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Waves and circulation processes interact in daily wind and tide driven

flows as well as in more extreme events such as hurricanes. Currents and water

levels affect wave propagation and the location of wave-breaking zones, while

wave forces induce setup and currents. Despite this interaction, waves and cir-

culation processes are modeled separately using different approaches. Circula-

tion processes are represented by the shallow water equations, which conserve

mass and momentum. This approach for wind-generated waves is impractical

for large geographic scales due to the fine resolution that would be required.

Therefore, wind-waves are instead represented in a spectral sense, governed

by the action balance equation, which propagates action density through both

geographic and spectral space. Even though wind-waves and circulation are

modeled separately, it is important to account for their interactions by cou-

pling their respective models.
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In this dissertation we use discontinuous-Galerkin (DG) methods to

couple spectral wave and circulation models to model wave-current interac-

tions. We first develop, implement, verify and validate a DG spectral wave

model, which allows for the implementation of unstructured meshes in geo-

graphic space and the utility of adaptive, higher-order approximations in both

geographic and spectral space. We then couple the DG spectral wave model to

an existing DG circulation model, which is run on the same geographic mesh

and allows for higher order information to be passed between the two models.

We verify and validate coupled wave/circulation model as well as analyzing

the error of the coupled wave/circulation model.
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Chapter 1

Introduction

1.1 Background and Motivation

Waves, periodic motions of the ocean surface, are a vital part of the dy-

namics of many coastal applications, in particular the forecasting and hindcast-

ing of hurricanes. Hurricane waves and storm surge can cause extensive prop-

erty damage and loss of life. Forecasting hurricane waves and surge via com-

putational models can aid in emergency planning and evacuations of coastal

regions, and hindcasting hurricanes helps with assessing risk and developing

mitigation strategies.

Approaches to computational modeling of waves differ based on the

wave period, which can vary from fractions of seconds to months. Long waves,

including tides, sieches, tsunamis, and surges, have periods that range from

minutes to months, while wind-generated waves are shorter waves and have

periods that range from 0.5-25 s. In addition to having well-defined, separate

ranges of periods, long and short waves are well-separated in the energy spec-

trum. Therefore, long and short waves are modeled using distinct methods and

approaches. Computational models of long waves employ conservation laws

of mass and momentum to describe circulation processes such as tsunamis,
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storm surge, and tides. This approach is called phase-resolving and is imprac-

tical to implement for short waves on basin wide scales, which are of interest

in many coastal applications; and therefore, phase-averaging or spectral ap-

proaches are employed. The spectral approach describes waves in a statistical

sense via the action density spectrum and conserves the action density via the

action balance equation to model wind-generated waves and swell.

Despite the fact that circulation and wind-waves are well-separated in

the energy spectrum and are modeled separately using the distinct approaches

for long and short waves, wind-waves and circulation can interact. Currents

and water levels affect wave propagation and the location of wave-breaking

zones, while wave forces induce setup and currents. Fukashimo (2008) and

Dietrich et al. (2010) showed that coupling wave and circulation in hindcasts

of hurricanes increases water levels by 5%-20% in regions of broad shelf and up

to 35% in regions of steep slope [37,52], which reiterates the need for coupling

wave/circulation for hurricane hindcasting.

There are many spectral wave models that utilize different numeri-

cal techniques. Spectral wave models are governed by the action balance

equation, which describes waves in a statistical, phase-averaging sense. These

models account for propagation of waves in both deep and shallow water, fre-

quency shifting due to changes in depth and current, and depth- and current-

induced refraction. Through source terms, these models also account for gen-

eration of waves via wind; dissipation of waves via white-capping, bottom fric-

tion, and wave-breaking; and non-linear wave-wave interactions. Well-known
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wave models such as Simulating WAves Nearshore (SWAN) [11], WAve Model

(WAM) [132] and WAVEWATCH [127] each employ different finite-difference

schemes in both geographic and spectral space. In coastal applications, it is

of interest to model waves generated in the deep ocean as they propagate and

transform in the near-shore coastal regions due to changes in bathymetry and

bottom friction. To resolve these spatial scales, previous models employed

nested structured meshes to enhance resolution in desired regions. To cir-

cumvent nested meshes while still capturing the required resolution of spatial

scales, SWAN has been extended to utilize unstructured meshes within their

existing finite-difference framework [140]. Other new models employing un-

structured meshes either use finite volume methods in geographic space [111]

or the finite element method in geographic space [65] while still using finite

difference methods in spectral space. Another model implements discontin-

uous Galerkin methods with unstructured meshes in geographic space and a

Fourier collocation method in spectral space [139].

In contrast, we are implementing a discontinuous Galerkin method for

the action balance equation in both geographic and spectral space. This allows

the implementation of unstructured meshes in geographic space as well as

the utility of adaptive, higher-order approximations in both geographic and

spectral space. By employing adaptivity, particularly in spectral space, we will

maintain the high-accuracy of the computed solution while decreasing some

of the extra degrees of freedom necessary when using discontinuous Galerkin

methods.
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The discontinuous Galerkin spectral wave model has been coupled with

the Discontinuous Galerkin Shallow Water Equation Model (DG-SWEM) [78].

This model uses the shallow water equations discretized by discontinuous

Galerkin methods to model circulation processes including tides and storm

surge. The continuous Galerkin ADCIRC model has previously been coupled

loosely [37] and tightly [41] with spectral wave models to hindcast hurricane

waves and surge. A main goal of this dissertation is to use discontinuous-

Galerkin methods to couple spectral wave and circulation models to model

wave-current interactions. This required the development, implementation,

verification and validation of the discontinuous-Galerkin spectral wave model;

coupling the discontinuous-Galerkin spectral wave model to DG-SWEM; and

validating the coupled model, as well as analyzing the error of the coupled

model.

1.2 Literature Review

In this section we provide historical and literature reviews of shallow

water models, spectral wave models, coupled wave/circulation models and

discontinuous Galerkin methods.

1.2.1 Shallow Water Models

The development of shallow water models can be traced back for cen-

turies through the study of tides. For a complete history of the study of

tides see for example [16]; here we only mention the major milestones in the

4



development of shallow water models. Some of the first theories, although

scientifically incorrect, were made in the Copernican Revolution by Galieo,

Kepler and Descartes [16]. In 1687 as a consequence of Newton’s gravitational

theory (between the Earth, Moon, and Sun), the first scientifically valid theo-

ries for tides were proposed and Bernoulli’s equilibrium theory of tides became

conventional theory [16]. A major advancement for shallow water equations

was by Laplace in 1775 for his dynamic theory of tides [80] and is known as

Laplace’s tidal equations, which can be seen as a specialized form of the shallow

water equations [131]. Other important advancements in shallow water models

include several major advancements in fluid mechanics. In 1755, Euler derived

basic laws of fluid motion which are now known as Euler’s Equations [49].

Further contributions by Navier (1823) in [101] and Stokes (1845) in [123]

led to what we now know as the Navier-Stokes equations for viscous flow. A

contribution by Reynolds (1883) lead to the Reynolds-Averaged Navier-Stokes

Equations [113]. In 1871, Boussinesq and Saint-Venant independently discov-

ered the connection between the Navier-Stokes and Shallow Water Equations

(SWE) [96].

Analytic solutions to the SWE are not known for generalized cases,

however numerical solutions to the SWE became possible in the 1940s with

the advent of electronic computers. Early numerical work includes atmo-

spheric simulations by Charney et al. in 1950 [19] and a coastal sea model

by Hansen in 1956 [56]. These early methods, mostly finite difference, were

prone to spurious spatial oscillations. By the late 1950s, it was noticed that
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the early numerical models (which were typically finite difference methods)

were prone to spurious oscillations [96]. Some strategies used to control or

suppress oscillations included staggered grids, which were introduced in [56]

and also used in [110] and [82], a mixed interpolation [125], viscous coeffi-

cients [133], nonphysically large bottom friction [106], and the most common

method which is a reformulation of the SWE as a single wave equation known

as the generalized wave continuity equation (GWCE) [73, 90]. None of these

methods completely solved the oscillation issue, however the reformulation of

the SWE to the GWCE was the most successful [1]. In the 1980s finite element

methods for solving SWE emerged including FEUDX [102], which utilized the

non-conservative form of the primitive SWE and FE2DY [122]. GWCE-based

models were developed by Kinnmark and Gray (1984) using an implicit so-

lution procedure [72] and by Luettich and Westerink (1992) who developed

the ADvanced CIRCulation model ADCIRC [89]. Recently, DG methods have

become popular for SWE (e.g. [2,32,51,76,78,83,118] ). Continuous-Galerkin

(CG) finite-element methods such as those employed by ADCIRC are limited

to linear approximations, have difficulties handling strong advection and are

not locally mass conservative [32]. Recent efforts within the ADCIRC de-

velopment team have focused on the use of DG methods; this DG Shallow

Water Equation Model (DG-SWEM) can employ higher-order approximations

and can handle advection-dominated flows [78]. In addition, DG models are

locally and globally conservative, which can be important when coupling to

transport equations [31, 36].
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1.2.2 Spectral Wave Models

The literature review presented here is intended to be brief; for a more

complete historical review see [68] or [132]. An interesting historical fact is that

the operational models for forecasting waves were developed in preparation for

the D-Day invasion of Normandy in World War II [130]. Early wave models

only considered a single representative wave described by its wave height and

period [130]. Since the work of Gelci et al. (1957), numerical wave models

transport the two-dimensional wave spectrum [53]. The source term structure

involves the input of wind Sin due to Phillips (1957) [107] and Miles (1957) [95],

the nonlinear transfer Snl due to wave-wave interactions, and a dissipation

term Sds due to whitecapping and turbulence (Hasselmann 1960, [57]). Wave

models are characterized as first, second or third generation models based on

their source term formulations.

First-generation models were developed in the 1960s and early 1970s.

From the beginning, there was skepticism over the validity of the first-genera-

tion formulations’ ability to model the waves and it has since been shown that

these models were off by an order of magnitude for modeling wind input and

nonlinear transfer [68,132]. Mitsuyasu in 1968 [98] and 1969 [99], Hasselmann

et al. in 1973 [60], and Snyder et al. in 1981 [119] made measurements of wave

growth. After these measurements, second-generation models emerged which

were characterized by prescribed parametric shapes of the spectrum [68,132].

A major shortcoming of second-generation models were their inability to prop-

erly model waves in the presence of strong, rapidly changing winds like that
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of hurricanes. SWAMP (1985) investigated and reported the short-comings of

first- and second-generation wave models and suggested the development of

third-generation wave models [124].

The first third-generation model, the WAve Model (WAM) [132] was de-

veloped by the WAMDI-Wave Model Development and Implementation Group

in 1988. This model used the discrete interaction approximation of Hasselman

et al. (1985) for the nonlinear wave interactions [61]. The wind input and

source functions were formulated by Komen et al. (1984) to close the energy

balance and replicate the observed measurements [74].

Since the development of WAM (1988), several other well-established

wave models emerged including WAVEWATCH (1991) by Tolman [127] and

SWAN (1999) by Booij et. al [11]. All three models employ first- or second-

order finite difference schemes. To model waves propagating from the deep

ocean to shallow waters, a mesh with multiple scales is required. Nesting of

structured meshes is a classical solution to resolve multiple spatial scales, how-

ever unstructured meshes provide more flexibility and often a more attractive

solution. The semi-Lagrangian model TOMAWAC (1996) by Benôıt et al. is

likely the first spectral wave model to employ unstructured triangular meshes.

Sørensen et al. (2004) developed MIKE21 SW using an unstructured cell-

centered finite volume method in both geographic and spectral space [120].

Roland et al. in the Wind Wave Model (WWM) in 2006 also employed finite

element methods in geographic space [117]. Several others modified the SWAN

framework to use unstructured meshes via other numerical methods. Hsu et
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al. (2005) modified SWAN to utilize finite element methods in geographic

space [65] . Qi et al. (2009) implemented finite volume methods in geographic

space within the SWAN framework to create the FVCOM-SWAVE model [111].

In 2009, Zijlema updated SWAN to employ unstructured meshes via a modified

finite difference scheme [140]. Yildirim and Karniadakis (2012) employ discon-

tinuous Galerkin methods on an unstructured mesh in geographic space and

a Fourier-collocation method in spectral space [139]. The collocation method

requires the modification of the action balance equation to facilitate absorbing

boundary conditions for frequency and requires periodicity at the frequency

boundaries for fast convergence of the Fourier-collocation. We employ dis-

continuous Galerkin methods in both geographic and spectral space, which

allows for the utilization of unstructured meshes in geographic space as well as

adaptive, higher-order approximations in both geographic and spectral space.

1.2.3 Coupled Wave/Circulation Models

In this section we provide a brief overview of relevant works studying

the interactions of waves and circulation. We begin with theoretical works

and conclude with the more recent works of coupling numerical waves and

circulation models.

Longuet-Higgins and Stewart introduced the concept of radiation stress,

“the excess flow of momentum due to the presence of the waves” and examined

the role of radiation stress in, for example, the change in mean sea level or

mean flow, the interactions of waves with steady currents and the generation of
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wave-beats [85–88]. Wave/circulation interaction continues to be a subject of

research; for example, Dalrymple and Lozano (1978) studied rip currents [30],

Dolata and Rosenthal (1984) studied wave-induced currents and setup [42], and

McWilliams and Restrepo (1999, 2004) developed a wave-averaged asymptotic

model for the interaction of waves and currents in coastal regions [92, 93].

Several different strategies have been used for coupling numerical wave

and circulation models. The numerical wave and circulation models have been

developed separately, and the strategies for coupling the models often depend

on the numerical techniques and meshes used for the individual models. For

instance, to deal with the multiple scales that are present in many applications,

structured meshes can be nested to refine a mesh in desired areas. Kim et al.

(2008) coupled wave and circulation models to hindcast Typhoon Ewiniar on

the same nested structured meshes [71]. When unstructured meshes for cir-

culation models (eg. [136]) emerged as an alternative solution to structured

nested meshes to provide varying scales of resolution, coupled models em-

ployed heterogeneous meshes. A single unstructured mesh was employed for

the circulation model and one or several structured meshes were utilized for

the wave model. To couple the models, information must be interpolated be-

tween the heterogeneous meshes and passed between the two models, often

via external files. This coupling has been employed by many including Weaver

and Slinn [135], Funakoshi et al. [52], Chen et al. [20], and Pandoe and Edge

et al. [105], and by Bunya et al. [14] and Dietrich et al. [37]. The main disad-

vantage of this coupling is the required interpolation, especially in a parallel
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computing environment where the interpolation requires costly global commu-

nication. As unstructured meshes became prevalent in wave models as well,

coupling wind/circulation models between two homogeneous meshes without

interpolation was possible. These couplings share the same geographic mesh,

and therefore, in a parallel computing environment, these couplings do not

require global communication as intra-model communication is done through

local cache on the same sub-mesh. An example of this type of coupling is the

ADCIRC+SWAN model [41].

Generic frameworks are a well-known tool for coupling models. These

frameworks manage the intricacies of when and how the models are run and

the interpolation between models if necessary. These general frameworks in-

clude the Earth System Modeling Framework(ESMF) [29, 63], Open Model-

ing Interface (OpenMI) Environment [54,100] the Modeling Coupling Toolkit

(MCT) [134]. Although these frameworks ease the implementation of the

wave/circulation coupling and allow for future coupling to other models, they

do not eliminate the problems with interpolation error if heterogeneous meshes

are used.

1.2.4 Discontinuous Galerkin Methods

We provide a brief literature review of the development of discontinuous

Galerkin (DG) methods. DG methods were developed in two parallel paths:

the DG methods for hyperbolic equations, and interior penalty (IP) methods

for elliptic and parabolic equations [5]. A complete, detailed historical review
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can be found in [5], where Arnold, Brezzi, Cockburn and Marini discuss a

unified analysis of DG methods or [23] where Cockburn, Karniadakis and Shu

discuss the developement of DG methods.

Some of the first developments were in 1968 when Lions enforced Dirich-

let boundary conditions through penalties when solving elliptic problems [84].

In 1970 Aubin implemented this approach for finite difference approximations

of nonlinear problems [6]. Babuška (1973) applied this method for finite ele-

ment methods and discovered that the order of convergence was suboptimal

as a consequence of the inconsistent weak formulation [7]. Nitsche (1971)

employed a different approach that applied a penalty parameter but was con-

sistent and had optimal H1 and L2 convergence rates [103].

From the idea that Dirichlet boundary conditions could be imposed

weakly instead of being built into the finite element space arose the idea of

interior penalty (IP) methods, where interelement continuity could be imposed

in a similar manner [5]. Babuška and Zlàmal (1973) utilized IP methods to

weakly impose C1 continuity for fourth-order problems [8]. Wheeler (1978) for-

mulated an IP collocation-finite element method [137] based on the procedures

of Douglas and Dupont [43], which was a generalization of Nitsche’s method to

second-order elliptic problems [5]. The generalization of Nitsche’s method was

analyzed for linear and nonlinear elliptic and parabolic problems [4]. From

the early 1980’s to the 1990’s, interest in IP methods has waned possibly due

to the facts that IP method has no proven advantage over the classical FEM

and the difficulty in finding optimal penalty parameters [5].
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Simultaneously, DG methods for the numerical treatment of nonlinear

hyperbolic equations have been developed for the past twenty years. Reed

and Hill (1973) developed a finite element method for the neutron transport

problem [112], which is the first DG method [5]. Lasaint and Raviart (1974)

analyzed this method [81] and gave rise to the name “discontinuous Galerkin”

method [96]. Wellford and Oden (1975) used a discontinuous Galerkin finite

element method to analyze shock waves in nonlinear elastic materials. They

decompose the domain into shock-less regions, where they employ traditional

finite element methods, and use discontinuous formulations for the elements

with the shock [70]. Cockburn and Shu introduced and analyzed the Runge-

Kutta DG methods in a series of papers [22, 24–26, 28]. In 1998, Cockburn

and Shu introduced and analyzed the local discontinuous Galerkin (LDG)

method for convection-diffusion problems [27]. Cockburn and Dawson (1999)

generalized these results to multi-dimensional equations with spatially varying

coefficients [21] and Castillo (2002) et. al. analyzed the hp version [17].

1.3 Summary of Contributions

In this dissertation, we have presented, analyzed and implemented a

discontinuous Galerkin coupled wave/circulation model. In particular, we have

achieved the following:

• We have developed and implemented a DG spectral wave model (see

Chapter 2). This model employs general triangular meshes in geographic

space and structured quadrilateral meshes in spectral space. The model
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can utilize higher order approximations in both geographic and spectral

space. The model is scalable and can utilize adaptivity for increased

computational efficiency (see Section 4.4).

• We have verified and validated the DG spectral wave model through

the method of manufactured solutions and analytic test cases as well as

comparing to SWAN (see Chapter 4).

• The DG spectral wave model has been coupled to DG-SWEM and the

resulting coupled wave/circulation model has been verified and validated

through comparisons to SWAN coupled with DG-SWEM (see Chapter

5).

• An a priori error estimate has been performed for the discontinuous

Galerkin couple wave/circulation model. The estimate is performed for

the simplified one-dimensional geographic space model; however, all ar-

guments are valid in the full two-dimensions. Although this DG formula-

tion of the shallow water equations had been analyzed in [35], no coupled

wave/circulation model had previously been analyzed for any numerical

scheme (see Chapter 6).

1.4 Outline

The remainder of this dissertation is laid out as follows. Chapter 2

introduces the concept of spectral modeling along with the governing action

balance equation and source term formulations. Chapter 3 explains the DG
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method, which is utilized to discretize the action balance equation. Implemen-

tation details such as the choice of basis functions, quadrature rules, and fluxes

are also included. Chapter 4 is comprised of numerical results of the DG spec-

tral wave model. We verify and validate the DG spectral wave model through

the method of manufactured solutions, comparisons to academic test cases,

and comparisons to the well-known SWAN model. Chapter 5 introduces the

DG circulation model DG-SWEM, couples the DG wave model to DG-SWEM,

and presents numerical results to validate the coupled wave/circulation model.

Chapter 6 analyzes the error of the coupled wave/circulation model. Chapter

7 provides concluding remarks.
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Chapter 2

Spectral Wave Model

2.1 Spectral Description of Waves

In this chapter, we provide an explanation of the spectral description of

waves, present the governing action balance equation, and provide expressions

for the source term formulations. The following description is an abbreviated

version of [64]. Because it is impractical in numerical modeling to resolve

the phases of individual waves, we employ a spectral approach by looking at

average wave characteristics using the Random Phase/Amplitude Model. In

this model, we represent the surface elevation η as the sum of a large number

of harmonic waves

η(t) =
N∑

i=1

ai cos(2πfit+ αi),

with frequencies fi and where each harmonic wave has a randomly chosen,

constant amplitude ai and phase αi in which the underscore indicates that

these are random variables. We can define the variance density spectrum

E(f) as

total variance = η2 =

∫ ∞

0

E(f)df,

where f is frequency, provided that the surface elevation can be seen as a

stationary, Gaussian process. Although it is not always true, generally we may
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represent the surface elevation as a stationary Gaussian process. The variance

density spectrum gives us a complete description, in the statistical sense, of

the surface elevation of ocean waves. For instance, a variance density function

that is a delta function represents a harmonic wave, while a variance density

function with a wide spectrum represents an irregular wave. By multiplying

the variance density by the density of water ρ and gravitational acceleration

g, we obtain the energy density spectrum

Eenergy(f) = ρgEvariance(f).

To account for waves propagating in (x, y) geographic space in direction θ, rel-

ative to the positive x-axis, we expand the Random-Phase/Amplitude Model,

so that the surface elevation is seen as the sum of a large number of propagating

harmonic waves

η(t) =

N∑

i=1

M∑

j=1

ai,j cos(2πfit− kix cos θj − kiy sin θj + αi,j),

where k is the wave number. We then obtain the two-dimensional variance

density spectrum E(f, θ), which can be reduced to the one-dimensional fre-

quency spectrum by integrating over all directions θ.

As previously mentioned, the variance density provides a statistical

description of waves. These characteristics are defined in terms of the moments

of the variance density spectrum,

mn =

∫ ∞

0

fnE(f)df for n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . .
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From these moments, we can determine the mean wave height

H =
√

2πm0,

the significant wave height

Hm0 ≈ 4
√
m0,

which is a quantity related to the average value of the highest one-third waves

in a series, and the mean zero-crossing period

T 0 = Tm02 =

√
mo

m2

.

To model waves, we assume the Random-Phase/Amplitude Model and predict

how each independent wave component with spectral density E = E(f, θ)

varies in time and space. If a current is present, the energy density spectrum

is not conserved, and therefore, waves are described by the action density

spectrum N = E/σ, where σ is the relative frequency [87].

2.2 Action Balance Equation

The action density N(σ, θ; x, y, t) is governed by the action balance

equation

∂

∂t
N + ∇ · cN =

S

σ
. (2.1)

where ∇ = ( ∂
∂x
, ∂

∂y
, ∂

∂σ
, ∂

∂θ
) and c = (cx, cy, cσ, cθ) are the propagation veloci-

ties. This equation represents the rate of change of action density in time t,

propagation of action density through geographic space (x, y) with propagation

velocities cx and cy, and spectral space (σ, θ) where σ is the relative frequency
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(the frequency observed in a frame of reference moving with the current) and

θ is the wave direction. The propagation through spectral space represents

frequency shifting due to changes in depth and current with propagation ve-

locity cσ and depth-induced and current induced refraction with propagation

velocity cθ. The source term S represents the effects of generation by wind,

dissipation and nonlinear wave interactions and is described in more detail in

Section 2.3.

The propagation velocities in geographic space are defined as

cx = cg,x + u, (2.2)

cy = cg,y + v, (2.3)

where U = (u, v) is the velocity of the current, cg = ncph = (cg,x, cg,y) =

(cg cos(θ), cg sin(θ)) is the group velocity, cph = σk
k2 is the phase speed, n =

1
2

(
1 + 2kH

sinh(2kH)

)
, H is the total water depth, and k = (k cos(θ), k sin(θ)) is the

wave number. The wave number is related to the frequency by the dispersion

relationship

σ2 = gk tanh(kH),

where g is gravitational acceleration. The propagation velocities in spectral

space are defined as

cσ =
∂σ

∂H

(
∂H

∂t
+ U · ∇xH

)
− cgk · ∂U

∂s
, (2.4)

cθ = −1

k

(
∂σ

∂H

∂H

∂m
+ k · ∂U

∂m

)
, (2.5)
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where U = (u, v) is the velocity of the current and (s,m) are spatial coordinates

with s being normal to the wave direction θ and m being perpendicular to the

wave direction θ [64, 126]. From the dispersion relationship we get that

∂σ

∂H
=

kσ

sinh(2kH)
,

and the derivatives in s and m are expressed in derivatives in x and y by the

chain rule. Therefore we can rewrite the propagation velocities in spectral

space as follows

cσ =
kσ

sinh(2kH)

(
∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y

)

−cgk
(
∂u

∂x
cos2 θ +

∂u

∂y
cos θ sin θ +

∂v

∂x
sin θ cos θ +

∂v

∂y
sin2 θ

)
,

cθ =
σ

sinh(2kH)

(
∂H

∂x
sin θ − ∂H

∂y
cos θ

)

+
∂u

∂x
cos θ sin θ − ∂u

∂y
cos2 θ +

∂v

∂x
sin2 θ − ∂v

∂y
cos θ sin θ.

2.3 Source Terms

The general source term formulation for spectral wave models include

a wind input term Sin, a dissipation term Sds and a nonlinear transfer term

Snl due to wave-wave interactions. As knowledge and understanding of these

processes grew, the source term functions evolved to third-generation formula-

tions, which are considered to be state of the art. These formulations include

an updated wind-input term, dissipation terms accounting for whitecapping,

bottom friction, and depth-induced wave breaking, and formulations for non-

linear wave-wave interactions including both quadruplets and triads which are
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only relevant in shallow water. We implement the third-generation formula-

tions employed in SWAN [11]. The exact formulations for these source terms

follows.

2.3.1 Wind Input

The wind input source term formulation is due to the theory of Miles

and Phillip and has the general form

Sin(σ, θ) = A +B ∗ E(σ, θ). (2.6)

The linear portion A is due to Phillips (1957), who postulated that waves are

generated by resonance between propagating wind-induced pressure waves and

propagating water waves [107]. This term is only used when there are no initial

waves and waves must be generated. When initial waves are present, Miles

(1957) finds that waves modify the airflow and therefore the wind-induced

pressure at the water surface [95]. The waves and wind-induced pressure create

a positive-feedback system in which waves then enhance their own growth

[64]. This positive-feedback system is formulated as B ∗ E in the wind input

formulation.

The third generation formula employed in SWAN is the WAM Cycle 3

( [74, 132]) formulation. These formulations need the input parameter of the

wind speed. Typical wind-input information is the wind speed at 10 m above

the sea surface which must be converted to the friction velocity U∗, which is

U2
∗ = CDU

2
10
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where CD is the drag coefficient from Wu [138]:

CD(U10) =

{
1.2875 × 10−3, for U10 < 7.5m/s
(0.8 + 0.065s/m ∗ U10) × 10−3, for U10 ≥ 7.5m/s

The linear growth term by Cavaleri and Malanotte-Rizzoli (1981) is

implemented with a filter suggested by Tolman (1992) to cut off growth at

frequencies lower than the Pierson-Moskowitz frequency [18, 128]. The linear

term is

A =
1.5 × 10−3

2πg2
(U∗ max[0, cos(θ − θw)]4H,

H = exp{−
(

σ

σ∗
PM

)
},

σ∗
PM =

0.13g

28U∗
2π,

where θw is the wind direction, H is the filter and σ∗
PM is the peak frequency

of the Pierson and Moskowitz (1964) fully developed sea state formulated in

terms of friction velocity [109].

The exponential wave growth expression is due to Komen et al. (1984):

B = max[0, 0.25
ρa

ρw

(28
U∗

cph

cos(θ − θw) − 1]σ

in which ρa and ρw are the density of air and water and cph is the phase

speed [74].

2.3.2 Dissipation

The dissipation source term is formulated in three parts representing

the dissipative processes of whitecapping, bottom friction and wave breaking.

Sds = Sds,wc + Sds,bf + Sds,br

22



2.3.2.1 Whitecapping

Whitecapping is a complicated phenomenon, which is not fully under-

stood theoretically, however, it is reasonable to assume that it is dependent on

wave-steepness. The SWAN model employs the Komen et al. [74] formulation.

This whitecapping formulation is based on the theory of Hasselmann (1974),

in which white-caps are treated as a pressure pulse on the sea surface [59].

The WAMDI group (1988) reformulated Hasselmann’s whitecapping

source formulation, Swc, in terms of the wave number as to account for white-

capping in shallow water as

Sds,wc(σ, θ) = −Γσ̃
k

k̃
E(σ, θ),

where σ̃ is the mean frequency, k̃ is the mean wave number and the coefficient

Γ depends on the overall wave steepness. Günther et al. (1992) [55] adapt the

WAMDI group (1988) formulation of the steepness dependent coefficient [132],

based on work of Janssen (1991) [67],

Γ = ΓKJ = Cds

(
(1 − δ) + δ

k

k̃

)(
s̃

s̃PM

)p

,

where the coefficients Cds, δ and p are tunable, k̃ is the mean wave number, s̃

is the overall wave steepness, and s̃PM =
√

3.02 × 10−3 is the value of s̃ for the

Pierson-Moskowitz spectrum [109]. The overall wave steepness s̃, the mean

frequency σ̃, the mean wave number k̃ and the total energy Etot are defined

as is

s̃ = k̃
√
Etot,
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σ̃ =

(
E−1

tot

∫ 2π

0

∫ ∞

0

1

σ
E(σ, θ)dσdθ

)−1

,

k̃ =

(
E−1

tot

∫ 2π

0

∫ ∞

0

1√
k
E(σ, θ)dσdθ

)−2

,

Etot =

∫ 2π

0

∫ ∞

0

E(σ, θ)dσdθ.

The tunable coefficients and exponent p are chosen to correspond to the Komen

et al. (1984) formulation [74]:

Cds = 2.36 × 10−5,

δ = 0,

p = 4.

2.3.2.2 Bottom Friction

As waves move into shallow water, an interaction occurs between the

orbital motion of the water particles and the turbulent boundary layer. The

dissipation that occurs depends on the wave field as well as the bottom charac-

teristics. Here bottom friction is modeled by the empirical model of the JOint

North Sea WAve Project (JONSWAP) [60]. Formulation for the bottom fric-

tion is expressed as:

Sds,bf = −Cb
σ2

g2 sinh2 kH
E(σ, θ),
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where Cb is a bottom friction coefficient that generally depends on the bottom

orbital motion represented by Urms:

U2
rms =

∫ 2π

0

∫ ∞

0

σ2

sinh2 kH
E(σ, θ)dσdθ.

There are several values for the bottom friction coefficient. To agree with

the JONSWAP result for swell dissipation, Hasselmann et al. (1973) found

Cb = CJON = 0.038m2s−3 [60]. Bouws and Komen (1983) recommend a value

of CJON = 0.067m2s−3 after examining the energy balance on the North Sea

in depth-limited conditions [12], which is the value we choose.

2.3.2.3 Depth-Induced Wave Breaking

Wave heights are limited in shallow water via the process of wave-

breaking. Depth-induced wave breaking is modeled by Battjes and Janssen’s

(1978) bore-based model [9]. The mean rate of energy dissipation per unit

horizontal area due to wave breaking is

Dtot = −1

4
αBJQb

(
σ̃

2π

)
H2

max = −αBJQbσ̃
H2

max

8π
,

where the coefficient αBJ = 1 as it is in SWAN [126], Qb is the fraction of

breaking waves

1 −Qb

lnQb
= −8

Etot

H2
max

,

in which Hmax is the maximum wave height that can exist at the given depth,

the mean frequency is σ̃ = E−1
tot

∫ 2π

0

∫∞

0
σE(σ, θ)dσdθ, and the total wave en-

ergy is Etot =
∫ 2π

0

∫∞

0
E(σ, θ)dσdθ. The fraction of depth-induced breakers Qb
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is determined by SWAN [126] as

Qb =





0, for β ≤ 0.2,

Q0 − β2 Q0−exp(Q0−1)/β2

β2−exp(Q0−1)/β2 , for 0.2 < β < 1,

1, for β ≥ 1,

where β = Hrms

Hmax
and Q0 = 0 for β ≤ 0.5 or Q0 = (2β − 1)2 for 0.5 < β ≤ 1.

The source term expression for dissipation due to breaking Sds,br is for-

mulated in SWAN [126] by extending the expression of Eldeberky and Battjes

(1996) to include the spectral directions [48]

Sds,br =
Dtot

Etot

E(σ, θ) = −αBJQbσ̃

β2π
E(σ, θ),

where the max wave height is calculated by Hmax = γH , in which γ = 0.73 is

the breaker parameter and H is the total water depth.

2.3.3 Nonlinear Wave-Wave Interactions

Waves transfer energy to each other through resonance. These nonlin-

ear wave-wave interactions occur in quadruplets (deep or shallow water) and

in triads (only in shallow water). The nonlinear source term is comprised of

the formulations for quadruplets and triads

Snl = Snl4 + Snl3.

2.3.3.1 Quadruplets

Energy is passed between four waves, if they meet the resonance con-

dition:

f1 + f2 = f3 + f4,
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~k1 + ~k2 = ~k3 + ~k4,

where fi and ki are the frequency and waves numbers of wave i=1-4. This

transfer of energy (referred to as quadruplet wave-wave interactions) can be

represented by the expression given by Hasselmann:

Snl4(~k4)

=

∫∫∫∫
T1(~k1, ~k2, ~k1 + ~k2 − ~k4)E(~k1)E(~k2)E(~k1 + ~k2 − ~k4)d~k1d~k2

−E(~k4)

∫∫∫∫
T2(~k1, ~k2, ~k4)E(~k1)E(~k2)d~k1d~k2,

where ~k4 is the wave number of the wave component considered in the source

term, ~k1,~k2, and ~k3 = ~k1+~k2−~k4 are the three other wave components involved

subject to the resonance condition, and T1 and T2 are the transfer coefficients

[58]. The exact computation of this integral is too costly for computational

wave models, and therefore an approximation of the quadruplet wave-wave

interaction is required. Like SWAN, we implement the Discrete Interaction

Approximation (DIA) by Hasselmann to approximate the quadruplet nonlinear

wave-wave interactions [61]. We implement the DIA approximation as SWAN

does [126]. The DIA approximation considers two quadruplets with frequencies

σ1 = σ2 = σ,

σ3 = σ(1 + λ) = σ+,

σ4 = σ(1 − λ) = σ−,

where λ = 0.25. These quadruplets must satisfy the resonance conditions, so

for the first quadruplets, the wave-number vectors with frequency σ3 and σ4 lie
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at an angle of θ3 = −11.48◦ and θ4 = 33.56◦ to the angle of the wave number

vectors with frequencies σ1 and σ2. For the second quadruplet, θ3 = 11.48◦

and θ4 = −33.56◦. The DIA source term for quadruplet nonlinear wave-wave

interactions is

Snl4(σ, θ) = S∗
nl4(σ, θ) + S∗∗

nl4(σ, θ),

where S∗
nl4(σ, θ) refers to the first quadruplet and S∗∗

nl4(σ, θ) corresponds to the

second quadruplet. The expression for the first quadruplet is

S∗
nl4(σ, θ) = 2δSnl4(α1σ, θ) − δSnl4(α2σ, θ) − δSnl4(α3σ, θ),

where

δSnl4(αiσ, θ) =Cnl4(2π)2g−4
( σ

2π

)11

{
E2(αiσ, θ)

[
E(αiσ

+, θ)

(1 + λ)4
+
E(αiσ

−, θ)

(1 − λ)4

]

−2
E(αiσ, θ)E(αiσ

+, θ)E(αiσ
,θ)

(1 − λ2)4

}

for i = 1, 2, 3, where α1 = 1, α2 = (1 + λ), α3 = (1 − λ) and Cnl4 = 3 × 107.

The expressions for the second quadruplet S∗∗
nl4(σ, θ) are the same as for the

first quadruplet S∗
nl4(σ, θ) except for the mirror directions.

The previous expressions are for water with infinite depth, and to obtain

the expressions for finite depth, the infinite depth expression is multiplied by

a scaling factor as suggested by the WAMDI group [132]

Sfinite depth
nl4 = R(kpH)S infinite depth

nl4 ,
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where

R(kpH) = 1 +
Csh1

kpH
(1 − Csh2kpH)eCsh3kHd,

in which kp is the peak wave number with an imposed lower limit of 0.5 and the

coefficients are chosen as follows: Csh1 = 5.5, Csh2 = 5/6, and Csh3 = −5/4.

2.3.3.2 Triads

Triad wave-wave interactions only occur in shallow water and are ap-

proximated using the Lumped Triad Approximation (LTA) of Eldeberky [46],

which is a modified version of the Discrete Triad Approximation (DTA) of

Eldeberky and Battjes [47]. In each spectral direction:

Snl3(σ, θ) = S−
nl3(σ, θ) + S+

nl3(σ, θ),

where

S+
nl3(σ, θ) = max[0, αEB2πccgJ

2| sinβ|{E2(σ/2, θ) − 2E(σ/2, θ)E(σ, θ)}],

and

S−
nl3(σ, θ) = −2S+

nl3(2σ, θ),

where αEB is a tunable proportionality coefficient. The biphase β is approxi-

mated as

β = −π
2

+
π

2
tanh

(
0.2

Ur

)
,

where Ur is the Ursell number defined as

Ur =
g

8
√

2π2

HsT
2
m01

H2
.
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Triad wave-wave interactions are only calculated for 0 ≤ Ur ≤ 1. The inter-

action coefficient J is given by Madsen and Sørensen [91]:

J =
k2

σ/2(gH + 2c2σ/2)

kσH(gH + 2
15
gH3k2

σ − 2
5
σ2H2)

,

where H is the total water depth.

The advancement of the physical description of waves is not a cen-

tral goal of this work and therefore we have chosen to follow the source term

implementation details of the well-validated SWAN model. However, SWAN

employs the finite-difference method to propagate the waves while we use dis-

continuous Galerkin methods. These details will be described in the next

chapter.
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Chapter 3

Discontinuous Galerkin Methods for Spectral

Wave Model

We discretize the action balance equation with discontinuous Galerkin

methods in both geographic and spectral space and use explicit, Runge-Kutta

methods for time-stepping. DG methods are locally mass conservative and

highly parallelizable. DG methods allow for unstructured geographic meshes,

which allow for a range of spatial resolutions. In addition, DG methods al-

low for higher-order approximations in both geographic and spectral spaces,

which leads to increased accuracy. Adaptivity can easily be implemented for

DG methods to selectively refine or coarsen the order of approximation to in-

crease efficiency while maintaining the higher accuracy of increased order of

approximation.

In this chapter, we will begin by introducing the weak formulations

used to discretize the action balance equation in geographic and spectral space

and the Runge-Kutta methods used to march in time. We then discuss some

implementation details such as the numerical flux, elements, basis functions,

and quadrature rules.
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3.1 Weak Formulations

To obtain the weak form of the action balance equation, we first de-

fine the domain. We consider the entire domain Ω to be a tensor product

of the geographic domain, Ξ ∈ R
2, and the spectral domain, κ ∈ R

2, so

Ω ⊂ R
2 × R

2. The geographic domain consists of non-overlapping triangular

elements, denoted Ξg, and the spectral domain consists of structured quadri-

lateral elements with constant spacing in directional space and logarithmic

spacing in frequency space, so that κs = (σℓ, σℓ+1) × (θm, θm+1) ∈ R
2 where

σℓ+1 = γσℓ for a specified γ and θm+1 = θm + ∆θ. Logarithmic spacing is

used in frequency space so that there are more elements on the lower end of

the frequency range, where the peak frequency is typically located and since

logarithmic spacing is recommended for the DIA approximation. We define

an individual element of the whole domain to be Ωe = Ξg ×κs, with boundary

∂Ωe and n outward unit normal of ∂Ωe.

To formulate the DG method, we first obtain the weak form of the

action balance equation by multiplying (2.1) by a test function v, integrating

over each element Ωe and integrating the divergence term by parts:

(
∂N

∂t
, w

)

L2(Ωe)

− (cN,∇w)L2(Ωe) + 〈cN · n, w〉L2(∂Ωe) =

(
S

σ
, w

)

L2(Ωe)

∀Ωe.

(3.1)

We then define a function space Wh, which allows for discontinuities between

elements:

Wh = {w ∈ L2(Ω) : w|Ωe
= φ|Ξg

∗ ψ|κs
∈ P p(Ξg) ∗ P q(κs) ∀Ωe} (3.2)
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where P p is the space of polynomials of degree p defined on the geographic

element Ξg and P q is the space of polynomials of degree q defined on the

spectral element κs. The action density, N , is approximated by Nh ∈ Wh,

which satisfies the discrete weak formulation

(
∂Nh

∂t
, wh

)

L2(Ωe)

− (cNh,∇wh)L2(Ωe) + 〈cN̂h · n, wh〉L2(∂Ωe)

=

(
S

σ
, wh

)

L2(Ωe)

∀Ωe, ∀wh ∈Wh (3.3)

where N̂h is uniquely defined on the boundary by a numerical flux, which is

discussed further in a following section.

3.2 Runge-Kutta Time Discretization

We rearrange (3.3) to the form

∂

∂t
Nh = Lh(Nh, t)

and employ explicit, strong-stability preserving (SSP) s-stage kth-order Runge-

Kutta time-stepping schemes. These schemes have the property that, if the

first-order forward Euler time discretization is stable under a given semi-norm

and Courant-Friedrichs-Lewy (CFL) condition, then the higher-order scheme

remains stable under the same semi-norm but potentially with a different CFL

condition [75]. For the test cases in the next chapter, we employ the two stage,

2nd order scheme

N
(1)
h = Nn

h + ∆tLh(N
n
h , tn)
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Nn+1
h =

1

2
(Nn

h +N
(1)
h + ∆tLh(N

(1)
h , tn+1)).

In the following sections we continue by discussing the choice of numer-

ical fluxes, elements, basis functions and quadrature rules.

3.3 Numerical flux

Because discontinuities are allowed between elements, Nh is not nec-

essarily uniquely defined on the boundary; therefore we use a single-valued

numerical flux, N̂h, on the edge boundaries instead. Numerical fluxes are de-

fined in terms of a function’s interior and exterior traces. The interior and

exterior traces for any function w ∈Wh are as follows

wint(x) = lim
ǫ→0−

w(x + ǫn)

wext(x) = lim
ǫ→0+

w(x + ǫn)

for any x = (x, y, σ, θ) ∈ ∂Ωe. A typical choice of numerical flux for scalar

transport equations is an upwind flux, defined as

N̂h|∂Ωe
=

{
N int

h if c · n|∂Ωe
> 0,

N ext
h if c · n|∂Ωe

≤ 0,
(3.4)

in which the flux depends on the propagation velocities c and therefore the

total water depth and current. The total water depth and current are input

parameters for the action balance equation, and in the coupled model, will be

determined by DG-SWEM. The total water depth and current, computed by

DG-SWEM, are allowed to have discontinuities across the geographic element
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boundaries and so the propagation velocity c may not be uniquely defined in

the above upwind flux. Therefore, we employ the Lax-Friedrichs flux

cN̂h|∂Ωe
=

1

2
(N int

h cint · n +N ext
h cext · n)

− 1

2
max

[
|cint · n|, |cext · n|

]
(N ext

h −N int
h ), (3.5)

when there are potential discontinuities in the propagation velocities. Note

that if the propagation velocities c are continuous across the element bound-

aries ∂Ωe, the Lax-Friedrichs Flux reduces to the upwind flux.

3.4 Boundary Conditions

The boundary conditions are enforced weakly through Dirichlet bound-

ary conditions in both geographic and spectral space. In geographic space, two

types of boundaries are considered: an incoming wave boundary or an absorb-

ing boundary. For an incoming wave boundary, we specify the action density

at the boundary by setting the exterior value N ext
h in the flux to be the value of

the incoming wave’s action density. For an absorbing boundary, where there

are no incoming waves and out-going waves simply propagate out of the do-

main, we set the exterior value N ext
h in the flux to be zero. In frequency space,

fully absorbing boundaries are used at both ends of the frequency range. In

directional space, if the spectral domain is the full circle then periodic bound-

ary conditions are used. If the spectral domain is only a sector, we apply

absorbing boundary conditions at both ends of the directional domain.
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3.5 Elements

Recall that the domain is composed of the tensor product of the ge-

ographic domain and the spectral domain. Because triangular elements are

employed in geographic space and structured quadrilaterals in spectral space,

we define a triangular master element for geographic space and a square master

element for spectral space. After we define the master elements, we define the

basis functions on the master elements. Computations on the physical element

are then transformed to computations on the master elements for simplicity

and efficiency. In geographic space, we choose the same master elements, basis

functions and quadrature rules as those implemented in the DG-SWEM Model.

Their details can be found in [75] and are repeated here for completeness.

Figure 3.1: The geographic master element.

The geographic master element Ξ̂g, shown in Figure 3.1, is a right tri-

angle with local coordinate system (ξ1, ξ2). The three vertices are numbered

counter clockwise where edge i is opposite vertex i for i = 1, 2, 3. The master
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element can be transformed to the physical element Ξg with coordinate sys-

tem (x, y) and vertices (x1, y1), (x2, y2), and (x3, y3) numbered locally counter

clockwise via the affine mapping

x = −1

2
[(ξ1 + ξ2)x1 − (1 + ξ1)x2 − (1 + ξ2)x3],

y = −1

2
[(ξ1 + ξ2)y1 − (1 + ξ1)y2 − (1 + ξ2)y3].

The inverse of the mapping, transforming a physical element to the master

element, is

ξ1 =
1

Ag
{(y3 − y1)[x−

1

2
(x2 + x3)] + (x1 − x3)[y −

1

2
(y2 − y3)]},

ξ2 =
1

Ag
{(y1 − y2)[x−

1

2
(x2 + x3)] + (x2 − x1)[y −

1

2
(y2 − y3)]},

where Ag = 1
2
[(x2y3 − x3y2) + (x3y1 − x1y3) + (x1y2 − x2y1)] is the area of Ξg.

These transformations are shown in Figure 3.2.

Figure 3.2: The geographic master element.

Derivatives of a function f(ξ1, ξ2) defined on the master element Ξ̂g

with respect to the physical coordinates (x, y) can be computed via the chain
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rule and the inverse mapping as follows:

∂f

∂x
=
∂f

∂ξ1

∂ξ1
∂x

+
∂f

∂ξ2

∂ξ2
∂x

=
∂f

∂ξ1

1

Ag

(y3 − y1) +
∂f

∂ξ2

1

Ag

(y1 − y2),

∂f

∂y
=
∂f

∂ξ1

∂ξ1
∂y

+
∂f

∂ξ2

∂ξ2
∂y

=
∂f

∂ξ1

1

Ag

(x1 − x3) +
∂f

∂ξ2

1

Ag

(x2 − x1).

Similarly, integration of a function f(ξ1, ξ2) defined on the master element

over the area of a physical element or its edge, Γi, can be transformed to an

integration over the master element or its edge:
∫

Ξg

fdxdy =
Ag

2

(∫

Ξ̂g

fdξ1dξ2

)
,

∫

Γi

fds =
li
2

(∫ 1

−1

fds

)
,

where li is the length of edge i, Γi, of Ξg.

Figure 3.3: The spectral physical to master element.

In spectral space, the master element is defined on the coordinate sys-

tem (η, ϑ) as

κ̂s = (−1, 1) × (−1, 1).
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To transform the physical element to the master element in spectral space, as

seen in Figure 3.3, we use the mapping

σ(η) = σ =
∆σℓ

2
η +

1

2
(σℓ + σℓ+1),

θ(ϑ) = θ =
∆θ

2
ϑ+

1

2
(θm + θm+1),

where ∆σℓ = σℓ+1 − σℓ. The inverse mapping to transform the master to the

physical element is

η(σ) = η =
2

∆σℓ
(σ − 1

2
(σℓ + σℓ+1)),

ϑ(θ) = ϑ =
2

∆θ
(θ − 1

2
(θm + θm+1)).

The derivatives of a function f(η, ϑ) defined on the master spectral

element with respect to the physical coordinates are computed via the chain

rule and inverse mapping

∂f

∂σ
=
∂f

∂η

∂η

∂σ
=
∂f

∂η

2

∆σℓ

,

∂f

∂θ
=
∂f

∂ϑ

∂ϑ

∂θ
=
∂f

∂ϑ

2

∆θ
.

Also, integration of a function f(η, ϑ) defined on the master spectral element

over the area of the physical element are transformed to integration over the

master element:

∫ σℓ+1

σℓ

∫ θm+1

θm

f(σ, θ)dθdσ =
∆σℓ∆θ

4

∫ 1

−1

∫ 1

−1

f(σ(η), θ(ϑ))dϑdϑ.
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3.6 Basis Functions

Now that the master elements have been defined, we define the basis

functions. As suggested by the definition of the function space Vh, we chose

the basis functions to be products of basis functions defined on the geographic

element, φ and basis functions defined on the spectral element, ψ. Using

these basis functions, we express the approximated action density, Nh, with

(x, y) ∈ Ξg and (σ, θ) ∈ κs for time tn, as

Nh(x, y, σ, θ, tn) =

Mdof∑

i=1

Ndof∑

k=1

αn
giskφg,i(x, y)ψs,k(σ, θ),

where Mdof = 1
2
(p+ 1)(p+ 2) is the number of geographic degrees of freedom

and basis functions with {φg,i}Mdof

i=1 spanning P p and Ndof = 1
2
(q+ 1)(q+ 2) is

the number of spectral degrees of freedom and basis functions with {ψs,k}Ndof

k=1

spanning P q. We choose the basis functions to be hierarchical and orthogonal

in both geographic and spectral space, which simplifies the implementation of

p-adaptivity. Also, by choosing orthogonal basis functions, the mass matrix is

diagonal and thus can be trivially inverted.

In geographic space, the orthogonal and hierarchical triangular basis

of Dubiner [44] is implemented. These basis functions are also implemented

in the DG-SWEM. The Dubiner basis is briefly discussed here and a detailed

description of the basis can be found in [75]. The basis functions are defined on

a square master element where the transformation from the triangular master

element to the square master element illustrated in Figure 3.4 is given by

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1,
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Figure 3.4: The geographic master element to the square master element used
for basis functions.

η2 = ξ2.

The basis functions are the products of warped tensor product polynomials

Φ
(1)
i = P 0,0

i (η1),

Φ
(2)
ij =

(
1 − η2

2

)i

P 2i+1,0
j (η2),

where P α,β
n (·) is the n-th order Jacobi polynomial with weights α and β. The

Dubiner basis functions are then

Φij(ξ1, ξ2) = Φ
(1)
i (η1)Φ

(2)
ij (η2).

Explicitly, the first few basis functions on the master geographic element de-

noted φ̂i are

φ̂1 = Φ00 = 1,

φ̂2 = Φ01 =
3

2
ξ2 +

1

2
,

φ̂3 = Φ10 = ξ1 +
1

2
ξ2 +

1

2
,
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φ̂4 = Φ02 =
5

2
ξ2
2 + ξ2 −

1

2
,

φ̂5 = Φ11 =
5

4
ξ2
2 +

5

2
ξ1ξ2 +

3

2
ξ1 + 2ξ2

3

4
,

φ̂6 = Φ20 =
3

2
ξ2
1 +

1

4
ξ2
2 +

3

2
ξ1ξ2 +

3

2
ξ1 + ξ2

1

4
,

where they are organized hierarchically with constants (i = 1), linears (i =

2 − 3), and quadratics (i = 4 − 6). These geographic basis functions have the

orthogonality property

(φ̂i, φ̂j)L2(Ξ̂g) =

∫ 1

−1

∫ −ξ2

−1

φ̂iφ̂jdξ1dξ2 =
2

(2i+ 1)(j + 1)
δij .

In spectral space, the basis functions are chosen to be a tensor product

of Legendre polynomials such that ψ̂k(η, ϑ) = Pi(η)Pj(ϑ). The first six basis

functions for constants (ψ1), linears (ψ2−3) and quadratics (ψ4−6) are:

ψ̂1 = P0(η)P0(ϑ) = 1,

ψ̂2 = P0(η)P1(ϑ) = ϑ,

ψ̂3 = P1(η)P0(ϑ) = η,

ψ̂4 = P0(η)P2(ϑ) =
1

2
(3ϑ2 − 1),

ψ̂5 = P1(η)P1(ϑ) = ηϑ,

ψ̂6 = P2(η)P0(ϑ) =
1

2
(3η2 − 1).

The basis functions have the following orthogonality property:

(ψ̂m(η, ϑ), ψ̂n(η, ϑ))κ̂s
=

∫ 1

−1

Pmi
(η), Pni

(η)dη

∫ 1

−1

Pmj
(ϑ), Pnj

(ϑ)dϑ

=
2

2ni + 1

2

2nj + 1
δmn.
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3.7 Quadrature Rules

Quadrature rules are employed to evaluate the integrals that appear

in the discontinuous Galerkin discretization. Integrals over the edge and area

of both geographic and spectral elements need to be evaluated. To maintain

the accuracy of a discontinuous Galerkin approximation of order p, area inte-

grals should be computed with a quadrature rule that is exact for polynomials

of degree 2p, and boundary integrals should be computed with a quadrature

rule that is exact for polynomials of degree 2p + 1 [22]. In spectral space, we

use one-dimensional Gauss-Legendre quadrature rules for the edge integrals

and products of Gauss-Legendre quadrature rules for the area integrals. Be-

cause an n-point Gauss-Legendre rule integrates a polynomial of degree 2n−1

exactly, we use q + 1 quadrature points for the edge integrals and (q + 1)2

quadrature points for area integrals in spectral space. Likewise, for the edge

integrals in geographic space, we also use a p+ 1 Gauss-Legendre quadrature

rule. Products of Gauss-Legendre quadrature rules defined for the geographic

square master element could also be used to evaluate integrals over the area of

the geographic triangular element. However, to reduce the number of quadra-

ture points and therefore increase the efficiency of the model, an efficient,

high-degree symmetric Gaussian quadrature rule specifically for the triangle

as defined in [45] (for up to degree p = 20) is implemented as it is in DG-

SWEM [75]. The reduction in number of quadrature points can be seen, for

example, in the degree 4 quadrature rule (required for quadratic polynomials),

which requires only 4 quadrature points versus the 9 quadrature points needed
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for the product of Gauss-Legendre quadrature rule.

3.8 Computation of Propagation Velocities

Evaluating the integrals via quadrature rules require the propagation

velocities c, to be evaluated at the quadrature points. To evaluate the prop-

agation velocities requires the values or computation of values of the total

water depth H(x, t), current u(x, t) and v(x, t), the group velocity, cg, and

wave number, k. The depth and current are two input parameters and in the

coupled model, will be determined by DG-SWEM. We express the depth and

current input parameters, over the entire geographic domain, at time tn in

terms of the geographic basis functions as

H(x, tn) =
∑

e

∑

i

Hn,iφ̂e,i(x),

u(x) =
∑

e

∑

i

un,iφ̂e,i(x),

and

v(x) =
∑

e

∑

i

vn,iφ̂e,i(x).

We do not require that the depth or current have the same number of degrees

of freedom as the action density, N , or each other. These expressions of the

depth and current also assist in simplifying parts of the calculations of source

terms which require derivatives of depth and the current.

The group velocity, cg, and wave number, k, are approximated in dif-

ferent ways depending on whether the depth of the water is considered to be
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deep, shallow, or somewhere in between. The wave number is related to the

frequency via the dispersion relationship

σ2 = gk tanh(kH),

and the group velocity is

cg = cphn

where the phase speed cph is

cph =

√
g

k
tanh(kH),

and

n =
1

2

(
1 +

2kH

sinh(2kH)

)
,

via the dispersion relationship [64]. Depending on the depth of the water,

whether shallow or deep, we assume that as kH → 0 that tanh(kH) → kH

or kH → ∞ that tanh(kH) → 1 and make appropriate simplifications to

compute the wave number and group velocity. Following SWAN, to determine

if the depth is considered deep or shallow, a dimensionless frequency, SND =

σ ∗
√
H(xqp)/g, is computed at each quadrature point [126]. SWAN employs

Padè-type estimates when the water is neither deep or shallow to compute the

parameters. Following SWAN’s computations, we compute the group velocity,

cg, and wave number, k, as follows:

k = σ2
ℓ/g

n = 1
2

cg = 1
2
g/σℓ




 if deep water (SND ≥ 2.5) ,
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k = σℓ/
√
H(xqp)g

n = 1

cg =
√
H(xqp)g




 if shallow water (SND ≤ 1 ∗ 10−6) ,

cph =

√
g∗H(xqp)

SND2+ 1
1+0.666∗SND2+0.445∗(SND2)2−0.105∗(SND2)3+0.272∗(SND2)4

k = σℓ/cph

n = 1
2
(1 + 2kH(xqp)

sinh(2kH(xqp))
)

cg = ncph





otherwise.
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Chapter 4

Verification and Validation of Spectral Wave

Model

The discontinuous Galerkin spectral wave model is verified and vali-

dated using the method of manufactured solutions, comparisons to academic

test cases, and comparisons to the well-known SWAN model. The experimen-

tal convergence rates are investigated by using a manufactured solution. We

continue to verify and validate the model using test cases from the ONR test

bed [114] which is a suite of test cases that have both academic and laboratory

results. We also compare our results to those of SWAN, because SWAN is a

widely used and well-trusted wave model. We also test our model’s ability to

propagate swell over large distances, to see if it is affected by the “Garden

Sprinkler Effect”, which is the disintegration of continuous swell into multi-

ple discrete swells. In addition, we examine the parallel scalability of the DG

spectral wave model and the benefits of using p-adaptivity to increase the

computational efficiency of the model.

In some of the following test cases, we are interested in the steady-

state solution. We consider the model to be in a steady state if stopping-

criteria are met. The stopping-criteria are based on SWAN’s stopping-criteria
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for convergence of its iterative solver [126]. We consider three criteria: the

absolute error

|H i
s −H i−1

s | ≤ ǫA,

the relative error

|H i
s −H i−1

s |
H i−1

s

≤ ǫR,

and curvature error

|H i
s − (H i−1

s +H i−2
s +H i−3

s |
H i

s

≤ ǫC

where the significant wave height Hs is determined at one point in each geo-

graphic element and i denotes the current time step or iteration. We consider

the model to be at a steady state if all three error criteria are met for a per-

centage of the geographic elements. Typically, we require ǫA, ǫR, ǫC = 1×10−5

for 95% of the elements. In addition, in some of the following cases, we are in-

terested in the mean wave direction, which is an integrated quantity of action

density and is calculated as follows

θ = arctan

(∫
sin θNσdσdθ∫
cos θNσdσdθ

)
.

4.1 Manufactured Solutions

We first examine individually the wave model with manufactured so-

lutions. To inspect the convergence rates, β, we simplify the action balance

equation by setting the propagation velocity to c = 1 and the source term to

S = 0 and use the manufactured solution

N = sin(x− t) + cos(y − t) + sin(σ − t) + cos(θ − t),
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where x, y, σ, θ and t are dimensionless. The geographic and spectral domains

are (0, L)×(0, L), L = 10, and are discretized with triangles and quadrilaterals,

respectively, with element size h. The series of geographic meshes are shown

in Figure 4.1. A second order Runge-Kutta scheme is used with a time step of

∆t = 0.005 s, so that errors due to the time discretization are negligible. The

errors and convergence rates are shown in Table 4.1 for the initial condition.

For T = 5 s, the error and convergence rates are recorded in Table 4.2 and the

errors are plotted against the step size h and number of degrees of freedom in

Figure 4.2. For h small enough, we obtain about p+ 1 convergence rates.

Restricting to the geographic domain, we use the manufactured solution

N = sin(x− t) + cos(y − t),

to examine the convergence rates of Runge-Kutta methods of different orders.

We employ the geographic mesh with h = L/64 and quartic approximations.

Errors and convergence rates are shown in Table 4.3, which demonstrate the

correct orders of approximations for each of the different ordered Runge-Kutta

methods.

4.2 Current-Induced Shoaling and Refraction

To verify the wave model, we first test the propagation scheme in the

presence of an ambient current (omitting source terms). We will examine four

different cases of monochromatic, unidirectional waves, not necessarily normal

to the coast, in the presence of different ambient currents, which are standard
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(a) h = L/2 (b) h = L/4

(c) h = L/8 (d) h = L/16

(e) h = L/32 (f) h = L/64

Figure 4.1: The sequence of geographic meshes for the manufactured solutions.
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Figure 4.2: Errors of the manufactured solutions at T = 5 s.
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nRK=2,2 nRK=3,3 nRK=4,5
∆t L2 Error β L2 Error β L2 Error β
0.01 2.3971e-5 – 1.2205e-6 – 8.3565e-8 –
0.005 2.3971e-5 0 1.2153e-7 3.3280 4.8452e-9 4.1083
0.0025 5.9911e-6 2.0004 1.3692e-8 3.1500 - -
0.00125 1.4975e-6 2.0002 - - - -
0.000625 3.7437e-7 2.0001 - - - -

Table 4.3: Errors and convergence rates for different orders of Runge-Kutta
methods.

test cases and can be found in the ONR test bed [114]. The first two cases

examine an incoming wave traveling a distance from south to north of 4,000

m in deep water (H=10,000 m) in the presence of an opposing current (a) and

a following current (b) with a velocity that increases from 0 to 2 m/s from the

south to the north. Explicitly the current is

(a) u =

(
0

−2/4, 000y

)
m/s, (b) u =

(
0

2/4, 000y

)
m/s.

The incoming, monochromatic, long-crested waves are simulated with a Gaussian-

shaped frequency spectrum, with peak frequency 0.1 Hz, standard deviation

0.01 Hz, and a cos500(θ) directional distribution (i.e., directional spreading is

5◦ [79]). The waves have a significant wave height of 1 m and a main direction

of 90◦. The incoming wave boundary is indicated with a blue line on the ge-

ographic mesh shown in Figure 4.3. All other boundaries are absorbing. The

spectral domain has 40 logarithmically distributed elements in frequency space

that range from 0.05-0.25 Hz, which does not include the blocking frequency

in the opposing current case, and has constant directional element spacing of
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∆θ = 2◦. The incoming wave boundary conditions are shown in Figure 4.4 (a)

and (b) along with the corresponding spectral meshes.

Figure 4.3: The geographic mesh for the ambient current test cases. The
blue line indicates the incoming wave boundary and the red line indicates the
segment along which the steady state solutions are shown. There are 936
triangular elements, 519 nodes, and h ≈ 400 m.

We are interested in the steady-state solution along the center of the

geographic domain (the red line shown in Figure 4.3). Steady-state solutions

are achieved when there is little to no change in consecutive time-steps (∆t = 2

s) of the significant wave height in each geographic element. The results are

shown in Figure 4.5 curves (a) and (b). The DG solution is the black line and

employs linears in both geographic and spectral space. We also show SWAN’s

stationary solution with the same numerical settings and also omitting source

terms in blue for comparison because it is a well-trusted and widely-used wave

model. The red line is the analytic solution (e.g. [69, 108]), which is

H2
s

H2
s,i

=
c2i

c(c + 2U)

in which Hs is the wave height and c is the group velocity, where i represents

the incident value. The DG solutions closely follow the analytic solutions.
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Figure 4.4: The action density in m2/Hz/◦ specified at the southern boundary
(blue line in Figure 4.3) of the four current test cases are shown on their
respective spectral meshes. The main direction and peak period are indicated
on the spectral mesh with red lines. Note the spectral mesh is plotted in polar
coordinates (σ, θ) to emphasize that θ is a direction, although spectral space
is treated as a Cartesian coordinate system in the numerical method.
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Note that SWAN produces significant wave heights that are larger than the

analytic solution for the opposing current case. SWAN’s solution improves

slightly when we use ∆θ = 0.2◦ and 160 frequency elements. Higher order ap-

proximations can be successfully used in both geographic and spectral space

as shown in Figure 4.6 for the opposing current case (a). We notice a signifi-

cant improvement by increasing the order of approximation from constants to

linears in both geographic and spectral space.

The final two ambient current test cases turn the previous incoming

waves by ±30◦ (for incoming main wave directions of 120◦ (c) and 60◦ (d)) in

the presence of a slanted current,

u =

(
2/4, 000y

0

)
m/s.

The analytic solution (e.g. [62, 69]) is

Hs = Hs,i

√
sin(2θi)

sin(2θ)

θ = arccos

[
gki cos(θi)

(ω − Uki cos(θi))2

]
.

Again we use the geographic mesh shown in Figure 4.3. The spectral domain

has 40 logarithmically distributed elements in frequency space that range from

0.05-0.25 Hz and has constant directional element spacing of ∆θ = 2◦ (c) or

∆θ = 1.5◦ (d). The incoming wave boundary conditions are shown in Figure

4.4 (c) and (d) along with the corresponding spectral meshes. The steady-

state solutions of the significant wave height and main wave direction are

shown in Figure 4.5 curves (c) and (d). The DG solutions using linears in
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Figure 4.5: Steady state solutions of the significant wave height, Hs, and the
main direction, θ, for the ambient current test cases. The DG solution utilizing
linears in both geographic and spectral space is compared to SWAN and the
analytic solutions.
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Figure 4.6: Steady state solutions of the significant wave height for the oppos-
ing current case (a). The DG solution using higher orders of approximation
are compared to SWAN and the analytic solution. On the top, linears are used
in geographic space (p = 1) and constants, linears, quadratics, and cubics are
used in spectral space (q = 0, 1, 2, 3). On the bottom, linears are utilized in
spectral space (q = 1) while constants, linears, and quadratics are used in
geographic space (p = 0, 1, 2).

59



geographic and spectral space (shown in black) closely match the analytic

solutions (shown in red) for both the significant wave height and the main

direction, demonstrating our model’s ability to closely model incoming waves

in the presence of an ambient current.

Further examining the opposing current case (a), we explore the benefit

of using higher order approximations in geographic and spectral space. For

this discussion, we consider a coarse and a fine mesh. The coarse geographic

mesh, Figure 4.7 (a), has 1/16 of the resolution of the geographic fine mesh,

Figure 4.7 (b) and the coarse spectral mesh only has about half the resolution

as the fine spectral mesh (∆θ = 2◦, 40 logarithmically distributed frequency

elements). The steady state solutions of the significant wave height are shown

in Figure 4.8. Note that the SWAN fine mesh solution (shown in blue) is a

significant improvement from its coarse mesh solution (shown in cyan), which

does not provide enough resolution. We show two DG solutions that employ

either the coarse or fine mesh but have similar numbers of degrees of freedom.

The first, shown in green, employs the fine mesh with constant approximations

in both geographic and spectral space (p, q = 0) and the second, shown in

black, employs the coarse mesh but with higher order approximations, linears

in geographic space and cubics in spectral space (p = 1, q = 3). These

simulations have 7.68 million and 3.6 million degrees of freedom, respectively.

Comparing the SWAN fine mesh and the DG low-order, fine mesh solutions,

we observe that SWAN’s fine mesh solution is a better match to the analytic

solution (shown in red). This is not unexpected, because SWAN is using
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a higher order approximation than the constant approximation of the DG

solution. Comparing the two DG solutions, we see a significant benefit in

using higher orders of approximations on the coarse mesh versus a lower order

of approximation on the fine mesh, even though the higher order solution

has less than half the number of degrees of freedom. In particular, note that

the coarse, higher-order solution matches the analytic solution, shown in red,

better than the lower-order, fine mesh DG solution as well as SWAN’s fine

mesh solution.

(a) coarse mesh

(b) fine mesh

Figure 4.7: The coarse and fine meshes used for the opposing current case in
Figure 4.8.
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Figure 4.8: The steady-state solutions of the significant wave height for the
opposing current case (a) are shown. We compare two DG solutions with
similar numbers of degrees of freedom, one on the fine mesh with constants
and the second on the coarse mesh with linears in geographic space and cubics
in spectral space. SWAN solutions on both the coarse and fine meshes along
with the analytic solution are also shown.
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4.3 Depth-Induced Shoaling and Refraction

We now test the propagation of monochromatic, long-crested waves

in shallow water with varying depth and no current. We consider a wave

propagating toward a plane beach over a distance of 4,000 m from a depth of

20 m (slope 1:200). The incoming wave has a significant wave height of 1 m,

a Gaussian-shaped frequency spectrum, with peak frequency 0.1 Hz, standard

deviation 0.01 Hz, and a cos500(θ) directional distribution. To test depth-

induced shoaling, we consider the incoming wave to have a main direction of

90◦ (a), and to test depth-induced refraction, we consider the incoming wave

to have a main direction of 120◦ (b). The analytic solution for both cases is

given by (e.g. [94])

H2
s

H2
s,i

=
ci
c

cos(θi)

cos(θ)

and the wave direction is calculated with Snell’s law. The geographic mesh

is shown in Figure 4.9; the element size h varies from 800 m to 20 m as the

depth decreases from 20 m to 0 m (d = 20 − 1/200y). The spectral mesh

has 40 frequency elements distributed logarithmically from 0.01-0.25 Hz and

Figure 4.9: The geographic mesh for the depth-induced shoaling and refraction
cases. The blue line indicates the incoming wave boundary and the red line
indicates the line along which the steady state solutions are considered. There
are 13,841 triangular elements, 7,458 nodes, and h varies from 800 to 20 m.
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Figure 4.10: The action density in m2/Hz/◦ specified at the boundary (blue line
in FIgure 4.9) of the depth-induced shoaling and refraction cases. The main
direction and peak period are indicated on the spectral mesh with red lines.
Note the spectral mesh is plotted in polar coordinates (σ, θ) to emphasize that
θ is a direction, although spectral space is treated as a Cartesian coordinate
system in the numerical method.

the directional elements have a constant spacing of ∆θ = 5◦ (SWAN solutions

use ∆θ = 0.25◦). The spectral meshes (for the DG solutions) are shown in

Figure 4.10, along with the boundary conditions used in the two cases. In

Figure 4.11, the steady-state solution of the significant wave height and main

direction are shown where the x-axis corresponds to the red line indicated

on the geographic mesh in Figure 4.9. The DG solution employing linears

in geographic and spectral space is shown in black and SWAN is shown in

blue (for depths greater than 0.05m). The DG model closely reproduces the

analytic solution, shown in red, for the significant wave height and the turning
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Figure 4.11: Steady state solutions of the significant wave height, Hs, and the
main direction, θ, to the depth-induced shoaling and refraction cases. The DG
solution utilizing linears in both geographic and spectral space is compared to
SWAN and analytic solutions.
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of the main direction. Note the improved match to the analytic solution for

wave directions, relative to SWAN.

4.4 Garden Sprinkler Effect

As irregular, short-crested waves or wind sea, generated by local wind

or storm, propagates out of the generation area, the waves disintegrate through

dispersion processes into regular, long-crested waves or swell [64]. This dis-

persion occurs continuously; however, in numerical models when the energy

is represented discretely, the initial irregular wave field disintegrates into mul-

tiple wave fields for each discrete direction/frequency. This is known as the

“garden sprinkler” effect (GSE) [10, 129]. Numerical models frequently are

required to propagate swell over large geographic distances and the GSE can

lead to poor prediction of the arrival of swell from distant storms [10]. We

investigate if the DG model is affected by the GSE while propagating swell.

An example of the GSE is shown in Figure 4.12. This test case appears

in Tolman [129], and we investigate how our DG model propagates waves over

large distances. In this test we employ the simplified action balance equation

omitting refraction, frequency shifting and source terms (cθ, cσ, and S = 0).

This test case involves an area of 4,000 km × 3,500 km of deep water (H = 10

km). An initial wave field is located 500 km from the lower and left side of

the domain with a significant wave height of 2.5 km. The wave field has a

main direction of 30◦ with a cos2(θ) directional distribution, a mean frequency

of 0.1 Hz with a Gaussian spread of 0.01 Hz, and a Gaussian spread of 150
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(a) Initial Condition (b) “Garden Sprinkler” Effect

(c) Fine Scale Solution (p = 0, q = 1) (d) Fine Scale Solution (p = 1, q = 1)

Figure 4.12: The initial condition for the GSE test case is shown in (a). The
solution after 5 days with the “Garden Sprinkler” effect is shown in (b) and
two fine-scale solutions are shown in (c) and (d), using constants or linears in
geographic space and linears in spectral space.
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km in geographic space. We investigate what happens to the initial wave

field, shown in Figure 4.12(a), after 5 days of computation. In Figure 4.12 (c)

and (d), the fine scale solution of the significant wave height is shown after

5 days and in Figure 4.12 (b) the GSE is shown. The results in Figure 4.12

(b), which shows the effect of GSE, were computed by the DG model with

linears in geographic space and constants in spectral space (p = 1, q = 0),

h = 100 km, ∆θ = 15◦, and γ = 1.041. The two fine scale solutions use

increased geographic resolution of h = 25 km and increased spectral resolution

of ∆θ = 2.◦, with linears in spectral space and either constants in geographic

space (c) or linears in geographic space in (d). In the fine-scale solutions,

we notice the constant approximation in spectral space is more diffusive than

the linear approximation. There is no analytic solution for this test case,

however Tolman’s fine-scale “exact” solution [129] is closer to the constant

approximation solution in Figure 4.12(c).

As we have seen, the DG model using linears in geographic space and

constants in spectral space can suffer from the GSE. We investigate how the

DG model preforms on the original, coarse mesh (h = 100 km, ∆θ = 15◦,

and γ = 1.041) using different orders of approximations. Figure 4.13 uses

constants (p = 0) in geographic space, Figure 4.14 uses linears (p = 1), Figure

4.15 uses quadradics (p = 2), and Figure 4.16 uses cubics (p = 3) in geographic

space, each with multiple spectral orders of approximation (q = 0, 1, 2, 3, 4).

For each of the different geographic orders, we see that by increasing the

spectral order of approximation the GSE is decreased. We also notice that the
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(a) p = 0, q = 0 (b) p = 0, q = 1

(c) p = 0, q = 2 (d) p = 0, q = 3

(e) p = 0, q = 4

Figure 4.13: The significant wave height for the GSE test after 5 days is shown
for the DG solutions employing constants in geographic space and constants
(a) through quartics (e) in spectral space.
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(a) p = 1, q = 0 (b) p = 1, q = 1

(c) p = 1, q = 2 (d) p = 1, q = 3

(e) p = 1, q = 4

Figure 4.14: The significant wave height for the GSE test after 5 days is shown
for the DG solutions employing linears in geographic space and constants (a)
through quartics (e) in spectral space.
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(a) p = 2, q = 0 (b) p = 2, q = 1

(c) p = 2, q = 2 (d) p = 2, q = 3

(e) p = 2, q = 4

Figure 4.15: The significant wave height for the GSE test after 5 days is shown
for the DG solutions employing quadratics in geographic space and constants
(a) through quartics (e) in spectral space.
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(a) p = 3, q = 0 (b) p = 3, q = 1

(c) p = 3, q = 2 (d) p = 3, q = 3

Figure 4.16: The significant wave height for the GSE test after 5 days is shown
for the DG solutions employing cubics in geographic space and constants (a)
through cubics (d) in spectral space.
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constant approximation in geographic space is more diffusive than the higher

order geographic approximations and therefore naturally alleviates some of the

GSE. We also see that the constant solution is more diffusive than the linear

geographic solution in the two fine scale solutions, Figures 4.12 (c) and (d),

even though neither are affected by the GSE due to the increased resolution.

We also investigate the effect on the results when different unstructured

geographic meshes are used. In Figure 4.17, we show four different geographic

meshes all with h = 100 km where (a) and (b) employ structured triangles with

different orientations, (c) is a ‘Union Jack’ mesh and (d) is a mesh generated by

SMS [3] (which was used in Figures 4.13-4.16). In Figures 4.18-4.21, we show

results for the different geographic meshes for selected orders of approximation.

We see that employing mesh (a) which uses structured triangles alleviates the

GSE more than the other unstructured meshes especially in Figure 4.18 which

uses constants in both geographic and spectral space and in Figure 4.19 which

uses constants in geographic space and quadratics in spectral space. In Figure

4.20 which uses linears in both geographic and spectral space and Figure 4.21

which uses linears in geographic space and quartics in spectral space, we see

smaller differences in the results for the different geographic meshes and by

using the higher order approximations the GSE is eased.

For comparison, we also examine how SWAN performs in the GSE test.

SWAN results for the four unstructured geographic meshes are shown in Figure

4.22. SWAN also has the least GSE when using the geographic mesh (a) but

cases (b)-(d) all have the GSE. To alleviate the GSE, the ideal solution is to
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(a) Triangle Orientation 1 Mesh (b) Triangle Orientation 2 Mesh

(c) Union Jack Mesh (d) SMS Mesh

Figure 4.17: Four different geographic, unstructured meshes with h = 100 km
used for the GSE test case.
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(a) Triangle Orientation 1 Mesh (b) Triangle Orientation 2 Mesh

(c) Union Jack Mesh (d) SMS Mesh

Figure 4.18: DG solutions of the significant wave height after 5 days for the
GSE test case, which employ constants in both geographic and spectral space
(p, q = 0) for each the four geographic meshes in Figure 4.17, are shown.
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(a) Triangle Orientation 1 Mesh (b) Triangle Orientation 2 Mesh

(c) Union Jack Mesh (d) SMS Mesh

Figure 4.19: DG solutions of the significant wave height after 5 days for the
GSE test case, which employ constants in geographic space and quadratics in
spectral space (p = 0, q = 2) for each the four geographic meshes in Figure
4.17, are shown.
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(a) Triangle Orientation 1 Mesh (b) Triangle Orientation 2 Mesh

(c) Union Jack Mesh (d) SMS Mesh

Figure 4.20: DG solutions of the significant wave height after 5 days for the
GSE test case, which employ linears in both geographic and spectral space
(p, q = 1) for each the four geographic meshes in Figure 4.17, are shown.

77



(a) Triangle Orientation 1 Mesh (b) Triangle Orientation 2 Mesh

(c) Union Jack Mesh (d) SMS Mesh

Figure 4.21: DG solutions of the significant wave height after 5 days for the
GSE test case, which employ linears in geographic space and quartics in spec-
tral space (p = 1, q = 4) for each the four geographic meshes in Figure 4.17,
are shown.
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increase resolution through mesh refinement. We have also seen by employing

higher order approximations in spectral space in the DG wave model we can

alleviate some of the GSE, but this is not an option for SWAN and mesh

refinement to alleviate the GSE is not practical in operational settings due

to the increased computational expense. Booij and Holthuijsen provide an

alternative solution to the GSE in SWAN by adding diffusion terms to the

propagation equation [10]. The simplified action balance equation with the

GSE correction terms is

∂N
∂t

+ ∂
∂x

[cxN −Dxx
∂N
∂x

] + ∂
∂y

[cyN −Dyy
∂N
∂y

] − 2Dxy
∂2N
∂x∂y

= 0, (4.1)

Dxx = Dss cos2 θ +Dnn sin2 θ, (4.2)

Dyy = Dss sin2 θ +Dnn cos2 θ, (4.3)

Dxy = (Dss −Dnn) cos θ sin θ, (4.4)

Dss = (∆cg)
2Ts/12, (4.5)

Dnn = (cg∆θ)
2Ts/12, (4.6)

where Dss is the diffusion coefficient in the propagation direction of the dis-

crete wave component and Dnn is the diffusion coefficient along the crest of the

discrete wave component, Dxx, Dyy, and Dxy are the corresponding compo-

nents of the diffusion tensor along the axes of the spatial grid, cg is the group

velocity, ∆cg is the discrete increment corresponding to the spectral bin, and

Ts is the swell age or time elapsed since the generation of the swell [10]. The

swell age, Ts is treated as a tunable coefficient. This GSE correction can only

be implemented in the structured version of SWAN. Results for the structured
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SWAN model are shown in Figure 4.23 with a first order upwind (BSBT)

difference scheme in geographic space (a), the higher order Stelling and Leen-

dertse (S&L) [121] scheme in geographic space (b), and the S&L scheme with

the GSE correction for Ts = 2 days (c) and Ts = 5 days (d). We see that

SWAN’s BSBT solution is more diffusive than the higher order S&L scheme,

just as the constant approximation was more diffusive than the higher order

geographic solutions for the DG wave model. Higher order geographic approx-

imations, which are less diffusive, increase the GSE, which we see in SWAN

and the DG model’s solutions. Using Ts = 2 days as the wave age, the SWAN

solution has less GSE than the S&L solution but has more than the Ts=5 days

solution.

By adding diffusion to the equation, SWAN alleviates the GSE in a

more computationally efficient way than mesh refinement. In the DG wave

model, we can alleviate the GSE by increasing the spectral order of approx-

imation no matter what unstructured mesh is used. Increasing the order of

approximation does add computation costs although we can increase the com-

putational efficiency by using adaptivity. In addition to demonstrating the

benefits of adaptivity, we also demonstrate the parallel performance of the

DG spectral wave model.

The DG spectral wave model runs in parallel in MPI. The paralleliza-

tion occurs by decomposing the geographic domain over the computational

cores. The domain decomposition is also performed in parallel via the ParMETIS

Library. We examine the parallel performance of the DG spectral wave model

80



(a) Triangle Orientation 1 Mesh (b) Triangle Orientation 2 Mesh

(c) Union Jack Mesh (d) SMS Mesh

Figure 4.22: SWAN solutions of the significant wave height after 5 days for
the GSE test case for each the four unstructured, geographic meshes in Figure
4.17 are shown.
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(a) SWAN (BSBT) (b) SWAN (S&L)

(c) SWAN (GSE Correction Ts=2 days) (d) SWAN (GSE Correction Ts=5 days)

Figure 4.23: SWAN solutions of the significant wave height for the GSE test
case after 5 days using structured geographic meshes using BSBT in (a), the
higher order S&L scheme (b), and the S&L scheme with the GSE correction
for Ts = 2 days (c) and Ts = 5 days (d).
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on Lonestar, which is a Linux Cluster at the Texas Advanced Computing Cen-

ter (TACC). Lonestar is composed of 1,888 compute nodes, with two 6-Core

processors per node, for a total of 22,656 cores. Lonestar has a theoretical

peak performance of 302 TFLOPS, 44 TB of total memory and 276 TB of

local disk space. Nodes are connected with an InfiniBand network with a 40

GB/sec bandwidth.
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p0q0−M=144,L=40
p1q1−M=144,L=40
p1q1−M=36,L=40
p2q2−M=36,L=40

Figure 4.24: Parallel scalability results for the DG spectral wave model on
Lonestar. The time shown is wall-clock time for the 5 day GSE simulation
using the finescale geographic mesh.

We employ a fine-scale geographic mesh with h = 25 km, 58,112 ele-

ments and 29,377 verticies. We either use M = 36 or 144 directional elements,
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corresponding to ∆θ = 10◦ or 2.5◦, and L = 40 frequency elements. Timings

for the 5 days of simulation, with a time step of ∆t = 150s, are shown in Fig-

ure 4.24 for several different orders of approximation. We observe that for the

constant approximation (p, q = 0) with M = 144 directional elements, which

has 5,760 degrees of freedom per geographic element, scales up to 1,152 cores.

With 2,304 cores, which corresponds to approximately 25 geographic elements

per core, the required communication increases the total computation time

compared to only using 1,152 cores, which corresponds to approximately 50

geographic elements per core. When the order of approximation is increased

to linear approximations in both geographic and spectral space (p, q = 1), we

see that the computations scale upto 2,304 cores. There are 51,840 degrees of

freedom per geographic element and the increased work per core extends the

scalability of the model. However, many realistic computations have larger

directional spacings, so we also examine what happens when we use larger

directional elements with ∆θ = 10◦ (M = 36). The green line shows the linear

approximation (p, q = 1) with M = 36 which corresponds to 12,960 degrees

of freedom per geographic element. We again see that the computations scale

through 2,304 cores as it also does for the quadratic approximation (p, q = 2),

which corresponds to 51,840 degrees of freedom per geographic element.

4.4.1 Adaptivity

To show the potential gain in computational efficiency through p-adaptivity

we employ a simple adaptive algorithm for the GSE test case. At each time
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step for this adaptive scheme, we evaluate the significant wave height at the

center of each geographic element. If the significant wave height is greater

than or equal to our chosen value of 0.01 m, then we use phigh in geographic

space and qhigh for a pre-determined sector of spectral space. We choose a

priori where the action density lies within the spectrum, and outside of that

area q is always qlow. Once an element is refined to a higher order with phigh

and qhigh, it must maintain this higher order approximation for 15 time steps.

Otherwise, if the significant wave height is less than the 0.01 m at the center

of the geographic element, we use plow in geographic space and qlow for the

entire spectral domain.

For this case, we use the geographic mesh shown in Figure 4.17(a) with

36 directional elements and 40 frequency elements. For every geographic el-

ement we have 960 spectral elements, but because the wave is propagating

towards the east-northeast, the action density will only be in 72 of those ele-

ments or 7.5%. For other cases, the action density might lie in a larger portion

of the spectral domain, but rarely if ever in the entire spectral domain. In Fig-

ures 4.25 and 4.26, the significant wave height and the order of approximation

p in geographic space, where blue represents p = 0, a constant approximation,

and red represents linear approximation, p = 1, are shown for four different

time steps: t = 0 (initial condition), two intermediate time steps of t = 250

and t = 500, and t = 720 (day 5). We see that the adaptive routine uses higher

order approximation in the area of interest, where we have non-zero significant

wave height, and uses a low order of approximation everywhere else. We ex-

85



(a) significant wave height (t=0) (b) geographic degree p (t=0)

(c) significant wave height (t=250) (d) geographic degree p (t=250)

Figure 4.25: The significant wave height and degree of the geographic element
for the initial condition (t = 0) and at the time step t = 250 for the GSE
test case with adaptivity. The higher degree of linear approximation (p = 1),
represented in red, follows the wave as it propagates through the domain. The
areas with no activity have the low, constant order approximation (p = 0),
which is represented in blue.
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(a) significant wave height (t=500) (b) geographic degree p (t=500)

(c) significant wave height (t=720) (d) geographic degree p (t=720)

Figure 4.26: The significant wave height and degree of the geographic element
for the time step t = 500 and at the final time of 5 days (t = 720) for the GSE
test case with adaptivity. The higher degree of linear approximation (p = 1),
represented in red, follows the wave as it propagates through the domain. The
areas with no activity have the low, constant order approximation (p = 0),
which is represented in blue.
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amine the error between using the higher order approximation everywhere and

using the adaptive routine for four different cases at the final time of 5 days

(t = 720). In Figure 4.27, we show the difference in significant wave height

between the adaptive and non-adaptive solutions and in Figure 4.28, we show

the percentage error in the significant wave height reference to the maximum

significant wave height when using adaptivity. When using constant approxi-

mation in geographic space and only adapting in spectral space, we have very

small errors up to 0.2% in a few places. When we adapt in geographic space,

as well as in spectral space using either linears or quadratics for our higher

order approximation, we obtain errors up to 4.5 cm or 8.5-9% error at a few

locations along the interface of the lower and higher order approximations in

geographic space, but otherwise obtain the same solution as when using a

higher order approximation throughout the entire domain.

Table 4.4 shows the time for the 5 day simulations with and without

adaptivity. By adapting in spectral space and using constant approximation

in geographic space, we obtain a speed up of ≈2.8 or 5.7 if qhigh = 1 or 2,

respectively (qlow = 0). Compared to the time for a constant approximation

everywhere, it only takes 1.1 or 1.4 times longer to obtain a higher order

solution using adaptivity, versus 3.1 or 7.8 times longer if using higher order

approximations everywhere for qhigh = 1 or 2, respectively. When adapting

and using higher order, linear approximations in geographic space (plow =

0, phigh = 1) as well as adapting spectral space, we obtain a speed up of

approximately 7.6 or 15.0 if qhigh = 1 or 2, respectively (qlow = 0). Compared
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(a) p = 0, q = 1 (b) p = 0, q = 2

(c) p = 1, q = 1 (d) p = 1, q = 2

Figure 4.27: The difference in significant wave height between using a higher-
order approximation (p, q) throughout the entire geographic and spectral do-
main and the adaptive solution (plow, qlow = 0, phigh = p, qhigh = q) at day 5
for the GSE test case.
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(a) p = 0, q = 1 (b) p = 0, q = 2

(c) p = 1, q = 1 (d) p = 1, q = 2

Figure 4.28: The percentage error relative to the maximum significant wave
height for the adaptive solutions (plow, qlow = 0, phigh = p, qhigh = q) at 5 days
for the GSE test case. When calculating the error, we considered the ‘exact’
solution to be the DG solution using the higher-order approximation (p, q)
everywhere.
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time (min)
p = 0, q = 0 16.82
p = 0, q = 1 51.96
p = 0, q = 2 131.42
p = 1, q = 0 49.87
p = 1, q = 1 216.18
p = 1, q = 2 590.50

with adaptivity time (min)
phigh = 0, qhigh = 1 18.55
phigh = 0, qhigh = 2 23.26
phigh = 1, qhigh = 1 28.40
phigh = 1, qhigh = 2 39.34

time (min)
SWAN 4.68

Table 4.4: Timings for 5 days of the GSE test case with and without adaptivity
for the DG model with different orders of approximation as well as SWAN.
For the adaptive solutions, plow, qlow = 0 for all cases.
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to the time for a constant approximation everywhere, it only takes 1.7 or

2.3 times longer to obtain a higher order solution using adaptivity, versus

12.9 or 35.1 times longer if using higher order approximations everywhere for

qhigh = 1 or 2, respectively. Although this particular adaptive routine will not

be applicable to every scenario, it still illustrates the incredible computational

savings achieved by implementing adaptivity while still maintaining higher

order accurate solutions. SWAN is still 3.6 times faster than the constant order

approximation of the DG model. However, through further optimization, we

believe this time gap can be significantly reduced.

4.5 Concluding Remarks

We have verified and validated the DG spectral wave model with man-

ufactured solutions, analytic test cases, and other standard test cases. We ex-

perimentally obtained the optimal convergence rate of p+ 1 for manufactured

solutions for p = q, and h small. For both the current- and depth-induced

shoaling and refraction test cases, we used linear approximations and accu-

rately modeled the analytic solutions of the significant wave height and the

main wave direction. In addition, for the opposing current case, we showed

that we obtain a more accurate solution by employing a higher-order approx-

imation on a coarse mesh versus a low-order approximation on a fine mesh

with twice the degrees of freedom. We also showed that higher order approxi-

mations in spectral space can alleviate the Garden Sprinkler effect.

A commonly cited drawback of the DG method is the increased num-
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ber of degrees of freedom, which leads to increased computational costs. We

showed that adaptivity can dramatically reduce the computational time while

maintaining the higher-order accuracy. We also showed that the DG wave

model is highly scalable, especially when using higher order approximations.

93



Chapter 5

Coupled Wave/Circulation Model

In this chapter, we discuss the coupling of the DG spectral wave model

to the DG Shallow Water Model (DG-SWEM). We introduce the circulation

model and verify and validate the DG wave/circulation model.

Waves and circulation processes interact in daily wind and tide driven

flows and in more extreme events such as hurricanes. Currents and water

levels affect wave propagation and the location of wave-breaking zones, while

the wave forces induce setup and currents. Despite this interaction, waves

and circulation processes are modeled separately using different approaches.

Circulation processes are represented by the shallow water equations, which

conserve mass and momentum. However, this approach for wind-generated

waves is impractical for large geographic scales and therefore we take a spectral

approach, which represents waves by the action balance equation, as outlined

in the previous chapters. Fukashimo (2008) and Dietrich et al. (2010) showed

that coupling wave and circulation in hindcasts of hurricanes increases water

levels by 5%-20% in regions of broad shelf and up to 35% in regions of steep

slope [37,52], which highlights the importance of coupling wave and circulation

models.
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SWAN+ADCIRC is an existing, tightly-coupled wave/circulation model,

that couples the widely-used Simulating WAves Nearshore (SWAN) [11] spec-

tral wave model with the ADvanced CIRCulation model (ADCIRC) [89], a

widely-used circulation model. SWAN was recently extended to run on un-

structured meshes [140] and the SWAN+ADCIRC model utilizes this new

capability by employing the same unstructured mesh for each of the models.

This eliminates interpolation error that can occur if two different meshes are

used, and it allows representation of a variety of scales, which are required

to represent the complex coastal regions. The coupled model is run as the

same executable and information is passed directly through local memory.

SWAN+ADCIRC has successfully been used for hindcasting recent hurricanes

in the Gulf of Mexico [38, 39, 41].

ADCIRC employs a continuous-Galerkin (CG) finite-element method,

which is limited to linear approximations, has difficulties handling strong ad-

vection and is not locally mass conservative [32]. Recent efforts have extended

ADCIRC to use a discontinuous-Galerkin (DG) method; this DG circulation

model, DG-SWEM, can employ higher-order approximations and can handle

advection-dominated flows [78]. In addition, DG models are locally and glob-

ally conservative, which can be important when coupling to transport equa-

tions [31, 36]. For comparison purposes herein, DG-SWEM has been coupled

tightly with SWAN, in a manner similar to [41], which allows both models

to run as the same executable program, and on the same unstructured mesh.

However, the finite-difference solution method in SWAN requires information
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at the vertices, so high-order information from DG-SWEM is lost in the cou-

pling.

We couple our discontinuous Galerkin spectral wave model with DG-

SWEM. The resulting coupled DG wave/circulation model executes on the

same unstructured mesh and higher-order information can be passed between

the models. Waves and currents can be passed from the circulation model to

the spectral wave model, and the wave model can pass wave radiation stress

gradients to the circulation model.

This chapter is organized as follows, we first describe the circulation

model DG-SWEM used in the coupled DG wave/circulation model. We then

examine a test case to verify and validate the DG coupled wave/circulation

model through comparisons with DG-SWEM coupled with SWAN. Because

the DG-SWEM is mature, no comparisons will be made to ADCIRC(CG).

Comparisons can be found in [77].

5.1 The Circulation Model

Shallow water equations are used to model flow processes such as tides,

river flows, tsunami waves and storm surges. We utilize the shallow water

equations to model the circulation processes in the coupled wave/circulation

model. In particular, the Discontinuous Galerkin Shallow Water Equation

Model (DG-SWEM) in [2], [15], [76], [77], [78] will be employed as the circula-

tion model in the coupled discontinuous Galerkin wave/circulation model. In

this section, we state the governing equations and discuss the Local Discon-
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tinuous Galerkin (LDG) method used to discretize the system. Details of its

implementation can be found in [75].

5.1.1 Shallow Water Equations

For the coupled model, we will employ the depth-integrated shallow

water equations to model circulation. The shallow water equations consist of

the primitive continuity equation, which represents the conservation of mass

∂ξ

∂t
+

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0, (5.1)

and the equations representing conservation of momentum in conservative form

∂

∂t
(uH) +

∂

∂x

(
Hu2 +

1

2
gH2

)
+

∂

∂y
(Huv) − gH

∂hb

∂x
− ν∆ (Hu)

= −τbfHu− ρ−1

(
H
∂P

∂x
− τwind,x − τsx,waves

)
, (5.2)

∂

∂t
(vH) +

∂

∂x
(Huv) +

∂

∂y

(
Hv2 +

1

2
gH2

)
− gH

∂hb

∂y
− ν∆ (Hv)

= −τbfHv − ρ−1

(
H
∂P

∂y
− τwind,y − τsy,waves

)
. (5.3)

Here ξ is the elevation of the free surface from the geoid, H = ξ + hb is the

total height of the water column where hb is the depth of the water below the

geoid (bathymetry), (u, v) is the depth-averaged horizontal velocity, g is the

gravitational acceleration, ν is the depth-averaged horizontal eddy viscosity,

P is the atmospheric pressure, ρ is the density of water, τbf is the bottom

friction, τwind is the wind stress at the sea surface, and τwaves is the radiation

stress gradients at the sea surface caused by wind-waves. The radiation stress
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gradients are

τsx,waves = −∂Sxx

∂x
− ∂Sxy

∂y
, (5.4)

τsy,waves = −∂Sxy

∂x
− ∂Syy

∂y
, (5.5)

where Sxx, Syy and Sxy are the radiation stresses [88]:

Sxx = ρg

∫ ∫
((n cos2 θ + n− 1

2
)σN)dσdθ, (5.6)

Sxy = Syx = ρg

∫ ∫
(n sin θ cos θσN)dσdθ, (5.7)

Syy = ρg

∫ ∫
((n sin2 θ + n− 1

2
)σN)dσdθ. (5.8)

The radiation stress gradient is an input parameter provided by the DG spec-

tral wave model in the coupled model.

For later use, we write the shallow water equations ((5.1)-(5.3)) in di-

vergence form:

∂c

∂t
+ ∇ · (A −D∇c) = h(c) (5.9)

where

c =




ξ
uH
vH


 ,

A =




uH vH

u2H + 1
2
g(H2 − h2

b) uvH
uvH v2H + 1

2
g(H2 − h2

b)



 ,

D =



0 0 0
0 νI 0
0 0 νI


 ,
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and

h(c) =




0

−τbfHu− ρ−1
(
H ∂P

∂x
− τwind,x − τsx,waves

)
+ gξ ∂hb

∂x

−τbfHv − ρ−1
(
H ∂P

∂y
− τwind,y − τsy,waves

)
+ gξ ∂hb

∂y


 .

The matrix D has a block structure where 0 is the 2 × 2 zero matrix and I is

the 2 × 2 identity matrix.

The shallow water equations are solved on the geographic domain Ξ

with appropriate initial and boundary conditions. Two types of boundary

conditions are land boundaries where:

u · n = 0,

and open ocean boundaries where:

ξ = ξtidal,

ν∇(uH) · n = 0,

ν∇(vH) · n = 0,

where ξtidal is a specified surface elevation and n is the outward normal of ∂Ξ,

the boundary of Ξ.

5.1.2 Local Discontinuous Galerkin Method

The Local Discontinuous Galerkin method was first introduced and an-

alyzed for convection-diffusion problems by Cockburn and Shu [27] and mod-

ified by Cockburn and Dawson in [21]. The LDG method was applied to the

shallow water equations by Aizinger and Dawson in [2] and is repeated here.
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We first introduce some necessary notation. We define {Th}h>0 as a

family of finite element partitions of Ξ such that no element Ξg cross the

boundary of Ξ, where h is the maximum element diameter. We define the

approximation space

Vh = {v : each component of v is in Mh}

where

Mh = {w ∈ L2(Ξ) : w|Ξg
= φ|Ξg

∈ P p(Ξg) ∀Ξg}.

We do not specify the number of components of v and in the definitions below

and we allow the number to vary depending of the variable being approxi-

mated. We denote ng to be the unit outward normal to ∂Ξg, the boundary of

Ξg. Then for x ∈ ∂Ξg we define the interior

vint(x) = lim
s→0−

v(x + sng)

and exterior

vext(x) = lim
s→0+

v(x + sng)

traces. Their average is defined as

v = (vint + vext)/2.

The LDG method is based on a mixed form of (5.9) with auxiliary

variables z̃ and z, defined

z̃ = −∇c, (5.10)
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z = Dz̃. (5.11)

We substitute z into (5.9), multiply by a sufficiently smooth test function v

and integrating over an element Ξg and obtain

(
∂c

∂t
,v

)

Ξg

− (A + z,∇ · v)Ξg
+ 〈(A + z) · ng,v

int〉∂Ξg
= (h(c),v)Ξg

. (5.12)

Then, we multiply (5.10) by a test function ṽ and integrate over Ξg to obtain

(z̃, ṽ)Ξg
− (c,∇ · ṽ)Ξg

+ 〈c, ṽint · ng〉∂Ξg
= 0, (5.13)

and multiply (5.11) by a test function v and find

(z,v)Ξg
− (Dz̃,v)Ξg

= 0. (5.14)

We approximate c, z̃ and z by C, Z̃ and Z in Vh. On the boundary Ξg,

we approximate A · ng by a numerical flux Â(Cint,Cext;ng) and on all other

boundary terms are approximated by averaging. The discrete weak form is

then

(
∂C

∂t
,v

)

Ξg

− (A(C) + Z,∇ · v)Ξg

+ 〈Â(Cint,Cext;ng) + Z) · ng,v
int〉∂Ξg

= (h(C),v)Ξg
,v ∈Wh,g, (5.15)

(Z̃, ṽ)Ξg
− (C,∇ · ṽ)Ξg

+ 〈C, ṽint · ng〉∂Ξg
= 0, ṽ ∈ Vh, (5.16)

(Z,v)Ξg
− (DZ̃,v)Ξg

= 0,v ∈ Vh. (5.17)

We note that the numerical flux Â can be any locally Lipschitz, conservative,

consistent, entopy flux and explicit Runge-Kutta methods are used for time-
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stepping. Implementation details for DG-SWEM can be found in the following

[2, 15, 75–78].

5.2 Verification and Validation of the Coupled Wave/
Circulation Model

5.2.1 Near-Circular Shoal

To verify the coupled DG wave/circulation model, we examine waves

refracting over a circular shoal, as seen in Figure 5.1, in the presence of a cur-

rent. This test problem is similar to a test problem on structured meshes from

Rogers et. al. [116] and Dietrich et. al. [40]. The source terms are neglected.

At the north, south, and west boundaries, an incoming wave is prescribed by a

JONSWAP (with peak enhancement factor γ = 3) spectrum with a significant

wave height of 0.5 m, a peak period of 15.2 s, and a main direction of 335◦ with

a cos14(θ) directional distribution (i.e., directional spreading is 15◦). Incoming

and outgoing fluxes are specified in DG-SWEM so that a current of 0.1 m/s

flows from west to east. The geographic mesh with h ≈ 3, 000 m is shown in

Figure 5.1. The spectral domain has a directional spacing of ∆θ = 10◦ with

33 logarithmically distributed frequency elements that range from 0.05 Hz to

1.0 Hz.

The DG wave/circulation model is coupled loosely through external

files. First, the circulation model is run, and it creates output files of the

water levels and currents at every 600 s. These files are then used as input

to the spectral wave model, which in turn outputs the radiation stresses every
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600 s. These radiation stress files are then used as forcing in a new simulation

of the circulation model. This process is repeated until there is no change in

the output quantities.

For comparison purposes, we compare the loosely-coupled DG wave/

circulation models with a tight coupling of DG-SWEM with SWAN. This tight

coupling mimics the coupling of SWAN+ADCIRC as described in [40], so that

the models run as the same executable on the same unstructured mesh, and

information is passed through local memory without the need for interpolation.

So DG-SWEM is either coupled loosely with the DG wave model, or tightly

with SWAN. For both coupling paradigms, the inter-model communication

occurs every 600s. DG-SWEM uses a time step of 1 s, the DG spectral wave

model uses a time step of 20 s and SWAN uses a time step of 600 s.

In Figure 5.2, we show two DG coupled model solutions, one which

uses constants (a) and another that uses linears (b) in the wave model in

geographic space. Both use linear approximations in spectral space. Also

shown in Figure 5.2 are two SWAN+DG-SWEM solutions: the first is the

solution on the original mesh (c) and the second is a fine grid “exact” solution

(d). For the SWAN+DG-SWEM solution, we observe in Figure 5.2 (c) that the

waves refract prematurely when the shoal is represented on the original mesh.

This is similar to the behavior observed in a test case without currents on

structured meshes in [40], in which the authors showed that either refinement

of the mesh or a limiter is needed to prevent the early refraction of the waves.

The DG coupled model does not have premature refraction; however, the
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constant approximation (a) is too diffusive and linear approximations need to

be used. The linear approximation (c) does qualitatively match the fine grid

solution (d), again showing the benefit of higher orders in the DG method.

Figure 5.1: The bathymetry and geographic mesh for the circular shoal case.
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(a) DG Wave/Circulation (p=0, q=1) (b) DG Wave/Circulation (p,q=1)

(c) SWAN+DG-SWEM (d) SWAN+DG-SWEM fine grid

Figure 5.2: The DG wave/circulation model results for the circular shoal are
shown with constant (a) or linear (b) approximations in geographic space and
linear approximations in spectral space in the wave model. SWAN’s results
tightly-coupled to DG-SWEM are shown on the original mesh (c) and a fine
mesh (d), which we consider ‘truth’. The black line indicates the 110 m and
290 m contours of the bathymetry.
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Chapter 6

An a Priori Error Estimate

We perform an a priori error estimate for the coupled wave/circulation

model. Previously, Dawson, Proft and Aizinger analyzed discontinuous Galerkin

and coupled continuous/discontinuous Galerkin methods for the shallow water

equations in [1, 2, 33–35]. Mirabito, Dawson, and Aizinger analyzed the local

discontinuous Galerkin method for the coupled shallow water and morphody-

namic flow system [97]. Dawson and Proft proved an a priori error estimate

for a coupled continuous/discontinuous Galerkin method for the shallow wa-

ter equations [35]. For the discontinuous portion of their analysis, Dawson

and Proft handled the diffusion operator by implementing the nonsymmet-

ric Oden-Babuška-Baumann formulation [104] and the related interior penalty

method (NIPG) introduced by Girault, Rivière and Wheeler in [115]. For

the advection terms, they employed the upwinding technique of Lasaint and

Raviart [81]. Their work is similar to the previous work of Girault, Rivière

and Wheeler who applied the technique of considering the NIPG method for

diffusion and Lasaint and Raviart upwinding for advection in their proofs of

a priori error estimates for the incompressible Stokes and Navier-Stokes equa-

tions. We will extensively use the strategies and techniques utilized by Dawson

in Proft in the discontinuous portions of their analysis while investigating the
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coupled wave/circulation model, which has not been previously analyzed for

any numerical scheme.

This chapter is organized as follows. In the following section we present

the governing equations of the coupled wave/circulation model as well as some

necessary notations and definitions. We continue in Section 6.2 by formulating

the weak form, defining the approximation spaces, and formulating the discrete

weak form of the coupled model. In Section 6.3, we form the error equations

which are necessary for performing the a priori error estimate presented in

Section 6.4.

6.1 Governing Equations

The coupled wave/circulation model consists of the shallow water equa-

tions, which describe the circulation processes, and the action balance equa-

tion, which describes waves in a statistical sense. We simplify the error analysis

that follows by considering the geographic domain to be only one-dimensional;

however, all arguments in the analysis are valid in two-dimensions. We con-

sider the coupled model on the domain Ω, which is a tensor product of the

geographic domain, Ξ ∈ R, and the spectral domain, κ = (σ, θ) ∈ R
2 where

σ, 0 < σ ≤ σmax, is the relative frequency, which is the frequency observed in

a frame of reference moving with the current, and θ is the wave direction, so

Ω = Ξ × κ ∈ R × R
2, for time t > 0. We denote the boundary of the domain

as ∂Ω with outward normal n = (nx, nσ, nθ) and denote the boundary of the

geographic domain as ∂Ξ with outward normal nx. The one-dimensional cou-
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pled wave/circulation system for which we perform the error analysis consists

of the continuity equation [35]

ξt + ∇x · (uH) = 0, (6.1)

the non-conservative form of the momentum equation

ut + u · ∇xu+ g∇xξ − µ∆u = Fx, (6.2)

and the action balance equation [11]

Nt + ∇ · cN =
S

σ
, (6.3)

where ∇∗ = ∂
∂∗

and ∇ = ( ∂
∂x
, ∂

∂σ
, ∂

∂θ
). The unknown variables are ξ, the

elevation of the free water surface from the geoid; u, the depth-integrated

velocity; and N , the action density. H = ξ+hb is the total height of the water

column where hb is the depth of the water below the geoid (bathymetry); g is

the gravitational acceleration; µ > 0 is the eddy viscosity; and Fx is the forcing

function. Here for simplicity in the analysis, the only forcing considered is due

to the wave radiation stress gradient; that is

Fx =
τsx,wave

ρH

where ρ is the density of the water. The radiation stress gradient is [88]

τsx,wave = −∇xSxx,

where

Sxx = ρg

∫ ∫
((n cos2 θ + n− 1

2
)σN)dσdθ,
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and n = 1
2

(
1 + 2kH

sinh(2kH)

)
. The propagation velocities c = (cx, cσ, cθ) in their

simplified, one geographic dimensional form are [64]

cx = cg cos(θ) + u, (6.4)

cσ =
kσ

sinh(2kH)
(Ht + u∇xH) − cgk∇xu cos2 θ, (6.5)

cθ =
σ

sinh(2kH)
∇xH sin θ + ∇xu cos θ sin θ, (6.6)

where cg = nc is the group velocity, c = σ/k is the phase speed, and k is the

wave number, which is related to the frequency via the dispersion relationship

σ2 = gk tanh(kH). The source term, S, accounts for wind input, Sin, dissipa-

tion, Sd, and nonlinear wave-wave interactions, Snl. The details of the source

term can be found in Section 2.3 and here we only note that the source term

can be written as

S

σ
= Sin + Sd + Snl = (fS(H) + gS(N))N

where fS is Lipschitz continuous and gS, which can depend on integral values

of the action density, is also Lipschitz continuous.

For the error analysis only, we will consider the deep water assumption

of H ≫ 0 and thus tanh(kH) ≈ 1. This deep water assumption allows for the

simplification of the group velocity as cg = g/σ, n = 1/2, and the dispersion

relationship becomes σ =
√
gk. When the deep water assumption is valid,

the group velocity no longer depends on the depth of the water. To explore

this, we plot in Figure 6.1 the group velocity for a range of depths for several

different frequencies. When the frequency is 0.03 Hz, the group velocity slows
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its dependence on depth around H = 800 m. However, for the higher frequen-

cies of 0.1 Hz and 1.0 Hz we see that the group velocity no longer depends on

depth for depths larger than 155 m and 1.6 m, respectively. Therefore if lower

frequencies are included in the domain then we must restrict ourselves in the

analysis to water depths larger than 800 m for the deep water assumption to

be valid, but we can consider shallower water if we only consider higher fre-

quencies. We also need for the horizontal length scale to be much larger than

the vertical length scale, so that the shallow water equations are valid. For

the error analysis, we rewrite the propagation velocities using the continuity

equation in the expression for cσ and by approximating the derivative of the

total water depth by the derivative of the bathymetry in the expression for cθ

and obtain

cσ =
kσ

sinh(2kH)
(−H∇xu) − cgk∇xu cos2 θ, (6.7)

cθ =
σ

sinh(2kH)
∇xhb sin θ + ∇xu cos θ sin θ. (6.8)

For the analysis, we also approximate the total water depth by the bathymetry

in the forcing function so that

Fx =
τsx,wave

ρhb
. (6.9)

For the shallow water equations, we consider the geographic boundary

to be divided into an inflow and outflow region ∂Ξ = ∂Ξin ∪ ∂Ξout, where

∂Ξin = {x ∈ ∂Ξ : u · nx < 0},
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Figure 6.1: The group velocity for different depths for several frequencies

∂Ξout = {x ∈ ∂Ξ : u · nx ≥ 0},

with the following boundary conditions

u(x, t) = û(x, t), ∂Ξ,

ξ(x, t) = ξ̂(x, t), ∂Ξin.

For the action balance equation, we consider the entire boundary to be divided

into an inflow and outflow region ∂Ω = ∂Ωin ∪ ∂Ωout, where

∂Ωin = {(x, σ, θ) ∈ ∂Ω : c · n < 0},

∂Ωout = {(x, σ, θ) ∈ ∂Ω : c · n ≥ 0},

with the following boundary condition

N(x, σ, θ, t) = N̂(x, σ, θ, t), ∂Ωin.
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6.1.1 Notation and Definitions

Let {Th}h>0 be a family of regular finite element partitions of Ω such

that no single element Ωe = Ξg ×κs crosses the boundary ∂Ω and Th is locally

quasi-uniform [13]. We assume each element Ωe and Ξg is Lipschitz and affinely

equivalent to a reference element [13]. Let hg be the diameter of an element

Ξg, he be the diameter of an element Ωe, and h be the maximum element

diameter.

For any v ∈ H1(Ξg), for each element Ξg, we denote the trace v± on

the interior faces of Ξg, γi, by

v−(x) = lim
s→0−

v(x+ sni), v+(x) = lim
s→0+

v(x+ sni),

where x ∈ γi and ni is a fixed unit vector normal to γi. Similarly for any

w ∈ H1(Ωe), for each element Ωe, we denote the trace w± on the interior

edges of Ωe, λj, by

w−(x) = lim
s→0−

w(x + snj), w+(x) = lim
s→0+

w(x + snj),

where x = (x, σ, θ) ∈ λj and nj is a fixed unit vector normal to λj. We then

define the average and jump of a function v over a geographic element face γi

as

{v} =
1

2
(v+ + v−), [v] = v− − v+,

and respectively, the average and jump of a function w over an element edge

λj as

{w} =
1

2
(w+ + w−), [w] = w− − w+.

112



We denote the sum over all elements in Ξ as
∑

Ξg⊂Ξ, the sum over all elements

in the entire domain as
∑

Ωe⊂Ω, the sum over all the geographic interior edges

as
∑

γi∈ΓΞ
, and the sum over all interior faces as

∑
λj∈ΓΩ

.

We use the L2(R) inner product notation (·, ·)R for the interior of a

domain R ∈ R
d, d = 1, 2, 3, and the notation 〈·, ·〉 for the inner product over

the edges or faces. Denote by || · ||R the L2 norm on region R and note that

for a function f ∈ L2(Ξg) or g ∈ L2(Ωe) that

||f ||Ξ =
∑

Ξg⊂Ξ

||f ||Ξg
, ||g||Ω =

∑

Ωe⊂Ω

||g||Ωe
.

Let norms in other Sobolev spaces W (R) be denoted || · ||W (R) and for a time

dependent function f = f(x, t)

||f ||L∞(0,T ;W (R)) = ess sup
0≤t≤T

||f(·, t)||W (R).

6.2 Weak Formulations

Both the continuity equation and action balance equation will be dis-

cretized via a discontinuous Galerkin method. The momentum equation will

be discretized via the nonsymmetric interior penalty Galerkin (NIPG) method

with the upwinding technique of Lesaint and Raviart [81] applied to the ad-

vection term. We proceed by multiplying the continuity and momentum equa-

tions by test functions ν ∈ H1(Ξg) and v ∈ H1(Ξg) on each geographic element

Ξg ⊂ Ξ, integrate by parts and sum over each equation’s results to obtain the

weak formulations. Similarly, we multiply the action balance equation by a
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test function w ∈ H1(Ωe) on each element Ωe ⊂ Ω, integrate by parts and sum

over the results to obtain the weak formulation. The system then contains the

weak form of the continuity equation

(ξt, ν)Ξ − (uH,∇xν)Ξ +
∑

γi∈ΓΞ

〈Hu · ni, [ν]〉γi
+ 〈Hû · nx, ν〉∂Ξout

= −〈Ĥû · nx, ν〉∂Ξin
, (6.10)

where Ĥ = ξ̂ + h, the momentum equation

(ut, v)Ξ + (u · ∇xu, v)Ξ + (g∇xξ, v)Ξ + µ(∇xu,∇xv)Ξ

−
∑

γi∈ΓΞ

µ〈∇xu · ni, [v]〉γi
− µ〈∇xu · nx, v〉∂Ξ = (Fx, v)Ξ , (6.11)

and the action balance equation

(Nt, w)Ω − (cN,∇w)Ω +
∑

λj∈ΓΩ

〈cN · nj , [w]〉λj

+ 〈cN · n, w〉∂Ωout
=

(
S

σ
, w

)

Ω

− 〈cN̂ · n, w〉∂Ωin
. (6.12)

6.2.1 Discrete Weak Formulations

We begin by approximating the initial conditions with L2 projections,

computing ξh(·, 0), uh(·, 0) ∈ Vh(Ξ) and Nh(·, 0) ∈Wh(Ω) to satisfy

(ξ0 − ξh(·, 0), ν) = 0, ν ∈ Vh(Ξ),

(u0 − uh(·, 0), v) = 0, v ∈ Vh(Ξ),

(N0 −Nh(·, 0), w) = 0, w ∈Wh(Ω).
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We must slightly alter the definition of ∂Ξin and ∂Ξout to correspond with

uh ·nx < 0 and uh ·nx ≥ 0 and the definitions of ∂Ωin and ∂Ωout to correspond

with ch · n < 0 and ch · n ≥ 0. The free surface elevation ξ is approximated

by ξh ∈ Vh which satisfies the discrete weak form of the continuity equation

((ξh)t, ν)Ξ − (uhHh,∇xν)Ξ +
∑

γi∈ΓΞ

〈H↑
h{uh} · ni, [ν]〉γi

+ 〈Hhuh · nx, ν〉∂Ξout
= −〈Ĥuh · nx, ν〉∂Ξin

, (6.13)

where Hh = ξh + hb and the upwind value of Hh on each geographic interior

edge γi is defined as

H↑
h =

{
H−

h if {uh} · ni > 0,
H+

h if {uh} · ni ≤ 0.
(6.14)

For the momentum equation, we add three stability terms involving [uh], [ξh]

and [Sxx,h] which are zero for the true solutions. The depth-integrated velocity

u is approximated by uh ∈ Vh which satisfies the discrete weak form

((uh)t, v)Ξ + (uh · ∇xuh, v)Ξ +
∑

g

〈|{uh} · ne|(uint
h − uext

h ), vint〉∂Ξ−
g

+ (g∇xξh, v)Ξ −
∑

γi∈ΓΞ

〈g[ξh], {v} · ni〉γi
− 〈g(ξh − ξ̂), v · nx〉∂Ξin

+ µ(∇xuh,∇xv)Ξ −
∑

γi∈ΓΞ

µ〈{∇xuh} · ni, [v]〉γi

+
∑

γi∈ΓΞ

µ〈{∇xv} · ni, [uh]〉γi
+
∑

γi∈ΓΞ

〈α[uh], [v]〉γi

− µ〈∇uh · nx, v〉∂Ξ − 〈α(uh − û), v〉∂Ξ

+ µ〈∇v · nx, uh − û〉∂Ξ = (Fx,h, v) +
∑

γi∈ΓΞ

〈[Sxx,h], v〉γi
, (6.15)
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where α is a positive parameter which will be further discussed later. ∂Ξ−
g =

{x ∈ ∂Ξg : {uh}·nx < 0}, vint and vext are the traces of v from the interior and

exterior of ∂Ξg, and when the edge of element Ξg belongs to the geographic

boundary ∂Ξ, the exterior trace value uext
h = û. The action density N is

approximated by Nh ∈Wh, which fulfills the discrete weak form of the action

balance equation

((Nh)t, w)Ω − (chNh,∇w)Ω +
∑

λj∈ΓΩ

〈N↑
h{ch} · nj , [w]〉λj

+ 〈chNh · n, w〉∂Ωout
=

(
Sh

σ
, wh

)

Ω

− 〈chN̂ · n, w〉∂Ωin
, (6.16)

where the upwind value of Nh on each interior edge λj is defined as

N↑
h =

{
N−

h if {ch} · nj > 0,
N+

h if {ch} · nj ≤ 0.
(6.17)

Note the definition of N↑
h differs from the upwind value defined in (3.4) where

the propagation velocities are assumed to be uniquely defined along element

edges.

6.3 Error Equations

We now perform an a priori error analysis of the coupled system (6.1)

- (6.3). To form the error equations we first must define the L2 projections ξ̃h,

ũh and Ñh into the approximation spaces for ξh, uh and Nh such that for t ≥

((ξ̃h − ξ)(·, t), v) = 0 v ∈ Vh,

((ũh − u), ν)(·, t) = 0 ν ∈ Vh,
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((Ñh −N), w)(·, t) = 0 v ∈Wh.

Define

eξ = ξh − ξ̃h, Θξ = ξ − ξ̃h,

with similar definitions for eu, Θu, eN and ΘN . Let H̃h = ξ̃h + hb and note

eξ = Hh − H̃h.

We now perform manipulations to the weak forms to obtain the error

equations, many of these arguments are repeated from Dawson and Proft [35].

We begin with the continuity equation by subtracting the weak form (6.10)

from the discrete weak form (6.13) and setting v = eξ to obtain

((eξ)t, eξ)Ξ − (uheξ,∇xeξ)Ξ +
∑

γi∈ΓΞ

〈e↑ξ{uh} · ni, [eξ]〉γi
+ 〈eξuh · nx, eξ〉∂Ξout

= ((Θξ)t, eξ)Ξ − (uH − uhH̃h,∇xeξ)Ξ +
∑

γi∈ΓΞ

〈(uH − {uh}H̃↑
h) · ni, [eξ]〉γi

+ 〈(ûH − uhH̃h) · nx, eξ〉∂Ξout
+ 〈ûĤ − uhĤ) · nx, eξ〉∂Ξin

. (6.18)

We then integrate by parts

− (uheξ,∇xeξ)Ξ +
∑

γi∈ΓΞ

〈e↑ξ{uh} · ni, [eξ]〉γi
+ 〈eξuh · nx, eξ〉∂Ξout

=
1

2
(∇x · uh, e

2
ξ)Ξ − 1

2

∑

γi∈ΓΞ

〈[uhe
2
ξ · ni], 1〉γi

+
∑

γi∈ΓΞ

〈e↑ξ{uh} · ni, [eξ]〉γi
+

1

2
〈|uh · nx|, e2ξ〉∂Ξin

+
1

2
〈|uh · nx|, e2ξ〉∂Ξout

.

Use the fact that [ab] = {a}[b] + [a]{b}, 1
2
[a2] = [a]{a} and the definition of e↑ξ

to get

− 1

2

∑

γi∈ΓΞ

〈[uhe
2
ξ · ni], 1〉γi

+
∑

γi∈ΓΞ

〈e↑ξ{uh} · ni, [eξ]〉γi
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=
∑

γi∈ΓΞ

〈e↑ξ[eξ]{uh} · ni −
1

2
[e2ξ ]{uh} · ni −

1

2
{e2ξ}[uh] · ni, 1〉γi

=
∑

γi∈ΓΞ

〈(e↑ξ − {eξ}){uh} · ni, [eξ]〉γi
− 1

2

∑

γi∈ΓΞ

〈{e2ξ}, [uh] · ni〉γi

=
1

2

∑

γi∈ΓΞ

〈|{uh} · ni|, [eξ]
2〉γi

− 1

2

∑

γi∈ΓΞ

〈{e2ξ}, [uh] · ni〉γi
.

Then integrating −(uH − uhH̃h,∇xeξ)Ξ by parts we have

− (uH − uhH̃h,∇xeξ)Ξ + 〈(ûĤ − uhĤ) · nx, eξ〉∂Ξin
+ 〈(ûH − uhH̃h) · nx, eξ〉∂Ξout

= (∇x · (uH − uhH̃h), eξ)Ξ

−
∑

γi∈ΓΞ

〈[eξ(uH − uhH̃h) · ni], 1〉γi
+ 〈(uhH̃h − uhĤ) · nx, eξ〉∂Ξin

.

The continuity error equation is then

((eξ)t, eξ)Ξ +
1

2
(∇x · uh, e

2
ξ)Ξ +

1

2

∑

γi∈ΓΞ

〈|{uh} · ni|, [eξ]
2〉γi

− 1

2

∑

γi∈ΓΞ

〈{e2ξ}, [uh] · ni〉γi
+

1

2
〈|uh · n|, e2ξ〉∂Ξin

+
1

2
〈|uh · n|, e2ξ〉∂Ξout

= ((Θξ)t, eξ)Ξ + (∇x · (uH − uhH̃h), eξ)Ξ +
∑

γi∈ΓΞ

〈(uH − {uh}H̃↑
h) · ni, [eξ]〉γi

−
∑

γi∈ΓΞ

〈[eξ(uH − uhH̃h) · ni], 1〉γi
+ 〈(uhH̃h − uhĤ) · nx, eξ〉∂Ξin

. (6.19)

We proceed with the momentum equation, subtract the weak form (6.11) from

the discrete weak form (6.15) and let v = eu to obtain

((eu)t, eu)Ξ + (g∇xeξ, eu)Ξ −
∑

γi∈ΓΞ

〈g[eξ], {eu} · ni〉γi
− 〈geξ, eu · nx〉∂Ξin

+ µ(∇xeu,∇xeu)Ξ +
∑

γi∈ΓΞ

〈α[eu], [eu]〉γi
+ 〈αeu, eu〉∂Ξ
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= ((Θu)t, eu)Ξ + (u · ∇xu− uh · ∇xuh, eu)Ξ

−
∑

g

〈|{uh} · ne|(uint
h − uext

h ), eint
u 〉∂Ξ−

g
+ (g∇xΘξ, eu)Ξ

−
∑

γi∈ΓΞ

〈g[Θξ], {eu} · ni〉γi
− 〈gΘξ, eu · nx〉∂Ξin

+ µ(∇xΘu,∇xeu)Ξ

+
∑

γi∈ΓΞ

〈α[Θu], [eu]〉γi
−
∑

γi∈ΓΞ

〈µ{∇xΘu} · ni, [eu]〉γi

+
∑

γi∈ΓΞ

〈µ{∇xeu} · ni, [Θu]〉γi
− µ〈∇xΘu · nx, eu〉∂Ξ + µ〈∇xeu · nx,Θu〉∂Ξ

+ 〈αΘu, eu〉∂Ξ + (Fx,h − Fx, eu)Ξ +
∑

γi∈ΓΞ

〈[Sxx,h − Sxx], {eu}〉γi
. (6.20)

Integrating (g∇xeξ, eu)Ξ by parts we get

(g∇xeξ, eu)Ξ −
∑

γi∈ΓΞ

〈g[eξ], {eu} · ni〉γi
− 〈geξ, eu · nx〉∂Ξin

= −(geξ,∇x · eu)Ξ +
∑

γi∈ΓΞ

〈g{eξ}, [eu] · ni〉γi
+ 〈geξ, eu · nx〉∂Ξout

.

The momentum error equation then becomes

((eu)t, eu)Ξ − (geξ,∇x · eu)Ξ +
∑

γi∈ΓΞ

〈g{eξ}, [eu] · ni〉γi
+ 〈geξ, eu · nx〉∂Ξout

+ µ(∇xeu,∇xeu)Ξ +
∑

γi∈ΓΞ

〈α[eu], [eu]〉γi
+ 〈αeu, eu〉∂Ξ

= ((Θu)t, eu)Ξ + (u · ∇xu− uh · ∇xuh, eu)Ξ

−
∑

g

〈|{uh} · ne|(uint
h − uext

h ), eint
u 〉∂Ξ−

g
+ (g∇xΘξ, eu)Ξ

−
∑

γi∈ΓΞ

〈g[Θξ], {eu} · ni〉γi
− 〈gΘξ, eu · nx〉∂Ξin

+ µ(∇xΘu,∇xeu)Ξ

+
∑

γi∈ΓΞ

〈α[Θu], [eu]〉γi
−
∑

γi∈ΓΞ

〈µ{∇xΘu} · ni, [eu]〉γi

+
∑

γi∈ΓΞ

〈µ{∇xeu} · ni, [Θu]〉γi
− µ〈∇xΘu · nx, eu〉∂Ξ + µ〈∇xeu · n,Θu〉∂Ξ
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+ 〈αΘu, eu〉∂Ξ + (Fx,h − Fx, eu)Ξ +
∑

γi∈ΓΞ

〈[Sxx,h − Sxx], {eu}〉γi
. (6.21)

Finally, we note that the action balance equation contains analogous terms

to the continuity equation. Therefore, performing the same manipulations as

before, we obtain action balance error equation

((eN)t, eN)Ω +
1

2

(
∇ · ch, e

2
N

)
Ω

+
1

2

∑

λj∈ΓΩ

〈|{ch} · n|, [eN ]2〉λj

− 1

2

∑

λj∈ΓΩ

〈{e2N}, [ch] · n〉λj
+

1

2
〈|ch · n|, e2N〉∂Ωout

+
1

2
〈|ch · n|, e2N〉∂Ωin

= ((ΘN)t, eN)Ω +
(
∇ · (cN − chÑh), eN

)
Ω
−
∑

λj∈ΓΩ

〈[eN(cN − chÑh) · nj ], 1〉λj

+
∑

λj∈ΓΩ

〈cN − Ñ↑
h{ch} · n, [eN ]〉λj

+ 〈(chÑh − chN̂) · n, eN〉∂Ωin

+

(
Sh − S

σ
, eN

)

Ω

. (6.22)

Combine (6.19), (6.21) and (6.22), rearrange terms, and use the definition of

the L2 projection to obtain

((eξ)t, eξ)Ξ + ((eu)t, eu)Ξ + ((eN )t, eN)Ω + ||µ1/2∇xeu||2Ξ

+
1

2

∑

γi∈ΓΞ

〈|{uh} · ni|, [eξ]
2〉γi

+
1

2
〈|uh · nx|, e2ξ〉∂Ξin

+
1

2
〈|uh · nx|, e2ξ〉∂Ξout

+
∑

γi∈ΓΞ

||α1/2[eu]||2γi
+ ||α1/2eu||2∂Ξ +

1

2

∑

λj∈ΓΩ

〈|{ch} · nj |, [eN ]2〉λj

+
1

2
〈|ch · nj |, e2N〉∂Ωout

+
1

2
〈|ch · n|, e2N〉∂Ωin

= −1

2
(∇x · uh, e

2
ξ)Ξ + (∇x · (uH − uhH̃h), eξ)Ξ + (g∇xΘξ, eu)Ξ + (geξ,∇x · eu)Ξ

+ µ(∇xΘu,∇xeu)Ξ + (u · ∇xu− uh · ∇xuh, eu)Ξ −
∑

γi∈ΓΞ

〈g[Θξ], {eu} · ni〉γi
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− 〈gΘξ, eu · nx〉∂Ξin
−
∑

γi∈ΓΞ

〈g{eξ}, [eu] · ni〉γi
− 〈geξ, eu · nx〉∂Ξout

+
1

2

∑

γi∈ΓΞ

〈{e2ξ}, [uh] · ni〉γi
−
∑

γi∈ΓΞ

〈[eξ(uH − uhH̃h) · ni], 1〉γi

+
∑

γi∈ΓΞ

〈(uH − {uh}H̃↑
h) · ni, [eξ]〉γi

+ 〈(uhH̃h − uhĤ) · nx, eξ〉∂Ξin

−
∑

g

〈|{uh} · ne|(uint
h − uext

h ), eint
u 〉∂Ξ−

g
−
∑

γi∈ΓΞ

〈µ{∇xΘu} · ni, [eu]〉γi

+
∑

γi∈ΓΞ

〈µ{∇xeu} · ni, [Θu]〉γi
+
∑

γi∈ΓΞ

〈α[Θu], [eu]〉γi
+ 〈αΘu, eu〉∂Ξ

− µ〈∇xΘu · nx, eu〉∂Ξ + µ〈∇xeu · nx,Θu〉∂Ξ + (Fx,h − Fx, eu)Ξ

+
∑

γi∈ΓΞ

〈[Sxx,h − Sxx], {eu}〉γi
− 1

2

(
∇ · ch, e

2
N

)
Ω

+
1

2

∑

λj∈ΓΩ

〈{e2N}, [ch] · nj〉λj

+
(
∇ · (cN − chÑh), eN

)

Ω
−
∑

λj∈ΓΩ

〈[eN(cN − chÑh) · nj ], 1〉λj

+
∑

λj∈ΓΩ

〈cN − Ñ↑
h{ch} · nj, [eN ]〉λj

+ 〈(chÑh − chN̂) · n, eN 〉∂Ωin

+

(
Sh − S

σ
, eN

)

Ω

. (6.23)

Integrate the previous equation in time and use the fact that eξ(·, 0) = 0,

eu(·, 0) = 0, and eN(·, 0) = 0, and we obtain the error equation

||eξ(T )||2Ξ + ||eu(T )||2Ξ + ||eN(T )||2Ω + 2

∫ T

0

||µ1/2∇xeu||2Ξdt

+

∫ T

0

∑

γi∈ΓΞ

〈|{uh} · ni|, [eξ]
2〉γi

dt+

∫ T

0

〈|uh · nx|, e2ξ〉∂Ξin
dt

+

∫ T

0

〈|uh · nx|, e2ξ〉∂Ξout
dt+ 2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt

+ 2

∫ T

0

||α1/2eu||2∂Ξdt+

∫ T

0

∑

λj∈ΓΩ

〈|{ch} · nj |, [eN ]2〉λj
dt
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+

∫ T

0

〈|ch · n|, e2N〉∂Ωout
dt+

∫ T

0

〈|ch · n|, e2N〉∂Ωin
dt = 2

30∑

k=1

Ek. (6.24)

6.4 Error Analysis

We will need the following theorems and identities to perform the error

analysis. The following well known theorem [13] will frequently be used:

Theorem 6.4.1 Suppose that region R has a Lipschitz boundary. Then, there

exists a constant Kt
R such that

||v||L2(∂R) ≤ Kt
R||v||

1/2

L2(R)||v||
1/2

H1(R) ∀v ∈ H1(R). (6.25)

Let Kt
Ω = suph maxΩe∈ΩK

t
Ωe

and Kt
Ξ = suph maxΞg∈ΞK

t
Ξg

, which can be

shown to be finite for regular meshes. We define the trace constant Kt =

max(Kt
Ω, K

t
Ξ). We will need the inverse inequality in which for any functions

v ∈ Vh and w ∈ Wh

||v||H1(Ξg) ≤ Ki
Ξg
h−1

g ||v||Ξg
, (6.26)

and

||w||H1(Ωe) ≤ Ki
Ωe
h−1

e ||w||Ωe
, (6.27)

where Ki
R is independent of hg, he but depends on the shape parameters of

region R. Let Ki = maxe,g(K
i
Ωe
, Ki

Ξg
). When the Cauchy-Schwarz inequality

is applied to the L2 product over the domain Ω when one of the functions is
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only a function of geographic space, we obtain a factor, Kk, of the size of the

spectral domain such that

|κ| ≤ 2πσmax ≤ Kk. (6.28)

In keeping with the deep water assumption we assume H∗ > H,Hh, H̃h >

H∗ > 0 and that there is a constant Kc such that

||hb||L∞(0,T ;W∞
1 (Ξ)) + ||cg||L∞(0,T ;W∞

1 (Ω)) + ||k||L∞(0,T ;W∞
1 (Ω))

+
∣∣∣
∣∣∣

σ

sinh 2kH

∣∣∣
∣∣∣
L∞(0,T ;L∞(Ω))

+

∣∣∣∣
∣∣∣∣∇σ

(
σkH

sinh 2kH

)∣∣∣∣
∣∣∣∣
L∞(0,T ;L∞(Ω))

+

∣∣∣∣
∣∣∣∣

σ

sinh 2kHh

∣∣∣∣
∣∣∣∣
L∞(0,T ;L∞(Ω))

+

∣∣∣∣
∣∣∣∣∇σ

(
σkHh

sinh 2kHh

)∣∣∣∣
∣∣∣∣
L∞(0,T ;L∞(Ω))

≤ Kc.

(6.29)

We make the following assumption on the solutions and the projections

||H||L∞(0,T ;W∞
1 (Ξ)) + ||u||L∞(0,T ;W∞

1 (Ξ)) + ||N ||L∞(0,T ;W∞
1 (Ω))

+ ||H̃h||L∞(0,T ;W∞
1 (Ξ)) + ||ũh||L∞(0,T ;W∞

1 (Ξ)) + ||Ñh||L∞(0,T ;W∞
1 (Ω)) ≤ Km.

(6.30)

We also assume that there exists a finite constantKM ≥ 2Km and independent

of h such that

||eξ||L∞(0,T ;L∞(Ξ)) + ||eu||L∞(0,T ;L∞(Ξ)) + ||eN ||L∞(0,T ;L∞(Ω)) ≤ KM . (6.31)

For the analysis, we will need Young’s inequality

ab ≤ ǫ

2
a2 +

1

2ǫ
b2. (6.32)
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We use the basic principles of the following generic arguments through-

out the analysis. For functions f, g and ω over region R (which could be either

Ω or Ξ), we have that

(gf − ghfh, ω)R = (g(f − fh) − (g − gh)fh, ω)R

= (g(θf − ef ) − (θg − eg)fh, ω)R

≤ C||g||L∞(R)(||θf ||R + ||ef ||R + ||ω||R)

+ C||fh||L∞(R)(||θg||R + ||eg||R + ||ω||R), (6.33)

and, similarly,

(∇x(gf − ghfh), ω)R = (∇x(g(f − fh) − (g − gh)fh), ω)R

= (∇xg(θf − ef) + g∇x(θf − ef ), ω)R

− (∇x(θg − eg)fh − (θg − eg)∇xfh, ω)R

≤ ||g||L∞(R)(||∇xθf ||R + ||∇xef ||R + ||ω||R)

+ C||∇xg||L∞(R)(||θf ||R + ||ef ||R + ||ω||R)

+ C||fh||L∞(R)(||∇xθg||R + ||∇xeg||R + ||ω||R)

+ C||∇xfh||L∞(R)(||θg||R + ||eg||R + ||ω||R). (6.34)

Before we continue with arguments over boundaries, we introduce some nota-

tion. Let Ei = {Ξg : ∂Ξg ∩ γi 6= ∅} for each edge γi and Ej = {Ωe : ∂Ωe ∩ λj 6=

∅} for each face λj . Below, C denotes a positive generic constant, C(K∗)

denotes that C depends on K∗, and let ǫi, i = 1, 2, 3, 4, be a small generic con-

stant. In the first argument, over the boundary of region R, we use Theorem

124



6.4.1 as well as the inverse and Young’s inequalities to obtain

〈f, g〉∂R ≤ Kt||f ||1/2
R ||f ||1/2

H1(R)||g||
1/2
R ||g||1/2

H1(R)

≤ KtKih−1/2||f ||1/2
R ||f ||1/2

H1(R)||g||R

≤ C(Kt, Ki)h−1||f ||R||f ||H1(R) + ǫ||g||2R

≤ C(Kt, Ki)(h−2||f ||2R + ||f ||2H1(R)) + ǫ||g||2R, (6.35)

for g ∈ Vh or Wh. In the second argument, we utilize the positive constant α.

We assume that αi,∗, α
∗
i are positive parameters such that

αi,∗ ≤ α|γi
≤ α∗

i , αi,∗, α
∗
i = O(h−1

i ), (6.36)

where

hi = minΞg⊂Ei
hg.

Then, using α, Theorem 6.4.1, and Young’s inequality we find

〈f, g〉∂R ≤ ||α−1/2f ||∂R||α1/2g||∂R

≤ Ktα
−1/2
R,∗ ||f ||1/2

R ||f ||1/2
H1(R)||α1/2g||∂R

≤ C(Kt)hR||f ||R||f ||H1(R) + ǫ||α1/2g||2∂R (6.37)

≤ C(Kt, Ki)||f ||2R + ǫ||α1/2g||2∂R, (6.38)

where one can stop at (6.37) or apply the inverse inequality if f ∈ Vh or Wh

and obtain (6.38).

We now continue by estimating the terms on the right hand side of

(6.24), which repeats many arguments from Dawson and Proft [35]. Some of
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the same arguments are used in the analysis of the action balance equation.

By assumptions (6.30) and (6.31) we find

E1 = −1

2

∫ T

0

(∇x · uh, e
2
ξ)Ξdt

= −1

2

∫ T

0

(∇x · (eu − Θu + u), e2ξ)Ξdt

≤ ǫ1

∫ T

0

||∇xeu||2Ξdt+ C(KM)

∫ T

0

||∇xΘu||2Ξdt+ C(Km, KM)

∫ T

0

||eξ||2Ξdt.
(6.39)

Again by assumptions (6.30) and (6.31) and following the arguments in (6.34),

we have

E2 =

∫ T

0

(∇x · (uH − uhH̃h), eξ)Ξdt

≤ C(Km, KM)

∫ T

0

||Θu||2H1(Ξ)dt+ C(Km, KM)

∫ T

0

||Θξ||2H1(Ξ)dt

+ ǫ1

∫ T

0

||∇xeu||2Ξdt+ C(Km, KM)

∫ T

0

||eξ||2Ξdt. (6.40)

Using Young’s inequality, we find

E3 + E4 + E5 =

∫ T

0

(g∇xΘξ, eu)Ξdt+

∫ T

0

(geξ,∇x · eu)Ξdt

+

∫ T

0

µ(∇xΘu,∇xeu)Ξdt

≤ C

∫ T

0

||∇xΘξ||2Ξdt+ C

∫ T

0

||eu||2Ξdt+ C

∫ T

0

||eξ||2Ξdt

+ ǫ1

∫ T

0

||∇xeu||2Ξdt+ C

∫ T

0

||∇xΘu||2Ξdt. (6.41)

Following the argument in (6.34), we get

E6 =

∫ T

0

(u · ∇xu− uh · ∇xuh, eu)Ξdt
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≤ C(Km)

∫ T

0

||Θu||2Ξdt+ C(Km, KM)

∫ T

0

(||eu||2Ξ + ||∇xΘu||2Ξ)dt

+ ǫ1

∫ T

0

||∇xeu||2Ξdt. (6.42)

For E7, apply the argument in (6.35) to obtain

E7 =

∫ T

0

∑

γi∈ΓΞ

〈g[Θξ], {eu} · ni〉γi
dt

≤ C(Kt, Ki)

∫ T

0

∑

Ξg⊂Ξ

[h−2
g ||Θξ||2Ξg

+ ||Θξ||2H1(Ξg)]dt+ C

∫ T

0

||eu||2Ξdt,

(6.43)

with a similar bound for E8. Employing the argument in (6.38) we have

E9 = −
∫ T

0

∑

γi∈ΓΞ

〈g{eξ}, [eu] · ni〉γi
dt

≤ C(Kt, Ki)

∫ T

0

||eξ||2Ξdt+ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt, (6.44)

and an analogous bound for E10. Following the strategies in (6.35) and (6.38)

coupled with the fact that [u] = 0 on γi, we have

E11 = −1

2

∫ T

0

∑

γi∈ΓΞ

〈{e2ξ}, [uh] · ni〉γi
dt

=
1

2

∫ T

0

∑

γi∈Γint

〈{e2ξ}, ([eu] − [Θu]) · ni〉γi
dt

≤ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt+ C(Kt)

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θu||2Ξg

+ ||Θu||2H1(Ξg))dt

+ C(KM , Kt, Ki)

∫ T

0

||eξ||2Ξdt. (6.45)

Use {ab} = {a}{b} + 1
4
[a][b] and [ab] = {a}[b] + [a]{b} to obtain

E12 + E13 = −
∫ T

0

∑

γi∈ΓΞ

〈[eξ(uH − uhH̃h) · ni], 1〉γi
dt
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+

∫ T

0

∑

γi∈ΓΞ

〈(uH − {uh}H̃↑
h) · ni, [eξ]〉γi

dt

=

∫ T

0

∑

γi∈ΓΞ

〈
(
Θ↑

ξ − {Θξ}
)
{uh} · ni −

1

4
[Θξ][uh] · ni, [eξ]〉γi

dt

+

∫ T

0

∑

γi∈ΓΞ

〈{H̃h} ([eu] − [Θu]) · ni − [Θξ]{uh} · ni, {eξ}〉γi
dt.

We then use (6.35) to obtain

∫ T

0

∑

γi∈ΓΞ

〈
(
Θ↑

ξ − {Θξ}
)
{uh} · ni, [eξ]〉γi

dt

≤ C(Km, KM , Kt)

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θξ||2Ξ + ||Θξ||2H1(Ξ))dt

+ C(Km, KM , Kt, Ki)

∫ T

0

||eξ||2Ξdt, (6.46)

with similar bounds for the two terms with [Θξ] and a nearly identical bound

to E11 for the remaining term
∫ T

0

∑
γi∈ΓΞ

〈{H̃h} ([eu] − [Θu]) ·ni, {eξ}〉γi
dt. Ap-

plying the Theorem 6.4.1 and (6.32) we have

E14 =

∫ T

0

〈(uhH̃h − uhĤ) · nx, eξ〉∂Ξin
dt

≤ C(Km, KM)

∫ T

0

||Θξ||2∂Ξin
dt+ ǫ3

∫ T

0

〈|uh · nx|, e2ξ〉∂Ξin
dt

≤ C(Km, KM , Kt)

∫ T

0

(||Θξ||2Ξ + ||Θξ||2H1(Ξ))dt+ ǫ3

∫ T

0

〈|uh · nx|, e2ξ〉∂Ξin
dt.

(6.47)

For E15, use arguments (6.35) and (6.38) so that

E15 = −
∫ T

0

∑

g

〈|{uh} · ng|(uint
h − uext

h ), eint
u 〉∂Ξ−

g
dt
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≤
∫ T

0

∑

g

〈|({eu} + {ũh}) · ng||[Θu] − [eu]|, |eint
u |〉∂Ξ−

g
dt

≤ C(Km, KM , Kt, Ki)

∫ T

0

||eu||2Ξdt+ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt

+ C(Kt)

∫ T

0

∑

Ξg∈Ξ

(h−2
g ||Θu||2Ξ + ||Θu||2H1(Ξ))dt+ ǫ4

∫ T

0

||α1/2eu||2∂Ξdt,

(6.48)

and use (6.37) to find

E16 = −
∫ T

0

∑

γi∈ΓΞ

〈µ{∇xΘu} · ni, [eu]〉γi
dt

≤ C(Kt)

∫ T

0

∑

Ξg⊂Ξ

hg||∇xΘu||Ξg
||∇xΘu||H1(Ξg)dt+ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt.

(6.49)

Similarly, (6.35) gives us that

E17 =

∫ T

0

∑

γi∈ΓΞ

〈µ{∇xeu} · ni, [Θu]〉γi
dt

≤ ǫ1

∫ T

0

||∇xeu||2Ξg
dt+ C(Kt, Ki)

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θu||2Ξg

+ ||Θu||2H1(Ξg))dt.

(6.50)

Simply using Theorem 6.4.1, (6.26), and (6.36) we get

E18 + E19 =

∫ T

0

∑

γi∈ΓΞ

〈α[Θu], [eu]〉γi
dt+

∫ T

0

〈αΘu, eu〉∂Ξdt

≤ C

∫ T

0

(
∑

γi∈ΓΞ

||α1/2[Θu]||2γi
+ ||α1/2[Θu]||2∂Ξ)dt

+ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt+ ǫ4

∫ T

0

||α1/2eu||2∂Ξdt
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≤ C(Kt)

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θu||2Ξg

+ ||Θu||2H1(Ξg))dt

+ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt+ ǫ4

∫ T

0

||α1/2eu||2∂Ξdt, (6.51)

and using (6.35) and (6.38) we have

E20 + E21 = −
∫ T

0

〈µ∇xΘu · n, eu〉∂Ξdt+

∫ T

0

〈µ∇xeu · n,Θu〉∂Ξdt

≤ ǫ1

∫ T

0

||∇xeu||2Ξg
dt+ ǫ4

∫ T

0

||α1/2eu||2∂Ξdt

+ C(Kt)

∫ T

0

∑

Ξg⊂Ξ

hg||∇xΘu||Ξg
||∇xΘu||H1(Ξg)dt

+ C(Kt, Ki)

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θu||2Ξg

+ ||Θu||2H1(Ξg))dt. (6.52)

Integrating E22 by parts, using the definition of Fx, and applying the argument

in (6.38) on the boundary terms we obtain

E22 + E23 =

∫ T

0

(Fx,h − Fx, eu)Ξdt+
∑

γi∈ΓΞ

〈[Sxx,h − Sxx], {eu} · ni〉γi

=

∫ T

0

(∫ θmax

θmin

∫ σmax

σmin

(
1

2
cos2 θσ(Nh −N)

)
dσdθ,∇x

(
g

hb
eu

))

Ξ

dt

−
∑

γi∈ΓΞ

∫ T

0

〈
∫ θmax

θmin

∫ σmax

σmin

(
1

2
cos2 θσ{Nh −N}

)
dσdθ,

g

hb
[eu] · ni〉γi

dt

−
∫ T

0

〈
∫ θmax

θmin

∫ σmax

σmin

(
1

2
cos2 θσ(Nh −N)

)
dσdθ,

g

hb
eu · nx〉∂Ξdt

≤ C(Kc)

∫ T

0

||eu||2Ξdt+ ǫ1

∫ T

0

||∇xeu||2Ξdt

+ C(Kt, Ki, Kc, Kk)

∫ T

0

(||eN ||2Ω + ||ΘN ||2Ω)dt

+ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||γi
dt+ ǫ4

∫ T

0

||α1/2eu||∂Ξdt. (6.53)
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Expanding terms and defining B(H) = ∇σ
kσH

sinh(2kH)
which is a Lipschitz con-

tinuous function, we have

E24 = −1

2

∫ T

0

(
∇ · ch, e

2
N

)
Ω
dt

= −1

2

∫ T

0

(
cos θ∇xcg, e

2
N

)
Ω
dt− 1

2

∫ T

0

(
(1 +

1

2
cos2 θ + cos 2θ)∇xuh, e

2
N

)

Ω

dt

+
1

2

∫ T

0

(
∇xuhB(Hh), e

2
N

)
Ω
dt− 1

2

∫ T

0

(
σ

sinh(2kHh)
∇xhb cos θ, e2N

)

Ω

dt

= −1

2

∫ T

0

(
cos θ∇xcg, e

2
N

)
Ω
dt

− 1

2

∫ T

0

(
(1 +

1

2
cos2 θ + cos 2θ)∇x(eu − Θu + u), e2N

)

Ω

dt

+
1

2

∫ T

0

(
∇x(eu − Θu + u)B(eξ − Θξ +H), e2N

)
Ω
dt

− 1

2

∫ T

0

(
σ

sinh(2kHh)
∇xhb cos θ, e2N

)

Ω

dt

≤ C(KM , Kk)

∫ T

0

||∇xΘu||2Ξdt+ C(Km, KM , Kc, Kk)

∫ T

0

||eN ||2Ωdt

+ ǫ1

∫ T

0

||∇xeu||2Ξdt+ C(Km, KM , Kk)

∫ T

0

(||eξ||2Ξ + ||Θξ||2Ξ + ||∇xΘu||2Ξ)dt.

(6.54)

Since [(cg cos θ, cσ,h, cθ,h)] = 0 on λj, we follow E11 to get

E25 =
1

2

∑

λj∈ΓΩ

〈{e2N}, [ch] · n〉λj
=

1

2

∑

γi∈ΓΞ

〈{e2N}, [uh] · ni〉γi×κ

≤ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt+ C(Kt)

∫ T

0

∑

Ξg⊂Ξ

[h−2
g ||Θu||2Ξg

+ ||Θu||2H1(Ξg)]dt

+ C(KM , Kt, Ki, Kk)

∫ T

0

||eN ||2Ωdt. (6.55)

131



Define g(H) = − kσ
sinh(2kH)

H − cos2 θcgk, which is a Lipschitz continuous func-

tion, and expand to obtain

E26 =
(
∇ · (cN − chÑh), eN

)

Ω

=

∫ T

0

(
cos θcg∇x(N − Ñh), eN

)

Ω
dt+

∫ T

0

(
∇x(uN − uhÑh), eN

)

Ω
dt

+

∫ T

0

(
∇σ

(
g(H)∇xuN − g(Hh)∇xuhÑh

)
, eN

)
Ω
dt

+

∫ T

0

(
∇θ

(
σ

sinh(2kH)
∇xhb sin θN − σ

sinh(2kHh)
∇xhb sin θÑh

)
, eN

)

Ω

dt

+

∫ T

0

(
∇θ(∇xu cos θ sin θN −∇xuh cos θ sin θÑh), eN

)
Ω
dt

=

5∑

i=1

E26,i, (6.56)

where

E26,1 =

∫ T

0

(cos θcg∇xΘN , eN)Ωdt ≤ C(Kc)

∫ T

0

(||∇xΘN ||2Ω + ||eN ||2Ω)dt.

(6.57)

Following E2, we use (6.34) and have

E26,2 =

∫ T

0

(∇x · (uN − uhÑh), eN)Ωdt

≤ C(Km, KM , Kk)

∫ T

0

(||Θu||2H1(Ξ) + ||ΘN ||2H1(Ω) + ||eN ||2Ω)dt

+ ǫ1

∫ T

0

||∇xeu||2Ξdt. (6.58)

For the following term, we first note that since the group velocity, cg, and

wave number, k, depend on the relative frequency, σ, that g(H) also depends

on the relative frequency σ as well as the total water depth H . Then follow-

ing a similar argument in (6.34) with more terms, we expand terms and use
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assumptions (6.28) - (6.31) to obtain

E26,3 =

∫ T

0

(
∇σ

(
g(H)∇xuN − g(Hh)∇xuhÑh

)
, eN

)
Ω
dt

=

∫ T

0

(∇xuN∇σ(g(H) − g(Hh)) + ∇xu(g(H)− g(Hh))∇σN, eN)Ω dt

+

∫ T

0

(
∇x(Θu − eu)Ñh∇σg(Hh) + ∇x(Θu − eu)g(Hh)∇σÑh, eN

)

Ω
dt

+

∫ T

0

(∇xu∇σ(g(H))ΘN + ∇xug(H)∇σΘN , eN)Ω dt

≤ C(Km, Kk)

∫ T

0

(
||eξ||2Ξ + ||Θξ||2Ξ

)
dt+ ǫ1

∫ T

0

||∇xeu||2Ωdt

+ C(Km, KM , Kc)

∫ T

0

||∇xΘu||2Ξdt+ C(Km, Kc, Kk)

∫ T

0

||ΘN ||2Ωdt

+ C(Km, KM , Kc, Kk)

∫ T

0

(
||∇σΘN ||2Ω + ||eN ||2Ω

)
dt. (6.59)

Again, expanding terms, using assumptions (6.28) - (6.31) and the argument

in (6.34), we find

E26,4 =

∫ T

0

(
∇θ

(
σ

sinh(2kH)
∇xhb sin θN − σ

sinh(2kHh)
∇xhb sin θÑh

)
, eN

)

Ω

dt

≤ C(Kc, Kk)

∫ T

0

||ΘN ||2Ωdt+ C(Km, KM , Kc, Kk)

∫ T

0

(||eξ||2Ξ + ||Θξ||2Ξ)dt

+ C(Km, Kc, Kk)

∫ T

0

||eN ||2Ωdt+ C(KM , Kc, Kk)

∫ T

0

||∇θΘN ||2Ωdt,
(6.60)

and

E26,5 =

∫ T

0

(
∇θ(∇xu cos θ sin θN −∇xuh cos θ sin θÑh), eN

)

Ω
dt

≤ C(Km)

∫ T

0

(||ΘN ||2Ω + ||eN ||2Ω)dt+ ǫ1

∫ T

0

||∇xeu||2Ξ
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+ C(Km, KM)

∫ T

0

(||∇xΘu||2Ξ + ||∇θΘN ||2Ω)dt. (6.61)

Like E12 and E13, we use {ab} = {a}{b}+ 1
4
[a][b] and [ab] = {a}[b] + [a]{b} to

obtain

E27 + E28 = −
∑

λj∈ΓΩ

〈[eN(cN − chÑh) · n], 1〉λj
+
∑

λj∈ΓΩ

〈cN − Ñ↑
h{ch} · n, [eN ]〉λj

=
∑

λj∈ΓΩ

〈(Θ↑
N − {ΘN}){ch} · n +

1

4
[ΘN ][ch] · n, [eN ]〉λj

+
∑

λj∈ΓΩ

〈{Ñh}[ch] · n + [ΘN ]{ch} · n, {eN}〉λj
. (6.62)

Writing {ch} = {ch − c} + {c} and following (6.35), we find

∑

λj∈ΓΩ

〈(Θ↑
N − {ΘN}){ch} · n, [eN ]〉λj

≤ C(Km, KM , Kt, Kc)

∫ T

0

∑

Ωe⊂Ω

(h−2
e ||ΘN ||2Ω + ||ΘN ||2H1(Ω))dt

+ ǫ1

∫ T

0

||∇xeu||2Ξdt+ C(KM , Kt, Ki, Kc)

∫ T

0

||∇xΘu||2Ξdt

+ C(Km, KM , Kt, Ki, Kc)

∫ T

0

||eN ||2Ωdt, (6.63)

with a similar bound for the other term in (6.62) with {ch}. As with E25, we

have that

∑

λj∈ΓΩ

〈1
4
[ΘN ][ch] · n, [eN ]〉λj

+
∑

λj∈ΓΩ

〈{Ñh}[ch] · n, {eN}〉λj

=
∑

γi∈ΓΞ

〈1
4
[ΘN ][uh − u] · ni, [eN ]〉γi×κ +

∑

γi∈ΓΞ

〈{Ñh}[uh − u] · ni, {eN}〉γi×κ

≤ ǫ2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt+ C(Kt)

∫ T

0

∑

Ξg⊂Ξ

[h−2
g ||Θu||2Ξg

+ ||Θu||2H1(Ξg)]dt
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+ C(Km, KM , Kt, Ki, Kk)

∫ T

0

||ΘN ||2Ωdt. (6.64)

In the same way,

E29 = 〈(chÑh − chN̂) · n, eN 〉∂Ωin

≤ C(Km, KM , Kt, Kc)

∫ T

0

∑

Ωe⊂Ω

(h−2
e ||ΘN ||2Ω + ||ΘN ||2H1(Ω))dt

+ ǫ1

∫ T

0

||∇xeu||2Ξdt+ C(KM , Kt, Ki, Kc)

∫ T

0

||∇xΘu||2Ξdt

+ C(Km, KM , Kt, Ki, Kc)

∫ T

0

||eN ||2Ωdt. (6.65)

For E30, we use the definition of S and apply the argument in (6.33) for both

fS and gS to find

E30 =

(
Sh − S

σ
, eN

)

Ω

= (fS(Hh)Nh − fS(H)N + gS(Nh)Nh − gS(N)N, eN )Ω

≤ C(Km, KM , Kk)

∫ T

0

(||eξ||2Ξ + ||Θξ||2Ω)dt

+ C(Km, KM)

∫ T

0

(||ΘN ||2Ω + ||eN ||2Ω)dt. (6.66)

Combining (6.39)-(6.66) with (6.24), choosing ǫi, i = 1, 4 sufficiently

small, we obtain

||eξ(T )||2Ξ + ||eu(T )||2Ξ + ||eN(T )||2Ω + 2

∫ T

0

||µ1/2∇xeu||2Ξdt

+

∫ T

0

∑

γi∈ΓΞ

〈|{uh} · ni|, [eξ]
2〉γi

dt+

∫ T

0

〈|uh · nx|, e2ξ〉∂Ξin
dt

+

∫ T

0

〈|uh · nx|, e2ξ〉∂Ξout
dt+ 2

∫ T

0

∑

γi∈ΓΞ

||α1/2[eu]||2γi
dt
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+ 2

∫ T

0

||α1/2eu||2∂Ξdt+

∫ T

0

∑

λj∈ΓΩ

〈|{ch} · nj |, [eN ]2〉λj
dt

+

∫ T

0

〈|ch · n|, e2N〉∂Ωout
dt+

∫ T

0

〈|ch · n|, e2N〉∂Ωin
dt

≤ C

∫ T

0

||eξ||2Ξdt+ C

∫ T

0

||eu||2Ξdt+ C

∫ T

0

||eN ||2Ωdt

+ C∗

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θξ||2Ξg

+ ||Θξ||2H1(Ξg))dt

+ C∗

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θu||2Ξg

+ ||Θu||2H1(Ξg))dt

+ C∗

∫ T

0

∑

Ωe⊂Ω

(h−2
e ||ΘN ||2Ωe

+ ||ΘN ||2H1(Ωe))dt

+ C∗

∫ T

0

∑

Ξg⊂Ξ

hg||∇xΘu||Ξg
||∇xΘu||H1(Ξg)dt (6.67)

where C∗ = C(Km, KM , Kt, Ki, Kc, Kk). Using standard approximation the-

ory results, we find

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θξ||2Ξg

+ ||Θξ||2H1(Ξg))dt+

∫ T

0

∑

Ξg⊂Ξ

(h−2
g ||Θu||2Ξg

+ ||Θu||2H1(Ξg))dt

+

∫ T

0

∑

Ξg⊂Ξ

hg||∇xΘu||Ξg
||∇xΘu||H1(Ξg)dt

≤ Ch2p

∫ T

0

(||ξ||2Hp+1(Ξ) + ||u||2Hp+1(Ξ))dt = C(Kr)h2p, (6.68)

and

∫ T

0

∑

Ωe⊂Ω

(h−2
e ||ΘN ||2Ωe

+ ||ΘN ||2H1(Ωe))dt

≤ Ch2 min{p,q}

∫ T

0

||N ||2Hmin{p,q}+1(Ω)dt = C(Kr)h2min{p,q}. (6.69)
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We assume the initial data is sufficiently smooth so that

||Θξ(·, 0)||2H1(Ξ) + ||Θu(·, 0)||2H1(Ξ) + ||ΘN(·, 0)||2H1(Ω)

≤ Chmin{p,q}(||ξ0||2Hp+1(Ξ) + ||u0||2Hp+1(Ξ)) + ||N0||2Hmin{p,q}+1(Ω))

≤ C(Kr,0)h2 min{p,q}. (6.70)

Now applying Gronwall’s inequality to (6.67) followed by the triangle inequal-

ity we obtain the following a priori error estimate:

Theorem 6.4.2 Assume, ξ, u, N , and initial data are sufficiently smooth so

(6.68) to (6.70) hold. Then there exists a constant

Ĉ = C(Km, KM , Kt, Ki, Kc, Kk, Kr, Kr,0, T ),

such that

||ξ − ξh||L∞(0,T ;L2(Ξ)) + ||u− uh||L∞(0,T ;L2(Ξ)) + ||u− uh||L∞(0,T ;H1(Ξ))

+ ||N −Nh||L∞(0,T ;L2(Ω)) ≤ Ĉhmin{p,q}. (6.71)

Lastly, we show that we can remove the dependence of Ĉ on KM . To

do this we first recall another inverse inequality

||v(·, t)||L∞(R) ≤ Kh−d/2||v(·, t)||R,

where d is the dimension of region R. Assuming p, q > 2 and h sufficiently

small, we have

||eξ||L∞(0,T ;L∞(Ξ)) ≤ KĈhp−1 ≪ KM ,
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with a similar bound for eu and

||eN ||L∞(0,T ;L∞(Ω)) ≤ KĈhmin(p,q)−3/2 ≪ KM ,

and therefore we can remove the dependence of Ĉ on KM [50]. We simplified

the analysis by only considering one geographic dimension which in turn sim-

plified the propagation velocities, c; however, all of the previous arguments

stand for the two-geographic dimension problem.

6.5 Concluding Remarks

An a priori error estimate was performed for the formulated DG cou-

pled wave/circulation model. Although this DG formulation of the shallow

water equations had been analyzed in [35], no coupled wave/circulation model

had previously been analyzed for any numerical scheme. The convergence rate

of the model was found to be the minimum of p and q, the polynomial orders

of approximation for geographic and spectral space respectively. However, ex-

amining the spectral wave model separately with manufactured solutions in

Section 4.1, we obtained experimentally the convergence rate of p+1 for p = q

and h small.
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Chapter 7

Conclusion

The purpose of this dissertation was to use discontinuous Galerkin

methods to coupled spectral wave and circulation models to model wave-

current interactions. To achieve this goal, we first developed and implemented

a discontinuous Galerkin (DG) spectral wave model. This numerical method

allows for the use of unstructured geographic meshes and adaptive, higher-

order approximations in both geographic and spectral spaces. The DG wave

model is highly scalable in parallel; especially when using higher order ap-

proximations. Verification and validation of the DG spectral wave model was

conducted through the method of manufactured solutions, analytic test cases,

and comparing to SWAN. For the ambient current test cases and the depth

induced shoaling and refraction test cases, we used linear approximations and

accurately modeled the analytic solution of the significant wave height and the

main wave direction. In addition, for the opposing current case, we showed

that a more accurate solution is obtained by using higher-order approxima-

tions on a coarse mesh as opposed to a lower-order approximation on a re-

fined mesh with similar numbers of degrees of freedom. We also demonstrated

that employing higher order approximations in spectral space can alleviate the

“Garden Sprinkler” effect. A commonly cited drawback of the DG method is
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the increased number of degrees of freedom, which leads to increased compu-

tational costs. We implemented a simple p-adaptivity routine to prove that

adaptivity is a viable way to dramatically increase the computational efficiency

through decreasing the total number of degrees of freedom while maintaining

higher-order accuracy.

Additionally, the DG spectral wave model has been coupled to the DG

Shallow Water Equation Model (DG-SWEM). Both models employ the same

unstructured geographic mesh, which eliminates interpolation error, and can

share higher-order information. The resulting DG coupled wave/circulation

model has been verified and validated through comparisons to SWAN coupled

with DG-SWEM. In the near-circular shoal test case, we observed that a linear

approximation in spectral space is needed to properly resolve the significant

wave height, because the constant approximation was too diffusive. In general,

we found that to obtain reliable results for both the wave model individually

and the coupled model, linear approximations are needed in spectral space;

however, if larger spectral elements are used, higher approximations may be

necessary to maintain accuracy.

An a priori error estimate was performed for the formulated DG cou-

pled wave/circulation model. Although this DG formulation of the shallow

water equations had been analyzed in [35], no coupled wave/circulation model

had previously been analyzed for any numerical scheme. The convergence rate

of the model was found to be the minimum of p and q, the polynomial orders

of approximation for geographic and spectral space respectively. However, ex-
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amining the spectral wave model separately with manufactured solutions in

Section 4.1, we obtained experimentally the optimal convergence rate of p+ 1

for p = q and h small.

In future work, we will optimize the DG spectral wave model for effi-

ciency in addition to exploring p-adaptivity in more depth and the use of other

solvers to obtain further efficiency. We will expand the capabilities to the DG

spectral wave model, such as allowing for spherical coordinates and tightly cou-

pling the wave model to DG-SWEM. Future work will also involve validating

the model on realistic simulations. With the combination of further optimiza-

tion and improvement to the DG wave/circulation model and the continuing

advancements of high performance computing, the DG wave/circulation model

has the properties and potential to provide a more accurate and efficient model

for wave/current interactions.
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Appendix A

Derivation of Action Balance Equation

The action balance equation can be derived from first principles through

use of variational principles and Lagrangians. These derivations can be found

in, for example, [66]. However, we alternatively present an abbreviated version

of the derivation of the action balance equation that follows [64]. For this

derivation, we take an Eulerian approach and consider the energy balance in

one cell of the domain with size ∆x in the x-direction, ∆y in the y-direction,

∆σ in the σ-direction, ∆θ in the θ-direction. The energy balance of the energy

density spectrum E = E(σ, θ; x, y, t) for this cell can be stated as

change of energy in cell =net import of energy

+ local generation of energy. (A.1)

The change of energy in a cell over the time interval ∆t is the energy in the

cell at the end of the time interval ∆t minus the energy in the cell at the start

of the time interval:

change of energy in cell =

(
E +

∂E

∂t
∆t

)
∆x∆y∆σ∆θ

− E∆x∆y∆σ∆θ

=
∂E

∂t
∆x∆y∆σ∆θ∆t. (A.2)
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The first term on the right-hand side of the energy balance (A.1) must account

for the total import of energy into the cell during the time interval ∆t. For

the x-direction this import of energy is equal to the energy import through the

left-hand side of the cell, with propagation speed cx, minus the energy export

through the right hand side of the cell (see Figure A.1):

net import of energy in the x-direction =cxE∆y∆σ∆θ∆t

−
(
cxE +

∂cxE

∂x
∆x

)
∆y∆σ∆θ∆t

= − ∂cxE

∂x
∆x∆y∆σ∆θ∆t. (A.3)

Similarly, in the y-direction we have that

net import of energy in the y-direction = − ∂cyE

∂y
∆x∆y∆σ∆θ∆t. (A.4)

We also need to account for the net transport in spectral space. The directional

turning of the waves is represented as energy moving from one directional cell

to the next as follows. The net import of energy into a directional cell during

a time interval ∆t is equal to the energy import through the left-hand side of

Figure A.1: Propagation of wave energy in the x-direction.
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the cell minus the energy export through the right-hand side of the cell during

that interval:

net import of energy in the θ-direction =cθE∆x∆y∆σ∆t

−
(
cθE +

∂cθE

∂θ
∆θ

)
∆x∆y∆σ∆t

= − ∂cθE

∂θ
∆x∆y∆σ∆θ∆t. (A.5)

Similarly for frequency shifting, energy is moved from one frequency cell to

the next, and we have the following:

net import of energy in the σ-direction = − ∂cσE

∂σ
∆x∆y∆σ∆θ∆t. (A.6)

Lastly, we have that the locally generated energy during the time interval ∆t

is

local generation of energy = S∆x∆y∆σ∆θ∆t, (A.7)

where S is the source term described in Section 2.3. By substituting (A.2)-

(A.7) into (A.1) we find the energy balance for the cell ∆x∆y∆σ∆θ over a

time interval ∆t to be

∂E

∂t
∆x∆y∆σ∆θ∆t = − ∂cxE

∂x
∆x∆y∆σ∆θ∆t

− ∂cyE

∂y
∆x∆y∆σ∆θ∆t

− ∂cσE

∂σ
∆x∆y∆σ∆θ∆t

− ∂cθE

∂θ
∆x∆y∆σ∆θ∆t

+ S∆x∆y∆σ∆θ∆t, (A.8)
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where again cx and cy are the propagation of wave energy through geographic

space and cσ and cθ are the propagation speeds in spectral space. Then,

by dividing all terms by ∆x∆y∆σ∆θ∆t and rearranging terms, we have the

Eulerian spectral energy balance

∂E

∂t
+
∂cxE

∂x
+
∂cyE

∂y
+
∂cθE

∂θ
+
∂cσE

∂σ
= S. (A.9)

If a current is present, as in our case, the energy density spectrum is not

conserved [87]. However, action density N = E/σ is conserved, so we instead

model waves with the action balance equation which is obtained by dividing

(A.9) by the relative frequency σ:

∂N

∂t
+
∂cxN

∂x
+
∂cyN

∂y
+
∂cθN

∂θ
+
∂cσN

∂σ
=
S

σ
. (A.10)

From linear wave theory, we know that wave energy propagates at the

speed of the group velocity. In the presence of a current, linear wave theory is

only valid for a frame of reference moving with the current. So with currents

present, wave energy travels at the absolute group velocity, which is the group

velocity in a fixed frame of reference and is the combination of the relative

group velocity and the current

cg,absolute = cg,relative + U.

(Note that throughout this dissertation cg = cg,relative.) Therefore, the propa-

gation velocities in geographic space are

cx = cg,x + u,
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cy = cg,y + v.

If a wave approaches a coast at an angle, the wave will slowly turn

towards the shallower water. This is due to the depth variations along the

wave crest. The phase speed

c =

√
g

k
tanh kH,

also varies with depth and, therefore the wave crest will move faster in deeper

water than it does in shallow water. The time rate of change because of this

depth-induced refraction is

−1

k

∂σ

∂H

∂H

∂m

where m is the coordinate perpendicular to the wave direction θ. Changes in

wave direction also occur due to variations in the current. This current-induced

refraction is represented as

k

k
· ∂U
∂m

.

The total rate of change of the wave direction due to both depth- and current-

induced refraction is then

cθ = −1

k

(
∂σ

∂H

∂H

∂m
+

1

k
· ∂U
∂m

)
.

The frequency of a wave in a fixed frame of reference ω is related to

the frequency by

ω = σ + k · U,
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where k ·U can be seen as the Doppler shift. In the frame of reference moving

with the energy or action of the wave, the relative frequency shifts due to

variations in the depth and current. This time rate of change of the relative

frequency is

cσ =
∂σ

∂H

(
∂H

∂t
+ U · ∇xH

)
− cgk · ∂U

∂s
,

where s is the coordinate normal to the wave direction θ. The first term in

the parenthesis represents the effect of the variation of depth in time and the

second term in the parenthesis represents the effect of the current moving the

wave over a horizontally varying depth. The second term in the expression

represents the wave moving with a horizontally varying current. Again, more

in-depth and detailed information on this derivation can be found in [64].
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pour des opérateurs non linéaires. J. of Math. Anal. and Appl.,

30(3):510–521, 1970.

[7] I. Babuska. The finite element method with penalty. Math. Comp.,

27(122):221–228, 1973.

149



[8] I. Babuska and M. Zlamal. Nonconforming elements in the finite element

method with penalty. SIAM J. on Numer. Anal., pages 863–875, 1973.

[9] J.A. Battjes and J. Janssen. Energy loss and set-up due to breaking of

random waves. In Proc. 16th Int. Conf. Coastal Eng., volume 1, pages

649–660, 1978.

[10] N. Booij and L.H. Holthuijsen. Propagation of ocean waves in discrete

spectral wave models. J. of Comput. Phys., 68(2):307–326, 1987.

[11] N. Booij, R.C. Ris, and L.H. Holthuijsen. A third-generation wave

model for coastal regions. I- Model description and validation. J. of

Geophys. Res., 104(C4):7649–7666, 1999.

[12] E. Bouws and G.J. Komen. On the balance between growth and dissi-

pation in an extreme depth-limited wind-sea in the southern North Sea.

J. of Phys. Oceanog., 13(9):1653–1658, 1983.

[13] S.C. Brenner and R. Scott. The mathematical theory of finite element

methods, volume 15 of Texts in Applied Mathematics. Springer, 2007.

[14] S. Bunya, J.C. Dietrich, J.J. Westerink, B.A. Ebersole, J.M. Smith, J.H.

Atkinson, R. Jensen, D.T. Resio, R.A. Luettich, C. Dawson, et al. A

high-resolution coupled riverine flow, tide, wind, wind wave, and storm

surge model for southern Louisiana and Mississippi. Part I: Model de-

velopment and validation. Mon. Weather Rev., 138(2):345–377, 2010.

150



[15] S. Bunya, E.J. Kubatko, J.J. Westerink, and C. Dawson. A wetting and

drying treatment for the Runge-Kutta discontinuous Galerkin solution

to the shallow water equations. Comput. Methods in Appl. Mech. and

Eng., 198(17-20):1548–1562, 2009.

[16] D.E. Cartwright and P. Melchior. Tides: A scientific history. Cam-

bridge Univ Press, 1999.

[17] P. Castillo, B. Cockburn, D. Schotzau, and C. Schwab. Optimal a pri-

ori error estimates for the hp-version of the local discontinuous Galerkin

method for convection-diffusion problems. Math. of Comput., 71(238):455–

478, 2002.

[18] L. Cavaleri and P.M. Rizzoli. Wind wave prediction in shallow water:

Theory and applications. J. of Geophys. Res., 86(C11):10961–10, 1981.

[19] J.G. Charney, R. Fjörtoft, and J.V. Neumann. Numerical integration

of the barotropic vorticity equation. Tellus, 2(4):237–254, 1950.

[20] Q. Chen, L. Wang, and R. Tawes. Hydrodynamic response of north-

eastern Gulf of Mexico to hurricanes. Estuaries and Coasts, 31(6):1098–

1116, 2008.

[21] B. Cockburn and C. Dawson. Some extensions of the local discontinuous

Galerkin method for convection-diffusion equations in multidimensions.

ICES Report 99-27, 1999.

151



[22] B. Cockburn, S. Hou, and C.W. Shu. The Runge-Kutta local projection

discontinuous Galerkin finite element method for conservation laws. IV:

The multidimensional case. Math. of Comput., 54(190):545–581, 1990.

[23] B. Cockburn, G.E. Karniadakis, and C.W. Shu. The development of

discontinuous Galerkin methods. In B. Cockburn, G.E. Karniadakis,

and C.W. Shu, editors, Discontinuous Galerkin Methods, volume 11 of

Lecture Notes in Computational Science and Engineering, pages 3–50.

Springer Berlin Heidelberg, 2000.

[24] B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projec-

tion discontinuous Galerkin finite element method for conservation laws

III: One-dimensional systems. J. of Comput. Physics, 84(1):90–113,

1989.

[25] B. Cockburn and C.W. Shu. TVB Runge-Kutta local projection discon-

tinuous Galerkin finite element method for conservation laws II: General

framework. Math. of Comput., 52(186):411–435, 1989.

[26] B. Cockburn and C.W. Shu. The Runge-Kutta local projection P1-

discontinuous Galerkin finite element method for scalar conservation

laws. RAIRO Modél. Math. Anal. Numér, 25(3):337–361, 1991.

[27] B. Cockburn and C.W. Shu. The local discontinuous Galerkin method

for time-dependent convection-diffusion systems. SIAM J. on Numer.

Anal., pages 2440–2463, 1998.

152



[28] B. Cockburn and C.W. Shu. The Runge–Kutta discontinuous Galerkin

method for conservation laws V: Multidimensional systems. J. of Com-

put. Phys., 141(2):199–224, 1998.

[29] N. Collins, G. Theurich, C. Deluca, M. Suarez, A. Trayanov, V. Balaji,

P. Li, W. Yang, C. Hill, and A. Da Silva. Design and implementation

of components in the earth system modeling framework. Int. J. of High

Perform. Comput. Appl., 19(3):341–350, 2005.

[30] R.A. Dalrymple and C.J. Lozano. Wave-current interaction models for

rip currents. J. of Geophys. Res., 83(C12):6063, 1978.

[31] C. Dawson. Conservative, shock-capturing transport methods with non-

conservative velocity approximations. Comput. Geosci., 3(3):205–227,

1999.

[32] C. Dawson, E.J. Kubatko, J.J. Westerink, C. Trahan, C. Mirabito,

C. Michoski, and N. Panda. Discontinuous Galerkin methods for mod-

eling hurricane storm surge. Adv. in Water Resour., 34(9):1165–1176,

2011.

[33] C. Dawson and J. Proft. Discontinuous and coupled continuous/discontinuous

Galerkin methods for the shallow water equations. Comput. Methods

in Appl. Mech. and Eng., 191(41):4721–4746, 2002.

[34] C. Dawson and J. Proft. Discontinuous/continuous Galerkin methods

for coupling the primitive and wave continuity equations of shallow wa-

153



ter. Comput. Methods in Appl. Mech. and Eng., 192(47):5123–5145,

2003.

[35] C. Dawson and J. Proft. Coupled discontinuous and continuous Galerkin

finite element methods for the depth-integrated shallow water equations.

Comput. Methods in Appl. Mech. and Eng., 193(3):289–318, 2004.

[36] C. Dawson, S. Sun, and M.F. Wheeler. Compatible algorithms for

coupled flow and transport. Comput. Methods in Appl. Mech. and

Eng., 193(23):2565–2580, 2004.

[37] J.C. Dietrich, S. Bunya, J.J. Westerink, B.A. Ebersole, J.M. Smith, J.H.

Atkinson, R. Jensen, D.T. Resio, R.A. Luettich, C. Dawson, et al. A

high-resolution coupled riverine flow, tide, wind, wind wave, and storm

surge model for southern Louisiana and Mississippi. Part II: Synoptic

description and analysis of hurricanes Katrina and Rita. Mon. Weather

Rev., 138(2):378–404, 2010.

[38] J.C. Dietrich, S. Tanaka, J.J. Westerink, C.N. Dawson, Jr. Luettich,

R.A., M. Zijlema, L.H. Holthuijsen, J.M. Smith, L.G. Westerink, and

H.J. Westerink. Performance of the unstructured-mesh, SWAN+ADCIRC

model in computing hurricane waves and surge. J. of Sci. Comput.,

52:468–497, 2012.

[39] J.C. Dietrich, C.J. Trahan, M.T. Howard, J.G. Fleming, R.J. Weaver,

S. Tanaka, L. Yu, R.A. Luettich Jr., C.N. Dawson, J.J. Westerink,

154



G. Wells, A. Lu, K. Vega, A. Kubach, K.M. Dresback, R.L. Kolar,

C. Kaiser, and R.R. Twilley. Surface trajectories of oil transport along

the northern coastline of the Gulf of Mexico. Cont. Shelf Res., 41(0):17

– 47, 2012.

[40] J.C. Dietrich, M. Zijlema, P.-E. Allier, L.H. Holthuijsen, N. Booij, J.D.

Meixner, J.K. Proft, C. Dawson, C.J. Bender, A. Naimaster, J.M. Smith,

and J.J. Westerink. Limiters for spectral propagation velocities in

SWAN. Ocean Model., (0), 2012.

[41] J.C. Dietrich, M. Zijlema, J.J. Westerink, L.H. Holthuijsen, C. Dawson,

R.A. Luettich Jr, R.E. Jensen, J.M. Smith, G.S. Stelling, and G.W.

Stone. Modeling hurricane waves and storm surge using integrally-

coupled, scalable computations. Coast. Eng., 58(1):45–65, 2011.

[42] L.F. Dolata and W. Rosenthal. Wave setup and wave-induced currents

in coastal zones. J. of Geophys. Res., 89(C2):1973–1982, 1984.

[43] J. Douglas and T. Dupont. Interior penalty procedures for elliptic and

parabolic Galerkin methods. Comput. Methods in Appl. Sci., pages

207–216, 1976.

[44] M. Dubiner. Spectral methods on triangles and other domains. J. of

Sci. Comput., 6(4):345–390, 1991.

[45] D.A. Dunavant. High degree efficient symmetrical Gaussian quadrature

155



rules for the triangle. Int. J. for Numer. Methods in Eng., 21(6):1129–

1148, 1985.

[46] Y. Eldeberky. Nonlinear transformation of wave spectra in the nearshore

zone. PhD thesis, Delft University of Technology, Department of Civil

Engineering, The Netherlands, 1996.

[47] Y. Eldeberky and J.A. Battjes. Parameterization of triad interactions

in wave energy models. Proc. Coast. Dyn. Conf., pages 140–148, 1995.

[48] Y. Eldeberky and J.A. Battjes. Spectral modeling of wave breaking:

Application to Boussinesq equations. J. Geophys. Res, 101(C1):1253–

1264, 1996.
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[104] J.T. Oden, I. Babuŝka, and C.E. Baumann. A discontinuous hp fi-

nite element method for diffusion problems. J. of Comput. Phys.,

146(2):491–519, 1998.

[105] W.W. Pandoe and B.L. Edge. Cohesive sediment transport in the

3D-hydrodynamic-baroclinic circulation model: Study case for idealized

tidal inlet. Ocean Eng., 31(17-18):2227–2252, 2004.

[106] P.W. Partridge and C.A. Brebbia. Quadratic finite elements in shallow

water problems. J. of the Hydraul. Div., 102(9):1299–1313, 1976.

[107] O.M. Phillips. On the generation of waves by turbulent wind. J. of

Fluid Mech., 2(5):417–445, 1957.

[108] O.M. Phillips. The dynamics of the upper ocean, 1977.

[109] W.J. Pierson Jr. and L. Moskowitz. A proposed spectral form for fully

developed wind seas based on the similarity theory of SA Kitaigorodskii.

J. of Geophys. Res., 69(24):5181–5190, 1964.

[110] G.W. Platzman. The lattice structure of the finite-difference primitive

and vorticity equations. Mon. Weather Rev., 86(8):285–292, 1958.

[111] J. Qi, C. Chen, R.C. Beardsley, W. Perrie, G.W. Cowles, and Z. Lai. An

unstructured-grid finite-volume surface wave model (FVCOM-SWAVE):

Implementation, validations and applications. Ocean Model., 28(1-

3):153–166, 2009.

164



[112] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron

transport equation. Los Alamos Report LA-UR-73-479, 1973.

[113] O. Reynolds. An experimental investigation of the circumstances which

determine whether the motion of water shall be direct or sinuous, and of

the law of resistance in parallel channels. Proc. of the R. Soc. of Lond.,

35(224-226):84–99, 1883.

[114] R. Ris, L.H. Holthuijsen, J.M. Smith, N. Booij, and A. van Dongeren.

The ONR test bed for coastal and oceanic wave models. In J.M. Smith,

editor, Proc. 28th Int. Conf. Coast. Eng., pages 380–392. ASCE, World

Scientific Publishing, 2003.

[115] B. Rivière, M.F. Wheeler, and V. Girault. Improved energy estimates

for interior penalty, constrained and discontinuous Galerkin methods for

elliptic problems. Part I. Comput. Geosci., 3(3):337–360, 1999.

[116] W.E. Rogers, J.M. Kaihatu, L. Hsu, R.E. Jensen, J.D. Dykes, and K.T.

Holland. Forecasting and hindcasting waves with the SWAN model in

the Southern California Bight. Coast. Eng., 54(1):1–15, 2007.

[117] A. Roland, U. Zanke, T.W. Hsu, S.H. Ou, J.M. Liau, and S.K. Wang.

Verification of a 3rd generation FEM spectral wave model for shallow

and deep water applications. ASME Conf. Proc., 2006(47470):487–499,

2006.

165



[118] D. Schwanenberg, R. Kiem, and J. Kongeter. Discontinuous Galerkin

Methods, chapter Discontinuous Galerkin method for the shallow water

equations, pages 289–309. Springer, Heidelber, 200.

[119] R.L. Snyder and J. Elliott. Array measurements of atmospheric pressure

fluctuations above surface gravity waves. J. of Fluid Mech., 102:1–59,

1981.

[120] O.R. Sørensen, H. Kofoed-Hansen, M. Rugbjerg, and L.S. Sørensen. A

third-generation spectral wave model using an unstructured finite vol-

ume technique. In Coastal Engineering Conference, volume 29, page

894. American Society of Civil Engineers, 2004.

[121] G.S. Stelling and J.J Leendertse. Approximation of convective processes

by cyclic AOI methods. In Estuarine and Coastal Modeling, pages 771–

782. ASCE, 1992.

[122] J. Steppeler. FE2DY: A finite element FORTRAN program for the solu-

tion of the shallow-water equations with energy conservation. Comput.

& Geosci., 16(5):645–667, 1990.

[123] G.G. Stokes. On the theories of the internal friction of fluids in motion,

and of the equilibrium and motion of elastic solids. Trans. Cambridge

Philos. Soc., 8:287–320, 1849.

[124] SWAMP Group and Sea Wave Modeling Project. Ocean wave modeling.

Plenum Pub Corp, 1985.

166



[125] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equa-

tions using the finite element technique. Comput. & Fluids, 1(1):73–100,

1973.

[126] The SWAN team. SWAN Cycle III version 40.85. Delft University of

Technology, 2011.

[127] H.L. Tolman. A third-generation model for wind waves on slowly vary-

ing, unsteady, and inhomogeneous depths and currents. J. of Phys.

Oceanog., 21(6):782–797, 1991.

[128] H.L. Tolman. Effects of numerics on the physics in a third-generation

wind-wave model. J. of Phys. Oceanog., 22:1095–1095, 1992.

[129] H.L. Tolman. Alleviating the Garden Sprinkler Effect in wind wave

models. Ocean Model., 4(3):269–289, 2002.

[130] H.L. Tolman, B. Balasubramaniyan, L.D Burroughs, D.V. Chalikov, Y.Y

Chao, H.S. Chen, and V.M. Gerald. Development and implementation

of wind-generated ocean surface wave models at NCEP. Weather and

Forecast., 17(2):311–333, 2002.

[131] C.B. Vreugdenhil. Numerical methods for shallow-water flow, volume 13.

Springer, 1994.

[132] WAMDI Group, S. Hasselmann, K. Hasselmann, E. Bauer, P. Janssen,

G.J. Komen, L. Bertotti, P. Lionello, A. Guillaume, V.C. Cardone, J.A.

167



Greenwood, et al. The WAM Model-a third generation ocean wave

prediction model. J. of Phys. Oceanog., 18:1775–1810, 1988.

[133] J.D. Wang and J.J. Connor. Mathematical modeling of near coastal

circulation. Technical Report Report No MITSG 75-13, Massachusetts

Institute of Technology, Cambridge, MA, April 1975.

[134] J.C. Warner, N. Perlin, and E.D. Skyllingstad. Using the Model Cou-

pling Toolkit to couple earth system models. Environ. Model. & Softw.,

23(10):1240–1249, 2008.

[135] R.J. Weaver and D.N. Slinn. Effect of wave forcing on storm surge. In

Proceedings of Coastal Engineering ’04, pages 1532–1538, Lisbon, Por-

tugal, 2004.

[136] J.J. Westerink, R.A. Luettich, J.C. Feyen, J.H. Atkinson, C. Dawson,

H.J. Roberts, M.D. Powell, J.P. Dunion, E.J. Kubatko, and H. Pourta-

heri. A basin- to channel-scale unstructured grid hurricane storm surge

model applied to southern Louisiana. Mon. Weather Rev., 136(3):833–

864, 2008.

[137] M.F. Wheeler. An elliptic collocation-finite element method with inte-

rior penalties. SIAM J. on Numer. Anal., pages 152–161, 1978.

[138] J. Wu et al. Wind-stress coefficients over sea surface from breeze to

hurricane. J. of Geophys. Res., 87(C12):9704–9706, 1982.

168



[139] B. Yildirim and G.E. Karniadakis. A hybrid spectral/DG method for

solving the phase-averaged ocean wave equation: Algorithm and valida-

tion. J. of Comput. Phys., 2012.

[140] M. Zijlema. Computation of wind-wave spectra in coastal waters with

SWAN on unstructured grids. Coast. Eng., 57(3):267–277, 2010.

169


