides a label for the nature and time dependence of

the dynamics where F here denotes ‘forward’ taken as a synonym for ‘normal’ and the subscript denotes

a given, arbitrary, starting distribution pF0 (x(0)). We then write this functional as follows

A[~x] = ln

[

PF[~x]pF
0

P∗[~x∗]p∗
0

]

. (3.1)

In similar notation, here P∗[~x∗]p∗
0
is the total path probability functional of some path ~x∗ under some

other dynamics with nature and time dependence denoted ∗ and subject to another arbitrary starting

distribution p∗0(x
∗(0)). Specifically, we imagine that the path ~x∗ is obtained by some transformative

procedure upon ~x. For clarity we point out that we can write the total path probabilities in the form

PF[~x]pF
0
= pF(x(0))PF[~x|x(0)] so that an alternative form for the functional in terms of conditional and

initial probability densities is

A[~x] = ln

[
pF(x(0))

p∗(x∗(0))

]

+ ln

[ PF[~x|x(0)]
P∗ [~x∗|x∗(0)]

]

. (3.2)

As a quantity of possible interest, we proceed by considering the probability density function describing

the distribution of observing such a quantity by constructing the path integral,

pF(A[~x] = A)pF
0
=

∫

d~x PF[~x]pF
0
δ(A−A[~x]), (3.3)

noting that it is explicitly an average over all possible realisations of ~x under dynamics denoted F

conditioned on the specified, but arbitrary initial distribution pF(x(0)). Following Harris et al. [25] we

continue by considering a similar functional of the alternative path ~x∗ chosen specifically to satisfy

Â[~x∗] = ln

[

P∗[~x∗]p∗
0

PF[~x]pF
0

]

= −A[~x]. (3.4)

In a similar manner we can then construct the probability density of observing given values of this

functional, under dynamics designated ∗ conditioned on the arbitrary distribution p∗(x∗(0)), by writing

p∗(Â[~x∗] = A)p∗
0
=

∫

d~x∗ P∗[~x∗]p∗
0
δ(A− Â[~x∗]). (3.5)

Now, because of the definitions of the two functionals we are able to relate this distribution to that of

the distribution of A[~x] under the dynamics which produced ~x. To do so we consider the value the

distribution takes for Â[~x∗] = −A. Such a consideration gives

p∗(Â[~x∗] = −A)p∗
0
=

∫

d~x∗ P∗[~x∗]p∗
0
δ(A+ Â[~x∗]). (3.6)

Now by writing

P∗[~x∗]p∗
0
= PF[~x]pF

0
e−A[~x], (3.7)

identifying Â[~x∗] = −A[~x] and crucially assuming that the Jacobian between path integral measure d~x∗
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and d~x is unity we find

p∗(Â[~x∗] = −A)p∗
0
=

∫

d~xPF[~x]pF
0
e−A[~x]δ(A−A[~x])

= e−A

∫

d~xPF[~x]pF
0
δ(A−A[~x])

= e−A pF(A[~x] = A)pF
0
. (3.8)

Such a procedure then yields [25]

The Transient Fluctuation Theorem:

p∗(Â[~x∗] = −A)p∗
0
= e−A pF(A[~x] = A)pF

0
. (3.9)

By integrating over both sides we then obtain an [12, 49]

Integral Fluctuation Theorem (IFT):

1 = 〈e−A[~x]〉FpF
0

(3.10)

where the angled brackets with superscript denote the path average with respect to the forward dynam-

ics, PF, time dependence and initial distribution pF(x(0)). We take this opportunity to point out that

A[~x] is a path dependent quantity and so averages and distributions of such quantities are necessarily

formed from path integrals which are always given with the appropriate path and initial distribution

information, indicated by superscripts and subscripts, and are to be distinguished from one time averages

which have the same notation without such additional features. The sole exception to this rule is for

the solution of the appropriate forward equation, pF(x(t), t), for which we deem the initial distribution

implicit. It is important to note that in addition to the expected normalisation condition for both P∗[~x]

and PF[~x] in the derivation a number of other conditions are required in the conversion of the path

integral over ~x∗ into one over ~x. Firstly, such a conversion implicitly assumes that the integral bounds

cover the same region of trajectory space. That is to say all paths ~x should be contained within the

bounds of the integral constructed over paths ~x∗. In general this can be achieved if for all paths ~x where

PF[~x] = 0, then the corresponding transformed path ~x∗ has a total path probability functional under

the alternative dynamics P∗[~x∗] = 0 and vice versa. As such the condition depends on the relationship

between paths ~x and ~x∗ and the relationship between the dynamics PF and P∗ which generate them.

Consequently these fluctuation relations can exist between non-common sets of paths ~x and ~x∗ as long

as the dynamics P∗ is suitably chosen. In other words, paths ~x∗ possible under P∗ need not be possible

under PF, which whilst perhaps not assumed in, might be inferred from, the literature which tends to

consider one particular choice of ~x∗. This can be seen as a generalised stochastic version of the ergodic

consistency requirement1. If the paths are common to both sets of dynamics it then reduces to the

more familiar requirement that the initial distributions pF(x(0)) and p∗(x∗(0)) are nowhere zero since

we assume any stochastic dynamics we consider to be ergodic. Secondly, we note that the assumption

that the transformation of the integral over all paths ~x∗ to ~x left its form otherwise unchanged (such

that the Jacobian is unity) is crucial for such relations and can be achieved through appropriate choices

1This in turn can be viewed, in a measure-theoretic approach, as the condition of equivalence of measure between the
forward dynamics or measure PF[~x] and the measure of the alternative dynamics P ∗[~x∗] utilising the alternative path.
Indeed such a condition also implies that d~x = d~x∗ allowing the discussion of the functional A[~x] as being formed from
path probability functionals in this manner.
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of ~x∗ and can be generally assured by requiring that the transform used to generate it from ~x is involutive.

The two relations derived above are the most common relations found in the literature, but one

should realise that a great many extended, but ultimately homologous, symmetries can then be invoked

using the form of Eq. (3.9) if one exchanges the delta function in Eqs. (3.3) and (3.8) with an arbitrary

function, g, of some other functional B[~x] of the same path, with sole additional assumption that one

can simultaneously define C[~x∗] = B[~x] [9, 25]. By means of the same simple substitution

P∗[~x∗]p∗
0
= PF[~x]pF

0
e−A[~x], (3.11)

and the definition of C[~x∗] one may write

〈g(C[~x∗])〉∗p∗
0
= 〈g(B[~x])e−A[~x]〉FpF

0
(3.12)

noting that since one also has P∗[~x∗]p∗
0
= PF[~x]pF

0
eÂ[~x∗] this is equivalent to

〈g(C[~x∗])e−Â[~x∗]〉∗p∗
0
= 〈g(B[~x])〉FpF

0
(3.13)

relating, in principle, arbitrary functions of related functionals under dynamics matched through A[~x].

As such, almost all further fluctuation symmetries can be considered to be special cases of such a result

by utilising a suitable choice of g and B[~x] [9, 25], though we note that mathematically more general

and rigorous contributions have been offered [50–56]. As an example, we may choose g to be a simple

function, such that we have perhaps g(B[~x]) = g(x(t)). The corresponding ‘functional’ for the alternative

dynamics is g(C[~x∗]) = g(B[~x]) = g(T̂ (x∗(t)) = x(t)) where T̂ is the relevant transform of x∗(t) that

gives x(t). Doing so gives a relation between one time averages at specific points in the evolution of the

relevant dynamics and is something of a more general relation of the type that reduces to a so-called

Kawasaki response relation, conditioned upon certain choices of ∗ etc.

〈g(T̂ (x∗(t)) = x(t))〉∗p∗
0
= 〈g(x(t))e−A[~x]〉FpF

0
. (3.14)

We note that we have restricted ourselves to leaving the functional A[~x] as it is, but point out even more

relations can be derived if one subsequently divides up the functional based on creative choices of the

boundary distributions [57]. Largely, however, the most pertinent results in the literature arise from the

choice B[~x] = A[~x] with appropriate C[~x∗] = −Â[~x∗] which leads to

〈g(−Â[~x∗])e−Â[~x∗]〉∗p∗
0
= 〈g(A[~x])〉FpF

0
. (3.15)

Given such a form, a particularly relevant choice of function g, considering the origins and implications

of the fluctuation theorem is the choice g(A) = e−λA which yields the symmetry

〈e−(1−λ)Â[~x∗]〉∗p∗
0
= 〈e−λA[~x]〉FpF

0
(3.16)

with implications that will be commented on subsequently.
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3.2 Time Reversal and the Foundations of Entropy Production

Let us imagine now a path integral average over such a functional A[~x] conditioned on pF0 . This will

have the form

〈A[~x]〉FpF
0
=

∫

d~x PF[~x]pF
0
ln

PF[~x]pF
0

P∗[~x∗]p∗
0

. (3.17)

This is recognisable as a Kullback-Leibler divergence or relative entropy, albeit between path probability

densities rather than distributions, and so must therefore be positive. Further, let us imagine that the

initial distribution pF(x(0)) = pF0 is not arbitrary, but in fact chosen so as to be equal to the initial

distribution of probability over all states at the start of some physical process such that we consider it

the initial condition for the forward equation that describes the process with solution pF(x(t), t) ≡ pFt .

In these terms, such an ‘entropy’ has been considered, even for quite some time now [58–60], as the

intrinsic positive entropy production, introduced originally for stationary non-equilibrium systems aris-

ing from a time homogeneous birth-death master equation, given, importantly, a particular choice of

P∗[~x∗]p∗
0
. Taking this ‘entropy production’ as a starting point, the choice of P∗[~x∗]p∗

0
will come to define a

simple, yet important concept in the construction, generalisation and interpretation of the quantity A[~x].

First, however, in order to characterise more general examples of non-equilibrium behaviour, partic-

ularly that of driving, we should however, go a step further in the development by the consideration of

time inhomogeneous processes. This is generally achieved by allowing the probabilistic behaviour of the

system to vary in time and might be realised physically by the alteration of some physical parameter

influencing the system such as, for example, the nature of a Hamiltonian or perhaps the temperature

or chemical potential of a heat or particle bath. Frequently this time dependence is assumed to occur

through a ‘switching protocol’ or simply a ‘protocol’ often denoted λ(t). This protocol then implicitly

becomes part of the definition of the forward path probability functional such that PF[~x] is taken to be

the total probability functional for the path ~x under forward dynamics and forward protocol which we

consequently denote λF(t).

Given such a time dependence in the dynamics, the crucial choice in the construction of A[~x] that

determines the path ~x∗, dynamics P∗ and initial condition p∗0 is that which constitutes time reversal. The

concept of time reversal is crucial in the study of fluctuation theorems as it identifies a connection between

their subject, entropy production, and the physical manifestation of entropy production, irreversibility.

We do this by considering that the irreversibility of a process is characterised by the relative likelihood

of observing the original system behaviour compared to the likelihood of observing the system behaviour

that would precisely reverse or ‘undo’ the previous motion. For example, we would consider some driving

process reversible if, for all paths, the probability of the forward behaviour under the forward driving

was identical to the probability of the reverse behaviour, starting in conditions identical to those at

the end of the forward process, under the reverse driving. Such a statement then reveals the choice of

P∗[~x∗]p∗
0
which would allow us to discern this information from A[~x]. By considering the behaviour of

the system to be the path that the system takes, ~x, then the reverse behaviour is this same path ‘played

backwards’ or rather in reverse sequence. This allows us to define the choice ~x∗ as the reversed path

~x∗ = ~xR = x(τ − t). Similarly, if the protocol λF(t) defines the forward driving then the reverse driving

is driving that arises from the reversed sequence of the protocol λR(t) = λF(τ − t). Finally, if we ask

that the irreversibility be measured from the system conditions at the end of the forward process then

we can define the initial distribution p∗(x(0)) to be the probability distribution at the end of the forward

process such that we write p∗0 = pFτ . Explicitly, P∗[~x∗]p∗
0
becomes the total path probability functional
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associated with the path ~x∗ = ~xR under the original dynamics subject to time dependence characterised

by the reversed protocol λR(t) = λF(τ − t) leading us to write P∗[~x∗|x∗(0)] = PR[~xR|x(τ)] with choice

of initial condition p∗0 = pFτ . Given these choices, Eq. (3.17) becomes

〈A[~x]〉FpF
0
=

∫

d~x PF[~x]pF
0
ln

PF[~x]pF
0

PR[~xR]pR
τ

(3.18)

and we begin to see the physical meaning that it imparts. In this form is becomes an average, by means

of a path integral, of the likelihood of paths, generated by evolving forwards in time, compared to that

of the specific, related paths which would fully reverse the observed forward behaviour of the system,

where averaging occurs over the ensemble of forward paths.

Further, when considering path probabilities that arise from a master equation for a set of discrete

states one can show [12, 25, 36, 58] that the mean rate of change of A[~x], which we state to be the

mean rate of non-negative, irreversible or ensemble entropy production of the universe or ‘total entropy

production’ Ṡtot with suitable consideration of units, is of the form

kB
d〈A[~x]〉F

PF
0

dt
= Ṡtot = kB

∑

x,x′

PF
0 (x)T (x

′|x, λF(t)) ln
PF
0 (x)T (x

′|x, λF(t))

PF
0 (x

′)T (x|x′, λF(t))
(3.19)

where T (x′|x, λF(t)) is the transition rate of transitions from state x′ to x at time t characterised by

protocol λF(t). Such a form has provided the starting point for many subsequent modern treatments

[12, 25, 61] emphasising a profound connection between such observed irreversibility that arise from the

dynamics of a particular system in this way and the entropy production we expect from such behaviour.

Indeed, the use of Kullback-Leibler divergences and other more sophisticated functionals of path prob-

abilities borrowed from information theory have been explicitly used in attempts to ‘quantify time’s

arrow’ [62–66].

More recently, encouraged by progress in work on thermostatted deterministic systems and perhaps

by improved technological techniques to probe and influence dynamics on smaller and smaller scales

the concept of viewing usual thermodynamic quantities such as work, heat and indeed entropy as tak-

ing distinct, single values has given way to a more general consideration as uncertain, path dependent,

quantities described by probability distributions. Unifying descriptions of these quantities, particularly

when considering entropy production, again have at their core the principle of time reversal [49, 67] and

put most simply one considers the physical interpretation of the specific value of the functional A[~x]

due to a given realisation ~x rather than the average value over all possible realisations as considered

in [58]. This reasoning implies that if the intrinsic ensemble entropy production of the universe, the

time integral of Ṡtot, is a mean value, by means of a path integral, of the functional kBA[~x] then we can

consider a microscopic path dependent entropy production which takes the precise value of the functional

such that ∆Stot = kBA[~x] which can fluctuate around that mean. One can see that the consideration of

such a quantity would then naturally lead to the fluctuation relations detailed above, but one might ask

whether such a deconstruction of an ensemble quantity has any validity or can be viewed as anything

physical at all.

In order to meaningfully answer this question we should ask what in fact the functional in question

represents on the level of a single trajectory. Writing the functional as the contribution of two terms
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based on initial distributions and path probability functionals as follows

A[~x] = ln

[

PF[~x]pF
0

P∗[~x∗]p∗
0

]

= ln

[
pF(x(0), 0)

pF(x(τ), τ)

]

+ ln

[

PF[~x|x(0)]
PR[~xR|x(τ)]

]

(3.20)

we may ask what such contributions each physically represent. The second, formed of path probability

functionals providing the uncertainty in the path evolution is reasoned to be, quite generally, a path

dependent entropy change of the environment based on an assumption of local detailed balance [12, 25, 49]

such that we write

∆Smed = kB ln

[

PF[~x|x(0)]
PR[~xR|x(τ)]

]

. (3.21)

The defining feature of such a quantity is that given well defined transition rates or path probability

functionals, which in turn might possibly be written in terms of defined observables, a microscopically

consistent quantity can be associated unambiguously with that behaviour. That is to say (indeed for

any choice of P∗[~x∗|x∗(0)]) such a term is of a form that means it contributes based only on the system

behaviour x(t) and not on some additionally specified function meaning it can in principle represent

a physically relevant quantity that can be measured or counted. For example, for a large thermal

environment that possesses a defined temperature, one expects its entropy change to be the heat flow

scaled by its inverse temperature. This quantity, in principle is well defined even for single trajectories as

the heat could be computed by energetic arguments. Because of this ability to identify such a contribution

with real measurable quantities both it and its analogue in deterministic thermostatted dynamics, the

phase space contraction, are also the subject of the so-called asymptotic fluctuation theorems [28, 31].

The nature of these relations are very similar to those we have outlined, but are considered in the

long time limit where their validity becomes apparent if one observes that the contribution formed of

initial distributions is unimportant. This however, is not a general feature of stochastic systems with

unbounded state space and so is frequently observed to ‘fail’ [68–72]. However, our focus of interest lies

in our original functional which contains an additional term consisting solely of the initial distributions

used in the construction of A[~x]. This term, however, does not have the properties of the environmental

entropy change; one cannot associate a unique contribution with some behaviour x(t), but instead one

has to consider the form of the initial probability distributions which, depending on your point of view,

might represent an arbitrary conditioning, a degree of confidence in a measurement or the behaviour of

an ensemble. It should be noted that, subject to the ergodic constraints, any pair of initial distributions,

not just those used above, ensure the fluctuation theorems previously derived pointing perhaps to the

assertion that they are merely arbitrary boundaries without particular physical meaning. This point

may seem especially relevant when one considers their dependence on something less concrete than just

the path, unlike the environmental entropy change, providing a certain motivation in the pursuit of the

asymptotic fluctuation theorems [49]. This, in general when the distributions are explicitly arbitrary,

which unlike as outlined above, was the role they played in earlier work [49], is a fair assessment, however

more recently, again perhaps following from increased real world experimental resolution, it has come

to be accepted that there is a genuine and non-contrived physical interpretation of these terms when

chosen appropriately. Such a choice is based on the notion that the coarse grained Gibbs or Shannon

entropy of stochastic systems describing the intrinsic entropy of a system, which may be generalised to

non-equilibrium ensembles by being made time dependent,

S(t) = −
∫

dx(t) pF(x(t), t) ln pF(x(t), t), (3.22)
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can be interpreted as the instantaneous average of a microscopic path dependent quantity − ln pF(x(t), t).

Consequently the change in such a fluctuating quantity over a time τ , ln(pF(x(0), 0)/pF(x(τ), τ)), rep-

resents a microscopic contribution to the change in the quantity of information, or entropy, required to

describe the mean instantaneous probabilistic behaviour of the system. Such a concept was first hinted

at in [8, 73], but introduced explicitly some time later in [12]. The boundary contributions pF0 and p∗0

only take this form when we utilise the choice that corresponds to the measurement of irreversibility of

the process, namely p∗(x∗(0)) = pF(x(τ), τ). Since the change in this microscopic entropy production

associated with the system is incorporated in the functional as described in equation (3.20), along with

the environmental, or medium, entropy change, and that in such a model the universe consists only of

the system and the medium, we can justify the earlier claim that the functional A[~x] is a microscopic

contribution of total entropy production of the universe with structure as below

∆Stot = kBA[~x]

= kB ln

[

PF[~x]pF
0

PR[~xR]pF
τ

]

= kB ln

[
pF(x(0), 0)

pF(x(τ), τ)

]

+ kB ln

[

PF[~x|x(0)]
PR[~xR|x(τ)]

]

= ∆Ssys +∆Smed. (3.23)

3.2.1 The Integral Fluctuation Theorem for Total Entropy Production

As a preliminary consequence of being able to identify an entropy production in such a form we identify,

perhaps, the most basic and general of the fluctuation relations since it relies only on the form of the

functional A[~x]. By identifying the total entropy production in the integral relation of Eq. (3.10) such

that kBA[~x] = ∆Stot we can write [12]

〈exp[−k−1
B ∆Stot]〉FpF

0
= 1. (3.24)

The most important consequence of such a relation is the bound it places on the mean quantity 〈∆Stot〉FpF
0
.

Because of the convexity of the exponential function it falls within the remit of Jensen’s inequality,

allowing us to write

1 ≥ exp[−k−1
B 〈∆Stot〉FpF

0
] (3.25)

consequently leading us to conclude

〈∆Stot〉FpF
0
≥ 0. (3.26)

This is, in essence, the statement of the second law when we explicitly consider fluctuations in the

dynamics we consider. Instead of expecting the second law to be a rigorous inequality of the form

∆S ≥ 0, by defining a trajectory dependent entropy we cast the second law in the statistical terms

under which it should be understood, allowing an entropy production to be either positive or negative,

but recovering a positive expectation by means of a statistical bound. We note that this is true of any

quantity obeying an integral fluctuation theorem; if we can express it as the logarithm of a ratio of path

probabilities, then the physical quantity it corresponds to has a rigorous positive expectation.
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3.3 Stochastic Energetics

In order to make physical sense of a stochastic entropy production we should be able to attribute

thermodynamic quantities to the dynamics which describe the system we wish to model. It is most

helpful if we consider a particular stochastic dynamics as a framework to illustrate their place within

the fluctuation theorems. Such a paradigmatic approach to such a question was introduced by Sekimoto

[34, 45, 74] entitled ‘stochastic energetics’, the fundamentals of which shall be paraphrased here, and

the use of it within the context of entropy production and fluctuation theorems is generally called

‘stochastic thermodynamics’ [12, 33]. The paradigm utilised in stochastic energetics is that of a simple

one dimensional over-damped Langevin equation of the form

dx

dt
=

1

mγ
F(x, λF(t)) +

√

2kBT

mγ
Γ(t) (3.27)

where we follow the literature so that the time dependence of the dynamics, often a dependence in a

confining potential or applied force, is provided through the switching protocol, λF(t), that represents

an external agent or protocol which can then drive the system. We note that we could write

dx

dt
= − 1

mγ

∂V (x, λF
0 (t))

∂x
+

1

mγ
Fnc(x, λ

F
1 (t)) +

√

2kBT

mγ
Γ(t) (3.28)

so that F(x, λF(t)) is the total force on the particle with a contribution from a potential and a separate

non-conservative force each controlled by an individual protocol λF
0 (t) and λF

1 (t), which could, for exam-

ple, be used to model a trapped particle in a steady flow. Following Sekimoto, we delay interpretation as

an SDE so as to explicitly consider force terms, yet proceed with the understanding that any stochastic

integrals are chosen to follow Stratonovich rules such that the normal rules of calculus apply (for details

see Sect. 2.2.2). Rearranging such that terms have the unit of force we have

0 = −
(

−mγ
dx

dt
+
√

2kBTmγΓ(t)

)

+
∂V (x, λF

0 (t))

∂x
−Fnc(x, λ

F
1 (t)). (3.29)

Now by multiplying by an increment dx under Stratonovich such that

0 = −
(

−mγ
dx

dt
+
√

2kBTmγΓ(t)

)

◦ dx+
∂V (x, λF

0 (t))

∂x
◦ dx−Fnc(x, λ

F
1 (t)) ◦ dx (3.30)

the individual increments of a force multiplied by a displacement can be thought of as terms in an energy

balance equation. Sekimoto postulated that despite being probabilistic the force terms should always

obey the law of action and reaction. Consequently the term in parentheses in Eq. (3.29), identified as the

negative of the force due to the environment since it alone contains both the fluctuation and dissipative

terms, must be the reaction force the particle exerts on the environment. Consequently the work done

by this force (when multiplied by dx under Stratonovich) is the energy lost to the environment. It is this

quantity we therefore associate with heat flow to the environment and thus wish to relate to the entropy

production associated with it. To avoid confusion, we label the microscopic gain of heat in the system

(or loss of heat for the bath) dQsys and the corresponding heat flow to the environment dQ such that

dQ = −dQsys, a notation that we will retain throughout. Following Stratonovich once more we have

dV =
∂V (x, λF

0 (t))

∂x
◦ dx+

∂V (x, λF
0 (t))

∂λF
0 (t)

◦ dλF
0 (t). (3.31)
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After substituting we then have

0 = −dQsys + dV − ∂V (x, λF
0 (t))

∂λF
0 (t)

◦ dλF
0 (t)−Fnc(x, λ

F
1 (t)) ◦ dx. (3.32)

This then allows us to identify the expected expression for the work done from basic mechanics

dW =
∂V (x, λF

0 (t))

∂λF
0 (t)

◦ dλF
0 (t) + Fnc(x, λ

F
1 (t)) ◦ dx (3.33)

which means that following a substitution, the heat flow into the system is given by

dQsys =
∂V (x, λF

0 (t))

∂x
◦dx−Fnc(x, λ

F
1 (t))◦dx = −F(x, λF(t))◦dx =

(

−mγ
dx

dt
+
√

2kBTmγΓ(t)

)

◦dx.
(3.34)

Interpretation in this sense allows us to consider a first law equality in the form

dV = dQsys + dW (3.35)

or

dV + dQ = dW (3.36)

where the internal energy is simply the potential such that dU = dV .

Note on the Stratonovich Interpretation of Work Like Terms

It is important to note here the implications of an interpretation according to Itō or Stratonovich

for the work like quantities arising from spatially dependent forces multiplied by the increment dx.
2 As highlighted in previous sections, interpreting a stochastic differential equation in one sense over

another will generally lead to measurably different behaviour in the resulting stochastic variable as can

be shown by Eq. (2.88). Whilst this is not the case for simple Brownian motion the issue does arise

when performing a multiplication of the form F(x) ∗ dx since both integrand and integrator are now

non-differentiable. Considering the simple case of a single conservative force acting upon the particle,

following the interpretation due to Stratonovich produces the expression for the heat

dQsys =
∂V (x, λF

0 (t))

∂x
◦ dx. (3.37)

One might ask, however, what the form of the heat is under an Itō interpretation. We can certainly

transform this quantity according to Eq. (2.93) and produce an equivalent quantity. Indeed if we can

form an energy balance equation without Sekimoto’s arguments that use a multiplied force, the result

should be equivalent for simple Brownian motion. We can do this for the case of a single conservative

force by considering the evolution of V according to Itō’s lemma such that

dV =
∂V (x, t)

∂t
dt+

∂V (x, t)

∂x
dx+

kBT

mγ

∂2V (x, t)

∂x2
dt. (3.38)

2An example of improperly taking this into account is evidenced by the confusion and discussion in [75–79]. Aside from
the improper use of mechanical work over thermodynamic work, as commented on, it is the naive interpretation of this
work using Itō rules, which was not noticed, which results in an erroneous conclusion that work relations are only valid
near equilibrium.
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We can consistently identify the internal energy as the total derivative dU = dV and the work as

dW =
∂V (x, λF

0 (t))

∂λF
0 (t)

dλF
0 (t) =

∂V (x, λF
0 (t))

∂λF
0 (t)

dλF
0 (t)

dt
dt =

∂V (x, λF
0 (t))

∂t
dt (3.39)

which is independent of the interpretation owing to its lack of dependence on the increment dx. As such

we can construct an energy balance equation yielding

dQsys =
∂V (x, λF

0 (t))

∂x
dx+

kBT

mγ

∂2V (x, λF
0 (t))

∂x2
dt (3.40)

in agreement with Eq. (2.93). However if we try to introduce non-conservative forces in such an approach

the result loses its invariance since we must decide whether the previously unambiguous work is

dW =
∂V (x, λF

0 (t))

∂t
dt+ Fnc(x, λ

F
1 (t)) ◦ dx (3.41)

or

dW =
∂V (x, λF

0 (t))

∂t
dt+ Fnc(x, λ

F
1 (t))dx, (3.42)

or indeed any other interpretation of the stochastic integral. Consequently we must return to the

force balance equation to assure generality. However, if we follow Sekimoto, but instead use an Itō

interpretation we come across a problem even for the case of a single conservative force. Constructing

the energy balance equation, but multiplying using an Itō convention we obtain

0 = −
(

−mγ
dx

dt
+
√

2kBTmγΓ(t)

)

dx+
∂V (x, λF

0 (t))

∂x
dx

= −dQsys +
∂V (x, λF

0 (t))

∂x
dx, (3.43)

however we also expect V (x, λF
0 (t)) to evolve according to Itō’s Lemma in which we can identify the

work done such that

0 = −dQsys + dV − dW − kBT

mγ

∂2V (x, t)

∂x2
dt. (3.44)

This is not compatible with the first law in as much as we can no longer associate the heat as being

the energy dissipated by the reaction force. Consequently, for complete consistency and extension to

non-conservative forces we must consider the thermodynamic quantities as the result of Stratonovich

summations from which we can then convert in Itō form if desired from Eq. (2.91). We therefore have

for the heat under both conservative and non-conservative forces

dQsys =
∂V (x, λF

0 (t))

∂x
◦ dx−Fnc(x, λ

F
1 (t)) ◦ dx

=
∂V (x, λF

0 (t))

∂x
dx+

kBT

mγ

∂2V (x, λF
0 (t))

∂x2
dt−Fnc(x, λ

F
1 )dx− kBT

mγ

∂Fnc(x, λ
F
1 )

∂x
dt. (3.45)

Since we have now identified the heat flow (to the Langevin particle), we may identify what we expect

to be the entropy production in the medium, since we have idealised noise with a defined temperature.

As such we expect an increment in the medium entropy change to be given by

d∆Smed =
−dQsys

T
= − 1

T

∂V (x, λF
0 (t))

∂x
◦ dx+

Fnc(x, λ
F
1 (t))

T
◦ dx. (3.46)
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To verify that such a quantity is genuinely the subject of the fluctuation relations however, we must

have

kB ln
PF[~x|x(0)]
PR[~xR|x(τ)]

=

∫ τ

0

d∆Smed. (3.47)

Since the dynamics are Markovian, we need only ensure this for an infinitesimal increment, for which

we can easily find the result by comparing two short time propagators of the form found in Eq. (2.142),

indeed using any choice of evaluation point r, which we find to first order in dt to agree with the expected

result. We illustrate deliberately without rigour in order to avoid repetition later with a more general

result how this can be found. We point out the propagator for the forward path can be written in the

form

pF(x′, t+ dt|x, t) =
√

mγ

4πkBTdt
exp




−

mγ
(

(x′ − x)− 1
mγF(x, λF(t))dt

)2

4kBTdt




 (3.48)

and similarly for the reverse path required for the increment in medium entropy change

pR(x′R, (τ−t)+dt|xR, τ−t) =

√
mγ

4πkBTdt
exp




−

mγ
(

(x′R − xR)− 1
mγF(xR, λR(τ − t))dt

)2

4kBTdt




 (3.49)

which we may write

pR(x, t+ dt|x′, t) =

√
mγ

4πkBTdt
exp




−

mγ
(

−(x′ − x)− 1
mγF(x′, λF(t))dt

)2

4kBTdt




. (3.50)

Writing dx = x′ − x, and constructing the medium entropy change contribution we find

1

kB
d∆Smed =

mγ

4kBT

(
(dx)2

dt
− (dx)2

dt

+
2

mγ

(
2F(x, λF(t)) + d

(
F(x, λF(t))

))
dx+ d

((F(x, λF(t))

mγ

)2
)

dt

)

=
F(x, λF(t))

kBT
dx+

1

mγ

∂F(x, λF(t))

∂x
dt+O(dt3/2)

=
F(x, λF(t))

kBT
◦ dx

= −dQsys

kBT
(3.51)

as required.

Full Phase Space Stochastic Energetics

We note that the preceding arguments for the identify for heat and work etc. can be extended to the

full phase space Langevin equation which is given by

m
dv

dt
= F(x, λF(t))−mγ

dx

dt
+
√

2kBT (x, t)mγΓ(t)

= −∂V (x, λF
0 (t))

∂x
+ Fnc(x, λ

F
1 (t))−mγ

dx

dt
+
√

2kBT (x, t)mγΓ(t). (3.52)
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Following later work by Sekimoto where a full phase space consideration was given [45] a similar energy

balance argument can be given, again using Stratonovich calculus. By grouping in terms of force and

reaction force we obtain

0 = −
(

−mγ
dx

dt
+
√

2kBT (x, t)mγΓ(t)

)

+
∂V (x, λF

0 (t))

∂x
−Fnc(x, λ

F
1 (t)) +m

dv

dt
. (3.53)

Again we multiply by the increment dx to obtain the energy balance

0 = −
(

−mγ
dx

dt
+
√

2kBT (x, t)mγΓ(t)

)

◦ dx+
∂V (x, λF

0 (t))

∂x
◦ dx−Fnc(x, λ

F
1 (t)) ◦ dx+m

dv

dt
◦ dx

= −dQsys +
∂V (x, λF

0 (t))

∂x
◦ dx−Fnc(x, λ

F
1 (t)) ◦ dx+m

dv

dt
◦ dx (3.54)

where again the first term is the heat flow into the bath (dQ = −dQsys) since it can be interpreted as

the reaction force to the environment multiplied by increment dx. Accordingly we find that

dQsys =

(

−mγ
dx

dt
+
√

2kBT (x, t)mγΓ(t)

)

◦ dx

=
∂V (x, λF

0 (t))

∂x
◦ dx−Fnc(x, λ

F
1 (t)) ◦ dx+m

dv

dt
◦ dx. (3.55)

We mention that, strictly, the third expression in this final line is the only one that requires the distinction

between integration schemes since x is now an integrated stochastic variable removing the ambiguity.

This third term, however, using the Stratonovich integration scheme can be written

m
dv

dt
◦ dx = m

dv

dt
◦ vdt = mv ◦ dv = d

(
mv2

2

)

(3.56)

allowing us to write, removing the Stratonovich notation where it is not needed,

dQsys =
∂V (x, λF

0 (t))

∂x
dx−Fnc(x, λ

F
1 (t))dx+ d

(
mv2

2

)

= −F(x, λF(t))dx+ d

(
mv2

2

)

. (3.57)

Finally we mention that this result too can be captured by comparing logarithmic path probabilities

[80].

3.4 Specific Fluctuation Theorems

Such an identification of the heat transfer as the medium entropy change along with a consistent notion

of the first law on the level of the fluctuating trajectory allows us now to explore the implications of the

fluctuation theorem in different circumstances. Starting from, and examining the form of, Eq. (3.9) we

see that, in general, it relates the distributions of two distinct physical observables, A[~x] and Â[~x∗], of

which the first we have argued, for certain choices of protocol, initial distributions etc., is the microscopic

total entropy production of system and environment along a stochastic trajectory. The second, however,

being a functional defined using the reverse path and produced under the reverse dynamics would seem

to encourage a consideration of the same thermodynamic quantity, the microscopic entropy production,

of the reverse path under the reverse process. As such we examine the form of kBÂ[~x∗] = ∆Ŝtot which
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is given as

∆Ŝtot

kB
= Â[~xR] = ln

[

PR[~xR]pF
τ

PF[~x]pF
0

]

= ln

[
pF(x(τ), τ)

pF(x(0), 0)

]

+ ln

[

PR[~xR|xR(0)]

PF[~x|x(0)]

]

. (3.58)

We now contrast this with the microscopic entropy production of the reverse path in the reverse process

by considering the functional A[~x] constructed over the reverse process instead of the forward one where

we denote this microscopic entropy production ∆SR
tot = kBAR[~xR]. This has the form

∆SR
tot

kB
= AR[~xR] = ln

[

PR[~xR]pR
0

PF[~x]pR
τ

]

= ln

[
pR(xR(0), 0)

pR(xR(τ), τ)

]

+ ln

[

PR[~xR|xR(0)]

PF[~x|x(0)]

]

(3.59)

where analogously to the role of pF(x(t), t) in the boundary terms of the total entropy production of

the forward process, pR(xR(t), t) is the solution of the Kolmogorov forward equation for the reverse

process. By our specification of the reverse process we have pR(xR(0), 0) = pF(xF(τ), τ). Consequently

we identify the equivalence of Â[~xR] and AR[~xR], or rather ∆Ŝtot and ∆SR
tot, if and only if pF(x(0), 0) =

pR(xR(τ), τ). That is to say the transient fluctuation theorem explicitly considers distributions of entropy

production in the forward and reverse processes if after the forward process, the reverse process returns

the probability distribution to the distribution that acted as the initial distribution of the forward

process. This does not, however, occur in any particular generality. If this did occur, in general, (as for

example in Liouville’s equation) it would imply complete reversibility in the dynamics and thus render

such a definition of entropy as defined here, inappropriate. As such, many of the distinct fluctuation

relations in the literature arise from specific situations where such a relation does hold.

3.4.1 Work Relations

In thermodynamics the work performed on a system is a quantity of great importance and it is most

revealing that we may derive fluctuation theorems in such a way that they concern it. The most

straightforward, or general, way to do so is to consider the relation

〈g(C[~xR])〉RpR
0
= 〈g(B[~x])e−A[~x]〉FpF

0
(3.60)

and notice that the work done on the system obeys the symmetry requirements C[~xR] = B[~x] when we

choose B[~x] = ∆W and C[~xR] = −∆WR and then choosing pR0 (x(0)), p
F
0 (x(0)) and A[~x] to relate the

nature of the averages with the appropriate functional. In general then we may write

〈g(−∆WR)〉RpF
τ
= 〈g(∆W )e−k−1

B
∆Stot〉FpF

0
, (3.61)

for which an important choice of g is the delta function allowing us to relate the distributions in each

process through

pR(∆WR = −A)pF
τ
= pF(∆W = A)pF

0
e−k−1

B
∆Stot , (3.62)

where, by definition, ∆Stot is the total entropy production produced by the same path that led to a work

of ∆W = A, with reverse process again starting from the distribution at the end of the forward process.

If we now insist that, for example, the initial and final distributions both be equilibrium we must in turn

adjust the boundary terms in the functional A[~x] and the initial distributions in the averaging procedure
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such that we now have

pR(∆WR = −A)pF,eq
τ

= pF(∆W = A)pF,eq
0

e−k−1
B

∆Seq→eq
tot , (3.63)

where again ∆Seq→eq
tot takes the value arising from the path that produced ∆W = A in the forward

dynamics. However, we also know that the transient fluctuation theorem for total entropy production

holds when the reverse process returns the final distribution to the initial distribution; something that

we can do trivially for equilibrium to equilibrium processes since we can simply allow the system to relax

after any driving. As such we also expect the following relation to hold from Eq. (3.9)

pR(∆SR,eq→eq
tot = −A)pR,eq

0
= e−k−1

B
A pF(∆Seq→eq

tot = A)pF,eq
0

. (3.64)

The two are clearly related motivating a consideration of the equilibrium to equilibrium entropy produc-

tion. To do so we simply need consider the initial and final distributions which represent the canonical

ensemble. As before we consider the system energy for an over-damped system to be entirely described

by the potential V (x, λF
0 (t)) such that we write3

pF,eq(x(t), λF
0 (t)) =

1

Z(λF
0 (t))

exp

[

−V (x(t), λF
0 (t))

kBT

]

, (3.65)

where Z is the partition function, uniquely defined by λF
0 (t), which can in general be related to the

Helmholtz free energy through the relation

F (λF
0 (t)) = −kBT lnZ(λF

0 (t)). (3.66)

Let us now define the initial and final distributions to be given by the respective equilibria defined by

the protocol at the start and finish of the forward process and the same temperature

pF,eq0 (x(0)) = pF,eq(x(0), λF
0 (0)) = exp

[
F (λF

0 (0))− V (x(0), λF
0 (0))

kBT

]

pR,eq
0 (xR(0)) = pF,eqτ (x(τ)) = pF,eq(x(τ), λF

0 (τ)) = exp

[
F (λF

0 (τ))− V (x(τ), λF
0 (τ))

kBT

]

. (3.67)

Using these boundary terms we may construct the total entropy production by first considering the

system entropy change ∆Ssys as

∆Ssys = kB ln

(

pF,eq0 (x(0))

pR,eq
0 (xR(0))

)

= kB ln




exp

[
F (λF

0 (0))−V (x(0),λF
0 (0))

kBT

]

exp
[
F (λF

0 (τ))−V (x(τ),λF
0 (τ))

kBT

]





=
1

T

(
−F (λF

0 (τ)) + F (λF
0 (0)) + V (x(τ), λF

0 (τ))− V (x(0), λF
0 (0))

)

=
∆V −∆F

T
. (3.68)

The medium entropy change is as we defined previously and can be written

∆Smed =
∆Q

T
=

∆W −∆V

T
(3.69)

3We note a difference in notation, specifically in the second argument used here and throughout, between stationary
(including equilibrium) states, in principle uniquely described by the protocol, for which we write pF,eq(x(t), λF(t)) or
pF,st(x(t), λF(t)) and the general solution to the relevant forward equation, pF(x(t), t), which cannot and as such utilises
time as the second argument.
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where ∆W , for an over-damped particle for example, is the work given earlier in Eq. (3.33), but we now

emphasise that this term contains contributions due to changes in the potential and due to the external

force Fnc. We thus further define two new quantities ∆W0 and ∆W1 such that ∆W = ∆W0 + ∆W1

with

∆W0 =

∫ τ

0

∂V (x(t), λF
0 (t))

∂λF
0 (t)

dλF
0 (t)

dt
dt (3.70)

and

∆W1 =

∫ τ

0

Fnc(x(t), λ
F
1 (t)) ◦ dx. (3.71)

∆W0 and ∆W1 are not defined in the same way with ∆W0 being found more often in thermodynamics

and ∆W1 being a familiar definition from mechanics; one may therefore refer to these definitions as

thermodynamic and mechanical work respectively. The total entropy production in this case is simply

given by

∆Seq→eq
tot =

∆W −∆F

T
. (3.72)

Additionally, since we have met the conditions required to relate ∆Ŝ and ∆SR we can write

∆SR,eq→eq
tot =

∆WR −∆FR

T
= −∆W −∆F

T
. (3.73)

As such we consider Eqs. (3.63) and (3.64) to describe precisely the same thing characterised by

pR((∆WR −∆FR)/T = −A)pF,eq
τ

= pF((∆W −∆F )/T = A)pF,eq
0

e−k−1
B

A (3.74)

noting that the free energy change ∆F and temperature T are just numbers and so can be excluded

from the distributions and that such an expression is entirely equivalent to the transient fluctuation

theorem for entropy production for a protocol that enables relaxation to equilibrium at the end of both

forward and reverse processes. In practice such a protocol would initially be held at some value to allow

relaxation in the reverse process then made time dependent to perform work and driving and then held

at the final value to allow relaxation in the forward process.

The Crooks Work Relation and Jarzynski Equality

The specific relations that now follow arise by imposing certain constraints on the process we consider.

First we consider the situation where the external force Fnc(x, λ
F
1 (t)) = 0 and so all work is performed

conservatively through the potential such that ∆W = ∆W0. For such a process we write the total

entropy production of the corresponding equilibrium to equilibrium process as

∆Seq→eq
tot =

∆W0 −∆F

T
(3.75)

allowing us to find [8]

The Crooks Work Relation:

pF (∆W0 = A)pF,eq
0

pR
(
∆WR

0 = −A
)

pF,eq
τ

= exp

[
A−∆F

kBT

]

. (3.76)

Rearranging and integrating over all ∆W on both sides, and taking the deterministic ∆F out of the

path integral then yields an expression for the average over the forward process called [7, 10, 81]
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The Jarzynski Equality :

〈exp (−∆W0/kBT )〉FpF,eq
0

= exp (−∆F/kBT ). (3.77)

We point out that we can formulate these two relations by considering the entropy production of an

equilibrium to equilibrium process, but the symmetries they describe hold for any process as long as the

relevant initial conditions are prescribed as being equilibrium (as indicated by the relevant subscripts).

Consequently, the system does not need to be in equilibrium at the end of both the forward and reverse

process. Historically this has had one particularly important consequence: the results hold for driving, in

principle, arbitrarily far from equilibrium. This is widely summed up as the ability to obtain equilibrium

information from non-equilibrium averaging since, upon examining the form of the Jarzynski equality,

we can compute the free energy difference by taking an average of the exponentiated work done in the

course of some non-equilibrium process. It should be noted however, that one must exercise caution if

performing such an average since it is patently dominated by very rare, negative entropy fluctuations

meaning in practice one may need to perform a very large number of realisations in order to yield a

reliable average from such a procedure. Alternatively, if one can perform the reverse process, one may

turn to the Crooks relation and identify the point where both distributions cross in order to find the

free energy change. Finally we note both the Crooks relation and Jarzynski equality can be seen as

refinements to the usual second law. The Crooks relation quantitatively relates the probability we would

extract more work than we put in, in for example, the compression then expansion of a gas and applying

Jensen’s inequality to the Jarzynski equality yields

〈∆W0〉FpF,eq
0

≥ ∆F (3.78)

reducing to the usual thermodynamic measure of reversibility in the thermodynamic limit with the

equality holding for quasi-static reversible processes.

3.4.2 Fluctuation Relations for Mechanical Work

A similar, but subtly different circumstance to that of the Jarzynski and Crooks relations is that where

we consider a driving process that again starts in equilibrium, but this time keeps the protocol λF
0 (t)

held fixed such that all work is performed by the externally applied force Fnc(x, λ
F
1 (t)) meaning that

∆W = ∆W1. Once again we may find a fluctuation relation concerning a work equivalent to the

entropy production of some equilibrium to equilibrium process. This time however, the corresponding

equilibrium at the start of both the forward and reverse processes are identical and correspond, assuming

an equilibrium exists, to the same value of both protocols λF
0 (t) and λF

1 (t). For such a process we find

by similar means

∆Stot =
∆W1

T
(3.79)

since the free energy difference between the same equilibrium states vanishes. This in turn leads to a

set of fluctuation relations [82–85] which may collectively be referred to as

Bochkov-Kuzovlev relations for mechanical work:

pF(∆W1 = A)pF,eq
0

pR(∆WR
1 = −A)pF,eq

τ

= exp

[
A

kBT

]

(3.80)
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and

〈exp (−∆W1/kBT )〉FpF,eq
0

= 1. (3.81)

For the same reasons as in the Jarzynski and Crooks relations they are valid for all times and thus

hold as a non-equilibrium result. Taking in particular the integrated relation and comparing with the

Jarzynski equality in Eq. (3.77) one may think there is an inconsistency. Both are valid for all times

and arbitrary driving and concern the work done under the constraint that both start in equilibrium,

yet on first inspection they seem to be saying different things. But recall our distinction between the

work ∆W0 and ∆W1 from Eqs. (3.70) and (3.71); there are two distinct ways to describe work on such a

particle. If one performs work ∆W0 one necessarily changes the form of the system energy whereas the

application of work ∆W1 leaves the form of the system energy unchanged. The difference is manifest

in the two different integrated relations because their derivations exploit the fact that the Hamiltonian,

which represents the system energy, appears in initial and final distributions. To clarify, as written

the Jarzynski equality explicitly concerns driving where the application of any work also changes the

Hamiltonian and thus the equilibrium state. On the other hand the relations for W1 concern work as the

path integral of an external force such that the Hamiltonian remains unchanged for the entire process.

We briefly note that the use of this difference in definition of work led to some discussion [86–89], but as

illustrated in [82, 83] it is something of an aesthetic decision (with resulting changes of form in the work

relation) concerning how heat exchanges are divided into a work and internal energy contribution, but

the result which leads to a work relation at all, the form of the heat and its relation to ratios of path

probabilities, is the same regardless of interpretation.

Of course, there is nothing in the derivation of either of these relations that precludes the possibility

of both types of work to be performed at the same time and so using the same arguments we arrive at

pF(∆W = A)pF,eq
0

pR(∆WR = −A)pF,eq
τ

= exp [(A−∆F )/kBT ] (3.82)

and
〈

exp

(

−∆W −∆F

kBT

)〉F

pF,eq
0

= 1 (3.83)

again under the constraint that the system be initially prepared in equilibrium.

3.4.3 Kawasaki Relation

A result in the same spirit of these work relations is the non-equilibrium response relation which is

achieved by using the relation in Eq. (3.14) for a given function. Since we have x∗(t) = xR(t) the

appropriate transform of the function g(x(t)) in the forward process is g(xR(τ − t)) in the reverse

process. As such we have

〈g(xR(τ − t))〉RpF
τ
= 〈g(x(t))e−k−1

B
∆Stot〉FpF

0
. (3.84)

If one then specifies that the function is evaluated at the end of the process, that is t = τ , and that

we construct the functional A[~x] so that it corresponds to equilibrium initial distributions and that the

process is isothermal we may simplify to find

〈g(xR(0))〉R
pF,eq
τ

= 〈g(x(τ))e−(∆W−∆F )/kBT 〉F
pF,eq
0

. (3.85)
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We then note that the left hand side is simply an instantaneous equilibrium average of the function g(x)

appropriate to the value of the protocol corresponding to the end of the forward process allowing us to

relate it to the non-equilibrium average on the right hand side.

3.4.4 Generalised Crooks Relation

Exploiting the fact we have just seen that the equilibrium to equilibrium entropy production satisfies

the symmetry requirements for B[~x] and C[~x∗] we can apply this more generally without the isothermal

condition. As such we can write, as a slight generalisation of the Crooks relation

pR(∆SR,eq→eq
tot = −A)pF

τ
= pF(∆Seq→eq

tot = A)pF
0
e−k−1

B
∆Stot , (3.86)

again where ∆Stot takes the value that would be realised from the path that led to ∆Seq→eq
tot = A in the

forward dynamics, but this time allow a protocol dependent temperature such that the total entropy

production generalises to

∆Stot = ∆Ssys +

∫ τ

0

dQ

T

= ∆Ssys −
∫ τ

0

dQsys

T
. (3.87)

In the same way that the Jarzynski equality generalised the irreversibility statement found in classical

thermodynamics ∆W ≥ ∆F to 〈∆W 〉 ≥ ∆F by the convexity of the exponential function, because the

mean of the equilibrium system entropy is the well defined equilibrium Gibbs entropy one has a Clausius

like statement

∆S = 〈∆Seq→eq
sys 〉 ≥

〈∫ τ

0

dQsys

T

〉F

pF,eq
0

(3.88)

and for a cyclic process

0 ≥
〈∫ τ

0

dQsys

T

〉F

pF,eq
0

(3.89)

which reduces to the Clausius inequality in the thermodynamic limit.

3.4.5 Fluctuation Theorems for Entropy Production

Understanding that the transient fluctuation theorem concerns total entropy production when the reverse

process leaves the resultant distribution in that found at the beginning of the forward process, we

have seen that work relations can be constructed by meeting this criterion using equilibrium initial

distributions. We now consider more generally scenarios where this result holds, but we do not require

equilibrium distributions. As perhaps the most general statement of the above reasoning we can state

that if we have the condition

pF(xR(τ), 0) =

∫

dx(0)

∫

[Dx
R] pR(xR(0), 0)pR[~xR|xR(0)]

=

∫

d~xR
6=xR(τ) p

R(xR(0), 0)pR[~xR|xR(0)] (3.90)

then we have the following symmetry relation between the entropy produced in the forward and reverse

processes

pR(∆SR
tot[~x

R] = −A)pF
τ
= e−k−1

B
A pF(∆Stot[~x] = A)pF

0
. (3.91)
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The challenge of utilising such a symmetry then becomes one of finding situations that meet its re-

quirements. One of the most straightforward ways to achieve this however, reveals an even more direct

symmetry by insisting that the evolution under the forward process is indistinguishable from that under

the reverse process and that pFτ = pF0 . Mathematically the indistinguishability of the dynamics is the

requirement PR[~x∗|x∗(0)] = PF[~x∗|x∗(0)]. Given these conditions, evolution from the initial distribu-

tion will trivially result in the final distribution and evolution under the reverse process from the final

distribution will result in the initial distribution. If we consider in more detail the requirements for

such behaviour we understand there are two main ways in which this can be achieved. Given that the

initial and final distributions are the same the first way is to require a constant protocol λF(t). In this

way the forward process is trivially the same as the reverse process. Alternatively we could require the

protocol to be time symmetric such that λF(t) = λF(τ − t) = λR(t). In both situations the forward

and reverse processes are entirely indistinguishable. As such, by careful construction we can, in these

specific circumstances, relate the probability of seeing a positive entropy production to that of a negative

entropy production over the same forward process allowing us from Eq. (3.9) to write a [12]

Detailed fluctuation theorem (DFT):

pF(∆Stot = −A)pF
0
= e−k−1

B
ApF(∆Stot = A)pF

0
. (3.92)

Physically the two situations we have considered correspond to

• pF0 = pFτ = pF,st0 = pF,st(x, λF(0)), λF(t) = const:

To satisfy such criteria the system must be in a steady state, that is all intrinsic system properties

(probability distribution, mean system entropy, mean system energy etc.) must remain constant

over the process. The simplest steady state is equilibrium which trivially has zero entropy pro-

duction in detail for all trajectories. However, a non-equilibrium steady state can be achieved by

breaking detailed balance through some constraint which prevents the equilibration. The mean

entropy production rate of these states is constant, non-zero and, as we have now shown, there is

an explicit exponential symmetry in the probability of positive and negative fluctuations. For clar-

ity, path integrals that utilise a constant protocol in this way, such that they approach stationary

states, are indicated by the notation 〈〉F,st.

• pF0 = pFτ , λ
F(t) = λR(t):

This condition can be achieved in a system that is being periodically driven characterised by a time

symmetric λF(t). If from some starting point we allow the system to undergo an arbitrarily large

number of periods of driving it will arrive at a so-called non-equilibrium oscillatory state such that

pF(x, t) = pF(x, t+ tp) where tp is the period of oscillation. In this state we can expect the above

relation to hold for integer multiples of period tp starting from a time such that λF(t) = λR(t).

Such a result, because it directly concerns entropy production in the steady state, is frequently considered

to be a finite time analogue of the asymptotic fluctuation theorems that hold in steady states (and the

approach to them) in the limit t → ∞. Considering, in particular, the analogous relation of Eq. (3.16)

that corresponds to a non-equilibrium stationary state we have

〈e−(1−λ)k−1
B

∆Stot〉F,st
pF,st
0

= 〈e−λk−1
B

∆Stot〉F,st
pF,st
0

. (3.93)

By some manipulation one can show that this fluctuation theorem reproduces the Kubo relations for

transport coefficients when taken close to equilibrium giving an insight into its place as a genuine non-

equilibrium result and to do so we loosely follow the procedures documented in, for example, [90, 91].
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Starting with the symmetry in Eq. (3.93) we may express the same symmetry in the scaled cumulant

generating function

g(λ) = g(1− λ) = −τ−1 ln〈exp [−λk−1
B ∆Stot]〉F,stpF,st

0

(3.94)

with

gk =
∂kg

∂λk

∣
∣
∣
λ=0

= (−1)k−1τ−1〈(k−1
B ∆Stot)

k〉c (3.95)

where 〈(k−1
B ∆Stot)

k〉c denotes the kth cumulant of 〈k−1
B ∆Stot〉FpF

0
. We then assume that close to equi-

librium, in the regime of linear irreversible thermodynamics, the mean path dependent total entropy

production is equivalent to the positive internal entropy production of near equilibrium states and is

thus given by

〈∆Stot〉F,stpF
0

≃
∫ τ

0

〈Jth(t)〉Fth

T
dt =

∫ τ

0

〈Ṡtot(t)〉dt (3.96)

for a small thermodynamic force Fth and conjugate flux Jth such that 〈Ṡtot(t)〉 is small. Explicitly, this

is the assumed ability to write the medium entropy change as

∆Smed = −∆Seq
sys +

Fth

T

∫ τ

0

Jth(t)dt, (3.97)

where ∆Seq
sys is the system entropy change one expects in equilibrium from the path that generates

∆Smed, so that as we approach equilibrium the above reasoning holds. For example, for the under-

damped Langevin equation subject to both conservative forces arising as a potential in a Hamiltonian

and a non-conservative force which does not and gives rise to a physical particle current we have

∆Smed = − 1

T

∫ τ

0

d

(
mv2

2

)

− 1

T

∫ τ

0

∂V (x)

∂x
dx

︸ ︷︷ ︸

−∆Seq
sys

+
Fnc

T

∫ τ

0

vdt (3.98)

where the flux is simply the particle current v and the system entropy change, in equilibrium, is the

change in the Hamiltonian scaled by the environmental temperature. If we then recognise that in the

stationary state we may write

(−1)k−1gk = τ−1〈(k−1
B ∆Stot)

k〉c = 〈(k−1
B Ṡtot(t))

k〉c (3.99)

we may, after identifying the behaviour gk ∼ 〈k−k
B Ṡk

tot〉 valid in the small Fth, small 〈Ṡtot(t)〉 limit,

represent g(λ) well by the expansion

g(λ) ≃ g0 + g1λ+ g2
λ2

2
+ . . . . (3.100)

However, we have g(λ) = g(1 − λ) and so have the relation g2 = −2g1. In turn we note this implies

Gaussianity in the linear regime since 2k−1
B 〈∆Stot〉c = k−2

B 〈∆S2
tot〉c and allows us to write

2k−1
B τ−1 〈∆Stot〉F,stpF,st

0

= k−2
B τ−1

〈
(∆Stot − 〈∆Stot〉)2

〉F,st

pF,st
0

. (3.101)
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We can write this however, after eliminating τ and kB and using ∆Ṡtot(t) = Ṡtot(t)− 〈Ṡtot(t)〉, as

2 〈∆Stot〉F,stpF,st
0

= k−1
B

〈(∫ τ

0

dt1

(

Ṡtot(t1)− 〈Ṡtot(t1)〉
))(∫ τ

0

dt2

(

Ṡtot(t2)− 〈Ṡtot(t2)〉
))〉F,st

pF,st
0

= k−1
B

∫ τ

0

dt1

∫ τ

0

dt2〈∆Ṡtot(t1)∆Ṡtot(t2)〉F,stpF,st
0

. (3.102)

Now, since we are in the steady state we have the following properties of a correlation function

〈A(t1)A(t2)〉 = 〈A(t1 − t2)A(0)〉 = 〈A(t2 − t1)A(0)〉 (3.103)

such that

∫ τ

0

dt1

∫ τ

0

dt2〈A(t1)A(t2)〉 =
∫ τ

0

dt1

∫ τ

0

dt2〈A(t1 − t2)A(0)〉

=

∫ τ

0

dt1

∫ t1

t1−τ

dt′〈A(t′)A(0)〉 (3.104)

achieved by the change of variable t2 → t′ = t1 − t2. Changing the order of integration and separating

into positive and negative t′ domains we then have

∫ τ

0

dt1

∫ t1

t1−τ

dt′〈A(t′)A(0)〉 =
∫ 0

−τ

dt′
∫ t′+τ

0

dt1〈A(t′)A(0)〉+
∫ τ

0

dt′
∫ τ

t′
dt1〈A(t′)A(0)〉. (3.105)

Changing variable t′ → −t′ in the first of these integrals then yields

∫ τ

0

dt1

∫ τ

t1−τ

dt′〈A(t′)A(0)〉 =
∫ τ

0

dt′
∫ τ−t′

0

dt1〈A(−t′)A(0)〉+
∫ τ

0

dt′
∫ τ

t′
dt1〈A(t′)A(0)〉

=

∫ τ

0

dt′
∫ τ−t′

0

dt1〈A(t′)A(0)〉+
∫ τ

0

dt′
∫ τ

t′
dt1〈A(t′)A(0)〉 (3.106)

by virtue of Eq. (3.103). Changing variable once more in the first integral t1 → x = t1 + t′ we have

∫ τ

0

dt1

∫ τ

t1−τ

dt′〈A(t′)A(0)〉 =
∫ τ

0

dt′
∫ τ

t′
dx〈A(t′)A(0)〉+

∫ τ

0

dt′
∫ τ

t′
dt1〈A(t′)A(0)〉

= 2

∫ τ

0

dt′
∫ τ

t′
dt1〈A(t′)A(0)〉. (3.107)

This is then simply

2

∫ τ

0

dt′
∫ τ

t′
dt1〈A(t′)A(0)〉 = 2τ

∫ τ

0

dt′〈A(t′)A(0)〉 − 2

∫ τ

0

dt′t′〈A(t′)A(0)〉. (3.108)

Inserting this into the relation between mean and variance of the entropy production we then have

〈∆Stot〉F,stpF,st
0

= k−1
B τ

∫ τ

0

dt′〈∆Ṡtot(t
′)∆Ṡtot(0)〉F,stpF,st

0

− k−1
B

∫ τ

0

dt′t′〈∆Ṡtot(t
′)∆Ṡtot(0)〉F,stpF,st

0

(3.109)

or

〈Ṡtot〉F,stpF,st
0

= k−1
B

∫ τ

0

dt′〈∆Ṡtot(t
′)∆Ṡtot(0)〉F,stpF,st

0

− 1

τkB

∫ τ

0

dt′t′〈∆Ṡtot(t
′)∆Ṡtot(0)〉F,stpF,st

0

. (3.110)

64



In the limit τ → ∞ the second integral vanishes allowing us to write

〈Ṡtot(τ)〉F,stpF,st
0

= k−1
B

∫ ∞

0

dt〈∆Ṡtot(t)∆Ṡtot(0)〉F,stpF,st
0

(3.111)

or arranging in terms of fluxes and forces

〈Jth〉F,stpF,st
0

= L(Fth = 0)Fth =
Fth

kBT

∫ ∞

0

dt 〈∆Jth(t)∆Jth(0)〉F,stpF,st
0

(3.112)

which is the generic Green-Kubo relation for linear transport coefficients [92] in the limit Fth → 0 such

that pF,st0 → pF,eq0 when ignoring O(F2
th) terms.

3.5 Entropy Production Theorems and an Alternative Division

of the Total Entropy Production

So far we have considered a functional that represents the total entropy production of a stochastic system

and seen justification based on the notion of a division of entropy production into a heat flow associated

with a medium and a system entropy term providing a physical rationale for boundary terms. However,

once such reasoning is accepted one may go further and define further quantities that constitute the total

entropy production which may provide some physical insight into the origins of that entropy production.

3.5.1 Division Based on the Existence of Non-equilibrium Stationary States

Division of Heat Flow

An operational formalism of non-equilibrium, or rather steady state, thermodynamics was presented

by Oono and Paniconi [35] and consisted of postulating that the heat flow out of the system to the

environment could be divided into two distinct contributions called the ‘excess’ and ‘house-keeping’ heat

transfers (to the environment), which we write shorthand as simply excess and house-keeping heats, such

that

∆Q = ∆Qex +∆Qhk. (3.113)

It was argued that in order to maintain any non-equilibrium stationary state there would be need to be

a constant dissipation of heat to break detailed balance and that this contribution was the house-keeping

heat. Consequently the remainder, the excess heat, would be a bounded contribution which would act

much more like the total heat flow between equilibrium stationary states.

Hatano-Sasa Equality and Speck-Seifert Relations

Introducing the notation of a non-equilibrium potential related to the stationary state through

pF,st(x, λF(t)) = exp [−φ(x, λF(t))], (3.114)

Hatano and Sasa derived a relationship conspicuously similar in form to fluctuation theorems, under the

paradigm of dynamics given by

dx = − 1

mγ

∂V (x, λF(t))

∂x
dt+

Fnc

mγ
dt+

kBT

mγ
dW, (3.115)
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given by
〈

exp

[

−
∫ τ

0

dt
dλF(t)

dt

∂φ(x, λF(t))

∂λF(t)

]〉F

pF,st
0

= 1 (3.116)

originally considered as an extension of the Jarzynski equality, valid between non-equilibrium stationary

states, as evidenced by the substitution φ(x, λF(t)) = −β(F − V (x, λF(t))) and pF,st0 = pF,eq0 . Further,

by utilising the definition of the heat from stochastic energetics in Eq. (3.34), we may write

dQ = F(x) ◦ dx

= F(x) ◦ dx− kBT

(

dφ− ∂φ(x, λF(t))

∂x
◦ dx− ∂φ(x, λF(t))

∂λF
dλF

)

=

(

F(x) + kBT
∂φ(x, λF(t))

∂x

)

◦ dx
︸ ︷︷ ︸

dQhk

−kBTdφ(x, λ
F(t)) + kBT

∂φ(x, λF(t))

∂λF(t)
dλF(t)

︸ ︷︷ ︸

dQex

(3.117)

operationally defining, for the considered dynamics, the house-keeping and excess heats. It in turn allows

one to write the Hatano-Sasa equality in terms of the non-equilibrium potential and excess heat [93]

〈

exp

[

−∆φ− ∆Qex

kBT

]〉F

pF,st
0

= 1. (3.118)

Subsequently Speck and Seifert showed, by demonstrating an explicit invariance in time of the exponen-

tial average, that, for all time, the corresponding house-keeping heat obeys [94]

〈

exp

[

−∆Qhk

kBT

]〉F

pF
0

= 1 (3.119)

with the two relations together providing a framework and set of statistical restrictions on the quantities

that play a role in the thermodynamics of transitions between steady states.

Adiabatic and Non-adiabatic Entropy Production

More recently Van den Broeck et al. [36], building upon the contribution of many others [95–97], have

generalised the concept of splitting the heat flow, by applying such ideas to the total entropy production

for arbitrary Markovian systems, without requiring the process in question to concern a transition

between stationary states and going some way further in describing the distinct physical mechanisms by

which entropy is generated. The fundamental division is as below

∆Stot

kB
= ln

PF[~x]pF
0

PR[~xR]pF
τ

= ln
PF[~x]pF

0

PR,ad[~xR]pF
τ

+ ln
PF[~x]pF

0

PF,ad[~x]pF
0

= ln
pF(x(0), 0)

pF(x(τ), τ)
+ ln

PF[~x|x(0)]
PR,ad[~xR|xR(0)]

+ ln
PF[~x|x(0)]

PF,ad[~x|x(0)] (3.120)

where path probability functionals designated ‘ad’ are generated by the so-called adjoint or dual dynamics

which produce the same stationary state as the normal dynamics, but with a reversed stationary flux.

The justification of such a division is best illustrated in a discrete probability space where the transition
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rates of such adjoint dynamics are given as

T ad(x|x′, λF(t)) = T (x′|x, λF(t))
PF,st(x, λF(t))

PF,st(x′, λF(t))
(3.121)

and lead naturally to the above division when used in the construction of the total entropy production

for a jump process consisting of N transitions, noting that the exponential integrated mean escape rates

seen in Sect. 2.3.1 cancel [25, 36], to yield

∆Stot

kB
= ln

PF(x0, 0)

PF(xN , τ)
+

N∑

i=1

ln
PF,st(xi, λ

F(t))

PF,st(xi−1, λF(t))
+

N∑

i=1

ln
PF,st(xi−1, λ

F(t))T (xi|xi−1, λ
F(t))

PF,st(xi, λF(t))T (xi−1|xi, λF(t))
, (3.122)

with the first two terms comprising the so-called ‘non-adiabatic’ entropy production

∆Sna

kB
= ln

PF[~x]PF
0

PR,ad[~xR]PF
τ

= ln
PF(x0, 0)

PF(xN , τ)
+

N∑

i=1

ln
PF,st(xi, λ

F(t))

PF,st(xi−1, λF(t))
(3.123)

and the final term comprising the ‘adiabatic’ entropy production

∆Sa

kB
= ln

PF[~x]PF
0

PF,ad[~x]PF
0

= ln
PF(x0, 0)

PF(x0, 0)
+

N∑

i=1

ln
PF,st(xi−1, λ

F(t))T (xi|xi−1, λ
F(t))

PF,st(xi, λF(t))T (xi−1|xi, λF(t))

=

N∑

i=1

ln
PF,st(xi−1, λ

F(t))T (xi|xi−1, λ
F(t))

PF,st(xi, λF(t))T (xi−1|xi, λF(t))
. (3.124)

Of note regarding their form is that the careful choice of boundary conditions enables both to comprise

the total entropy production and thus considers such a division of entropy production (and heat flow)

beyond that of transitions between steady states. This is evidenced by noting that non-adiabatic entropy

production, like the argument of the Hatano-Sasa equality, comprises the excess heat and boundary

terms, but the boundary terms represent the change in system entropy, defined generally, rather than

the non-equilibrium potential, such that, for a thermal system, we have

∆Sna = ∆Ssys +
∆Qex

T
. (3.125)

Further, since they have been constructed as functionals in the form found in Eq. (3.1) they naturally

obey the appropriate fluctuation relations detailed earlier, with particular emphasis placed on the fact

that they obey integral fluctuation theorems

〈
exp

[
−k−1

B ∆Sna

]〉F

PF
0
= 1

〈
exp

[
−k−1

B ∆Sa

]〉F

PF
0
= 1. (3.126)

Consequently we have 〈∆Sna〉FPF
0

≥ 0, 〈∆Sa〉FPF
0

≥ 0 and 〈∆Stot〉FPF
0

= 〈∆Sna〉FPF
0
+ 〈∆Sa〉FPF

0
≥ 0 sug-

gesting each portrays an aspect of irreversibility in a system which leads to a positive total entropy

production.

The nature of the two contributions is easily understood by the consideration of some simple scenarios.

Considering first the non-adiabatic contribution, one observes that it is in general non-zero except when

PF(x, 0) = PF(x, τ) = PF,st(x, λ(t)) indicating that it is a contribution that arises when the system is

out of stationarity. The adiabatic contribution, however, does not behave in this way and only vanishes
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when the dynamics obey detailed balance

T (x′|x, λF(t))PF,st(x, λF(t)) = T (x|x′, λF(t))PF,st(x′, λF(t)), (3.127)

the condition, in general, required for an equilibrium stationary state. The two mean positive contri-

butions to total entropy production can then be summarised as a term relating to transient evolution

of the probability distribution, vanishing in the stationary state and caused, physically, by a driving or

a manipulation of the protocol and/or any instantaneous relaxation of the probability distribution and

a term relating to the constant production of entropy in the stationary state caused by a breakage of

detailed balance in the underlying dynamics.

Mean Contributions to Entropy Production in Continuous Systems

A result which helps to illustrate the nature of these contributions, beyond their microscopic forms, is

that of their mean, or expected, contribution for which the form taken in continuous one dimensional

systems as seen in [98] is most clear. First, we define the probability current or flux, J(x, t), by writing

the Fokker-Planck equation as a continuity equation

∂p(x, t)

∂t
= −∂J(x, t)

∂x
, (3.128)

where we note the abbreviations p(x, t) ≡ pF(x, t) and pst(x, λF(t)) ≡ pF,st(x, λF(t)) for brevity. We

then proceed by starting with the mean entropy production rate for such systems, for which the form

can be obtained by its identification with the time derivative of the generalised non-equilibrium Gibbs

entropy [12],

1

kB

d〈∆Stot〉FpF
0

dt
=

∫

dx
[J(x, t)]2

p(x, t)D
, (3.129)

where D is the diffusion coefficient equal to half the second Kramers-Moyal coefficient. The division of

the entropy production into an adiabatic and non-adiabatic contribution from such an expression was

then provided in [98] by first writing

1

kB

d〈∆Stot〉FpF
0

dt
=

∫

dx
p(x, t)

D

(
J(x, t)

p(x, t)
− J st(x, λF(t))

pst(x, λF(t))
+

J st(x, λF(t))

pst(x, λF(t))

)2

=

∫

dx
p(x, t)

D

(
J(x, t)

p(x, t)
− J st(x, λF(t))

pst(x, λF(t))

)2

+

∫

dx
p(x, t)

D

(
J st(x, λF(t))

pst(x, λF(t))

)2

+

∫

dx
2p(x, t)

D

J st(x, λF(t))

pst(x, λF(t))

(
J(x, t)

p(x, t)
− J st(x, λF(t))

pst(x, λF(t))

)

. (3.130)

Examining the final term we realise we may write it as

(
J(x, t)

p(x, t)
− J st(x, λF(t))

pst(x, λF(t))

)

= −D

(
1

p(x, t)

∂p(x, t)

∂x
− 1

pst(x, λF(t))

∂pst(x, λF(t))

∂x

)

= −D
∂

∂x

(

ln
p(x, t)

pst(x, λF(t))

)

= −D
pst(x, λF(t))

p(x, t)

∂

∂x

(
p(x, t)

pst(x, λF(t))

)

. (3.131)
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Consequently the final term in Eq. (3.130) is given by

−
∫

dx 2J st(x, λF(t))
∂

∂x

(
p(x, t)

pst(x, λF(t))

)

= 0 (3.132)

where the zero contribution arises due to vanishing of surface terms and the explicit condition

∂J st(x, λF(t))

∂x
= 0. (3.133)

Consequently, by the above construction, the first term in Eq. (3.130) must be the non-adiabatic contri-

bution, vanishing uniquely in the stationary state rendering the second term the adiabatic contribution

1

kB

d〈∆Sa〉FpF
0

dt
=

∫

dx
p(x, t)

D

(
J st(x, t)

pst(x, λF(t))

)2

(3.134)

and

1

kB

d〈∆Sna〉FpF
0

dt
=

∫

dx
p(x, t)

D

(
J(x, t)

p(x, t)
− J st(x, t)

pst(x, λF(t))

)2

(3.135)

each of which is rigorously positive and demonstrates the properties of each contribution. Examining

further the non-adiabatic contribution we can write using Eq. (3.131)

1

kB

d〈∆Sna〉FpF
0

dt
= −

∫

dx p(x, t)

(
J(x, t)

p(x, t)
− J st(x, t)

pst(x, λF(t))

)
∂

∂x

(

ln
p(x, t)

pst(x, λF(t))

)

= −
[

p(x, t)

(
J(x, t)

p(x, t)
− J st(x, t)

pst(x, λF(t))

)(

ln
p(x, t)

pst(x, λF(t))

)]∞

−∞

+

∫

dx

(

ln
p(x, t)

pst(x, λF(t))

)
∂

∂x

(

J(x, t)− J st(x, λF(t))p(x, t)

pst(x, λF(t))

)

. (3.136)

Ignoring the surface terms we substitute using the continuity form of the Fokker-Planck equation and

utilise Eq. (3.133) again to reach

1

kB

d〈∆Sna〉FpF
0

dt
=

∫

dx

(

ln
p(x, t)

pst(x, λF(t))

)(

−∂p(x, t)

∂t
− J st(x, t)

∂

∂x

p(x, t)

pst(x, λF(t))

)

. (3.137)

Taking the second term in this expression and integrating once more we find

−
∫

dx

(

ln
p(x, t)

pst(x, λF(t))

)(

J st(x, λF(t))
∂

∂x

p(x, t)

pst(x, λF(t))

)

=

∫

dx
p(x, t)

pst(x, λF(t))

∂

∂x

(

J st(x, t) ln
p(x, t)

pst(x, λF(t))

)

=

∫

dx J st(x, λF(t))
∂

∂x

(
p(x, t)

pst(x, λF(t))

)

(3.138)

by the discarding of surface terms and application of Eq. (3.133). This contribution vanishes since it is

of the same form as Eq. (3.132) and so we are finally left with

1

kB

d〈∆Sna〉FpF
0

dt
= −

∫

dx
∂p(x, t)

∂t
ln

p(x, t)

pst(x, λF(t))
(3.139)

which gives a concise description of the non-adiabatic contribution as the movement of the probability

distribution towards the stationary solution. This will be the equilibrium distribution in the absence of
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non-equilibrium conditions being applied such as non-conservative forces or temperature gradients. The

above has been shown to apply quite generally with an equivalent quantity also being derived in the

master equation approach [99].

3.6 Other Notable Theories of Entropy Production

3.6.1 Non-Thermal Divisions of Medium Entropy

The original division of entropy production into a system and a medium entropy change contribution is,

in principle, defined quite generally, but some effort has been put into considering the physical origins of

this contribution and the implication on the observed, or inferred, second law inequality. Such a situation

arises when the medium entropy change contribution consists of a term which recognisably comprises

the heat transfer to the environment as originally defined in stochastic energetics, but also a further

contribution which cannot. Since it cannot be associated with a heat (or a defined temperature) such a

contribution is a potentially athermal distinct mechanism for entropy production. A system investigated

by Kim et al. [100, 101] was that of macromolecules described by a full phase space Langevin equation

of the form

dx

dt
= v

dv

dt
= −γv + Fv(v) +

√

2kBTγ

m
Γ(t). (3.140)

With the inclusion of an extra velocity dependent force Fv(v) (which they mention in an example could

be of the form γ′v where γ′ depends on a magnetic field) they found that what we have called the medium

entropy change contribution, in the mean, contained the usual heat transfer term, which they went on

to associate with the medium entropy change of others [12], but also a term based on any non-linearity

of Fv(v) which they called the ‘pumped’ entropy contribution as it is a term that would, in addition to

the stochastic thermostat, adjust the effective temperature of the particle. The term they observed had

the form

∆Spu = −
∫ τ

0

∂Fv(v)

∂v
dt (3.141)

and its inclusion led them to write the division of entropy as

∆Spos = ∆Ssys +∆Smed +∆Spu

= ∆Stot +∆Spu (3.142)

where ∆Spos, denoting a rigorously positive contribution in the mean, obeys the fluctuation theorem

rather than ∆Stot. Whether or not such an procedure is particularly helpful is debatable, and is some-

thing we discuss in a later chapter along with assumptions on the function Fv(v) that cause its contri-

bution to be considered in such a way.

3.6.2 Feedback Control

The division of entropy production advocated by Kim et al. served as a precursor to a more general

recent development, namely that of feedback control [102–109]. This is where one controls the protocol

in response to the observed behaviour of the system. Such a procedure is very similar to the action of

Maxwell’s demon, which for example, opens or closes a trapdoor based on the velocity of an observed
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particle. However, in the language we have been using, it is best understood as a protocol which in turn

is a, possibly stochastic, function of x. Leaving aside, for now, some of the possible ambiguities, the

general relations that occur in the literature are simple to define. Given, for sake of argument, that the

protocol, starting at some pre-determined value λF(0), is determined by measurement so that we have

λF(x(t)), we acknowledge that the protocol now effectively becomes a stochastic trajectory in its own

right, ~λF. As such, the probability functional associated with the forward behaviour is given by the joint

probability functional

P~λF

[~x, ~λF]pF
0
= P[~λF|~x]P~λF

[~x]pF
0
. (3.143)

Despite the stochasticity of the protocol, it is however, deemed to be environmental or perhaps under the

control of some external agent so that the reverse protocol is not determined stochastically, but instead

is the reversed version of the observed forward protocol. Under such constraints we thus write the joint

probability functional of the reverse sequence

P~λR

[~xR, ~λR]pF
τ
= P[~xR|~λR]pF

τ
P[~λR]. (3.144)

But since the reverse protocol is now deterministic we may write

P~λR

[~xR, ~λR]pF
τ
= P~λR

[~xR]pF
τ
P[~λF]. (3.145)

When we then come to construct the total entropy production we thus find

k−1
B ∆Stot[~x, ~λ

F] = lnP~λF

[~x, ~λF]pF
0
− lnP~λR

[~xR, ~λR]pF
τ

= ln
P~λF

[~x]pF
0

P~λR [~xR]pF
τ

+ ln
P[~λF|~x]
P[~λF]

. (3.146)

Once again, a similar procedure is then used as in [100, 101], as the first term, despite being a constituent

part of the functional representing irreversibility is denoted ∆Stot and the remainder is identified as the

(single shot) mutual information, I, of the observation(s) that determined the forward protocol. As such

one finds an IFT for the sum of the two as in [104]

〈exp[−k−1
B (∆Stot + I)]〉FpF

0
= 1 (3.147)

or for equilibrium initial distributions [102]

〈exp[−((∆W −∆F )/kBT + k−1
B I)]〉F

pF,eq
0

= 1 (3.148)

revealing bounds on the ‘failure’ of the second law given the information gained from measurement. For

example, the latter suggests with measurement one can obtain free energy difference, on average, with a

smaller expenditure of work. Of course, the second law is not truly failing: what is now being written as

the total entropy production is no longer the total entropy production of the universe. We do note that

when dealing with feedback there is inherent ambiguity surrounding how that quantity can be defined

which is discussed in a later chapter.
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3.7 Time Reversal Symmetry in Stochastic Systems

Considering the division of entropy production into an adiabatic and non-adiabatic contribution by van

den Broeck et al. [36, 98, 99] it is helpful to establish more concretely the conditions under which we can

expect these two contributions to arise. Of these two contributions it is arguable that the non-adiabatic

term is most intuitive with it arising explicitly when the system is driven and with its mean being

controlled by changes in the probability distribution which we can immediately connect with a measure

of irreversibility. Indeed if the entropy production is solely non-adiabatic the entropy production is

simply given by a sum over logarithms of ratios of the canonical distribution over increments in the

driving protocol λF(t) and thus one can simply invoke the arguments of Crooks [8] to form the entropy

functional by way of detailed balance. The stochastic entropy, however, has a much wider range of

applicability with both integral and detailed fluctuation theorems having validity even when detailed

balance is broken. This wider range of applicability explicitly concerns the qualitatively separable

adiabatic contribution. We can see simply from its form in Eq. (3.124) that it arises when the number

of transitions between two states doesn’t balance even when the distribution is not changing with time.

This is the definition of broken detailed balance and is one of the defining features of a class of systems

which forms non-equilibrium steady states. These systems are important in the study of non-equilibrium

phenomena as they can be considered to be one of the most simple extensions beyond normal equilibrium

thermodynamics allowing us to probe the nature of matter out of equilibrium. Indeed it is for steady

states that the fluctuation theorems were originally identified and for which detailed fluctuation theorems

are valid over any period of time. In order to understand the adiabatic contribution we must therefore

have an understanding of detailed balance and how it features in the steady states of stochastic systems.

3.7.1 Steady States and Detailed Balance

In considering the behaviour of a system in the steady state one must consider the conditions required

in order to achieve such a distribution, that is one which is time invariant. This is most easily described

by means of a master equation which has discrete states. In order for the probability to be in a given

state to be constant we must require that, on average, there are as many transitions into that state as

there are leaving it. This can be written down quite simply by the condition

∑

x

P (x)T (x′|x) =
∑

x

P (x′)T (x|x′). (3.149)

When this condition is met for all x′ then the system will reach the steady state P st(x′) and the system

is said to be balanced. Detailed balance however, is a much more stringent condition which requires

every possible transition to be balanced in the same way the sum of all transitions was balanced above.

Consequently we have for detailed balance the condition

P st(x)T (x′|x) = P st(x′)T (x|x′) (3.150)

for all x and x′. When this condition is met every possible transition is balanced so that not only is the

distribution time invariant, but there is also no flow of probability anywhere in the system. Considering

now the Fokker-Planck equation for an over-damped particle in the form of a probability current J

∂p(x, t)

∂t
= −∂J(x, t)

∂x
, (3.151)
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we consequently identify the balance condition as being equivalent to

∂p(x, t)

∂t
= 0 J(x, t) = const (3.152)

and detailed balance as being equivalent to

∂p(x, t)

∂t
= 0 J(x, t) = 0 (3.153)

so that we understand that detailed balance ensures balance, but balance does not ensure detailed

balance. The above is how detailed balance is usually defined for most stochastic systems, however we

point out that its definition should be slightly more general and is based on the fact that some system

coordinates may be odd with respect to time reversal. For example if one is describing both the position

and velocity of a particle it is impossible to balance the transition from a positive position and velocity

to some other positive position and velocity since normal dynamics will not permit negative positional

steps to result from positive velocities. To make a physically meaningful interpretation we must reverse

the sign of the odd, velocity variables and thus have the definition of detailed balance as

pst(x, v)p(x′, v′, τ |x, v, 0) = pst(x′,−v′)p(x,−v, τ |x′,−v′, 0). (3.154)

In contrast, the position (and all other quantities we have discussed) do not change their sign and are

thus described as being even with respect to time reversal. The most widely used notation for this time

reversal is to consider the quantity εixi as the time reversal of the general coordinate xi where εi is +1

for even coordinates and −1 for odd. As such we write more generally, for a system which depends on

many coordinates both odd and even x = x1, x2, x3 . . ., the expression

pst(x)p(x′, τ |x, 0) = pst(εx′)p(εx, τ |εx′, 0). (3.155)

Specifically for the case of a Markov process we can make a simplification by considering τ → 0. In this

case the conditional probabilities reduce to delta functions so that pst(εx′)δ(εx′−εx) = pst(x)δ(x−x′).

By the symmetry of the delta function we therefore find pst(εx′) = pst(x) when x = x
′ meaning we can

write

pst(x)p(x′, τ |x, 0) = pst(x′)p(εx, τ |εx′, 0). (3.156)

In the context of Fokker-Planck equations there exist well defined conditions for identifying whether a

system obeys detailed balance with them commonly referred to as ‘potential conditions’ [38, 46]. For

the case of the general multidimensional Fokker-Planck equation

∂p(x, t)

∂t
= −

∑

i

∂

∂xi
[Ai(x)p(x, t)] +

1

2

∑

i,j

∂2

∂xi∂xj
[Bij(x)p(x, t)] (3.157)

the conditions are

εiAi(εx)p
st(x) = −Ai(x)p

st(x) +
∑

j

∂

∂xj

[
Bijp

st(x)
]

(3.158)

and

εiεjBij(εx) = Bij(x). (3.159)
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For the case of even variables only, in one dimension, applicable to the simple over-damped Brownian

motion, these conditions reduce to the simple single constraint

A(x)pst(x) =
1

2

∂

∂x

[
B(x)pst(x)

]
. (3.160)

In contrast to the over-damped case, detailed balance, in general, is not the requirement for zero sta-

tionary current, but a more complicated requirement based on a division of the current which shall be

addressed in a later chapter. Since the definition of detailed balance, as defined for even variables, is

central to the division of the entropy production seen in Sect. 3.5.1, and the thermodynamics that it

describes [35], it is this generalisation, such that it includes odd variables, and its consequences that we

go on to develop in subsequent chapters.

We briefly mention that from the potential conditions we realise that we cannot identify time reversal

invariance until we have the stationary solution which is obtained only after the necessary specification

of boundary conditions. If we consider natural, that is reflective, boundary conditions at infinity it is

trivial to show that the stationary solution for the one dimensional case with even variables is

pst(x) =
2N
B(x)

exp

[∫ x

dx′ 2A(x
′)

B(x′)

]

(3.161)

where N is a normalisation constant. This is entirely equivalent to the condition in Eq. (3.160) and is

independent of the form of A or B. Since we can generally associate the drift A with the force on the

particle and B with the diffusion parameter or temperature we can assert that this form holds whether

the force upon the particle derives from a defined potential V (x) or a non-conservative force Fnc or even

when the temperature is spatially varying. Consequently for such a system we cannot obtain a non-zero

probability current and therefore any time reversal symmetry breaking in the stationary state. This has

a simple geometric cause due to the impossibility of creating stationary current on a line.

If however, we consider a system with periodic boundary conditions, for example diffusion on a circle,

stationary current is possible. Taking the most trivial example consisting of diffusion on a homogeneous

circle in a uniform potential subject to a constant non-conservative force the stationary solution is

trivially pst(x) = const with the constant determined by normalisation. After substitution we find that

for detailed balance to hold we must require Fnc = 0, that is under no direct forcing. This result is

a direct consequence of having a non-conservative force. For such effects the solution is not simply

integrable as there is no defined potential from which the forces arise (the work performed by the force

is dependent on the number of loops of the circle the particle performs) and so the solution cannot be

expressed in the form of Eq. (3.161). As such, the set up of periodic boundary conditions in addition to

a non-conservative force will serve as a paradigmatic procedure for creating non-equilibrium stationary

states and to explore the nature of the non-equilibrium thermodynamics.
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Chapter 4

Entropy Production and its

Constituent Contributions for

Systems with Odd and Even Time

Reversal Behaviour in Discrete

Systems

As the central result of the present work we consider the form of the total entropy production and

its division into relevant thermodynamic quantities for stochastic systems which concern the evolution

and/or are described by coordinates and parameters which may transform differently under time rever-

sal. Physically, quantities may be described as having a defined parity and are deemed odd or even

depending on whether they change their sign or leave their sign invariant. As such, the subsequent

development is essential for the consideration of stochastic behaviour in systems which describe, or are

described, by velocities, torques, magnetic moments & fields and current densities to name a few.

In order to treat odd variables in stochastic systems as generally as possible we give an account

using discrete dynamics described by a master equation in the knowledge that one may readily represent

continuous stochastic behaviour as the limit of discrete dynamics, but not necessarily the other way

round [38]. It may be argued that modelling odd variables in such a way is unnatural, an issue we

believe is unimportant in general for arbitrary model systems as discussed in a later chapter, but point

out, for example, that the Ising model, which deals with magnetic moments, strictly is a discrete model

that concerns odd variables1. We also mention that the work in [110], appearing around the time the

present work was reported, considered odd discrete variables, though with a rather different approach

and without the subsequent consideration of the steady state thermodynamics. To proceed we consider

the dynamics of a general set of variables x = (x1, x2, . . . xn) that transform differently under the

time reversal operator, ε, such that εx = (ε1x1, ε2x2, . . . εnxn) where εixi is an involution such that

εiεixi = xi, stressing that ε performs the time reversal operation on all variables and is not a vector

of operators εi. For even variables we consider εi = 1, whilst typically for odd variables we consider

1Though we note that due to the presence of the odd applied magnetic field appearing in the time reversal invariant
Hamiltonian, treating all quantities (including the magnetic field) as even is equivalent.
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εi = −1, but note that the subsequent development, mathematically at least, is valid for any arbitrary

transformation that leaves the summation over paths unchanged. We recall that the entropy production

of a path of duration τ depends on two relative likelihoods of specified paths which here, in discrete

space and continuous time, are described by path probability densities. The first, pF[~x]PF
0
, is defined

as the probability density of observing a forward trajectory, ~x = x(t) for 0 ≤ t ≤ τ with a probability

distribution of starting configurations, PF(x(0), 0), that acts as an initial condition for the appropriate

master equation with matrix of transition rates, T (x|x′, λF(t)), where we consider the time dependence

and functional dependence on x and x′ to follow the forward protocol λF(t). The path probability

density of some sequence of N transitions to configuration xi from xi−1 at times ti, such that t0 = 0

and tN+1 = τ , can then be computed as a function of transition rates and exponential waiting times

according to Eq. (2.116) which we write explicitly here as

pF[~x]PF
0
= PF(x0, 0)e

∫ t1
t0

dtT (x0|x0,λ
F(t))

N∏

i=1

T (xi|xi−1, λ
F(ti))e

∫ ti+1
ti

dtT (xi|xi,λ
F(t)). (4.1)

We know, from Sect. 3.1, that the form of quantities that follow the transient fluctuation theorem, with

which we associate entropy production are based on the comparison of this path probability density to

that for another trajectory ~x∗, protocol λ∗, dynamics and initial condition P ∗(x∗(0), 0). For discrete

systems this is written

A[~x] = ln
[

pF[~x]PF
0
/p∗[~x∗]P∗

0

]

, (4.2)

where here kB is taken as unity so that such quantities can describe athermal systems noting that all

quantities can be premultiplied by kB when dealing with thermal systems. Again, this quantity will

follow the various fluctuation theorems if there is a one to one mapping between ~x and ~x∗ so that we can

consider the summation over ~x∗ to be equivalent to that over ~x and if we have ergodic consistency such

that the bounds and region of the summation contains all the possible paths in both sets of dynamics.

Once again we point out that in general we consider this to be the requirement p∗[~x∗] = 0 for all pF[~x] = 0

and vice versa rather than just specifying that initial distributions are nowhere zero. Finally we recall

the implication 〈A[~x]〉F
PF

0
≥ 0 by Jensen’s inequality.

4.1 Expression for Total Entropy Production

We now proceed by specifying certain choices of dynamics, protocol, path and initial condition which

lead to various contributions to total entropy production. We shall argue that despite this seemingly

large choice in the specification of the compared path probability density, physically relevant quantities

are based on only two specifications, namely a single (involutive so as to be physically meaningful in

this context) transformation and a specification, or adaptation of, the dynamics, but stress that the

two choices cannot be made independently. This second point is related to further specification of the

ergodic consistency requirement considered earlier and is based on the fact that given a transition x → x
′

under the normal, forward dynamics, the transition x
∗ → x

∗′ is not, in general, possible under those

same dynamics. For example, if the forward dynamics concern position and velocity and behave like

Hamiltonian dynamics, if we choose ~x∗ = ~xR, those normal, forward dynamics that produced ~x cannot

also produce ~x∗ since a negative positional step cannot arise whilst the momentum is positive. As such

if the chosen transformation corresponds to a transition which might be forbidden under the normal

dynamics, one is obliged to choose dynamics under which such a transition is possible.
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Such a consideration is also necessary when defining the total entropy production. Since we consider

the entropy production to be a measure of the irreversibility of the process we evaluate the reverse path

probability density which is defined using the same dynamics as the forward path. As such we consider

an involution which produces a path which is a solution of the normal dynamics. Such an involution is

the choice f(t) → f†(t) ≡ εf(τ − t) and naturally leads to the reverse path x
∗(t) = x

†(t) = εx(τ − t)

which, for position and velocity variables for example, is equal to the retracing of the forward sequences

of positions and velocities, but with the velocities reversed. Next we argue that we need only perform

this involution on the protocol and initial condition to fully and consistently specify the compared

path probability density. We define the reversed protocol λ∗(t) = λ†(t) = ελF(τ − t) which amounts

to the replaying of any external switching protocol controlling the dynamics in reverse sequence as

we have already seen, but also with an instantaneous time reversal of any odd terms (for example a

magnetic field). Since in such a master equation approach the dynamics are specified by transition

rates, rather than explicitly on physical variables with a defined parity, the notation T (x′|x, ελ(t)) is

taken to represent an alternative (arbitrary, so long as the same allowed transitions in T (x′|x, λ(t)) are
possible) set of transition rates which we interpret as the time reversed transition rates. Finally we

apply this involution to the dynamically evolving solution to the master equation which appears in the

forward path probability density as the initial condition of the forward dynamics to find the appropriate

choice of initial condition for the reverse path. This then allows an alternative argument for the choice

of boundary terms in the path probability density beyond that of appealing to a deconstruction of the

Gibb’s entropy. To do so we consider the involution applied to the solution of the master equation so that

we have P ∗(x∗(t), t) = P †(x∗(t), t) =
[
PF(x∗(t), t)

]†
which involves a transformation of the functional

form of the distribution according to its time reversal parity and evaluation at time τ − t which we write

ε̂PF(x∗(t), τ − t) = PF(εx∗(t), τ − t). However, since it is the initial condition for the alternative path

probability density we have t = 0 and x∗(0) = x†(0) = εx(τ) so that we may write the initial condition

P ∗(x∗(0), 0) = PF(εεx(τ), τ) = PF(x(τ), τ). Explicitly, the consequence of this property is the relation

p†[~x†]P †
0
= p†[~x†]ε̂PF

τ
and leads to the identification of the system entropy as defined previously. This

time reversal of the distribution is not usually mentioned, presumably from the relative lack of focus

on systems with odd variables, but should be included as a component of the heuristic description of

entropy production as the relative likelihood of observing the reverse path. We argue that since such

definitions follow from a time reversal of the path and protocol, this naturally should extend to the

initial condition in the same way. Constructing the time reversed path probability density we write

p†[~x†]P †
0
= P †(x†0, 0)e

∫ t1
t0

dtT (x†0|x
†
0,λ

†(t))
N∏

i=1

T (x†i |x†i−1, λ
†(ti))e

∫ ti+1
ti

dtT (x†i |x
†
i ,λ

†(t)). (4.3)

We have p†[~x†]P †
0
= p†[~x†]ε̂PF

τ
and x

†
i = εxN−i so we may rearrange

p†[~x†]ε̂PF
τ
= PF(xN , τ)e

∫ tN+1
tN

dtT (εx0|εx0,λ
†(t))

×
N∏

i=1

e
∫ tN−i+1
tN−i

dtT (εxi|εxi,λ
†(t))

T (εxi−1|εxi, λ†(tN−i+1)). (4.4)
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We then perform a change of variable t → τ − t and use λ†(ti) = ελF(tN−i+1) such that

p†[~x†]ε̂PF
τ
= PF(xN , τ)e−

∫ t0
t1

dtT (εx0|εx0,ελ
F(t))

×
N∏

i=1

e
−

∫ ti
ti+1

dtT (εxi|εxi,ελ
F(t))

T (εxi−1|εxi, ελF(ti)). (4.5)

A comparison of pF[~x]PF
0
and p†[~x†]ε̂PF

τ
characterises the irreversibility of the forward path and defines

the total entropy production (using units kB = 1)

∆Stot = ln pF[~x]PF
0
− ln p†[~x†]P †

0

= ln
PF(x0, 0)

PF(xN , τ)
+

N∑

i=0

ln
e
∫ ti+1
ti

dt T (xi|xi,λ
F(t))

e
∫ ti+1
ti

dt T (εxi|εxi,ελF(t))
+

N∑

i=1

ln
T (xi|xi−1, λ

F(ti))

T (εxi−1|εxi, ελF(ti))

= ln
PF(x0, 0)

PF(xN , τ)
+

∫ τ

0

dt
(
T (x(t)|x(t), λF(t))− T (εx(t)|εx(t), ελF(t))

)

+

N∑

i=1

ln
T (xi|xi−1, λ

F(ti))

T (εxi−1|εxi, ελF(ti))
. (4.6)

Recognising the structure of its form, identifying A[~x] = ∆Stot and Â[~x†] = ∆Ŝtot, we thus find it obeys

[12]

〈exp [−∆Stot]〉FPF
0
= 1, (4.7)

p†(∆Ŝtot = −A)ε̂PF
τ
= e−ApF(∆Stot = A)PF

0
(4.8)

and

〈g(C[~x†])〉†
ε̂PF

τ
= 〈g(B[~x])e−∆Stot〉FPF

0
(4.9)

recalling g is an arbitrary function and the two new functionals are related by B[~x] = C[~x†]. The form

of ∆Stot is more complicated than previous descriptions [25, 36] unless εx = x and ελF = λF. This

leads to some notable differences between this description and that in the literature. First, we note

that the medium entropy change is a path functional that, for a master equation approach, is delivered

continuously, not solely discontinuously at jumps as is usually expected when considering a system

consisting of even variables. This also provides the first major revision to the mean entropy production

rate as described by Schnakenberg [58] since we may now write

d〈∆Stot〉FPF
0

dt
=
∑

x 6=x′

P (x, t)T (x′|x, λF(t)) ln
P (x, t)T (x′|x, λF(t))

P (x′, t)T (εx|εx′, ελF(t))

+
∑

x

P (x, t)
(
T (x|x, λF(t))− T (εx|εx, ελF(t))

)
. (4.10)

Secondly, since we generally suppose that under time reversal, there may be an arbitrary transformation

in the time independent behaviour of the transition rates we must add another condition to those

required for a DFT and related symmetries and behaviour. This is because p† will only reduce to

pF as usual when the initial and final distributions are identical, protocol obeys λF(τ − t) = λF(t) as

before and ελF(t) = λF(t). Conceptually, this addition means that in a given stationary state, where

the total entropy production has previously been expected to obey a DFT, one will not necessarily

observe a DFT unless the protocol is time reversal invariant. This behaviour ultimately stems from the

fact that the nature of entropy production depends explicitly on the definition of time reversal in its
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construction which depends on more than just the mathematics which describe the observed system,

but rather on a set of decisions regarding how one should treat that system physically. As such the

precise definition of the reverse path and the probability density of generating it is rendered somewhat

ambiguous. Consequently one must be careful with the reasoning employed and the physical definitions

one attaches to such quantities. This issue is expanded on in a later chapter.

4.2 The Use of the Adjoint Dynamics and Three Contributions

to Total Entropy Production

Next we consider alternative specifications of p∗. In the same manner as in the consideration of Hatano-

Sasa relation/non-adiabatic entropy production and Speck-Seifert relation/adiabatic entropy production

we consider the adjoint dynamics which are those that lead to the same stationary state as the normal

dynamics, T , but generate flux of the opposite sign in that stationary state. It can be shown [25, 36, 111]

that this requires an adjoint transition rate matrix T ad described by

T ad(x|x′, λF(t)) = T (x′|x, λF(t))
PF,st(x, λF(t))

PF,st(x′, λF(t))
(4.11)

where PF,st is the stationary probability distribution corresponding to λF(t). However, in the same way

that the normal dynamics may not, in general, permit transitions x
′ → x or εx → εx′, similarly the

adjoint dynamics may not, in general, permit transitions x → x
′ or εx′ → εx. Thus we must consider

the representation of the adjoint dynamics as either Eq. (4.11) or

T ad(εx′|εx, ελF(t)) = T (εx|εx′, ελF(t))
PF,st(εx′, ελF(t))

PF,st(εx, ελF(t))
(4.12)

depending on the specific transition being considered. Explicitly, when choosing p∗[~x∗], we should not

consider pF,ad[~x]PF
0
or p†,ad[~x†]P †

0
.

Under the adjoint dynamics, however, an appropriate involution choice is that which we have seen

before, for the fluctuation theorems with only even variables, and consists of a reversal of sequence of the

path, but without the instantaneous time reversal operation such that f(t) → fR(t) ≡ f(τ − t). As such

the path is given by x
∗(t) = x

R(t) = x(τ−t). Applying the same involution yields the backwards protocol

λ∗(t) = λF(τ − t) = λR(t) and the initial distribution P ∗(x∗(0), 0) = PR,ad(xR(0), 0) = PF(x(τ), τ) so

that p∗[~x∗]PR
0

= p∗[~x∗]PF
τ
. The path probability density under this involution and adjoint dynamics

may then be written

pR,ad[~xR]PR
0
= PR(xR0 , 0)e

∫ t1
t0

dtT ad(xR0 |xR0 ,λR(t))
N∏

i=1

T ad(xRi |xRi−1, λ
R(ti))e

∫ ti+1
ti

dtT ad(xRi |xRi ,λR(t))

= PF(xN , τ)e−
∫ t0
t1

dtT ad(x0|x0,λ
F(t))

N∏

i=1

e
−

∫ ti
ti+1

dtT ad(xi|xi,λ
F(t))

T ad(xi−1|xi, λF(ti)). (4.13)
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We then construct a quantity of the form given in Eq. (4.2) and utilise Eq. (4.11) to obtain

∆S1 = ln pF[~x]PF
0
− ln pR,ad[~xR]PR

0

= ln
PF(x0, 0)

PF(xN , τ)
+

N∑

i=0

ln
e
∫ ti+1
ti

dt T (xi|xi,λ
F(t))

e
∫ ti+1
ti

dt T ad(xi|xi,λF(t))
+

N∑

i=1

ln
T (xi|xi−1, λ

F(ti))

T ad(xi−1|xi, λF(ti))

= ln
PF(x0, 0)

PF(xN , τ)
+

∫ τ

0

dt
(
T (x(t)|x(t), λF(t))− T ad(x(t)|x(t), λF(t))

)

+

N∑

i=1

ln
PF,st(xi, λ

F(ti))

PF,st(xi−1, λF(ti))
. (4.14)

However, since by defining the adjoint dynamics we have assumed the existence of a stationary state,

we may simplify this expression by an explicit consideration of balance under the adjoint dynamics as

follows
∑

x′ 6=x

PF,st(x, λF(t))T ad(x′|x, λF(t)) =
∑

x′ 6=x

PF,st(x′, λF(t))T ad(x|x′, λF(t)). (4.15)

We may rearrange and identify

∑

x′ 6=x

T ad(x′|x, λF(t)) =
∑

x′ 6=x

PF,st(x′, λF(t))

PF,st(x, λF(t))
T ad(x|x′, λF(t))

∑

x′ 6=x

T ad(x′|x, λF(t)) =
∑

x′ 6=x

T (x′|x, λF(t))

−T ad(x|x, λF(t)) = −T (x|x, λF(t)) (4.16)

allowing us to simplify

∆S1 = lnPF[~x]PF
0
− lnPR,ad[~xR]PR

0

= ln
PF(x0, 0)

PF(xN , τ)
+

N∑

i=1

ln
PF,st(xi, λ

F(ti))

PF,st(xi−1, λF(ti))
. (4.17)

Recognising the structure of its form and by identifying A[~x] = ∆S1 and Â[~xR] = ∆Ŝ1 we find that it

obeys

〈exp [−∆S1]〉FPF
0
= 1, (4.18)

PR,ad(∆Ŝ1 = −A)PF
τ
= e−APF(∆S1 = A)PF

0
(4.19)

and

〈g(C[~xR])〉R,ad
PR

τ
= 〈g(B[~x])e−∆S1〉FPF

0
, (4.20)

the first of which exists in the literature as the Hatano-Sasa relation [93, 112] or IFT for the non-adiabatic

entropy production [36, 98, 99] with the final two being their logical extension when the symmetry is

considered more generally.

Let us now consider, once again under the adjoint dynamics, the involution choice f(t) → fT(t) ≡ εf(t)

which in turn leads to the path x
∗(t) = x

T(t) = εx(t) (all of the considered involutions are illustrated

in Fig. 4.1). Applying the involution to the protocol we obtain λ∗(t) = λT(t) = ελF(t) and initial dis-

tribution P ∗(x∗(0), 0) = PT(xT(0), 0) = ε̂PF(εx(0), 0) = PF(x(0), 0) such that pT[~xT]PT
0
= pT[~xT]ε̂PF

0
.

80



Figure 4.1: Illustration of the discretisation procedure and all possible involutions for the evolution of a
sole odd variable for N = 2.

The path probability density for this case is therefore

pT,ad[~xT]PT
0
= PT(xT0 , 0)e

∫ t1
t0

dtT ad(xT0 |xT0 ,λT(t))
N∏

i=1

T ad(xTi |xTi−1, λ
T(ti))e

∫ ti+1
ti

dtT ad(xTi |xTi ,λT(t))

= PF(x0, 0)e
∫ t1
t0

dtT ad(εx0|εx0,ελ
F(t))

N∏

i=1

T ad(εxi|εxi−1, ελ
F(ti))e

∫ ti+1
ti

dtT ad(εxi|εxi,ελ
F(t)). (4.21)

By Eq. (4.2), along with the property T (xi|xi, λ
F(t)) = T ad(xi|xi, λ

F(t)) from Eq. (4.16), this then

allows us to define

∆S2 = ln pF[~x]PF
0
− ln pT,ad[~xT]PT

0

=

N∑

i=0

ln
e
∫ ti+1
ti

dtT (xi|xi,λ
F(t))

e
∫ ti+1
ti

dtT (εxi|εxi,ελF(t))
+

N∑

i=1

ln
PF,st(εxi−1, ελ

F(ti))

PF,st(εxi, ελF(ti))

T (xi|xi−1, λ
F(ti))

T (εxi−1|εxi, ελF(ti))

=

∫ τ

0

dt
(
T (x(t)|x(t), λF(t))− T (εx(t)|εx(t), ελF(t))

)

+

N∑

i=1

ln
PF,st(εxi−1, ελ

F(ti))

PF,st(εxi, ελF(ti))

T (xi|xi−1, λ
F(ti))

T (εxi−1|εxi, ελF(ti))
. (4.22)

Similarly, by recognising the structure of its form we find that it obeys

〈exp [−∆S2]〉FPF
0
= 1 (4.23)
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and

〈g(C[~xT])〉T,ad

ε̂PF
0

= 〈g(B[~x])e−∆S2〉FPF
0
, (4.24)

but note that unlike for ∆Stot and ∆S1, ∆S2 is odd with respect to the involution ~x → ~xT owing to the

lack of a system entropy term. As such we can identifyA[~x] = ∆S2, but also that Â[~xT] = ∆Ŝ2 = ∆ST,ad
2

and so can write, more generally,

pT,ad(∆ST,ad
2 = −A)ε̂PF

0
= e−ApF(∆S2 = A)PF

0
. (4.25)

Unlike ∆S1, the quantity ∆S2 and relevant fluctuation theorems are new in the literature. We must

immediately recognise that ∆Stot 6= ∆S1 +∆S2 differing by a quantity

∆S3 =

N∑

i=1

ln
PF,st(xi−1, λ

F(ti))P
F,st(εxi, ελ

F(ti))

PF,st(xi, λF(ti))PF,st(εxi−1, ελF(ti))
(4.26)

such that ∆Stot = ∆S1 +∆S2 +∆S3. If however, εx = x and ελF(t) = λF(t) then ∆S3 = 0 and ∆S2

reduces to the adiabatic entropy production appearing in [36, 98, 99].

We make note here that when one considers the form of the final two fluctuation relations for ∆S1

and ∆S2 they are somewhat unhelpful since they explicitly concern dynamics and trajectories which

are not realisable under the forward dynamics and therefore may be entirely unphysical. As such it is

instructive to define what we shall call the ‘reversed adjoint dynamics’ which should be defined as follows

T ad-rev(εx|εx′, ελ(t)) = T ad(x|x′, λ(t)) (4.27)

and

T ad-rev(x′|x, λ(t)) = T ad(εx′|εx, ελ(t)). (4.28)

Such dynamics are physically realisable and so allow us to rewrite the final fluctuation relations in the

strictly identical, but more helpful forms

P †,ad-rev(∆Ŝ1 = −A)ε̂PF
τ
= e−APF(∆S1 = A)PF

0
(4.29)

and

〈g(C[~x†])〉†,ad-rev
ε̂PF

τ
= 〈g(B[~x])e−∆S1〉FPF

0
(4.30)

for ∆S1 where A[~x] = ∆S1 and Â[~x†] = ∆Ŝ1. Similarly, we may also write

pF,ad-rev(∆Sad-rev
2 = −A)PF

0
= e−ApF(∆S2 = A)PF

0
(4.31)

and

〈g(C[~x])〉F,ad-rev
PF

0
= 〈g(B[~x])e−∆S2〉FPF

0

= 〈g(C[~x])e−∆S2〉FPF
0

(4.32)

for ∆S2 where A[~x] = ∆S2 and Â[~x] = ∆Ŝ2 = ∆Sad-rev
2 . Again, the nature of the adjoint and

reversed adjoint dynamics are not of primary concern since their purpose has been to elucidate the main

contributions to entropy production which we shall now discuss, however the physical interpretation and

relationship between adjoint and reversed adjoint dynamics will be discussed in the later chapter on
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continuous systems.

4.3 Thermodynamic Interpretation and Relation to other Fluc-

tuation Theorems

An important consequence we must recognise is that neither

∆Stot −∆S1 = ∆S2 +∆S3

= ln pR,ad[~xR]PF
0
− ln p†[~x†]ε̂PF

0

= ln p†,ad-rev[~x†]PF
0
− ln p†[~x†]ε̂PF

0
(4.33)

nor

∆Stot −∆S2 = ∆S1 +∆S3

= ln pT,ad[~xT]ε̂PF
0
− ln p†[~x†]ε̂PF

τ

= ln pF,ad-rev[~x]PF
0
− ln p†[~x†]ε̂PF

τ
(4.34)

can be written in the form required for Eq. (3.10) and so do not obey an IFT and do not necessarily

have any bounds on the sign of their mean. The implication of such a division of the entropy production

is to identify that, in general, the mean total entropy production cannot be split into two rigorously

positive quantities aligned with relaxation and driving and steady non-equilibrium constraints as argued

in [36, 98, 99]. For circumstances where it is suitable to associate an external temperature with the

external or medium entropy change we may proceed by following the formalism of Seifert [12, 33] and

write (simplifying for one state dependent temperature and reintroducing kB since such a system is

implicitly thermal)

∆Stot = kB ln
PF(x(0), 0)

PF(x(τ), τ)
+

∆Q

T
= ∆Ssys +

∆Q

T
, (4.35)

where T is the temperature of the environment. Further, under such conditions, to understand our divi-

sion of entropy production we should attempt to align our quantities with those of Oono and Paniconi,

such that total heat transfer to the environment, ∆Q, is the sum of the excess heat and house-keeping

heat ∆Q = ∆Qex +∆Qhk [35]. It is in this division and the precise definitions of these quantities that

we make three notable points. First, however we must understand their meaning. The house-keeping

heat was introduced as the heat flow that is constantly dissipated in a non-equilibrium stationary state

or the heat flow required to keep the system out of equilibrium whilst the excess heat comprised the

remainder of the heat flow and characterised system behaviour on top of the steady dissipation of heat.

What, however, is lacking in this definition, despite the intuitive approach, is the precise microscopic (or

otherwise, that is to say mean) definition of such quantities without which two questions immediately

arise. Assuming the characterisation of a stationary state is by its mean behaviour (that is to say by a

stationary probability distribution), are the excess and house-keeping heats microscopic or mean heat

flows? And the second, but related question is how one defines the house-keeping heat when the system

is not in the stationary state. In other words, is it the value of the functional form evaluated out of the

stationary state or is it the quantity which would be required to maintain the corresponding stationary

state to which the system would relax if left unperturbed. For the case of even variables these ques-

tions have either been answered or are irrelevant. This is illustrated by the adiabatic and non-adiabatic

entropy productions which generalise the Hatano-Sasa and Speck-Seifert relations respectively. For ex-
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ample, the non-adiabatic entropy contribution, which is comprised of the excess heat, is identically zero

for all individual realisations and in the mean when the system is in the stationary state. The remain-

der, the adiabatic entropy contribution which is comprised of the house-keeping heat, similarly vanishes,

in both mean and in detail, when the corresponding stationary state of the system is the equilibrium

distribution such that detailed balance holds.

However, when we look at the contributions when odd time reversal behaviour is included this picture

is not as simple. ∆S1 vanishes in both mean and in detail when the system is in the stationary state,

which is to be expected as it has the same functional form as the non-adiabatic entropy production.

This together with the adherence to an IFT would imply alignment with the excess heat. Similarly ∆S2,

contributes in both mean and in detail out of equilibrium and vanishes in mean and in detail when the

underlying stationary state is in equilibrium. Likewise, its adherence to an IFT, and thus its positivity in

the mean, suggests alignment with the house-keeping heat. This however, leaves ∆S3 unaccounted for.

Examining its structure we see that it must vanish for all individual realisations when the underlying

dynamics produce an equilibrium stationary state owing to time reversal invariance in that stationary

state, but if we consider its mean properties we see that on average it vanishes when the system is in

any stationary state. This is easily seen by recognising

d〈∆S3〉FPF
0

dt
=
∑

x,x′

PF(x, t)T (x′|x, λF(t)) ln
PF,st(x, λF(t))PF,st(εx′, ελF(t))

PF,st(x′, λF(t))PF,st(εx, ελF(t))

=
∑

x,x′

PF(x, t)T (x′|x, λF(t))

[

ln
PF,st(x, λF(t))

PF,st(εx, ελF(t))
− ln

PF,st(x′, λF(t))

PF,st(εx′, ελF(t))

]

= −
∑

x′

dPF(x′, t)

dt
ln

PF,st(x′, λF(t))

PF,st(εx′, ελF(t))
. (4.36)

Such an ambiguity is reflected in the fact that, unlike for systems with only even variables and the re-

sultant adiabatic entropy production, there is no single quantity which uniquely vanishes when detailed

balance is obeyed. That is to say the breakage of detailed balance and thus the departure from equilib-

rium of the stationary state could be measured by any of ∆S2, ∆S3 or ∆S2 + ∆S3 since all vanish in

equilibrium. This means we need to revisit the question of whether the excess and house-keeping heats

are mean or microscopic quantities. If they are defined by their mean behaviour, ∆S3 would align with

∆S1 and the excess heat whilst if they are defined by their microscopic behaviour, ∆S3 would align with

∆S2 and the house-keeping heat.

Ultimately, since we have defined microscopic quantities which are subject to constraints upon their

distribution, namely fluctuation theorems, we consider such quantities to be defined microscopically.

However, we remain aware of the mean behaviour of all our quantities since many of the key proper-

ties of the fluctuation theorems, namely the second law and its generalisations, are considered in terms

of mean quantities. Doing so allows us to associate the house-keeping heat with all entropy produc-

tion contributions that arise from a non-equilibrium constraint that breaks detailed balance. Such a

consideration (see Sect. 3.7) leads us to the following definition

∆Qhk = (∆S2 +∆S3)T. (4.37)

Consequently, with ∆S1 vanishing for all trajectories in the stationary state we consolidate the definition

of the excess heat as the heat transfer associated with an entropy flow that exactly cancels the change
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in system entropy over a period in the stationary state such that

∆Qex = (∆S1 −∆Ssys)T. (4.38)

Following from these definitions, the first of our three statements about the thermodynamics of such

systems is that the house-keeping heat can be split into two thermodynamically meaningful quantities

which map onto ∆S2 and ∆S3. Despite the definition of our quantities as microscopic heat contributions

it is important to recognise their mean behaviour and they are named to reflect this. Since the mean

rate of change of ∆S3 vanishes in the stationary state we define the ‘transient house-keeping heat’

∆Qhk,T = ∆S3T (4.39)

and the ‘generalised house-keeping heat’

∆Qhk,G = ∆S2T (4.40)

such that ∆Qhk = ∆Qhk,T+∆Qhk,G. A further implication of 〈d∆S3/dt〉F,stpF,st
0

= 0, is that the generalised

house-keeping heat, when averaged, has the mean properties previously attributed to the house-keeping

heat. It is the generalised house-keeping heat (appropriately scaled by kBT ) which obeys an IFT, is

rigorously positive in the mean and thus reflects the positive heat flow required to maintain a stationary

state. As such we may rewrite Eq. (4.23) as

〈exp [−∆Qhk,G/kBT ]〉FPF
0
= 1 (4.41)

providing the bound 〈∆Qhk,G〉F ≥ 0 for all times, protocols and initial conditions.

Our second statement, as a corollary to the first, states that in general ∆Qhk/T = ∆S2 + ∆S3 =

kB ln pR,ad[~xR]PF
0
− kB ln p†[~x†]ε̂PF

0
, which cannot be written in the form ln pF[~x]PF

0
− ln p∗[~x∗]P∗

0
, does

not obey the equality which was previously derived for over-damped dynamics [94]. This is the statement

〈exp [−∆Qhk/kBT ]〉FPF
0
6= 1 (4.42)

providing no bounds on 〈∆Qhk〉F except in the stationary state when ∆Qhk/T = ∆Stot or generally

when PF,st(εx, ελF(t)) = PF,st(x, λF(t)).

Our final point relates to the Hatano-Sasa equality and second law generalisation. Given the inter-

pretation laid out above we also find that one has in agreement with the original statement

〈exp[−k−1
B ∆Ssys −∆Qex/kBT ]〉FPF

0
= 1 (4.43)

which leads to the generalised second law inequality

∆S ≥ −
〈∆Qex〉FPF

0

T
(4.44)

where S is the Gibbs entropy 〈Ssys〉 = −kB
∑

P lnP . A key aspect to this second law generalisation is

that it concerns state functions and mean heat flows and comprises solely of transient terms that reach

fixed values when the system is in the steady state. However since ∆S1 + ∆S3 = ln pT,ad[~xT]ε̂PF
0
−

ln p†[~x†]ε̂PF
τ

cannot be written in the form ln pF[~x]PF
0
− ln p∗[~x∗]P∗

0
, the failure of its adherence to an
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IFT,

〈exp[−k−1
B ∆Ssys − (∆Qex +∆Qhk,T)/kBT ]〉FPF

0
6= 1, (4.45)

expresses a failure to express a second law generalisations in terms of all the transient state variables

and heat flows of the system unlike the case where only even time reversals are present. To be clear, the

second law generalisation exists (Eq. (4.44)), but could not be identified by the observation of the mean

transient terms in, for example, the discussion of transitions between stationary states, which one might

expect since the second law generalisation involves only mean quantities.
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Chapter 5

Entropy Production and its

Constituent Contributions for

Systems with Odd and Even Time

Reversal Behaviour in Continuous

Systems

We now provide a development along the lines of the previous chapter, this time however, in the context

of continuous behaviour. Again we consider a general set of variables x = (x1, x2, . . . xN ) that may

be odd or even under time reversal εx = (ε1x1, ε2x2, . . . εNxN ). Specifically, we consider continuous

Markovian dynamics described by a system of arbitrary correlated Itō stochastic differential equations

(SDEs) such that the evolution of the coordinates x, in vector notation such that x and A are vectors,

B a matrix and dW a vector of independent uncorrelated Wiener processes, is given as

dx = A(x,λ(t))dt+B(x,λ(t))dW . (5.1)

Such a description may then account for a wide range of non-equilibrium behaviour such as non-

conservative forcing, state dependent diffusion and also correlated diffusion [113]. Since the evolution of

x is given explicitly we take it to depend only on x and a generalised notion of the protocol, written

for brevity as λ
F(t) ≡ λ(t) = (λ1(t), λ2(t) . . . λM (t)), which characterises, entirely, all other functional

dependence of A and B not accounted for by x. Similarly we then define a time reversed protocol by

acknowledging ελ(t) = (ε1λ1(t), ε2λ2(t) . . . εMλM (t)). Since we allow xi and λi to be either odd or even

under time reversal we can divide the deterministic dynamics into reversible and irreversible components

[46] such that

dxi = Arev
i (x,λ(t))dt+Air

i (x,λ(t))dt+
∑

j

Bij(x,λ(t))dWj (5.2)

by defining

Air
i (x,λ(t)) =

1

2
(Ai(x,λ(t)) + εiAi(εx, ελ(t))) = εiA

ir
i (εx, ελ(t)) (5.3)

Arev
i (x,λ(t)) =

1

2
(Ai(x,λ(t))− εiAi(εx, ελ(t))) = −εiA

rev
i (εx, ελ(t)). (5.4)
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We may describe such a system by using the appropriate Fokker-Planck equation with diffusion matrix

D(x,λ(t)) =
1

2
B(x,λ(t))B(x,λ(t))T (5.5)

such that
∂p(x, t)

∂t
= −

∑

i

∂

∂xi
(Ai(x,λ(t))p(x, t)) +

∑

i,j

∂2

∂xi∂xj
(Dij(x,λ(t))p(x, t)) (5.6)

where again for brevity we consider p(x, t) ≡ pF(x, t). We will find it helpful, subsequently, to express

this Fokker-Planck equation as a continuity equation in terms of the vector probability density current

J(x, t)

∂p(x, t)

∂t
= −∇ · J(x, t)

= −∇ ·
(
J

ir(x, t) + J
rev(x, t)

)
(5.7)

which we separate into irreversible and reversible components. These too take vector form such that

J ir
i (x, t) = Air

i (x,λ(t))p(x, t)−
∑

j

∂

∂xj
(Dij(x,λ(t))p(x, t))

J rev
i (x, t) = Arev

i (x,λ(t))p(x, t). (5.8)

Using the same involution definitions x
†(t) = εx(τ − t), x

R(t) = x(τ − t) and x
T(t) = εx(t), we

may construct the relevant dimensionless entropy changes. Since we now are considering systems in

both continuous space and time the entropy changes now are constructed, as in Sect. 3.1, from path

probability functionals. We write the total path probability functional as P[~x] which may be divided into

an initial probability density function, which we write p(x(t), t) taken to be the instantaneous solution

to the Fokker-Planck equation, and the path probability functional which we write P[~x|x(0)]. The

unitless contributions to entropy production, which then become thermodynamically meaningful when

multiplied by kB , are given, for a process starting at t = 0 and of duration τ , as:

∆Stot = lnPF[~x]pF
0
− lnP†[~x†]ε̂pF

τ

= ln
p(x(0), 0)

p(x(τ), τ)
+ ln

PF[~x|x(0)]
P†[~x†|εx(τ)]

, (5.9)

∆S1 = lnPF[~x]pF
0
− lnPR,ad[~xR]pF

τ

= ln
p(x(0), 0)

p(x(τ), τ)
+ ln

PF[~x|x(0)]
PR,ad[~xR|x(τ)]

(5.10)

and

∆S2 = lnPF[~x]pF
0
− lnPT,ad[~xT]ε̂pF

0

= ln
p(x(0), 0)

p(x(0), 0)
+ ln

PF[~x|x(0)]
PT,ad[~xT|εx(0)]

. (5.11)

As before the involutions R, T and † are applied to path, protocol and distribution, but have had the

involutions explicitly performed for the initial distribution. Similarly ‘ad’ designates that the dynamics

are adjoint with respect to the forward dynamics. All three are expected to obey the relevant fluctuation
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theorems by the nature of their form. Then, by the construction ∆Stot = ∆S1 +∆S2 +∆S3, we have

∆S3 = lnPT,ad[~xT]ε̂pF
0
+ lnPR,ad[~xR]pF

τ
− lnPF[~x]pF

0
− lnP†[~x†]ε̂pF

τ

= ln
PR,ad[~xR|x(τ)]PT,ad[~xT|εx(0)]

PF[~x|x(0)]P†[~x†|εx(τ)]
(5.12)

which cannot be expressed in the form of Eq. (4.2) and so does not obey an IFT. Again we may divide

the entropy production into a system and medium entropy change, which for a general thermal system

with a phase space or time dependent temperature can be defined in terms of a heat flow so that

∆Stot = kB ln
p(x(0), 0)

p(x(τ), τ)
+

∫ t=τ

t=0

d

(
Q

T (x(t), t)

)

= ∆Ssys +∆Smed, (5.13)

where d(Q/T ) is the microscopic medium entropy production for one of, in principle, an arbitrarily

large number of independent equilibrium heat baths all at fixed temperature with each experiencing a

microscopic heat flow divisible into components dQ = dQex+dQhk = dQex+dQhk,G+dQhk,T as before.

At this point it should be mentioned that unlike for discrete stochastic systems, the situations where

the integrals over d~x and d~x∗ are the same and ergodic consistency is achieved (such that one arrives

at fluctuation theorems) are not as straightforward to define. One, however, can invoke the so-called

Girsanov theorem which states, for such continuous systems, under what conditions the probability mea-

sures of the forward and alternative processes are equivalent [38, 114] which in turn guarantees the above

two conditions. In one dimension we require that the noise strengths experienced by the forward and

alternative paths at times that contribute to the same point in the functional A[~x] are identical. Exam-

ining the form of the path integrals used in the formulation of the fluctuation theorems we understand

that all these properties coincide when the relevant pre-exponential factors in the short time propagators,

which depend on the noise strength and form the path integral measure, are invariant under the path

and protocol transformation. In higher dimensions the condition translates to the determinant of the

diffusion matrix appearing in the relevant short time propagator (Eq. (2.142)) being invariant under the

path and protocol transformation. Sufficient conditions for such a property involve enforcing the parity

dependent behaviour of the diffusion matrix to be Dij(εx, ελ(t)) = εiεjDij(x,λ(t)) and for the path and

the protocol to undergo the same transformation (that is we cannot allow x∗(t) = x(t) if λ∗(t) = λ(τ−t),

for example), but clearly these conditions can be relaxed should there be additive noise. It is therefore

important to note that all the above quantities, under the assumption Dij(εx, ελ(t)) = εiεjDij(x,λ(t)),

are defined in such a way that ensures this.

Since we are describing the dynamics using SDEs it is sensible to seek a description of a small

increment in each entropy production contribution given an increment in the underlying variables x′−x =

x(t + dt) − x(t) in a small time dt. By considering appropriate involutions applied to the protocol and

increments of the paths we identify, from Eqs. (5.9), (5.10), (5.11) and (5.12), in terms of the short term
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propagators for the forward and adjoint dynamics,

d∆Stot = −d(ln (p)) + ln
p(x′, t+ dt|x, t;λ(t))

p(εx, t+ dt|εx′, t; ελ(t)) +O(dt3/2) (5.14)

d∆S1 = −d(ln (p)) + ln
p(x′, t+ dt|x, t;λ(t))
pad(x, t+ dt|x′, t;λ(t)) +O(dt3/2) (5.15)

d∆S2 = ln
p(x′, t+ dt|x, t;λ(t))

pad(εx′, t+ dt|εx, t; ελ(t)) +O(dt3/2) (5.16)

d∆S3 = ln
pad(x, t+ dt|x′, t;λ(t))pad(εx′, t+ dt|εx, t; ελ(t))
p(x′, t+ dt|x, t;λ(t))p(εx, t+ dt|εx′, t; ελ(t)) +O(dt3/2) (5.17)

where we ignore O(dt3/2) terms owing to the stochastic nature of x. We point out the validity of

approximating the path probability functionals with short time propagators, despite them including

pre-exponential normalisation terms which usually form the path integral measure, since we are only

considering cases where these normalising terms must cancel in line with Girsanov’s theorem. We also

note the abbreviation d(ln(p)) = ln (p(x(t+ dt), t+ dt)/p(x(t), t)) and thereby establish the procedure

for finding, if not the explicit form of, the SDEs that describe the total entropy production and its three

contributions.

5.1 Constructing an SDE for Total Entropy Production

To proceed we utilise the short time Green’s function or ‘short time propagator’ [47] given in Sect. 2.3.2

so that for displacement dx = x′−x, and corresponding displacements in each dimension dxi = x′
i−xi,

in a time dt we have the conditional probability density of the form

p(x′, t+dt|x, t;λ(t)) =
√

1

(4πdt)N |D(r,λ(t))|

×exp




∑

i,j

− 1

4dt

(

dxi−Ai(r,λ(t))dt+
∑

m

2a
∂Dim(r,λ(t))

∂rm
dt

)

D−1
ij (r,λ(t))

×
(

dxj−Aj(r,λ(t))dt+
∑

n

2a
∂Djk(r,λ(t))

∂rk
dt

)

−
∑

i

adt
∂Ai(r,λ(t))

∂ri
+
∑

i,j

a2dt
∂2Dij(r,λ(t))

∂ri∂rj





(5.18)

where a is the parameter ranging from 0 to 1 which defines the evaluation point of certain terms in the

propagator r = ax′+(1−a)x and ri = axi
′+(1−a)xi for which all choices are correct to first order in dt

and lead to the same Fokker-Planck equation.

We consider the incremental contribution to total entropy production comprising the conditional

probabilities, namely the medium entropy change in the formalism of Seifert and so write

d∆Smed = ln
p(x′, t+dt|x, t;λ(t))

p(εx, t+dt|εx′, t; ελ(t)) . (5.19)
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By employing the appropriate reverse short time propagator

p(εx, t+ dt|εx′, t; ελ(t)) =
√

1

(4πdt)N |D(εr′, ελ(t))|

exp



−
∑

i,j

1

4dt

(

−εidxi −Ai(εr
′, ελ(t))dt+

∑

m

2b
∂Dim(εr′, ελ(t))

∂(εmr′m)
dt

)

D−1
ij (εr′, ελ(t))

×
(

−εjdxj −Aj(εr
′, ελ(t))dt+

∑

n

2b
∂Djn(εr

′, ελ(t))

∂(εnr′n)
dt

)

−
∑

i

bdt
∂Ai(εr

′, ελ(t))

∂(εir′i)
+
∑

i,j

b2dt
∂2Dij(εr

′, ελ(t))

∂(εir′i)∂(εjr
′
j)



 (5.20)

where b ranges from 0 to 1 and corresponds to the evaluation point such that r′ = bx+(1−b)x′ and r′i =

bxi + (1− b)x′
i. Using Eqs. (5.3) and (5.4) along with the assumption Dij(εx, ελ(t)) = εiεjDij(x,λ(t))

we may write

p(εx, t+ dt|εx′, t; ελ(t)) =
√

1

(4πdt)N |D(r′,λ(t))|

exp



−
∑

i,j

1

4dt

(

−dxi − (Air
i (r

′,λ(t))−Arev(r′,λ(t)))dt+
∑

m

2b
∂Dim(r′,λ(t))

∂(r′m)
dt

)

D−1
ij (r′,λ(t))

×
(

−dxj − (Air
j (r

′,λ(t))−Arev
j (r′,λ(t)))dt+

∑

n

2b
∂Djn(r

′,λ(t))

∂(r′n)
dt

)

−
∑

i

bdt

(
∂Air

i (r
′,λ(t))

∂(r′i)
− ∂Arev

i (r′,λ(t))

∂(r′i)

)

+
∑

i,j

b2dt
∂2Dij(r

′,λ(t))

∂r′i∂r
′
j



 . (5.21)

One can then proceed by evaluating the ratio of the propagators recasting them so that they utilise the

same evaluation point in order to define a consistent SDE. This is achieved, for an expansion in Itō form,

by using the heuristic rules (Sect. 2.2.2)

f(r)dt = f(x)dt+O(dt3/2) (5.22)

f(r′)dt = f(x)dt+O(dt3/2) (5.23)

f(r)dxi = f(x)dxi +
∑

m

2aDim(x)
∂f(x)

∂xm
dt+O(dt3/2) (5.24)

f(r′)dxi = f(x)dxi +
∑

m

2(1− b)Dim(x)
∂f(x)

∂xm
dt+O(dt3/2). (5.25)

At this point we stress that the forward propagator leads to the correct path probability independently of

the choice a and the reverse propagator leads to the correct path probability independently of the choice

b, however when there is multiplicative noise in the dynamics the increment in medium entropy change

does depend on the choice of a and b. This is a manifestation of the ambiguity in stochastic calculus

arising from the unbounded variation in x(t) and corresponding lack of smoothness on any timescale. As

such, despite considering an infinitesimal time step, the different evaluation points exploit differences in

the correlation of the terms in the propagator and x and x′ that persists on all timescales. Crucially, we
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find that it is overcome by evaluating the point r′ at the same point r equivalent to the choice b = 1− a

whereupon the dependence on a and b disappears. One may think of this in a number of ways. One may

consider that there should be a jump process which exists as the limit of such a continuous process where

the incremental medium entropy change is evaluated in numerator and denominator for a single consis-

tent functional dependence (i.e. a single choice r′ = r) or that the path involution x† = εx(τ−t) persists

on a sub-infinitesimal scale necessitating the choice b = 1 − a. To clarify, in such an approach choices

may include Stratonovich-like evaluation (a = b = 1/2) for both propagators in Eq. (5.19), a choice

which is sometimes implicitly used by authors [33, 111] within integrated Onsager-Machlup approaches

(with some exceptions which would break down should multiplicative noise be utilised [75]). Strictly,

however, this does not preclude other choices of a and b in the construction of the fundamental SDEs

such as, for example, an Itō prescription (a = 0) in the forward propagator and a Hänggi-Klimontovich

(b = 1) in the backwards propagator and indeed with all independent choices of a and b being valid if

the noise is additive. In summary, all the evaluation points lead to the correct path probability when

supplemented with the correct multiplication scheme, but that if one has multiplicative noise, the correct

representation of the entropy production requires the more exact relation between the evaluation points.

Choosing for simplicity a = b = 1/2, such that all multiplications of the form f(r) ∗ dxi arising from

an explicit expansion of the short time propagator should be interpreted according to Stratonovich rules

f(x) ◦ dxi, we retain terms to first order in dt and utilise the abbreviation f(x) ≡ f(x,λ(t)) to obtain

d∆Smed =
∑

i

−∂Arev(x)

∂xi
dt+
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i,j

D−1
ij (x)

2

(
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)
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2
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j (x)Air
i (x)

)
dt
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2

((
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n
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(
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)

+
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2
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(
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)

+Arev
i (x)

(
∑
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∂xn

))

dt. (5.26)

This in turn leads to

d∆Stot = − 1

p(x)

∂p(x)

∂t
dt−
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1
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−
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i
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dt+
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2

(
Air
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(
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((
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n
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◦ dxi +

(
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∂Dim(x)
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)

+
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ij (x)

2

(
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∂Dim(x)
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+Arev
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∂Djn(x)

∂xn

))

dt. (5.27)

This is a very general and robust definition of the entropy production for continuous stochastic behaviour

and can be thought of as a generalisation of the pioneering approach in [12] wherein the equation of

motion for entropy essentially describes d∆Stot for a specific system with additive noise leading to

uncorrelated diffusion, even variables and dynamics (εx = x and ελ(t) = λ(t)) and implicitly using
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Stratonovich rules.

We point out that such a construction allows us to consider purely deterministic coordinates (Dij(x) =

0 ∀j) as would apply, for example, to the case of spatial coordinates within a full phase space Langevin

description. In such coordinates Dij(x) is assumed constant and taken to zero. The remaining terms

then clearly diverge unless we demand Air
i (x) = 0 since in these instances, for the reverse path to be a

solution to the forward dynamics the motion must be purely reversible. This condition simply amounts

to the requirement that the reverse path exists. There is, however, a contribution to the medium entropy

change that persists due to the dynamics of these coordinates, since deterministic phase space density

distributions can evolve in time, as described by the deterministic limit of the medium entropy formulated

from probability densities in continuous space, even if the phase space volume, analogous to probabilities,

cannot. The contribution to the medium entropy change due to the deterministic behaviour of these

coordinates is

∆Smed,det = −∂Arev
i (x)

∂xi
dt, (5.28)

a result that provides an insight into the similarities and differences between stochastic and deterministic

measures of irreversibility: it is demonstrably equal to the phase space contraction found in non-linear

dynamical systems, which is associated with the heat transfer to the environment brought about by

thermostatting terms in such approaches. This leads to a quantity that is positive in the mean for

deterministic systems: the dissipation function [4]. We point out, however that total entropy production,

as defined here for stochastic systems, is zero for deterministic dynamics. This is because the change in

the system entropy would be equal and opposite to the change in medium entropy, technically since it

involves probability densities at the start and end of the process. In contrast the dissipation function can

provide a measure of irreversibility because it involves a comparison of trajectories originating from the

same starting distribution. This contrast is to be expected as the total entropy production, as defined

for the systems we consider, arises from explicit irreversibility in the dynamics, which deterministic,

reversible equations do not provide.

5.2 Constructing the Instantaneous Average Entropy Produc-

tion Rate

Frequently the average entropy production rate is argued to be proportional to the mean probability flux

squared, as derived, for example, by taking the time derivative of the Gibbs entropy of a system, and

identifying an evidently positive contribution as the total entropy production rate and the remainder as

the (negative) medium entropy production rate [73, 98, 115]. We prefer however, to derive the average

contributions directly from the SDEs so that we can avoid arbitrarily identifying a positive contribution

with a quantity expected to obey an IFT: strictly there is no guarantee such a division is unique, as

another description shows [116]. To do so is straightforward and requires us to find the average increment

in ∆Stot by means of the integral

〈d∆Stot〉FpF
0
=

∫

dx

∫

dx′ p(x, t)p(x′, t+ dt|x, t)d∆Stot. (5.29)

The benefit of such a formulation is that we may characterise d∆Stot using an Itō SDE based on the

underlying relations dxi = Aidt + BidWi and then use the martingale property of the Itō stochastic

integral 〈BidWi〉 = 0 since Bi is non-anticipating, such that we can simplify the integral in Eq. (5.29)
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by writing

〈d∆Stot〉FpF
0
=

∫

dx p(x)〈d∆Stot|x〉 (5.30)

and evaluating the conditional average 〈d∆Stot|x〉 by simply replacing all occurrences of dxi with (Air
i +

Arev
i )dt in d∆Stot. To do this, however, we must first convert the SDE for ∆Stot into Itō form for which

we use the conversion formula (Sect. 2.2.2)

f(x) ◦ dxi = f(x)dxi +
∑

k

Dik
∂f(x)

∂xk
dt. (5.31)

For the increment in medium entropy change this gives us
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(5.32)

We may then average over all realisations using the procedure described above to obtain

〈d∆Smed〉FpF
0
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(5.33)
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Integrating by parts, dropping boundary terms, applying the product rule and rearranging we get

〈d∆Smed〉 =
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By similar means the system entropy can be written, after substitution of the original Fokker-Planck

equation,
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so by averaging and integration by parts and dropping or cancelling boundary terms we have
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To proceed we use the identity
∑

k D
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ik Dkj = δij noting both are symmetric matrices in order to re-write
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Combining the two contributions, recognising the equivalence of the dummy summation indices we find
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(5.40)

which is rigorously non-negative because D is semi-positive definite and, unlike in previous definitions

[98], contributes when there is a non-zero irreversible flux. We also briefly mention that this result

is compatible with the potential conditions from Sect. 3.7 and reveals that the condition for detailed

balance, in general, is the requirement of zero irreversible flux.

5.3 Expressions for ∆S1, ∆S2 and ∆S3

In order to consider a division of the entropy production as considered previously we are once again

required to construct path probabilities using the so-called adjoint dynamics. We stress these dynamics

may not be physically realisable: for example they may require negative positional steps to result from

positive velocities (as indicated by the paths ~xR and ~xT), but this is of no concern since they are only

introduced for the mathematical construction of the entropy contributions. We consider an arbitrary

stationary distribution of a given system which may be written in terms of a non-equilibrium potential,

φ(x,λ(t)), such that

pst(x,λ(t)) = exp[−φ(x,λ(t))], (5.41)

where again pst(x,λ(t)) ≡ pF,st(x,λF(t)), and assert that the adjoint dynamics are those that result in

the same stationary distribution, but have a stationary flux of opposite sign. As such we require

∂pst(x,λ(t))

∂t
= −∇ · J st(x,λ(t)) = ∇ · J st,ad(x,λ(t)) = 0 (5.42)
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with

J st,ad
i (x,λ(t)) = −J st

i (x,λ(t)). (5.43)

In order to characterise the adjoint dynamics we construct the adjoint flux according to

J st,ad
i (x,λ(t)) = Aad

i (x,λ(t))pst(x,λ(t))−
∑

m

∂

∂xm

(
Dim(x,λ(t))pst(x,λ(t))

)

= Aad
i (x,λ(t))e−φ(x,λ(t)) −

∑

m

∂

∂xm

(

Dim(x,λ(t))e−φ(x,λ(t))
)

=

(

Aad
i (x,λ(t))−

∑

m

∂Dim(x,λ(t))

∂xm
+
∑

m

Dim(x,λ(t))
∂φ(x,λ(t))

∂xm

)

e−φ(x,λ(t))

= −
(

Ai(x,λ(t))−
∑

m

∂Dim(x,λ(t))

∂xm
+
∑

m

Dim(x,λ(t))
∂φ(x,λ(t))

∂xm

)

e−φ(x,λ(t)).

(5.44)

Consequently we have the requirement
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2
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We also note that this construction ensures the validity of the fluctuation theorems since the noise

strength is left unchanged. Let us now consider the quantity

d∆Sex = ln
p(x′, t+ dt|x, t;λ(t))
pad(x, t+ dt|x′, t;λ(t)) , (5.46)

where ∆Sex = ∆Qex/kBT , comprising the excess heat transfer from Eq. (3.113), which we have previ-

ously asserted constitutes part of the incremental contribution to the quantity ∆S1 based on relations in

Eqs. (5.10) and its short time representation. We evaluate Eq. (5.46), taking the transition probability

density in the numerator from Eq. (5.18) and, for convenience, choosing a = 1/2. We can represent the

transition probability density appearing in the denominator through a similar construction, but using

a substitution for the adjoint drift term from Eq. (5.45), together with the complementary evaluation

point choice b = 1− a = 1/2 such that
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√
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(5.47)

Since in both cases we have chosen evaluation at a = b = 1/2 we note that multiplication follows

Stratonovich rules so that we have f(r)∗dxi = f(x)◦dxi. Considering the ratio of these two propagators,
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again expressing f(x,λ(t)) ≡ f(x), we find
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and in Itō form
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Dim(x)
∂φ

∂xm

)

dxj +

(
∑

n

Djn(x)
∂φ(x)

∂xn

)

dxi

+

(
∑

m

Dim(x)
∂φ(x)

∂xm

)(
∑

n

∂Djn(x)

∂xn

)

dt+

(
∑

n

Djn(x)
∂φ(x)

∂xn

)(
∑

m

∂Dim(x)

∂xm

)

dt

−Aj(x)

(
∑

m

Dim(x)
∂φ(x)

∂xm

)

dt−Ai(x)

(
∑

n

Djn(x)
∂φ

∂xn

)

dt

]

+
∑

i,j

D−1
ij (x)

(
∑

m

Dim(x)
∂φ(x)

∂xm

)(
∑

n

Djn(x)
∂φ(x)

∂xn

)

dt

−
∑

i,j,k

Djk(x)

2

∂

∂xk

((
∑

m

Dim(x)
∂φ(x)

∂xm

)

D−1
ij (x)

)

dt

−
∑

i,j,k

Dik(x)

2

∂

∂xk

((
∑

n

Djn(x)
∂φ(x)

∂xn

)

D−1
ij (x)

)

dt. (5.49)

However, we also have the stationarity condition

∇ · J st(x) =
∑

i

∂

∂xi

(

e−φ(x)

(

Ai(x)−
∑

m

∂Dim(x)

∂xm
+
∑

m

Dim(x)
∂φ(x)

∂xm

))

=
∑

i

(

−Ai(x)
∂φ(x)

∂xi
−
∑

m

Dim(x)
∂φ(x)

∂xi

∂φ(x)

∂xm
+

∂Ai(x)

∂xi

−
∑

m

∂2Dim(x)

∂xi∂xm
+
∑

m

Dim(x)
∂2φ(x)

∂xi∂xm
+
∑

m

2
∂Dim(x)

∂xi

∂φ(x)

∂xm

)

e−φ(x)

= 0 (5.50)
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and so by utilising
∑

k D
−1
ik Djk = δij repeatedly we arrive at

ln
p(x′, t+ dt|x, t;λ(t))
pad(x, t+ dt|x′, t;λ(t)) =

∑

i

−∂φ(x)

∂xi
◦ dxi (5.51)

which justifies the usual characterisation of the adjoint dynamics [25, 36, 111] for use in continuous

dynamics when written
p(x′, t+ dt|x, t;λ(t))
pad(x, t+ dt|x′, t;λ(t)) =

pst(x′,λ(t))

pst(x,λ(t))
(5.52)

and produces the SDE for the entropy production contribution ∆S1

d∆S1 = − 1

p(x)

∂p(x)

∂t
dt−

∑

i

1

p(x)

∂p(x)

∂xi
◦ dxi −

∑

i

∂φ(x)

∂xi
◦ dxi. (5.53)

To find the mean production rate we must utilise the unsimplified Itō form along with the expansion of

terms

∑

i,m

Dim(x)
∂p(x)

∂xi

∂φ(x)

∂xm
=
∑

i,j

D−1
ij (x)

(
∑

m

Dim(x)
∂φ(x)

∂xm

)(
∑

n

Djn(x)
∂p(x)

∂xn

)

. (5.54)

Such an application, along with the inclusion of the system entropy in appropriate form, integrating by

parts and dropping boundary terms where appropriate and equating terms with dummy indices gives

d〈∆S1〉FpF
0

dt
=
∑

i,j

∫

dx

[

D−1
ij (x)

p(x)

(
∑

m

Dim(x)
∂p(x)

∂xm

)(
∑

n

Djn(x)
∂p(x)

∂xn

)

+p(x)D−1
ij (x)

(
∑

m

Dim(x)
∂φ(x)

∂xm

)(
∑

n

Djn(x)
∂φ(x)

∂xn

)

+D−1
ij (x)

(
∑

m

Dim(x)
∂p(x)

∂xm

)(
∑

n

Djn(x)
∂φ(x)

∂xn

)

+D−1
ij (x)

(
∑

n

Djn(x)
∂p(x)

∂xn

)(
∑

m

Dim(x)
∂φ(x)

∂xm

)]

=
∑

i,j

∫

dx p(x)D−1
ij (x)

(

−
∑

m

Dim(x)

p(x)

∂p(x)

∂xm
−
∑

m

Dim(x)
∂φ(x)

∂xm

)

×
(

−
∑

n

Djn(x)

p(x)

∂p(x)

∂xn
−
∑

n

Djn(x)
∂φ(x)

∂xn

)

=

∫

dx p(x, t)

[

J
ir(x, t)

p(x, t)
− J

ir,st(x,λ(t))

pst(x,λ(t))

]T

D
−1(x,λ(t))

[

J
ir(x, t)

p(x, t)
− J

ir,st(x,λ(t))

pst(x,λ(t))

]

.

(5.55)

Since the above expression is in fact independent of A(x,λ(t)), it can be expressed with the irreversible

current J ir replaced by total current J and so maps precisely onto the non-adiabatic entropy production

appearing in [98] and thus can be expressed as

d〈∆S1〉FpF
0

dt
= −

∫

dx
∂p(x, t)

∂t
ln

p(x, t)

pst(x,λ(t))
(5.56)
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as highlighted by the authors of [98]. We emphasise however, that Eq. (5.56) is to be considered along-

side the accompanying SDE in Eq. (5.53), from which it has been derived directly, rather than by a

division of an observed positive contribution to the mean rate of change of Gibbs entropy into presumed

unique transient and stationary terms; something of particular importance given that, in the mean, ∆S3

is expected to behave transiently yet is separate to the positive transient contribution ∆S1.

We may now by similar means consider an increment in ∆S2 as follows:

d∆S2 = ln
p(x′, t+dt|x, t;λ(t))

pad(εx′, t+dt|εx, t; ελ(t)) . (5.57)

In this case the construction of the denominator follows slightly different rules since, unlike ∆Stot and

∆S1, the alternative path, ~x
T, is based on a time reversal of the instantaneous coordinates, but otherwise

follows the sequence of the forward path. As such instead of utilising Eq. (5.25) one should use

f(r′)dxi = f(x)dxi +
∑

m

2bDim(x)
∂f(x)

∂xm
dt+O(dt3/2). (5.58)

This in turn leads to the appropriate choice b = a once again reflecting the correct application of

the involution on a sub-infinitesimal scale so that r′ = r. For continuity, we may once again choose

a = b = 1/2 with Stratonovich multiplication rules: we represent the transition probability appearing in

the numerator through Eq. (5.18), and the denominator by similar means using the drift term given in

Eq. (5.45) and the path choice x
T(t) = εx(t), such that

pad(εx′, t+ dt|εx, t; ελ(t)) =
∏

i

√

1

(4πdt)N |D(εr, ελ(t))| exp




∑

i,j

−
D−1

ij (εr, ελ(t))

4dt

×
(

εidxi +

(

Ai(εr, ελ(t))−
∑

m

∂Dim(εr, ελ(t))

∂(εmrm)
+
∑

m

2Dim(εr, ελ(t))
∂φ(εr)

∂(εmrm)

)

dt

)

×
(

εjdxj +

(

Aj(εr, ελ(t))−
∑

n

∂Djn(εr, ελ(t))

∂(εnrn)
+
∑

n

2Djn(εr, ελ(t))
∂φ(εr, ελ(t))

∂(εnrn)

)

dt

)

+
∑

i

dt

2

∂

∂εiri

(

Ai(εr, ελ(t))−
∑

m

2
∂Dim(εr, ελ(t))

∂(εmrm)
+
∑

m

2Dim(εr, ελ(t))
∂φ(εr, ελ(t))

∂(εmrm)

)

+
∑

i,j

dt

4

∂2Dij(εr, ελ(t))

∂(εiri)∂(εjrj)



 . (5.59)

We can utilise the usual transformation rules and assumptions for Air, Arev and Dij and express

∂φ(εr)/∂(εiri) ≡ φ′
i(εr) (along with ∂2φ(εr)/∂(εiri)∂(εjrj) ≡ φ′′

ij(εx)) such that we can write the
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propagator

pad(εx′, t+ dt|εx, t; ελ(t)) =
∏

i

√

1

(4πdt)N |D(r,λ(t))| exp




∑

i,j

−
D−1

ij (r,λ(t))

4dt

×
(

dxi +

(

Air
i (r,λ(t))−Arev

i (r,λ(t))−
∑

m

∂Dim(r,λ(t))

∂rm
+
∑

m

2εmDim(r,λ(t))
∂φ(εr, ελ(t))

∂(εmrm)

)

dt

)

×
(

dxj +

(

Air
j (r,λ(t))−Arev

j (r,λ(t))−
∑

n

∂Djn(r,λ(t))

∂rn
+
∑

n

2εnDjn(r,λ(t))
∂φ(εr, ελ(t))

∂(εnrn)

)

dt

)

+
∑

i

dt

2

∂

∂ri

(

Air
i (r,λ(t))−Arev

i (r,λ(t))−
∑

m

2
∂Dim(r,λ(t))

∂rm
+
∑

m

2εmDim(r,λ(t))
∂φ(εr,λ(t))

∂(εmrm)

)

+
∑

i,j

dt

4

∂2Dij(r,λ(t))

∂ri∂rj



 . (5.60)

Utilising this propagator and the stationarity condition evaluated with the time reversed variables

∇ · J st(εx) =
∑

i

∂

∂(εixi)

(

e−φ(εx)

(

Ai(εx)−
∑

m

∂Dim(εx)

∂(εmxm)
+
∑

m

Dim(εx)
∂φ(εx)

∂(εmxm)

))

=
∑

i

(

−Ai(εx)
∂φ(εx)

∂(εixi)
−
∑

m

Dim(εx)
∂φ(εx)

∂(εixi)

∂φ(εx)

∂(εmxm)
+

∂Ai(εx)

∂(εixi)

−
∑

m

∂2Dim(εx)

∂(εixi)∂(εmxm)
+
∑

m

Dim(εx)
∂2φ(εx)

∂(εixi)∂(εmxm)
+
∑

m

2
∂Dim(εx)

∂(εixi)

∂φ(εx)

∂(εmxm)

)

e−φ(εx)

= 0 (5.61)

and the usual transformation properties of A and D leads to the Stratonovich SDE

d∆S2 =
∑

i

εiφ
′
i(εx) ◦ dxi −

∑

i

∂Arev(x)

∂xi
dt+

∑

i,j

D−1
ij (x)

2

(
Air

i (x) ◦ dxj +Air
j (x) ◦ dxi

)

−
D−1

ij (x)

2

(
Arev

i (x)Air
j (x) +Arev

j (x)Air
i (x)

)
dt

−
D−1

ij (x)

2

((
∑

n

∂Djn(x)

∂xn

)

◦ dxj +

(
∑

m

∂Dim(x)

∂xm

)

◦ dxi

)

+
D−1

ij (x)

2

(

Arev
j (x)

(
∑

m

∂Dim(x)

∂xm

)

+Arev
i (x)

(
∑

n

∂Djn(x)

∂xn

))

dt. (5.62)

Full conversion to Itō form, averaging, performing integration by parts, applying the product rule,

recognising the equivalence of dummy indices, identifying

∑

i

Air
i (x)

∂p(x)

∂xi
=
∑

i,j

D−1
ij (x)Air

i (x)

(
∑

n

Djn(x)
∂p(x)

∂xn

)

, (5.63)

∑

i,m

∂p(x)

∂xi

∂Dim(x)

∂xm
=
∑

i,j

D−1
ij (x)

(
∑

n

Djn(x)
∂p(x)

∂xn

)(
∑

m

∂Dim(x)

∂xm

)

, (5.64)
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∑

i,m

∂p(x)

∂xi

(
∑

m

εmDim(x)φ′
m(εx)

)

=
∑

i,j

D−1
ij (x)

(
∑

m

Dim(x)
∂p(x)

∂xm

)(
∑

n

εnDjn(x)φ
′
n(εx)

)

(5.65)

and the transformation propertyD−1
ij (εx) = εiεjD

−1
ij (x) arising from the identity

∑

k Dik(εx)D
−1
jk (εx) =

∑

k Dik(x)D
−1
jk (x) = δij then leads us to

d〈∆S2〉FpF
0

dt
=
∑

i,j

∫

dx p(x)D−1
ij (x)

(

Air
i (x)−

(
∑

m

∂Dim(x)

∂xm

)

+

(
∑

m

εmDim(x)φ′
m(εx)

))

×
(

Air
j (x)−

(
∑

n

∂Djn(x)

∂xn

)

+

(
∑

n

εnDjn(x)φ
′
n(εx)

))

=
∑

i,j

∫

dx p(x)D−1
ij (x)

(

εiA
ir
i (εx)− εi

(
∑

m

∂Dim(εx)

∂(εmxm)

)

+ εi

(
∑

m

Dim(εx)φ′
m(εx)

))

×
(

εjA
ir
j (εx)− εj

(
∑

n

∂Djn(εx)

∂(εnxn)

)

+ εj

(
∑

n

Djn(εx)φ
′
n(εx)

))

=
∑

i,j

∫

dx p(x)εiεjD
−1
ij (x)

(

Air
i (εx)−

(
∑

m

∂Dim(εx)

∂(εmxm)

)

+

(
∑

m

Dim(εx)φ′
m(εx)

))

×
(

Air
j (εx)−

(
∑

n

∂Djn(εx)

∂(εnxn)

)

+

(
∑

n

Djn(εx)φ
′
n(εx)

))

=
∑

i,j

∫

dx p(x)

(

J ir,st
i (εx)

pst(εx)

)(

J ir,st
j (εx)

pst(εx)

)

εiεjD
−1
ij (x)

=
∑

i,j

∫

dx p(x)

(

J ir,st
i (εx)

pst(εx)

)(

J ir,st
j (εx)

pst(εx)

)

D−1
ij (εx)

=

∫

dx p(x, t)

[

J
ir,st(εx, ελ(t))

pst(εx, ελ(t))

]T

D
−1(εx, ελ(t))

[

J
ir,st(εx, ελ(t))

pst(εx, ελ(t))

]

. (5.66)

Such a form illustrates the positivity requirement of ∆S2 in the mean, resulting from its adherence to

an IFT, and again Eq. (5.66) is to be considered alongside the complementary SDE in Eq. (5.62). Since

it is based on an integral over the stationary irreversible flux, d〈∆S2〉FpF
0
/dt describes a contribution to

entropy production which arises from an absence of detailed balance and is non-zero both in and out

of stationarity given a non-zero stationary irreversible flux. This quantity is to be contrasted with the

adiabatic entropy production in [98] which we may now consider to be a special case when there are

only even variables in the dynamics. We point out again the importance of the direct derivation of this

result from the SDE in this formalism since, unlike for ∆Stot and ∆S1, it is not just a generalisation of

the expressions in [98], with the total current exchanged with the irreversible current, as it also includes

a time reversal of the coordinates. That is to say, a division of the irreversible flux into terms with

structure based solely on pst(x) as in [98] would not have obviously led to the above expression.

To complete the description of all three contributions to entropy production we now consider an

increment in ∆S3. By using the definition in Eq. (5.12)

d∆S3 = ln
pad(εx′, t+ dt|εx, t; ελ(t))pad(x, t+ dt|x′, t;λ(t))
p(x′, t+ dt|x, t;λ(t))p(εx, t+ dt|εx′, t; ελ(t)) . (5.67)

At this point one may find the SDE by comparison of those for ∆Stot, ∆S1 and ∆S2, but note the same
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result emerges from a consideration of the propagators along with the two stationarity conditions. The

result we find is

d∆S3 =
∑

i

φ′
i(x) ◦ dxi − εiφ

′
i(εx) ◦ dxi

=
∑

i

ln
exp [−φ(x)]

exp [−φ(x′)]

exp [−φ(εx′)]

exp [−φ(εx)]
, (5.68)

which maps onto the same quantity in the master equation approach. We can then construct the average

contribution by converting to Itō form and performing the path integral such that

〈d∆S3〉FpF
0
=

∫

dx
∑

i

p(x)Ai(x)(φ
′
i(x)− εiφ

′
i(εx))dt

+
∑

i,j

p(x)Dij(x)(φ
′′
ij(x)− εiεjφ

′′
ij(εx))dt (5.69)

and proceed to manipulate by integrating by parts, assuming the probability density and current vanish

or cancel at boundaries, such that

〈d∆S3〉FpF
0
=

∫

dx
∑

i

p(x)Ai(x)(φ
′
i(x)− εiφ

′
i(εx))dt

−
∫

dx
∑

i,j

∂

∂xj
(p(x)Dij(x)) (φ

′
i(x)− εiφ

′
i(εx))dt

=
∑

i

∫

dx (φ′
i(x)− εiφ

′
i(εx))



Ai(x)p(x)−
∑

j

∂

∂xj
(p(x)Dij(x))



 dt

=
∑

i

∫

dx (φ′
i(x)− εiφ

′
i(εx)) Ji(x)dt = −

∑

i

∫

dx (φ(x)− φ(εx))
∂Ji(x)

∂xi
dt

= −
∫

dx (φ(x)− φ(εx))

(
∑

i

∂Ji(x)

∂xi

)

dt = −
∫

dx (φ(x)− φ(εx)) (∇ · J(x)) dt. (5.70)

By substituting the original Fokker-Planck equation we may also write this as

d〈∆S3〉FpF
0

dt
=

d〈∆Qhk,T/kBT 〉FpF
0

dt

=

∫

dx
∂p(x)

∂t
(φ(x)− φ(εx))

= −
∫

dx
∂p(x, t)

∂t
ln

pst(x,λ(t))

pst(εx, ελ(t))
. (5.71)

This has a form similar to Eq. (5.56) and is clearly a contribution to the mean total entropy production

rate that behaves transiently in a manner similar to ∆S1. The quantity ∆S1 appears in the Hatano-Sasa

relation which describes the entropy production associated with a transition between different stationary

states. However, in light of Eq. (5.71) we suggest that ∆S1, and thus the Hatano-Sasa relation and non-

adiabatic entropy production, when viewed as a contribution in the mean, do not represent the entire

entropy production associated with transitions between stationary states (or more generally relaxation)

since, in the mean, we can construct a new quantity which comprises all contributions which are non-zero
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only during relaxation, by combining Eqs. (5.56) and (5.71) giving

d〈∆S1 +∆S3〉FpF
0

dt
=

d〈k−1
B ∆Ssys + (∆Qex +∆Qhk,T) /kBT 〉FpF

0

dt

= −
∫

dx
∂p(x, t)

∂t
ln

p(x, t)

pst(εx, ελ(t))
. (5.72)

This describes a contribution to the mean entropy production rate which occurs when the system is out

of stationarity, but it does not obey an IFT and thus has no guarantee of positivity. The existence of

such a quantity highlights our statement of the level on which the generalisation of the second law is to

be observed. If one, perhaps erroneously, were to identify a constantly dissipated heat with a rigorously

positive mean entropy contribution maintaining the non-equilibrium character due to a lack of detailed

balance (as is expected with even variables) and then expected the remaining, transient, mean quantity

to adhere to a generalised form of the second law for transitions between steady states, such an expec-

tation would not, necessarily, be met.

Lastly we mention that given the forms of Eqs. (5.40), (5.56), (5.66) and (5.71) it appears there is

an inconsistency. Since the contributions d〈∆S1〉FpF
0
/dt and d〈∆S3〉FpF

0
/dt vanish in the stationary state,

d〈∆Stot〉FpF
0
/dt and d〈∆S2〉FpF

0
/dt must be equal, but have manifestly different forms. However, we find,

by comparing the appropriate averages of these two contributions in the stationary state (or all four

in general) with application of the zero stationary current condition evaluated at x and εx, them to

be equivalent. This allows us to note that the stationary distribution is the distribution, which when

averaging the odd part of the conditional mean contribution to d〈∆S2〉FpF
0
/dt, produces a vanishing re-

sult. Such a property is assured in general terms (though may be challenging to prove generally if the

non-equilibrium potential is not known or is given in terms of an expansion), but is given context by the

demonstration of results that point to such claims for an example system in a subsequent chapter.

5.4 Adjoint and Reversed Adjoint Dynamics

In an earlier chapter it was shown that the adjoint dynamics, which typically are unphysical (for example

they may produce negative positional steps from positive velocities), may be written in terms of another

set of dynamics, which are physical, that we have termed the reversed adjoint dynamics. These reversed

adjoint dynamics were then described by transition rates

T ad-rev(εx|εx′, ελ(t)) = T ad(x|x′,λ(t)). (5.73)

We now explore some of the properties of such dynamics. We assert that a fundamental property of

such dynamics is that the stationary distribution they lead to is the time reverse of that reached by both

the forward and adjoint dynamics. Using the master equation approach this is simple to demonstrate.

Starting with the balance relation in the forward dynamics

∑

x6=x′

PF,st(x′,λ(t))T (x|x′,λ(t)) =
∑

x6=x′

PF,st(x,λ(t))T (x′|x,λ(t)), (5.74)

the equivalent expression for the reversed adjoint dynamics reads

∑

x6=x′

PF,ad-rev,st(x′,λ(t))T ad-rev(x|x′,λ(t)) =
∑

x6=x′

PF,ad-rev,st(x,λ(t))T ad-rev(x′|x,λ(t)). (5.75)
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However, since these expressions comprise a sum over all states we may write the balance relation for

the forward dynamics

∑

x6=x′

PF,st(εx′, ελ(t))T (εx|εx′, ελ(t)) =
∑

x6=x′

PF,st(εx, ελ(t))T (εx′|εx, ελ(t)). (5.76)

Substituting in with the definition of the adjoint and reversed adjoint transition rates then gives

∑

x6=x′

PF,st(εx, ελ(t))T ad-rev(x′|x,λ(t)) =
∑

x 6=x′

PF,st(εx′, ελ(t))T ad-rev(x|x′,λ(t)). (5.77)

Comparison with Eq. (5.75) then demonstrates PF,ad-rev,st(x,λ(t)) = PF,st(εx, ελ(t)). To consider the

reversed adjoint dynamics in continuous systems we need to examine the adjoint propagator, noting the

choice a = 1/2,

pad(x, t+ dt|x′, t;λ(t)) =
√

1

(4πdt)N |D(r,λ(t))|

exp




∑

i,j

− 1

4dt

(

−dxi + (Ai(r,λ(t))−
∑

m

∂Dim(r,λ(t))

∂rm
+
∑

m

2Dim(r,λ(t))
∂φ(r,λ(t))

∂rm
dt

)

×D−1
ij (r,λ(t))

(

−dxj + (Aj(r,λ(t))−
∑

n

∂Djn(r,λ(t))

∂rn
+
∑

n

2Djn(r,λ(t))
∂φ(r,λ(t))

∂rn
dt

)

+
∑

i

dt

2

∂

∂ri

(

Ai(r,λ(t))−
∑

m

2
∂Dim(r,λ(t))

∂rm
+
∑

m

2Dim(r,λ(t))
∂φ(r)

∂rm

)

+
∑

i,j

dt

4

∂2Dij(r,λ(t))

∂ri∂rj



 .

(5.78)

If we time reverse all coordinates and the protocol we find that in general we obtain the continuous

analogue of Eq. (5.73) if we have

Aad-rev
i (x,λ(t)) = −Air

i (x,λ(t)) +Arev
i (x,λ(t)) +

∑

m

2
∂Dim(x,λ(t))

∂xm
−
∑

m

2Dim(x,λ(t))
∂φ(εx, ελ(t))

∂xm
.

(5.79)

By using Eqs. (5.3) and (5.4) we can then find the reversible and irreversible components of this drift

term. Recalling Dij(εx, ελ(t)) = εiεjDij(x,λ(t)) and that φ′
i(εx) = ∂φ(εx)/∂(εixi) we identify

Aad-rev,ir
i (x,λ(t)) = −Air

i (x,λ(t)) +
∑

m

2
∂Dim(x,λ(t))

∂xm

−
∑

m

Dim(x,λ(t)) (φ′
m(x,λ(t)) + εmφ′

m(εx, ελ(t))) (5.80)

Aad-rev,rev
i (x,λ(t)) = Arev

i (x,λ(t)) +
∑

m

Dim(x,λ(t)) (φ′
m(x,λ(t))− εmφ′

m(εx, ελ(t))) . (5.81)
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Constructing the irreversible and reversible stationary current under the reversed adjoint dynamics by

utilising these drift terms and a non-equilibrium potential, φad-rev(x,λ(t)) = φ(εx, ελ(t)), we have

Jad-rev,ir,st
i (x,λ(t)) =
(

Aad-rev,ir
i (x,λ(t))−

∑

m

∂Dim(x,λ(t))

∂xm
+
∑

m

Dim(x,λ(t))
∂φ(εx, ελ(t))

∂xm

)

e−φ(εx,ελ(t)) (5.82)

Jad-rev,rev,st
i (x,λ(t)) = Aad-rev,rev

i (x,λ(t))e−φ(εx,ελ(t)). (5.83)

Finally by comparison with

J ir,st
i (x,λ(t)) =

(

Air
i (x,λ(t))−

∑

m

∂Dim(x,λ(t))

∂xm
+
∑

m

Dim(x,λ(t))
∂φ(x,λ(t))

∂xm

)

e−φ(x,λ(t))

(5.84)

J rev,st
i (x,λ(t)) = Arev

i (x,λ(t))e−φ(x,λ(t)) (5.85)

we find, by rearranging for Air
i , substituting into Aad-rev,ir

i and then Jad-rev,ir,st
i and likewise for the

reversible counterparts, that such dynamics lead to a system with the time reversed stationary state and

adapted stationary currents given by

Jad-rev,ir,st
i (x,λ(t)) = −J ir,st

i (x,λ(t))eφ(x,λ(t))−φ(εx,ελ(t)) (5.86)

Jad-rev,rev,st
i (x,λ(t)) = +J rev,st

i (x,λ(t))eφ(x,λ(t))−φ(εx,ελ(t))

+
∑

m

Dim(x,λ(t)) (φ′
m(x,λ(t))− εmφ′

m(εx, ελ(t))) e−φ(εx,ελ(t)). (5.87)

Of particular note is that this implies Jad-rev,ir,st
i /pad-rev,st = −J ir,st

i /pst. This can be seen as the same

symmetry, in part, used to define the adjoint dynamics, Jad,ir,st
i /pad,st = −J ir,st

i /pst, where of course

the fact that pad,st = pst means it reduces to a simple reflection of the current. Whilst the difference,

manifest in the reflected stationary state, leads to a complicated conversion of the reversible current

ensuring the dynamics are physical, the symmetry in the irreversible current means that the reversed

adjoint dynamics have the same mean entropy production rate in the stationary state as the forward

process.

One may argue that, being physical, these dynamics are more appropriate in the construction of

entropy contributions since using them allows construction only using involutions that produce allowed

trajectories under the forward dynamics such that

∆S1 = lnPF[~x]pF
0
− lnP†,ad-rev[~x†]ε̂pF

τ
(5.88)

∆S2 = lnPF[~x]pF
0
− lnPF,ad-rev[~x]pF

0
(5.89)

which then obviously lead to the relations at the end of the previous chapter. Since these definitions are

entirely equivalent, we gain further insight into the altered behaviour upon inclusion of odd variables.

When we consider alternative dynamics we cannot specify any which have the same stationary state, yet

only reverse the irreversible, entropy producing, current that is possible when considering systems that

consist only of even variables. Instead we must additionally reverse the reversible current (leading to

the adjoint dynamics) or find a complicated dynamics that produces the time reversed stationary state

with the same entropy production. Doing either necessarily introduces additional terms on top of those
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that arise in the original transform used in the construction of the adiabatic and non-adiabatic entropy

productions. This can be further elucidated by the recognition that Eqs. (4.33) and (4.34) yield

∆S2 +∆S3 = ∆S†,ad-rev
2 (5.90)

and

∆S1 +∆S3 = ∆Ssys +∆Sex +∆S3

= ∆Ssys +∆Sad-rev
ex (5.91)

to be contrasted with the equivalent from the adiabatic and non-adiabatic entropy productions which

transform according to

∆Sa = ∆SR,ad
a (5.92)

and

∆Sna = ∆Ssys +∆Sex

= ∆Ssys +∆Sad
ex . (5.93)

5.5 Non-Itō Interpretations of the Underlying SDEs

The preceding development specifically utilised Itō SDEs in their development, but one may have dynam-

ics in which a specific alternative interpretation is utilised. Of course, in these situations the SDEs will

have equivalent Itō forms and so the above definitions are sufficient for a description of the entropy, but it

is instructive to identify any change in any contributions, specifically the medium entropy contribution,

leaving its evolution in terms of increments dx and dt in order to motivate a physical understanding. To

do so we understand that any alternative interpretation of the stochastic integral will lead to an effective

additional drift term, written as a correction to the Ai term

+α
∑

m

∑

k

∂Bik(x)

∂xm
Bmk(x), (5.94)

where α defines the stochastic integral recalling Itō corresponds to α = 0, Stratonovich to α = 0.5 and

Hänggi-Klimontovich to α = 1. We recognise that if we demand Dij(εx) = εiεjDij(x) we thus require

∑

k

Bik(εx)Bjk(εx) = εiεj
∑

k

Bik(x)Bjk(x). (5.95)

Consequently inserting such transformation properties into the modified drift term in Eq. (5.94) shows

that it is necessarily an addition to the irreversible drift. So to alter the results for a modified stochastic

integral we need to write

Air
i (x) → Air

i (x) + α
∑

m

∑

k

∂Bik(x)

∂xm
Bmk(x) (5.96)

leaving all other terms unchanged. Of course the increment itself dxi will be different, but it does not

change the form of the medium entropy change contribution. Since, in general the modification is in
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terms of the noise strength terms Bij(x) we first rewrite Eq. (5.26) partly in these terms so that

d∆Smed =
∑

i

−∂Arev(x)

∂xi
dt+

∑

i,j

D−1
ij (x)

2

(
Air

i (x) ◦ dxj +Air
j (x) ◦ dxi

)

−
D−1

ij (x)

2

[

(
Arev

i (x)Air
j (x) +Arev

j (x)Air
i (x)

)
dt

+

((
∑

n

∂

∂xn

(
∑

k

1

2
Bjk(x)Bnk(x)

))

◦ dxi +

(
∑

m

∂

∂xm

(
∑

k

1

2
Bik(x)Bmk(x)

))

◦ dxj

)

−
(

Arev
j (x)

(
∑

m

∂

∂xm

(
∑

k

1

2
Bik(x)Bmk(x)

))

+Arev
i (x)

(
∑

n

∂

∂xn

(
∑

k

1

2
Bjk(x)Bnk(x)

)))

dt

]

.

(5.97)

Making the substitution of Eq. (5.96) then gives

d∆Smed =
∑

i

−∂Arev(x)

∂xi
dt+

∑

i,j

D−1
ij (x)

2

(
Air

i (x) ◦ dxj +Air
j (x) ◦ dxi

)

−
D−1

ij (x)

4

[

2
(
Arev

i (x)Air
j (x) +Arev

j (x)Air
i (x)

)
dt

−



(2α− 1)




∑

m,k

∂Bik(x)

∂xm
Bmk(x)



−




∑

m,k

Bik(x)
∂Bmk(x)

∂xm







 (◦dxj −Arev
j (x)dt)

−



(2α− 1)




∑

n,k

∂Bjk(x)

∂xn
Bnk(x)



−




∑

n,k

Bjk(x)
∂Bnk(x)

∂xn







 (◦dxi −Arev
i (x)dt)

]

(5.98)

which is perhaps not particularly illuminating. However, if we restrict our consideration to systems

which have only uncorrelated diffusion such that Bij(x) = Bij(x)δij this expression reduces to

d∆Smed =
∑

i

−∂Arev(x)

∂xi
dt+

Air
i (x)

Di(x)
◦ dxi −

Arev
i (x)Air

i (x)

Di(x)
dt

+
(α− 1)

Di(x)

∂Di(x)

∂xi
(◦dxi −Arev

i (x)dt) (5.99)

showing that as we progressively interpret the stochastic integral from Itō to Hänggi-Klimontovich the

explicit multiplicative noise term contributes less with it being completely absent from the expression

for the latter.

5.6 Division of the Medium Entropy Change

At this point we compare our results with, for example, the approach by Kim et al. [100, 101] where they

considered the medium entropy change to be only composed of terms that comprised an energy transfer.

In contrast, we have built our definition of entropy based firmly on the principle of irreversibility and

that, in a model, such a quantity should represent the total entropy production of the universe. As

such our medium entropy change contribution is not simply a heat flow to an idealised heat bath, but

a contribution arising from any behaviour arising from possible choices of A and B. That having been
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said, we can examine the terms that appear in our medium entropy change and align them with the

quantities included in other contributions such as the ‘pumped’ entropy of [100, 101]. To do so we write

the contributions, for uncorrelated diffusion, as

d∆Smed =
∑

i

−∂Arev(x)

∂xi
dt

︸ ︷︷ ︸

Deterministic thermostatting

+
Air

i (x)

Di(x)
◦ dxi −

Arev
i (x)Air

i (x)

Di(x)
dt

︸ ︷︷ ︸

Hamiltonian

+
(α− 1)

Di(x)

∂Di(x)

∂xi
(◦dxi −Arev

i (x)dt)

︸ ︷︷ ︸

Noise induced

. (5.100)

First, we have identified two terms that represent a heat flow based on a change in Hamiltonian if

considered for the usual over or under-damped Langevin descriptions that amount to the medium entropy

change considered in stochastic thermodynamics [33], but note that more complex dynamics may lead

to terms not identifiable as a heat flow, but having a similar origin based on their form. Second, we

have labelled the term that persists in the deterministic limit as a deterministic thermostatting term.

This demonstrably contributes when the reversible dynamics are non-linear. The pumped entropy in

[100, 101] is essentially equivalent to this term, but we stress that the parity of such a term is crucial

in identifying it as a distinct contribution, something that was implicitly assumed, but not mentioned

in the definition of the pumped entropy. Finally, we label the remainder a noise induced contribution

that arises only when there is multiplicative noise. Its relative contribution can then be ‘tuned’ by an

adaptation of the stochastic integration scheme assumed in the original SDEs and can aid as a physical

criterion with which to resolve the Itō-Stratonovich dilemma. Such a case where this might apply is for

non-linear Brownian motion [117, 118] of the form

dx = vdt

dv = −γ(v)vdt+
F(x)

m
dt+

√

kBTγ(v)

m
∗ dW. (5.101)

Assuming γ(v) is an even function of v such that there is no deterministic thermostatting term one

finds that the medium entropy change contains a contribution that equals the heat transfer scaled by

the inverse temperature as expected from stochastic energetics, but also a noise induced term since the

noise is multiplicative. If, in a model, the environment consists solely of an idealised heat bath for which

the only physical result is a heat transfer term then the choice of α which achieves this is α = 1 which

corresponds to a Hänggi-Klimontovich or post-point discretisation scheme.

5.7 Ambiguity in Time Reversal

So far the development of the entropy production and its constituent components in this and the previous

chapter have very deliberately left the nature of the system in question in as general terms as possible.

This is motivated, naturally, by a desire for generality so as to be applicable to a range of possible

physical (or otherwise) situations. However, we draw attention to the fact that whilst the model system

is typically specified by A and B (or transition rates T ), there is an additional specification involved

in the construction of entropy production, namely the nature of time reversal manifest in the choice εx

and ελ
F. Clearly, the precise way we interpret such a choice can have radically different effects on what

we consider to be the thermodynamics of the system. One may reason that this means we can constrain

such a choice based on physical behaviour; for example when the environment is entirely thermal, one
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should expect the medium entropy change to be in the form of a recognisable energy transfer as heat.

This, of course, is reasonable, but only raises the question of what one should do when one cannot

identify the environment in this way. This issue is compounded further if one considers that, as for

feedback control, the nature of how the sequence of the reverse protocol is determined is a choice that

must be reasoned. Given such a choice in these situations we argue that the nature of time reversal

becomes something of a delicate question rooted, in part, in where one places the boundary of the system.

As a starting point we consider the evolution of both the system and the protocol in the scenario

considered in this chapter. For the sake of argument, we imagine the protocol can be written as some

deterministically evolving variable defined by a differential equation, but note this simply serves to

illustrate rather than be exhaustive or rigorous. Here we have a stochastic set of system variables and

some deterministic protocol

dx(t) = A(x(t),λ(t))dt+B(x(t),λ(t))dW

dλ(t) = C(λ(t), t)dt. (5.102)

What was crucial in the development of the entropy production was that the specific evolution of the

protocol was independent of the evolution of the system. We consider the irreversibility of the system

by time reversing the protocol in the dynamics for x, but we do not require or consider reversibility in

the evolution of the protocol. Explicitly, whilst we might be able to write λ as an evolving variable, it is

entirely independent of all system variables and therefore it is natural to consider it not to be a dynamical

variable and so we don’t include, for example, an entropy production contribution based on the structure

of the C term. This implies a definite boundary for the system which evolves according to the a priori

specified evolution of the protocol meaning the system does not include whatever environmental feature

in reality, such as an external agent, has determined the protocol. This however, raises some questions.

If we do not consider the evolution of the protocol to be a set of dynamics, such that it is independent of

the system, should it obey the usual time reversal involutions if there is no obvious physical constraint

that necessitates it? Even more probing is how one should interpret protocols that use feedback and

evolve according to, for example,

dλ(x, t) = C(x(t),λ(t), t)dt (5.103)

or, as a rudimentary example of feedback control based on imprecise measurement,

dλ(x, t) = C(x(t),λ(t), t)dt+D(x(t),λ(t), t)dW . (5.104)

In such cases, can one really claim that the protocol is not, in some way, a representation of some

dynamical variable that should be included in the system? Further, if we don’t consider the evolution

of the protocol as a set of dynamics, how should one define the adapted probabilistic evolution of x

in both forward and reverse processes? An answer is provided by the definitions commonly used in

the literature [102, 104] and introduced in Sect. 3.6.2. One considers the probabilistic behaviour of the

joint process. This decomposes to a path probability based on an effective, independent, protocol and

a conditional probability of observing that protocol. Then the reverse protocol is considered as the

deterministic reverse of the forward protocol. This has two notable features. First it explicitly avoids

the time reversal and thus the ‘energetics’ of the protocol. Second, and possibly more important is that

whilst λ(x) is a (possibly stochastic itself) function of a stochastic variable necessitating the forward

path probability to be considered a joint probability because of this, the distribution representing the

stochastic behaviour of the system, and thus the system entropy, is only considered in terms of x. This is
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a curious dichotomy associated with feedback control, the protocol is in some sense considered to be both

stochastic and deterministic in that whilst there will naturally be a distribution of possible outcomes

λ(x(t), t) there is no ‘system’ entropy production associated with it. It is to some extent both intimately

interacting with, yet not part of the system. If one considers feedback control to be synonymous with

Maxwell’s demon such a specification, and the consequence that it leads to a thermodynamic information

contribution, seem appropriate if possibly physically dubious: the protocol represents an agent whose

behaviour depends upon the system, this renders it a stochastic variable, yet it is entirely energetically

independent of it, reflected by the absence of its time reversal and its lack of inclusion in the change in

system entropy. As such one could characterise such a set up as lacking a defined boundary between

system and environment. Such a suggestion also implies that assuming less ideal (or indeed impossible)

conditions one might define the time reversal differently. For example, perhaps the system entropy

should be based on the joint probability of the protocol and what was previously characterised as the

system and time reversal in the protocol should be included; this simply amounts to a wider definition

of the thermodynamic system to include the measurement device. Alternatives, however could also be

argued. One might suggest that one requires time reversal in the protocol, but that it should not be

included in the system entropy. This would lead to a reversed total path probability functional of the

form

P~λ
†

[~x†, ~λ
†
]ε̂Pτ

= P[~λ
†|~x†]P~λ

†

[~x†]ε̂Pτ
(5.105)

thus providing a definition of the total entropy production of the universe as

k−1
B ∆Stot[~x, ~λ

F
] = lnP~λ

F

[~x, ~λ
F
]pF

0
− lnP~λ

†

[~x†, ~λ
†
]ε̂pF

τ

= ln
P~λ

F

[~x]pF
0

P~λ
†

[~x†]ε̂pF
τ

+ ln
P[~λ

F|~x]
P[~λ

†|~x†]
. (5.106)

The final term then might represent the entropy production due to measurement which contributes like

an additional medium entropy change contribution in much the same way as deterministic thermostat-

ting term might. Such a description isn’t, necessarily, any less valid than that which arrives at a mutual

information contribution, and tellingly one cannot a priori prove one to be wrong: they both represent

the total entropy of the universe, both obey fluctuation theorems and are both rigorously positive in the

mean. However, their difference does imply something quite different about how time reversal occurs and

the implication about who or what is measuring or interacting with the system and what that system is

defined as.

Equally important, though slightly more straightforward, is the ambiguity that is introduced without

feedback control if one needs to determine whether or not a protocol is deemed to be odd. Since that

choice, for example in continuous systems, determines Air
i and Arev

i it in turn defines the entropy produc-

tion. For example, if one considers a protocol that contains magnetic fields included in a Hamiltonian,

one might naturally consider it odd in order for the medium entropy change contribution to represent

an energy change, however if a non-conservative force arises due to, for example, the angular momentum

of a stirrer or paddle stirring a fluid one must make a decision about whether the nature of the force

is relevant in the time reversal. This is similar in nature to the discussion of the stochastic protocol;

perhaps if one knows something of the motion of the external agent one needs to consider it in the time

reversal, and perhaps not if viewed on a more microscopic level, but this might in turn imply whether the

dynamics of these protocol terms should be included in the description of a wider system and whether

we have appropriately identified the boundary between system and environment. If one considers all
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possible permutations of how one interprets the nature of the protocol one is forced to conclude there

is no one correct procedure; like the choice about what causes feedback in a system, it depends on how

you interpret your system, the nature of the protocol and perhaps your place as an observer or modeller.

In summary we suggest that despite the apparent power of viewing entropy production as a quantity in

the context of fluctuation theorems there is vast potential for it to be misused, ultimately since there

are as many ways to define the entropy production as there are ways to define alternative reverse paths

and all possess properties that make them plausible candidates since they naturally obey the fluctuation

theorems. We therefore stress that such a quantity, which if accounted for properly is always the total

entropy production of the universe, not of just the system and the physical medium it is in (a distinction

which if not made can lead to a potentially infinite, but ultimately unnecessary, series of ‘generalisations’

of the fluctuation theorems, see for example [101]), is only appropriate if the time reversed path and

the boundary of the system is physically sensible which requires clear physical justification. This is not

always something of a priority in the literature. For example, experimental proof [119] of an extended

fluctuation theorem for feedback control relating dissipative work and information, though impressive,

should not be surprising as long as the dynamics in the model are close enough to the real dynamics

because the fluctuation theorems are necessarily obeyed because of their form, see also [114]. Alterna-

tively, whilst such a result demonstrates an apparent equivalence between entropy and information, it

can only ever do so based on the definition of entropy production (or work and free energy) implicitly

assumed by the definition of time reversal being used. What it cannot confirm is that such a theoretical

procedure is correct, or rather imparts any particularly relevant information over alternative definitions,

since another definition of the entropy production of the universe, if using the same dynamics which

agree with experiment, will also be confirmed as both rely on the same symmetry in their proof.
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Chapter 6

Illustrative Results from Specific

Systems

The fluctuation theorems have been examined extensively since their conception with experimental,

theoretical and numerical studies having been performed on a great variety of systems. The subjects

of such studies have included harmonic potentials [70, 71, 120–125], charged particles in the presence

of magnetic fields [126–132], electrical circuits [133–136], colloidal particles in explicitly non-harmonic

potentials [137], simple non-equilibrium steady states on periodic geometries [138–141] along with a

range of discrete models [142–147] meaning the behaviour of entropy, work and heat distributions are

well known for the classes of system treated here. As such we consider systems that illustrate our

main result, namely that of an alternative division of entropy production based on the inclusion of odd

variables. For continuous systems, the model that we shall utilise will be that of an under-damped

Langevin particle where we note the fluctuations of quantities like work and heat have previously been

studied [80, 148–152]. Such a description allows a microscopic treatment of entropy production to be

applied to situations where use of the simpler, over-damped, Langevin equation would not reproduce

the pertinent physical behaviour or would coarse grain away some of the refinements of the model.

The first examples use the paradigmatic case of a non-conservatively forced particle on a ring in order

to examine the three contributions to entropy production and then consider some more sophisticated

versions of such a model, including the introduction of dry friction and non-conservative forcing for

relativistic Brownian motion. Next we consider heat conduction in one dimension due to a spatially

inhomogeneous temperature field where we demonstrate the validity and indeed necessity of using odd

system variables for such a system along with illustrating more complicated dependence and behaviour in

the contribution to 〈∆S2〉FpF
0
in particular. Finally, some discrete models of full phase space are explored

to illustrate the forms of entropy production in such a context along with highlighting the nuances of

how entropy production is affected by the coarse-graining implied by the model.

6.1 Particle Driven by a Non-conservative Force

Our first example of a system with odd variables is that of the full phase space Langevin equation where

we consider diffusion of a particle on a ring driven by a spatially independent non-conservative force and
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spatially independent (additive) noise such that

dx = vdt

dv = −γvdt+
F(t)

m
dt+

√

2kBTγ

m
dW (6.1)

thus giving terms Air
x = 0, Arev

x = v, Air
v = −γv, Arev

v = F(t)/m, Dx = 0 and Dv = kBTγ/m. The

key feature of the model is that for any non-zero value of F(t) there will exist a stationary solution

which is Gaussian in v (with a non-zero mean such that it is asymmetric in the odd variable about the

origin) and uniform in x due to the symmetry of the problem thus allowing stationarity, yet a constant

non-zero particle flux in x. Further, any relaxation from a given stationary state caused by changes to

the non-conservative force (or any other system parameter) will then also result in a uniform distribution

in x for all time by the translational symmetry. As such we may proceed by considering the marginalised

velocity distribution when starting from a stationary state. Exploiting the fact that the initial Gaussian

solution will remain Gaussian for any F(t), we can parametrise a transient solution to the Fokker-Planck

equation

pF(x, v, t) ∝
√

m

2πkBT
exp

[

−m(v − 〈v〉)2
2kBT

]

(6.2)

with
d〈v〉
dt

=

(F
m

− γ〈v〉
)

(6.3)

such that

〈v〉st = F
mγ

. (6.4)

A scenario where closed form solutions exist for all contributions to entropy production is that of an

instantaneous step change in the driving force F(t) so that we have

F(t) =

{

F0 t < t0,

F1 t ≥ t0,
(6.5)

and

〈v〉(t) =
{

F0/mγ t < t0,
(
F1 + e−γ(t−t0)(F0 −F1)

)
/mγ t ≥ t0.

(6.6)

Performing the relevant integrals in Eqs. (5.40), (5.55), (5.66) and (5.71) we then obtain

1

kB

d〈∆Stot〉FpF,st
0

dt
=

{

F2
0 /mγkBT t < t0,

(
F0 + F1(e

γ(t−t0) − 1)
)2

e−2γ(t−t0)/mγkBT t ≥ t0,
(6.7)

1

kB

d〈∆S1〉FpF,st
0

dt
=

{

0 t < t0,

e−2γ(t−t0)(F0 −F1)
2/mγkBT t ≥ t0,

(6.8)

1

kB

d〈∆S2〉FpF,st
0

dt
=

{

F2
0/mγkBT t < t0,

F2
1/mγkBT t ≥ t0,

(6.9)

and

1

kB

d〈∆S3〉FpF,st
0

dt
=

{

0 t < t0,

−2e−γ(t−t0)F1(F1 −F0)/mγkBT t ≥ t0.
(6.10)
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Choosing the specific case of a reversal of the driving force such that it changes from F0 = 1 to F1 = −1

at time t0 = 1 and employing units kB = m = γ = T = 1, we can generate the results shown in Figs. 6.1

and 6.2.

We note first that the mean rates of change of all three contributions ∆Stot, ∆S1 and ∆S2 are positive,
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∆S2 = ∆Qhk,G/Tenv

Figure 6.1: Positive mean rates of dimensionless entropy change against time for a non-conservatively
forced Langevin particle, where we consider the transition between stationary states of a driven particle
on a ring with F0 = 1, F1 = −1, t0 = 1 and kB = m = γ = T = 1.
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Figure 6.2: Unbounded mean rates of dimensionless entropy change for a non-conservatively forced
Langevin particle, where we consider the transition between stationary states of a driven particle on a
ring with F0 = 1, F1 = −1, t0 = 1 and kB = m = γ = T = 1.
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reflecting their adherence to an IFT. All three mean rates of change are constant for t < t0 = 1, are

perturbed by the change in direction of the force, and relax back to constant values consistent with the

transition between the stationary states. A key feature of this behaviour is that upon perturbation, the

total entropy production rate decreases which would not emerge using an over-damped description of the

dynamics. This feature can be explained by the existence of the d〈∆S3〉FpF
0
/dt contribution to the mean

entropy production rate, which may take negative values depending on the relationship between the

instantaneous distribution and the stationary distribution. In this specific case, the large negative value

for d〈∆S3〉FpF
0
/dt indicates that upon reversal of the force the instantaneous distribution corresponds to

particle motion, on average, in a direction counter to that expected to result from the new value of the

force. The velocity distribution does relax, of course, to the stationary distribution that corresponds to

the new value of the force and so the mean rate of change of ∆S3 decays away. An important point

to draw from Fig. 6.2 is that ∆S3, ∆S1 + ∆S3 and ∆S2 + ∆S3 cannot be expected, in general, to be

positive, reflecting that they cannot be expressed in the form of Eq. (4.2) and thus do not obey IFTs.

This means previous approaches where the entropy production can always be divided into two positive

quantities [36, 98, 99] and the house-keeping heat can be expected to obey an IFT [94], do not extend

to the system considered here.

We consider this example to be a helpful illustration of how entropy production cannot always be

divided into two contributions which derive from relaxation, and an absence of detailed balance owing

to a non-equilibrium constraint, respectively. Explicitly, the non-equilibrium constraint here is the

constant force which produces entropy in the stationary state by inducing a constant flux around the

ring. The mean rate of entropy production in that stationary state is characterised by d〈∆S2〉FpF
0
/dt which

remains constant throughout the process owing to the constant magnitude of the force which is applied.

However, both ∆S2 and ∆S3 are non-zero only in the presence of a non-equilibrium constraint which

breaks detailed balance. At the same time the mean rate of change of ∆S3 is non-zero only when the

distribution is relaxing to a new stationary solution in the same manner as ∆S1. Whilst ∆S1 describes

the entropy production that arises from an evolution of the probability distribution of a general set of

variables, ∆S3 expresses what ∆S1 explicitly leaves out: the additional impact of relaxation on entropy

production that relates to the a priori physical specification of the variables as odd or even. Clearly,

given that the non-equilibrium constraint is a force of constant magnitude, reflected by the constant

d〈∆S2〉FpF
0
/dt, it is reasonable to consider the sum of ∆S1 and ∆S3 as the contribution that arises due

to relaxation to a new stationary state, particularly when the form of its mean rate of change in Fig. 6.2

is contrasted with that of ∆Stot, ∆S1 and ∆S2 in Fig. 6.1. We can make the analysis complete by

considering the SDEs for all contributions. The explicit Itō forms of Eqs. (5.27), (5.53), (5.62) and

(5.68) are given as

k−1
B d∆Stot = − m

kBT
〈v〉dv − m

kBT
(v − 〈v〉) d〈v〉

dt
dt+

F(t)

kBT
dx (6.11)

k−1
B d∆S1 =

1

kBT

(F(t)

γ
−m〈v〉

)

dv − m

kBT
(v − 〈v〉) d〈v〉

dt
dt (6.12)

k−1
B d∆S2 =

F(t)

γkBT
dv +

F(t)

kBT
dx (6.13)

k−1
B d∆S3 = −2F(t)

γkBT
dv (6.14)

and illustrate the behaviour of all the contributions. d∆Stot is only zero when 〈v〉 = 0, F = 0 and
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d〈v〉/dt = 0 meaning the system is in the equilibrium state. d∆S1 is zero whenever 〈v〉 = F/mγ

and d〈v〉/dt = 0 corresponding to any stationary state, equilibrium or otherwise, whilst d∆S2 and

d∆S3 contribute independently of properties of the distribution (namely 〈v〉), but only when the non-

equilibrium constraint is present such that F(t) 6= 0. d∆S3 however, has a mean contribution of

zero at stationarity since 〈dv〉 = 0 for any stationary state. We can calculate distributions of all the

contributions, as measured from the force reversal, numerically using the above SDEs and demonstrate

the validity of IFTs, where appropriate, in Figs. 6.3 and 6.4. We observe that all distributions take

Gaussian form, to be expected as the model is essentially a recasting of the over-damped dragged

oscillator found in [123] where the further, but non-general, detailed fluctuation theorem symmetry

pF(∆Stot = A)pF,st
0

/pF(∆Stot = −A)pF,st
0

= exp (A) has been noted to hold over finite times [123], but

stressed elsewhere [114] to be coincidental. Further insight into this coincidence can be derived from the

form of the SDEs which yield Gaussian distributions (for the given initial conditions) since they comprise

only drift and additive noise terms (that is, no terms of the form f(v)∗dv). Such properties however, do

not distract from the nature of the contributions which can be readily observed: the distributions in ∆S1

and ∆S3 develop fastest at first reflecting the initially fast response of the distribution to the change

in force. However, distributions for both ∆S2 and ∆Stot develop steadily, owing to their contributions

being characterised by steady heat dissipation. As such, as time progresses, the distribution of ∆S1

ceases to develop as the system reaches the new stationary state and the distributions of ∆S2 and ∆Stot

continue to shift to the right until they eventually dominate. Similarly for ∆S3, we observe here that the

distribution stops evolving despite receiving non-zero contributions. For completeness we investigate
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Figure 6.3: Distributions of entropy productions ∆Stot (solid black line), ∆S1 (wide dashed red line),
∆S2 (narrow dashed green line) and ∆S3 (dotted blue line) measured at times ∆t = t− t0 = 1, ∆t = 2,
∆t = 3 and ∆t = 4 after the reversal of the force for F0 = 1, F1 = −1, t0 = 1 and kB = m = γ = T = 1.
Note that for ∆t = 4 the lines for ∆Stot and ∆S1 overlap. We performed 7.5 × 106 Monte Carlo runs
with time step dt = 1× 10−3 to generate the results.

the same model with a less trivial time dependence in the non-conservative force, along with its approach

to the over-damped limit where such systems have been considered previously [98, 153]. We employ the

force protocol

F(t) = 1.5− 0.5 tanh(−5(t− 1)) (6.15)
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kB = m = γ = T = 1.

and perform the calculations numerically for two values of damping coefficient, γ = 1 and γ = 5. We

point out again that the meaning of d〈∆S2〉FpF
0
/dt for this system is easily elucidated since the non-

equilibrium constraint, F(t), being phase space independent, leads to J ir,st
v ∝ pF,st so that

1

kB

d〈∆S2〉FpF
0

dt
=

1

kB

d〈∆Stot〉F,stpF,st
0

dt
=

F(t)2

mγkBT
. (6.16)

The mean contributions for such a protocol for two values of the damping coefficient, again starting

from the stationary state, are shown in Fig. 6.5. Note that in this case the contribution d〈∆S3〉FpF
0
/dt is

positive. This reflects the fact that as the non-conservative force decreases, the instantaneous distribution

corresponds to a greater average particle flux in x than would be expected from the stationary distribution

that corresponds to the instantaneous value of the force. As such, calculating the entropy contribution

arising due to F(t) using its instantaneous value (d〈∆S2〉FpF
0
/dt) underestimates the actual instantaneous

particle flux in x and thus entropy production. This discrepancy is then corrected by d〈∆S3〉FpF
0
/dt. As

γ increases, the asymmetry of the stationary state (in velocity) decreases and the contribution from

∆S3 diminishes. Consequently, the two stationary distributions become increasingly similar, meaning

the contribution ∆S1 also diminishes rendering the total entropy production almost entirely comprised

of the contribution from ∆S2. When the full over-damped limit is taken ∆S2 is the only contribution

and the results map onto those found in [98].

6.2 Entropy Production in the Presence of Dry Friction

We have seen how the three contributions to entropy production contribute for a non-conservatively

forced Langevin particle. This model however, has, to a certain extent, somewhat unremarkable features
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since, for the solvable situations we considered, the solution to the Fokker-Planck equation is always

Gaussian. As such it is of interest to investigate the properties of the entropy production for more

complicated, perhaps non-linear, models which don’t have this property. In such cases the question of

how to proceed then becomes one of finding an interesting enough system with a solvable Fokker-Planck

equation. An example which is solvable, through an explicit representation of its propagator, is that

of dry friction [154]. This is where the frictional term is of a constant magnitude and depends solely

on the sign of the velocity. If such a term were analogously used as a position dependent force within

an over-damped regime the potential it would arise from would be a wedge shape. We then consider

the equations of motion for dynamics that contain this new dry friction term in addition to the original

viscous friction term. This then provides a model of a Langevin particle like we have seen previously,

such that there is a noisy dissipative environment, with an additional friction source to model a medium

independent stick-slip character in its dynamics. These are then given by

dx = vdt

dv = −γdσ(v)dt− γvdt+
F
m
dt+

√
2DdW (6.17)

where γd is the strength of the dry friction, σ(v) is the sign function, γ is the normal, viscous, damping

coefficient and D is the diffusion constant providing a measure of the strength of the noise, taken to

be white and Gaussian, represented by the Wiener process. We note the absence of an explicit tem-

perature: this is not, necessarily, a thermal system, but rather a model of stick slip dynamics subject

to fluctuations. One may of course argue that the noise constitutes a temperature provided by the

environment which acts through the viscous friction and noise strength, which would cause us to write

D = kBTγ/m, but the stationary solution would not be the Maxwell distribution. We note that owing

to the discontinuity one usually provides an additional convention for the sign function at the origin
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such as σ(0) = 0 as in [155].

We write the stationary solution in terms of a non-equilibrium potential so that we have

pF,st(v) = exp [−φ (v)] , (6.18)

which for the above dynamics requires

φ (v) =
1

2

(√
γ

D
|v|+ γd

√
1

γD

)2

− F
mD

v + lnZ, (6.19)

where Z is a normalisation constant and plays the role of a non-equilibrium partition sum. When coming

to construct an increment in the medium entropy production we should be somewhat careful since Air
v

is discontinuous at the origin and so must recognise that the resultant expression

k−1
B d∆Smed = − (γdσ (v) + γv)

D
◦ dv + F (γdσ (v) + γv)

mD
dt

= −γd
D

σ (v) ◦ dv − γ

2D
d
(
v2
)
+

F (γdσ (v) + γv)

mD
dt, (6.20)

strictly, like the original SDE for dry friction, is defined for the piecewise domains v > 0 and v <

0 separately. A practical consequence of this is that when simulating such an SDE numerically, we

cannot confidently use the above expression to represent an increment in the medium entropy when

approximating it with a non-infinitesimal increment that crosses the origin. As such it is instructive to

point out how to interpret the above SDE more practically and to highlight how it is implemented in

simulation. To do so we consider the discontinuous parts of the increment in the medium entropy as the

sum of two sub-infinitesimal increments which both approach and start from the origin asymptotically.

As such, we take, for example, a transition from v which is negative to v′ which is positive, and consider

the transitions v → v− and v+ → v′ where v− asymptotically approaches the origin from below and v+

from above. In this case the first term of Eq. (6.20) is equivalent to

lim
v−→0−

1

2D
(−γdσ(v)− γdσ(v−))(v− − v) + lim

v+→0+

1

2D
(−γdσ(v+)− γdσ(v

′))(v′ − v+)

= − lim
v−→0−

γd
D

σ(v)(v− − v)− lim
v+→0+

γd
D

σ(v′)(v′ − v+)

= −γd
D

(σ(v′)v − σ(v)v)

= −γd
D

d|v| (6.21)

which reflects the energy change from the wedge like potential associated with the dry friction term.

The third term, by defining the fraction of the transition spent in the initial domain about the origin

before crossing the origin (for example the fraction for which v < 0) as αv, is given by

lim
v−→0−

Fγd
mD

σ(v)αvdt+ lim
v+→0+

Fγd
mD

σ(v+)(1− αv)dt =
Fγd
mD

(αvσ(v) + (1− αv)σ(v
′)) dt. (6.22)

Consequently, we numerically implement the expression

k−1
B d∆Smed = −γd

D
d|v| − γ

2D
d
(
v2
)
+

Fγd
mD

(αvσ(v) + (1− αv)σ(v
′)) dt+

Fγ

mD
vdt (6.23)

which, whilst not strictly an SDE since it explicitly involves start and end points of the transition and
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the quantities d|v| and αv, reduces to the result in Eq. (6.20) for σ(v) = σ(v′) and can thus be effectively

used as a general expression for an increment in the medium entropy change. Using this result and

the expected form of the adjoint dynamics (in particular the equivalence between the term in d|v| and
the equivalent expression in the non-equilibrium potential) we may construct the SDEs for the three

contributions to entropy production as before. These are then given as

k−1
B d∆S1 = −d ln

(
pF (x, v, t)

)
− γ

2D
d
(
v2
)
+

F
mD

dv − γd
D

d|v| (6.24)

k−1
B d∆S2 =

γdF
mD

(αvσ(v) + (1− αv)σ(v
′)) dt+

γF
mD

dx+
F
mD

dv (6.25)

k−1
B d∆S3 = − 2F

mD
dv. (6.26)

These can then be used numerically to investigate the properties of such quantities. However, we do not,

in general, have an expression for pF (x, v, t). In order to obtain a usable result in certain circumstances

we utilise the form of the propagator in velocity space given by Touchette et al. [155]. The propagator

is given as an expansion of parabolic cylinder functions [156] in terms of the eigenvalues, λn, of the

characteristic equation. It has the form

pF (v′, τ |v, 0) = pF,st (v′) +

∞∑

n=1

exp (−γλnτ)
Un

(√
γ
Dv′

)
Vn

(√
γ
Dv
)

Zn
. (6.27)

Here λn is found from the characteristic equation

λn

(

Dλn

(√
1

γD

(

γd +
F
m

))

Dλn−1

(√
1

γD

(

γd − F
m

))

+Dλn

(√
1

γD

(

γd − F
m

))

Dλn−1

(√
1

γD

(

γd +
F
m

)))

= 0 (6.28)

where Dλn
is the parabolic cylinder function. Here we have

Un

(√
γ

D
v

)

= e−
φ(v)

2 Dλn

(√
1

γD

(

γv + γd − F
m

))

v ≥ 0,

Un

(√
γ

D
v

)

= e−
φ(v)

2

Dλn

(√
1

γD

(
γd − F

m

))

Dλn

(√
1

γD

(
γd + F

m

))Dλn

(√
1

γD

(

−γv + γd +
F
m

))

v ≤ 0, (6.29)

Vn

(√
γ

D
v

)

= Un

(√
γ

D
v

)

eφ(v) (6.30)

and normalisation constant

Zn = λnDλn

(√
1

γD

(

γd − F
m

))

Dλn−1

(√
1

γD

(

γd − F
m

))

× ∂

∂λn
ln

∣
∣
∣
∣
∣
∣

Dλn−1

(√
1

γD

(
γd − F

m

))

Dλn

(√
1

γD

(
γd + F

m

))

Dλn−1

(√
1

γD

(
γd + F

m

))

Dλn

(√
1

γD

(
γd − F

m

))

∣
∣
∣
∣
∣
∣

. (6.31)

In practice, a set of λn to a given cut off are found numerically from the characteristic equation along with

the corresponding normalisation coefficients. The parabolic cylinder functions are then calculated using

library functions for the gamma function and confluent hypergeometric functions. We may then use the

propagator to calculate the transient probability distribution corresponding to the transition from some
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given initial distribution to the relevant stationary state. Choosing a given stationary distribution which

is different to that used in the propagator (which the system will subsequently relax to) then allows us

to examine the transition between stationary states brought about by an instantaneous change in any

of the system parameters which could be, for example, the strength of the non-conservative force, the

damping coefficient etc.

Defining all parameters a to have initial, a0=[γ0, γd,0,F0,m0, D0], and final, a1=[γ1, γd,1,F1,m1, D1],

values before and after the transition we may write

pF(v′, τ) = pF,st(v′, a1) +
∞∑

n=1

exp [−γ1λn(a1)τ ]Un

(√
γ1

D1
v′, a1

)

Zn(a1)
Cn(a1) (6.32)

where

Cn(a1) =

∫ ∞

−∞

pF(v, 0)Vn

(√
γ1
D1

v, a1

)

dv (6.33)

which for pF(v, 0) = pF,st(v, a0) is

pF,st(v, a0) =

√
γ0
D0

[√
π

2

(

exp

[ F0

2γ0D0m0

(F0

m0
− 2γd,0

)](

1 + erf

(
F0

m0
− γd,0√
2γ0D0

))

+exp

[ F0

2γ0D0m0

(F0

m0
+ 2γd,0

)]

erfc

(
F0

m0
+ γd,0√
2γ0D0

))]−1

× exp

[

−1

2

(√
γ0
D0

|v|+ γd,0

√
1

γ0D0

)2

+
F0

m0D0
v

]

(6.34)

which is simply the stationary distribution for a0 with the normalisation coefficient written explicitly.

One may represent the parabolic cylinder functions using gamma and confluent hypergeometric functions

for which there are standard library functions for their numerical evaluation. As such one can numerically

find a set of λn, Zn, Cn and describe the time dependent distribution for v. Practically, one can initialise

the distribution simply as all stationary states are piecewise Gaussian. An example is given in Fig. 6.6.

Clearly, the representation will be poor for small times and progressively improve.

6.2.1 Example Implementations

Instantaneous Temperature Change

In order to consider all three entropy contributions we must consider situations where we have a means

of representing the transient distribution. Using the propagator expansion detailed above we are able

to do this when there is an instantaneous change in system parameters. The first of these situations we

consider is for a step change in the noise strength, or in more physical terms, temperature to which the

particle is exposed. Considering an increase in the noise strength this is characterised by a broadening of

the distribution, the outline of which is illustrated in Fig. 6.6 using the expansion detailed above with 80

terms for which the approximated distribution becomes usable after t ≃ 0.1 as checked by convergence

to that found by numerical simulation. Noting here that the non-equilibrium potential is given by

φ
(
v, λF(t)

)
=

1

2

(
√

γ

D(λF(t))
|v|+ γd

√

1

γD(λF(t))

)2

− F
mD(λF(t))

v + lnZ(λF(t)), (6.35)
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Figure 6.6: Evolution of the velocity distribution following an instantaneous increase in noise strength
from D0 = 0.5 to D1 = 1 with γ = 1 = γd = m = F = 1 using 80 terms in the expansion in Eq. (6.32).

.

where we specify D(λF(t)) = D(t) = D0 for t < 0 and D(t) = D1 for t ≥ 0, and write βi = D−1
i , we

may consider the stationary to stationary limit of the process and verify a relevant fluctuation theorem

for the contribution ∆S1. The entropy production contribution for such a process may be simplified as

k−1
B ∆Sst→st

1 = ln

[
pF,st(v(0), D0)

pF,st(v(τ), D1)

pF,st(v(τ), D1)

pF,st(v(0), D1)

]

= ln

[
pF,st(v(0), D0)

pF,st(v(0), D1)

]

=

(

γd|v(0)|+
γ(v(0))2

2
+

γ2
d

2γ
− F

m
v(0)

)

(β1 − β0) + ln
Z1

Z0
(6.36)

where Zi is the partition sum. Since this only depends on v = v(0) we may simply write

p(k−1
B ∆Sst→st

1 )d
(
k−1
B ∆Sst→st

1

)
= pF,st(v(0))dv(0). (6.37)

With

v(0) =
F ±mγd

mγ
±

√
√
√
√2

((

k−1
B ∆S1 − ln Z1

Z0

)

+ (β1−β0)F
m2γ (F ± 2mγd)

)

γ(β1 − β0)
(6.38)

we thus find, choosing the physical root,

pF(k−1
B ∆Sst→st

1 )pF,st
0

= Z−1
0

(

2(β1 − β0)γ

(

(k−1
B ∆Sst→st

1 − ln
Z1

Z0
) +

(β1 − β0)F
2m2γ

(F − 2mγd)

))− 1
2

× exp



−
β0

(

k−1
B ∆Sst→st

1 − ln Z1

Z0

)

(β1 − β0)



. (6.39)
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The symmetry used in the construction of ∆S1 arises from the comparison of the normal dynamics

and protocol with that of the adjoint dynamics with reversed protocol. As such we can envisage the

appropriate reversed adjoint process which, since we have considered ∆Sst→st
1 in the forward process, we

also specify starts in the stationary state. Specifically, if we consider the forward protocol to consist of

the step change ∆β = (β1 − β0) at t = 0 starting from the stationary state characterised by β0 then the

reverse adjoint process consists of the step change ∆βR = −∆β at t = τ starting from the stationary

state characterised by β1 under the adjoint dynamics. However, under the adjoint dynamics, the quantity

∆SR,ad,st→st
1 is formed only of stationary distributions which are common to both the adjoint and usual

forward dynamics. Consequently we can readily find

k−1
B ∆SR,ad,st→st

1 = −
(

γd|vR(τ)|+
γ(vR(τ))2

2
+

γ2
d

2γ
− F

m
vR(τ)

)

(β1 − β0)− ln
Z1

Z0
. (6.40)

Given the reversed protocol we also know that in the reversed adjoint process the system is in the

stationary state up to t = τ and so, as above for ∆SR,ad,st→st
1 and v(0), we can relate the distribution

of ∆SR,ad,st→st
1 and vR(τ), choosing the physical root, thus finding

pR,ad(k−1
B ∆SR,ad,st→st

1 )pR,st
0

= exp



−
β1

(

k−1
B ∆SR,ad,st→st

1 − ln Z0

Z1

)

(β0 − β1)





× Z−1
1

(

2(β0 − β1)γ

(

(k−1
B ∆SR,ad,st→st

1 − ln
Z0

Z1
) +

(β0 − β1)F
2m2γ

(F − 2mγd)

))− 1
2

. (6.41)

However, because of the parity of this contribution (Â[~xR] = ∆SR,ad,st→st
1 (vR(τ)) = −∆Sst→st

1 (v(0))

= −A[~x]) arising since we have specified the stationary to stationary case we expect to observe a

fluctuation theorem. As such we may write

pF(k−1
B ∆Sst→st

1 )pF,st
0

exp[−k−1
B ∆Sst→st

1 ] =

Z−1
1

(

2(β0 − β1)γ

(

(−k−1
B ∆Sst→st

1 − ln
Z0

Z1
) +

(β0 − β1)F
2m2γ

(F − 2mγd)

))− 1
2

exp

[

ln
Z1

Z0

]

× exp



−
β0

(

k−1
B ∆Sst→st

1 − ln Z1

Z0

)

(β1 − β0)



 exp

[

−β1 − β0

β1 − β0
k−1
B ∆Sst→st

1

]

= Z−1
1

(

2(β0 − β1)γ

(

(−k−1
B ∆Sst→st

1 − ln
Z0

Z1
) +

(β0 − β1)F
2m2γ

(F − 2mγd)

))− 1
2

× exp

[

− β1

β0 − β1

(

−k−1
B ∆Sst→st

1 − ln
Z0

Z1

)]

= pR,ad(−k−1
B ∆SR,ad,st→st

1 )pR,st
0

(6.42)

demonstrating a Crooks-like fluctuation theorem for ∆S1. We may observe the above forms as slightly

modified chi-squared distributions reducing exactly when F = 0. In such cases we may see that it has

degree of freedom parameter equal to one. If we were to define our system as consisting of several

non-interacting versions of the same system then we would find that the degree of freedom parameter

represents the number of particles we consider producing a result equivalent to a convolution of single

particle distributions. Interestingly, when setting F = 0 we observe that the functional form for ∆S1 is

identical to that for the same process in a system where the dry friction term is absent, as in Eq. (6.1)

(although the partition sums will differ). However, if we only include the dry friction term (equivalent
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to setting γ = 0 in Eq. (6.17)) we observe an exponential (Erlang) distribution of the form

pF(k−1
B ∆Sst→st

1 )pF,eq
0

=
2β0

(β1 − β0)
exp



−
β0

(

k−1
B ∆Sst→st

1 − ln Z1

Z0

)

(β1 − β0)



 (6.43)

suggesting the distribution of ∆S1 is dominated by higher order terms in the (non-)equilibrium potential.

The full evolution of the transient distribution of ∆S1, utilising the propagator expansion, for a

particle subject to viscous damping, dry friction and non-conservative forcing is shown in Fig. 6.7 where

we observe a peaked distribution steadily approaching the modified chi-squared distribution given above

as the process becomes equivalent to the stationary to stationary process. Since we have included a
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Figure 6.7: Distributions of entropy production contribution ∆S1 for times indicated after an instanta-
neous increase in noise strength from D0 = 0.5 to D1 = 1.0 with F = m = γ = γd = 1. We observe a
peaked distribution that steadily approaches the modified chi-squared distribution given in Eq. (6.39).

non-conservative force we also have contributions ∆S2 and ∆S3. Immediately we see there are some key

similarities between the dry friction model and that of the usual Langevin equation. Most notable, is

that the nature of the non-equilibrium constraint is the same yielding similar behaviour in both ∆S2

and ∆S3. For example it is straightforward to show

1

kB

d〈∆S2〉FpF
0

dt
=

F(t)2

m2D
(6.44)

given any driving. We illustrate the mean behaviour, as found by a Monte Carlo average of the ap-

propriate SDEs in Eqs. (6.24) to (6.26), of all contributions arising from an instantaneous increase

noise strength in Fig. 6.8 where, for comparison, we also show the result for d〈∆Stot〉FpF,st,0/dt obtained

for the case where γd = 0. The latter can be achieved, analytically through Eq. (5.40), quite simply

by noting the solution is always Gaussian following a reversal at time t0. Using the same methods

as in Sect. 6.1 then allows us to parametrise the solution through the Gaussian’s variance so that

for t > t0, σ
2(t) = e−2γ(t−t0)(D0 − D1 + D1e

2γ(t−t0)). A consequence of this Gaussian form is that
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d〈∆S3〉FpF,st
0

/dt = 0, something we do not observe when dry friction is included leading to a more com-

plicated structure in the mean total entropy production rate characterised by a non-monotonic decrease

in the transition between the stationary states.

-0.500.511.522.5

0 0.5 1 1.5
d
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S
〉F p

F
,
s
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/
d
t

t

d〈∆Stot〉/dt dry & viscous friction

d〈∆S1〉/dt dry & viscous friction

d〈∆S2〉/dt dry & viscous friction

d〈∆S3〉/dt dry & viscous friction

d〈∆Stot〉/dt viscous friction

Figure 6.8: Mean entropy production rate contributions for a Langevin particle with both dry and
viscous friction following an instantaneous increase in noise strength from D0 = 0.5 to D1 = 1 at time
t = 0.2 with γ = m = γd = F = 1 calculated using a Monte Carlo average of the SDEs in Eqs. (6.24)
to (6.26). Also shown is the mean entropy production rate for the same Langevin particle without dry
friction (γd = 0) calculated by an integral of the form in Eq. (5.40).

Force Reversal

For contrast with the previously considered force reversal for the usual Langevin dynamics with viscous

friction we can consider the same process in the presence of dry friction. The evolution of the distribution

in such a process is illustrated in Fig. 6.9 and as before we found the distribution to be accurate after

around t ≃ 0.1 when using 80 expansion terms in Eq. (6.32). The question we may then ask is how

does the presence of dry friction affect the irreversibility in a force reversal process. We found that

the behaviour of ∆S1, ∆S2 and ∆S3 was qualitatively the same both in distribution and mean as for

the process in the absence of dry friction, however they were not quantitatively the same giving the

total entropy production and thus total irreversibility a different character. The results for two different

values of dry friction constant are given in Fig. 6.10. We observe that the introduction of dry friction,

whilst having no marked effect on the irreversibility (or entropy production) in the stationary state,

shortens the timescale of the transition, as might be expected from the increased damping effect, but

also increases the minimum observed irreversibility (specifically when compared to the viscous, γd = 0,

case seen in Fig. 6.1) throughout a transition between stationary states. Further increases in the strength

of the dry friction amplify both these effects. Such results are to be contrasted with the force reversal

results for viscous friction only where we observed a reduction of the total entropy production to zero

at t ≃ 0.6 after the force reversal as the Gaussian velocity distribution passed through the origin.
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Figure 6.9: Evolution of the velocity distribution following a reversal of force from F0 = −1 to F1 = 1
with γ0 = γ1 = 1, γd,0 = γd,1 = 1, D0 = D1 = 0.5 and m0 = m1 = 1 using 80 terms in the expansion.
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Figure 6.10: Evolution of the mean contribution to the total entropy production following a reversal of
force from F0 = −1 to F1 = 1 from the stationary state at t = 0.2 with γ0 = γ1 = 1, D0 = D1 = 0.5
and m0 = m1 = 1 using 80 terms in the expansion for two different values of dry friction parameter
γd,0 = γd,1 = 1 and γd,0 = γd,1 = 2.
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6.3 Relativistic Drift Diffusion, Non-linear Brownian Motion

and State Dependent 〈∆S2〉FpF0 Contributions

So far for continuous systems we have seen the general properties of the three contributions to entropy

production and have observed that, in the mean, ∆S1 and ∆S3 contribute transiently, decaying to

zero as expected, but with different rates, which along with a constant contribution to 〈∆S2〉FpF
0
from

a state independent non-equilibrium constraint, defines the form of the mean total entropy production.

We now however, consider situations where the 〈∆S2〉FpF
0
contribution has a transient character in the

absence of driving. Typically this can be achieved by either having a state dependent non-equilibrium

constraint such that there is a state dependent irreversible flux or by the presence of multiplicative noise.

An example of where this can be observed is for relativistic Brownian motion. When studying

exceptionally fast dynamics the usual Brownian motion has the distinct shortcoming that it permits

velocities that exceed the speed of light, as it can receive fluctuations of any size according to the Wiener

process. In an attempt to resolve such an issue there is the so-called theory of relativistic Brownian

motion which applies the laws of special relativity to continuous stochastic dynamics [157, 158]. The

main features of such an approach are that the fluctuations are driven in the momentum space and that

the magnitude of these fluctuations is dependent on the momentum in such a way that the magnitude

of the velocity is bound by the speed of light. One finds that the strength of the fluctuations follow the

Lorentz transformation such that one may construct a consistent SDE for the particle momentum, pv,

in the laboratory frame is given by

dpv = −γpvdt+ Fdt+

√

2kBTmγ

(

1 +
p2v

m2c2

) 1
2

∗ dW. (6.45)

Since

v =
cpv

√

m2c2 + p2v
(6.46)

we understand a fluctuation to infinity in pv corresponds to a fluctuation to the bound v = c. Fluctuation

theorems have been studied in the context of relativistic Brownian motion before [159], but not in

situations where the stationary distribution is non-equilibrium which makes our main division of entropy

production relevant. It is well recognised [157, 160] that since we have multiplicative noise we must choose

a discretisation procedure for which each leads to different physical behaviour and resultant distributions.

It is however, generally accepted that to achieve the Maxwell-Juttner equilibrium distribution [157, 158]

one must choose the Hänggi-Klimontovich or post-point evaluation, which we also recognise as the choice

which removes all noise induced contributions to the medium entropy change. As such, we formally write

dpv = −γpvdt+ Fdt+

√

2kBTmγ

(

1 +
p2v

m2c2

) 1
2

• dW. (6.47)

By examining the previously unconsidered case of a relativistic particle in a non-equilibrium stationary

state by introducing a non-conservative force as before, we first identify the stationary state

pF,st(pv) ∝ exp

[

−mc2

kBT

(√

1 +
p2v

m2c2
− F

mcγ
arcsinh

[ pv
mc

]
)]

(6.48)
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which satisfies

∂

∂pv
(γpv −F) pF(pv) +

∂

∂pv
kBTmγ

(

1 +
p2v

m2c2

) 1
2 ∂pF(pv)

∂pv
= 0, (6.49)

being the Fokker-Planck equation according to the Hänggi-Klimontovich interpretation, which allows us

to find the following SDEs for entropy production contributions

k−1
B d∆Stot = −d

(
ln pF(pv, x, t)

)
− pv

mkBT

(

1 +
p2v

m2c2

)− 1
2

◦ dpv +
Fpv

mkBT

(

1 +
p2v

m2c2

)− 1
2

dt (6.50)

k−1
B d∆S1 = −d

(
ln pF(pv, x, t)

)
− pv

mkBT

(

1 +
p2v

m2c2

)− 1
2

◦ dpv +
F

mkBTγ

(

1 +
p2v

m2c2

)− 1
2

◦ dpv (6.51)

k−1
B d∆S2 =

F
mkBTγ

(

1 +
p2v

m2c2

)− 1
2

◦ dpv +
Fpv

mkBT

(

1 +
p2v

m2c2

)− 1
2

dt (6.52)

k−1
B d∆S3 = − 2F

mkBTγ

(

1 +
p2v

m2c2

)− 1
2

◦ dpv. (6.53)

Despite knowledge of the stationary distribution in such a system, finding an analytical form for the

transient, relaxing, probability density function is more challenging with no obvious solution. We can

however, numerically investigate the contributions which do not rely on this information, namely the

contributions to the house-keeping heat.

We may immediately find the expression for d〈∆S2〉FpF
0
/dt by our usual methods, noticing that as

before we have a state independent ratio of irreversible current to probability density function,

J ir
pv
(pv, x, t)

pF(pv, x, t)
= −F , (6.54)

but a state dependent mean entropy contribution due to the multiplicative noise

1

kB

d〈∆S2〉FpF
0

dt
=

∫

dpv pF(pv, x, t)
F2

kBTmγ

(

1 +
p2v

m2c2

)− 1
2

=

〈

F2

kBTmγ

(

1 +
p2v

m2c2

)− 1
2

〉

. (6.55)

This is the first example we have seen where a phase space independent non-equilibrium constraint (the

non-conservative force) has led to a distribution dependent contribution to the generalised house-keeping

heat. This is a reflection of how entropy production is intimately related to the irreversibility manifest in

the dynamics. That is to say, whilst the constant force generates a constant ratio of irreversible current to

probability density function (in the stationary state) which we know is the cause of entropy production,

the irreversibility and thus the actual magnitude of the contribution, will be inversely dependent on the

noise strength. Consequently we observe that a given irreversible current results in larger contributions

to ∆S2 the closer to the origin in momentum space it is. This is of the form of the Lorentz contraction

correction term and motivates a measure of the mean, conditional, phase space dependent, contribution

to the entropy production rate. This is simply the positive quantity that is being ‘averaged’ in the

expressions for the mean contributions and allows us to identify the thermodynamically important and

unimportant parts of phase space for the contribution ∆S2. For our example of a relativistic Brownian

particle subject to a constant non-conservative force this is given in Fig. 6.11.
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Figure 6.11: Phase space conditional mean contribution to the generalised house-keeping heat for a
relativistic Langevin particle using units kBT = m = c = γ = F = 1.

Noticing that the function is symmetric about the origin, we may gain understanding of the mean

total contribution by imagining the expected form of the transient probability density function placed

on such a distribution: for a force reversal from the stationary state, the momentum distribution will

shift from one side of the mean momentum dependent production rate to the other. As such it will move

through the higher contributing region at the origin meaning a force reversal for relativistic Brownian

motion is characterised by a transient increase in the expected generalised house-keeping heat before

returning to its original value by symmetry of the initial and final distributions. This transient behaviour

in the generalised house-keeping heat (and its analogue where there are only even variables) means that

its place within an operational non-equilibrium thermodynamics cannot be simply expressed, as is often

the case in the literature, as the constant heat flow to maintain the steady state, but is rather better

expressed as the positive contribution to irreversibility arising from a non-equilibrium constraint. This

transient nature is illustrated for this example from a numerical approach in Fig. 6.12.

A similar system which exhibits this behaviour is that of non-linear Brownian motion where

dv = −γ(|v|)vdt+ F
m
dt+

√

2kBTγ(|v|)m • dW. (6.56)

Once again assuming a Hänggi-Klimontovich interpretation, any even function γ(|v|) will give rise to the

entropy contributions

k−1
B d∆Stot = −d

(
ln pF(x, v, t)

)
− d

(
mv2

2kBT

)

+
F

kBT
dx (6.57)

k−1
B d∆S1 = −d

(
ln pF(x, v, t)

)
− d

(
mv2

2kBT

)

+
F

kBTγ(v)
◦ dv (6.58)
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Figure 6.12: Mean contributions to the generalised and total house-keeping heats and the adherence of
the former to an IFT for a force reversal from the stationary state for a relativistic Langevin particle for
kBT = γ = m = c = F = 1.

k−1
B d∆S2 =

F
kBTγ(v)

◦ dv + F
kBT

dx (6.59)

k−1
B d∆S3 = − 2F

kBTγ(v)
◦ dv. (6.60)

and thus a mean contribution
1

kB

d〈∆S2〉FpF
0

dt
=

〈 F2

kBTmγ(v)

〉

. (6.61)

Finally, similar behaviour can be seen in systems with state dependent non-equilibrium constraints such

as, for example,

dv = −γvdt+
F(v)

m
dt+

√

2kBTγmdW, (6.62)

which would lead to
1

kB

d〈∆S2〉FpF
0

dt
=

〈F rev(v)2

kBTmγ

〉

, (6.63)

where F rev(v) is the reversible part of the velocity dependent applied force. One might think, given

all the examples considered so far, that the parity dependent form of d〈∆S2〉FpF
0
/dt given in Eq. (5.66)

is superfluous since every expression for the conditional mean production rate has been explicitly sym-

metric. This has arisen since we have defined natural boundaries on v with a non-conservative force

(periodic boundaries in odd variables would surely be unphysical) giving Jv(x) = 0 automatically ren-

dering J ir,st
v (x)/pst(x) symmetric by virtue of the necessary symmetry in J rev,st

v (x)/pst(x) = Arev(x).

However, we point out that situations can arise where the current in, for example, v is coupled to other

system variables allowing a non-zero total current and thus an asymmetric J ir,st
v (x)/pst(x) by exploiting

the higher dimensionality to produce rotation. Such an example is of heat transport in one dimension

which we consider next which we note also serves as a justification for the inclusion of the odd velocity
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variable in the dynamics as one cannot provide a satisfactory description without it.

6.4 Thermal Transport

Here we present an example of a situation which necessitates the use of odd variables in order to describe

entropy production adequately by considering heat transport due to diffusion in one spatial dimension

in the presence of a spatially dependent temperature field. In particular we contrast this approach

to that which considers a bound particle simultaneously in contact with two reservoirs with different

temperatures [98, 115, 161, 162]. Mathematically this system can be modelled without odd (velocity)

variables by employing the over-damped limit and constructing a multiplicative SDE and Fokker-Planck

equation of the form

dx =
F(x)

mγ
dt+

√

2kBT (x)

mγ
dW (6.64)

and
∂pF(x, t)

∂t
= − ∂

∂x

(F(x)pF(x, t)

mγ

)

+
∂2

∂x2

(
kBT (x)p

F(x, t)

mγ

)

(6.65)

where again, m is the particle mass, γ the damping coefficient and F(x) the force operating on the

particle which for simplicity we state arises from a defined potential. We note the Itō form of both (for

a discussion of the resolution of the Itō-Stratonovich dilemma in this case see, for example, [163–165]).

This Fokker-Planck equation has a stationary distribution

pF,st(x) =
Nm

kBT (x)
exp

[∫ x

0

dx′ F(x′)

kBT (x′)

]

(6.66)

where N is a normalisation constant. We can quite readily identify the terms Air
x = F(x)/mγ, Arev

x = 0

andDx(x) = kBT (x)/mγ. However, when we come to construct the entropy production in the stationary

state from Eq. (5.27) as

k−1
B d∆Stot =

Air
x (x)

Dx(x)
◦ dx− 1

Dx(x)

∂Dx(x)

∂x
◦ dx− 1

pF,st(x)

∂pF,st(x)

∂x
◦ dx

=

[ F(x)

kBT (x)
− 1

T (x)

∂T (x)

∂x
− 1

pF,st(x)

(

− 1

T (x)

∂T (x)

∂x
pF,st(x) +

F(x)

kBT (x)
pF,st(x)

)]

◦ dx

= 0 (6.67)

we find that there is zero entropy production for all trajectories. This may be understood either phys-

ically by recognising that in the over-damped limit one demands that the velocity distribution relaxes

instantaneously thereby preventing any heat transfer due to temperature inhomogeneities, or geomet-

rically by recognising the impossibility of having stationary flow, and thus entropy production, for a

system in one dimension with natural boundaries.

To provide a satisfactory representation and to understand the entropy production in such a system

we need to consider the more realistic under-damped dynamics in full phase space where we retain both

position and velocity coordinates, x and v, which are even and odd under time reversal, respectively.
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The SDEs and Fokker-Planck equation are now given as

dx = vdt

dv = −γvdt+
F(x)

m
dt+

√

2kBT (x)γ

m
dW (6.68)

and

∂pF(x, v, t)

∂t
= −v

∂pF(x, v, t)

∂x
− ∂

∂v

((F(x)

m
− γv

)

pF(x, v, t)

)

+
kBT (x)γ

m

∂2pF(x, v, t)

∂v2
. (6.69)

We may, as before, then identify the terms Air
x = 0, Arev

x = v, Air
v = −γv, Arev

v = F(x)/m, Dx = 0 and

Dv = kBT (x)γ/m. By Eq. (5.27) the entropy production is

k−1
B d∆Stot = −d(ln pF(x, v, t))− mv

kBT (x)
◦ dv + Fv

kBT (x)
dt

= −d(ln pF(x, v, t))− 1

kBT (x)
d

(
mv2

2

)

+
F

kBT (x)
dx (6.70)

using v ◦ dv = (1/2)(v′ + v)(v′ − v) and vdt = dx, and noting that x is now deterministic, meaning

the integration rules are irrelevant. The second and third terms correctly reproduce the form of the

change in medium entropy as heat transfer to the environment, equal to negative heat transfer to the

particle (in agreement with the result found in stochastic energetics [45]), divided by the instantaneous

temperature, and do so only by virtue of the consideration of odd and even variables.

We can use this SDE to produce distributions of entropy production and verify relevant fluctuation

theorems. To do so, however, requires knowledge of the solution to the Fokker-Planck equation, for which

there is no simple analytical form. To proceed we restrict ourselves to the stationary state and utilise the

expansion found in [165] and [166] which expresses the stationary solution as a series expansion about

the over-damped distribution:

pF,st,over(x, v) =
Nm

kBT (x)
exp

[∫ x

0

dx′ F(x′)

kBT (x′)

]√
m

2πkBT (x)
exp

[

− mv2

2kBT (x)

]

, (6.71)

where N is determined by normalisation, such that

pF,st(x, v) = pF,st,over(x, v) +
∞∑

i=1

(1/γ)ipi(x, v)

=

∞∑

i=0

(1/γ)ipi(x, v). (6.72)

pi(x, v) has a general form

pi(x, v) =

k=bi∑

k=ai

ci,k(x)Hk(v
√

m/kBT (x))
√

2πkBT (x)/m
exp

[

− mv2

2kBT (x)

]

, (6.73)

where constants ai, bi and functions ci,k(x) are found by an iterative procedure, and Hk(y) are Hermite

polynomials defined as

Hk(y) = (−1)ke
y2

2
dk

dyk
e

−y2

2 . (6.74)
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Defining the thermal velocity,

vth(x) =

√

kBT (x)

m
, (6.75)

the terms not automatically zero and other requisite expressions are described below. For zeroth order

we have

c0,0(x) = p0(x) =
Nm

kBT (x)
exp

[∫ x

0

dx′ F(x′)

kBT (x′)

]

(6.76)

where p0(x) is the marginalised over-damped solution such that pF,st,over(x, v) = p0(x, v). First order

terms are:

c′0,0(x) =
F(x)− kBT

′(x)

kBT (x)
c0,0(x)

c1,1(x) =
F(x)

mvth(x)
c0,0(x)− c′0,0(x)vth(x)− 2c0,0(x)v

′
th(x) = 0

c1,3(x) = −p0(x)

3
v′th(x). (6.77)

Second order terms are given as:

c2,2(x) = −3

2

(
c′1,3(x)vth(x) + 3c1,3(x)v

′
th(x)

)

= p0(x)

(
(v′th(x))

2

2
+

Fv′th(x)

2mvth(x)
+

vth(x)v
′′
th(x)

2

)

c2,4(x) = −c′1,3(x)vth(x)

4
− 2c1,3(x)v

′
th(x) +

F(x)

4mvth(x)
c1,3(x)

= p0(x)

(
(v′th(x))

2

2
+

vth(x)v
′′
th(x)

12

)

c2,6(x) = −1

6
c1,3(x)v

′
th(x)

= p0(x)
(v′th(x))

2

18

c2,0(x) = p0(x)

[

−
∫ x

0

dx′ 1

p0(x′)

[

2c′2,2(x
′) + 4c2,2(x

′)
v′th(x

′)

vth(x′)

]

+

∫ ∞

−∞

dx′ p0(x
′)

[
∫ x′

0

dx′′ 1

p0(x′′)

[

2c′2,2(x
′′) + 4c2,2(x

′′)
v′th(x

′′)

vth(x′′)

]]]

= 2p0(x)

[

−
(
(v′th(x))

2

2
+

F(x)v′th(x)

2mvth(x)
+

vth(x)v
′′
th(x)

2

)

−
∫ x

0

dx′ F(x′)

mv2th(x
′)

(
(v′th(x

′))2

2
+

F(x′)v′th(x
′)

2mvth(x′)
+

vth(x
′)v′′th(x

′)

2

)

+

∫ +∞

−∞

dx′p0(x
′)(v′th(x

′))2 +

∫ +∞

−∞

dx′p0(x
′)

∫ x′

0

dx′′ F(x′′)

mv2th(x
′′)

(
(v′th(x

′′))2

2
+

F(x′′)v′th(x
′′)

2mvth(x′′)

)]

.

(6.78)

Third order terms are:

c′2,2(x) = c2,2(x)

( F(x)

mv2th(x)
− 2v′th(x)

vth(x)

)

+ p0(x)

(F(x)v′′th(x)

2mvth(x)
+

F ′(x)v′th(x)

2mvth(x)
− F(x)(v′th(x))

2

2mv2th(x)
+ 3

v′th(x)v
′′
th(x)

2
+

vth(x)v
′′′
th(x)

2

)
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c′2,4(x) = c2,4(x)

( F(x)

mv2th(x)
− 2v′th(x)

vth(x)

)

+ p0(x)

(
13

12
v′th(x)v

′′
th(x) +

1

12
vth(x)v

′′′
th(x)

)

c′2,6(x) = c2,4(x)

( F(x)

mv2th(x)
− 2v′th(x)

vth(x)

)

+ p0(x)
v′th(x)v

′′
th(x)

9

c3,3(x) = −4

3

(
c′2,4(x)vth(x) + 4c2,4(x)v

′
th(x)

)

− 1

3

(

c′2,2(x)vth(x) + 6c2,2(x)v
′
th(x)−

F(x)

mvth(x)
c2,2(x)

)

− 1

3
c2,0(x)v

′
th(x)

c3,5(x) = −6

5

(
c′2,6(x)vth(x) + 6c2,6(x)v

′
th(x)

)

− 1

5

(

c′2,4(x)vth(x) + 10c2,4(x)v
′
th(x)−

F(x)

mvth(x)
c2,4(x)

)

− 1

5
c2,2(x)v

′
th(x)

c3,7(x) = −1

7

(

c′2,6(x)vth(x) + 14c2,6(x)v
′
th(x)−

F(x)

mvth(x)
c2,6(x)

)

− 1

7
c2,4(x)v

′
th(x)

c3,9(x) = −1

9
c2,6(x)v

′
th(x), (6.79)

and fourth order:

c′3,5(x) = −6

5

(
7c′2,6(x)v

′
th(x) + c′′2,6(x)vth(x) + 6c2,6(x)v

′′
th(x)

)

− 1

5

(
c′′2,6(x)vth(x) + 11c′2,6(x)v

′
th(x) + 10c2,6(x)v

′′
th(x)

− F(x)

mvth(x)
c′2,4(x)−

( F ′(x)

mvth(x)
− F(x)v′th(x)

mv2th(x)

)

c2,4(x)

)

− 1

5

(
c2,2(x)v

′′
th(x) + c′2,2(x)v

′
th(x)

)

c′3,7(x) = −1

7

(
c′′2,6(x)vth(x) + 15c′2,6(x)v

′
th(x) + 14c2,6(x)v

′′
th(x)

− F(x)

mvth(x)
c′2,6(x)−

( F ′(x)

mvth(x)
− F(x)v′th(x)

mv2th(x)

)

c2,6(x)

)

− 1

7

(
c2,4(x)v

′′
th(x) + c′2,4(x)v

′
th(x)

)

c′3,9(x) = −1

9

(
c′2,6(x)v

′
th(x) + c2,6(x)v

′′
th(x)

)

c4,2(x) = −3

2

(
c′3,3(x)vth(x) + 3c3,3(x)v

′
th(x)

)

c4,4(x) = −5

4

(
c′3,5(x)vth(x) + 5c3,5(x)v

′
th(x)

)
− 1

4

(

c′3,5(x)vth(x) + 8c3,3(x)v
′
th(x)−

F(x)

mvth(x)
c3,3(x)

)

c4,6(x) = −7

6

(
c′3,7(x)vth(x) + 7c3,7(x)v

′
th(x)

)

− 1

6

(

c′3,5(x)vth(x) + 12c3,5(x)v
′
th(x)−

F(x)

mvth(x)
c3,5(x)

)

− 1

6
c3,3(x)v

′
th(x)

c4,8(x) = −9

8

(
c′3,9(x)vth(x) + 9c3,9(x)v

′
th(x)

)

− 1

8

(

c′3,7(x)vth(x) + 16c3,7(x)v
′
th(x)−

F(x)

mvth(x)
c3,7(x)

)

− 1

8
c3,5(x)v

′
th(x)

c4,10(x) = − 1

10

(

c′3,9(x)vth(x) + 20c3,9(x)v
′
th(x)−

F(x)

mvth(x)
c3,9(x)

)

− 1

10
c3,7(x)v

′
th(x)

c4,12(x) = − 1

12
c3,9(x)v

′
th(x)

c4,0(x) = p0(x)

[

−
∫ x

0

dx′ 1

p0(x′)

[

2c′4,2(x
′) + 4c4,2(x

′)
v′th(x)

vth(x)

]

+

∫ ∞

−∞

dx′ p0(x
′)

[
∫ x′

0

dx′′ 1

p0(x′′)

[

2c′4,2(x
′′) + 4c4,2(x

′′)
v′th(x

′′)

vth(x′′)

]]]

. (6.80)

Whilst the expansion has the formal deficiency that the expansion parameter is not unit-less it suffices
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for a theoretical illustration where we can consider it in a limit where it is appropriate. The form of the

correction terms is illustrated for an example system in Fig. 6.13.
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Figure 6.13: Contour maps of the expansion terms p1(x, v), p2(x, v), p3(x, v) and p4(x, v) for a harmonic
trap F(x) = −x, temperature profile T (x) = 1 + 1

2 tanhx and m = kB = 1.

As an illustration of the structure of the mean conditional contribution to ∆S2 and how it reduces

to the total entropy production we calculate it from the appropriate integral up to second order in γ−1

where we first observe asymmetric behaviour and yet is analytically tractable. This is possible since the

integral form of the c2,0(x) term does not contribute to J ir,st
v (x)/pF,st(x) since the zeroth order Hermite

polynomial introduces no further v dependence on top of the Gaussian form. If we write

1

kB

d〈∆S2〉FpF
0

dt
= k−1

B 〈〈∆Ṡ2|x, v〉〉

=
〈

γ−1〈∆Ṡ1
2 |x, v〉+ γ−2〈∆Ṡ2

2 |x, v〉+O(γ−3)
〉

, (6.81)

noting the absence of a zeroth order term owing to a lack of stationary state entropy production in the

over-damped limit, we find

〈∆Ṡ1
2 |x, v〉 =

((mv2 − kBT (x))T
′(x))2

4mkBT 3(x)
(6.82)

and

〈∆Ṡ2
2 |x, v〉 =

vT ′(x)(mv2 − kBT (x))
(
6F(x)T (x)T ′(x)− (mv2 + 3kBT (x))(T

′(x))2 + 2mv2T (x)T ′′(x)
)

12mkB(T (x))4
. (6.83)

Of note, is that when equipartition in 1D holds, 〈mv2〉 = kBT (x), such as in equilibrium (or the

over-damped limit), the contributions vanish. Importantly, because of the structure of the Hermite
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polynomials, 〈∆Ṡn
2 |x, v〉 is even in v for odd n and vice versa. This means that 〈∆Ṡ2|x, v〉 is generally

asymmetric and is something we didn’t observe in the presence of a non-conservative force. However,

in the stationary state we expect d〈∆Stot〉F,stpF,st
0

/dt = d〈∆S2〉F,stpF,st
0

/dt despite the parity difference in their

expressions. This means we require the integral of the odd part of 〈∆Ṡ2|x, v〉, with respect to v, to

vanish in the stationary state. Since the expansion must hold for all γ, we then also require the integrals

of all odd contributions for every γ−n to vanish individually. Starting from the fact that all even nth

order contributions in γ−1 to 〈∆Ṡ2|x, v〉 are odd with respect to v we realise it is the integrals over these

quantities that we require to vanish in the stationary state. Since we can represent the integral in the

stationary state by integrating over such quantities multiplied by the expansion form of pF,st(x, v), we

then immediately identify that any contribution, even in γ−1, must vanish in the stationary state. This

is because they are necessarily formed of integrals, over v, of the form pi(x, v) × 〈∆Ṡn
2 |x, v〉 where one

of pi(x, v) or 〈∆Ṡn
2 |x, v〉 is odd in v with the other even. An example of this is for second order in γ−1

given by the integral ∫

dx

∫

dv p0(x, v)〈∆Ṡ2
2 |x, v〉+ p1(x, v)〈∆Ṡ1

2 |x, v〉. (6.84)

Both terms are odd in v and so disappear when integrated. The consequence of this is that in the

stationary state there are no γ−2, γ−4 . . . contributions to the total entropy production. However, in the

third order contribution to d〈∆S2〉F,stpF,st
0

/dt there is a contribution based on the term 〈∆Ṡ2
2 |x, v〉, which

is odd with respect to v, of the form

∫

dx

∫

dv p1(x, v)〈∆Ṡ2
2 |x, v〉. (6.85)

Since p1(x, v) is also odd in v, this expression is even and so doesn’t vanish directly from the form of

the Hermite polynomials. We emphasise, however, that this integral must vanish. Such an expected

property is based on the relationship between the stationary current and probability distribution, defined

everywhere, and so we must instead consider the integral over all of the phase space rather than just

the velocity. To give confidence in the result, after giving explicit forms for 〈∆Ṡ1
2 |x, v〉 and 〈∆Ṡ2

2 |x, v〉
for a given system, we demonstrate that this integral does indeed vanish, numerically for that specific

system. Such a property then provides an illustration of the result

1

kB

d〈∆S2〉F,stpF,st
0

dt
=

∫

dx

∫

dv
mpF,st(x, v)

kBγT (x)

(
J ir,st(x,−v)

pF,st(x,−v)

)2

=

∫

dx

∫

dv
mpF,st(x, v)

kBγT (x)

(
J ir,st(x, v)

pF,st(x, v)

)2

=
1

kB

d〈∆Stot〉F,stpF,st
0

dt
, (6.86)

describing how the mean entropy production contribution associated with the generalised house-keeping

heat is equivalent to the total entropy production in the stationary state despite the parity difference in

their expressions. For the specific choices

T (x) = 1 +
tanh(x)

2
(6.87)

and

F(x) = −x (6.88)
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we find

〈∆Ṡ1
2 |x, v〉 =

sech4(x)(2kB − 2mv2 + kBtanh(x))
2

8mkB(2 + tanh(x))3
(6.89)

and

〈∆Ṡ2
2 |x, v〉 = vsech6(x)(2kB − 2mv2 + kBtanh(x))

× (6kB + 2mv2 + 3kBtanh(x) + 4(2cosh(x) + sinh(x))(3xcosh(x) + 2mv2sinh(x)))

24mkB(2 + tanh(x))4
. (6.90)

These terms are illustrated in Fig. 6.14. Though somewhat unwieldy, by identifying the entropically

important parts of phase space this illustrates a system where again the contribution d〈∆S2〉FpF
0
/dt can

behave transiently in the mean with relaxation of the distribution, but also has an explicit asymmetric

dependence on odd variables necessitating the structure of the general expression for the mean contribu-

tion in Eq. (5.66). The integral found in Eq. (6.85), required to vanish in order to be consistent with the
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〈∆Ṡ1
2 |(x, v)〉

-1.5-1-0.500.511.5
-1 0 1v

x

〈∆Ṡ2
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〈∆Ṡ2|(x, v)〉, γ = 5
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-0.02500.025

00.0050.010.0150.02
Figure 6.14: First, second order and combined contributions to the phase space conditional mean contri-
bution to the entropy contribution ∆S2 for a Langevin particle in harmonic trap F = −x, temperature
field T (x) = 1 + tanh(x)/2, m = kB = 1 and with γ = 5 for the combined contribution. In each plot
the range is artificially bounded by [0 : 0.05], [−0.025 : 0.025] an [0 : 0.02] respectively near the edges in
order to elucidate the structure close to the origin.

three contributions to entropy production, is then illustrated in Fig. 6.15 by demonstrating the phase

space dependence of the integrand and demonstrating the dependence of its value on the upper bound

in position. This illustrates how the integral vanishes as we increase the bounds to cover all space. We

note that the integral over all phase space, performed numerically, was found to be negligibly small at

∼ 6.0× 10−17.

As a further example of this asymmetry in the quantity 〈∆Ṡ2|x, v〉 we present the mean contributions

to ∆S2 and ∆S3 for the system described here, calculated by means of a Monte Carlo average of the

appropriate SDEs, relaxing from two different initial distributions which we allow to be the time reverse
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Figure 6.15: Phase space dependence of the third order contribution p1(x, v)〈∆Ṡ2

2 |x, v〉 and variation of

the integral
∫ x0

−∞
dx
∫ +∞

−∞
dv p1(x, v)〈∆Ṡ2

2 |x, v〉 demonstrating that the integral vanishes in the stationary

state enabling the result d〈∆Stot〉F,stpF,st
0

/dt = d〈∆S2〉F,stpF,st
0

/dt.

of each other. We choose a simple Gaussian function designed to centre on the key asymmetry in the

second order contribution to 〈∆Ṡ2|x, v〉 in the positive x domain as illustrated in Fig. 6.14. As such we

use parameters 〈x(0)〉 = 0.5, 〈v(0)〉 ± 0.5 and σ = 0.15. The results for the relaxation period are shown

in Fig. 6.16. We observe distinct behaviour in both ∆S2 and ∆S3 as the system relaxes depending on the
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Figure 6.16: Mean contributions ∆S2 and ∆S3 for a Langevin particle in harmonic trap F = −x,
temperature field T (x) = 1+tanh(x)/2, m = 1 and with γ = 5 subject to an initial starting distribution
pF,st(x, v, t = 0) ∝ exp[−((x−〈x(0)〉)2+(v−〈v(0)〉)2)/2σ2] for 〈x(0)〉 = 0.5, 〈v(0)〉 = ±0.5 and σ = 0.15.

initial distribution and note that for small times where the distribution is still approximately Gaussian

according to the initial distribution the contributions reflect those expected both from Eq. (5.71) and

Fig. 6.14. Specifically, a peaked potential will generally have a negative ṗ(x, v, t) and, when centred on

v = 0.5, ln(pF,st(x, v)/pF,st(x,−v)) will be positive leading to a positive d〈∆S3〉FpF
0
/dt and negative for
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v = −0.5. Similarly, when the distribution is centred at v = 0.5 the asymmetric second order contri-

bution adds to 〈∆Ṡ2|x, v〉 giving a larger d〈∆S2〉FpF
0
/dt than a distribution centred at v = −0.5 where

the second order term reduces the contribution. This then provides numerical evidence for the expected

transient asymmetric contributions to d〈∆S2〉FpF
0
/dt.

Given the expression in Eq. (6.82) we may calculate a first order contribution to the mean, stationary,

total entropy production, which is equivalent to the integral of γ−1 × p0(x, v)× 〈∆Ṡ1
2 |x, v〉, and find

1

kB

d〈∆Stot〉F,stpF,st
0

dt
≃
∫ +∞

−∞

dx
kBp0(x)

2mγT (x)

(
∂T (x)

∂x

)2

(6.91)

where

p0(x) =

∫ +∞

−∞

dv p0(x, v). (6.92)

We emphasise that there is no second order contribution in the stationary state; this arises directly

from the structure of 〈∆Ṡ2|x, v〉 and is consistent with the result d〈∆S2〉F,stpF,st
0

/dt = d〈∆Stot〉F,stpF,st
0

/dt.

Third order contributions can be calculated, but are somewhat unilluminating with a complicated de-

pendence on F(x), c2,0(x) and high order derivatives of the temperature field. Importantly, however, we

find that the above expression is equivalent to the first order approximation found from the expected

phenomenological expression for dimensionless internal entropy generation [167]

Ṡint

kB
=

∫ +∞

−∞

dx JQ(x)
∂

∂x

(
1

kBT (x)

)

(6.93)

where JQ(x) is the stationary heat current defined as

JQ(x) =

∫ +∞

−∞

dv
1

2
mv3pF,st(x, v). (6.94)

We now demonstrate numerically, an equivalence between these two approaches by calculating the mean

total entropy production in the stationary state from a Monte Carlo averaging of the appropriate SDEs

and an integral over the stationary heat current as predicted by the stationary solution found by means

of the expansion up to fourth order in γ−1 for a range of γ, again for F(x) = −x and temperature profile

T (x) = 1 +
1

2
tanh(x). (6.95)

The results are shown in Fig. 6.17. The results show that the dimensionless entropy production obtained

by performing the integral in Eq. (6.93) using a numerically calculated pF,st(x, v) agrees well with that

obtained by averaging the SDE in Eq. (6.70) by Monte Carlo simulation of the underlying particle dy-

namics. This provides both confidence in the definition of the path dependent entropy production and

the accuracy in the expansion for the values of γ−1 being utilised. Specifically, this is because in the

stationary state 〈∆Ssys〉F,stpF,st
0

= 0 regardless of the accuracy of pF,st(x, v) meaning we have agreement

between a microscopic approach found by averaging individual heat transfers, independently of the dis-

tribution, and a integral explicitly dependent on it. We also see both results converge to the first order

result for large γ in the linear regime. At this point, we note that total entropy production decreases

as coupling to the environment increases which may seem counter-intuitive, but we emphasise that with

increased coupling, despite greater heat transfer to and from the environment, there is highly diminished

spatial heat transport (the latter being the cause of entropy production) as the system is brought closer
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Figure 6.17: Mean dimensionless entropy production in the stationary state for a range of damping
coefficients as predicted by a first order approximation in Eq. (6.91) (solid red line), an integral over the
heat current, Eq. (6.93) (dashed blue line) and a Monte Carlo average based on the SDE in Eq. (6.70)
(crosses). Simulations were performed by initialisation of particles into the stationary distribution using
a simple reject/accept algorithm along with a burn in time of t = 10. We performed 3 × 107 Monte
Carlo runs utilising a forward Euler discretisation method with time step dt = 1.0 × 10−3 to solve the
SDE in Eq. (6.70).

to a local equilibrium.

Given an observed equivalence between the phenomenological entropy production and the mean

path dependent entropy production we can use the SDE for entropy production (Eq. (6.70)) to move

beyond a classical description of such mean productions to one described by Jarzynski, Seifert, Sekimoto

and others [10, 33, 34] where we can identify entropy generating and destroying trajectories. We can

explicitly calculate the distribution of total entropy production which is shown for γ = 10 in Fig. 6.18 for

various process intervals, along with a demonstration that it adheres to an IFT throughout. Additionally,

since we consider the stationary state we can demonstrate a detailed fluctuation theorem of the form

pF,st(∆Stot = A)pF,st
0

/pF,st(∆Stot = −A)pF,st
0

= exp(A) [12] as shown in Fig. 6.19.

Finally we point out that, being in the stationary state, d〈∆S3〉F,stpF,st
0

/dt = 0, but since it is a non-

equilibrium stationary state that is asymmetric in the odd velocity variable we have ∆S3 6= 0 in detail,

as is clear in Eq. (5.68). We can demonstrate the increasing range of values of ∆S3 as γ is reduced and

the system is taken further away from local equilibrium, with its symmetric velocity distribution, by

generating the distribution of ∆S3 using Eq. (5.68) for a given time interval, as shown in Fig. 6.20. Such

a result highlights the fact that although a non-zero d〈∆S3〉FpF
0
/dt is only possible during relaxation as

shown by Eq. (5.71), the specific evolution of ∆S3 for each trajectory is brought about by non-equilibrium

constraints that cause the stationary solution to depart from equilibrium.
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the stationary state for temperature field T (x) = 1 + (1/2)tanh(x) and harmonic potential F(x) = −x,
for γ = 10 together with a demonstration of adherence to an IFT. Distributions shown are for process
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Figure 6.19: Verification of a detailed fluctuation theorem for a Langevin particle in the stationary state
for temperature field T (x) = 1 + (1/2)tanh(x) and harmonic potential F(x) = −x, using data from
simulation for γ = 10 at time t = 8.

6.5 Discrete Representations of Full Space and the Nature of

Coarse Graining

Finally, we turn our attention to a class of systems which deal with a set of discrete states and as such

are described by master equations in order to illustrate the effects of such a formalism in such systems.
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Figure 6.20: Distributions of ∆S3 for a Langevin particle in the stationary state for temperature field
T (x) = 1 + (1/2)tanh(x) and harmonic potential F(x) = −x, evaluated at t = 8 for a range of γ from
γ−1 = 0.1 (narrowest) to γ−1 = 0.4 (widest).

By introducing an odd variable into the dynamics we may obtain the three contributions to entropy laid

out in previous chapters. At first it may certainly seem unnatural to deal with odd variables in this

way, but there are many models in which odd variables are taken as discrete quantities, for example the

Ising model and, albeit with a somewhat different purpose, lattice gas models. However, we prefer to

leave the discussion as general as possible, simply considering that the probabilistic nature of the system

is inherently related to the uncertainty with which one perceives the dynamics. If one is completely

certain of the dynamics, entropy production, as defined here, vanishes. If one is solely uncertain of the

environment, but completely certain in the dynamics (such that they can be resolved, or that we have no

uncertainty in the underlying mechanics) of, for example, a colloidal particle, then a Langevin equation

is appropriate and continuous representations of entropy production suffice. However, more generally,

our uncertainty is much more profound. In an experiment governing the behaviour of a small particle,

one might be unsure as to the nature of some coarse grained underlying dynamics and may only be able

to resolve the position and velocity to within certain tolerances. If one can only measure, for example,

whether the particle is moving one way or another, then, given no other information, we may only infer

probabilistic behaviour of transitions between the two observed states. As such we present some simple

toy systems which are discrete in nature, but with the introduction of odd variables which play the

role of a rudimentary velocity as determined, in principle, by our degree of belief in how the system

behaves given our uncertainty. We note however, that velocity variables being described by master

equations is not a novel approach [168, 169]. We present some analytical results and demonstrate that

the thermodynamics, qualitatively and quantitatively, differs depending on how one interprets the nature

of the dynamics and the use of the variables in achieving them.
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6.5.1 Introducing a Velocity Variable to a Random Walker

We consider a particle with dynamics modelled as a random walk on a lattice. In order to create a

stationary state we employ periodic boundary conditions and may make this non-equilibrium by asserting

that the probability of a move in each direction differ. We then however, introduce more information

into our understanding of the model, by observing that if the particle makes a transition to the right this

implies it has a positive velocity and that if it makes a transition to the left it has a negative velocity.

As such by considering a one dimensional random walker we are able to ‘infer’ a probability distribution

over velocity states. If we allow the random walker to move one lattice site at a time then there are

only two inferred velocity variables, + and −. A schematic of this system is given in Fig. 6.21. Such a

Figure 6.21: A random walker moves from left to right with transition rates T (L → R) = c + a and
T (R → L) = c − a. We then infer an implicit transition between velocity variables accounting for the
diagonal transitions.

system is governed by the set of linear ordinary differential equations

dPF(Xi,+, t)

dt
= (c+ a)PF(Xi−1,−, t) + (c+ a)PF(Xi−1,+, t)− 2cPF(Xi,+, t)

dPF(Xi,−, t)

dt
= (c− a)PF(Xi+1,−, t) + (c− a)PF(Xi+1,+, t)− 2cPF(Xi,−, t). (6.96)

However, if we assert that the initial distribution is uniform in X then it will be for all time and so can

write

dPF(Xi,+, t)

dt
= (c+ a)PF(Xi−1,−, t)− (c− a)PF(Xi−1,+, t)

dPF(Xi,−, t)

dt
= −(c+ a)PF(Xi+1,−, t) + (c+ a)PF(Xi+1,+, t). (6.97)

This has stationary solution, for L spatial sites,

PF,st(Xi,±) =
(c± a)

2cL
. (6.98)
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Considering, in the same spirit as a force reversal in continuous systems, a switch between a = a0 to

a = a1 the equations can be solved to give

PF(Xi,+, t) =
c+ a1
2cL

+
a0 − a1
2cL

e−2ct

PF(Xi,−, t) =
c− a1
2cL

+
a1 − a0
2cL

e−2ct. (6.99)

We may then consider the entropic contributions for any particular particle behaviour, which amounts

either to an instantaneous transition or residence in a given state. We have already seen that ∆S3

consists only of jump contributions, that ∆S2 consists of both jump and residence contributions, but

that if the mean escape rate between time reversed states are equal that the latter is zero. Previously,

∆S1 has been written (noting that we shall generally consider these discrete systems athermal and so

shall omit the factor kB)

∆S1 = ln
PF(x0, 0)

PF(xN , τ)
+

N∑

i=1

ln
PF,st(xi, λ

F(ti))

PF,st(xi−1, λF(ti))
, (6.100)

but to identify contributions we should further divide this into residence and jump terms such that

∆S1 =

N+1∑

i=1

ln
PF(xi−1, ti−1)

PF(xi−1, ti)
+

N∑

i=1

ln
PF(xi−1, ti)P

F,st(xi, λ
F(ti))

PF(xi, ti)PF,st(xi−1, λF(ti))
. (6.101)

If we then consider the situation a1 = a and a0 = −a we may find the relevant contributions in table

6.1.

Behaviour xi → xj T (xj |xi) ∆S1 ∆S2 ∆S3

Xi+ → Xi−1− c− a ln (c−a)(c+a(1−2e−2ct))
(c+a)(c−a(1−2e−2ct)) ln c−a

c+a −2 ln c−a
c+a

Xi− → Xi+1+ c+ a ln (c+a)(c−a(1−2e−2ct))
(c−a)(c+a(1−2e−2ct)) ln c+a

c−a −2 ln c+a
c−a

Xi+ → Xi+1+ c+ a 0 ln c+a
c−a 0

Xi− → Xi−1− c− a 0 ln c−a
c+a 0

Xi + t → t+∆t −2c ln (c+a(1−2e−2ct))
(c+a(1−2e−2c(t+∆t)))

0 0

Xi − t → t+∆t −2c ln (c−a(1−2e−2ct))
(c−a(1−2e−2c(t+∆t)))

0 0

Table 6.1: Transition rates and path dependent entropy contributions for all particle behaviour for the
random walker with an introduced velocity.

We then propose to calculate the instantaneous mean production rates for all three quantities under

such behaviour for which we construct a path average of the form

〈A[~x]〉FPF
0
=

∞∑

N=0

∫ τ

0

dt1 . . .

∫ τ

tN−1

dtN
∑

~x

pF[~x]PF
0
A[~x] (6.102)

where in turn, the inner sum represents a summation over all path sequences with N transitions, the

integrals average over all possible transition times that satisfy τ ≥ tN > tN−1 > . . . > t1 and the outer

sum represents summation over the number of transitions in a given path. We, however, only consider

up to first order in dt for which we need only consider N = 0 or N = 1 transitions. Further, for such a

short time dt, we may exchange the integrals over probability densities by probabilities as in Eq. (2.109),
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to obtain

〈A[~x]〉FPF
0
=

1∑

N=0

∑

~x

PF[~x]PF
0
A[~x], (6.103)

but only consider path weights up to O(dt). Examining such probabilities for paths with transitions in the

small interval dt (Eq. (2.109)) we may then simply consider the probability of a transition T (xi|xi−1)dt

and of residence exp[T (xi|xi)dt] ≃ 1 + T (xi|xi)dt. As such the instantaneous averages may be written

〈d∆S1〉FPF,st
0

=

L∑

i=1

PF(Xi,+, t)

[

(c− a)dt ln
(c− a)(c+ a(1− 2e−2ct))

(c+ a)(c− a(1− 2e−2ct))
+ (1− 2cdt) ln

(c+ a(1− 2e−2ct))

(c+ a(1− 2e−2c(t+dt)))

]

+

L∑

i=1

PF(Xi,−, t)

[

(c+ a)dt ln
(c+ a)(c− a(1− 2e−2ct))

(c− a)(c+ a(1− 2e−2ct))
+ (1− 2cdt) ln

(c− a(1− 2e−2ct))

(c− a(1− 2e−2c(t+dt)))

]

=
1

2c
(c+ a(1− 2e−2ct))

[

(c− a)dt ln
(c− a)(c+ a(1− 2e−2ct))

(c+ a)(c− a(1− 2e−2ct))
− (1− 2cdt)

4ace−2ctdt

c+ a(1− 2e−2ct)

]

+
1

2c
(c− a(1− 2e−2ct))

[

(c+ a)dt ln
(c+ a)(c− a(1− 2e−2ct))

(c− a)(c+ a(1− 2e−2ct))
+ (1− 2cdt)

4ace−2ctdt

c− a(1− 2e−2ct)

]

=
1

2c
(c+ a(1− 2e−2ct))

[

(c− a)dt ln
(c− a)(c+ a(1− 2e−2ct))

(c+ a)(c− a(1− 2e−2ct))
− 4ace−2ctdt

c+ a(1− 2e−2ct)

]

+
1

2c
(c− a(1− 2e−2ct))

[

(c+ a)dt ln
(c+ a)(c− a(1− 2e−2ct))

(c− a)(c+ a(1− 2e−2ct))
+

4ace−2ctdt

c− a(1− 2e−2ct)

]

+O(dt2)

=
1

2c
(c+ a(1− 2e−2ct))

[

(c− a)dt ln
(c− a)(c+ a(1− 2e−2ct))

(c+ a)(c− a(1− 2e−2ct))

]

+
1

2c
(c− a(1− 2e−2ct))

[

(c+ a)dt ln
(c+ a)(c− a(1− 2e−2ct))

(c− a)(c+ a(1− 2e−2ct))

]

+O(dt2) (6.104)

such that
d〈∆S1〉FPF,st

0

dt
= 2ae−2ct ln

[
1 + 2ae−2ct/(c− a)

1− 2ae−2ct/(c+ a)

]

. (6.105)

Similarly,

〈d∆S2〉FPF,st
0

=
L∑

i=1

PF(Xi,+, t)

[

(c− a)dt ln
(c− a)

(c+ a)
+ (c+ a)dt ln

(c+ a)

(c− a)

]

+

L∑

i=1

PF(Xi,−, t)

[

(c+ a)dt ln
(c+ a)

(c− a)
+ (c− a)dt ln

(c− a)

(c+ a)

]

=
1

2c
(c+ a(1− 2e−2ct))

[

(c− a)dt ln
(c− a)

(c+ a)
+ (c+ a)dt ln

(c+ a)

(c− a)

]

+
1

2c
(c− a(1− 2e−2ct))

[

(c+ a)dt ln
(c+ a)

(c− a)
+ (c− a)dt ln

(c− a)

(c+ a)

]

(6.106)

which gives
d〈∆S2〉FPF,st

0

dt
= 2a ln

[
c+ a

c− a

]

. (6.107)
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Finally

〈d∆S3〉FPF,st
0

=
L∑

i=1

PF(Xi,+, t)

[

−2(c− a)dt ln
(c− a)

(c+ a)

]

+

L∑

i=1

PF(Xi,−, t)

[

−2(c+ a)dt ln
(c+ a)

(c− a)

]

=
1

2c
(c+ a(1− 2e−2ct))

[

−2(c− a)dt ln
(c− a)

(c+ a)

]

+
1

2c
(c− a(1− 2e−2ct))

[

−2(c+ a)dt ln
(c+ a)

(c− a)

]

(6.108)

which yields
d〈∆S3〉FPF,st

0

dt
= −4ae−2ct ln

[
c+ a

c− a

]

. (6.109)

Again, we observe the expected behaviour in all quantities. 〈∆S1〉FPF
0
and 〈∆S3〉FPF

0
contribute transiently,

whereas 〈∆S2〉FPF
0

persists in the steady state along with explicit positivity in all but 〈∆S3〉FPF
0
. By

plotting the contributions for such a process we find the results in Fig. 6.22.

-4-2
02
46

0 0.5 1 1.5 2 2.5 3

d
〈∆

S
〉F p

F
,
s
t

0

/
d
t

t

∆Stot

∆S1

∆S2

∆S3

Figure 6.22: Entropy contributions for a reversal of the non-equilibrium constraint a = 1 with c = 2
from the stationary state for the random walker on a lattice with an introduced velocity variable.

6.5.2 Two State Ballistic Particle: A Modified Telegraph Process

Similar to the above model, we again consider a particle able to move in one dimension, but imagine

now that intrinsically to the model it can take two defined velocities +v and −v and that this time

fluctuations are driven in velocity space such that the spatial variable becomes irrelevant. For example
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it could follow ballistically such that

x(t) = x(0) +

∫ τ

0

v(t)dt. (6.110)

This is in essence the motion (with slight adaptations) that defines the Kac or telegraph process [170]

and the distribution in space is known to obey the telegrapher’s equation. In this description there

are only two states relating to forward and backwards motion. If the transition rates are given by

P (−|+) = (c− a) and P (+|−) = (c+ a) we once again have the master equation

dPF(+, t)

dt
= (c+ a)PF(−, t)− (c− a)PF(+, t)

dPF(−, t)

dt
= (c− a)PF(+, t)− (c+ a)PF(−, t) (6.111)

with solution

PF(±, t) =
1

2c

(
c± a

(
1− 2e−2ct

))
. (6.112)

Since, the solution is of the same form as for the adapted random walker it provides a good illustration of

the thermodynamic difference resulting from the underlying microscopic uncertainty as their macroscopic

behaviour is so similar. We find the three contributions to entropy production related to residence times

and transitions and illustrate them in table 6.2. We then as before find the first order mean contribution

Behaviour xi → xj T (xj |xi) ∆S1 ∆S2 ∆S3

+ → − (c− a) ln (c−a)(c+a(1−2e−2ct))
(c+a)(c−a(1−2e−2ct)) ln c−a

c+a −2 ln c−a
c+a

− → + (c+ a) ln (c+a)(c−a(1−2e−2ct))
(c−a)(c+a(1−2e−2ct)) ln c+a

c−a −2 ln c+a
c−a

+ t → t+∆t (a− c) ln (c+a(1−2e−2ct))
(c+a(1−2e−2c(t+∆t)))

2a∆t 0

− t → t+∆t −(a+ c) ln (c−a(1−2e−2ct))
(c−a(1−2e−2c(t+∆t)))

−2a∆t 0

Table 6.2: Transition rates and path dependent entropy contributions for all particle behaviour for the
telegraph process.

in dt. By consideration of all particle behaviour we see that 〈∆S1〉FPF,st
0

and 〈∆S3〉FPF,st
0

are of the same

form, but that this is not the case for 〈∆S2〉FPF
0
which is given by

d〈∆S2〉FPF,st
0

dt
= PF(+, t)

[
(c− a)∆S+→−

2 +∆S+→+
2

]

+ PF(−, t)
[
(c+ a)∆S−→+

2 +∆S−→−
2

]
+O(dt)

= PF(+, t)

[

(c− a) ln

[
c− a

c+ a

]

+ 2a

]

+ P (−, t)

[

(c+ a) ln

[
c+ a

c− a

]

− 2a

]

+O(dt)

=
2a2

c

(
1− 2e−2ct

)
+ 2ae−2ct ln

[
c+ a

c− a

]

. (6.113)

As such, we now observe a time dependent contribution to the generalised house-keeping heat which

reduces to a different value in the stationary state. Furthermore, the behaviour of the total entropy

production is altered and is of the form shown in Fig. 6.23.

We point out that a subtle distinction in the dynamics, whilst leaving the solution to the master

equations unchanged, results in a marked difference in the characterisation of the irreversibility of the

process as defined by the entropy production.
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Figure 6.23: Entropy contributions for a reversal of the non-equilibrium constraint a = 1 with c = 2
from the stationary state.

We finally mention that one can simply verify the integral fluctuation theorems expected of ∆S1, ∆S2

and ∆Stot by means of the same path averages (noting that if the model leads to vanishing contributions

in entropy production, these should be included) such that, for example, up to O(dt)

〈exp[−∆S2]〉FPF
0
=PF(+, t)

[
(c− a)dt exp[−∆S+→−

2 ] + (1− (c− a)dt) exp[−∆S+→+
2 ]

]

+ PF(−, t)
[
(c+ a)dt exp[−∆S−→+

2 ] + (1− (c+ a)dt) exp[−∆S−→−
2 ]

]
+O(dt2)

=PF(+, t)

[

(c− a)dt
c+ a

c− a
+ (1− (c− a)dt) exp[−2adt]

]

+ PF(−, t)

[

(c+ a)dt
c− a

c+ a
+ (1− (a+ c)dt) exp[2adt]

]

+O(dt2)

=PF(+, t)
[
1 +O(dt2)

]
+ P (−, t)

[
1 +O(dt2)

]

=1. (6.114)

By virtue of the above, not only is the result 〈exp[−∆S2]〉FPF
0

= 1 upheld for the range dt, but it also

demonstrates d〈exp[−∆S2]〉FPF
0
/dt = 0, which along with the Markovian nature of the dynamics ensures

the result holds for all time.

6.5.3 Simple Model of Thermal Conduction

Next we propose what we believe to be one of the simplest possible models for thermal conduction

that allows for an appreciation all relevant thermodynamic quantities. It comprises only 4 states which

we take to be a slow and fast velocity in both a left and right direction in a tight enough potential

such that we deem there to be a singular position state. We consider that when our model possesses a

negative velocity it comes in contact with a thermal wall on the left with some mean rate, upon which
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the particle is reflected meaning the particle transitions into a positive velocity state and vice versa.

By then specifying that the left thermal wall, on average favours conversion from a slow velocity to a

fast velocity we may consider it ‘hot’ and by specifying that the right thermal wall, on average favours

conversion from a fast velocity to a slow velocity we may consider it ‘cool’. The exact nature of the

transition rates which amount to this behaviour can take many forms, but we propose one that makes

the individual contributions to entropy production somewhat simpler in form and write it in terms of

constants A and thermal gradient parameter ∆T . The transition rates we propose take the form given

in table 6.3. These in turn lead to the stationary probability distribution

Behaviour xi → xj T (xj |xi)

Vf → −Vf A−∆T
Vf → −Vs A+∆T
Vs → −Vf A
Vs → −Vs A
−Vf → Vf A
−Vf → Vs A
−Vs → Vf A+∆T
−Vs → Vs A−∆T

Table 6.3: All possible transitions and rates for the 4 state model of thermal conduction.

PF,st(Vf) = PF,st(−Vs) =
A

2(2A−∆T )

PF,st(−Vf) = PF,st(Vs) =
A−∆T

2(2A−∆T )
. (6.115)

We may consider the dynamics in continuous time, noticing the specific rate choice means contributions

to ∆S2 arising from residence times are 0 for all states. We may, as before write down expressions for the

entropy contributions, which for terms dependent on PF(±Vf,s) we leave in implicit form, in table 6.4.

Starting from equilibrium, PF(±Vf,s) = 0.25, we may solve the relevant master equation numerically for

Behaviour ∆S1 ∆S2 ∆S3

Vf → −Vf ln PF(Vf ,t)
PF(−Vf ,t)

+ ln
(
1− ∆T

A

)
ln
(
1− ∆T

A

)
−2 ln

(
1− ∆T

A

)

Vf → −Vs ln PF(Vf ,t)
PF(−Vs,t)

ln
(
1 + ∆T

A

)
0

Vs → −Vf ln PF(Vf ,t)
PF(−Vf ,t)

− ln
(
1 + ∆T

A

)
0

Vs → −Vs ln PF(Vs,t)
PF(−Vs,t)

− ln
(
1− ∆T

A

)
− ln

(
1− ∆T

A

)
2 ln

(
1− ∆T

A

)

−Vf → Vf ln PF(−Vf ,t)
PF(Vf ,t)

− ln
(
1− ∆T

A

)
− ln

(
1− ∆T

A

)
2 ln

(
1− ∆T

A

)

−Vf → Vs ln PF(−Vf ,t)
PF(Vs,t)

− ln
(
1 + ∆T

A

)
0

−Vs → Vf ln PF(−Vs,t)
PF(Vs,t)

ln
(
1 + ∆T

A

)
0

−Vs → Vs ln PF(−Vs,t)
PF(Vs,t)

+ ln
(
1− ∆T

A

)
ln
(
1− ∆T

A

)
−2 ln

(
1− ∆T

A

)

Vf t → t+∆t ln PF(Vf ,t)
PF(Vf ,t+∆t)

0 0

Vs t → t+∆t ln PF(Vs,t)
PF(Vs,t+∆t)

0 0

−Vf t → t+∆t ln PF(−Vf ,t)
PF(−Vf ,t+∆t) 0 0

−Vs t → t+∆t ln PF(−Vs,t)
PF(−Vs,t+∆t) 0 0

Table 6.4: All possible behaviour and corresponding entropy productions for the 4 state model of thermal
conduction.
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a given (even) protocol

∆T (t) =







1
4 (1− cos(πt)) t < 1,

0.5 1 ≤ t ≤ 4,
1
4 (1 + cos(π(t− 4))) t > 4,

(6.116)

which yields the result in Fig. 6.24. Further, by utilising the numerical solution we may calculate the
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PF(Vf ) = PF(−Vs)

PF(Vs) = PF(−Vf )

PF,st(Vf )

Figure 6.24: Solution for PF(Vf), PF(Vs), PF(−Vf), PF(−Vs) for protocol ∆T (t) starting from an
equilibrium stationary state.

instantaneous mean entropy production rates given such a protocol which are given in Fig. 6.25. By

comparing the two figures we may once again benefit from an intuitive understanding of the three differ-

ent contributions to entropy production which is particularly clear given the simplicity of the model used

and the simple relation between the stationary distribution and the non-equilibrium constraint. As one

expects we find a rigorously positive contribution d〈∆S1〉FPF
0
/dt which is present when the distribution is

different to the stationary distribution and so indicates relaxation through evolution of the probability

distribution. d〈∆S2〉FPF
0
/dt follows the evolution of the stationary distribution, PF,st(V ), and contributes

when it differs from the equilibrium value PF,eq(V ) = 0.25 and indicates the entropy production ex-

pected in the stationary state. d〈∆S3〉FPF
0
/dt contributes when the distribution differs from the stationary

distribution like d〈∆S1〉FPF
0
/dt, but can take either sign depending on whether the instantaneous distri-

bution is ‘further’ or ‘closer’ to the equilibrium state than the state the system is relaxing towards; or

more accurately whether calculation of entropy production due to the non-equilibrium constraint in the

stationary state over or underestimates the entropy production that arises transiently because of the

same non-equilibrium constraint. Finally, the sum of all three is the total entropy production, which

as the measure of irreversibility taken to be synonymous with degree of non-equilibrium behaviour, fol-

lows the progression of the distribution away from the equilibrium distribution which arises when the

non-equilibrium constraint vanishes (∆T = 0).

151



-0.2-0.10
0.10.20.3

0 1 2 3 4 5 6 7

d
〈∆

S
〉F p

F
,
s
t

0

/
d
t

t

∆Stot

∆S1

∆S2

∆S3

Figure 6.25: Entropy contributions for evolution from the stationary state following the protocol ∆T (t).
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Chapter 7

Discussion and Conclusions

We have presented a refinement of some of the attempts to define non-equilibrium entropy production

that have arisen in recent years with our main result being that if one considers time reversal fully by

allowing more general transformations in its operation, both the form of the total entropy production

and its division into contributions relevant to the thermodynamics of steady states needs modification.

The first of these modifications is manifest in an extra term appearing in the total entropy production

for systems on discrete state spaces based on mean escape rates with its inclusion providing an update

to the original mean entropy production as described by Schnakenberg [58]. The revision to the division

of the total entropy production so as to reflect the operational non-equilibrium thermodynamics arises

due to the fact that one cannot define an alternative dynamics which possess the same stationary state

whilst reversing only the entropy producing current. Or perhaps more clearly, it arises when one notices

that there is a portion of the probability current which is not entropy producing. This has the effect

of introducing an additional entropy production contribution, based solely on variables and protocols

which transform to different values upon time reversal and which, in the mean, behaves transiently. This

contribution, however, is not bounded like the remaining two contributions meaning that previous as-

sertions that the mean total entropy production can always be divided into two rigorously non-negative

components [36] are incomplete. The properties and implications of this novel entropy division have then

been explored both in discrete and continuous state spaces. In particular, in continuous state spaces the

general treatment of arbitrary correlated, multiplicative SDEs with explicit discussion of the delicate

use of short time propagators for defining entropy productions with multiplicative noise is something we

also believe to be novel. We have then illustrated these ideas with some simple examples both in dis-

crete and continuous state space. First we have seen that by considering the velocity in the description

of the system we may observe a finer structure in the total entropy production dependent on specific

velocity dependent features such as alternative and additional friction sources and generalisations that

allow for relativistic speeds even for simple processes such as transitions between steady states provided

by non-conservative forces. We then saw that in order to describe entropy production due to thermal

transport, odd variables are not simply an addition to make the model more sophisticated, but actually

necessary in order to provide a meaningful description and saw that such a system, allowing non-zero

currents by exploiting the higher dimensionality, invokes the parity dependent structure in the definition

of the entropy contribution associated with the generalised house-keeping heat. Finally, we illustrated

the concepts for discrete state space models highlighting that the thermodynamics is subtly dependent

on the microscopic behaviour, not just the macroscopic properties of the distribution and utilised a very

simple model of heat transport so as to gain a clear understanding of the meaning of each of the three

entropy production contributions.
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Such results, however, by refining the manner in which entropy production is defined, highlight some

of the more subtle conceptual issues surrounding the definition of such a stochastic entropy production

based on functionals that obey fluctuation theorems. We have seen that treating entropy production in

this way means that depending on how one models the dynamics one can reach qualitatively different

behaviour in the expected thermodynamics, for example, by considering full phase space we observe a

finer structure in the entropy production than if the over-damped limit is utilised. These properties

should reinforce a general attitude of caution; entropy production has a long history as a somewhat

nebulous quantity straddling both thermodynamic and information theoretic concepts and its role as

a path dependent functional is no different, particularly when one considers the structure of the sys-

tem entropy, which by containing information about the entire distribution or ensemble, necessarily

introduces an information-like entropy contribution. On the one hand entropy production as explicit

irreversibility has the advantage of connecting such a macroscopic consequence to a thermodynamic

quantity, but we should recognise that the irreversibility (which we somewhat arbitrarily insert a priori

when we use stochastic dynamics) in the dynamics is reliant upon the stochastic behaviour which is

inherently connected with the uncertainty we perceive in the dynamics. As such if we have a different

degree of belief, or uncertainty, in the dynamics we observe different thermodynamics as evidenced in the

difference between the results from the two discrete full phase models despite both having the same time

dependent probability distributions and indeed the existence of a third entropy production contribution

if one includes odd variables in the dynamics. In practice, this may mean that if one were to capture

the effective dynamics of a system in a model by means of a stochastic interpretation, the irreversibility

predicted may be misleading when compared to that observed practically in the real system depending

on whether the approximation used in the model has coarse grained away some important feature and of

course whether it is accurate at all. We note, of course, that we assume the underlying dynamics of some

real system to be governed by reversible equations of motion: we expect the irreversibility we perceive

to originate from the practical uncertainty that arises in trying to measure the dynamics. This, indeed,

is what we are trying to capture in such models and so one could argue that there is a responsibility to

match the specific stochastic behaviour with the uncertainty one observes experimentally. As such we

stress that all the quantities derived and considered in this treatment represent the thermodynamics of

a model and that one must always justify the model if one is to infer any real life consequence. The

reliability of the model, however, is not the only source of ambiguity. By introducing odd time rever-

sal transformations such issues arise in a slightly different manner through a certain freedom in what

precisely one means by time reversal and how this impacts on the irreversibility. This may arise, for

example, for an externally applied magnetic field or torque which does not feature in a Hamiltonian.

Further, we have seen that time reversal can become even more ambiguous when one considers protocols

that utilise feedback.

In general, what one may say about the path dependent entropy production in such systems is that

it represents the irreversibility of the model one is utilising according to the definition of irreversibility

that the modeller deems relevant with an onus on the modeller to justify such choices. We note that

such a quantity will then always obey the relevant fluctuation theorems regardless of this definition;

the existence of the fluctuation theorems and resultant second law inequalities are simply not enough

to determine thermodynamic relevance. Indeed, the fact that the path dependent entropy productions

obey the fluctuation theorems should also not be surprising when one examines their structure. In fact

it has been pointed out that the fluctuation theorems themselves are strictly tautological statements

[114] identifying that the existence of the symmetries are not, in and of themselves, remarkable. This
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again stresses that it is the identification of relevant thermodynamic quantities as logarithmic ratios of

path probabilities that is necessary to give them meaning which brings us back to our reasons for taking

great care when defining time reversal.

Nevertheless, we conclude that defining the entropy production as we have done has further elu-

cidated the nature of the non-equilibrium thermodynamics relevant to such stochastic systems. This

development, arising from a further, yet demonstrably relevant, division of the dissipated heat transfer,

leads to a greater complexity in the structure of the irreversibility characterised by entropy production.

Given the broad relevance to any non-equilibrium system with odd variables we expect to observe fur-

ther richness in the phenomenology of entropy production in many potential applications including, for

example, any model that is based on Hamiltonian dynamics or that includes magnetic fields or moments.
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Part II

Spatially Local Parallel Tempering
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Foreword regarding the structure of work on spatially local parallel tempering

The following work describes and illustrates the design and implementation of a novel technique called

spatially local parallel tempering. After an introduction, the necessary theory, formulation of the prob-

lem, how to measure any efforts to overcome it and its context within the literature are given in chapter

9. The specifics of the algorithm are then set out in chapter 10 through a series of toy models each pro-

gressively more complicated so as they introduce the key aspects of the algorithm. Some details of the

algorithm, and particularly the quantities defined in order to test its effectiveness, are made specifically

for the application to such models, but it is made clear when this is the case. The numerical results for

the application to such models are given in chapter 11 and include evidence of convergence to the correct

limiting distribution and of linear scaling, being the primary objective of such a technique. Finally a

discussion is given in chapter 12.
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Chapter 8

Introduction

In physics and chemistry much of the predictive power of computer simulation relies on the ability to

calculate expectation values of physical quantities at a defined temperature at equilibrium. The high

dimensional integrals required for an exact solution dictate that an approximation is required which

is achieved by sampling the configuration space. The most common methods used to generate these

configurations are Markov Chain Monte Carlo (MCMC) and Molecular Dynamics (MD). The power and

simplicity of these methods mean that they have become the workhorses of computer simulation, how-

ever they struggle when the energy landscape consists of numerous minima separated by energy barriers

which restrict sampling trajectories between them at the sampling temperature.

This issue of sampling systems with these well separated ‘metastable’ regions is so common that

there has been a great deal of effort devoted to devising techniques which can overcome it. These are

often referred to as ‘accelerated sampling’ and include a wide range of techniques including umbrella

sampling [171], J-walking [172], multicanonical sampling [173], simulated tempering [174] and Wang

Landau sampling [175]. One of the most successful however, is known as replica exchange Monte Carlo

or parallel tempering [176–185].

As the temperature increases, transitions between these metastable regions become increasingly likely

as the free energy surface flattens. It is this property which parallel tempering exploits by using indepen-

dent high temperature simulations to generate configurations for the original simulation being run at a

more prohibitive lower temperature. The idea is to simultaneously model the same system independently

with each instance of the system being called a ‘replica’. Each replica, now labelled i, is then simulated

at its own temperature Ti using conventional MCMC or MD moves. Parallel Tempering then involves

introducing a new kind of simulation move. Using a probabilistic attempt frequency it is proposed that

the entire configurations of two of the replicas are swapped. This move is then accepted or rejected in

such a way that the thermal equilibrium distribution is maintained in every replica. This can greatly

accelerate the sampling as it allows the lower temperature replica to acquire configurations that are at a

comparable energy, but far away (and obstructed by free energy barriers) in phase space from the replica

being simulated at a higher temperature.

The parallel tempering method however, is not perfect. One of the well known drawbacks of imple-

menting parallel tempering is the poor scaling of computational effort with system size. As the modelled

system gets larger it becomes increasingly unlikely that there will be a configuration of comparable

energy in each replica given the temperature of each replica is fixed. This results in a poor chance of
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an exchange between replicas, weakening the performance of the algorithm. This can only be overcome

by introducing additional replicas at a temperature that lies between the already existing replicas. This

of course has a direct cost on the computational effort. A simple analysis [180, 186] suggests that the

number of replicas needed will increase as N1/2 where N is the number of degrees of freedom in the

system. The true cost however, will be somewhat worse than this as there is an additional diffusive cost

between replicas. To be most efficient, configurations must be successfully exchanged through all the

replicas from the highest in temperature to the lowest. Owing to the stochastic nature of the exchange

moves this resembles a diffusive process and as such is expected to scale accordingly.

It has been noted previously that this issue could be overcome by introducing the concept of locality

into the parallel tempering algorithm by exchanging parts of the system as opposed to the entire configu-

ration. Some progress has been made in that area by selectively tempering a part of the system [187, 188],

however there exists no algorithm which applies these ideas throughout an extended system generally.

We go on to demonstrate a new technique which successfully applies parallel tempering locally in this

way. As we wish to improve the scaling of computational effort with respect to system size, we consider

appropriate systems where energy barriers are distributed throughout the system in a mostly uniform

way. We also envisage that the process of transitioning between the numerous metastable regions is

therefore an inherently local one. This means that equilibration and sampling in a given local region

should not depend on events in other, remote local regions. The amount of computational effort needed

to equilibrate the entire system and to perform the sampling necessary to compute local quantities to

a given statistical accuracy should then be proportional, in some sense, to the number of atoms in the

system. Of course, the effort needed in practice will depend strongly on the algorithm used to calculate

the total energy of the system. Obviously, if the total energy is a sum of short-range pair potentials, the

effort will be far less than if ab initio methods are used.

However, for the size-scaling properties of the thermal sampling algorithm itself, our requirement

is that if the number of computer operations needed to evaluate the energy of the entire system is

proportional to N , then the number of operations needed for thermal equilibration and computation of

local quantities should also be proportional to N . Normal PT algorithms do not have this property,

because they are based on the global swap of configurations. We shall refer to PT algorithms having the

property of locality and linear scaling as local parallel-tempering (LPT) algorithms. When we need to

contrast these with normal (non-linear-scaling) PT algorithms, we shall call the latter canonical parallel-

tempering (CPT) algorithms.

Following a brief overview of well accepted equilibrium sampling techniques the LPT algorithm will

be explained by use of several toy models. First the basic ideas will be demonstrated using a model that

consists of a one dimensional cyclic chain of double wells with a nearest neighbour coupling. Secondly

the method will be extended to a one dimensional periodic potential where particles are free to move

throughout the entire system. Lastly it will be demonstrated that correct results can be achieved in

higher dimensions. Scaling of computational effort will be discussed along with an assessment of the

LPT algorithm’s ability to sample the correct equilibrium distribution by comparison with results from

CPT.
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Chapter 9

Theory and Methodology

9.1 Monte Carlo Methods

9.1.1 Sampling the Equilibrium Distribution

In equilibrium statistical physics we regularly require the average thermodynamic quantities of a system

which for a quantity A in a system described by N particles with independent position variables is given

by

〈A〉 = 1

Z

∫

dr0 . . . drN−1A(r0, . . . , rN−1) exp

[

−U(r0, . . . , rN−1)

kBT

]

(9.1)

where U is the internal energy and where Z is the partition integral

Z =

∫

dr0 . . . drN−1 exp

[

−U(r0, . . . , rN−1)

kBT

]

. (9.2)

This in theory allows us to predict any measurable property from first principles. However, whilst the

instantaneous quantity A(r0, . . . , rN−1) is typically easy to compute, the integrals over all variables prove

to be intractable for all but the most simple systems.

Given that complete enumeration is impossible it becomes necessary for numerical approximations

to be employed to calculate these integrals. A first attempt at this is the Monte Carlo method. This

involves approximating the integrals by means of choosing a finite and manageable number of random

system configurations by use of pseudo-random numbers. The average constituting an approximation to

〈A〉 is then given by

Ā =
1

n

n∑

i

Ai exp

[

−U(r0i , . . . , r
N−1
i )

kBT

]

. (9.3)

Owing to the law of large numbers we expect Ā → 〈A〉 as n → ∞. This however, is usually unworkable

owing to a large variance in the exponential Boltzmann weighting factor. Or rather that we find most

relevant configurations that make up the integral in Eq. (9.1) are localised in phase space. The result of

which is that too much effort is expended on configurations which contribute very little to the overall

average leaving the majority of the integral approximated by only a few random configurations.

What we require is a random sampling of the integral in Eq. (9.1) whereby the number of samples

for each region of phase space is proportional to the equilibrium distribution function on that phase

space. This is called importance sampling and can be achieved using the well known method, Markov
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Chain Monte Carlo (MCMC), which dictates that samples are accessed by performing a random walk,

by means of a Markov chain, through configuration space. The relative time that the Markov chain

occupies each state is determined by an accept/reject criterion at each step. The accept/reject criterion

must be determined using the equilibrium probability of the proposed state which in general is given by

p(r0, . . . , rN−1) =
1

Z
exp

[

−U(r0, . . . , rN−1)

kBT

]

. (9.4)

Whilst this still contains the unworkable partition integral, the nature of importance sampling and

the Markov property ensures that the accept/reject criterion will be a function of the ratio of the

probabilities. This means the partition functions cancel and the equilibrium distribution can be sampled

without the costly integral. When carrying out importance sampling the average of a quantity A is now

simply given by

Ā =
1

n

n∑

i

Ai. (9.5)

9.1.2 Reaching the Limiting Distribution with a Markov Chain

We consider, for simplicity, a Markov chain, X1, X2 . . . Xn, defined on a finite, discrete state space, x ∈
{x1, x2 . . . xm}. MCMC typically operates in discrete time and so we define the probability distribution

for the nth time step

P (Xn = x) = Pn. (9.6)

At each time step there exists an individual probability of moving from one state to another that is given

by a transition probability which we write

P (Xn = xj |Xn−1 = xi) = Mji. (9.7)

Given a single distribution that we wish to sample, we consider the transition probabilities to be time

independent so that the Markov Chain is time homogeneous. These transition probabilities then deter-

mine the nature of the Markov Chain and thus the sampling which can be achieved. For example, for

a Markov chain to be physical it is required to be stochastic such that it has a conserved probability of

transitioning from a given state into any other state equal to unity. As such we can call a Markov chain

stochastic if
m∑

j=1

Mji = 1 ∀ i. (9.8)

This ensures that the total probability of finding the chain in any state is unity so that we necessarily

obtain
m∑

j=1

Pn(xj) = 1. (9.9)

Considering now the total probability flux into a given state as a sum of contributions from all possible

previous states we can construct

Pn(xj) =

m∑

i=1

MjiP
n−1(xi). (9.10)

We now see that by forming a stochastic and homogeneous transfer matrix M = (Mji) that acts upon

the probability distribution, we can determine the probability distribution at step n from the transition

matrix and its initial distribution

Pn = Mn−1P 1. (9.11)
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We now introduce the concept of a stationary distribution defined as the probability distribution that

is explicitly invariant under any application of the transfer matrix such that

P st = MP st, (9.12)

which may or may not exist for some transition matrix M . We also introduce the concept of a limiting

distribution of a Markov chain which is defined as the long term behaviour of the probability distribution

in the limit of an infinite number of applications of the transfer matrix, from a given starting distribution

P 1, such that

P lim = lim
n→∞

MnP 1 (9.13)

which similarly may or may not exist, but which depends on both M and the starting distribution.

If, however, the limiting distribution exists it is a stationary distribution. Typically the stationary

distribution is the probability one wishes to sample in the Markov schemes alluded to previously and

one can reach it if the limiting distribution coincides with it. As such one requires certain conditions on

M in order for the stationary distribution to exist and be equal to the limiting distribution given any

starting distribution. These conditions are that of

• Irreducibility: This is a condition often phrased that all states ‘communicate’ which amounts to

being able to write (Mn)ij > 0 n ∈ N i, j ∈ {1, . . . ,m} such that given any state there is a finite

probability of transitioning to any other given state (including the same state) in some natural

number n transitions which may depend on i and j.

• Aperiodicity: The period of a state, xi, in a Markov system is the number, di, which is the greatest

common divisor of all numbers n for which (Mn)ii > 0. If di = 1 ∀i ∈ {1, . . . ,m} then the chain is

said to be aperiodic. Alternatively, one may express this condition as the following: for any given

i ∈ {1, . . . ,m}, there exists a number n, specific to that state, such that (Mk)ii > 0 ∀ k > n.

A constraint frequently used to ensure convergence to the limiting distribution is microscopic reversibility

or detailed balance which is defined here as

MjiP
st(xi) = MijP

st(xj) ∀ i, j. (9.14)

We shall find it useful to note that detailed balance is a strong condition sufficient to lead to the

stationary distribution, but not a necessary one. A weaker condition than strict reversibility is that of

balance which is defined here as

P st(xj) =

m∑

i=1

MjiP
st(xi) (9.15)

which coincides with Eq. (9.12). Within the literature on utilising Markov Chains for Monte Carlo

simulation, Manousiouthakis and Deem [189] emphasised this point. In particular, they highlighted

that, to obey detailed balance, the manner in which multiple particle systems are updated, according to

the relevant transition matrix M , must be performed in ways which are strictly unnecessary to achieve

balance and the two key conditions of irreducibility and aperiodicity. They then describe these last

two conditions as the single constraint of ‘regularity’ which is defined as the existence of a single, state

independent, number n such that (Mn)ij > 0 for all i and j. The equivalence of an irreducible, aperiodic

chain to a regular one can be recognised by noting that one can select an arbitrarily large and different

k, from the definition of aperiodicity above, chosen individually for each state to match the number n

from the irreducibility condition such that n+ k is the same for each state.
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The above has been defined for systems of a finite number of discrete states, however the arguments

can be extended to continuous systems. In these cases the probability density pn(xi) is incremented

according to the transition kernel γ(xj |xi) such that

pn+1(xj) =

∫

dxiγ(xj |xi)p
n(xi) (9.16)

where the integral is over all state space. The expression of balance in such system is given by

pst(xj) =

∫

dxiγ(xj |xi)p
st(xi) (9.17)

and similarly detailed balance in such systems is expressed by

γ(xi|xj)p
st(xj) = γ(xj |xi)p

st(xi). (9.18)

9.1.3 The Metropolis Algorithm

Proceeding with the consideration of continuous state spaces we discuss the Metropolis algorithm which

is one of the most commonly used algorithms for ensuring a Markov chain converges to its stationary

distribution. Typically it achieves this by ensuring detailed balance, which, for an n particle system,

would constitute explicitly balancing the numbers of transitions of all n particles from a collective con-

figuration i to j with the number of transitions j to i.

We start by considering the action of the transition kernel to consist of the probabilistic proposal

of the next state, xi, from xj followed by the probabilistic acceptance, or rejection, of this new state.

Explicitly, we thus consider the transition kernel to be the product of a proposal density q(xi|xj) and

the acceptance ratio α(xi|xj) such that detailed balance is now expressed

q(xj |xi)α(xj |xi)p
st(xi) = q(xi|xj)α(xi|xj)p

st(xj). (9.19)

By considering the ratio of α(xj |xi) and α(xi|xj) we can see immediately upon substitution that the

choice of acceptance ratio

α(xj |xi) = min

(

1,
q(xi|xj)p

st(xj)

q(xj |xi)pst(xi)

)

(9.20)

leads to detailed balance as expressed in Eq. (9.19). In the case of thermal equilibrium sampling the

desired probability density function is simply the Boltzmann distribution such that

pst(xi) =
1

Z
exp

(

−U(xi)

kBT

)

. (9.21)

Importantly the costly partition sum Z cancels rendering the acceptance ratio tractable meaning all one

needs to calculate is

α(xj |xi) = min

(

1,
q(xi|xj)

q(xj |xi)
exp

(

− (U(xj)− U(xi))

kBT

))

. (9.22)

One could then implement the above kernel by carrying out the following

• Starting in state Xn = xi, we stochastically propose a new state xi drawn from q(xj |xi)

• The acceptance probability α(xj |xi) = min
(

1,
q(xi|xj)
q(xj |xi)

exp
(

− (U(xj)−U(xi))
kBT

))

is calculated
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• A random number is drawn uniformly between 0 and 1

• If this random number is less than α(xj |xi) the transition is accepted and the new state is Xn+1 =

xi

• If the random number is greater than α(xj |xi) the transition is rejected and the new state is

Xn+1 = xj .

Sampling performed in this way ensures the condition of detailed balance and allows us to sample all

states reached with equal weighting and achieve the appropriate equilibrium integral since the time spent

in each state is proportional to the Boltzmann factor. We note, however, that the Metropolis algorithm

can be utilised in more elaborate ways. For example, if in an n particle system we use the algorithm to

update one particle at a time, imposing detailed balance in that effective one particle system, we then

only achieve detailed balance in the entire system subject to various constraints on the way in which we

choose the order of updating those particles. However, since we do not require detailed balance to reach

the stationary state, this will ultimately not matter as long as the individual transition kernels leads to

the correct distribution utilised in the Metropolis algorithm.

9.1.4 General Properties of Random Walks in Phase Space

In Markov Chain Monte Carlo the usual way of choosing proposal configurations is by randomly sug-

gesting new configurations based upon the current configuration. For example this could be achieved

by displacing each particle position by both a random direction and distance. This leads to the Markov

property and results in a random walk in phase space. The properties of random walks are well known

with the most relevant being the statistics related to their scaling and distribution. Remarkably this

theory holds for almost any realisation of a random walk in any number of dimensions allowing us to

consider the most simple example, the 1D walker which steps either forwards or backwards one step with

equal probability. It is relatively straightforward to demonstrate that the mean end to end distance of

this random walk is given as
√
n where n is the number of steps taken, however this is simply a specific

consequence of the central limit theorem from which further properties can be derived. The central limit

theorem states that the distribution of a sum of n independently and identically distributed random

variables with mean µ and variance σ2, tends to a Gaussian with mean nµ and variance nσ2. More

frequently this is written that given the quantity

S =
1

n

n∑

i=1

Xi, (9.23)

where each individualXi is a random variable drawn independently from the same distribution with mean

µ and variance σ2, the random variable
√
n(S − µ) converges in distribution to the normal distribution

with mean 0 and variance σ2, N (0, σ2). Of particular relevance to a discussion on parallel tempering

and its scaling is that it demonstrates that the width of the approximate Gaussian can be expected to

be proportional to
√
n or more generally the number of random variables. The effectiveness of parallel

tempering is strongly connected with the measure of the overlap between such distributions and as such,

in order to quantify the scaling of PT algorithms, this description leads to a useful characterisation of

that overlap.
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9.2 Parallel Tempering

9.2.1 Reaching the Limiting Distribution with Parallel Tempering

Standard PT methods can be understood in terms of Markov processes on the states of a composite

system consisting of a number of replicas of the physical system. If the physical system has a discrete

set of states λ, then with two replicas the states of the composite system are specified by the pair

(λ0;λ1). For present purposes, CPT is an algorithm for sampling from states of the composite system

with an equilibrium probability density distribution pst(λ0;λ1) = pstβ0
(λ0)p

st
β1
(λ1), which is the product

of canonical thermal distributions at different temperatures: pstβ (λ) = Z−1 exp(−βU(λ)), with U(λ) the

energy of state λ, β the inverse temperature (using units where kB = 1), and Z the partition function.

In practical applications, more than two replicas are often used.

In standard PT, there are two kinds of move: first, transitions between the states of a chosen

individual replica, with the other replicas remaining unchanged; and second, swaps between states of

chosen pairs of replicas. Moves of the first kind can be any kind of Markov transition that leaves the

thermal equilibrium distribution pstβi
(λi) of each replica i invariant. For example, these moves could be

standard Metropolis Monte Carlo moves, in which the attempt probability for any transition λ → µ is

identical to that of the reverse move µ → λ, with the acceptance probability α(µ|λ) for the transition

λ → µ being given by the usual Metropolis algorithm:

α(µ|λ) = min

[

1 ,
q(λ|µ)
q(µ|λ) exp (−β(U(µ)− U(λ)))

]

. (9.24)

By construction, the equilibrium distribution of the composite system remains invariant under moves of

the first kind.

In the swap moves, transitions occur from state (λ0;λ1) of the composite system to state (λ1;λ0).

The proposal density of a transition is typically state independent and so naturally symmetric and does

not feature in the Metropolis algorithm. Consequently, an acceptance ratio that ensures the invariance

of the composite thermal distribution is ensured requires, according to Eq. (9.19):

γ((λ1;λ0)|(λ0;λ1))

γ((λ0;λ1)|(λ1;λ0))
=

α((λ1;λ0)|(λ0;λ1))

α((λ0;λ1)|(λ1;λ0))
=

pstβ0
(λ1)p

st
β1
(λ0)

pstβ0
(λ0)pstβ1

(λ1)
= exp [−(β0 − β1)(U(λ1)− U(λ0))] .

(9.25)

The commonly used acceptance ratio that ensures this condition is:

α((λ1;λ0)|(λ0;λ1)) = min [1, exp (−(β0 − β1)(U(λ1)− U(λ0)))] . (9.26)

The overall Markov process for CPT is constructed by specifying a probabilistic rule that decides whether

the transition at each step is of the first or second kind. Since each kind of move leaves the required

thermal distribution invariant, it is guaranteed that this thermal distribution is obtained as the limiting

distribution.

9.2.2 A Consideration of the Number and Arrangement of Replicas in Par-

allel Tempering

Whilst a determination of the appropriate number of replicas that is optimal for a given system is non-

trivial, it is straightforward to consider how the number of replicas we require scales with system size.

165



Starting with Eq. (9.26) and proceeding on a continuous state space, Kofke [190, 191] demonstrated

that we can understand the acceptance probability of exchanges in terms of the distribution functions

of both replicas. The resulting mean acceptance probability p̄ of a swap is given by:

p̄ = 2

∫ ∞

Um

dU0

∫ U0

Um

dU1 p
st
β0
(U0)p

st
β1
(U1) (9.27)

where β1 < β0 and Um denotes the minimum energy of the system. This means that p̄ is governed

explicitly by the overlap of the probability distributions at the two temperatures. Consequently we

can understand how this quantity varies as the probability distributions widen and separate at different

system sizes.

As we add terms to the Hamiltonian (i.e. increase the size of the system) the mean system energy

increases linearly and as such we expect the mean energy difference between replicas to scale in the same

way (∝ N). However, as we know from the central limit theorem (see Sect. 9.1.4), when performing a

random walk in phase and thus energy space the size of the fluctuations are proportional to the square

root of the number of random variables. In a simulation the number of random variables goes with the

size of the system and so the fluctuations scale as N1/2. Consequently as N increases, the mean distance

in energy between replicas increases linearly, but the fluctuations which result in overlapping histograms

increase only as N1/2. This means that for a given β0 and β1, p̄ decreases as N−1/2. Consequently, if

we wish to maintain a constant p̄ between neighbouring replicas, the number of replicas should increase

as N1/2.

There has been considerable discussion in the literature about the best choice of replica tempera-

tures when there are many replicas [190–195]. This is generally a difficult task although some valuable

contributions have been offered. Kofke showed that the arrangement should be related to the entropy

difference between the replicas which is just a reformulation of Eq. (9.27). Indeed this explains why

parallel tempering often struggles with systems that undergo a phase change between the lowest and

highest replica as there is a large entropy change for a small temperature gap. However, if we take

a simpler approximation for more well behaved systems, an analytical solution can be found. There

is a general consensus [194, 196, 197] that the performance of parallel tempering is maximised when

the time taken for a round trip in temperature space is minimised. It has then been postulated [198]

that this occurs when the acceptance probabilities are equal between all neighbouring replicas. Kofke

[190, 191] showed that if the specific heat is independent of T , then the value of p̄ is the same between

all neighbouring replicas if the values of βi form a geometric series. This is a specific consequence from

finding that the acceptance probabilities follow an incomplete beta law [199]. This way of choosing βi

may not always be optimal owing to the breakdown of this assumption near critical points, but there

is evidence that it often works well in practice [181, 182] and is a good starting point for our simple

systems. Consequently we shall use this scheme when we compare the efficiency of CPT with our LPT

schemes.

9.3 Statistical Errors

In order to assess the scaling of standard CPT techniques alongside our new local method we need some

meaningful way of determining the computational effort required to reach some comparable goal. For
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our purposes we choose that goal to be the calculation of a relevant physical quantity, that is one that

requires sampling from separated metastable regions, to within a given statistical accuracy. To consider

how best to construct such a scheme it is instructive to consider some of the well established theory

concerning statistical errors for a correlated time series.

9.3.1 Time Series Averages as Random Variables

When we perform a simulation to calculate a variable A at equilibrium we are averaging over a sequence

of instantaneous quantities Ai. Inherent in the simulation process, from either Markov Chains for MCMC

or atomic trajectories for MD is the idea that each instantaneous quantity is close in phase space to

the previous instance. Generally speaking these values are deemed to be correlated in time (where for

MCMC each Monte Carlo update is treated like the tick of a clock). Whilst we know that in the infinite

limit we can calculate the exact expectation value of A

〈A〉 = lim
τ→∞

1

τ

∫ t0+τ

t0

dtA(t), (9.28)

in computer simulation τ must be finite and so we can only produce an estimate of A over the sample

time and as such consider the estimate

Aτ =
1

τ

∫ t0+τ

t0

dtA(t). (9.29)

itself as a random variable. We mention that when implemented in a Markov Chain, explicitly in discrete

time, these time integrals (and all those considered subsequently) necessarily become a summation of

time steps or clock ticks.

9.3.2 Correlation Functions

Now, given an estimate for 〈A〉 we need to consider the reliability of this estimate. A simple way of

measuring this is to determine whether all the samples used were from a narrow region of phase space

which has similar instantaneous values of A or whether they were distributed throughout all the relevant

phase space ensuring a better average. A simple mathematical tool to consider this is the auto-correlation

function and is a measure of the degree of correlation of a time dependent variable A(t) with itself given

a time interval between samples. The auto-correlation function of A is described as

ζ(t) =
〈∆A(t0 + t)∆A(t0)〉

〈∆A2〉
, (9.30)

where ∆A is the fluctuating part of A

∆A = A− 〈A〉. (9.31)

This means that 〈∆A2〉 is 〈(A− 〈A〉)2〉 = 〈A2〉 − 〈A〉2 which is the variance.

If suitably equilibrated the quantity ζ(t) will be independent of the time origin t0 allowing it to be

calculated with one realisation by performing the averaging over many time origins. Alternatively one

could perform the average over many (independently equilibrated) realisations using the same time origin.

Normalisation dictates that ζ(0) = 1 and |ζ(t)| ≤ 1. This value will typically decay to zero. Con-

sidering the form of this function we can define a scalar quantity that characterises the time taken on
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average for a trajectory A(t) to decorrelate allowing us to consider the accuracy of our estimate Aτ .

This quantity is the area bounded by the correlation function and is called the correlation time and is

explicitly defined as

tcorr =

∫ ∞

0

dt |ζ(t)|. (9.32)

9.3.3 Variance of A

If we now consider the typical size of the fluctuations in Aτ we can understand the importance of tcorr

and understand how to estimate the errors in Aτ . Considering the form of the auto-correlation function

and a sampling time τ , the fluctuations expected in Aτ will typically depend on tcorr. For example, if

tcorr ≫ τ all samples used in the computation of Aτ will be strongly correlated meaning the size of the

fluctuations in Aτ will be of the same size as for a single measurement in A. If, however, tcorr ≪ τ then

the samples used in determining Aτ will be largely uncorrelated meaning that the individual fluctuations

in A tend to cancel out so that the size of fluctuations in Aτ will be much smaller than in the single

measurement of A. Considering the fluctuations of Aτ we write our estimation Aτ as

Aτ = 〈A〉+ 1

τ

∫ t0+τ

t0

dt∆A(t) (9.33)

where

∆Aτ = Aτ − 〈A〉. (9.34)

Choosing t0 = 0 the variance is consequently defined as in [200]

〈∆Aτ
2〉 = 1

τ2

∫ τ

0

dt1

∫ τ

0

dt2 〈∆A(t1)∆A(t2)〉. (9.35)

Writing this in terms of the auto-correlation function we have

〈∆Aτ
2〉 = 〈∆A2〉

τ2

∫ τ

0

dt1

∫ τ

0

dt2 ζ(t1 − t2). (9.36)

If τ ≪ tcorr then the double integral becomes τ2 and we have

〈∆Aτ
2〉 = 〈∆A2〉. (9.37)

However, if τ ≫ tcorr then
∫ τ

0

dt1

∫ τ

0

dt2 ζ(t1 − t2) → 2tcorrτ (9.38)

so

〈∆Aτ
2〉 = 2tcorr

τ
〈∆A2〉. (9.39)

Crucially we see that our ability to provide reliable estimates of 〈A〉 requires that τ ≫ tcorr. Once this

condition has been reached one can then expect the error to decay as τ−
1
2 and to be scaled according

to 〈∆A2〉 1
2 .

9.3.4 Computational Effort

We understand that if we require a fixed number of uncorrelated samples be taken from some Markov

chain or trajectory then we find that the time taken to achieve a comparable result is in fact propor-

tional to the correlation time. Indeed it is the ability to reduce this correlation time which gives the
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parallel tempering algorithm its power. Consequently we shall use the correlation time as a key means of

determining the computational effort. The correlation time has been written in terms of time t, however

we consider a unit of time in MCMC calculations to be one Monte Carlo update. As such to obtain a

complete computational cost we must also require a measure of the computational cost per Monte Carlo

update. So we have the computational effort = tcorr× computational effort per time step.

It then only remains to specify the nature of the quantity for which the correlation time is mea-

sured. The exact quantity will be system dependent, but to be relevant it must be a quantity whose

correlation function is generally slowly varying in the absence of transitions between metastable regions

and significantly faster when transitions are introduced due to exchange moves when parallel tempering

is implemented. If this condition is satisfied then differences in correlation time will reflect efficiencies

in the parallel tempering algorithm as opposed to counting unnecessary additional work from higher

replicas on top of normal decorrelation from standard MCMC steps.
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Chapter 10

Local Parallel Tempering

10.1 Our Goals: Linear scaling

We intend to demonstrate with the use of toy models a method which can avoid the scaling associated

with normal CPT. The way that this will be achieved is by limiting (and ideally making invariant with

respect to system size) the number of replicas required to obtain worthwhile exchanges between suffi-

ciently separated temperatures. By identifying that it is the exchange moves that are the origin of this

poor scaling the obvious choice when proposing a new algorithm is to only exchange a limited portion

of the system which does not grow as the total system is made larger. This means that as the system

grows, more of these ‘local’ exchanges are required, however as the size of the portion exchanged is kept

constant the cost of each exchange should not increase. If the number of ‘local’ exchanges required grows

linearly with system size then we should expect an overall linear scaling.

Whilst this seems straightforward in principle there are several obstacles to achieving this aim. First

and foremost we must limit the scope of our algorithm to systems that have well distributed local

metastable regions. For example, performing local exchanges on a system that has to perform large

global reconfigurations to reach very few relevant minima (e.g. the LJ38 cluster [201, 202]) would be

highly ineffective. A physical example of a suitable system might be the arrangement of many atoms on

a complex surface.

Further issues then arise regarding the specific algorithm of a local technique. A significant obsta-

cle lies in devising a technique where meaningful local exchanges can occur between replicas without

necessarily creating prohibitively large surface energies causing very low acceptance probabilities [203].

This arises from the fact that whilst two independent replicas will be exploring the same phase space

globally, the phase space being explored locally may be very different. As a result the proposed new

configurations are atypical and the exchange is rejected.

10.2 The 1D Chain of Double Wells

We now seek to describe a new method (LPT) which performs these well accepted parallel tempering

techniques in a spatially local way such that linear scaling with system size can be achieved. We start

with a consideration of a simple system which allows for a clear description of the method and how this

scaling is achieved.
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10.2.1 The System

Our first model consists of N particles, each of which is acted on by a symmetric double-well potential

V (x) = V0((x/a)
2−1)2, so that the bottoms of the wells are at positions ±a, and the height of the barrier

separating the wells is V0. The particles are labelled n = 0, 1, . . . N − 1, and there is a bi-linear coupling

between neighbouring particles. Periodic boundary conditions are used, so that particle 0 interacts with

particles N − 1 and 1. The total potential energy U of the system is thus:

U = V0

N−1∑

n=0

((xn/a)
2 − 1)2 − ξ

N−1∑

n=0

xnxn+1 , (10.1)

where xn is the position of particle n, and we use the convention that xN ≡ x0. In the following, we shall

use units such that V0 = a = 1. This is a useful model for discussing accelerated sampling, because even

in the apparently trivial case ξ = 0 the scaling of canonical parallel tempering with number of particles

N is poor. Our task is to develop local PT techniques having linear-scaling properties for this model.

10.2.2 The Local Parallel Tempering Algorithm

The defining feature of our proposed algorithm involves the introduction of ‘local replicas’ for each in-

dividual particle in our physical system. The most significant departure from CPT that this takes is

the idea that these higher temperature local replicas are formed of frozen configurations in the lowest

replica as opposed to independent replicas in their own right. The consequence of this is that the higher

replicas are in fact unphysical (in that when combined they do not describe the system at the higher

temperature) and so we proceed by describing our algorithm as a series of single particle Markov transi-

tions of particles in the lowest replica which we shall now refer to as the ‘primary replica’. Consequently

we now denote the positions of the particles in the primary replica by xn
0 (n = 0, 1, . . . N − 1).

Considering the continuous nature of the system we are dealing with a probability density function

p and the displacement probabilities of a given particle n are described by the Markov transition kernel,

which we denote by

γn(x̄
n
0 |xn

0 ; {xn
0} 6=) . (10.2)

The meaning of this is that γn specifies the probability distribution of Markov moves of particle n from

position xn
0 to x̄n

0 , with all other particles held fixed. The notation {xn
0} 6= indicates the set of all positions

xm
0 for m 6= n. In more detail, if the present probability distribution of particle positions in the primary

replica is p(x0
0, . . . x

n
0 , . . . x

N−1
0 ) then, after a Markov step involving particle n, the new distribution is

p′(x0
0, . . . x̄

n
0 , . . . x

N−1
0 ) =

∫

dxn
0 γn(x̄

n
0 |xn

0 ; {xn
0} 6=)p(x0

0, . . . x
n
0 , . . . x

N−1
0 ) . (10.3)

Since γn behaves as a linear operator, we can write this more concisely as

p′ = γ̂np . (10.4)

Note that the probability density γn(x̄
n
0 |xn

0 ; {xn
0} 6=) depends on the positions xm

0 (m 6= n); however, as

indicated by the subscript n on γ and γ̂, it is only particle n that makes the transition.

Since conventional Metropolis algorithms are often built from single-particle transitions γn, the meth-

ods we use strongly resemble those conventional algorithms. The major difference is in the kernel γn
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itself. We will use PT operations involving local exchanges with suitable higher replicas to generate γn

kernels that give much improved sampling efficiency. However, before specifying what these operations

are, we need to comment on the properties of γn and how the overall Markov process is built from the

individual γn kernels.

We must require that the thermal equilibrium distribution pst(x0
0, . . . x

N−1
0 ) at the temperature of

interest is the limiting distribution of the overall process. We ensure this by requiring that pst is invariant

under the operation of the single particle moves:

γ̂np
st = pst , ∀ n. (10.5)

For any γn satisfying this invariance condition, there are many ways of building the overall Markov pro-

cess. For example, at each Markov step we could choose a particle at random and perform a displacement

γn for that particle. Another way would be to run through all the particles in a fixed sequence, per-

forming a displacement γn for each one in turn. Some of these procedures do not satisfy overall detailed

balance, but if they satisfy balance they will still yield the correct limiting distribution.

In order to exploit the nature of the chain of double wells we separate the particles into two groups.

Assuming we have an even number of wells, N , we identify these groups as the even and odd labelled

particles. The advantage of this distinction is that particles in the odd group will only ever interact with

particles in the even group and vice versa owing to the nearest neighbour interaction. Consequently we

choose to update all particles in first one group and then the other. We now have a degree of flexibility

in the specific updating sequence of the particles in each group even allowing us to update them simul-

taneously.

We now turn to the construction of the single-particle transition kernel γn and the local replicas. For

our 1D chain of double wells, this kernel refers to the transitions of the nth symmetric double well acted

on by the field of its surroundings, which for the chain of double wells is simply its nearest neighbours.

We construct γn with the help of a high temperature local replica of the nth symmetric double well to

accelerate the transition. The local replica in question is defined to be a replica of the nth double well

acted on by the remainder of the primary replica of which the relevant part is the nearest neighbours.

The consequence of this is that both the primary replica and the local replica experience exactly the

same external field. The kernel γn is then the net result of the following sequence of sub-steps:

• Create a new replica of the nth double well with its surroundings (nearest neighbours) in exactly

the same position as in the primary replica. The position xn
1 of the particle in the new replica is

initially identical to that in the primary replica, xn
0 . So initially we have xn

0 = xn
1 and xm 6=n

1 = xm 6=n
0

• With the remaining positions xm 6=n
1 = xm 6=n

0 held fixed, perform a predetermined number P of

conventional Metropolis Monte Carlo steps in xn
1 at temperature T1 chosen high enough so that

equilibration in the new replica is rapid.

• With the positions xm 6=n
1 = xm 6=n

0 still fixed, we now perform a predetermined number Q of

conventional parallel tempering moves on the replica positions xn
0 and xn

1 .

This entire sequence of sub-steps forms a probabilistic algorithm for going from an initial position xn
0 to

a final position x̄n
0 , with all other positions xm

0 (m 6= n) held fixed. This algorithm specifies the transi-

tion kernel γn. So long as the overall Markov process is constructed from the single-particle transitions
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γn so as to satisfy regularity, then it will generate a unique limiting distribution for any values of the

parameters P and Q.

To ensure that the correct thermal-equilibrium distribution pst(x0
0, . . . x

N−1
0 ) remains invariant under

the action of the γn, it is clearly essential to choose a large enough value of P . The purpose of the P

Monte Carlo moves of the replica at temperature T1 is to ensure that the probability distribution of

positions xn
1 is the thermal-equilibrium distribution for the given fixed positions xm

0 = xm
1 (m 6= n).

Provided this equilibration is achieved, then the subsequent Q steps of parallel tempering on the two

replicas of particle n will not change the probability distribution of the primary replica, provided it has

already attained the thermal-equilibrium distribution. We recognise, of course, that no finite value of P

can yield the exact thermal distribution of the upper replica, but it will approach this exact distribution

ever more closely as P is increased. This means that our algorithm is asymptotically exact in the limit

P → ∞.

The choice of the number Q of parallel-tempering steps is determined by the need for sampling.

While the P equilibration steps are being performed, no sampling can be done. But as soon as the

upper replica is well equilibrated and PT is started, positions of the primary replica can be used for

sampling. Indeed, all Q steps of LPT can be used for sampling. The choice of Q is a balance between

two factors: too small a value will result in inefficient local sampling, but too large a value may result

in lengthening the timescale of configuration changes on longer length-scales.

10.2.3 Advantages of Using the Transition Kernel γn

The transition kernel that we implement, γn, consists of several parts, namely standard update moves,

local exchanges and additional procedures which specify the arrangement of atoms in the higher replicas.

Much of this is well established and requires no further discussion, however the exact method of our local

exchanges given the choice of how to construct the upper replicas and how they preserve the correct

limiting distribution in the primary replica warrants an additional explanation.

In order to understand the motivation for the type of local exchange moves implemented in our

algorithms it is instructive to start with the most general concept of a local exchange. First we imagine

that we have two fully independent replicas between which we wish to exchange only one part of the

configurations. This portion of the system, which we label λ0 and λ1 for the lower and upper replicas

respectively, can be defined in any way we see fit as long as following an exchange the number of particles

in each replica is conserved. In defining λ0 and λ1 we can immediately define the remainder of the system

using the state descriptors η0 and η1. Considering the total state in each replica at any given point we

see that the composite equilibrium probability is now given as

pst(λ0, η0;λ1, η1) = pstβ0
(λ0, η0)p

st
β1
(λ1, η1) (10.6)

Now when we propose a local exchange we simply propose exchanging states λ0 and λ1. To ensure

invariance in the equilibrium distributions, given again that proposal densities are state independent,
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we then require

γ((λ1, η0;λ0, η1)|(λ0, η0;λ1, η1))

γ((λ0, η0;λ1, η1)|(λ1, η0;λ0, η1))
=

α((λ1, η0;λ0, η1)|(λ0, η0;λ1, η1))

α((λ0, η0;λ1, η1)|(λ1, η0;λ0, η1))
=

pstβ0
(λ1, η0)p

st
β1
(λ0, η1)

pstβ0
(λ0, η0)pstβ1

(λ1, η1)

= exp [β0(U(λ0, η0)− U(λ1, η0)) + β1(U(λ1, η1)− U(λ0, η1))] . (10.7)

This leads to a general transition kernel which holds for exchanging any two comparable parts of the

system without any further constraint

α((λ1, η0;λ0, η1)|(λ0, η0;λ1, η1))

= min [1, exp(β0(U(λ0, η0)− U(λ1, η0)) + β1(U(λ1, η1)− U(λ0, η1)))] . (10.8)

Examining the form of this equation we identify the two key terms U(λ1, η0) and U(λ0, η1) that will

affect performance of any algorithm built out of local exchanges. We understand that generally these

terms will dominate the expression owing to the small probability that a state being exchanged (e.g.

λ0) will form a typical total configuration considering the independent surroundings it will be paired

with (η1). In other words each replica explores two separate regions of phase space resulting in a very

small overlap in the energy distributions. Typically this renders the contents of the exponential large

and negative resulting in a small acceptance probability. This explicitly is the surface energy problem.

In an attempt to reduce this problem we are proposing a method which performs local exchanges

between mutual local regions, the contents of which we denote by the labels λ0 and λ1. We then add

the constraint that the remainder of the system must be identical between the replicas. As we require

thermodynamic accuracy in the lowest replica this is given as η1 = η0. Consequently the transition

kernel reduces to

α((λ1, η0;λ0, η0)|(λ0, η0;λ1, η0)) = min [1, exp((β0 − β1)(U(λ0, η0)− U(λ1, η0)))] . (10.9)

We now have a transition kernel in the form originally used in canonical parallel tempering that deals

with spatially local exchanges. First by using these spatially local exchanges we are able to remove

proposals that will certainly be rejected, that is local exchanges which propose exchanging particles very

far from their original position into an unchanged surrounding. Critically, however by demanding that

the surroundings of the local region is common between replicas we can ensure that the original terms

U(λ0, η1) and U(λ1, η0) do not dominate as we are now insisting that each replica explores a common

region of configurational space. An additional benefit of this method is that because the transition

kernel now contains only the two terms associated with each replica no further potential calculations are

required as would be needed for an unconstrained local exchange.

In practice this allows a well controlled method of local exchanges where the limiting factors on the

acceptance rates are not surface energies between independent surroundings. However, we mention that

this procedure is at the cost of physical higher replicas and that although both replicas explore the

same configurational space a local exchange is still affected by the surrounding particles meaning that

there will always be some cost for which there is no analogy in CPT. The ultimate performance of the

algorithm then becomes whether two distinct, relevant metastable regions at comparable energies exist

within a given local region under the influence of the surroundings. This however, is a practicality of

the implementation of the method and we predict this issue could be tuned quite easily with simple
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parameters such as the size of the local region.

10.3 1D System of Particles in Periodic Potential

10.3.1 The System

The second model used to illustrate local parallel tempering consists of N particles in one dimension,

all acted on by a periodic potential V (x) = − 1
2V0 cos(2πx/a) having a repeat distance a and barrier

height V0. Periodic boundary conditions are applied, the number of periods of the potential in the unit

cell being denoted by M . Positions x and x + pL, where L = Ma and p is a positive, negative or zero

integer, are periodic images of each other. A pair potential φ(x) also acts between the particles. We

impose a cut-off xc on this potential, so that φ(x) = 0 for |x| > xc, and we require that xc ≤ 1
2L. This

means that each particle interacts with only one image of any other particle. The total potential energy

of the system is:

U = −1

2
V0

N−1∑

n=0

cos(2πxn/a) +
1

2

∑

n6=n′

φ(|xn − xn′ |) . (10.10)

The major difference between this model and the 1D chain of double wells is that every particle is

now free to move throughout the system, and is not tied to any local region. Our task is to develop

linear-scaling PT techniques for this model.

10.3.2 The Local Parallel Tempering Algorithm

For the chain of double wells (Sect. 10.2), the overall Markov process was built from the elementary

transition kernels γn for individual particles. We discussed there how to assemble the γn to form the

overall process, and we then considered how to use LPT ideas to construct the γn. We shall follow a

similar plan here. However, there is a crucial difference. For a system of unconfined particles, we think

it best to work with an elementary transition kernel γω that operates on chosen regions of space, rather

than on individual particles.

Let ω be a local spatial region of our 1D system, consisting of a segment of length l centred at position

xs. (In practice, we shall choose l to be comparable with the repeat length a of the periodic potential.)

Then γω represents a probabilistic rule for displacing the positions of all the particles in region ω. (If

there are no particles in ω, then γω does nothing.) This rule may depend on the positions of particles

both outside and inside ω, but it does not result in the displacement of any particles outside ω. We

require that the thermal equilibrium distribution pst(x0
0, . . . x

N−1
0 ) is invariant under the action of γ̂ω:

γ̂ωp
st = pst , ∀ ω . (10.11)

There are many ways of building the overall Markov process from the elementary transition kernels

γ̂ω, but the scheme we adopt here resembles the one we used for the chain of double wells. In order to

replicate the properties found in the chain of double wells we divide our system into two sets of transition

regions such that the centres of two regions in a given set are separated by at least twice the interaction

cut-off distance xc. This results in two interleaving sets of regions much like the odd and even regions

in the chain of double wells. This has the desired result of guaranteeing that there is no interaction

between two regions within a given set.
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Given this set-up the LPT procedure that we use to form the γω kernels is very similar to the one

used for the chain of double wells. For a given initial set of positions {xn
0} and a chosen region ω, we

perform the following sequence of sub-steps:

• Create a new replica of the particles in region ω, with the initial positions xn
1 of particles in ω

being the same as in the primary replica, and the positions of all particles outside ω also being

exactly the same as in the primary replica.

• With the positions of all particles outside ω held fixed, perform a predetermined number P of

conventional Metropolis Monte Carlo steps on the positions xn
1 of the particles in ω at a temperature

T1 high enough so that equilibration in the new replica is rapid. Trial moves that take a particle

outside ω are rejected, and the configuration is repeated.

• With the positions of all particles outside ω still fixed, perform a predetermined number Q of

conventional parallel tempering moves on the replica positions xn
0 and xn

1 inside ω; as before, trial

moves that take any position in either replica outside ω are rejected.

This entire set of sub-steps constitutes the kernel γω. We emphasise that in order to perform meaningful

exchange moves we must maintain the number of particles contained within each local region between

replicas and so require that any proposed moves outside of the region must be rejected.

This kernel is then applied in the same fashion as for the chain of double wells, in that we implement

γω upon all regions in the first set (analogous to the odd set) and then all regions in the second set

(analogous to the even set). As before because these regions are explicitly independent of each other

the order in which we perform these updates is irrelevant and we are free to update them simultaneously.

Finally, we must allow for larger scale movement of particles throughout the system in order to reach

the correct limiting distribution. Currently this is not possible whilst ensuring equal numbers of particles

in common regions between replicas. To achieve this we then must constantly redefine the boundaries of

the local regions throughout the simulation. This could be done in many ways depending on the system,

however we choose to shift the boundaries of the local regions by one half of the length of a local region

along the x axis. By then implementing this change after γω has acted on all local regions in both sets

we form a total probabilistic algorithm built from a elementary transition kernel that maintains balance

which also allows particles to move throughout the entire system.

10.4 2D System of Particles in a Periodic Potential

10.4.1 The System

Our 2D model is a straightforward generalisation of the 1D system treated in Sect. 10.3. It consists of

N particles all acted on by periodic potential V (x, y) = − 1
2V0(cos(2πx/a)+cos(2πy/a)), the periodicity

being that of a square lattice of lattice parameter a, and the barrier height being V0. Periodic boundary

conditions are applied, the repeat distance L = Ma (M = positive integer) being the same in the two

Cartesian directions, so that position (x + pL, y + qL) is equivalent to (x, y), with p and q positive,

negative or zero integers. A pair potential φ(r) acts between particles, with cut-off distance rc, so that

φ(r) = 0 for r ≡ (x2 + y2)1/2 > rc. The total potential energy of the system is therefore:

U = −1

2
V0

N−1∑

n=0

[cos(2πxn/a) + cos(2πyn/a)] +
1

2

∑

n6=n′

φ(|rn − rn′ |) , (10.12)
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with rn = (xn, yn) being the vector position of the nth particle.

Our LPT algorithm for this system is similar to that for the 1D system, the main difference being the

arrangement of the local regions. Many workable schemes could be envisaged, but the one we adopted

for numerical tests is a simple chequerboard scheme, with black and white squares being the analogue

of the even and odd regions of our 1D model. We take the edge length of each black or white square to

be twice a. As for the 1D system the single region transition kernel is performed on each local region

in the first set followed by the second set. After updates of this form have been applied to all particles

the boundaries of the local sets were shifted in both dimensions by a, half the length of a local region.

We envisage that superior schemes could be devised, however we have found that this scheme works

correctly and quite efficiently.
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Chapter 11

Results

For both the chain of double wells and the 1D periodic potential we have performed extensive tests to

illustrate that our local parallel tempering algorithm gives correct results in the limit of large P . We

also provide results on the scaling performance of local parallel tempering compared with CPT for the

same systems.

11.1 The Chain of Double Wells

11.1.1 Correct Results in the Limit of Large P

To illustrate convergence in the limit of large P we present results for coupling constant ξ = 0.5 and

temperature of interest T0 = 0.5. We report results for two quantities: first, the single-particle probabil-

ity distribution p(x) for finding any chosen particle at position x; and second, the 2-particle correlation

function fm = 〈xnxn+m〉/〈x2〉. Here, 〈xnxn+m〉 is the static correlation function for the displacements

of particles n and n + m from the origin, and we normalise this by dividing by the mean square dis-

placement 〈x2〉. Clearly, fm depends only on the separation m and not on n. We have calculated p(x)

and fm first with standard CPT, which following suitable tests of convergence and equilibration gives

essentially exact results being a well established technique that leads to the stationary distribution, and

then with LPT for different values of the equilibration parameter P . In the LPT calculations, we have

deliberately slowed down the equilibration by choosing the maximum displacement step at the high

temperature T1 to have the small value 0.4, so that convergence with respect to P can be examined in

detail. The parallel tempering parameter Q was given the small value Q = 5, so that we rely entirely on

the preceding P steps to achieve equilibration.

Our tests (Figs. 11.1 and 11.2) show that p(x) and fm obtained by LPT converge systematically to

the correct results as P is increased. With the present settings, essentially perfect agreement is obtained

with P = 150 in both cases. As expected, we find that much faster convergence is obtained with a larger

high-temperature step length. For example for a step length of 1.0 good results can be produced with

an equilibration time of P = 5.

11.1.2 Scaling with System Size

We turn now to the question of the scaling of computational effort with system size. As discussed in

Sect. 9.3.4 the meaning of this question is that we have to calculate a chosen physical quantity to within a
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Figure 11.1: Correlation function fm for different values of equilibration parameter P for the chain of
double wells (number of wells N = 20, coupling constant ξ = 0.5, temperature = 0.2).
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Figure 11.2: A peak of the probability distribution p(x) for different values of equilibration parameter P
for the chain of double wells (same parameters as in Fig. 11.1). Inset figure shows the total probability
distribution.

specified statistical tolerance, using either CPT or LPT, and we ask for the computational effort needed

to do this. We have previously identified that this will be the product of the correlation time and the

computational effort per clock tick. We aim to use the approximation that the most computationally

intensive procedure is a potential calculation considering the simple nature of the model. As shown

in Sect. 10.2.3 no potential calculations are required to perform an exchange move, however they are
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required to perform a standard Monte Carlo displacement step. Consequently we regard the computa-

tional effort per clock tick to be equal to the total number of displacement steps across all replicas and

particles in one full sweep of the composite system, each of which is deemed equally computationally

intensive. We then estimate the total computational effort by measuring the correlation time in terms

of a number of these full sweeps or clock ticks. Practically, considering that we do not expect any

anti-correlated variables in our systems, this is estimated by measuring the number of clock ticks taken

for the autocorrelation to have decayed to a predetermined cut off of 0.01.

We note, however, that in the local parallel tempering algorithm the nature of one full Monte Carlo

sweep is not exactly the same as for canonical parallel tempering. That is to say it is not absolutely clear

how to compare equal clock ticks between CPT and LPT. To proceed we must find a way to compare an

equal number of relevant displacement steps in the primary replica of both techniques. The key difference

between the two algorithms is that in CPT all individual particles are updated in sequence, each with an

analogous update in all higher replicas, whereas in LPT each particle in a given local region is updated

a certain prescribed number of times, Q, with analogous updates in each higher replica, preceded by P

equilibration updates in the higher replicas only, which is then applied to each local region in turn. As

such it is instructive to illustrate how one would determine what would be considered an equal clock

tick and how to consider its relative computational effort. We proceed by noting that a given clock tick

is comparable when it amounts to the same number of individual updates in all particles in the primary

replica. The way to achieve this is to compare the Q sampling steps applied to each local region in

LPT to Q full sweeps of the entire system in CPT as both of these situations corresponds to Q total

updates per particle in the primary replica. We then consider the computational effort, in individual

particle displacements, of these two cases. In the CPT situation the total number of displacement steps

required in a system of N particles and M replicas is Q × N × M . In LPT the equivalent number

of displacement steps required for the same number of sampling moves in each particle in the primary

replica is N(MQ+(M−1)P ). This is because to achieve Q sampling moves for the particles in one local

replica we must simulate the M − 1 higher replicas for the equilibration time P before performing the Q

sampling moves in all M replicas. This must then be performed over all local regions or rather over all

N particles. Each of these processes would then be a valid measure of a common clock tick each with

a different computational cost. Since, however, the ability to compare one individual clock tick in this

way depends on both N and Q such a clock tick may be too coarse a time unit practically. As such we

can formulate an equivalent comparison by defining one clock tick to occur whenever a single particle in

the primary replica is updated. To do so we consider the computational cost per step unity in CPT and

1+(P/Q)×((M−1)/M) in LPT noting that the ratio is the same as for the quantities considered above.

With the computational effort defined we then seek a suitable quantity for which we consider the

correlation time. For the chain of double wells the most simple quantity which satisfies the conditions

set out in Sect. 9.3.4 is the mean position 〈x〉 of a given particle. The key question is now whether the

“computational effort” scales more favourably with system size in LPT than in CPT.

We now present size scaling comparisons of CPT and LPT for the two example cases ξ = 0, T0 = 0.1

and ξ = 0.25, T0 = 0.5. The step length in the primary replicas of both CPT and LPT was set to 0.2, to

ensure that barrier crossing relies on parallel tempering. In CPT, the temperatures of the higher repli-

cas were set in a geometric sequence between T0 and the uppermost temperature of 2.0 and the results

shown, for all individual system sizes, use the number of higher replicas that resulted in the lowest total

computational effort. LPT used only a single higher replica, whose temperature was T1 = 2.0. For the
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higher replicas, we used a step length of 1.0, to ensure fast equilibration. In the case of LPT, we used

equilibration parameter P = 5 and sampling parameter Q = 5. (We checked that this value of P gives

results in close agreement with CPT.)

Our scaling results (Figs. 11.3 and 11.4) show that the relative efficiency of LPT and CPT depends

quite strongly on the value of ξ. For ξ = 0, we find that with LPT the computational effort scales

linearly with N , but with CPT it increases more rapidly. For this ξ, LPT is always more efficient than

CPT, except possibly for very small values of N . For the rather modest value N = 20, LPT is over five

times more efficient. For the case of ξ = 0.25, the more favourable scaling of LPT is again very clear,

but now LPT becomes more efficient than CPT only for N ≃ 20. Our further tests (not shown here)

indicate that the competitive advantage of LPT becomes even less for higher ξ values, though its size

scaling remains nearly linear. We will comment on this further in Sect. 12.
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Figure 11.3: Computational effort (see text) for canonical and local parallel tempering applied to 1D
chain of double wells as function of number N of double wells (temperature = 0.1, coupling constant
ξ = 0).

11.2 1D System of Particles in a Periodic Potential

11.2.1 Correct Results in the Limit of Large P

We have performed tests to demonstrate that LPT yields correct thermal averages, as we did for the 1D

chain of double wells. We present illustrative results for the case of the repulsive pair potential:

φ(x) =
1

2
(1− x2)2 for |x| ≤ 1

= 0 for |x| > 1 . (11.1)

The values of the parameters of the periodic potential are chosen to be a = 1, V0 = 2.0, and the

calculations are for the temperature of interest T0 = 0.2, with a mean particle density of one particle per
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Figure 11.4: Computational effort (see text) for canonical and local parallel tempering applied to 1D
chain of double wells as function of number N of double wells (temperature = 0.5, coupling constant
ξ = 0.25).

periodic repeat a. To demonstrate the correctness of LPT, we compare the radial distribution function

g(x), calculated with a range of values of the equilibration parameter P , against essentially exact results

from CPT. The sampling parameter Q took the fixed value of 5 and as before the maximum displacement

was taken as a very low value, in this case set at 0.1, in order to slow down the equilibration for illustrative

purposes. The radial distribution function, g(r), is a pair correlation function and expresses the average

density of particles found at a distance r from the particle in question (here all our particles are identical

and thus share the same radial distribution function). It is defined as a ratio given by the mean number of

particles measured in a region dr a distance r away from the particle in question written n(r) divided by

the number of particles found in an equivalent phase space volume given the overall density of particles

in the system, n̄ = ρdV , so that

g(r) =
n(r)

n̄
=

n(r)

ρdV
. (11.2)

The specific form of dV would then depend on the dimensionality of the system. For example, dV would

be dr, 2πrdr and 4πr2dr in one, two and three dimensional systems respectively.

The convergence of g(r) as a function of P is reported in Fig. 11.5. The convergence is most easily

examined in the region of one of the peaks of g(r), and Fig. 11.5 shows the second peak in detail. We

see that the convergence is simple and monotonic, and that almost perfect agreement is attained for

P = 100. Our tests show that excellent agreement is found for much smaller P values if larger random

displacements are used. We note the general form of the radial distribution function reflects the relative

likelihood of observing two of the particles in the wells of the periodic potential. The peak at r = 0,

however, is substantially lower and this reflects the lower probability of observing two particles in the

same well because of the repulsive pair potential.
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Figure 11.5: A peak of the radial distribution function g(r) as function of equilibration parameter P
in local parallel tempering for 1D periodic system of interacting particles. Inset shows the total radial
distribution function.

11.2.2 Scaling with System Size

To examine the issue of size-scaling, we consider the computational effort needed to calculate a chosen

physical quantity to a specified statistical accuracy with LPT and CPT, as we did in Sect. 11.1.2. We

must use a physical quantity whose fluctuations are made slow by the infrequency of barrier crossings,

and we choose the quantity:

s =

N−1∑

i=0

sin(πxi/a) . (11.3)

Since this involves a wavelength that is twice that of the periodic potential, the average value 〈s〉 is zero,
but the fluctuations about zero will be slow. The correlation time tcorr is found from the auto-correlation

function:

tcorr =

∫ ∞

0

dt 〈s(t0 + t)s(t0)〉/〈s2〉 , (11.4)

by analogy with Eq. (9.32). As before, “time” here represents a number of Monte Carlo clock ticks with

each tick deemed to occur with the update of a single particle in the primary replica. These ticks then

have a different computational effort for LPT and CPT as described in Sect. 11.1.2. In comparing the

scaling of computational effort with system size for LPT and CPT, we characterise system size by the

number of particles N , whereas the mean density of particles N/L is held fixed.

We present the results of scaling tests for the temperature T0 = 0.2. As before, with CPT we use

replicas in a geometric sequence of temperatures with the uppermost temperature being 2.0 and report

results for the number of replicas that minimises the computational effort. In contrast, in LPT we use

only two replicas for each local region, the uppermost temperature also being 2.0. The step lengths

utilised were 0.2 for the lowest replica for both CPT and LPT and 1.0 for all upper replicas. The

LPT equilibration and sampling parameters were set to P = 5 and Q = 10, the adequacy of this P

value was checked separately. Scaling comparisons are reported in Fig. 11.6. We see that the scaling of
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computational effort with N is close to linear with LPT, but rises more rapidly with CPT, as expected.

The cross-over occurs at N ≃ 10 in this particular case.
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Figure 11.6: Computational effort (see text) with CPT and LPT as function of system size for the 1D
periodic system of interacting particles.

11.3 2D System of Particles in a Periodic Potential

We have performed a number of tests to demonstrate that the results produced by the LPT are correct.

To illustrate this, we show in Fig. 11.7 the radial distribution function g(r) calculated both by CPT and

by LPT for the case V0 = 1.0 and a = 1.0 at the temperature T0 = 0.1, the density of particles (average

number of particles per potential minimum) being 0.5. Both P and Q were set to 10. The essentially

exact agreement between results from the canonical and local methods demonstrates that our general

LPT methods work without difficulty for 2D systems, and suggests that the same will be true in 3D.
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Figure 11.7: Radial distribution function g(r) calculated using canonical and local parallel tempering
for the 2D periodic system of interacting particles.
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Chapter 12

Discussion and Conclusions

At the start of this section, we outlined the idea of a“linear-scaling” thermal sampling algorithm, for

which the computational effort for equilibration and sampling is proportional to the size of the system

(the number of atoms, or degrees of freedom). We pointed out that normal, or “canonical” parallel

tempering algorithms do not have this property, and we asked whether it is possible to construct local

parallel tempering (LPT) algorithms that do have linear-scaling performance. We have shown that this

is indeed possible, at least for the simple model systems we have examined. For the 1D linear chain of

coupled double wells, and for 1D and 2D systems of interacting particles acted on by periodic potentials,

we have described LPT techniques that reproduce the exact results to any required accuracy, and we

have shown that the algorithms exhibit practical linear scaling.

Our LPT algorithms use the ideas of normal parallel tempering, but their key feature is that the

swaps of configurations are performed only in local regions. To ensure that attempted local swaps have a

reasonable probability of being accepted, we require that the configurations of replicas involved in local

swaps differ only in the swap region, but are identical outside this region. In order to achieve this, we

pay a price: every time the local regions are changed, we need to create new high-temperature replicas,

and these new replicas need to be equilibrated before any sampling is done.

The need to perform repeated equilibrations throughout the simulation is a highly unusual feature

of our LPT algorithms. In all Monte Carlo sampling methods that we are aware of, the system is first

equilibrated, and sampling is performed thereafter. However, in our techniques, periods of equilibration

and sampling are interleaved. It might be thought that the need for repeated equilibration would nec-

essarily make our LPT algorithms very inefficient. However, we have shown that this is not the case.

Furthermore, the linear-scaling property of the algorithms guarantees that they become more efficient

than normal parallel tempering for large enough systems. As we have seen, the crossover occurs at rather

moderate particle numbers of a few tens at most.

An important question that we have not addressed concerns the best choice of local region. In our

study of the 1D chain of double wells we took the local region to consist of one double well. We saw that

the competitive advantage of LPT against CPT is best when there is no coupling between double wells

and deteriorates as the coupling increases. This is not surprising because with high coupling equilibration

involves collective motion of correlated double wells. This suggests that it would be better to choose the

local region for LPT as a group of double wells, since this will facilitate collective equilibration. Similar

considerations probably apply to our systems of diffusing particles.
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In conclusion, we have shown that it is possible to construct local parallel tempering techniques, for

which the computational effort needed for thermal equilibration and sampling is proportional to the size

of the system. For simple models, we have shown that the new techniques give correct results and are

more efficient than standard parallel tempering for large systems.
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Appendix A

Numerical Solution to Stochastic

Differential Equations

Approximation Procedure

Despite the existence of some analytical results, explicit expressions for many quantities, in particular the

distribution of thermodynamic quantities, are very hard if not impossible to determine. Consequently

we must investigate the behaviour of these quantities numerically in addition to the need to confirm

the analytically derived results. The quantities are all intrinsically based on the underlying stochastic

differential equation and its solution which written in the form of a general Itō SDE is

dx = a(x, t)dt+ b(x, t)dW (A.1)

where W is the Wiener process. This is however just shorthand for the integral equation

x(t)− x(t0) =

∫ t

t0

a(x, t′)dt′ +

∫ t

t0

b(x, t′)dW (A.2)

which under the Itō integration convention can be written as the limit of the sum

x(t)− x(t0) = lim
n→∞

n−1∑

i=0

a(xi, ti)(ti+1 − ti) +

n−1∑

i=0

b(xi, ti)(Wi+1 −Wi). (A.3)

If we take the time t − t0 in the original integral equation to be small, such that t − t0 → ∆t we can

rewrite this as

x(t+∆t)− x(t) = a(x, t)∆t+ b(x, t)∆W. (A.4)

where ∆t = ti+1 − ti and ∆W is an increment of the Wiener process over the time ∆t. Consequently,

because of the Itō construction we are able to construct a stochastic forward Euler solution for x known

formally as an Euler Maruyama scheme [204]

x(t+∆t) = x(t) + a(x, t)∆t+ b(x, t)∆W (A.5)

because b(x, t) is statistically independent of the increment of the Wiener process ∆W = Wi+1 − Wi.

We can now use this formalism to calculate solutions to the stochastic differential equation choosing ∆t

small enough to accurately represent the integral in Eq. (A.2) by the sum in Eq. (A.3) and by drawing
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the stochastic variable ∆W from a suitable distribution using a pseudo random number generator.

One can also implement higher order schemes, with their importance arising typically when the SDEs are

multiplicative. A common higher order scheme is known as the Milstein method [204] and is summarised

as

x(t+∆t) = x(t) + a(x, t)∆t+ b(x, t)∆W +
1

2

∂b(x, t)

∂x
b(x, t)

(
(∆W )2 −∆t

)
. (A.6)

Despite the small time step ∆t approximation to the integrals in Eq. (A.2) we must understand that the

increment in the Wiener process is the result of an infinite number of vanishingly small contributions

independent of how small we choose ∆t such that the increment in the Wiener process is always described

by its statistical properties. These properties are simple consequences of the central limit theorem and

state that the distribution in the increment of the Wiener process is Gaussian with mean zero and

variance equal to ∆t1/2. This then finally specifies the complete numerical algorithm

x(t+∆t) = x(t) + a(x, t)∆t+ b(x, t)Γ +
1

2

∂b(x, t)

∂x
b(x, t)

(
Γ2 −∆t

)
(A.7)

where

p(Γ) = N(0,∆t
1
2 ). (A.8)

Box-Muller Algorithm

In order to realise the algorithm of Eq. (A.7) we must be able to draw random numbers from a normal

distribution. The majority of pseudo random number generators provide random numbers with a uniform

distribution and so a transforming algorithm is required. The most common is known as the Box-Muller

algorithm [205]. The basic principle behind the algorithm is the fundamental transformation law of

probabilities such that if we have a random variable a distributed by p(a), the function b(a), distributed

by p(b) is given by

|p(b)db| = |p(a)da|. (A.9)

This then allows us to construct the desired distribution given uniform distribution of a (p(a) = 1) by

p(b) =

∣
∣
∣
∣

da

db

∣
∣
∣
∣

(A.10)

with solution

a =

∫

p(b)db = F (b) (A.11)

which relates the uniformly distributed a with the cumulative probability distribution of b. Considering

now that we wish to draw two normally distributed random numbers such that

p(x) =

√

1

2π
e−

x2

2 (A.12)

and

p(y) =

√

1

2π
e−

y2

2 (A.13)

then the joint distribution is

p(x, y) =
1

2π
e−

x2+y2

2 (A.14)

such that we can generate x and y from a polar representation x = R cos(Θ) and y = R sin(Θ) where

we randomly generate R on the interval [0,∞] and Θ on the interval [0, 2π]. The equivalent distribution
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would then be

p(R,Θ) =
1

2π
e−

R2

2 . (A.15)

We can then relate uniformly distributed variables z1 and z2 toR and Θ using Eq. (A.11). The cumulative

distribution function with respect to Θ is

F (Θ) = p(θ < Θ) =

∫ ∞

0

∫ Θ

0

1

2π
e−

R2

2 RdRdθ =

∫ Θ

0

1

2π
=

Θ

2π
(A.16)

Comparison again with Eq. (A.11), using a uniform random number z1 drawn from [0, 1], gives

Θ = 2πz1. (A.17)

Similarly to calculate the cumulative distribution function of R we find

F (R) = p(r < R) =

∫ R

0

∫ 2π

0

1

2π
e−

r2

2 rdrdΘ =

∫ R

0

e−
r2

2 rdr (A.18)

which after a change of variable is

p(r < R) =
[
−e−s

]R2

2

0
= 1− e−

R2

2 (A.19)

allowing us to write R in terms of a new uniformly distributed random variable z2

1− z2 = 1− e−
R2

2 (A.20)

because both z2 and 1− z2 are uniformly distributed giving solution

R =
√

−2 ln z2. (A.21)

After substitution we then obtain two normally distributed random numbers

x =
√

−2 ln z2 cos(2πz1) (A.22)

y =
√

−2 ln z2 sin(2πz1). (A.23)

This method although simple can be quite inefficient owing to the use of trigonometric functions in their

calculation. A more efficient method is known as the polar Box-Muller transform and uses two uniformly

randomly distributed numbers w1 and w2 on the interval [−1, 1] to generate random numbers uniformly

within circle of radius 1 by defining

p = w2
1 + w2

2. (A.24)

This is achieved by discarding any combination w1 and w2 where p = 0 or p ≥ 1 resulting in p being

uniformly distributed between [0, 1]. Considering this uniform circle in polar form we identify r =
√
p

and θ for which θ/2π is uniformly distributed between [0, 1]. Since p is uniformly distributed we can

identify it with the uniform distribution of the cumulative distribution function in Eq. (A.20) so that

p = z2 (A.25)
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and the uniform variable z1 with the new uniform variable θ/2π

θ

2π
= z1 (A.26)

so that

x =
√

−2 ln p cos(θ) (A.27)

and

y =
√

−2 ln p sin(θ). (A.28)

However we now identify from the polar representation that cos(θ) = w1/
√
p and sin(θ) = w2/

√
p finally

giving

x = w1

√

−2 ln p

p
(A.29)

and

y = w2

√

−2 ln p

p
. (A.30)

Given a variance σ and a mean µ this can then be transformed to a normal distribution N(µ, σ) by using

σx+ µ. Its implementation as a function in C++ is given in Fig. A.1 where the use of static variables

exploits the fact that two normally distributed random numbers are generated with each implementation.

Figure A.1: C++ code for a function which performs the polar Box-Muller transform.
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