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The production of new drugs as potential pharmaceutical targets is arguably one of 

the most important avenues of medicine, as existing diseases not only require treatment, 

but it is also certain that new diseases will appear in the future which will need treatment. 

Indeed, existing medicines such as antibiotics and immunosuppressants maintain their 

current activities in their respective realms, yet the molecular and stereochemical 

complexity of these compounds cause a burden on organic synthetic chemists that may 

prohibit the high yields required to manufacture a drug. The enzyme systems that naturally 

manufacture these compounds are incredibly efficient in doing so, and also do not use 

environmentally harmful solvents, chiral auxiliaries, or metals that are utilized in the 

current syntheses of these compounds; therefore utilizing these enzymes’ machinery for 

the biocatalysis of new medicinally-relevant compounds, as researchers have in the past, is 

undeniably a rewarding endeavor. 

In order to harness these systems’ biocatalytic potential, we must understand the 

processes which they operate. This work focuses on ketoreductase domains, since they are 

responsible for setting most of the stereocenters found within these complex secondary 

metabolites. We have supplied a library of substrates to multiple ketoreductases to test their 
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limits of stereospecificity and found that, for the most part, they maintain their natural 

product stereospecificity seen in nature. We were even able to convert a previously non-

stereospecific ketoreductase to a stereospecific catalyst. We have also developed a new 

technique to follow ketoreductase catalysis in real-time, which can also differentiate 

between which diastereomeric product is being produced. Finally, we have elucidated the 

structure of a ketoreductase that reduces non-canonically at the α- and β- position, and 

functionally characterized its activities on shortened substrate analogs. With the knowledge 

gained from this dissertation we hope that the use of ketoreductases as biocatalysts in the 

biosynthesis of new natural product-based medicines is a much nearer reality than before. 
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Chapter 1. Introduction 

POLYKETIDE SYNTHASES AS NATURAL PRODUCT MACHINES 

Modular polyketide synthases (PKSs) are enzymatic assembly lines that control the 

substitution and stereochemistry of complex polyketides in the biosyntheses of such 

compounds as the antibacterial erythromycin A, the antifungal amphotericin B, and the 

immunosuppressant rapamycin (Staunton and Weissman, 2001; Sherman and Smith, 2006; 

Khosla et al., 2007; Smith and Tsai, 2007) (Figure 1.1). Many synthetic organic chemists 

seek to emulate the reactions they catalyze and obtain the products they yield; however, if 

PKS enzymes themselves were harnessed as biocatalysts, coveted chiral building blocks 

and biologically active molecules would be more readily accessed.  

Libraries of chiral building blocks 

are highly desired by synthetic 

organic chemists to accelerate the 

synthesis of natural products and 

pharmaceuticals (Hilterhaus and 

Liese, 2007; Patel, 2008). Such 

compounds would be particularly 

helpful in the syntheses of complex 

polyketides because the required 

synthetic fragments often harbor 

multiple stereocenters and are 

challenging to prepare. The complexity of synthesizing reduced polyketides can be 

appreciated by examining the synthetic routes established for 6-deoxyerythronolide B (6-

Figure 1.1. Polyketide synthases produce complex 
molecules with diverse functions and structures. 
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dEB), the precursor of erythromycin antibiotics (Masamune et al., 1981; Myles et al., 1990; 

Evans et al., 1998; Crimmins and Slade, 2006; Stang and White, 2009; Gao et al., 2013). 

Although several groups over the last 32 years have worked on the synthesis of this 

archetypal macrolide core, the shortest is 14 steps with an overall yield of ~5% (Gao et al., 

2013).  

The soil bacterium Saccharopolyspora erythraea synthesizes 6-dEB with DEBS (6-dEB 

synthase), a PKS that contains diverse catalytic activities: acyltransferases (ATs) catalyze 

the transesterification of small organic extender units from acyl-CoAs onto the PKS, 

ketosynthases (KSs) catalyze decarboxylative condensations that create carbon-carbon 

bonds between these extender units and the growing polyketide chain, ketoreductases 

(KRs) catalyze stereospecific, NADPH-coupled reductions of β-keto groups formed 

through condensation, a dehydratase (DH) catalyzes an elimination reaction to yield an 

olefin, and an enoylreductase (ER) catalyzes the stereospecific, NADPH-coupled reduction 

of that olefin (Khosla et al., 2007) (Figure 1.2). Growing polyketides are passed along the 

PKS assembly line through trans-thioesterification reactions between acyl carrier proteins 

(ACPs) and KSs, and lastly to a thioesterase (TE) that catalyzes the cyclization of a 

heptaketide to yield 6-dEB. Tailoring enzymes then decorate 6-dEB with sugar moieties 

and hydroxyl groups to produce the bioactive antibiotic erythromycin. Thus, enzymes in 

this PKS cooperate to transform seven molecules of propionate into one molecule of 6-

dEB under ambient, aqueous conditions. As the current syntheses of 6-dEB and related 

natural products rely on organic solvents, chiral auxiliaries, and metals that can be both 

expensive and environmentally harmful, employing PKS enzymes in such syntheses would 

be advantageous.  
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ENZYMOLOGY STUDIES OF DISCRETE PKS DOMAINS 

Because the presence of specific domains within a modular PKS correspond to the final 

product of that PKS, and modules are used in the order listed, it is simple to predict products 

from gene organization (Cane et al., 1998; Katz, 2009). The co-linear nature of these 

biosynthetic machines allow for the facile synthesis of novel natural products. Utilizing 

PKS domains as biocatalysts for the production of new natural products is not an untouched 

field; in fact, experiments attempting to alter function have been in existence for over 2 

decades (Strohl and Connors, 1992). The earliest attempts were to swap domains from one 

system for another of desired function. One study, for example, was successful in 

generating a hybrid module that accepts acetate starter units in place of propionate units 

(Oliynyk et al., 1996). In another, EryKR2 (which produces an L-hydroxy product) was 

replaced with RapKR2, from the rapamycin PKS pathway (which normally produces a D-

hydroxy product), and the expected exchanged stereochemistry was found (Kao et al., 

1998). Although other attempts were successful, some suffered in yield of product formed 

(Hans et al., 2003; Kellenberger et al., 2012). It is widely accepted that intramodular 

domain architectures are specific for each module, and that domain swapping possibly 

interrupts these important contacts (Tsuji et al., 2001; Kumar et al., 2003).  

Figure 1.2. The DEBS PKS. This assembly line synthesizes 6-dEB; 9/10 stereocenters are 
set by KRs that are classified by the combination of stereocenters they produce (marked 
above their locations). LDD, loading didomain. 
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Another route toward modifying PKS systems to produce new natural products uses 

directed evolution (Dunn and Khosla, 2013). In one study, the substrate preference of 

EryAT6 was altered to accept an alkyne extender unit instead of its natural (2S)-

methylmalonyl-CoA (Sundermann et al., 2013).  

The most recent approach is instead to mutate residues within a domain in order to alter 

enzymatic function (Del Vecchio et al., 2003; Baerga-Ortiz et al., 2006; O’Hare et al., 

2006; Kushnir et al., 2012). For example, we were able to transform an A1-type KR into 

an A2-type KR when tested in vitro (Zheng et al., 2010; Zheng et al., 2013). However, 

when the same mutations are tested in vivo, the enzymes don’t often yield the same result 

(Kwan et al., 2011). Other possible mutation sites may be required to realize the full 

potential of mutagenesis studies. Most 

studies mentioned above used N-

acetylcysteamine (S-NAC) thioester 

analogs in place of the ACP’s ~18 Å 

phosphopantetheinyl arm which naturally 

delivers substrates (Figure 1.3), and has 

since proven to be an acceptable surrogate 

for many PKS enzymology studies. 

KETOREDUCTASES PLAY A LARGE ROLE IN THE STEREOCHEMICAL COMPLEXITY OF 

POLYKETIDES 

Aldol reactions employed in organic syntheses to form carbon-carbon bonds and set 

stereocenters in the same reaction sometimes lack the desired level of stereocontrol. The 

equivalent process in PKSs is carefully regulated by two enzymes: KSs that mediate 

Figure 1.3. (A) The S-NAC arm (shown as a 
free thiol) is a shortened version of (B) the 
ACP’s natural phosphopantetheinyl arm
(also shown as a free thiol). 
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carbon-carbon bond formation and KRs that guide the setting of stereocenters (Kwan and 

Schulz, 2011). The combination of stereocenters produced is dependent on the KR type. 

KRs that perform reductions yielding L-β-hydroxyl groups are referred to as ‘‘A-type,’’ 

and KRs that perform reductions yielding D-β-hydroxyl groups are referred to as ‘‘B-type’’ 

(reductase-incompetent KRs are referred to as ‘‘C-type’’) (Caffrey, 2003; Reid et al., 2003; 

Keatinge-Clay, 2007; Valenzano et al., 2009; Zheng et al., 2011). KRs that reduce D-α-

substituted intermediates are denoted with a ‘‘1,’’ whereas KRs that reduce L-α-substituted 

intermediates are denoted with a ‘‘2’’ (Keatinge-Clay, 2007). Thus, an α-substituted, β-

keto diketide intermediate can be reduced to the ‘‘2R,3S’’ product by an A1-type KR, the 

‘‘2S,3S’’ product by an A2-type KR, the ‘‘2R,3R’’ product by a B1-type KR, or the 

‘‘2S,3R’’ product by a B2-type KR (Keatinge-Clay and Stroud, 2006; Keatinge-Clay, 

2007; Zheng et al., 2010) (Figure 1.4).  

 

Extender units also contribute to the complexity of the polyketide, adding either standard 

malonyl-CoA, (2S)-methylmalonyl-CoA, or (2S)-ethylmalonyl-CoA extender units 

(Marsden et al., 1994); or more unusual extenders such as (2R)-hydroxymalonyl-ACP, 

(2R)-methoxymalonyl-ACP, or (2S)-aminomalonyl-ACP units (Chan et al., 2009; Chan 

and Thomas, 2010). Although extender unit variety does contribute to the complexity of 

Figure 1.4. The four 
reductive KR types. 
Depending on KR type, four 
products are possible. A1-
and B2-type KRs produce 
syn enantiomers, and A2-
and B1-type KRs produce 
anti enantiomers. C-type 
KRs are reductase-
incompetent and therefore 
not depicted. 
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the growing polyketide, they account for only a small percentage of the polyketide’s 

stereocomplexity, since KRs can change the stereochemistry after extender unit 

condensation, if there is one present in the module. As such, this work focuses on the 

ketoreductase as the main gatekeeper of stereocomplexity.  

OVERVIEW AND SCOPE OF THIS WORK 

Since the extent to which various KRs stereospecifically reduce substrate analogs in vitro 

was not extensively tested, we sought to characterize their catalytic efficiency on a library 

of S-NAC surrogate substrates. Past studies providing (2RS)-methyl-3-oxopentanoyl-S-

NAC to discrete KR domains found, generally, the anticipated reduced product (Holzbaur 

et al., 1999; Siskos et al., 2005). The KRs that normally reduce shorter substrates 

resembling the diketide-S-NACs had little difficulty reducing to the correct isomer. 

However, KRs from later modules (EryKR2, EryKR5, and EryKR6) which normally 

reduce substrates longer than the provided diketide-S-NACs were not as stereospecific 

(Holzbaur et al., 2001; Siskos et al., 2005). These KRs were, however, shown to become 

more stereospecific upon reduction of triketide-ACP substrates (Castonguay et al, 2007).  

 

Chapter 2 of this dissertation examines the extent to which KRs from various PKSs 

maintain their natural stereocontrol when presented a panel of diketide-S-NAC substrates 

that differ at the α- and/or γ-position (Figure 1.5). An NADPH regeneration system (Wong 

et al., 1985) was employed to produce a constant supply of cofactor, and it was found that 

KRs generally maintain their natural stereocontrol, even on substrates that are one carbon 

longer or shorter at the α- and/or γ-position. We were also able to transform a previously 

non-stereospecific KR into a stereospecific KR in reactions with diketide attached instead 
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to a longer D-pantetheine arm 

mimic. It was also found that 

reactions performed with 

overexpressed KR cell lysate 

remained as stereospecific when 

compared to their purified assay 

counterpart. These biocatalytic 

reactions were performed on a 

large scale, capable of producing 

~100 mg of stereospecifically-

reduced diketide-S-NAC. 

Although KR reduction was 

monitored via HPLC, we were uncertain of the fates of substrates provided in our cell lysate 

reduction assay, since they contain all soluble materials produced by the overexpression 

host. We sought to develop a quantitative and uninvasive technique to continuously 

monitor substrate and product, in the event that an undesirable transformation would occur.  

 

Chapter 3 showcases a new technique which utilizes trifluorinated-S-NAC substrates and 

19F-NMR; allowing the monitoring of PKS biocatalytic transformations in real-time 

(Figure 1.6). The terminal thioesterase of the DEBS (EryTE) was used as a proof of 

principle discrete domain, and we were pleased to see that kinetic constants acquired from 

HPLC assays matched those of our new 19F-NMR assay. After using our new technique 

with TylKR1 and an α-unsubstituted trifluorinated-diketide S-NAC we also saw similar 

results. Once provided with an α-substituted trifluorinated-diketide S-NAC, diastereomers 

Figure 1.5. Chapter 2 overview. Synthetic substrates 
were used in reduction assays to produce a library of 
chirally-pure diketides. 
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of the 4 KR types were able to be distinguished on a 19F-NMR spectrum. Since we had 

extensively studied KRs that normally reduce a β-carbonyl to a β-hydroxy species, we were 

then interested in pursuing KRs that held unusual functions. The trans-AT PKSs (which 

do not house covalently-bound ATs, as cis-AT PKSs do) contain a realm of unusual domain 

functions (Piel, 2010). One interesting example is from the first PKS module of the 

bacillaene hybrid NRPS/PKS (Calderone et al., 2008). This KR is 1 of 3 known cases in 

which α-reduction occurs in a PKS (Hildebrand et al., 2004; Magarvey et al., 2006), and is 

the only known example in which β-reduction also occurs non-canonically. 

 

Chapter 4 unveils the structure of this dual-function α- and β-reducing KR, as well as 

functionally characterizing its activity using S-NAC substrates (Figure 1.7). Overall, we 

found the structure to resemble the previously-solved structures of other KR types 

(Keatinge-Clay and Stroud, 2006; Keatinge-Clay, 2007; Zheng et al., 2010; Zheng and 

Keatinge-Clay, 2011; Zheng et al., 2013), yet sequence analysis revealed only a few 

conserved residues, although other KRs from cis-AT PKSs share specific conserved motifs, 

depending on the KR-type (Keatinge-Clay, 2007). Since we were interested in elucidating 

Figure 1.6. Chapter 3 overview. The catalytic turnover of fluorinated substrates 
was viewed in real-time by using 19F-NMR. 
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a similar sequence-to-function set 

of rules, we performed sequence 

alignments from multiple trans-AT 

PKS KRs, and found a residue that 

may control β-hydroxy 

stereochemistry. We also present 

two possible substrate binding 

conformations which account for 

the two different stereochemistries 

produced from this KR at the α- and 

β-position. We hope to continue 

studying unusual domain functions, 

as this will enhance our repertoire 

of catalysts to choose from in the 

production of new natural products. 

 

The work outlined in this dissertation concentrates on KR domains as biocatalysts, in hopes 

to further understand the capability of this enzyme to produce chirally-pure compounds for 

downstream bioactive compounds. We show in Chapter 2 that KRs are rather promiscuous 

(therefore allowing stereospecific reduction of even unnatural substrates), as well as robust 

biocatalysts (producing ~100 mg of chirally-pure product). Chapter 3 presents a new 

method to follow KR catalysis in real-time, even allowing determination of the 

diastereomer being produced. Finally, Chapter 4 exposes the structure of a dual-function 

KR, as well as its characterization with S-NAC analogs. This work contributes an 

Figure 1.7. Chapter 4 overview. The structure of 
PksKR1 was solved and its function as an α- and β-
ketoreductase was tested with S-NAC substrates. A 
sequence analysis suggests a residue important in 
determining stereochemistry of product. Two 
binding conformations are presented to explain this 
KRs dual-function. 
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abundance of information for choosing discrete KR domains able to provide several desired 

stereochemistries, much like choosing a tool from a toolbox. 
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Chapter 2. Employing Modular Polyketide Synthase Ketoreductases as 

Biocatalysts in the Preparative Chemoenzymatic Syntheses of Diketide 

Chiral Building Blocks 

SUMMARY 

Chiral building blocks are valuable intermediates in the syntheses of natural products and 

pharmaceuticals. A scalable chemoenzymatic route to chiral diketides has been developed 

that includes the general synthesis of α-substituted, β-ketoacyl N-acetylcysteamine 

thioesters, followed by a biocatalytic cycle in which a glucose-fueled NADPH-

regeneration system drives reductions catalyzed by isolated modular polyketide synthase 

(PKS) ketoreductases (KRs). To identify KRs that operate as active, stereospecific 

biocatalysts, 11 isolated KRs were incubated with 5 diketides and their products were 

analyzed by chiral chromatography. KRs that naturally reduce small polyketide 

intermediates were the most active and stereospecific toward the panel of diketides. 

Enhanced stereocontrol was observed when N-acetylcysteamine was replaced by the more 

natural D-pantetheine. Several biocatalytic reactions were scaled up to yield more than 100 

mg of product. These syntheses demonstrate the ability of PKS enzymes to economically 

and greenly generate diverse chiral building blocks on a preparative scale. 

INTRODUCTION 

Because KRs can exert control over two stereocenters in one reduction reaction and, as a 

family, operate on diverse organic substrates, they possess extraordinary potential as 

biocatalysts (Patel, 2008). At least two studies of KRs as biocatalysts have been reported; 

however, the substrates examined were not very similar to those naturally encountered and 
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the stereochemical purities of the reaction products were not investigated (Bali et al., 2006; 

Bali and Weissman, 2006). Analytical-scale enzymological studies have focused on the 

substrate analog (2RS)-methyl-3-oxopentanoyl-S-N-acetylcysteamine (-SNAC), 2.3. 

Reductions of 2.3 mediated by EryKR1, EryKR2, EryKR5, EryKR6, MycKRA, MycKRB, 

and TylKR1 revealed that EryKR1 (B2-type) and TylKR1 (B1-type) were completely 

stereospecific, whereas the other KRs produced a mixture of diastereomers (isolated 

domains are referred to by their PKS and module of origin, except the mycolactone KRs, 

which are identified by KR type) (Siskos et al., 2005; Bali and Weissman, 2006). That from 

the isolated KRs examined for their stereospecificity, two KRs were identified that catalyze 

stereospecific reduction suggested that other KRs that perform stereocontrolled reductions 

isolated from their PKSs could be discovered. If all KR types were available as 

biocatalysts, then the full stereochemical diversity naturally achieved by KRs could be 

accessed. 

Thus, to demonstrate the utility of PKS enzymes in natural product and pharmaceutical 

synthesis, we aimed to develop KRs as biocatalysts and access a library of diketide chiral 

building blocks (Figure 2.1C). Required were both a facile synthetic route to α-substituted, 

β-keto diketide thioester analogs of the polyketide intermediates naturally reduced by KRs, 

as well as a scalable, economic biocatalytic process that does not require stoichiometric 

NADPH for KR-mediated reduction. 

A general synthesis of α-substituted, β-ketoacyl N-acetylcysteamine thioesters was 

developed and used to generate diketide substrates 2.1–2.5. An NADPH-regeneration 

system in which KR-mediated reductions are driven by glucose was designed. Eleven 

isolated KRs were incubated with 2.1–2.5 in biocatalytic reactions and the products were 

analyzed by chiral chromatography. Robust A1-type and A2-type KR biocatalysts were 
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identified. Compared to reactions with (2RS)-methyl-3-oxopentanoyl-SNAC (2.3), 

reactions with (2RS)-methyl-3-oxopentanoyl-D-pantetheine (2.6) were generally both 

more complete and more stereocontrolled. Several biocatalytic reactions were scaled up, 

both with purified KRs as well as KR-containing lysate, to readily provide 100 mg yields 

of stereopure chiral building blocks. In addition to illustrating that building blocks for the 

synthesis of natural products and pharmaceuticals can be accessed by PKS enzymes, the 

described biocatalytic systems provide PKS enzymologists access to polyketide substrates 

and enable experiments on PKS enzymes to be performed on a more readily analyzable 

scale. 

Figure 2.1. Employing PKS KRs to chemoenzymatically synthesize a library of chiral 
building blocks. 
(A) GDH helps drive the reduction of diketide-SNACs, regenerating NADPH through the 
oxidation of D-glucose. 
(B) A general synthesis of α-substituted, β-keto diketides was developed. Stereospecific 
KRs can convert these common intermediates into chiral diketide-SNACs. 
(C) Representatives of the library of diketide chiral building blocks that can be accessed 
through KR biocatalytic reactions. 
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RESULTS AND DISCUSSION 

Chemoenzymatic Design  

NADPH-Regeneration Scheme  

To drive KR-mediated reduction reactions, an NADPH-regeneration scheme was 

employed (Figure 2.1A). Glucose dehydrogenase (GDH) cloned from Bacillus subtilis was 

used to couple the oxidation of glucose to the reduction of diketides. GDH generates 

NADPH from NADP+ as it oxidizes glucose to gluconolactone (Wong et al., 1985; Kataoka 

et al., 2003). A high concentration of glucose establishes a large NADPH:NADP+ ratio that 

drives the reduction reaction toward completion. At the pH of the biocatalytic reactions 

(pH 7.5), most of the gluconolactone produced is hydrolyzed to gluconic acid, which 

deprotonates to gluconate. Because decreases in pH result in GDH and KRs precipitating 

out of solution, excess buffering strength is supplied. 

General Synthetic Route to α-Substituted, β-Keto N-Acetylcysteamine Thioesters 

The route most commonly employed to generate 2.3 requires a costly chiral auxiliary to 

generate an α-substituted, β-ketoimide that is subsequently reacted with excess N-

acetylcysteamine (even more expensive than the chiral auxiliary) (Gilbert et al., 1995). 

Instead, we access α-substituted, β-keto N-acetylcysteamine thioesters through an efficient 

and cost-effective extension of a described route to β-keto N-acetylcysteamine thioesters 

(Gilbert et al., 1995) (Figure 2.1B). After the desired β-keto N-acetylcysteamine thioester 

has been obtained from Meldrum’s acid, an acyl chloride, and N-acetylcysteamine 

(generated from cysteamine and acetic anhydride), an α substituent is installed via an 

alkylation reaction. Thus, the γ substituent of a diketide-SNAC is selected through the acyl 
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chloride, and the α-substituent is selected through the alkyl halide. A one-pot synthesis was 

also developed to produce (2RS)-methyl-3-oxopentanoyl-D-pantetheine (2.6). 

That the syntheses yield racemic mixtures of α-substituted, β-ketoacyl-SNACs is a 

nonissue because the enantiomers rapidly interconvert in the aqueous environment of the 

subsequent biocatalytic reaction. 

For isolated KRs to be considered robust biocatalysts, they should catalyze the reduction 

of a variety of substrates. Thus, a panel of five diketide substrates was synthesized to test 

the KRs: 3-oxopentanoyl-SNAC (2.1), (2RS)-methyl-3-oxobutanoyl-SNAC (2.2), (2RS)-

methyl-3-oxopentanoyl-SNAC (2.3), (2RS)-methyl-3-oxohexanoyl-SNAC (2.4), and 

(2RS)-ethyl-3-oxopentanoyl-SNAC (2.5) (Figure 2.2). Compared to 2.3, each of the other 

diketides is one methylene shorter or longer at the α- or γ-position. 
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Figure 2.2. KR Biocatalytic Assays (on previous page).  
Chromatograms show the reactions of tested KRs with each of the diketide substrates 2.1–
2.5 on the left. Chiral building block products are displayed in the middle. The turnover 
efficiencies of each KR for each substrate are graphed on the right (“turnover efficiency”
is defined as the quantity of a product divided by quantities of the products and remaining 
substrate). The heights of the bars can be interpreted as relative activities, whereas the ratio 
of colors within a bar can be interpreted as a measure of the stereocontrol exerted by a KR 
on a substrate. Diverse KR types were used in these assays: two A-types that naturally 
operate on α-unsubstituted intermediates, four A1-types, two A2-types, one B1-type, two 
B2-types and one C1-type (as a negative control). 
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Selection of KRs 

To identify KRs capable of stereospecifically reducing a range of diketide substrates, 11 

diverse reductase-competent KRs were selected (see “Cloning” in Experimental 

Procedures). They were isolated from modules that do not possess DHs or ERs because 

KRs that cooperate with these enzymes are usually B1-type (Valenzano et al., 2010). 

MycKRA (A-type), TylKR1 (B1-type), and EryKR1 (B2-type) were chosen, in part, to 

serve as positive controls, as how they process 2.3 has already been determined (Siskos et 

al., 2005; Bali and Weissman, 2006). The selection of the other eight KRs was biased 

toward A-type KRs, both because isolated A1- or A2-type KRs that stereospecifically 

reduce β-ketoacyl-SNAC substrates had previously not been identified, and because A1-

type KRs are the most common in modules without DHs or ERs. All but two of the KRs 

selected naturally operate on α-substituted intermediates because we aimed to set two 

stereocenters through a single KR-mediated reduction reaction. KRs were chosen from 

diverse PKSs (amphotericin, erythromycin, mycolactone, oleandomycin, pikromycin, 

spinosyn, and tylosin) and from varying locations within PKS assembly lines (Figure 2.6). 

Thus, the selection of reductase-competent KRs includes two A-type KRs that naturally 

reduce α-unsubstituted intermediates, four A1-type KRs, two A2-type KRs, one B1-type 

KR, and two B2-type KRs. A reductase-incompetent C1-type KR was also selected as a 

negative control (Figure 2.2). 

Chiral Chromatography and Establishing Elution Orders 

To determine the stereocontrol exerted by KRs when reducing 2.3, Leadlay and coworkers 

synthesized standards that established the 2.3a–2.3d elution order from a chiral column 

(Holzbaur et al., 1999). We sought to establish the elution order of 2.2a–2.2d and 2.4a–
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2.4d on the same chiral column to identify the reduced diketides produced by the 11 KRs 

in the biocatalytic reactions. Thus, well-established diastereospecific aldol reactions were 

performed to obtain synthetic “2R,3R,” “2R,3S,” and “2S,3R” diketide-SNACs and the 

elution orders of 2.2a–2.2d and 2.4a–2.4d 

were determined (Evans et al., 1981; 

Raimundo and Heathcock, 1995) (Figure 

2.3). The products of 2.2, 2.3, and 2.4 elute 

in the same order- first the two anti-

products, then the two syn-products: 

“2R,3R” (B1-type product), “2S,3S” (A2-

type product), “2R,3S” (A1-type product), 

and “2S,3R” (B2-type product) (Holzbaur 

et al., 1999). 

 

Figure 2.3. Determining Elution Orders.
(A) Aldol reactions helped synthesize 
chiral chromatography standards. After 
(i) the propionyl group was added to the 
chiral auxiliary, then either (ii) the 
Heathcock route using two equivalents 
of dibutylboron triflate, or (iii) the 
standard Evans route using one 
equivalent yielded diketide 
oxazolidinones that were (iv) hydrolyzed 
and coupled to NAC.  
(B) and (C) Standards were compared to 
products from MycKRA (A-type), 
TylKR1 (B1-type), and EryKR1 (B2-
type) to establish the elution order of 
products from KR reactions with 2.2 and 
2.4. See also Table 2.2. 
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Syntheses of reduced diketide-SNACs were initiated through aldol reactions between (4S)-

4-benzyl-3-propionyl-2-oxazolidinone and the appropriate aldehyde (Figure 2.3A). In 

keeping with the classic Evans syn-selective reaction protocol, one equivalent of 

dibutylboron triflate was used to generate the “2S,3R” product (Evans et al., 1981). 

Heathcock and coworkers demonstrated that if two equivalents of dibutylboron triflate are 

supplied to this reaction, the anti-product with the α-stereocenter opposite in configuration 

to the Evans syn-product as well as some quantity of anti-Evans syn-product are generated 

(Raimundo and Heathcock, 1995). We utilized this protocol to generate a mixture of 

“2R,3R” and “2R,3S” products. Chemistry detailed by Boddy and coworkers was applied 

to each of the diketide-oxazolidinones to hydrolyze the diketides from their chiral 

auxiliaries and couple them to NAC (Sharma and Boddy, 2007). The “2R,3R” and “2R,3S” 

diketide-SNACs were separated by reverse-phase HPLC. 

Analyzing KR Reactions 

After reactions in which each of the 11 reductase-competent KRs was paired with each of 

2.1–2.5 had been incubated for 24 hr at 22°C, they were extracted with ethyl acetate and 

analyzed by chiral chromatography (Figure 2.2). Some reactions may not have gone to 

completion due to substrate incompatibility, slow kinetics, protein stability, or many other 

factors. Because the overall fitness of KRs as biocatalysts was of interest, a metric of 

“turnover efficiency” was constructed, defined as the quantity of a product formed divided 

by the quantities of all products and unreacted substrate. Relative quantities were measured 

by integrating peaks from the 235 nm absorbance traces of chiral chromatography runs (for 

data, see Appendix). Because all reactions were performed in duplicate, the reported 

turnover efficiencies are averages from two runs (in no case was there a deviation larger 
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than 10%). As 2.1 could not be accurately quantified (it migrates as an extremely broad 

peak), the turnover efficiencies of 2.1a and 2.1b were calculated relative to the TylKR1 

reaction, which produced the largest product peak. The elution order for 2.1a and 2.1b was 

assigned as first the “3R” product then the “3S” product, because reactions of active B-type 

KRs generated the first peak and reactions of all of the active A-type KRs (with the 

exception of AmpKR2) generated the second peak. The elution order of 2.5a–2.5d was 

assigned in the same order as the products of 2.2–2.4. Added validation for this assignment 

comes from the observation that the syn- and anti-products of 2.2–2.4 have different 

maximal absorbances (the anti-products maximally absorb at ~232 nm, whereas the syn-

products maximally absorb at ~233 nm): the first two biocatalytic products of 2.5 that elute 

from the chiral column absorb as anti-products, whereas the last two absorb as syn-

products. 

Reactions with the diketide-pantetheine substrate 2.6 were analyzed by reverse-phase 

chromatography (Figure 2.4). Stereochemistries of the two product peaks were assigned 

using AmpKR2 (A1-type), MycKRA (produces both A1-type and A2-type products), 

TylKR1 (B1-type), and EryKR1 (B2-type). While the products are all diastereomers, the 

third chiral center on the D-pantetheine moiety is distant from the other two on the diketide. 

Thus, on the reverse-phase column the A1-type and B2-type (syn) products possessed 

equivalent retention times, as did the A2-type and B1-type (anti) products. The A1-type 

and B2-type products migrated faster than the A2-type and B1-type products. That most 

KRs produce the same stereochemistries on the pantetheine-bound substrate 2.6 as with the 

SNAC-bound substrate 2.3 is supported by the equivalent ratios of A1-type and A2-type 

products made by MycKRA. 



22 

 

KR Biocatalysis Results 

KRs Usually Maintain Natural Stereocontrol 

Active KRs usually maintained the stereocontrol anticipated from their KR types (Figure 

2.2). Most of these KRs even maintained stereocontrol toward substrate 2.5, which harbors 

an uncommon α-ethyl group. AmpKR2 was identified as a general A1-type KR biocatalyst, 

and AmpKR1 was identified as a general A2-type KR biocatalyst. Because TylKR1 proved 

to be a general B1-type KR biocatalyst and EryKR1 proved to be a general B2-type KR 

biocatalyst (PikKR1 is even more robust), the desired spectrum of KR activities was 

realized. That the KR reactions are as stereocontrolled as they were determined to be is 

noteworthy, because the natural substrates of these enzymes are polyketide intermediates 

bound to the pantetheinyl arm prosthetic group of holo-ACPs.  

KRs That Naturally Reduce Smaller Intermediates Are Most Active Toward Diketide-

SNACs 

In general, KRs that reduce small polyketides within their native PKSs, such as AmpKR1, 

AmpKR2, EryKR1, PikKR1, and TylKR1, were most active on the panel of diketides. KRs 

that reduce larger polyketides within their native PKSs, such as PikKR5, OleKR6, 

AmpKR10, and AmpKR11, were nearly inactive toward 2.1–2.5. This could indicate that 

KRs that naturally reduce short-chain polyketide intermediates within their native PKSs 

obtain binding energy for catalysis from interactions with the polyketide. 

MycKRA was one of the most active KRs in these studies. Three modules of the 

mycolactone PKS contain 99% identical MycKRA enzymes as a result of duplication 

events; thus, within the synthase MycKRA enzymes reduce a diketide, a triketide, and a 
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hexaketide (Stinear et al., 2004). That both A1-type and A2-type products were produced 

when MycKRA was incubated with α-substituted diketides 2.2–2.5 is understandable in 

that this enzyme naturally operates on α-unsubstituted intermediates. MycKRA did not 

produce B-type products. Broad in its substrate selectivity, MycKRA is a robust, 

stereocontrolled A-type KR biocatalyst. 

Deviations from Expected 

A few KRs were sensitive to slight differences within the panel of diketides. TylKR1, 

which is in general a robust, active B1-type KR, produced mainly the A2-type product 2.2b 

when incubated with 2.2, which is one methylene shorter than its natural substrate. 

AmpKR2, an A1-type KR, converted the α-unsubstituted diketide 2.1 mainly to a B-type 

product. Therefore, we sought to determine whether KRs are more active and/or 

stereocontrolled toward pantetheine-bound diketides than NAC-bound diketides. 

A Pantetheinyl Attachment Enhances Activity and Stereocontrol 

The minimal substrate to achieve stereocontrolled KR reactions has yet to be determined. 

It has been shown that EryKR2 (A1-type) reduces 2.3 to all four products, while EryKR1 

produces exclusively one product. Thus, some KRs may require more of the 

phosphopantetheinyl arm or even their cognate ACP to achieve stereocontrol than others.  

As some KRs were observed to lose stereocontrol towards the SNAC-bound diketides 2.1-

2.5, we hypothesized that the SNAC moiety is sometimes a suboptimal mimic of the natural 

phosphopantetheinyl arm, and that a more extended mimic may result in increased 

stereocontrol.  Thus, 2.6 was synthesized and incubated with EryKR2 and several robust 

KRs (Figure 2.4).   
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The longer pantetheinyl attachment resulted in increases both in the activity and in 

the stereoselectivity of EryKR2. The ratios of the products from the incubation of EryKR2 

with 2.3 agree with previous studies with EryKR2 (all four are produced, with the A2-type 

product dominating) (Baerga-Ortiz et al., 2006).  When the same diketide was attached to 

the pantetheine moiety (2.6), an increase of stereoselectivity was observed (little to no A2-

product was produced, and a peak that represents either the A1-type or B2-type product 

Figure 2.4. The Pantetheinyl Moiety Generally Enhances KR Activity and Stereocontrol. 
(A) Reactions show that EryKR2 is barely active and does not exert stereocontrol when 
incubated with 2.3 (the EryKR2 chromatogram was expanded to show product detail). 
Chromatogram for EryKR2 reaction with 2.3 was overlaid with representative KR types 
from Figure 2.2. Reactions using 2.6 were run using reverse-phase HPLC, and showed an 
increase in the correct isomer produced for EryKR2. The purple trace is from an incubation 
with no KR (negative control). The starred compound is a byproduct from synthesis of 2.6.
(B) Turnover efficiencies were calculated exactly as for Figure 2.2. Peak areas from 
reactions yielding syn-products are shown in gold, whereas peak areas from reactions 
yielding anti-products are shown in brown. When incubated with 2.6, EryKR2 was both 
more active and more stereocontrolled (compare the production of mostly A2-type product 
2.3b from the incubation with 2.3 to the production of the A1-type (or B2-type) product 
(2.6c & d) when incubated with 2.6. 
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was produced). An increase in activity was also observed, as the majority of 2.6 was 

reduced (in contrast to the few percent of 2.3 that was reduced).  Interestingly, AmpKR2 

(another A1-type KR) was also more active toward 2.6 than 2.3, converting all substrate to 

product. Indeed, the pantetheine moiety increased the activity and stereocontrol of 

EryKR2. However, it is possible that the activity and stereoselectivity of EryKR2 may be 

further optimized through interactions with the phosphoryl moiety of the 

phosphopantetheinyl arm. 

Scaled-Up Reactions 

Because KR biocatalysts representing each KR type were identified that could generate the 

desired library of diketide chiral building blocks, we sought to demonstrate that useful 

quantities of chiral building blocks could be obtained. AmpKR2 (A1-type), AmpKR1 (A2-

type), TylKR1 (B1-type), and EryKR1 (B2-type) were each incubated in scaled-up 

reactions with 2.3. Over 100 mg each of 2.3a, 2.3b, 2.3c, and 2.3d was obtained from these 

scaled-up reactions. Because the reactions with lower turnover efficiencies required 

significant KR concentrations and the nickel column purification step only captures a small 

percentage of KR in the lysate from overexpressing cells, reactions were also attempted 

using lysate. Reactions using the lysate were complete within 6 hr and also provided more 

than 100 mg of chiral product. Both for reactions using pure KRs and KR-containing lysate, 

KR reactions were as stereocontrolled as in the smaller-scale reactions. 

Building Block Libraries, PKS Biocatalysis, and PKS Enzymology 

As well as containing valuable combinations of stereocenters, the described building 

blocks harbor a synthetic handle in the form of a thioester. This moiety can be converted 

to a carboxylic acid or an aldehyde, or used to couple the diketide to other fragments 
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through an ester, amide, or ketone linkage, making thioester-containing building blocks 

very versatile in the syntheses of natural products (Bruice et al., 1963; Tokuyama et al., 

1998). The installation of a second synthetic handle on the other end of the diketide chain 

is also desirable. Because the biocatalytic assays reported here revealed that variations at 

the γ-position of the diketide substrates are tolerated by many KRs, it may be possible to 

incorporate synthetic handles such as a terminal chlorine, alcohol, double bond, or triple 

bond. 

Additional building block libraries may be accessed using other PKS enzymes as 

biocatalysts. Because many DHs form trans double bonds from (2R,3R)-α-alkyl-β-hydroxy 

intermediates, preparative quantities of α-substituted, α/β-unsaturated diketides may be 

accessed by incubating α-substituted, β-ketodiketide-SNACs with appropriate KRs and 

DHs (Keatinge-Clay, 2008). As ERs stereospecifically reduce such double bonds, α-

substituted, β-keto-diketide-SNACs could be converted, through the driving force of an 

NADPH-regeneration system, to chiral α-substituted, β-methylene-diketide-SNACs by 

employing a combination of KR, DH, and ER biocatalysts (Kwan et al., 2008). Diketide-

SNACs can also be enzymatically converted to triketide lactones containing four 

contiguous stereocenters (Figure 2.5). Such molecules have been generated by 

Module+TEs (PKS modules C-terminally fused to EryTE) in quantities analyzable by 

radio-TLC or GC-MS as readout of enzymological studies (Chen et al., 2006). Recently, 

we have developed an economical route to supply extender units accepted by ATs to in 

vitro PKS reactions (Hughes and Keatinge-Clay, 2011). Thus, the scaled-up incubation of 
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reduced, chiral diketide-SNACs with diverse Module+TEs in the presence of NADPH may 

yield libraries of triketide building blocks. 

Currently, most experiments on modular PKS enzymes are performed either in vivo, by 

expressing PKSs heterologously and extracting polyketides from the growth medium, or 

in vitro, by combining the appropriate enzymes, cofactors, and substrates and then 

analyzing the reaction products by radio-TLC, GC-MS, or LC-MS (reduced polyketides 

are usually invisible on UV absorbance traces). An experimental platform in which PKS 

enzymes can perform catalysis in a controlled setting to produce quantities of polyketides 

analyzable by NMR or crystallography is highly desired (the stereocenters of products 

would be much more readily determined, for example). Expense has been the principal 

deterrent of larger in vitro reactions because polyketide extender units such as 

methylmalonyl-CoA and cofactors like NADPH are costly. However, such biocatalytic 

processes as the MatB-catalyzed production of extender units and GDH-catalyzed 

regeneration of NADPH should enable PKS enzymologists to perform in vitro reactions 

more affordably under controlled conditions, generating multimilligram quantities of 

polyketide products. 

Figure 2.5. Accessing Diverse Building Block Libraries through PKS Biocatalysis. 
Biocatalytic reactions using DHs, ERs, and Module+TEs could enable the generation of 
libraries of other building blocks useful in the syntheses of natural products, such as α-
substituted diketides and triketide lactones containing up to four contiguous stereocenters 
(representative molecules are shown). 
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SIGNIFICANCE 

The scalable production of reduced diketide-SNACs (-S-N-acetylcysteamines) has been 

realized through the described general chemoenzymatic route. A screen of 11 diverse, 

isolated ketoreductases (KRs) toward diketides 2.1–2.5 revealed that KRs isolated from 

modules that naturally reduce shorter polyketide intermediates are most active on diketide- 

SNACs. AmpKR2 and AmpKR1 were identified as robust A1- and A2-type KR 

biocatalysts, and TylKR1 and EryKR1 were shown to be robust B1- and B2-type KR 

biocatalysts. EryKR2 showed greater activity and stereocontrol when presented the 

pantetheinyl-bound substrate 2.6 over the SNAC-bound substrate 2.3, suggesting that 

binding energy is obtained from interactions between EryKR2 and the pantetheinyl group. 

From the structure of AmpKR2, another A1-type KR, the phosphopantetheinyl arm has the 

opportunity to make contacts with the active site groove (Zheng et al., 2010). More than 

100 mg of each diketide 2.3a–2.3d was produced to demonstrate that quantities of chiral 

diketide building blocks useful for natural product and pharmaceutical syntheses could be 

generated economically and greenly. Other polyketide synthase (PKS) enzymes such as 

dehydratases, enoylreductases, and PKS modules C-terminally fused to EryTE can now be 

investigated as biocatalysts in the generation of an even greater diversity of diketide and 

triketide building blocks. The described biocatalysis will also benefit PKS enzymology 

because it is no longer cost-prohibitive to perform in vitro reactions that yield significant 

quantities of polyketide products as readout. 



29 

 

EXPERIMENTAL PROCEDURES 

Cloning 

All KRs, with the exception of EryKR1 and GDH, were cloned from genomic DNA 

(gDNA) (Table 2.1). Regions of DNA encoding KRs from amphotericin (Amp), 

oleandomycin (Ole), pikromycin (Pik), spinosyn (Spn), and tylosin (Tyl) were amplified 

from Streptomyces nodosus, Streptomyces antibioticus, Streptomyces venezuelae, 

Saccharopolyspora spinosa, and Streptomyces fradiae gDNA, respectively. N- and C-

terminal boundaries were chosen using the boundaries determined from the structures of 

EryKR1 and TylKR1 (Keatinge-Clay and Stroud, 2006; Keatinge-Clay, 2007). The region 

encoding the KR from the mycolactone (Myc) PKS was amplified from a bacterial artificial 

chromosome containing DNA from pMUM001 (Stinear et al., 2004). The regions encoding 

the KRs from the erythromycin (Ery) PKS were amplified from a synthetic gene (Kodumal 

et al., 2004). GDH was cloned from B. subtilis gDNA. NdeI and EcoRI restriction sites 

were designed to flank the amplicons encoding AmpKR2, AmpKR10, AmpKR11, 

AmpKR13, EryKR2, OleKR6, PikKR1, PikKR5, and SpnKR3; NdeI and XhoI restriction 

sites were designed to flank the amplicons encoding AmpKR1, EryKR1, TylKR1, and 

GDH; NheI and NotI restriction sites were designed to flank the amplicon encoding 

MycKRA. All restriction sites were engineered so that histidine tags encoded by pET28b 

(Novagen) would be N-terminally fused to the proteins, facilitating purification. 
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Protein Expression and Purification 

All plasmids were transformed into Escherichia coli BL21(DE3). The cells were grown in 

Luria broth with 25 mg/L kanamycin at 37°C until they reached an OD600 of 0.5. They were 

Table 2.1. Cloning Primers.  
For each protein, forward and reverse primers were designed. Underlined sequences 
indicate restriction sites. 
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then cooled to 15°C, induced with 1 mM IPTG, and grown for an additional 16 hr. Cells 

were spun down, resuspended in lysis buffer (10% [w/v] glycerol, 0.5 M NaCl, 30 mM 

Tris [pH 7.5]), and lysed by sonication. After centrifugation at 30,000 x g for 30 min, lysate 

was poured over nickel-NTA resin (Qiagen) equilibrated with lysis buffer. Bound protein 

was washed with 15 mM imidazole in lysis buffer and eluted with 150 mM imidazole in 

lysis buffer. Proteins were then polished using a Superdex 200 gel filtration column that 

was equilibrated with 10% (w/v) glycerol, 150 mM NaCl, 10 mM Tris (pH 7.5), and 

concentrated to 200 mM. Protein purity was evaluated by Coomassie-stained SDS-PAGE 

gels (Figure 2.6). 

Figure 2.6. Protein Purity.  
A Coomassie-stained 12% SDS-PAGE gel shows the level of purity of the KRs. 
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KR Reductions 

Biocatalytic Screen 

Reactions were performed on 10 mM 2.1–2.5 in 10% (w/v) glycerol, 100 mM NaCl, 150 

mM HEPES (pH 7.5), 200 mM D-glucose, 100 mM NADP+, 1 mM GDH, and 5 mM KR 

in a total volume of 200 mL. Following incubation at 22°C for 1 day, reactions were 

extracted with 2 x 500 mL ethyl acetate (EtOAc) and evaporated. The extracts were 

resuspended in ethanol prior to analysis by chiral chromatography. The pantetheine 

diketide reactions were incubated under the same conditions; however, they were not 

extracted prior to injection for analysis by reverse-phase chromatography. 

Scaled-Up Reactions 

Reactions were performed on 50 mM 2.3 in 10% (w/v) glycerol, 300 mM HEPES (pH 7.5), 

100 mM NaCl, 300 mM D-glucose, 100 mM NADP+, 1 mM GDH, and 50 mM purified 

KR in a total volume of 15 mL. All reactions were incubated at 22°C for 1 day. Each was 

determined to be complete by reverse-phase HPLC. After EtOAc extraction and silica gel 

chromatography (EtOAc), yields of ~75% were obtained. Reactions were also performed 

using lysate (50 mL from 6 L culture) that was not poured over a nickel column, but rather 

dialyzed overnight at 4°C in 10 kDa MWCO cellophane dialysis tubing against 10% (w/v) 

glycerol, 250 mM NaCl, and 30 mM HEPES (pH 7.5). In these reactions, 50 mM 2.3 was 

incubated in 10% (w/v) glycerol, 300 mM HEPES (pH 7.5), 100 mM NaCl, 300 mM D-

glucose, 100 mM NADP+, and 1 mM GDH in a total volume of 15 mL, but with 5 mL of 

the reaction volume being supplied from dialyzed lysate. All reactions were incubated at 

22°C for 6 hr. Each was determined to be complete by reverse-phase HPLC. After EtOAc 
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extraction and silica gel chromatography (EtOAc), yields of ~85% were obtained. 

Background thioester hydrolysis occurs with a half-time of ~3 days for both reactions with 

purified KRs and reactions with KR-containing lysate. 

Chiral Chromatography 

Extracts of reactions from the 

biocatalytic screens were separated 

using a ChiralCel OC-H column 

(250 x 4.6 mm) on a Beckman 

Coulter HPLC system with a 20 μL 

loop. Solvent systems and flow 

rates were optimized for each set of 

reactions with a particular diketide-

SNAC (Table 2.2). Substrates and 

products were observed at a 

wavelength of 235 nm. Reaction 

products from incubations with 2.6 were separated using a C18 column (Vydac, 250 x 4.6 

mm) on a Waters 1525/2998 system with a 50 µL loop.  A gradient of 20-70% B over 15 

minutes was used, where the mobile phases were H2O with 0.1% TFA (A) and MeOH with 

0.1% TFA (B) pumped at a flow rate of 1 mL/min. Absorbance was followed at 235 nm. 

Synthetic Protocols 

General Synthetic Route to α-Substituted, β-Keto Diketide-SNAC Substrates 

N-Acetylcysteamine 

Table 2.2. Chiral Chromatography Parameters. 
Solvent systems and flow rates were individually 
optimized to analyze the reactions with substrates 
2.1-2.5. 
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Cysteamine hydrochloride (3.05 g, 53.6 mmol, 1 eq.), potassium hydroxide (1.50 g, 53.6 

mmol, 1 eq.), and sodium bicarbonate (6.75 g, 160.8 mmol, 3 eq.) were added to 50 mL 

H2O. Acetic anhydride (2.28 mL, 48.2 mmol, 0.9 eq.) was then added dropwise over 5 min, 

and the solution was allowed to stir at 22°C for 15 min. The reaction was quenched with 1 

M HCl, and the product was extracted with ethyl acetate (3 x 50 mL), dried with MgSO4, 

filtered, and concentrated in vacuo, yielding a clear, viscous liquid. 

 

Meldrum’s Acid Derivatives 

Pyridine (2 eq.) was added to Meldrum’s acid (1 eq.) in 40 mL dry dichloromethane (DCM) 

at 0°C. Next, the acyl chloride (1 eq.) was added dropwise over 15 min, turning the solution 

a dark orange color, and the reaction was stirred overnight at 22°C. The reaction was 

washed with 0.1 M HCl (3 x 50 mL) and the organic layer was dried with MgSO4, filtered, 

and concentrated in vacuo. 

 

α-Unsubstituted Diketide-SNACs 

The Meldrum’s acid derivative (1 eq.) and N-acetylcysteamine (1 eq.) were refluxed in dry 

toluene for 5 hr. The resulting solution was then concentrated in vacuo. 

 

α-Substituted Diketide-SNACs 

The α-unsubstituted diketide-SNAC (1 eq.) was dissolved in 50 mL dry THF at 0°C. 

Potassium tert-butoxide (1.2 eq.) was added. After the alkyl iodide (5 eq.) was injected, 

the reaction was allowed to warm to 22°C and stir overnight. After the reaction was 

quenched with 0.1 M HCl, the product was extracted with ethyl acetate (3 x 50 mL), dried 

with MgSO4, filtered, and concentrated in vacuo, resulting in a clear, viscous liquid. 
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Methylketene Dimer 

Propionyl chloride (9.43 mL, 108 mmol, 1 eq.) was added dropwise to TEA (14.93 mL, 

108 mmol, 1 eq.) in 250 mL dichloromethane at 0°C. The light orange reaction was stirred 

overnight at 22°C. The solution was concentrated twofold before 250 mL hexanes was 

added to cause triethylammonium chloride to crash out of solution. After the salt was 

filtered away, the solution was dried with MgSO4 and the solvent was evaporated, yielding 

a viscous liquid. The byproduct propionic anhydride comprises ~15 mol% of the product. 

 

(2RS)-Methyl-3-Oxopentanoate-D-Pantetheine Thioester (2.6) 

Sodium borohydride (80.0 mg, 2.12 mmol, 16 eq.) was added to oxidized D-pantethine 

(94.0 mg, 0.17 mmol, 1 eq.) dissolved in 5 mL of 80:20 MeOH:0.25 M NaHCO3 (aq.) over 

20 min at 22°C. After 1 hr, the reaction was quenched by adding glacial acetic acid 

dropwise until bubbling ceased and was then buffered with 250 mM HEPES (pH 7.5) 

(final). Methylketene dimer (11.2 mg, 0.1 mmol, 1.4 eq.) was added to the solution at 22°C. 

After 1 hr, the reaction was evaporated. HEPES was removed via silica gel column 

purification using 2% MeOH:dichloromethane. 

Syntheses of α-Methyl, β-Hydroxyl Diketide-SNAC Standards 

(4S)-4-Benzyl-3-Propionyl-2-Oxazolidinone (2.7) 

(4S)-Benzyl-2-oxazolidinone (250 mg, 1.41 mmol, 1 eq.) was dissolved in 5 mL dry THF 

at -78°C under nitrogen. n-butyllithium (0.64 mL of a 2.5 M stock in hexanes, 1.59 mmol, 

1.13 eq.) was added dropwise to the cooled solution by syringe and stirred for 5 min. 

Propionyl chloride (0.158 mL, 1.81 mmol, 1.28 eq.) was added dropwise by syringe, and 

the solution was stirred at -78°C for 30 min. The reaction was warmed to room temperature 
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and stirred for an additional 30 min before being quenched with 3 mL saturated NH4Cl 

(aq.). The product was extracted with DCM (2 x 20 mL), washed with 10 mL saturated 

NaHCO3 (aq.) and then 10 mL brine, dried with MgSO4, filtered, and concentrated in vacuo 

to produce a clear oil (260 mg, 80%). Rf 0.40 (20% EtOAc in hexanes). 

 

(4S,2’S,3’R)-3-(3’-Hydroxy-2’-Methylbutanoyl)-4-Benzyl-2-Oxazolidinone (2.8) 

(4S)-4-Benzyl-3-propionyl-2-oxazolidinone (2.7) (560 mg, 2.40 mmol, 1 eq.) was added 

to 10 mL dry DCM under nitrogen and cooled to 0°C. Dibutylboron triflate (Bu2BOTf) 

(2.83 mL of a 1 M solution in DCM, 2.83 mmol, 1.18 eq.) was supplied via syringe. 

Diisopropylethylamine (0.56 mL, 3.19 mmol, 1.33 eq.) was then added dropwise over 2 

min, and the solution was cooled to -78°C. After acetaldehyde (0.151 mL, 270 mmol, 1.12 

eq.) was added, the solution was stirred at -78°C for 30 min, allowed to warm to 0°C, and 

further stirred for 2 hr. A solution of 3.3 mL Na2HPO4 (1 M, pH 7.4) and 8.3 mL MeOH 

was added to the reaction, followed by the dropwise addition of 8.5 mL 2:1 MeOH:30% 

H2O2 (aq.). After 1.5 hr, organic solvents were evaporated in vacuo and the remaining 

material was resuspended in 10 mL 5% NaHCO3 (aq.). The product was extracted in DCM 

(3 x 20 mL), washed with 20 mL 5% NaHCO3 (aq.) and then 20 mL brine, dried with 

MgSO4, filtered, and concentrated in vacuo to yield a clear oil (350 mg, 53% after flash 

chromatography). Flash chromatography was performed with a 15%–30% EtOAc in 

hexanes gradient. Rf 0.38 (50% EtOAc in hexanes). 

 

(4S,2’S,3’R)-3-(3’-Hydroxy-2’-Methylhexanoyl)-4-Benzyl-2-Oxazolidinone (2.9) 

The synthesis for 2.8 was followed with the exception that butyrylaldehyde (0.213 mL, 

2.41 mmol, 1.12 eq.) was substituted for acetaldehyde. Flash chromatography was 
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performed in the same manner, yielding 241 mg (33%) of the desired product. Rf 0.67 (50% 

EtOAc in hexanes). 

 

(4S,2’R,3’R)-3-(3’-Hydroxy-2’-Methylbutanoyl)-4-Benzyl-2-Oxazolidinone (2.10) and 

(4S,2’R,3’S)-3-(3’-Hydroxy-2’-Methylbutanoyl)-4-Benzyl-2-Oxazolidinone (2.11) 

Synthesis followed that of 2.8, with the exception that two equivalents of Bu2BOTf were 

used (2.4 mL of a 1 M solution in DCM, 2.4 mmol, 2 eq.). Rf 0.56 and 0.60 (50% EtOAc 

in hexanes). 

 

(4S,2’R,3’R)-3-(3’-Hydroxy-2’-Methylhexanoyl)-4-Benzyl-2-Oxazolidinone (2.12) and 

(4S,2’R,3’S)-3-(3’-Hydroxy-2’-Methylhexanoyl)-4-Benzyl-2-Oxazolidinone (2.13) 

Synthesis followed that of 2.9, with the exception that two equivalents of Bu2BOTf were 

added (4.32 mL of a 1 M solution in DCM, 4.32 mmol, 2 eq.). Rf 0.73 and 0.77 (50% 

EtOAc in hexanes). 

 

(2S,3R)-3-Hydroxy-2-Methylbutanoyl-N-Acetylcysteamine Thioester (2.14) 

Aldol product 2.8 (187 mg, 0.68 mmol) was dissolved in 3 mL of a 4:1 mixture of THF:H2O 

and cooled to 0°C. Slowly, 3 mL of 30% H2O2 was added, followed by 1 mL saturated 

LiOH (0.5 g LiOH in 1 mL H2O). The reaction was left to stir at 0°C for 2 hr, at which 

point Na2SO3 was added until H2O2 was quenched (bubbling ceased). The aqueous phase 

was washed with DCM (2 x 15 mL), and the DCM layers were back-extracted with H2O 

(1 x 15 mL). The combined aqueous layers were cooled to 0°C and the pH was lowered to 

1 with 6 M HCl. The aldol acid was extracted into EtOAc (3 x 20 mL), dried with MgSO4, 

filtered, and concentrated in vacuo (as the aldol acid is somewhat volatile, the solution was 
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only concentrated to 1 mL). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (211.1 mg, 

1.36 mmol, 2 eq.) was added to the solution under nitrogen at 0°C. NAC (96.8 mg, 0.81 

mmol, 1.2 eq.) and a few crystals of 4-dimethylaminopyridine were added. After 4 hr at 

0°C, the reaction was quenched with 5 mL H2O. Product was extracted into EtOAc (3 x 15 

mL), washed with 5 mL brine, dried with MgSO4, and filtered. A yellowish oil was 

produced after concentration in vacuo (50 mg, 47%). Rf 0.20 (EtOAc). 

 

(2S,3R)-3-Hydroxy-2-Methylhexanoyl-N-Acetylcysteamine Thioester (2.15) 

2.15 was synthesized in the same manner as 2.14 from 2.9 (81%). Rf 0.35 (in EtOAc).  

 

(2R,3R)-3-Hydroxy-2-Methylbutanoyl-N-Acetylcysteamine Thioester (2.16) and  

(2R,3S)-3-Hydroxy-2-Methylbutanoyl-N-Acetylcysteamine Thioester (2.17) 

2.16 and 2.17 were synthesized in the same manner as 2.14 from a mixture of 2.10 and 

2.11 (33%, 2.16 + 2.17). They were then separated by reverse-phase HPLC on a 

semipreparative C18 column (BondClone, 300 x 7.8 mm; Phenomenex) connected to a 

Waters 1525 HPLC system through a gradient of 15%-100% B over 30 min, where the 

mobile phases were (A) H2O with 0.1% TFA and (B) MeOH with 0.1% TFA, pumped at a 

flow rate of 2 mL/min. Rf 0.15 and 0.20 (in EtOAc). 

 

(2R,3R)-3-Hydroxy-2-Methylhexanoyl-N-Acetylcysteamine Thioester (2.18) and  

(2R,3S)-3-Hydroxy-2-Methylhexanoyl-N-Acetylcysteamine Thioester (2.19) 

2.18 and 2.19 were synthesized in the same manner as 2.14 from a mixture of 2.12 and 

2.13 (85%, 2.18 + 2.19). They were then separated as described for 2.16 and 2.17. Rf 0.30 

and 0.35 (in EtOAc). 
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Characterization via NMR and LC-MS 

NMR was performed either on a Varian Mercury 400 MHz or a Varian INOVA 500 MHz 

instrument. LC-MS was performed on an Agilent Technologies 1200 Series HPLC with a 

Gemini C18 column (5 μm, 2 x 50 mm; Phenomenex) coupled to an Agilent Technologies 

6130 quadrupole mass spectrometer system equipped with an electrospray-ionization 

source. A 5%-95% B gradient over 12 min at a flow rate of 0.7 mL/min was run in which 

the mobile phases were (A) H2O with 0.1% formic acid and (B) acetonitrile with 0.1% 

formic acid. 

 

3-Oxopentanoyl-N-Acetylcysteamine Thioester (2.1) 

1H NMR (400 MHz, CDCl3) δ 1.08 (t, 3H, J = 7.4 Hz, CH3), 1.96 (s, 3H, CH3-C=O), 2.55 

(q, 2H, J = 7.4 Hz, C-CH2-C=O), 3.00–3.10 (m, 2H, S-CH2), 3.4–3.5 (m, 2H, N-CH2), 3.7 

(s, 2H, O=C-CH2-C=O), 5.88 (br s, 1H, NH). ESI-MS expected mass: 218.3; observed 

mass: 218.2. 

 

3-Oxobutanoyl-N-Acetylcysteamine Thioester 

1H NMR (400 MHz, CDCl3) δ 1.92 (s, 3H, CH3-C(=O)-N), 2.20 (s, 3H, CH3-C=O), 2.93–

3.16 (m, 2H, S-CH2), 3.36–3.42 (m, 2H, N-CH2), 3.62 (s, 2H, O=C-CH2-C=O), 5.99 (br s, 

1H, NH). 

 

(2RS)-Methyl-3-Oxobutanoyl-N-Acetylcysteamine Thioester (2.2) 

1H NMR (400 MHz, CDCl3) δ 1.33 (d, 3H, J = 7.5 Hz, CH3-C-(C=O)2), 1.90 (s, 3H, CH3-

C(=O)-N), 2.19 (s, 3H, CH3-C=O), 2.95–3.08 (m, 2H, S-CH2), 3.30–3.46 (m, 2H, N-CH2), 
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3.71 (q, 1H, J = 7.5 Hz, O=C-CH-C=O), 5.87 (br s, 1H, NH). ESI-MS expected mass: 

218.3; observed mass: 218.4. 

 

(2RS)-Methyl-3-Oxopentanoyl-N-Acetylcysteamine Thioester (2.3) 

1H NMR (400 MHz, CDCl3) δ 1.08 (t, 3H, J = 7.5 Hz, CH3), 1.38 (d, 3H, J = 7.5 Hz, CH3-

C-(C=O)2), 1.96 (s, 3H, CH3-C=O), 2.48–2.68 (m, 2H, C-CH2-C=O), 3.00–3.14 (m, 2H, S-

CH2), 3.36–3.52 (m, 2H, N-CH2), 3.79 (q, 1H, J = 7.5 Hz, O=C-CH-C=O), 5.92 (br s, 1H, 

NH). ESI-MS expected mass: 232.3; observed mass: 232.4. 

 

3-Oxohexanoyl-N-Acetylcysteamine Thioester 

1H NMR (400 MHz, CDCl3) δ 0.90–1.00 (m, 3H, CH3), 1.55–1.70 (m, 2H, C-CH2-C), 1.96 

(s, 3H, CH3-C=O), 2.48–2.60 (m, 2H, C-CH2-C=O), 3.00–3.14 (m, 2H, S-CH2), 3.40–3.52 

(m, 2H, N-CH2), 3.70 (s, 2H, O=C-CH2-C=O), 5.92 (br s, 1H, NH). 

 

(2RS)-Methyl-3-Oxohexanoyl-N-Acetylcysteamine Thioester (2.4) 

1H NMR (400 MHz, CDCl3) δ 0.85 (t, 3H, J = 7.6 Hz, CH3), 1.33 (d, 3H, J = 7.9 Hz, CH3-

C-(C=O)2), 1.50–1.60 (m, 2H, C-CH2-C), 1.98 (s, 3H, CH3-C=O), 2.45 (m, 2H, C-CH2-

C=O), 2.95–3.12 (m, 2H, S-CH2), 3.34–3.52 (m, 2H, N-CH2), 3.74 (q, 1H, J = 7.9 Hz, 

O=C-CH-C=O), 5.92 (br s, 1H, NH). ESI-MS expected mass: 246.3; observed mass: 246.4. 

 

(2RS)-Ethyl-3-Oxopentanoyl-N-Acetylcysteamine Thioester (2.5) 

1H NMR (400 MHz, CDCl3) δ 0.94 (t, 3H, J = 7.3 Hz, CH3), 1.17 (t, 3H, J = 8.4 Hz, CH3-

C-C=O), 1.88–1.98 (m, 2H, C-CH2-C-(C=O)2), 2.15 (s, 3H, CH3-C=O), 2.48–2.66 (m, 2H, 
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C-CH2-C=O), 3.01–3.20 (m, 2H, S-CH2), 3.41–3.58 (m, 2H, N-CH2), 3.68–3.74 (m, 1H, 

O=C-CH-C=O), 6.27 (br s, 1H, NH). ESI-MS expected mass: 246.3; observed mass: 246.4. 

 

(2RS)-Methyl-3-Oxopentanoate-D-Pantetheine Thioester (2.6) 

1H NMR (400 MHz, D2O) δ 0.70-0.78 (d, 6H, J = 16 Hz, (CH3)2-C), 0.81-0.88 (t, 3H, J = 

8 Hz, CH3-C), 1.20-1.25 (d, 3H, J = 8 Hz, CH3-C-(C=O)2), 2.28-2.33 (m, 2H, CH2-C(=O)-

N) 2.51-2.58 (q, 2H, J = 8 Hz, C-CH2-C=O), 2.90-2.97 (t, 2H, J = 7.2 Hz, CH2-S), 3.20-

3.26 (m, 2H, S-C-CH2), 3.30-3.40 (m, 2H, N-(C=O)-C-CH2), 3.40-3.45 (m, 2H, O-CH2), 

3.81 (s, 1H, O=C-CH-O), 4.00-4.05 (q, 1H, J = 8 Hz, (O=C)2-CH). ESI-MS expected mass: 

391.5; observed mass: 391.2. 

 

(4S)-4-Benzyl-3-Propionyl-2-Oxazolidinone (2.7) 

1H NMR (400 MHz, CDCl3) δ 1.22 (t, 3H, J = 8.0 Hz, CH3), 2.76–2.82 (m, 1H, one of CH2-

Ph), 2.90–3.05 (m, 2H, CH2-C=O), 3.31 (dd, 1H, J = 15.2 Hz, J = 5.5 Hz, one of CH2-Ph), 

4.16–4.23 (m, 2H, CH2-O), 4.66–4.70 (m, 1H, CH-N). 

 

(4S,2’S,3’R)-3-(3’-Hydroxy-2’-Methylbutanoyl)-4-Benzyl-2-Oxazolidinone (2.8) 

1H NMR (400 MHz, CDCl3) δ 1.23 (d, 3H, J = 7.4 Hz, CH3), 1.28 (d, 3H, J = 6.1 Hz, CH3-

C-C=O), 2.76–2.82 (m, 1H, one of CH2-Ph), 2.93 (br s, 1H, OH), 3.26 (dd, 1H, J = 12.3 

Hz, J = 3.3 Hz, one of CH2-Ph), 3.75 (dq, 1H, J = 9.8 Hz, J = 3.1 Hz, CH), 4.16–4.23 (m, 

2H, CH2-O), 4.65–4.69 (m, 1H, CH-N). 

 

(4S,2’S,3’R)-3-(3’-Hydroxy-2’-Methylhexanoyl)-4-Benzyl-2-Oxazolidinone (2.9) 
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1H NMR (400 MHz, CDCl3) δ 0.94 (t, 3H, J = 7.2 Hz, CH3), 1.30 (d, 3H, CH3-C-C=O), 

1.35–1.45 (m, 1H, one of C-CH2-C), 1.45–1.58 (m, 1H one of C-CH2-C), 2.75–2.81 (m, 

1H, one of CH2-Ph), 2.84 (d, 1H, OH), 3.26 (dd, 1H, J = 13.7 Hz, J = 3.1 Hz, one of CH2-

Ph), 3.76 (dq, 1H, J = 7.2 Hz, J = 2.6 Hz, CH), 3.95–4.00 (m, 1H, CH-C=O), 4.17–4.27 

(m, 2H, CH2-O), 4.68–4.74 (m, 1H, CH-N). 

 

(4S,2’R,3’R)-3-(3’-Hydroxy-2’-Methylbutanoyl)-4-Benzyl-2-Oxazolidinone (2.10) 

1H NMR (400 MHz, CDCl3) δ 1.22 (d, 3H, J = 5.6 Hz, CH3), 1.32 (d, 3H, J = 6.2 Hz, CH3-

C-C=O), 2.56 (d, 1H, J = 7.4 Hz one of CH2-Ph), 2.82 (br s, 1H, OH), 3.28–3.35 (m, 1H, 

one of CH2-Ph), 3.90–3.95 (m, 1H, CH), 3.96–4.00 (m, 1H, CH-C=O), 4.15–4.25 (m, 2H, 

CH2-O), 4.67–4.72 (m, 1H, CH-N). 

 

(4S,2’R,3’R)-3-(3’-Hydroxy-2’-Methylhexanoyl)-4-Benzyl-2-Oxazolidinone (2.12) 

1H NMR (400 MHz, CDCl3) δ 0.94 (t, 3H, CH3), 1.20 (d, 3H, J = 7.2 Hz, CH3-C-C=O), 

1.35–1.45 (m, 1H, one of C-CH2-C), 1.45–1.58 (m, 1H one of C-CH2-C), 2.75–2.82 (m, 

1H, one of CH2-Ph), 2.91 (d, 1H, J = 7.2 Hz, OH), 3.31 (dd, 1H, J = 7.9 Hz, J = 3.1 Hz, 

one of CH2-Ph), 3.85 (dq, 1H, J = 7.2 Hz, J = 2.7 Hz, CH), 3.95–4.04 (m, 1H, CH-C=O), 

4.15–4.26 (m, 2H, CH2-O), 4.66–4.74 (m, 1H, CH-N). 

 

(2S,3R)-3-Hydroxy-2-Methylbutanoyl-N-Acetylcysteamine Thioester (2.14) 

1H NMR (500 MHz, CDCl3) δ 1.22 (d, 3H, J = 7.6 Hz, CH3), 1.24 (d, 3H, CH3-C-C=O), 

2.01 (s, 3H, CH3-C=O), 2.70–2.75 (m, 1H, CH-C=O), 3.00–3.10 (m, 2H, S-CH2), 3.42–

3.53 (m, 2H, N-CH2), 3.70–3.79 (m, 1H, CH), 5.93 (br s, 1H, NH). ESI-MS expected mass: 

220.3; observed mass: 220.2. 
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(2S,3R)-3-Hydroxy-2-Methylhexanoyl-N-Acetylcysteamine Thioester (2.15) 

1H NMR (500 MHz, CDCl3) δ 0.94 (t, 3H, J = 7.7 Hz, CH3), 1.22 (d, 3H, J = 7.7 Hz, CH3-

C-C=O), 1.50–1.60 (m, 1H, one of C-CH2-C), 1.60–1.70 (m, 1H one of C-CH2-C), 1.95 (s, 

3H, CH3-C=O), 2.70–2.75 (m, 1H, CH-C=O), 3.00–3.08 (m, 2H, S-CH2), 3.40–3.52 (m, 

2H, N-CH2), 3.92–3.98 (m, 1H, J = 5.4 Hz, CH), 5.86 (br s, 1H, NH). ESI-MS expected 

mass: 248.3; observed mass: 248.4. 

 

(2R,3R)-3-Hydroxy-2-Methylbutanoyl-N-Acetylcysteamine Thioester (2.16) 

1H NMR (500 MHz, CDCl3) δ 1.22 (d, 3H, J = 7.7 Hz, CH3), 1.24 (d, 3H, CH3-C-C=O), 

1.96 (s, 3H, CH3-C=O), 2.70–2.76 (m, 1H, CH-C=O), 3.01–3.14 (m, 2H, S-CH2), 3.47–

3.58 (m, 2H, N-CH2), 3.79–3.83 (m, 1H, CH), 6.26 (br s, 1H, NH). ESI-MS expected mass: 

220.3; observed mass: 220.2. 

 

(2R,3R)-3-Hydroxy-2-Methylhexanoyl-N-Acetylcysteamine Thioester (2.18) 

1H NMR (500 MHz, CDCl3) δ 0.94 (t, 3H, J = 7.2 Hz, CH3), 1.22 (d, 3H, J = 6.9 Hz, CH3-

C-C=O), 1.38–1.46 (m, 1H, one of C-CH2-C), 1.46–1.56 (m, 1H one of C-CH2-C), 2.01 (s, 

3H, CH3-C=O), 2.72–2.79 (m, 1H, CH-C=O), 3.01–3.10 (m, 2H, S-CH2), 3.43–3.55 (m, 

2H, N-CH2), 3.72–3.78 (m, 1H, CH), 6.07 (br s, 1H, NH). ESI-MS expected mass: 248.3; 

observed mass: 248.4. 
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Chapter 3. Monitoring Biocatalytic Transformations Mediated by 

Polyketide Synthase Enzymes in Cell Lysate via Fluorine NMR 

SUMMARY 

The biocatalytic employment of modular polyketide synthase enzymes in cell lysate has 

become a viable route to preparative quantities of synthetically valuable polyketide 

fragments. We report the quantitative, uninvasive, and continuous monitoring of such 

biocatalytic reactions by observing trifluoromethyl-bearing substrates via 19F NMR 

spectroscopic analysis. To demonstrate the utility of this technique, we followed reactions 

catalyzed by a thioesterase and several ketoreductases. 

INTRODUCTION 

Advances in employing isolated PKS enzymes as biocatalysts have enabled access to 

preparative quantities of polyketide fragments (Piasecki et al., 2011; Hughes and Keatinge-

Clay, 2012). These biocatalytic reactions are performed in the cell lysate of the 

overexpression host (e.g., Escherichia coli), thus maximizing the quantity of enzyme and 

avoiding resource-intensive protein purification. Because cell lysate is a complex mixture 

of all the soluble biomolecules produced by the overexpression host, other fates are 

possible for a substrate entered into such a system in addition to the desired transformation. 

To evaluate such biocatalytic reactions we sought a quantitative and uninvasive technique 

that could continuously monitor both substrates and products. 

To these ends, NMR spectroscopy would be useful; however, observing the conversion of 

substrate into product via 1H NMR spectroscopic analysis is complicated by the high 

background generated by the hydrogen-containing components of biocatalytic reactions 
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(e.g., biomolecules, co-substrates, buffering agent, glycerol, DMSO) and by significant 

noise from water even when suppression methods are employed. However, if the substrates 

contained a trifluoromethyl group and were observed by 19F NMR spectroscopic analysis, 

no background would interfere with measurements because E. coli does not incorporate 

fluorine into any of its biomolecules (few organisms do) (Murphy et al., 2003). 

Furthermore, the 19F nucleus is (i) 83% as intrinsically sensitive as 1H, (ii) 100% naturally 

abundant, (iii) isosteric with hydrogen, and (iv) very responsive to its electronic 

environment (Murphy, 2007). These properties have been exploited in drug discovery 

efforts; one technique, called FABS (Fluorine Atoms for Biochemical Screening), 

identifies inhibitors by detecting a decrease in the rate of conversion from a fluorinated 

substrate into its product by 19F NMR spectroscopic analysis (Dalvit et al., 2003). 

RESULTS AND DISCUSSION 

EryTE Hydrolysis Can be Observed in Real-Time by 19F NMR 

First, we observed a hydrolysis reaction mediated by the erythromycin thioesterase 

(EryTE), which is known to catalyze the hydrolysis of acyl thioesters (Gokhale et al., 1999; 

Sharma and Boddy, 2007; Hughes and Keatinge-Clay, 2012). We sought to determine how 

accurately the kinetics of EryTE-mediated hydrolysis could be measured within the cell 

lysate by 19F NMR spectroscopic analysis compared to the more traditional technique of 

employing HPLC and a UV detector. Thus, 3,3,3-trifluoropropionyl-S-N-acetylcysteamine 

(NAC; 3.1) was incubated in EryTE-containing cell lysate both in an NMR tube and in a 

separate vessel so that for every spectrum acquired, a sample was also quenched for later 

HPLC analysis. 19F NMR spectroscopic analysis (without proton decoupling) yielded a 
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triplet for each species due to splitting of 

the fluorine resonance by the adjacent 

methylene hydrogens. The triplet of 

substrate 3.1 appeared at δ = -63.00 ppm, 

while the 3,3,3-trifluoropropionate product 

(3.2) showed triplets at δ = -63.55 and -

63.70 ppm, possibly due to two different 

interactions with counterions, or formation 

of a glycerolysis adduct (Hughes et al., 

2013) (Figure 3.1). Kinetic 

characterization was performed by 

measuring the change in concentration of 

3.1 by both 19F NMR spectroscopic analysis 

and reverse-phase HPLC. The determined 

kcat and Km parameters agreed within the 

error limits. Thus, 19F NMR spectroscopic 

analysis accurately measured the kinetics 

of EryTE on 3.1 in cell lysate (kcat = 0.077 

± 0.010 s-1, Km = 39.3 ± 4.5 mM, kcat/Km = 

1.97 ± 0.14 M-1s-1). Previous kinetic 

analysis of EryTE towards similar, 

unfluorinated thioester substrate analogs 

gave comparable values- one unreduced 

diketide S-NAC had a kcat/Km value of 4.2 ± 

Figure 3.1. Accurate kinetic characterization 
of EryTE-mediated hydrolysis of fluorinated 
3.1 in cell lysate via 19F NMR spectroscopic 
analysis. 
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0.4 M-1s-1 (Gokhale et al., 1999; Sharma et al., 2007). Kinetic analysis is not only more 

facile by 19F NMR spectroscopic analysis than by HPLC, but also more informative: 

generation of the nonchromophoric product 3.2 was observed in the EryTE reaction. 

TylKR1 Reduction Can be Observed in Real-Time by 19F NMR 

We next sought to monitor a more advanced biocatalytic transformation driven by an 

NADPH-regeneration system comprised of glucose dehydrogenase, NADP+, and glucose 

(Siskos et al., 2005; Keatinge-Clay, 2007; Valenzano et al., 2009; Piasecki et al., 2011). 

Thus, the conversion of 3-oxo-5,5,5-trifluoropentanoyl-S-NAC (3.3) into (3R)-hydroxy-

5,5,5-trifluoro-pentanoyl-S-NAC (3.4) by the KR from the first module of the tylosin PKS 

(TylKR1) was observed by 19F NMR spectroscopic analysis (Figure 3.2). The triplet from 

substrate 3.3 appeared at δ = -63.18 ppm, while the triplet from product 3.4 (confirmed by 

mass spectrometry and NMR analysis) appeared at δ = -63.60 ppm. The rate of the reaction 

measured by 19F NMR spectroscopic analysis concurred with the rate measured by HPLC 

(at 30 mM of 3.3, Vo was calculated 

to be 0.20 ± 0.02 mM·min-1 by 19F 

NMR spectroscopic analysis and 

0.23 ± 0.05 mM·min-1 by HPLC), 

approximately matching the rate 

anticipated from previous kinetic 

studies of TylKR1 on (2RS)-

methyl-3-oxopentanoyl-S-NAC 

(0.81 mM·min-1) (Siskos et al., 

2005) (for data, see Appendix). 

Figure 3.2. Monitoring biocatalysis mediated by 
TylKR1 in cell lysate. 
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Diastereomers from Ketoreduction Can be Differentiated in Real-Time by 19F NMR 

We then sought to determine whether the terminal fluorine atoms in an ε-trifluoro, α-

substituted β-ketothioester were sensitive enough to distinguish stereochemical differences 

generated at the α- and β-carbon atoms by stereocontrolled, KR-mediated reductions. Thus, 

2-methyl-3-oxo-5,5,5-trifluoropentanoyl-S-NAC (3.5) was incubated with each of the four 

KR types: AmpKR2 (the KR from the second module of the amphotericin PKS), RifKR7 

(the KR from the seventh 

module of the rifamycin 

PKS), TylKR1, and 

EryKR1 (the KR from the 

first module of the 

erythromycin PKS), which 

are known to set (2R,3S), 

(2S,3S), (2R,3R), and 

(2S,3R) stereochemistries, 

respectively, when reducing 

2-methyl-3-oxopentanoyl-

S-NAC (Siskos et al., 2005; 

Keatinge-Clay, 2007; 

Valenzano et al., 2009 and 

2010; Piasecki et al., 2011) 

(Figure 3.3). The triplet for substrate 3.5 appeared at δ = -63.23 ppm. Notably, the triplets 

for the syn- and anti-products were well-resolved (0.34 ppm); the triplet for the syn- 

products 3.6 and 3.9 appeared at δ = -63.68 ppm, and the triplet for anti- products 3.7 and 

Figure 3.3. 19F NMR resolution of diastereomers generated 
by stereocontrolled, KR-mediated biocatalysis in cell 
lysate. 
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3.8 appeared at δ = -63.34 ppm. That the diastereomers could be readily distinguished 

within cell lysate highlights the sensitivity of this technique. 

SIGNIFICANCE 

Whether the trifluoromethyl-bearing substrate analogs would be processed in the same 

manner as the nonfluorinated substrates normally entered into these biocatalytic reactions 

was initially unclear; however, EryTE and the KRs were shown to catalyze the desired 

transformations, stereoselectively in the case of the KRs (Piasecki et al., 2011). Studies 

reporting the acceptance of monofluorinated thioesters by the erythromycin PKS and the 

studies presented here suggest that PKS enzymes are generally tolerant towards fluorinated 

substrates and that biocatalytic syntheses of polyketides can be reliably evaluated by 19F 

NMR spectroscopic analysis (Goss and Hong, 2005; Ashley et al., 2006; Ward et al., 2007). 

The ability to follow nonchromophoric substrates by 19F NMR spectroscopic analysis 

enables monitoring of substrates and products in biocatalytic reactions generating reduced 

polyketides such as triketide lactone chiral building blocks. The rapid detection of thioester 

hydrolysis or other undesired transformations will facilitate the optimization of biocatalytic 

reactions performed in cell lysate. 

We also seek to observe and optimize biocatalytic transformations mediated by other PKS 

enzymes such as dehydratases (DHs), which convert β-hydroxy intermediates into α,β-

unsaturated intermediates, enoylreductases (ERs), which stereoselectively reduce α,β-

unsaturated intermediates, ketosynthases (KSs), which form a carbon-carbon bond to 

elongate an intermediate, and PKS modules, which both elongate and process 

intermediates. The monitoring of whole-cell biocatalysis in which fluorinated precursors 

are fed to microbes expressing PKS enzymes may also be possible through in-cell NMR 
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spectroscopic analysis (Stevens et al., 1984; Serber et al., 2001). In summary, we have 

established a facile and powerful technique to monitor reactions in complex media that will 

aid in the optimization of biocatalytic transformations that generate preparative quantities 

of complex polyketides. 

EXPERIMENTAL PROCEDURES 

Synthetic Protocols 

Fluorinated Substrates 3.1, 3.3, and 3.5 

N-Acetylcysteamine 

N-Acetylcysteamine was prepared by combining cysteamine hydrochloride (2 g, 17.6 

mmol, 1 eq.), sodium bicarbonate (4.4 g, 52.8 mmol, 3 eq.), and potassium hydroxide (988 

mg, 17.6 mmol, 1 eq.) in that order to 100 mL H2O at 22°C. Acetic anhydride (832 μL, 8.8 

mmol, 0.5 eq.) was added dropwise over 5 min, and the reaction was stirred for 10 min. 

The reaction was then acidified to pH 7. The product was extracted with EtOAc (3 x 200 

mL), dried over MgSO4, filtered, and dried in vacuo to yield a clear oil. 

 

3,3,3-Trifluoropropionyl-N-Acetylcysteamine Thioester (3.1) 

N-Acetylcysteamine (522 mg, 4.4 mmol, 1 eq.) was dissolved in 10 mL dry DCM at 0°C 

under N2. 3,3,3-Trifluoropropionyl chloride (452 μL, 4.4 mmol, 1 eq.) and triethylamine 

(731 μL, 5.3 mmol, 1.2 eq.) were added, and the reaction was left to warm to room 

temperature while stirring overnight. The reaction was washed with brine (3 x 20 mL) and 

the brine was back-extracted with DCM (3 x 20 mL). The organic layers were combined 
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and dried in vacuo to yield a brown oil (800 mg, 79.5%). TLC analysis of the fractions was 

carried out in 100% EtOAc (Rf 0.40). 

 

3-Oxo-5,5,5-Trifluoropentanoyl-N-Acetylcysteamine Thioester (3.3) 

Meldrum’s acid (1.0 g, 6.9 mmol, 1 eq.) was dissolved in 10 mL dry DCM under N2. 

Pyridine (1.2 mL, 14.2 mmol, 2.05 eq.) was added, and the reaction was cooled to 0°C. 

3,3,3-Trifluoropropionyl chloride (860 μL, 8.3 mmol, 1.2 eq.) was dissolved in 2 mL dry 

DCM and added dropwise to the Meldrum’s acid solution over 1 hr. The reaction was 

stirred at 0°C for an additional hour and warmed to room temperature overnight. The 

reaction was diluted with 10 mL DCM, washed with 10% aqueous HCl (3 x 50 mL), dried 

with MgSO4, filtered, and evaporated to yield a dark orange oil (1.2 g, 72.5%). The 

Meldrum’s acid derivative (1.6 g, 6.3 mmol, 1 eq.) was dissolved in 100 mL dry toluene 

under N2. N-Acetylcysteamine (750 mg, 6.3 mmol, 1 eq.) was added, and the reaction was 

refluxed overnight. The reaction was evaporated to yield a dark orange oil. The product 

was purified via flash chromatography with a ~3 cm Cu2+-impregnated silica gel layer on 

top with a 50-100% EtOAc:hexanes gradient to yield an orange powder after evaporation 

(572 mg, 33%). TLC analysis of the fractions was carried out in 100% EtOAc (Rf 0.35). 

 

(2RS)-Methyl-3-Oxo-5,5,5-Trifluoropentanoyl-N-Acetylcysteamine Thioester (3.5) 

Thioester 3.3 (200 mg, 0.74 mmol, 1 eq.) was dissolved in 40 mL dry THF and cooled to 

0°C. Potassium tert-butoxide (99.4 mg, 0.89 mmol, 1.2 eq.) was added, and the flask was 

placed under N2. Iodomethane (230.3 μL, 3.7 mmol, 5 eq.) was added dropwise over 5 min, 

and the reaction was warmed to room temperature while stirring overnight. The pH of the 

reaction was neutralized, H2O was added to create an aqueous layer, and the product was 
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extracted with EtOAc (3 x 200 mL). The organic layer was dried with MgSO4, filtered, and 

evaporated to yield a dark orange oil. The product was purified over a silica gel column 

using a 50-100% EtOAc:hexanes gradient to yield a dark orange oil (135 mg, 64%). TLC 

analysis of the fractions was performed in 100% EtOAc (Rf 0.37). 

Characterization by 1H NMR, 13C NMR, 19F NMR, and LC-MS 

NMR characterization was performed on a Varian Mercury 400 MHz instrument. LC-MS 

was performed on an Agilent Technologies 1200 HPLC with a Gemini C18 column (5 μm, 

2 x 50 mm; Phenomenex). This was coupled to an Agilent Technologies 6130 quadrupole 

mass spectrometer system containing an ESI source run in positive mode. The aqueous 

mobile phase was (A) H2O with 0.1% formic acid, and the organic mobile phase was (B) 

acetonitrile with 0.1% formic acid. A 5-95% B gradient was run over 12 min with a flow 

rate of 0.7 mL/min. 

 

3,3,3-Trifluoropropanoyl-N-Acetylcysteamine Thioester (3.1) 

1H NMR (400 MHz, CDCl3) δ 1.97 (s, 3H, CH3-C=O), 3.10-3.15 (m, 2H, S-CH2), 3.39 (q, 

2H, J = 9.97 Hz, CF3-CH2), 3.45-3.50 (m, 2H, N-CH2), 5.84 (br s, 1H, NH). 

13C NMR (400 MHz, CDCl3) δ 22.10 (s, CH3-C=O), 29.10 (s, S-CH2), 38.95 (s, N-CH2), 

45.49-46.00 (m, F3C-CH2), 122.97 (q, J = 277.53 Hz, CF3), 170.85 (s, CH3-C=O), 189.15 

(s, S-C=O). 

19F NMR (400 MHz, CDCl3) δ -62.79 (t, 3F, J = 9.95 Hz, CF3). See also Figures 3.4A and 

3.5A. ESI-MS expected mass: 230.2; observed mass: 230.2. 

 

3-Oxo-5,5,5-Trifluoropentanoyl-N-Acetylcysteamine Thioester (3.3) 
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1H NMR (400 MHz, CDCl3) δ 1.98 (s, 3H, CH3-C=O), 2.99 (q, 2H, J = 6.77 Hz, CF3-CH2, 

keto), 3.10-3.15 (m, 2H, S-CH2), 3.40-3.45 (m, 2H, CF3-CH2, enol), 3.45-3.50 (m, 2H, N-

CH2), 3.80 (s, 2H, O=C=CH2-C=O), 5.62 (s, 1H, HO-C=CH-C=O, enol), 5.84 (br s, 1H, 

NH). 

13C NMR (400 MHz, CDCl3) δ 22.12 (s, CH3-C=O), 27.10 (s, S-CH2), 38.42 (s, N-CH2), 

38.50-38.55 (m, F3C-CH2, enol), 45.35-45.40 (m, F3C-CH2, keto), 56.19 (s, O=C-CH2-

C=O, keto), 101.53 (s, HOC=CH-C=O, enol), 122.76 (q, J = 277.53 Hz, CF3, enol), 122.86 

(q, J = 277.53 Hz, CF3, keto), 169.68 (s, N-C=O), 190.47 (s, CH2-COH=CH, enol), 191.14 

(s, S-C=O), 193.96 (s, CH2-CO-CH2, keto). 

19F NMR (400 MHz, CDCl3) δ -63.57 (t, J = 10.03 Hz, CF3, enol), -62.45 (t, 3F, J = 10.12 

Hz, CF3, keto). See also Figures 3.4B and 3.5B. ESI-MS expected mass: 272.3; observed 

mass: 272.0. 

 

(3R)-Hydroxy-5,5,5-Trifluoropentanoyl-N-Acetylcysteamine Thioester (3.4) 

1H NMR (400 MHz, CDCl3) δ 1.98 (s, 3H, CH3-C=O), 2.34 (m, 2H, CF3-CH2), 2.81 (m, 

2H, J = 4.06 Hz, HO-C-CH2-C=O), 3.02-3.08 (m, 2H, S-CH2), 3.43-3.50 (m, 2H, N-CH2), 

4.45 (br s, 1H, OH-CH), 5.83 (br s, 1H, NH). 

19F-NMR (400 MHz, DMSO-d6) δ -63.6 (t, J = 10.71 Hz, CF3). ESI-MS expected mass: 

274.3; observed mass: 274.2. 

 

(2RS)-Methyl-3-Oxo-5,5,5-Trifluoropentanoyl-N-Acetylcysteamine Thioester (3.5) 

1H NMR (400 MHz, CDCl3) δ 1.44 (d, 3H, J = 7.06 Hz, O=C-C-CH3, keto), 1.97 (s, 3H, 

O=C-CH3), 3.11 (q, 2H, J = 6.77 Hz, CF3-CH2), 3.10-3.15 (m, 2H, S-CH2), 3.40-3.45 (m, 
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2H, N-CH2), 3.47 (s, 3H, HO-C=C-CH3, enol), 3.85 (q, 1H, J = 7.2, O=C-CH, keto), 6.20 

(br s, 1H, NH). 

13C NMR (400 MHz, CDCl3) δ 12.29 (s, O=C-CH-CH3), 22.06 (s, CH3-C=O), 28.13 (s, S-

CH2), 36.55-36.60 (m, F3C-CH2, enol), 37.95 (s, N-CH2), 43.60-43.65 (m, F3C-CH2, keto), 

60.41 (s, O=C-CH-C=O, keto), 107.11 (s, HO-C=C-C=O), enol), 117.90 (q, J = 277.53 Hz, 

CF3, enol), 127.41 (q, J = 277.53 Hz, CF3, keto), 169.77 (s, HN-C=O), 193.76 (s, HO-C, 

enol), 195.37 (s, S-C=O), 197.46 (s, CH2-CO-C , keto). 

19F NMR (400 MHz, CDCl3) δ -62.91 (t, 3F, J = 10.12 Hz, CF3, enol), -62.54 (t, 3F, J = 

10.03 Hz, CF3, keto). See also Figures 3.4C and 3.5C. ESI-MS expected mass: 286.3; 

observed mass: 286.0. 
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 Figure 3.4. 1H NMR spectra of (A) substrate 3.1, (B) substrate 3.3, and (C) substrate 3.5. 
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Figure 3.5. 13C NMR spectra of (A) substrate 3.1, (B) substrate 3.3, and (C) substrate 3.5. 
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Protein Expression 

The construction of the expression plasmids is detailed in Piasecki et al., 2011. Expression 

plasmids were transformed into Escherichia coli BL21(DE3) cells. Overnight cultures 

were inoculated into Luria broth containing 25 mg/L kanamycin and grown at 37°C to an 

OD600 of 0.6. Cells were then cooled to 15°C, induced with 1 mM IPTG, and left to grow 

for an additional 16 hr. Cells were spun down at 4,000 x g for 30 min at 4°C, and pellets 

were resuspended in lysis buffer (10% v/v glycerol, 300 mM NaCl, 50 mM Tris [pH 8.0]). 

Cells were lysed via sonication and centrifuged at 30,000 x g for 30 min at 4°C. Cell lysate 

was dialyzed twice into dialysis buffer (10% v/v glycerol, 100 mM NaCl, 30 mM HEPES, 

[pH 7.5]) using 10 kDa MWCO cellophane dialysis tubing. Dilutions of each protein were 

either compared to purified enzyme of known concentration, or BSA as a standard to 

determine their concentrations within the lysate (Figure 3.6). 

Kinetic Assays Analyzed by Reverse-Phase HPLC 

HPLC analysis was performed at 235 nm on a Waters 1525 binary pump attached to a 2998 

PDA detector on a Microsorb C18 column (300 μm, 250 x 4.6 mm, Varian). A gradient of 

5%-100% B was employed (solvent A: H2O containing 0.1% TFA; solvent B: MeOH 

containing 0.1% TFA). 

EryTE and Substrate 3.1 

Assays were set up using 115 μM EryTE cell lysate with either 3.75, 7.5, 15, 30, 60, or 120 

mM of 3.1 at a final volume of 1.5 mL. The substrate was dissolved in 4% v/v DMSO-d6 

prior to mixing into 10% v/v glycerol, 200 mM HEPES, pH 7.5 (final concentration). 100 

μL timepoints were taken every 10 min for 1 hr by quenching with 500 μL EtOAc. Each  
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Figure 3.6. 12% SDS-PAGE gels helped to estimate the concentrations of overexpressed 
PKS enzymes in the cell lysate through either a comparison with purified enzyme, or a 1 
mM BSA standard. Enzymes used in kinetic assays (EryTE and TylKR1) were compared 
to purified enzyme to more accurately determine their concentrations within lysate. 
Standards were made by mixing known concentrations of purified enzyme with E. coli 

BL21(DE3) cell lysate.  
(A) The intensity of the EryTE band from a 1:50 dilution of EryTE-containing lysate 
equates to a 1:25 dilution of purified EryTE + cell lysate. Since the concentration of 
undiluted, purified EryTE was 95 μM, the concentration of EryTE in this cell lysate prep 
was ~190 μM.  
(B) The concentration of GDH in this cell lysate prep was estimated at ~480 μM through a 
comparison with BSA standards  
(C) The concentration of TylKR1 in this cell lysate prep was estimated at ~325 μM through 
a comparison with TylKR1 standards (undiluted, purified TylKR1 was 163 μM).  
(D) The concentrations of AmpKR2, RifKR7, and EryKR1 in their cell lysate preps were 
estimated to be ~16 μM, ~19 μM, and ~200 μM, respectively, through a comparison to 
BSA standards. “L” denotes a Fermentas Page Ruler ladder. 
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timepoint was extracted with EtOAc (3 x 500 μL) and dried in vacuo. Prior to injection on 

the HPLC each was dissolved in MeOH. The substrate 3.1 peak was integrated in each 

chromatogram and compared to a standard curve in order to determine initial rates from 

the linear portion of each graph. The standard curve was made by injecting known 

concentrations of 3.1 onto the HPLC, plotting the resulting peak area for each substrate 

concentration, and fitting to a straight line. Rates were plotted against substrate 

concentration using GraFit, and curves were fit to the Michealis equation to extract kinetic 

constants (Figure 3.1). Each assay was performed in duplicate. 

TylKR1 and Substrate 3.3 

30 mM substrate 3.3 was set up in duplicate with 81 μM TylKR1 cell lysate at a final 

volume of 1 mL. The substrate was dissolved in 4% v/v DMSO-d6 prior to mixing into 300 

mM D-glucose, 100 μM NADP+, 1 μM GDH, 10% v/v glycerol, 80 mM NaCl, and 150 

mM Tris, pH 7.5 (final concentration). 100 μL timepoints were taken every 10 min for 1 

hr by quenching with 500 μL EtOAc. Each timepoint was extracted with EtOAc (3 x 500 

μL) and dried in vacuo. Prior to injection on the HPLC each was dissolved in MeOH. Peak 

areas were compared to a standard curve in order to extract initial velocities. The standard 

curve was made by injecting known concentrations of 3.3 onto the HPLC, plotting the 

resulting peak area for each substrate concentration, and fitting to a straight line. 

Kinetic Assays Analyzed by 19F NMR 

Kinetic assays were performed on a Varian Inova 500 MHz instrument in 10 mm tubes. 

Prior to adding the enzyme, the magnetic field was shimmed on the FID from DMSO-d6 
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used to solubilize the substrate. Only expected reactions occurred, as no other peaks arose 

after a 24 hr period (Figure 3.10). 

EryTE and Substrate 3.1 

The reactions were set up the same as reported in the previous HPLC section. The first 

timepoint was taken 15 min after enzyme addition since it takes time to set up the 

instrument (this delay was kept constant in all assays). The peaks were integrated using 

VNMR software, and the areas for each timepoint were compared to a standard curve in 

order to determine concentration from peak area. The standard curve was prepared by 

adding a known amount (2 mg, 10.4 mM final) of 3,3,3-trifluoropropionic acid to solutions 

of substrate 3.1 (final concentrations of 3.75, 7.5, 15, 30, 60, and 120 mM) and comparing 

the peak areas to determine actual concentrations of 3.1 in each array. Arrays were 

collected at 470 MHz at a probe temperature of 27°C, sweepwidth = 9400 Hz, 64K data 

points, pulse angle = 81°, receiver gain = 40, 8 FIDs per timepoint, repetition time of 300 

sec. for 21,600 sec. total. 3,3,3-trifluoropropionic acid was also used as a standard to verify 

product formation (Figure 3.7). 

Figure 3.7. 3,3,3-Trifluoropropionic acid was used as a product standard to confirm 
EryTE product formation. The standard was added to E. coli BL21(DE3) cell lysate. A shift 
of -63.71 ppm aligns with a peak observed in the EryTE hydrolysis assays (Figure 3.1). 
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TylKR1 and Substrate 3.3 

The reactions were set up the same as reported in the previous HPLC section. A standard 

curve was performed in the same manner as with substrate 3.1 but with 7.5, 15, 30, 60, and 

120 mM of 3.3. All acquisition and processing parameters were as reported above. The 

first timepoint was taken 15 min after enzyme addition since it takes time to set up the 

instrument. ESI-MS was performed on the EtOAc-extracted reaction (3 x 500 μL) after 

data collection, and an observed ESI-MS mass of 274.2 matched the expected mass (274.3) 

for the reduced product. 19F and 1H NMR were also used to verify product formation 

(Figure 3.8). 

Stereocontrolled Reduction of Substrate 3.5 

Reduction Assays with AmpKR2, RifKR7, TylKR1, and EryKR1 

KR reduction assays were performed similar to the reduction assays of TylKR1 on 

substrate 3.3. 20 mM of 3.5 was dissolved into 4% v/v DMSO-d6 prior to mixing into 300 

mM D-glucose, 100 μM NADP+, 80 mM NaCl, 10% v/v glycerol, 150 mM Tris, pH 7.5, 

as well as 1 μM GDH, and 5 μM of KR (final concentrations) in an 800 μL volume. 

Reactions were incubated at room temperature, and 19F NMR spectra were acquired on a 

Varian Mercury 400 MHz instrument after 24 hr by moving the reaction into a 10 mm 

NMR tube. Since the anti- diastereomers only shift slightly from the unreduced substrate 

3.3, an additional 19F NMR spectrum is included (Figure 3.9) showing the TylKR1 reaction 

progress after 1 hr in which the substrate and product triplets partially overlap. Once NMR 

analysis was complete for each of the KR types, reactions were extracted with EtOAc (3 x 
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500 μL) and analyzed by ESI-MS. An observed mass of 288.2 verified that the reduced 

product (expected mass of 288.3) was being generated in each KR reaction. 

Figure 3.8. In addition to ESI-MS, 19F and 1H NMR were used to verify formation of 3.4

by TylKR1. (A) A 19F NMR spectrum taken at the completion of the reaction shows a 
triplet at -63.6 ppm. (B) The product was purified and resuspended in CDCl3 to obtain a 1H 
NMR spectrum. After the product was again isolated and added to the reaction solution, 
the same NMR triplet was observed by 19F NMR (A). 
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Figure 3.9. A 19F NMR spectrum showing the transformation of substrate 3.5 to product 
3.8 by TylKR1. The reaction progress was observed 1 hr after enzyme was added. The 
substrate and product peaks partially overlap. 

Figure 3.10. No detectable reaction occurs to the substrates of this study when incubated 
in E. coli BL21(DE3) cell lysate lacking PKS biocatalysts. 
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Chapter 4. Structural and Functional Studies of a trans-Acyltransferase 

Polyketide Synthase Ketoreductase That Reduces α- and β-Keto Groups 

SUMMARY 

While all the domains from cis-acyltransferase-containing modular type I Polyketide 

Synthases (PKSs) have been studied via X-ray crystallography, there are few solved 

domain structures from trans-acyltransferase (AT) variants. The Bacillaene nonribosomal 

peptide synthase (NRPS)/PKS hybrid (PksX) is an example which recruits trans-ATs for 

extender unit delivery during biosynthesis. Here we examine the 2.35 Å structure of the 

first ketoreductase from the Bacillaene NRPS/PKS hybrid (PksKR1) in the presence and 

absence of its cofactor, NADP+. The interesting nature of this enzyme’s dual-function as 

an α- and β-ketoreductase is also characterized using N-acetylcysteamine thioester 

substrate analogs in ketoreduction assays. Activity was observed separately for both α- and 

β-reduction, and incredibly, a native β-keto reducing KR was able to reduce an α-keto 

group stereospecifically. We propose two models for distinct binding conformations for 

both α- and β-reduction, and present a sequence analysis which reveals a residue acting as 

a stereoselective gate-keeper for β-reduction. 

INTRODUCTION 

Type I PKSs do not always carry covalently-attached AT domains; trans-AT PKSs instead 

utilize discrete AT domains (Cheng et al., 2009). The model PKS studied here is the 

Bacillaene PksX synthase from Bacillus subtilis, which is comprised of 5 smaller subunits 

(PksJ, L, M, N, R), two trans-AT domains (PksC & D), a trans-AT-ER (PksE), and a 

cytochrome P450 (PksS), which after catalysis results in the metabolite bacillaene  
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(Reddick et al., 2007; Calderone et al., 2008; Piel, 2010) (Figure 4.1A). This metabolite 

was originally isolated from fermentation broths of B. subtilis, (Patel et al., 1995), and also 

discovered through bioinformatic studies of B. amyloliquefaciens FZB 42 (Chen et al., 

2006), and small molecule screening studies from soil bacteria (Straight et al., 2007). 

Although multiple groups updated the gene annotation of PksX (Calderone et al., 2006; 

Chen et al., 2006; Butcher et al., 2007; Straight et al., 2007), and the structure of bacillaene 

was known (Butcher et al., 2007), it was a decade after bacillaene was discovered when 13 

of the intermediates of this pathway were elucidated. These intermediates were released as 

shunt products (detected by LC-MS) after deletion of the terminal thioesterase (TE) 

(Moldenhauer et al., 2007). Until recently, most research has concentrated on the 

characterization of intermediates and final products in these trans-AT systems within 

PksX, thus much is still unknown about the structural architecture and substrate preferences 

of this megasynthase. 

Perhaps most surprising is the unusual substrate preference of PksJ. The starter unit for the 

first NRPS module of PksX (A-ACP loading didomain) was originally thought to be α-

hydroxyisocaproate (α-HIC), which would be condensed with glycine (from C-A-ACP, 

NRPS module) and passed to the next module (Butcher et al., 2007). Instead it was found 

that the first ketoreductase of PksJ (PksKR1) actually performs α-reduction on an initially-

loaded α-ketoisocaproate (α-KIC) group, as well as its β-reductase activity (Figure 4.1B) 

(Calderone et al., 2008). Therefore, although PksKR1 acts as a β-ketoreductase, 

interestingly it also reduces non-canonically at the α-position on its natural substrate. 

Ketoreductases performing α-reduction are quite rare in the literature, two examples being 

1) an A domain-embedded KR within the cereulide NRPS (domain structure A-KR-PCP) 

that reduces an α-KIC starter unit to D-α-HIC in CesA and L-α-HIC in CesB (Magarvey et 
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al., 2006), and 2) the bryostatin loading module (BryA, proposed to have domain structure 

DH-KR-FkbH-ACP) wherein the KR is hypothesized to perform α-reduction on a 2-

oxopropanoyl-S-ACP thioester after the processing of 1,3-bisphosphoglycerate by FkbH 

and the DH (Figure 4.1C) (Hildebrand et al., 2004; Piel, 2010). Among the few examples 

of α-ketoreduction known, there is no precedent to a ketoreductase that is able to perform 

both α- and β-reduction. The closest example of a dual-function KR is from a fungal PKS 

which is able to produce differing β-hydroxy stereochemistry, based on the length of 

substrate encountered (Zhou et al., 2012). Studies have attempted to provide an α-keto acid 

to a β-reducing KR, yet no reduction was detected by any of the KRs tested (Bali and 

Weissman, 2006; Bali et al., 2006). This may have been due to the KR’s inability to process 

a carboxylic acid, because when the same KRs were tested with 1,2-cyclo-hexanedione, 

slight activity was observed, albeit with reductions in kinetic rates when compared to a 

natural substrate mimic, (2RS)-methyl-3-oxopentanoyl-N-acetylcysteamine thioester (Bali 

and Weissman, 2006; Bali et al., 2006). Thus we were interested in characterizing this dual-

function ketoreductase with S-NAC diketide thioesters, which had not been completed for 

any trans-AT ketoreductases. 

The cis-AT PKSs containing ketoreductases, however, have been well characterized and 

in fact, the product of ketoreduction is easily predicted from multiple sequence motifs 

(Keatinge-Clay, 2007; Keatinge-Clay, 2012). There has yet to be such a system in which 

product stereochemistry can be predicted from trans-AT PKS KRs. Consequently not only 

would biochemical characterization of these domains aid in elucidating the 

stereoselectivity and processivity of these enzymes, but structural information would also 

provide insight where sequence cannot, enabling a better understanding of KR 

stereoselectivity.  
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Figure 4.1. The Bacillaene PKS (PksX).  
(A) Three trans-AT domains supplement PksX: PksC, D, and E (an AT-ER didomain). 
After further processing by PksL, M, N, and R, dihydrobacillaene is oxidized by a 
cytochrome P450 (PksS) to bacillaene.  
(B) The order of α- and β-ketoreduction is still unclear, hence either route is possible 
toward the saturated product of enoylreduction.  
(C) An example of α-ketoreduction lies in the proposed starter unit biosynthesis by BryA 
with domain order of DH-KR-FkbH-ACP. Bisphosphoglycerate is dephosphorylated by 
FkbH, dehydrated by the DH, and α-reduction is performed by the KR after rearrangement.
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Only two crystal structures from trans-AT PKSs have been reported to date: an AT from 

the disorazol PKS (PDB: 3RGI and 3SBM) and an ACP didomain from the mupirocin PKS 

(PDB: 2L22) (Wong et al., 2011; Dong et al., unpublished). A crystal structure was 

obtained for PksC from B. subtilis, one of the trans-ATs from PksX, yet no structural 

information or catalytic characterization has followed (Cuskin et al., 2011). The atypical 

architectures of modules within trans-AT PKSs result in an array of product possibilities, 

unlike the cis-AT PKSs, which are capable of a mere eight module types (Piel, 2010). This 

leads to difficulty in the prediction of intermediates or final products, which is exacerbated 

by the lack of existing trans-AT PKS sequences.  Analyzing structural information of these 

megasynthases seems to be the only answer to understanding how the systems operate, thus 

an increase in known structures from trans-AT systems is desired. Here, we present the 

structure of the first ketoreductase of PksX (PksKR1) with hopes to reveal any clues 

regarding the enzyme’s ability to catalyze both α- and β-reduction on the same substrate. 

A 2.35 Å structure of PksKR1 in complex with NADP+ is presented, alongside sequence 

analysis of other trans-AT PKS KRs which reveals a residue important for β-reduction. 

Reduction assays were also carried out using S-NAC thioester substrate mimics, and two 

binding modes are proposed to describe the dual-function of this KR. 

RESULTS AND DISCUSSION 

Crystallization of PksKR1 domain 

The gene for PksKR1 was cloned from Bacillus subtilis genomic DNA and inserted into a 

pET28b backbone. Expressed protein containing an N-terminal 6x His tag was purified via 

nickel affinity chromatography then gel filtration for crystallization trials. 
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Selenomethionine-labeled protein was also expressed and its crystals used to solve the 

phases via single wavelength anomalous dispersion (SAD). Two structures resulted: the 

apo structure (3.0 Å), and complexed structure (2.35 Å) containing electron density for the 

cofactor after co-crystallizing with 5 mM NADP+ (Table 4.1). The ~50 kDa PksKR1 

protein consists of two Rossmann-like folds, one of which is structural and the other 

catalytic. The structural subdomain does not contain the NAD(P)H binding motif that is 

included in the catalytic subdomain (TGGAGSLG in this structure); therefore, the 

structural portion of the KR is thought to stabilize the catalytic portion during catalysis. In 

PksKR1, NADPH and NADH have both been shown as active hydride donors in 

biocatalytic assays (Calderone et al., 2008). As expected, the PksKR1 active site contains 

the same catalytic residues (Y330, K293, S317) as cis-AT PKS KRs with no major 

conformational changes once cofactor binds (Figure 4.2A and 4.2B). The NADP+-

complexed structure exhibits full electron density around most of the cofactor (Figure 

4.2C), and is positioned to deliver a hydride to the substrate β-carbonyl (also see Figure 

4.3). 
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Table 4.1. Data Collection and Refinement Statistics. 
 

Data Collection    

Dataset Protein Protein-NADP+ Seleno-Protein 

Wavelength (Å) 0.9765 0.9795 0.9765 

Space group P61 P61 P61 

Cell dimensions      

a, b, c (Å) 59.6, 59.6, 221.1 59.5, 59.5, 220.8 59.5, 59.5, 221.5 

Resolution (Å) 50-3.0(3.05-3.0) 50-2.35(2.39-2.35) 50-2.6(2.64-2.60) 

Rmerge 0.134(0.502) 0.069(0.464) 0.14(1.0) 

I / σ(I) 18.4(4.6) 25.8(5.2) 24(2.8) 

Completeness (%) 99.9(100) 99.4(100) 100(100) 

Redundancy 9.5(9.6) 10.9(11.1) 22.5(19.7) 

    

Refinement    

Resolution (Å) 50-3.0 50-2.35  

No. reflections 8353 17260  

Rwork / Rfree 0.258/0.290 0.232/0.253  

No. atoms    

Protein 3330 3330  

NADP+  48  

B-factors (Å2)    

Protein 67.441 73.199  

NADP+  31.824  

R.m.s. deviations    

Bond lengths (Å) 0.011 0.008  

Bond angles (°) 0.865 1.091  
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Figure 4.2. The active site of PksKR1.  
(A) A stereoview of NADP+ (yellow) within the active site of PksKR1. Residues shown 
are those that interact with cofactor, based on Ligplot prediction.  
(B) A Ligplot representation showing interactions between NADP+ (yellow) and PksKR1 
residues.  
(C) The |Fo-Fc| omit map of NADP+ against the final structure (contoured at 3.0 σ) 
illustrates the extent to which the cofactor fits within electron density. 
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Comparing KRs from cis-AT and trans-AT PKSs 

We were interested in the crystallographic elucidation of this ketoreductase in order to 

uncover structural evidence for its dual α- and β-reduction functionality. Upon assessment 

of the PksKR1 sequence, it was obvious that a sequence-to-function analysis (which is 

possible with cis-AT PKS KRs) was not possible. The most obvious difference is the lack 

of the LD portion of the LDD motif as found in B-type β-reducing KRs (highlighted grey 

in Figure 4.4). Usually, if a β-reducing KR lacks an LDD motif, it is deemed A-type and 

Figure 4.3. The |2Fo-Fc| map. Map of PksKR1 active site residues (contoured at 2.0 σ) 
illustrate the extent to which these residues and cofactor fit within electron density. Map 
was hidden for clarity of residues not shown. Active site residues and cofactor maintain 
the same orientation as in other solved KR structures. 
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there is a conserved Trp that instead interacts with the substrate, guiding entrance in from 

the left, behind the lid helix; yet that residue is missing from PksKR1 as well. Instead, Leu 

is found at that position (highlighted orange in Figure 4.4), which is sometimes seen for 

β-reducing KRs that are B1-type. Interestingly, 3 residues N-terminal to the active site Tyr 

resides a very well-conserved Gln which is normally seen in A1- and B1-type KRs 

(highlighted green in Figure 4.4). The lid helix in the crystal structure of PksKR1 does sit 

further away from the active site than the lid helix in the EryKR1 structure (Figure 4.5), 

which may provide a larger active site for the longer substrate which PksKR1 encounters. 

The lid helix is also slightly longer than in KRs that are not neighboring other processing 

enzymes, which is also seen in the Spn(KR+ER)2 didomain structure (Zheng et al., 2012). 

Because we were unable to characterize this ketoreductase using the established cis-AT 

PKS KR motifs, we were interested in finding conserved residues in trans-AT PKS KRs 

that could possibly form similar rules. 

KR sequences from 10 PKS pathways were chosen for sequence analysis to predict whether 

a substrate would be reduced to a D- or L-hydroxy product. KRs from these PKS pathways 

were chosen if they resided alongside a dehydratase (DH) domain. In most cases, DHs from 

cis-AT PKSs will install a trans double bond if the hydroxyl group is of “D” 

stereochemistry (Wu et al., 2005; Guo et al., 2010; Valenzano et al., 2010; Keatinge-Clay, 

2012) and a cis double bond if the hydroxyl group instead is of “L” stereochemistry (Reid 

et al., 2003; Keatinge-Clay, 2008; Akey et al., 2010; Bonnett et al., 2013). Accordingly, 

KR sequences were further separated into two categories based on their known or predicted 

isomerism of the olefin intermediate (Piel, 2010): 1) KRs that are predicted to yield L-

hydroxy intermediates (a cis double bond, or an “A-type” KR), and 2) KRs that are 

predicted to yield D-hydroxy intermediates (a trans double bond, or a “B-type” KR). Once 
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separated, the catalytic portion of those KR sequences were then aligned using ClustalW. 

Motifs and conserved residues normally found in cis-AT PKS KRs are highlighted in 

Figure 4.4.  

The Lys, Ser, and Tyr catalytic triad (colored in fuchsia) is conserved in all sequences, 

except the KR from module 12 of the chivosazol PKS, which contains an Ala in place of 

the Ser. A conserved Gln (in green) is present in most of these KRs, which is also seen in 

cis-AT PKS KRs, except for virginiamycin KR1, bryostatin KR5, and disorazol KRs 5 and 

7. The LDD motif (in grey) normally found in cis-AT PKS KRs, which predicts reduction 

to be of D-configuration, is present in only a few of the trans-AT PKS KRs, yet those 

missing the motif do not have the Trp normally found (in orange) in KRs which yield L-

hydroxy stereochemistry. In most KRs from cis-AT PKSs there is usually an invariant Asn 

4 residues C-terminal to the catalytic Tyr (in yellow), yet PksKR1 (signified by a star) and 

one third of the other trans-AT PKS KRs analyzed in this study instead have a Ser or Cys 

in its place. When comparing “A-type” to “B-type” KRs from trans-AT PKSs, one 

significant difference is the presence (or absence) of the final Asp in the LDD motif. We 

believe that this residue sets these two KR types apart, so if a trans-AT PKS KR contains 

this final Asp of the motif, it will normally produce a D-hydroxy group, and if the final 

Asp is replaced by another residue, the KR will normally yield an L-hydroxy group.  
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Figure 4.4. Sequence analysis reveals a residue important for determining trans-AT PKS 
KR stereochemistry (on previous page). 
A sequence analysis displays motifs shared between trans-AT PKS KRs and cis-AT PKS 
KRs. Sequences were taken from modules which contain a neighboring DH. PksKR1 is 
labeled with a star. The LDD motif is highlighted in grey, with the last Asp denoted with 
an arrow. This residue is conserved in all trans-AT PKS KRs that are hypothesized to 
produce D-hydroxy stereochemistry. The placement of the conserved Trp in all A-type cis-
AT PKS KRs is marked with a W and highlighted in orange. 
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Stereochemical Assays  

Reduction assays were performed in order to determine whether PksKR1 is able to 

maintain natural stereocontrol on substrates linked to a truncated phosphopantetheinyl arm 

mimic (N-acetylcysteamine). Compounds 4.1-4.5 were synthesized (see Experimental 

Procedures and Figure 4.8) and utilized in ketoreduction assays employing a NADPH 

regeneration scheme (Piasecki et al., 2011). Glucose dehydrogenase (GDH, from B. 

subtilis) was used to regenerate the reduced cofactor NADPH, providing the ketoreductase 

with a continual supply for catalysis. The substrates α-ketoisocaproyl-N-acetylcysteamine 

Figure 4.5. PksKR1 was overlaid with EryKR1 (PDB: 2FR0) to show structural 
differences between the two enzymes. Differences arise in the active site Tyr and lid helix 
(some of which was removed for clarity), yet the LDD loop remains static in both 
structures, although the bacillaene KR only contains the last Asp in that motif (S273 and 
K274 replace the first two residues). 
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thioester (α-KIC-S-NAC, 4.1), α-ketoisocaproyl-γ-aminobutyryl-N-acetylcysteamine 

thioester (α-KIC-GABA-S-NAC, 4.2), 3-oxopentanoyl-N-acetylcysteamine thioester (4.4) 

and (2RS)-methyl-3-oxopentanoyl-N-acetylcysteamine thioester (4.5) were provided to 

PksKR1 and products were analyzed via chiral HPLC (Figure 4.6). Standard (4S)-α-

hydroxyisocaproyl-γ-aminobutyryl-N-acetylcysteamine thioester ((4S)-α-HIC-GABA-S-

NAC, 4.3) was used to verify stereochemistry of the PksKR1 product for α-reduction.  

We found that not only is the KR able to reduce stereospecifically at the α-position on its 

natural substrate mimic 4.2 (Figure 4.6A), which aligned with reduced standard 4.3, but it 

is also able to reduce at the β-position on 4.4 (aligning with other KRs that produce “D” 

stereochemistry) (Figure 4.6B). Since 4.4 elutes as an extremely broad peak, it was not 

shown in the chromatogram. Remarkably, EryKR1 (a “B-type” β-reducing KR in nature) 

was also able to reduce 4.2 stereospecifically to the “B-type” product, yet TylKR1 (also a 

“B-type” β-reducing KR in nature) did not show any activity on this substrate. Reduction 

of 4.1 was not observed via HPLC or LC-MS for any of the KRs tested. It may be that 

PksKR1 gains binding energy from interactions with longer substrates, which was 

previously observed for cis-AT PKS KRs of downstream modules, reducing poorly on 

shorter S-NAC substrates (Piasecki et al., 2011). As expected, the resulting stereochemistry 

for the reduction of 4.4 was the “3D” isomer (Figure 4.6B), as observed in the reduction 

of the natural substrate; however, we were unsure which stereoisomer would be observed 

when PksKR1 was given the opportunity to be stereoselective at the α-position; hence, the 

reduction of 4.5 was attempted. No reduction was detected via HPLC or LC-MS when 

supplying the PksKR1 with 4.5 (data not shown). Although this KR was not observed to 

be an active reductase for substrates containing an α-methyl group, it still functions well as 

an α- and β-ketoreducing KR if no α-substituent is present, other than an α-keto group. The 
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fact that PksKR1 is a robust α- and β-reducing KR with substrates attached to shorter 

phosphopantetheinyl arm mimics is in itself a remarkable result. Since we controlled which 

type of reduction PksKR1 was to perform with the substrate provided, the order of α- and 

β-reduction in nature is still unknown. 
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Figure 4.6. Chiral HPLC analysis of PksKR1 α- and β-reduction (on previous page).  
(A) PksKR1, TylKR1, and EryKR1 reduction of 4.2. TylKR1 is inactive toward this 
substrate, whereas EryKR1 and PksKR1 reduce to D- and L-stereochemistry, respectively. 
Standard 4.3 verifies the stereochemistry of PksKR1 reduction.  
(B) PksKR1, TylKR1, EryKR1, MycKRA, and AmpKR2 reduction of 4.4. All KRs were 
able to reduce 4.4 with expected natural stereochemistry. Substrate 4.4 elutes as an 
extremely broad peak and is therefore not shown for clarity. All product peaks were 
confirmed by LC-MS. 
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Two Binding Conformation Models Describe the Dual-Function of PksKR1 

Two models are proposed in Figure 4.7 to account for the differing stereochemical 

outcome of PksKR1’s α- and β-reduction. The natural substrate PksKR1 encounters is 

depicted as a SNAC thioester mimic and was modeled into the active site using Coot. For 

α-reduction that yields “L” stereochemistry, the substrate was modeled in using an A-type 

KR as a guide (Figure 4.7A). For β-reduction that yields “D” stereochemistry, the substrate 

was instead modeled in using a B-type KR as a guide (Figure 4.7B). (Zheng et al., 2013). 

The A-type KRs position the re-face of the keto group toward the NADPH hydride to yield 

“L” stereochemistry, whereas the B-type KRs position the si-face of the keto group toward 

the hydride to be delivered and therefore yield “D” stereochemistry. We hypothesize that 

the final Asp in the LDD motif plays a critical role in guiding the substrate into the active 

site from the right side, behind the lid helix in the trans-AT PKS KRs that are predicted to 

yield the “B-type” product of “D” stereochemistry. There does not appear to be sufficient 

area for the substrate to enter in from the left side behind the lid helix to perform β-

reduction yielding “L” stereochemistry, as the terminal methyl groups would cause steric 

clashes with residues within the active site. This could explain why PksKR1 does not 

perform L-β-reduction. Although we contribute both models, only a crystal structure of an 

enzyme-substrate complex will accurately reveal how KRs from these trans-AT PKS 

pathways guide substrates into the active site for stereospecific reduction. 
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SIGNIFICANCE 

We have presented for the first time the structure of an α-reducing KR, which also is the 

only known KR to reduce both α- and β-keto groups in nature. As a standalone enzyme, 

PksKR1 is a remarkable model to study: its unprecedented dual-function reductase activity 

has been shown in this study to translate to shorter substrate mimics, and the proposed 

Figure 4.7. Two Proposed Models for Substrate Binding. The substrate is depicted as a 
SNAC thioester for clarity. Direction of ACP arm is therefore noted in the figure. 
(A) α-reduction: the substrate enters the active site from the left side behind the lid helix, 
positioning the re-face of the α-keto group toward the NADPH hydride to yield “L” 
stereochemistry.  
(B) β-reduction: the substrate enters the active site from the right side behind the lid helix, 
presenting the si-face of the β-keto group toward the NADPH hydride to yield “D”
stereochemistry. 
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binding modes presented here showcase a structural basis for dual-catalysis. Since 

harnessing KR catalytic function is key to producing new biologically-relevant drug 

targets, this bifunctional KR is not only a valuable tool for biochemists, but also organic 

chemists wishing to incorporate unique stereopure compounds into retrosynthetic 

syntheses. 

EXPERIMENTAL PROCEDURES 

Cloning, Protein Expression, and Purification 

The gene for PksKR1 was amplified from B. subtilis gDNA with primers 5-

ATCGTAATCcatatgGAACGCTTAATGCTTGAACCGGTGT-3 and 5-

TGATTCGATgaattcATCCTTGATCCTGATCCGCCTTTCTC-3, resulting in restriction 

sites NdeI and EcoRI (shown in lowercase). These sites were used to clone the fragment 

into pET28b plasmid, which was subsequently transformed into BL21(DE3) Escherichia 

coli cells. The cells were grown to an OD600 of 0.5 in Luria broth containing 50 mg/L 

kanamycin at 37°C, and the temperature was then dropped to 15°C prior to inducing protein 

expression with 0.5 mM IPTG, and grown for an additional 16 hours. Cells were collected 

via centrifugation at 4,000 x g for 30 min, resuspended in lysis buffer containing 500 mM 

NaCl and 30 mM HEPES pH 7.5, and lysed by sonication. Cell debris was removed by 

centrifugation at 30,000 x g for 30 min and the cell lysate was then poured over Ni-NTA 

resin (Qiagen) which was equilibrated in lysis buffer. Bound protein was washed with lysis 

buffer containing 15 mM imidazole, and eluted with lysis buffer containing 150 mM 

imidazole. A Superdex 200 gel filtration column equilibrated with 150 mM NaCl and 10 

mM HEPES pH 7.5 was used to polish prior to crystallization trials. Buffer exchange into 
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25 mM NaCl, 10 mM HEPES pH 7.5, and 1 mM DTT was performed using protein 

concentrators to a final concentration of ~50 mg/mL. 

Crystallization and Structure Determination 

Crystals of PksKR1 grew over one week by sitting drop vapor diffusion at 22°C. 

Selenomethionine-labeled crystals were formed by mixing 2 μL protein solution (23.5 

mg/mL PksKR1 in 25 mM NaCl, 1 mM DTT, and 10 mM HEPES [pH 7.5]) with 1 μL 

crystallization buffer (30% Jeffamine ED-2001 and 0.1 M HEPES [pH 7.0]). Native 

crystals were formed by mixing equal volumes of protein solution and crystallization buffer 

(25% w/v PEG 1000 and 0.1 M Tris [pH 8.5]). A final concentration of 5 mM NADP+ was 

added to the native protein solution to obtain crystals of the PksKR1/NADP+ complex, 

which were formed by mixing equal volumes of protein solution and crystallization buffer 

(30% w/v PEG 400 and 0.1 M Tris [pH 8.5]). Crystals were frozen in liquid nitrogen. The 

selenomethionine-labeled data sets and the native data sets were collected at ALS 

Beamlines 5.0.3 and 5.0.2, respectively. All data set were processed in HKL2000. The 

structure was solved by single wavelength anomalous dispersion phasing using the 

program Phenix.  All models were iteratively built and refined by using the programs Coot 

and Refmac5. 

Synthetic Protocols  

Compounds 4.1-4.5 for Ketoreduction Assays 

 

Also see Figure 4.8. 
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N-Acetylcysteamine 

Synthesis followed as previously described (Piasecki et al., 2011). 

 

α-Ketoisocaproyl-N-Acetylcysteamine Thioester (α-KIC-SNAC) (4.1) 

To a stirred solution of 4-methyl-2-oxopentanoic acid (260 mg, 2.0 mmol, 1.0 eq.) in DMF 

(8 mL) at 23°C was added N,N-diisopropylethylamine (0.89 mL, 5.0 mmol, 2.5 eq.) 

followed by HBTU (830 mg, 2.2 mmol, 1.1 eq.).  After 5 min. N-acetylcysteamine (0.23 

mL, 2.2 mmol, 1.1 eq.) was added in one portion.  At 12 hr, the reaction was diluted with 

1:1 hexanes:EtOAc (50 mL) and washed with sat. aqueous LiCl (3 x 50 mL).  The organic 

layer was dried over sodium sulfate and concentrated in vacuo to furnish 4.1 (38 mg, 8%) 

as a pale oil. 

1H NMR (400 MHz, CDCl3) δ 5.75 (bs, 1H), 3.47 (q, J = 6.2 Hz, 2H), 3.10 (t, J = 6.7 Hz, 

2H), 2.70 (d, J = 6.9 Hz, 2H), 2.14-2.23 (m, 1H), 1.98 (s, 3H), 0.97 (d, J = 6.7 Hz, 6H). 

ESI-MS expected mass: 232.3; observed mass: 232.2. 

 

Methyl-4-(4-Methyl-2-Oxopentanamido)Butanoate (4.2a) 

To a stirred solution of 4-methyl-2-oxopentanoic acid (150 mg, 1.15 mmol, 1.0 eq.) in 

DMF (5.8 mL) at 23°C was added N,N-diisopropylethylamine (0.51 mL, 4.0 mmol, 3.5 

eq.) followed by HBTU (493 mg, 1.30 mmol, 1.1 eq.).  The solution was stirred for 5 min 

and γ-aminobutyric acid methylester hydrochloride (199 mg, 1.30 mmol, 1.1 eq.) was 

added in one portion.  After 12 hr, the reaction was diluted with 1:1 hexanes:EtOAc (100 

mL) and washed with sat. aqueous LiCl (3 x 50 mL). The organic layer was dried over 

sodium sulfate and concentrated in vacuo to furnish 4.2a (72 mg, 27%) as a pale oil, which 
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did not require chromatographic purification. For analytical purposes, the material was 

chromatographed on silica gel eluting with 3:1 hexanes:EtOAc. 

1H NMR (400 MHz, CDCl3) δ 7.08 (bs, 1H), 3.68 (s, 3H), 3.34 (q, J = 6.8 Hz, 2H), 2.79 

(d, J = 6.8 Hz, 2H), 2.37 (t, J = 7.2 Hz, 2H), 2.16 (m, 1H), 1.89 (p, J = 7.2 Hz, 2H), 0.95 

(d, J = 6.5 Hz, 6H). 

 

4-(4-Methyl-2-Oxopentanamido)Butanoic Acid (4.2b) 

To a stirred solution of 4.2a (72 mg, 0.31 mmol, 1.0 eq.) in THF (1.6 mL) at 0°C was 

slowly added a solution of 1 M aqueous NaOH (0.47 mL, 0.47 mmol, 1.5 eq.).  The reaction 

was allowed to warm to 23°C and at 5 hr the reaction was cooled to 0°C and a solution of 

1 M aqueous HCl (0.5 mL) was added.  The reaction was diluted with EtOAc (50 mL) and 

the aqueous layer was separated.  The organic layer was dried over sodium sulfate and 

concentrated in vacuo. Crude 4.2b was used immediately without further purification. 

 

α-Ketoisocaproyl-γ-Aminobutyryl-N-Acetylcysteamine Thioester (α-KIC-GABA-SNAC) 

(4.2) 

To a stirred solution of crude 4.2b (160 mg, 0.74 mmol, 1.0 eq.) in DMF (3.7 mL) at 23°C 

was added N,N-diisopropylethylamine (0.33 mL, 1.85 mmol, 2.5 eq.) followed by HBTU 

(340 mg, 0.90 mmol, 1.2 eq.).  After 5 min N-acetylcysteamine (0.09 mL, 0.90 mmol, 1.2 

eq.) was added in one portion.  After 12 hr the reaction was diluted with 1:1 hexanes:EtOAc 

(50 mL) and was washed with sat. aqueous LiCl (3 x 50 mL).  The organic layer was dried 

over sodium sulfate and concentrated in vacuo.  The crude material was chromatographed 

on silica gel eluting with 1:2 hexanes:EtOAc to yield 4.2 (58 mg, 24%) as a pale yellow 

oil. 
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1H NMR (400 MHz, CDCl3) δ 6.10 (bs, 1H), 5.79 (bs, 1H), 3.45 (q, J = 12 Hz, J = 5.8 Hz, 

2H), 3.33 (qd, J = 6.8 Hz, J = 2.7 Hz, 2H), 3.03 (m, 2H), 2.63 (t, J = 6.8 Hz, 2H), 1.97 (s, 

3H), 1.92 (dt, J = 6.8 Hz, J = 2.7 Hz, 1H), 1.84 (m, 1H), 1.66 (m, 2H), 1.53 (m, 2H), 0.97 

(d, J = 6.6 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H). ESI-MS expected mass: 317.4; observed mass: 

317.3. 

  

(S)-2-((tert-Butyldimethylsilyl)oxy)-4-Methylpentanoic Acid (4.3a) 

To a stirred solution of (S)-(-)-2-hydroxyisocaproic acid (500 mg, 3.8 mmol, 1.0 eq.) in 

DMF (2.0 mL) at 23°C was added imidazole (1.24 g, 18.2 mmol, 4.8 eq.) followed by TBS-

Cl (1.37 g, 9.1 mmol, 2.4 eq.).  The pale yellow solution was stirred for 18 hr and diluted 

with 100 mL of 1:1 hexanes:EtOAc.  The solution was washed with 10% aqueous citric 

acid (30 mL), saturated NaHCO3 (50 mL), H2O (50 mL), and then brine (50 mL).  The 

organic layer was dried over sodium sulfate and concentrated in vacuo.  The residue was 

dissolved in MeOH (40 mL), cooled to 0°C, and K2CO3 (1.3 g, 9.5 mmol, 2.5 eq.) and 

water (12 mL) were added.  The resulting mixture was stirred for 4 hr at 23°C and the 

solvent was removed in vacuo.  The residue was dissolved in H2O (20 mL), cooled to 0°C 

and acidified to pH 4 by addition of 10% aqueous citric acid solution.  The aqueous solution 

was washed with EtOAc (50 mL) and the organic layer was separated.  The aqueous layer 

was washed with EtOAc (50 mL) and the combined organic layers were dried over sodium 

sulfate and concentrated in vacuo.  The crude product was chromatographed on silica gel 

eluting with 2:1 EtOAc:hexanes to afford 4.3a (68%, 640 mg) as a pale clear oil. 

1H NMR (400 MHz, CDCl3) δ 4.27 (dd, J = 7.2 Hz, J = 5.1 Hz, 1H), 1.82 (m, 1H), 1.67-

1.56 (m, 2H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (s, 9H), 0.94 (d, J = 6.6 Hz, 3H), 0.14 (s, 3H), 

0.13 (s, 3H). 
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Methyl-(S)-4-(2-((tert-Butyldimethylsilyl)oxy)-4-Methylpentanamido)Butanoate (4.3b) 

To a stirred solution of 4.3a (140 mg, 0.57 mmol, 1.0 eq.) in DMF (2.9 mL) at 23°C was 

added N,N-diisopropylethylamine (0.36 mL, 2 mmol, 3.5 eq.) followed by HBTU (259 mg, 

0.68 mmol, 1.2 eq.).  After 5 min γ-aminobutyric acid methylester hydrochloride (107 mg, 

0.68 mol, 1.2 eq.) was added in one portion.  After 12 hr, the reaction was diluted with 1:1 

hexanes:EtOAc (100 mL) and washed with sat. aqueous LiCl solution (3 x 50 mL).  The 

organic layer was dried over sodium sulfate and concentrated in vacuo to furnish 4.3b (150 

mg, 76%) as a tan oil which did not require further purification.  For analytical purposes, 

the material was chromatographed on silica gel eluting with 1:1 hexanes:EtOAc (Rf 0.5, 

2:1 hexanes:EtOAc). 

1H NMR (400 MHz, CDCl3) δ 6.64 (bs, 1H), 4.12 (dd, J = 7.2 Hz, J = 4.8 Hz, 1H), 3.68 (s, 

3H), 3.29 (qd, J = 7.2 Hz, J = 3.1 Hz, 2H), 2.36 (t, J = 7.5 Hz, J = 7.2 Hz, 2H), 1.88-1.74 

(m, 3H), 1.56 (m, 2H), 0.93 (s, 9H), 0.92 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.09 

(s, 3H), 0.06 (s, 3H). 

 

(S)-4-(2-((tert-Butyldimethylsilyl)oxy)-4-Methylpentanamido)Butanoic Acid (4.3c) 

To a stirred solution of 4.3b (150 mg, 0.43 mmol, 1.0 eq.) in THF (2.1 mL) at 0°C was 

added a solution of aqueous NaOH (1.0 M, 1.29 mL, 1.29 mmol, 2.0 eq.) and upon 

complete addition the reaction was allowed to warm to 23°C.  At 5 hr, the reaction was 

cooled to 0°C and was treated with 1 M HCl (aqueous, 1.4 mL).  The reaction was diluted 

with EtOAc (100 mL) and the aqueous layer was separated.  The organic layer was dried 

over sodium sulfate and concentrated in vacuo to furnish 4.3c (125 mg, 88%) as a white 

soft solid.  The crude material was used without further purification. 
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1H NMR (400 MHz, CDCl3) δ 6.74 (bs, 1H), 4.15 (dd, J = 7.2 Hz, J = 4.8 Hz, 1H), 3.35 

(m, 2H), 2.39 (t, J = 7.2 Hz, 2H), 1.91-1.74 (m, 3H), 1.56 (m, 2H), 0.93 (s, 9H), 0.93 (d, J 

= 6.5 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.11 (s, 3H), 0.07 (s, 3H). 

 

S-(2-Acetamidoethyl)-(S)-4-(2-((tert-Butyldimethylsilyl)oxy)-4-Methylpentanamido) 

Butanethioate (4.3d) 

To a stirred solution of 4.3c (162 mg, 0.49 mmol, 1.0 eq.) in DMF (2.5 mL) at 23°C was 

added N,N-diisopropylethylamine (0.36 mL, 2.0 mmol, 4.0 eq.) followed by HBTU (224 

mg, 0.59 mmol, 1.2 eq.). After 5 min, N-acetylcysteamine (0.06 mL, 0.59 mmol, 1.2 eq.) 

was added in one portion. After 12 hr, the reaction was diluted with 1:1 hexanes:EtOAc 

and washed with sat. aqueous LiCl (3 x 50 mL). The organic layer was dried over sodium 

sulfate and concentrated in vacuo.  The crude material was chromatographed on silica gel 

eluting with 1:2 hexanes:EtOAc to afford 4.3d (128 mg, 60%) as a pale oil (Rf 0.19, 1:2 

hexanes:EtOAc). 

1H NMR (400 MHz, CDCl3) δ 6.63 (bs, 1H), 6.33 (bs, 1H), 4.13 (dd, J = 6.8 Hz, J = 4.8 

Hz, 1H), 3.44 (q, J = 12.3 Hz, J = 6.2 Hz, 2H), 3.29 (qd, J = 6.8 Hz, J = 2.1 Hz, 2H), 3.04 

(t, J = 6.2 Hz, J = 5.8 Hz, 2H), 2.61 (t, J = 7.2 Hz, 2H), 1.97 (s, 3H), 1.87 (p, J = 7.2 Hz, 

2H), 1.78 (m, 1H), 1.56 (m, 1H), 0.94 (s, 9H), 0.92 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.8 Hz, 

3H), 0.11 (s, 3H), 0.08 (s, 3H). 

 

(4S)-α-Hydroxyisocaproyl-γ-Aminobutyryl-N-Acetylcysteamine Thioester ((4S)-α-HIC-

GABA-SNAC) (4.3) 

To a stirred solution of 4.3d (153 mg, 0.37 mmol, 1.0 eq.) in DCM (3.7 mL) at 23°C was 

added neat TFA (84 μL, 1.1 mmol, 3.0 eq.) in one portion. At 6 hr, the reaction was 
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concentrated in vacuo.  The crude material was chromatographed on silica gel eluting with 

3% MeOH in DCM to 4:1 DCM:MeOH to afford 4.3 (93 mg, 82%) as a clear oil (Rf 0.25, 

3% MeOH in DCM). 

1H NMR (400 MHz, CDCl3) δ 6.67 (bs, 1H), 6.20 (bs, 1H), 4.14 (dd, J = 9.9 Hz, J = 3.1 

Hz, 1H), 3.45 (q, J = 12 Hz, J = 5.8 Hz, 2H), 3.33 (qd, J = 6.8 Hz, J = 2.7 Hz, 2H), 3.03 

(m, 2H), 2.63 (t, J = 6.8 Hz, 2H), 1.97 (s, 3H), 1.92 (dt, J = 6.8 Hz, J = 2.7 Hz, 1H), 1.84 

(m, 1H), 1.66 (m, 2H), 1.53 (m, 2H), 0.97 (d, J = 6.5 Hz, 3H), 0.96 (d, J = 6.5 Hz, 3H). 

13C NMR (100 MHz, CDCl3) δ 199.2, 175.2, 170.9, 70.6, 43.7, 40.8, 39.1, 37.7, 28.8, 25.2, 

24.4, 23.5, 23.0, 21.3. ESI-MS expected mass: 319.2; observed mass: 341.2 [M+Na]+. 

 

3-Oxopentanoyl-N-Acetylcysteamine Thioester (4.4) 

Synthesis followed as previously described (Piasecki et al., 2011).  

 

(2RS)-Methyl-3-Oxopentanoyl-N-Acetylcysteamine Thioester (4.5) 

Synthesis followed as previously described (Piasecki et al., 2011).  
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 Figure 4.8. Synthetic routes to compounds 4.1, 4.2, and 4.3.
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Stereocontrol Assays 

Ketoreduction assays were set up as previously described (Piasecki et al., 2011) with 1.5 

mM substrate dissolved in 10% v/v DMSO, 200 mM HEPES pH 7.5, 100 mM NaCl, 200 

mM D-Glucose, 10% v/v Glycerol, 100 μM NADP+, 1 μM GDH (from B. subtilis), and 5 

μM KR to a total volume of 500 μL and were left at 22°C overnight. Reactions were ethyl 

acetate extracted (3 x 500 μL) and dried in a speedvac. All samples were resuspended in 

ethanol prior to chiral chromatographic analysis. 

Chiral Chromatography 

A ChiralCel OC-H column (250 x 4.6 mm) was used to separate products of ketoreduction 

on a Beckman Coulter System Gold 126 pump and System Gold 166 PDA detector with a 

20 μL loop. Absorbance was tracked at 235 nm. The solvent system and flow rate was 

optimized to be 14% Ethanol in Hexanes at 1 mL/min for 4.1, 4.2, and 4.3, and 7% Ethanol 

in Hexanes at 0.8 mL/min for 4.4 and 4.5. 

Accession Numbers 

Structure Coordinates were deposited in the Protein Data Bank under accession codes 4J1S 

(apo) and 4J1Q (with NADP+). 
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Conclusions and Future Prospects 

Employing the catalytic power of PKS enzymes to generate polyketides possessing 

desired substituents and stereochemistries has long been a goal in biosynthetic engineering. 

Not only would it allow for the production of new medicines, but it would also aid synthetic 

organic chemists to access chirally-pure building blocks for more difficult syntheses. In 

Chapter 2 we showed that ketoreductase domains are quite promiscuous, with most 

retaining their natural stereospecificity when given the opportunity to reduce substrate 

analogs. In Chapter 3 we presented a new technique for monitoring biocatalytic assays in 

cell lysate using 19F NMR. In Chapter 4 we studied the structure of a dual-function 

ketoreductase able to reduce α- and β-carbonyl groups. These studies have provided the 

PKS community with the tools to produce a large library of chirally-pure molecules that 

can be used for further studies. Although this dissertation provides a considerable amount 

of information on the ketoreductase domain as a robust biocatalyst, it is by no means 

exhaustive. Future studies will be required to fully understand the full potential of these 

powerful catalysts. The most promising avenue seems to lie in the trans-AT PKS systems, 

as these synthases perform the most unusual chemistry within their domains. Studying 

these non-canonical systems will certainly reveal more biosynthetic opportunities for 

biochemists and chemists, alike. 
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Appendix 

The following pages contain supplemental information for the designated chapter. 
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CHAPTER 2 SUPPLEMENTAL 
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Substrate 2.2 data 
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Substrate 2.3 data 
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Substrate 2.4 data 
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Substrate 2.5 data 
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CHAPTER 3 SUPPLEMENTAL 

Kinetic data for EryTE 

 

Substrate 3.1 (3.75mM) 
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Substrate 3.1 (7.5mM) 
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Substrate 3.1 (15mM) 
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Substrate 3.1 (30mM) 
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Substrate 3.1 (60mM) 
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Substrate 3.1 (120mM) 
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Kinetic data 

for TylKR1 

 

Substrate 3.3 

(30mM) 
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