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Supervisor:  Guadalupe Carmona-Dominguez 

 
The National Research Council (NRC) outlines an assessment design framework 

in Knowing What Students Know. This framework proposes the integration of three 

components in assessment design that can be represented by a triangle, with each corner 

representing: cognition, or model of student learning in the domain; observation, or 

evidence of competencies; and interpretation, or making sense of this evidence. This 

triangle representation signifies the idea of a need for interconnectedness, consistency, 

and integrated development of the three elements, as opposed to having them as isolated 

from each other. Based on the recommendations for research outlined in the NRC's 

assessment report, this dissertation aims to conduct a dimensionality analysis of 

Programme for International Student Assessment (PISA) mathematics items. PISA 

assesses 15-year olds' skills and competencies in reading, math, and science literacy, 

implementing an assessment every three years since 2000. PISA's mathematics 

assessment framework, as proposed by the Organisation for Economic Co-operation and 
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Development (OECD), has a multidimensional structure: content, processes, and context, 

each having three to four sub-dimensions. The goal of this dissertation is to show how 

and to what extent this complex multidimensional nature of assessment framework is 

reflected on the actual tests by investigating the dimensional structure of the PISA 2003, 

2006, and 2009 mathematics items through the student responses from all participating 

OECD countries, and analyzing the correspondence between the mathematics framework 

and the actual items change over time through these three implementation cycles.  

Focusing on the cognition and interpretation components of the assessment 

triangle and the relationship between the two, the results provide evidence addressing 

construct validity of PISA mathematics assessment. Confirmatory factor analysis (CFA) 

and structural equation modeling (SEM) were used for a dimensionality analysis of the 

PISA mathematics items in three different cycles: 2003, 2006, and 2009. Seven CFA 

models including a unidimensional model, three correlated factor (1-level) models, and 

three higher order factor (2-level) models were applied to the PISA mathematics items 

for each cycle. Although the results did not contradict the multidimensionality, stronger 

evidence was found to support the unidimensionality of the PISA mathematics items. The 

findings also showed that the dimensional structure of the PISA mathematics items were 

very stable across different cycles.
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Chapter 1: Introduction 

Mathematical Literacy 

Definition and Important Concepts 

 This dissertation study is an investigation of mathematical literacy assessment 

design from an international perspective. The term mathematical literacy in this 

dissertation refers to successful mathematics learning and sufficient mathematics 

knowledge and skills to function well in society in very broad terms. Other terms used in 

the literature to imply this meaning to some extent are quantitative literacy, numeracy, 

mathemacy, mastery of mathematics, mathematical proficiency, and mathematical 

competence (Kilpatrick, 2001). Different terms might be preferred over others in 

different educational systems. For example, in the U.K. and Australia the term numeracy 

is used (Stacey, 2010), whereas some prefer quantitative literacy in the U.S (Steen, 

2001). I use the term mathematical literacy (Organization for Economic Cooperation and 

Development [OECD], 2003) in this dissertation as an umbrella term more or less 

representing all of these terms more or less. In addition, terms such as modeling, 

mathematisation, and mathematizing are the mathematical conceptions used in the 

literature that are closely related to mathematical literacy (Jablonka, & Gellert, 2007; 

Lesh & Carmona, 2003). 

Mathematics educators around the world view mathematical literacy as a 

multidimensional construct composed of distinguishable but related components rather 

than single, general mathematics ability. Some math educators (e.g., Kilpatrick, 



 

2 

Swafford, & Findell, 2001) focus on proficiencies or competencies when defining 

mathematical literacy, while others (e.g., Ojose, 2011) describe knowledge and skills. 

Some others (e.g., Steen, 2001) situate mathematical literacy according to its connection 

to real life situations (i.e., context). There is also a content-wise decomposition of 

mathematical literacy (Steen, 2001). So, there appears to be more than one dimension and 

more than one approach in composing mathematical literacy as discussed in the 

mathematics education field. 

The OECD defines mathematical literacy as  

an individual’s capacity to identify, and understand, the role that mathematics 

plays in the world, to make well-founded judgments and to use and engage with 

mathematics in ways that meet the needs of that individual’s life as a constructive, 

concerned, and reflective citizen. (OECD, 2003, p.24) 

The OECD also views mathematical literacy as a multidimensional construct in 

terms of three important aspects: content, process, and context. The first component, 

"content," is divided into 4 dimensions (overarching ideas): quantity, space and shape, 

change and relationships, and uncertainty. "Processes" consist of three competency 

clusters: reproduction, connections, and reflection. Lastly, "situations" are defined in 

terms of 4 dimensions: personal, educational/occupational, public, and scientific (OECD, 

2009a). 

Background and Importance 

The concept of mathematical literacy gained crucial importance especially in the 

80's. Since then, the standards that had been once considered for literacy (being able to 
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read and write) also began to be considered for mathematical literacy (Jablonka, 2003; 

Moses & Cobb, 2001).  That is, mathematical literacy is as critical in today's society as 

reading literacy was 40-50 years ago. There is no doubt about how critical the 

mathematics domain is for the workforce, especially for technical careers that drive the 

economy. Nor would anyone disagree with emphasis put on mathematics as a school 

subject. However, what mathematics literacy implies is a different question.  

What is meant by mathematical literacy is more than knowing mathematics as a 

school subject. It has been considered the keystone of public mathematics education as 

well as an indicator for the quality of educational programs at local, national, and 

international levels. According to mathematics educators and educational psychologists, 

being mathematically literate means much more than being ready for the workforce and 

well equipped to tackle everyday problems (e.g., Ojose, 2011). Mathematical literacy is 

an essential part to critical education and democracy and a necessity for both personal 

and national empowerment (Skovsmose, 1994). As Moses and Cobb (2001) put it, 

"mathematics literacy [is] fundamental to this generation." Applying Paulo Freire's 

(1970) critical pedagogy theory in mathematics education, mathematical and statistical 

literacy plays an important role in social and economic development through 

democratization and liberalism (Frankenstein, 1992). In other words, to be critical 

citizens, it is necessary to be mathematically literate. Mathematical literacy opens space 

for civil rights and leads to social change (Moses & Cobb, 2001). Moreover, 

mathematical literacy could also serve for different assets such as cultural identity, 

environmental awareness, and developing human capital when different approaches are 
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taken (Jablonka, 2003). For example, through mathematical modeling, people are 

equipped with necessary mathematical tools and abilities to succeed in their lives. Ethno-

mathematics could help protect cultural assets through connecting the informal math used 

to solve day-to-day problems and school mathematics. To sum up, we could say that 

mathematics literacy is not less important than reading and writing in today's world 

(Moses & Cobb, 2001). 

National and international education and assessment organizations, in addition to 

educational theorists, also acknowledge the critical role mathematical literacy plays in 

individual and societal life. This view of mathematical literacy differs a lot from 

traditional school mathematics in many ways. Mathematical literacy means more than 

having basic mathematical knowledge. It requires students to be able to apply it to solve 

real world problems (Ojose, 2011). In order for mathematical literacy to make individual 

reflective citizens and critical thinkers, it needs to pursue flexible transfer of mathematics 

knowledge and skills and successful application of them in different situations. The 

National Council of Teachers of Mathematics (NCTM) envisioned and enunciated in late 

90's that this would be possible through modeling, estimating, analyzing, reasoning, 

formulating, and interpreting mathematical problems in variety of contexts (NCTM, 

2000). 

The most prominent national assessment in the U.S., the National Assessment of 

Educational Progress (NAEP) assesses student knowledge and skills in science and 

mathematics at grades four, eight, and twelve. This shows how it is considered very 

important to evaluate mathematical literacy in the U.S. Internationally, two major 
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comparative student assessments take place: the Programme for International Student 

Assessment (PISA), and Trends in International Mathematics and Science Study 

(TIMSS). Mathematics is one of the domains included in these assessments. Therefore, it 

would be fair to say that it is unequivocal, both nationally and internationally, that 

mathematics domain plays a major role and mathematical literacy is seen as crucial in 

preparing youngsters for real life.  

 The International Association for the Evaluation of Educational Achievement 

(IEA) sees mathematics literacy as one of the fundamental educational goals around the 

world (Mullis et al., 2009). The OECD (2003) states that mathematical literacy is one of 

the keys to develop human capital, personal, social, and economic well-being, and 

democratic participation in the social life.  

Given the relevance of mathematical literacy in our society, it follows that 

assessing mathematical literacy is an important facet to mathematics education. Through 

its assessment, it is possible to understand what mathematical literacy would mean in 

terms of student achievement. Large-scale, standardized assessments of student 

performance in mathematics provide information about students' mathematical literacy. 

In addition, how different levels of mathematical literacy relate to other student 

characteristics is often explored through these assessments (Anderson et al., 2007).  

Assessing Mathematical Literacy 

Assessment of mathematical literacy is a complex task. The assessment design 

framework proposed by the NRC sets the ground. Several important factors interplay in 

the design of the assessment and each should be paid a great amount of attention. For 
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example, developing items to assess mathematical literacy is a very important process 

intertwined with other components of assessment design. From the validity perspective, 

the items should be measuring what they are intended to measure (Loevinger, 1957). 

Therefore, item development needs to be very carefully designed.  

Large-scale assessments could be valuable only if they are well designed and 

appropriately used (NRC, 2001). Two important questions serve as the baseline for a 

good assessment design. The first one is: what views of mathematical literacy are these 

large-scale assessments designed to reflect? Secondly, what relationships do they have 

with teaching and learning? 

As mentioned earlier, mathematical literacy is often defined and viewed as a 

multidimensional construct. When it comes to its assessment, especially in large-scale 

context, this multidimensional conception of mathematical literacy cannot be 

disregarded. Then, there are important questions to be answered about current large-scale 

assessment practices with regards to this conception. For example, what conceptions of 

mathematical literacy do large-scale assessments reflect? What can we say about 

dimensionality of large-scale assessments? What is the connection between the 

dimensionality of large-scale assessments and that of mathematical literacy? These 

questions about large-scale assessment designs for mathematical literacy are important to 

answer and clarify because it might not be possible otherwise to draw valid inferences 

from their results.  



 

7 

PISA’s Assessment Framework for Mathematical Literacy 

The Programme for International Student Assessment (PISA), coordinated by the 

OECD, is an international assessment that includes a mathematical literacy assessment. 

PISA is the focus of this dissertation and offers a unique opportunity to evaluate 15-year-

olds' mathematical literacy. PISA has been assessing youngsters' skills and competencies 

in reading, math, and science every three years since 2000. PISA developed assessment 

frameworks defining reading, mathematical, and scientific literacy and explaining what 

competencies and dimensions are assessed for each literacy domain. The OECD’s 

definition of mathematical literacy is given earlier. Based on this definition, PISA 

assesses mathematical literacy in a multidimensional way. Three important aspects of 

mathematical literacy are content, process, and context. The first component, "content," is 

divided into 4 dimensions (overarching ideas): quantity, space and shape, change and 

relationships, and uncertainty. "Processes" consist of three competency clusters: 

reproduction, connections, and reflection. Lastly, "situations" are defined in terms of 4 

dimensions: personal, educational/occupational, public, and scientific (OECD, 2009a). 

Content Dimensions 

The overarching idea of quantity requires an understanding of numeric 

phenomena, relationships and patterns encompassing understanding operations, number 

sense, computations, arithmetic, and estimations. Space and shape content focuses on the 

understanding of spatial and geometric phenomena and relationships. This content area 

relates to geometric patterns, differences and similarities of shapes, and relative positions 

of objects. Change and relationships content focuses on understanding of fundamental 
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types of change occurring in natural phenomena, representing those changes in a 

comprehensible form, and functional relationships and dependency among variables of 

change. Uncertainty content relates to probabilistic and statistical phenomena and 

relationships. PISA recognizes the importance of uncertainty as viewing the data as 

numbers in a context and developing an understanding of random events. 

Process Dimensions 

Process dimension, also known as competency clusters, is composed of 

reproduction, connections, and reflection sub-dimensions. PISA classifies underlying 

mathematical skills in these three competency clusters. Reproduction competency deals 

with factual knowledge, equivalency, recalling mathematical objects and properties, 

performing routine procedures, standard algorithms, and technical skills. The connections 

cluster involves a degree of interpretation and linkages. The focus of connections is on 

linking the different strands and domains within mathematics and integrating information 

in order to solve problems that allow different strategies and mathematical tools. The 

reflection cluster relates to analysis and interpretation of mathematics embedded in the 

situation, development of models and strategies, and making generalizations and proofs. 

Context Dimensions 

The third dimension, context or situations, consists of personal, educational and 

occupational, public, and scientific categories. Every mathematical problem is situated 

within a context in PISA. Personal contexts include day-to-day activities to provide 

immediate and personal relevance to students. Educational and occupational contexts 

provide school and work situations which students might encounter while at school or in 
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the work environment. Public contexts involve situations in which individual interacts 

with the outside world. Lastly, scientific context presents scientific or explicitly 

mathematical problems. 

Rationale 

Although PISA uses a multidimensional mathematical literacy framework, it is 

not known if the results reflect this multidimensionality. The purpose of this dissertation 

is to investigate to what extent the PISA mathematics items reflect the complex 

dimensionality of the original assessment framework. Current practices use expert 

opinions, which serve as content-wise validation of the PISA mathematics items. 

However, no study has been undertaken to demonstrate the dimensionality of the actual 

results of mathematics assessment items that would provide evidence for the construct 

validity of the PISA mathematics assessment. This dissertation offers to fill in the gap.  

Why is it important to investigate this? Is the above-mentioned gap significant 

enough to need to be filled? Yes, it is because it follows the NRC’s recommendations for 

research, policy, and practice in assessment design for school science and mathematics.  

The Committee on the Foundations of Assessment of the NRC outlines an 

assessment design framework for educators and psychometricians in its 2001 report 

entitled “Knowing What Students Know: The Science and Design of Educational 

Assessment.” This report has explored recent advances in cognitive sciences and their 

implications for improving assessment of science and mathematics education (NRC, 

2001). In the report, the NRC presents the need to link theories of cognition with 

psychometric perspectives. This report proposes the assessment triangle, where each 
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corner of the triangle represents: cognition, or model of student learning in the domain; 

observation, or evidence of understanding; and interpretation, or making sense of this 

evidence (NRC, 2001).  

This "Triangle" representation signifies the idea of the interconnectedness of the 

three elements as opposed to having them as isolated from each other, which often times 

is found problematic in most of assessment designs. Of the five important 

recommendations for research outlined in the NRC's assessment report, one urges for in-

depth analyses of these three elements and their coordination. This study will shed light 

on the C-I (cognition-interpretation) linkage of a prestigious worldwide assessment, 

PISA.    

The NRC urges for "in-depth analyses of the critical elements (cognition, 

observation, and interpretation) underlying the design of existing assessments that have 

attempted to integrate cognitive and measurement principles" (NRC, 2001) in this report 

as a part of future research agenda on educational assessment in science and mathematics. 

It is also recommended in the report that  

Developers of assessment instruments for classroom or large-scale use should pay 

explicit attention to all three elements of the assessment triangle (cognition, 

observation, and interpretation) and their coordination...Considerable time and 

effort should be devoted to a theory-driven design and validation process before 

assessments are put into operational use. (NRC, 2001, p.305) 
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Purpose 

This dissertation study has three purposes: (1) to assess the dimensionality of an 

international assessment for mathematical literacy from an assessment design 

perspective, (2) to investigate the statistical, structural (factorial) correspondence between 

PISA mathematics items and PISA mathematical literacy framework, and (3) to explore 

the interplay between unidimensionality assumptions and multidimensionality 

expectations. The first purpose will inform the re-conceptualization of mathematical 

literacy as a multidimensional construct. The second purpose relates to the coordination 

of cognition and interpretation components of the assessment triangle in PISA’s case. 

Although the OECD carefully developed the mathematics items so that they are offered 

in a way that reflects the assessment framework (cognition), no statistical validation 

process for the dimensionality of the PISA mathematics items utilizing the student 

responses (interpretation) exists. Lastly, PISA uses statistical methods for scaling and 

interpretation of scores that assumes a unidimensional test structure. However, the 

intended assessment framework assumes mathematical literacy to be a complex, 

intertwined, and multidimensional construct. This study will help understand the 

interplay between these two competing sides.  

Research Questions 

In this dissertation study, I will investigate the coordination between PISA’s 

mathematical literacy framework and the PISA mathematics items utilizing the student 

responses through following research questions: 
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1. What is the correspondence between the dimensional structure of the PISA 

mathematics items and PISA’s mathematical literacy assessment framework 

in terms of the content, process, and context dimensions? 

2. What is the best representation for the dimensional structure of the PISA 

mathematics items for implementation cycles 2003, 2006, and 2009?? 

3. How does the dimensional structure of the PISA mathematics items change 

over time? 
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Chapter 2: Literature Review 

There is no doubt that assessments constitute an important part in today’s 

education.  A large variety of assessments exist depending on the context, content area, 

format, and purpose. Whether in-class or large-scale, measuring achievement or aptitude, 

in mathematics or reading, formative or summative, some theoretical principles apply to 

all assessments (NRC, 2001). For example, it is clear through evidence that eliciting 

knowledge and skills possessed are examples of such principles that underlie all 

assessments. Every assessment design is essentially based on evidentiary (Mislevy, 1994) 

and inferential (Messick, 1994) notions. As such, the NRC (2001) identifies three 

foundational components that should underpin all types of assessments: cognition, 

observation, and interpretation.  

This triad is referred to as the assessment triangle. This chapter will commence 

with detailed explanations of these important elements of assessments outlined by the 

NRC. The connection among these elements and how they form a coherent whole are 

then described. This assessment design framework sets the theoretical background for 

this dissertation. The NRC’s recommendations for research as they relate to large-scale 

assessments and to this dissertation are also summarized. Then, the conceptual 

framework for this dissertation study is provided. Two very important concepts related to 

this study, validity and dimensionality are defined. Next, this chapter gives an overview 

of studies exploring the dimensionality of large-scale assessments and methodologies 

used in studying their validity. What follows finally is how this study differs from earlier 

ones. 



 

14 

The Triad for Assessment Design  

The NRC’s (2001) report on assessment conveys a clear message:  

Every assessment, regardless of its purpose, rests on three pillars: a model of how 

students represent knowledge and develop competence in the subject domain, 

tasks or situations that allow one to observe students’ performance, and an 

interpretation method for drawing inferences from the performance evidence thus 

obtained. In the context of large-scale assessment, the interpretation method is 

usually a statistical model that characterizes expected data patterns, given varying 

levels of student competence. (p. 2) 

The three important components are cognition, observation, and interpretation. As 

mentioned above, this triad is referred as the assessment triangle (Figure 2.1). 

The cognition component of the assessment triangle refers to cognitive models of 

learning. How people learn and develop knowledge and skills in a particular subject area 

should be the starting point in designing an assessment. Theories of learning informed by 

educational and learning sciences should be the guide for the designer to identify the set 

of knowledge and competencies to be targeted and measured by the assessment 

(Chudowsky & Pellegrino, 2003). As the learning sciences develop to incorporate new 

theories and models of cognition, cognitive components of the assessment should be 

modified accordingly to reflect the most recent theories of how people learn and come to 

understand. The cognition component of an assessment includes different aspects of 

student knowledge and skills that are drawn from a larger set of theories of learning in a 

particular domain and that are specified as the targets for assessment. For example, these 
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targets could be sub-domains such as numbers and probability in mathematics or 

processes such as reproduction and transfer. In the context of large-scale assessments, 

these targets are often specified in the assessment frameworks of tests.  

 
Figure 2.1. Assessment Triangle 

Observation represents tasks and/or situations that would demonstrate the 

learners’ performance. It includes questions, problems, tasks, projects, and any prompt 

given to learners that would reveal what they know and can do in a subject domain. In 

practical terms, this might mean a written exam or questions responded to orally.  This 

refers to the collection of data as evidence of learning, knowledge and skills. In a large-

scale context, formal examination of learners with a set of questions represents 

observation component of the assessment.  

Interpretation refers to making sense of the observed performance. That is, 

interpretation is the process of reasoning from the evidence collected through the 

observation phase. This process includes transforming the data about learner performance 

Observation Interpretation 

Cognition 
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into assessment results. The interpretation component could also be considered as the 

collection of models and tools that are used to draw inferences about learners’ knowledge 

and skills. In the large-scale assessments context, the interpretation component generally 

refers to statistical assumptions and models that are used to characterize response patterns 

and levels of learning. 

These three components are very important in an assessment design. What is 

more important, though, is that they should be interconnected and in accordance with 

each other. Otherwise, inferences drawn from assessments might not be as meaningful, if 

not misleading or inaccurate. There are three linkages in the assessment triangle, each of 

which are explained below: C-O (cognition-observation), O-I (observation-

interpretation), and C-I (cognition-interpretation). 

Cognition-Observation linkage assures that tasks are designed with the 

knowledge and skills in mind that those tasks will demonstrate. Theories of how people 

learn and develop skills in a particular domain should inform the types of tasks that 

would reveal evidence about those skills. This is not a one-way relationship, however: 

learning about what tasks could effectively demonstrate what knowledge and skills (and 

how those tasks could demonstrate those skills) helps the assessment designer revisit and 

modify the original assessment framework informed by cognitive theories. 

Observation-Interpretation linkage connects the interpretation methods and 

designing tasks to observe performance. Interpretation models are needed to understand 

what constitutes evidence for learners’ performance in a given task. There are various 

interpretational models including both statistical and qualitative models. Each 
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interpretation model could offer different opportunities and has its limitations as well. 

Knowing what interpretation models are available and what they could offer helps the 

assessment designer in developing tasks that are effective and efficient in observing 

targeted performance areas.  

 

Figure 2.2. Conceptual Framework 

Dimensionality 
Analysis of PISA 

Mathematics Items  
(2003, 2006, & 

2009) 

PISA  
Mathematics 

Items 
2003, 2006, 

& 2009 

PISA  
Assessment 
Framework 

for  
Mathematics 

IRT-based 
Psychometric 

Methods O-I 
Linkage 

C-O 
Linkage 

C-I 
Linkage 

Observation Interpretation 

Cognition 



 

18 

Cognition-Interpretation linkage serves to align the types of interpretation models 

with the cognitive theories. Knowing about how people learn helps determine the 

appropriate interpretation models. In addition, when drawing inferences about learner 

performance using different interpretation models, either statistical or qualitative, learner 

knowledge and skills targeted by the assessment framework should be taken into 

consideration. Conversely, although the assessment framework is mostly guided by 

cognitive theories, available interpretation models also inform this framework (i.e. what 

types of knowledge and skills could be targeted based on the methods of interpreting 

assessment results). 

Conceptual Framework 

Applying the NRC’s assessment triangle to PISA assessment design sets the 

conceptual framework for this dissertation study. Figure 2.2 demonstrates how the 

assessment triangle applies to PISA context. Within this conceptual framework the focus 

of this dissertation study is the C-I linkage through dimensionality analysis of PISA 

mathematics items from 2003, 2006, and 2009.  

In the context of PISA, the assessment framework for mathematical literacy 

corresponds to the cognition component of the assessment triangle. According to the 

OECD this mathematics assessment framework is very detailed and robust. The 

observation component refers to mathematics items developed to evaluate students’ 

knowledge and skills in reference to this assessment framework. This includes careful 

design of items, developing scoring schema for each item, administering the items, and 

scoring student responses to the items. Lastly, interpretation encompasses producing the 
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final scores and making inferences about students’ mathematical literacy in terms of the 

assessment framework and student, school, and country characteristics. Item Response 

Theory (IRT) and statistical methods employed to scale the results are parts of the 

interpretation component.  

C-I linkage within PISA assessment design is the focus of this dissertation study. 

Statistical models and assumptions that are used to interpret student responses form the 

interpretation component. Their synchrony with the multidimensional aspects of the 

assessment framework implies the relationship between interpretation and cognition, i.e., 

C-I linkage. Through dimensionality analysis this relationship will be explored in this 

dissertation study. This linkage is important in studying and providing evidence for the 

validity of this assessment concept. The topic of validity is described later in the chapter. 

Recommendations for Research, Policy and Practice 

 The NRC report on assessment design provides a contemporary theoretical 

framework assessment design. Whether in-class or large-scale, all types of assessment 

could and should fit in this framework to be accurate, efficient, and effective. The council 

also provides important recommendations and implications for research, policy, and 

practice on assessment design within this framework.  Among a dozen recommendations, 

two are identified as the most relevant to this study. 

 The first one is about in-depth analysis of the critical components of the 

assessment triangle (cognition, observation, and interpretation.) There are various types 

of assessments ranging from in-class to large-scale, and from formative to summative 

designed in rigorous ways. One crucial aspect in the advancement of assessment design 
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entails studying the design and operational characteristics of these different types of 

assessments. The NRC urges for further in-depth analyses of exemplary and important 

assessment practices. “Important” means having serious impact on educational practices. 

In one way, it could be understood as high-stakes attached to assessments. Similarly, it 

could also be the case that it is the impact of results having directive role in changing 

educational policies that makes the assessment very important. In either case, the 

assessment becomes the key that might change lives. Therefore, it is very necessary to 

analyze any assessment from this assessment design perspective.  

Analyzing an assessment from the NRC’s perspective on assessment design is a 

complex procedure rather than a single-step, straightforward one. First, the assessment 

should be reverse-engineered to its basic assumptions and underlying components. 

Secondly, these foundational components should be analyzed from the assessment 

triangle perspective. Analyzing the synchrony between the cognition, observation, and 

interpretation components of the assessment then follows the mapping to the assessment 

framework. 

 The second most relevant recommendation is to develop large-scale assessments 

that encompass a broad range of knowledge and competencies. Both lead to clear ways of 

reporting results. Research in efforts to improve large-scale assessments is worth both 

time and the resources to be invested (Chudowsky & Pellegrino, 2003). Assessment 

designers must reflect deeply on how and what large-scale assessments measure. 

Confirmatory analyses using responses to assessments reveal information about the 

degree of validity of assessments and help find ways to improve the assessment tests.  
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Validity: Concept and Sources 

Validity is a fundamental concept in test development and evaluation. Validity is 

defined in Standards for Educational and Psychological Testing (AERA, APA, NCME, 

1999) as “the degree to which evidence and theory support the interpretations of test 

scores entailed by proposed uses of tests” (p.10). Messick (1989) refers to validity in his 

influential book chapter as “the degree to which empirical evidence and theoretical 

rationales support the adequacy and appropriateness of inferences, interpretations and 

actions based on the test score” (p.13).  

 Although the literature has discussed validity from multiple perspectives (e.g., 

Borsboom, 2005; Cizek, Rosenberg, & Koons, 2008; Cronbach, 1971; Kane, 1992; 

Lissitz & Samuelsen; Loveinger, 1957; Messick, 1989) as an argument and as a concept, 

the definitions of validity given in the above paragraph are commonly accepted and 

agreed upon. This study is guided by these definitions. There are two important elements 

in defining validity, which are “evidentiary” notion and “theoretical” rationale. In 

addition, there seems to be an agreement on the nature of validity: it is of a single nature, 

of a unified concept (Messick, 1989). Validation is viewed as an ongoing process in 

which different sources of validity evidence are collected, summarized, analyzed, and 

evaluated (Cizek, Rosenberg, & Koons, 2008). 

The other important aspect in validity is how or for what purposes these two 

elements, evidentiary and theoretical, are used. This is where evaluative, interpretational, 

and inferential notions of assessment tests come into play. Messick (1989) highlights the 

“actions” or practical consequences of the test as an inseparable from validity concept. 
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This argument, though, has not been left without criticism. Some thinks that 

consequential issues are central to assessment design but irrelevant to the concept of 

validity (Borsboom, 2005; Cizek, Rosenberg, & Koons, 2008). From the scientific point 

of view, construct validity represents the whole notion of validity and other types of 

validity are essentially ad hoc (Loveinger, 1957).   

Standards for Educational and Psychological Testing (AERA, APA, NCME, 

1999) identify five main sources of validity evidence: (1) assessment test content, (2) 

responses to assessment items, (3) internal structure of the assessment test, (4) 

relationship to external variables, and (5) consequences of test results.  A framework of 

knowledge and skills that defines the mastery level in a domain is needed to organize the 

content of an assessment. Student responses to assessment items provide evidence for 

content and internal structure of the assessment (Loveinger, 1957). The internal structure 

of the assessment can provide evidence of the underlying cognitive model. Different 

external variables such as school, teacher, and student characteristics could be used to 

confirm the validity of an assessment for its intended purpose. Consequential validity 

(Messick, 1989) is an overarching look at the issues with practical consequences of an 

assessment. Expert opinion and professional judgment are needed when making decisions 

about what sources of evidence can best support the validity of assessments (AERA, 

APA, NCME, 1999). 

This dissertation study takes on the evidentiary notion of the validity for PISA 

assessment. Internal structure (referred to as dimensionality in this dissertation) of PISA 

mathematics tests will be assessed. The results of dimensionality analysis of PISA will be 
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collected, summarized, and evaluated as one of five sources of validity evidence (AERA, 

APA, NCME, 1999). This work will contribute to validation (Cizek, Rosenberg, & 

Koons, 2008) of PISA assessment, providing evidence for its construct validity 

(Loevinger, 1957).  

Dimensional Structure of Assessments 

There are various methods for analyzing the dimensionality of tests. All serve as a 

validation process for tests, which are based on particular methodological and theoretical 

assumptions. The validation process is a scientific inquiry that should never be 

disregarded (Messick, 1989). For example, tests that are designed with Item Response 

Models require the test structure to be unidimensional. That is, the test is supposed to 

measure only one construct. Checking to see if responses to test items form a 

unidimensional structure is a part of the test validation process. Before getting into the 

methods of analyzing validity and test dimensionality, a little background on validity 

concept and different sources of validity evidence is needed.  

Test Dimensionality: Definition and Concepts 

 Test dimensionality could be informally defined as “the minimum number of 

examinee abilities measured by the test items” (Tate, 2002, p.182). If assessment items 

form a unidimensional structure, then this set of items are said to be measuring one 

attribute of a construct. Dimensionality relates to central issues in development and use of 

large-scale assessments such as content validity, construct validity, score reliability, and 

test fairness. For example, unidimensionality is the basic assumption of measurement 

models (Hattie, 1985) and is required for construct validity (Rubio, Berg-Weger, & Tebb, 
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2001).  Therefore, the dimensional structure of a test provides one type of validity 

evidence based upon the internal structure of a test. Loevinger (1957) claims that the 

construct validity is the only type of validity that is appropriate for tests and structural 

representation (i.e., dimensionality) of tests are central to construct validity. Some tests 

are designed to be unidimensional, while other tests are developed to measure several 

factors. However, it is sometimes the case that a test that is intended to be unidimensional 

may unintentionally be measuring more than one latent variable. Conversely, it is 

sometimes the case that some construct-irrelevant factors such as item types and formats 

could introduce multidimensionality to the assessment structure. Finally, it could be the 

case that the assessment is designed to be unidimensional but due to the planned content 

structure the assessment ends up multidimensional.  

Item Response Theory (IRT) based tests rely on the assumption that the test 

structure is unidimensional. According to psychometricians, this assumption is always 

violated to some degree (Deng, Wells, & Hambleton, 2008; Tate 2002). On the other 

hand, the consequences of violating this assumption might have important implications 

on various phases of the test development process including comparisons across years 

and gathering validity evidence (Burg, 2007). However, the sources of 

multidimensionality are important to evaluate consequences. For example, the 

consequences of unidimensionality violation may not be as serious if the 

multidimensionality stems from the cognitive framework in the subject domain. When 

construct irrelevant factors cause the violation by introducing multidimensionality to the 

structure of the test, then consequences could be very complicated (Tate, 2002).   
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Assessing Test Dimensionality 

 Since the violation of assumptions made on dimensionality of an assessment has 

implications on the validity of items, and its consequences for interpretations of the 

assessment results are important, analyzing the dimensional structure of a set of items is a 

crucial task. Rigorous and careful assessment design and development process is 

necessary but may not be sufficient to produce an assessment structurally congruent to 

the planned framework. Thus, it is crucial to confirm the intended test structure 

empirically and to identify any construct-irrelevant sources of multidimensionality if any 

exist.  

There is no standard form of test dimensionality procedures commonly accepted 

and used by researchers and psychometricians. Various methods have been used to test 

dimensionality including indices based on answer patterns, reliability indices, 

dimensionality fit statistics, principal component analyses, factor analyses, and structural 

equation modeling. Interestingly, studies comparing different procedures of assessing 

dimensionality have not concluded that one technique yields better results than others. 

Thus, no single method is considered preferable to the others; they all seem to be more or 

less equally useful. Researchers still debate and study in order to answer the question of 

how to best assess test dimensionality. 

To provide a brief historical overview of techniques used for assessing 

dimensionality, it could be said that until the late 1980’s various fit indices had been used 

as ad hoc procedures to confirm if a test was unidimensional or not. Hattie (1985) is 

conducted the last and the most comprehensive review of methods for unidimensionality 
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assessment.  He reports 87 indices to test unidimensionality of a measure in his review. 

However, others criticized his review (see Tate, 2003), stating that it provided limited or 

no rationale and empirical support for the methods reported. Over the last two decades, 

though, methods for dimensionality assessment showed a great improvement. Several of 

the methods identified by Hattie (1985) have been further improved and used with the 

advances in technology. New methods emerged and simulation studies of the quality of 

proposed methods become possible with improving computer software. Some 

applications of several methods to real test data have been reported. However, most of the 

literature on assessing dimensionality during this time is relatively narrow, no more 

comprehensive than comparing some of the available methods at the most (Tate, 2003). 

So, there is not a comprehensive review that reports dimensionality assessment methods 

currently available with robust rationale and empirical support. Rather, studies on test 

dimensionality compare some of the methods currently available with each other (Burg, 

2007; de Champlain, 1992; Deng, Well, & Hambleton, 2008; Tate, 2003; Wei, 2008). 

To reiterate, assessing the dimensionality of a test could be done in many different 

ways. The methods for assessing dimensionality could be mainly categorized into two 

main families: parametric (linear, non-linear, IRT-based) and non-parametric (Tate, 

2003). Review of each method and the rationale for each, as well as the purpose of 

commonly used methods are provided in chapter three. There are some considerations 

when selecting a model such as sample size and variable type (i.e., categorical vs. 

dichotomous) (Tate, 2002). These are discussed in detail to justify the model selection for 

this dissertation study in the methodology chapter (Chapter 3.   
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Studies on Test Dimensionality of PISA 

There are various studies analyzing the test structure of achievement tests such as 

NAEP (e.g. Abedi, 1997; Burg, 2007; Griffo, 2011; Stone & Yeh, 2006; Wei, 2008; 

Zwick, 1987). However, there is a very limited number of studies to date that provide 

empirical evidence for dimensional structure of PISA items. Schwab (2007) investigated 

the relationship between the multidimensional structure of science as the cognitive 

domain and its assessment using IRT-based parametric techniques. She found that 

multidimensional models of the internal structure of the science items from PISA 2003 

did not reflect the complex structure of PISA’s cognitive framework for scientific 

literacy. Ekmekci and Carmona (2012) investigated the US students’ responses to PISA 

2003 mathematics items and found unidimensionality in the PISA 2003 mathematics 

items for the US population. Thus, the multidimensional structure of mathematical 

literacy detailed in the assessment framework was not reflected in the mathematics items. 

These are the only two studies exploring the dimensionality of PISA tests.   

Somerville (2012) developed a new IRT-based method for differential item 

functioning (DIF) analysis as an extension of a generalized full-information item bifactor 

analysis model. He used PISA 2009 mathematics items to confirm the utility of his new 

model. He concluded that all but one mathematics items in 2009 showed insignificant 

DIF. This would mean that PISA 2009 mathematics items would be fair to different 

groups of students with similar education indices (Somerville, 2012) 

There are a few other studies utilizing different variations of nonparametric DIF 

or LD studies in PISA context (e.g., Le, 2009; Yildirim & Berberoglu, 2009). To give a 
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few examples, Le (2009) investigated the relationships between gender differential item 

functioning (DIF) across countries and test languages for science items. He focused on 

different dimensions of science items: item format, focus, context, competency, and 

scientific knowledge. He found that gender DIF for science depended on item formats 

and content domains. Males were found to be more advantageous than females for some 

dimensions while the opposite is true for other dimensions. Yildirim and Berberoglu 

(2009) investigated PISA 2003 mathematics items for their fairness across different 

language and cultural groups. They concluded that cognitive skills measured by the 

items, translation errors, and use of quantitative words caused DIF.  

Although findings from these studies provide a potentially valuable contribution 

to the development of tests for international use, none of them directly target the 

investigation into the validity of PISA by assessing the dimensionality of its items with 

the exception of Schwab’s (2007) study, which focuses on science domain. No studies 

have been conducted to date to assess the dimensionality of PISA mathematics items. 

Conclusion 

As the review of literature shows there is a need to study the dimensionality of 

PISA’s mathematical literacy assessment. This investigation is an important contribution 

to the study of its validity. Moreover, as the conceptual framework for this dissertation 

study demonstrates (see Figure 2.2), assessing dimensionality of PISA mathematics items 

is needed to understand the relationship between the important components (assessment 

triangle) of PISA assessment design for mathematical literacy. Prior studies have set the 

ground but have left a gap in assessing dimensionality of PISA. This study has the 
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potential to fill in this gap. The significance of this study comes from the need to provide 

evidence for validation process of PISA mathematical literacy assessment. 
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Chapter 3: Methodology 

Data Sources 

This study will entail a secondary-analysis of the dataset from the OECD's PISA 

database. The data includes student responses to individual mathematics items from the 

PISA 2003, 2006, and 2009 cycles.  

As explained in the second chapter, PISA assesses mathematical literacy in a 

multidimensional way in terms of three important concepts: content, processes, and 

situations (or context). The first component, "content," is divided into 4 dimensions 

(overarching ideas): quantity, space and shape, change and relationships, and uncertainty. 

"Processes" consist of three competency clusters: reproduction, connections, and 

reflection. Lastly, "situations" are defined in terms of 4 dimensions: personal, 

educational/occupational, public, and scientific (OECD, 2009a). The number of items in 

each dimension by each implementation year is given in Table 3.1, Table 3.2, and Table 

3.3. 

For each cycle, the OECD provides data files at two levels: student-level and 

school-level. Student level data include two files: a cognitive item response data file, 

namely student responses for each item, and a student questionnaire data file. The student 

questionnaire is designed to collect information about their home, family, and school 

background. The school questionnaire is designed for school principals to provide 

information about various aspects including demographics of the school, staffing, 

environment, resources, and educational practices.  
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Identification variables for the country, school and student are common in all data 

files. The cognitive item response data file provides student responses for each item 

included in the test. The student questionnaire data file includes student responses for 

background questions; students' overall performance scores in mathematics, science, and 

reading; student weights; and country weights. This study will make use of cognitive item 

response and student questionnaire data files. 

Instrument 

According to the OECD (2009a), the mathematics domain portion in PISA is 

designed to explore students' capacity to analyze, reason, solve, and interpret 

mathematical problems in a variety of situations involving mathematical concepts such as 

quantity, spatial, probability, and change. The PISA assessment framework defines 

mathematical literacy as the individuals' capacity to identify and understand the role of 

mathematics in real life (OECD, 2003). A mathematically literate individual is expected 

to use mathematics in ways that meet the needs of their individual lives as a constructive, 

concerned, and reflective citizen. This definition of mathematical literacy underlies 

mathematical knowledge and skills that students posses and are able to utilize to solve 

problems they would encounter in their lives (OECD, 2009a).  

PISA was first administered in 2000 in 32 countries (28 OECD, 4 non-OECD), 

and is implemented in all OECD and partner countries every three years. For each cycle, 

there is a domain that is emphasized by including a larger pool of items related to that 

particular content area, alternating between Reading, Mathematics, and Science. It started 

with reading as the major domain in 2003. Mathematics was the major domain in 2003 
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for the first time. PISA developed its mathematical literacy framework in a complete and 

comprehensive form for 2003 cycle. This is why 2003 is considered the earliest time 

point that the results from following cycles could be compared to (OECD, 2009b). 30 

OECD and 11 non-OECD countries participated in PISA in 2003. Scientific literacy was 

the major domain in PISA 2006, in which 30 OECD and 27 non-OECD countries 

participated. In 2009, reading was the major domain again. 34 OECD and 41 non-OECD 

countries participated PISA 2009. The major domain of 2012 was mathematics but the 

results of this cycle won’t be released until December 2013. 

Table 3.1. Number of mathematics items by content area and cycle 
 

 Cycles 

Content 2003* 2006** 2009*** 

Quantity 22 13 11 

Space and Shape 20 11 8 

Change and 
Relationships 22 13 9 

Uncertainty 20 11 7 

Total 84 48 35 

Major domain is: * Mathematics; ** Science; *** Reading. 
 
Mathematics Items by Content 

In its assessment framework, PISA considers mathematical literacy from three 

perspectives: content, process, and context. Mathematical content is organized into four 

overarching ideas: quantity, space and shape, change and relationships, and uncertainty. 

The number of items in each content area by cycles is given in Table 3.1.  
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Table 3.2. Number of mathematics items by process (competency cluster) and cycle 
 

 Cycles 

Process 2003* 2006** 2009*** 

Reproduction 26 11 9 

Connections 39 24 18 

Reflection 19 13 8 

Total 84 48 35 

Major domain is: * Mathematics; ** Science; *** Reading. 
 
Mathematics Items by Process (Competency Cluster)  

Process aspect, also known as competency clusters, is composed of reproduction, 

connections, and reflection sub-dimensions. PISA classifies underlying mathematical 

skills in these three competency clusters. The number of items in each competency 

cluster by cycles is given in Table 3.2.  

Mathematics Items by Context 

The third component, context or situations, consists of personal, educational and 

occupational, public, and scientific categories. Every mathematical problem is situated 

within a context in PISA. The number of items in each content area by cycles is given in  

Appendix A provides the full classifications for individual items.  

Item Formats 

Mathematics assessment items are constructed in four different formats. Simple 

multiple-choice items have four responses from which students need to select the best 

answer. Complex multiple-choice items have several statements, each of which rquire 
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students to choose one of several possible responses (e.g., yes/no, true/false, 

correct/incorrect). Short closed-constructed response items require constructing a 

numeric response within very limited constraints, or only require a word or short phrase 

as the answer. Open-constructed extended response items require more extensive writing 

and often require some explanation or justification. All of multiple-choice items are 

scored as credit/no-credit basis. Scoring of a few of the short response and open response 

items allow for partial credits, which are worth half of a full credit with the exception of 

one item where two partial credits (worth as one third and two thirds of the full credit) are 

given.  

Table 3.3. Number of mathematics items by context and cycle 
 

 Cycles 

Context 2003* 2006** 2009*** 

Personal 18 9 4 

Educational and 
Occupational 20 8 5 

Public 28  18 13 

Scientific 18 13 13 

Total 84 48 35 

Major domain is: * Mathematics; ** Science; *** Reading. 
 

In 2003, there were a total of 85 mathematics items included in the test. The PISA 

Governing Board (PGB) had to exclude one item from the results because of some 

technical problems with it. So, 84 items remained. Of these, 18 (21%), 11 (13%), 41 
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(49%), and 14 (17%) are in simple multiple-choice, complex multiple-choice, short 

closed-constructed, and open-constructed extended response format, respectively.   

In the years 2006 and 2009, no new mathematics items were developed. So, PGB 

selected items for these cycles from 84-item pool used in 2003. PISA 2006 test included a 

total of 48 mathematics items. The number (and percentages) of different item formats is 

13 (27%), 9 (19%), 21 (44%), and 5 (10%) for simple multiple-choice, complex multiple-

choice, short closed-constructed, and open-constructed extended response items, 

respectively.  

In 2009, the number of mathematics items included in the test was 35 all of which 

were also used in both the 2006 and 2003 cycles. The break-down of these items in terms 

of item format is 10 (29%), 7 (20%), 16 (46%), and 2 (5%) for simple multiple-choice, 

complex multiple-choice, short closed-constructed, and open-constructed extended 

response items, respectively.  

Participants 

Respondents of the student questionnaire and cognitive item test are 15-year-old 

students from these countries that administered the PISA test in their educational systems 

in 2003, 2006, and 2009. Tests are typically administered to between 4,500 and 10,000 

students in each country. The sampling of 15-year olds is two-stage stratified sample to 

ensure the appropriate representativeness. First, individual schools that are eligible are 

chosen with probabilities that are proportional to a measure of size. In the second stage, 

35 students that are 15 years old are selected from sampled schools with equal 
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probability. In schools with less than 35 15-year olds, all of students are selected unless 

that number is less than 20.  

41 countries in total (30 OECD, 11 non-OECD) participated in PISA-2003 with a 

total number of students of about 275,000. In 2006, when the major domain was 

scientific literacy, 57 countries participated in PISA. 30 of these were OECD countries 

and the remaining 27 countries were non-OECD partners. Nearly 400,000 students took 

the PISA test in 2006. In the last cycle of PISA, 2009, the main domain was in reading 

literacy. Of 75 participating countries, 34 were OECD members and 41 were non-OECD 

partner countries. About 520,000 students were given the test.  

This dissertation study aims to analyze the dimensionality of the PISA 

mathematics items in different cycles. This longitudinal aspect (Carmona et al., 2011) of 

this dissertation will explore if and in what ways the dimensional structure of 

mathematics items would demonstrate difference and similarities at different time points. 

This longitudinal aspect requires that the same student profile needs to be kept across 

different cycles in order to control for external variables related to the economy of 

participating countries. Thus, the data for this dissertation will include students from the 

OECD countries that have participated in all three cycles.  

That is about 200,000 students from 30 countries for each of the cycles. The 30 

OECD countries included in the data are Australia, Austria, Belgium, Canada, Czech 

Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, 

Japan, Korea, Luxembourg, Mexico, New Zealand, Norway, Poland, Portugal, Slovak 

Republic, Spain, Sweden, Switzerland, The Netherlands, Turkey, and United States. 
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Analysis 

 This section starts with a review of methods for assessing test dimensionality. 

Then, some considerations for model selection follow. Next, the statistical methods to be 

utilized in this study are specified, including rationale for model selection. Lastly, the 

relationship between methods of analyses and research questions are briefly discussed.   

Methods for Assessing Test Dimensionality 

Assessing the dimensionality of a test can be done in many different ways. The 

goal of this section is to provide a brief overview of some of the more popular procedures 

that are available today for the empirical assessment of the dimensional structure of a 

test. The methods could be mainly categorized into two broad classes: parametric and 

non-parametric (Tate, 2003). Procedures for assessing dimensionality either belong to a 

family of parametric models or that of nonparametric.  

Parametric and nonparametric methods are distinguished by their specification of 

the item response function (IRF). In item response theory, the probability of success on 

the item i  is usually presented by the IRF Pr(Xi =1,ξ |θ ) . Parametric methods assume a 

prescriptive parsimonious model for the IRF whereas nonparametric ones only assume a 

monotonic IRF that gives freedom from dependence on a particular model (Burg, 2007). 

In practical terms, however, it could be said that nonparametric models are a way of 

checking if the structure of a test is unidimensional or not. In other words, nonparametric 

models offer a confirmatory hypothesis testing with the null hypothesis that the one-

factor model fits the test structure the best (Tate, 2002). See Table 3.4 for a list of 

parametric and nonparametric methods of assessing test dimensionality. 



 

38 

Table 3.4. Parametric and nonparametric procedures of test dimensionality assessment 
 

Parametric Methods 

Linear Factor Analytic Methods 

Principal Component Analysis (PCA) (e.g., Zwick, 1987)  

Exploratory Factor Analysis (EFA) (e.g., Mislevy, 1986)  

Confirmatory Factor Analysis (CFA) (e.g., Muthén, 1993)  

Structural Equation Modeling (SEM) (e.g., Rubio, Berg-Weger, & Tebb, 2001)  

Item Factor Analytic Methods (Nonlinear)  

Nonlinear item factor analysis (e.g., Hambleton & Rovinelli, 1986)  

Full-Information factor analysis (Bock, Gibbons, & Muraki, 1988)  

IRT-based Methods  

Local item dependencies (e.g., Yen 1993)  

Nonparametric Methods 

Hierarchical cluster analysis of item proximities  (Roussos, Stout, & Marden, 1998) 

Test of essential dimensionality (Stout, 1987) 
DETECT index of dimensionality (Zhang & Stout, 1999) 

 
Parametric procedures 

Parametric methods offer a parsimonious and quantitative description of data 

structure (Tate, 2003). Parametric methods have various types including parallel analyses 

of principal components (Principal Components Analysis – PCA), classical factor 

analysis (FA), item factor analyses (modified version of classical FA), and IRT-based 

approaches.  
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Linear methods: Methods based on classical factor analytic methods refer to the 

traditional, linear FA using covariance matrices. Classical FA and PCA for test items 

uses φ  (phi) or tetrachoric correlations unlike Pearson’s product-moment correlation 

coefficient r  for continuous variables. The goal of FA and PCA are similar: to determine 

the latent structure underlying a set of variables. However, PCA and factor analyses are 

not the same. Although the differences between the two have been long discussed and are 

important, because of space limitation here, it would be enough to say that PCA analyzes 

variance while FA analyzes covariance (Burg, 2007). There are many questions and 

concerns related to the use of PCA and FA as tools for assessing dimensionality, 

including the appropriateness of these methods for dichotomous data and the criterion for 

determining how many factors or principal components to extract (Abedi, 1997).  Studies 

on FA and PCA seem to unequivocally find the use of indices based on them very 

problematic for assessing test dimensionality (for the details of those studies, see de 

Champlain, 1992) 

Procedures based on exploratory factor analysis (EFA) have long been used to 

analyze the structure of measures by determining the number of factors present in a set of 

items. However, researchers have found that EFA does not afford testing models with 

high-order factors and that EFA often times underfactor (Anderson & Gerbing, 1988; 

Rubio, Berg-Weger, & Tebb, 2001). Confirmatory factor analysis (CFA) is used when 

there is a prior expectation about the structure of a test. When a hypothesized model fails 

to fit the response structure of the test, it is possible to determine where the model failed 

and to find the appropriate model that fits the data best (Tate, 2002). CFA is considered 
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to be a special case of structural equation modeling (SEM). SEM permits testing various 

models of the structure of a set of items, developing stronger models, and establishing 

higher order factors previously not possible (Rubio, Berg-Weger, & Tebb, 2001).  

Nonlinear methods: Item factor analytic approaches are an extension of classical 

FA and use a nonlinear relationship between the probability of a correct response to an 

item and examinee abilities (or other latent factors). Nonlinear item factor analysis and 

full-information factor analysis are two types of item factor analysis. Both approaches 

use summary information such as proportions and correlations to explore the relationship 

between the item responses and the latent factors (Burg, 2007). The full-information 

model additionally uses all the information available from the entire response matrix 

rather than just the covariance or correlation matrix (Tate, 2003). 

IRT-based methods: In addition to linear and nonlinear factor analytic procedures 

for assessing test dimensionality, there are also IRT-based parametric methods.  The 

dimensional structure of a test can be thought of in terms of conditional independence 

(local item independence) in IRT. When conditional independence is violated, it means 

local (item) dependences (LD) are present. Chen and Thissen (1997) proposed four 

statistics for detecting LD among items using IRT including Χ2  and G2LD . These 

methods were found to be useful when testing a relatively small number of selected item 

pairs and when searching for any problematic pairs of items by identifying outliers in the 

distribution of all conditional item associations (Tate, 2002). 
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Nonparametric procedures 

Nonparametric procedures for assessing test dimensionality are very useful in 

situations with small number of items and examinees. They also have the potential to 

work in some cases where parametric IRT models fail to provide useful information 

(Tate, 2003). As also stated previously, nonparametric models assume that the IRF is 

monotonic, offering the freedom from dependence on highly prescriptive models, unlike 

parametric approaches (Burg, 2007). In other words, nonparametric models do not have 

to estimate model parameters or be constrained by model specificity since they do not use 

IRT models. Using a nonparametric method also eliminates the confusion with lack of 

model-fit by a particular unidimensional parametric family of models when working with 

potentially multidimensional data (Stout, 1990). 

Stout’s (1987) DIMTEST, Zhang and Stout’s (1999) dimensionality evaluation to 

enumerate contributing traits (DETECT), and hierarchical cluster analysis 

(HCA/CCPROX) (Roussos, Stout, & Marden, 1998) procedures are among commonly 

used nonparametric techniques. All of these three approaches are based on conditional 

item associations, also known as local item dependencies (LD). They utilize 

nonparametric computations of conditional item covariances (de Champlain, 1992). For 

each item pair, the examinees are first stratified according to number of their correct 

responses on the rest of test items. Then, the covariance of responses for each pair is 

computed in each stratified group. Lastly, averages of group values are computed to 

obtain the final conditional item covariance (Roussos, Stout, & Marden, 1998; Stout, 

1990; Zhang & Stout, 1999).  
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Each of the three methods addresses a different aspect of test structure such as 

essential dimensionality (Stout, 1990), approximate multidimensional structure (Zhang & 

Stout, 1999), and approximate simple structure (Roussos, Stout, & Marden, 1998).  All 

together they could provide a complete summary of dimensional characteristics of a test 

(Stout et al., 1996). As also mentioned above, the strength of nonparametric methods 

over parametric procedures is the freedom from strong assumption of a particular 

prescriptive model. However, nonparametric procedures “will not provide mathematical 

models of multidimensional tests” (Tate, 2002, p.201). More simply stated, 

nonparametric models are a way of checking if the structure of a test is unidimensional or 

not. 

Some Considerations on Method Selection 

There is no standard procedure for assessing test dimensionality. There are 

various methods that have been used in the literature. So, how do we know which method 

should be used? There are some considerations that should be kept in mind when 

selecting a method for a specific situation. The following considerations have been given 

by researchers as a guide in model selection: response format of test items (i.e., 

dichotomous, categorical), sample size, number of items, existence of a prior expectation 

of multidimensionality based on the content structure, and the intention of identifying 

source of unintended multidimensionality (Tate, 2002). 

When there is a strong prior expectation about the structure of a test, methods that 

are based on confirmatory factor analysis, which is considered a special case of structural 

equation modeling (SEM), are considered the most appropriate techniques (Kline, 2010; 
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Tate, 2002). However, most of confirmatory methods demand large sample sizes for 

achievement tests since these methods were originally developed for continuous variables 

(Joreskog, 1990). In achievement tests, responses to items are either dichotomous or 

polytomous. The Linear Structural Relations (LISREL) method, for example, requires 

that the number of examinees should be at least three to five times the number of 

correlations between items. That is, for a test of 50 items, which means about 600 

correlations, there need to be about 2000-3000 examinees in the dataset (Tate, 2002). 

Structural Equation Modeling (SEM) 

I will investigate the mathematical literacy dimensions of PISA test by drawing 

on the mathematics items from 2003, 2006, and 2009 cycles. Each mathematics item is 

treated as a variable in this study. That is, 84, 48, and 35 variables for 2003, 2006, and 

2009, respectively. 

Since the cognitive assessment framework of PISA mathematics has a 

multidimensional content structure, there is a strong prior expectation on the PISA 

mathematics items to be multidimensional. Therefore, confirmatory item factor analytic 

procedures, a structural equation modeling (SEM) (Byrne, 2011; Kline, 2010) technique, 

should be utilized to explore if the multidimensional model best fits the response data for 

mathematics items. This study will then employ confirmatory factor analyses (CFA) to 

test dimensionality of mathematics items in PISA tests. In CFA, the number of factors 

and the relationship of factors to all the measures are hypothesized beforehand. In other 

words, CFA is a hypothesis testing method, unlike data reduction methods such as 

principal components analysis. Furthermore, as an SEM technique, CFA allows testing 
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multiple hypothesized models at the same time, and this is a big advantage. The models 

specify the degree of correlation between the common factors and which of the unique 

factors will be correlated.  

The models for this study are constructed based on the OECD’s framework for 

mathematical literacy. The competing models will be tested through CFA analyses to 

determine which model fits the data. Goodness of fit indices (GFIs) such as comparative 

fit index (CFI), the Tucker-Lewis index (TLI), and root mean square error of 

approximation (RMSEA), provide measures to determine which model best explains the 

relationship between observed variables and latent factors (Rubio, Berg-Weger, & Tebb, 

2001). 

Another advantage of SEM is that different factor structures including 

hierarchical models (higher order models) and oblique (correlated) models can be 

compared (Anderson & Gerbing, 1988).  Second-order models are used to test the factor 

structure when the domain specific factors are related with each other and when there is a 

priori hypothesis that a higher-order or a second-order factor can account for the 

relationship between the lower order factors (Rubio, Berg-Weger, & Tebb, 2001).  

Data Analyses and Hypotheses 

The initial data analysis will be conducted to produce descriptive statistics 

including means, standard deviations, and product-moment correlation indices for the 

mathematics item for each cycle. Frequencies of proficiency levels for mathematics 

domain and the overall levels will be computed to explain the distribution of data. 



 

45 

Next, seven SEM models will be produced and compared to each other to test the 

hypotheses about the dimensional structure of PISA mathematics items for three different 

cycles. These are: single factor model (interpreting the general mathematical literacy as 

the only latent factor), four-factor content model, three-factor process model, four-factor 

context model, higher order content model, higher order process model, and higher order 

context model. To summarize, there is one single-factor model, three correlated-factors 

models, and three higher-order factor models. 

As mentioned above, all of these models are constructed according to two 

important elements. The first one is the PISA mathematical literacy framework. It has to 

do with the factors that are expected to measure a construct and the proposed dimensions. 

PISA proposed three dimensions for mathematical literacy, each of which is constructed 

by three to four factors (sub-dimensions). This structure is described in detail earlier. 

However, Table 3.5 provides a good summary.  

Secondly, the trends for confirmatory factors analytic procedures from the 

literature on dimensionality assessment of tests suggest two levels of parsimony: 

correlated factors or connected factors through a higher order construct (Anderson & 

Gerbing, 1988; Rubio, Berg-Weger, & Tebb, 2001). Two levels of parsimony for each 

dimension totals to six different models. Unidimensional models needs to be included by 

default for many reasons including but not limited to unidimensional assumption for IRT 

(e.g., Deng, Wells, & Hambleton, 2008; Tate 2002). 

Each of the seven models but the single-level model corresponds to one of three 

dimensions of PISA assessment framework: content, process, and context. Thus, the 
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rationale for these models and related hypotheses draw on PISA assessment framework 

for mathematical literacy. Remaining of this chapter is devoted to description of these 

seven models, their corresponding hypotheses, and their relationship to research 

questions. 

Table 3.5. Dimensions of pisa mathematics items 
 

Dimensions à  Content Process 
(Competency) Context (Situations) 

Sub-dimensions à  

Quantity Reproduction Personal 

Space and Shape Connections Educational / 
Occupational 

Change and 
Relationship Reflection Public 

Uncertainty - Scientific 

 
Single-factor model (Model 1) 

The single factor model (referred to as Model 1 in this dissertation) does not 

reflect the structure illustrated in table 3.5. Rather, it attributes every factor to a general 

latent variable. Correlated factors models treat item responses to be structured according 

to the sub-dimensions shown in table 3.5. Higher order factor models explore the 

relationships of sub-dimensions to their higher order dimension and to each other through 

the higher order dimension. 

The single factor model will test the hypothesis that there is only one-factor 

(general mathematics literacy - GML) that represents all mathematics items regardless of 
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their content, process, and context. Figure 3.1 illustrates this model for 2009 PISA 

mathematics items.  

1-level correlated factors models (Models 2-4) 

The four-factor content model (referred to as Model 2 in this dissertation) tests the 

hypothesis that there are four content factors correlated to each other. These content 

factors, according to PISA assessment framework, are quantity (QT), space and shape 

(SS), change and relationship (CR), and uncertainty (UN). For example, in 2009, eleven 

items are expected to load on quantity factor, eight on space and shape, nine on change 

and relationship, and seven on uncertainty. Figure 3.2 shows the model specification for 

2009 items. 

The three-factor process model (referred to as Model 3 in this dissertation) tests 

the hypothesis that there are three process factors correlated to each other. These process 

factors, according to PISA assessment framework, are reproduction (REP), connections 

(CON), and reflection (REF). To illustrate, nine items are expected to load on 

reproduction factor, 18 on connections, and eight on reflection in 2009 cycle. The model 

specification for 2009 items is similar to Figure 3.2.  
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Figure 3.1. Single Factor Model (Model 1) 

GML: General Mathematical Literacy, E: Error Term 
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Figure 3.2. Four-Factor Content Model (Model 2) 

QT: Quantity, SS: Space & Shape, CR: Change & Relationship, UN: Uncertainty, E: 
Error Term 
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Figure 3.3. 2-Level Content Model (Model 5) 

GML: General Mathematical Literacy, QT: Quantity, SS: Space & Shape, CR: Change & 
Relationship, UN: Uncertainty, E: Error Term. 
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The four-factor context model (referred to as Model 4 in this dissertation) tests the 

hypothesis that there are four context factors correlated to each other. These context 

factors, according to PISA assessment framework, are personal (PER), 

educational/occupational (EDO), public (PBL), and scientific (SCI). For example, in 

2009, four items are expected to load on personal factor, five on 

educational/occupational, 13 on public, and 13 on scientific. The model specification for 

2009 items is similar to Figure 3.2. 

Higher order factor (2-level) models (Models 5-7) 

Higher order factor models assume that there is a general mathematical literacy 

ability that accounts for the relationship between sub dimensions. The Model 5 is a 

second-order hierarchical model that will test the hypothesis that there is a general 

mathematics literacy (GML) factor (a content-wise one) at the second level that accounts 

for the relationship between the four content domains of quantity (QT), space and shape 

(SS), change and relationship (CR), and uncertainty (UN) as level-1 latent variables. 

Figure 3.3 demonstrates the structure of this model.  

The Model 6 tests the hypothesis that a general mathematics competency factor 

accounts for the relationship between the three competency clusters: reproduction, 

connections, and reflection. The model specification for 2009 items is similar to Figure 

3.3. 

Finally, the Model 7 tests the hypothesis that a general mathematics literacy factor 

in terms of context (or situations) accounts for the relationship between the four different 
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context sub-dimensions of personal, educational/occupational, public, and scientific. The 

model specification for 2009 items is similar to Figure 3.3. 

Relationship of Models to Research Questions 

Goodness of fit indices for models will help answer the first research question: 

what is the correspondence between the dimensional structure of the PISA mathematics 

items and PISA’s mathematical literacy assessment framework in terms of the content, 

process, and context dimensions? Individual parameter estimates will demonstrate how 

much of the variation in responses to each item could be explained by individual models. 

First, 2003 items will be evaluated in terms of their model-fit. If the single factor model 

fits 2003 items well enough, then, it means that there is evidence supporting the 

unidimensional structure of 2003 mathematics items. This would mean, one of the basic 

assumptions (unidimensionality) for an IRT-based set of items would be supported. If 

other models also fit well enough to 2003 data, then it means that the response structure 

of mathematics items is in accordance with its multidimensional assessment framework. 

However, comparison of the models will reveal which model fits the data best. These 

results would either support a relaxation in the unidimensionality assumption (Stout, 

1990; Tate, 2002) or weakness in the assessment design (NRC, 2001).  

Comparing models to each other will reveal the model(s), which represents the 

structure of the mathematics items the best in terms of different dimensions. The model 

comparison results, thus, will answer the second research question: what is the best 

representation for the dimensional structure of the PISA mathematics items for 

implementation cycles 2003, 2006, and 2009?  
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Conducting the same analyses for 2006 and 2009 data will bring the longitudinal 

perspective (Carmona et al., 2011) and will help understand if the trends for dimensional 

structure change over time. Keeping the student profile the same as much as possible by 

focusing only on OECD countries participated in all of three cycles, dimensionality of 

mathematics items are expected to be the same in all of three cycles. This is because 

PISA mathematics assessment design is supposed to be consistent across cycles. 

Therefore, it is hypothesized that the dimensionality of mathematics items among 

different cycles is stable. The longitudinal aspect will explore if this is the case. 

Evaluating the results for different cycles all together will answer the third research 

question: how does the dimensional structure of the PISA mathematics items change over 

time? 

Formal Hypotheses for CFA Models 

 Formally stated, unidimensional model (Model 1) hypothesizes that the 

dimensional structure of the PISA mathematics items could be explained by a general 

latent factor called general mathematical literacy (GML); each mathematics item has a 

nonzero loading onto GML; and the residuals associated with each indicator item variable 

are uncorrelated. 

The 1-Level content model (Model 2) hypothesizes that the dimensional structure 

of the PISA mathematics items could be explained by four content related mathematical 

literacy (ML) factors: QT, SS, CR, and UN; each mathematics item has a nonzero 

loading onto the content factor it was designed to measure, and zero loadings on all other 
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factors; the four content factors are correlated; and the residuals associated with each 

indicator item variable are uncorrelated. 

The 1-Level process model (Model 3) hypothesizes that the dimensional structure 

of the PISA mathematics items could be explained by three process related ML factors: 

REP, REF, and CON; each mathematics item has a nonzero loading onto the process 

factor it was designed to measure, and zero loadings on all other factors; the four process 

factors are correlated; and the residuals associated with each indicator item variable are 

uncorrelated. 

The 1-Level context model (Model 4) hypothesizes that the dimensional structure 

of the PISA mathematics items could be explained by four context related ML factors: 

PER, EDO, PBL, and SCI; each mathematics item has a nonzero loading onto the context 

factor it was designed to measure, and zero loadings on all other factors; the four context 

factors are correlated; and the residuals associated with each indicator item variable are 

uncorrelated. 

The 2-Level content model (Model 5) hypothesizes that the dimensional structure 

of the PISA mathematics items could be explained by four first-order content related 

factors (QT, SS, CR, and UN) and one second-order factor (GML); each mathematics 

item has a nonzero loading onto the first-order content factor it was designed to measure 

and zero loadings on all other first-order factors; co-variation among the four first-order 

content factors is explained fully by their regression on the second order factor GML; and 

the residuals associated with each indicator item variable are uncorrelated. 
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The 2-Level process model (Model 6) hypothesizes that the dimensional structure 

of the PISA mathematics items could be explained by three first-order process related 

factors (REP, CON, and REF) and one second-order factor (GML); each mathematics 

item has a nonzero loading onto the first-order process factor it was designed to measure 

and zero loadings on all other first-order factors; co-variation among the three first-order 

process factors is explained fully by their regression on the second order factor GML; and 

the residuals associated with each indicator item variable are uncorrelated. 

The 2-Level context model (Model 7) hypothesizes that the dimensional structure 

of the PISA mathematics items could be explained by four first-order context related 

factors (PER, EDO, PBL, and SCI) and one second-order factor (GML); each 

mathematics item has a nonzero loading onto the first-order context factor it was 

designed to measure and zero loadings on all other first-order factors; co-variation among 

the four first-order context factors is explained fully by their regression on the second 

order factor GML; and the residuals associated with each indicator item variable are 

uncorrelated. 

Summary 

 This chapter introduced the instrument developed and used by PISA to assess 

mathematical literacy all around the world. The second chapter already explained the 

PISA’s assessment framework for mathematical literacy and its dimensional structure. 

This chapter built on that and proposed seven models to reflect dimensional structure of 

responses to mathematics items across cycles. These models are: single factor model 

(Model 1), four-factor content model (Model 2), three-factor process model (Model 3), 
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four-factor context model (Model 4), higher order content model (Model 5), higher order 

process model (Model 6), and higher order context model (Model 7). As mentioned 

above, these models are based on multidimensional definition of mathematical literacy 

proposed in its by PISA.  

CFA is chosen as the methods of inquiry for the dimensionality assessment of 

PISA mathematics items. A detailed review of methods for dimensionality analysis and 

criteria for model selection are provided above. To briefly mention again, the prior 

expectation for multidimensional structure and the goal of comparing different models 

based on three different dimensions suggest confirmatory item factor analysis using 

SEM. Seven models are proposed according to dimensions of PISA mathematics items 

and level of parsimony for confirmatory factor analytic procedures in the literature. Their 

related hypotheses are formed in reference to PISA assessment framework for 

mathematical literacy. 

Lastly, the dimensionality analyses will be conducted for all of three cycles: 2003, 

2006, and 2009. That is, each of seven CFA models will be evaluated for each cycle to 

obtain the longitudinal picture for response structure of mathematics items. Eventually, 

the results will address the following research questions: 

1. What is the correspondence between the dimensional structure of the PISA 

mathematics items and PISA’s mathematical literacy assessment framework 

in terms of the content, process, and context dimensions? 

2. What is the best representation for the dimensional structure of the PISA 

mathematics items for implementation cycles 2003, 2006, and 2009? 
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3. How does the dimensional structure of the PISA mathematics items change 

over time? 

 With respect to the first research question, the correspondence between the 

student responses and the assessment framework is expected to match for each of the 

three dimensions to provide evidence for construct validity of the PISA assessment. That 

is, multidimensionality is expected in the response data. The first research question, thus, 

uncovers how different structural models that are proposed with respect to the PISA 

mathematical literacy framework would fit the student responses to PISA mathematics 

items. It is likely that more than one model could fit the response data. Actually, it is 

hypothesized that all models should fit data well enough because they all have sound 

rationales on which they are based. However, it is not known (nor is it predictable) 

whether some items look good in some of the models and not in the others. Thus, the first 

question investigates the individual item behavior in different models as well overall 

model-fit.  

The second research question explores the models that represent the 

dimensionality of response data the best. Ekmekci and Carmona (2012) and Schwab 

(2007) detected unidimensionality in U.S. students’ responses to PISA 2003 mathematics 

and science items. Therefore, it is hypothesized that unidimensional models would have 

the best fit to the response data. If this is the case, student responses as signs and samples 

of the construct (Loveinger, 1957), mathematical literacy, which is the central piece of 

this dissertation, imply that mathematical literacy is a unidimensional construct.  
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The third research question investigates whether the PISA mathematics 

assessment has stability in terms of dimensional structure. It is expected that that model 

comparison results would be stable across different cycles. However, what is unknown is 

how the variation in the responses to individual items changes over time.
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Chapter 4: Results 

The first part of the results chapter begins with addressing the issues of sample 

selection and student weights. Following this section is a summary about statistics, 

indices, and parameter estimates follow, which are used to evaluate models and their 

comparisons, and their cut-off values along with what these values mean. This summary 

also serves as an introduction to cycle-by-cycle presentation of results. For each PISA 

cycle, the results are presented in the following order: model-fit indices, individual item 

parameters, and model comparisons. Results for model-fit indices and individual 

parameter estimates will address the first research question: What is the correspondence 

between the dimensional structure of the PISA mathematics items psychometrically and 

PISA’s mathematical literacy assessment framework in terms of the content, process, and 

context dimensions?  

Model comparison results in each cycle explore the models that represent the 

student response data the best in terms of different dimensions, addressing the second 

research question: What is the best representation for the dimensional structure of the 

PISA mathematics items for implementation cycles 2003, 2006, and 2009?  

Finally, looking across the cycles to see how different models change over time 

provides the longitudinal aspect and addresses the last research question: How does the 

dimensional structure of the PISA mathematics items change over time?  

A summary of results for each cycle at the end of each section as well as an 

overall summary at the end of the chapter evaluating overall results and their implications 

is provided. 
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Random Sampling and Sampling Weights 

This section provides information on sample size selection and issues about 

random sampling and student weights. These issues are important to address because the 

accuracy and generalization of the results rely on handling them appropriately.  

The total number of respondents for each PISA cycle exceeds 200,000. Including 

the whole population in the analysis produces a very large sample size that increases the 

power of the chi-square test for model-fit, resulting in significant values regardless of the 

model-fit. That is, no matter what the goodness of the model-fit is in reality, the results 

would imply that the model does not fit the data. So including such a large sample size 

opens the possibility of making a Type-I error (incorrect rejection of the null hypothesis). 

Thus, the sample size for this study was reduced through random sampling of the whole 

population. 

The ideal sample size for this study is found to be around 17,000. There are three 

considerations in reaching this sample size. The first one is the criterion provided by Tate 

(2002) for dichotomous items: a sample size of at least three to five times the number of 

correlations between items is required. The sample sizes for this study should be as given 

in Table 4.1 below according to this criterion.  

Secondly, according to PISA, 17,000 is a good sample size for multivariate 

analysis (OECD, 2009a). In fact, PISA randomly took 500 observations (respondents) 

from each of 30 OECD countries when the initial item calibrations were performed. 

Therefore, 15,000 observations allow every school within the same country to contribute 

to the sample. The sample size for this study then needs to be at least 15,000 to comply 
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with OECD’s criterion. Lastly, sample sizes less than 17,000 produced incomplete 

matrices for CFA calculations (empty cells in bivariate tables for some item pairs). 

Therefore, 17,000 is taken as the minimum sample size for each cycle. 

Table 4.1. Sample sizes for each cycle 

 Number of items 
 

Number of correlations 
between items 

 
Sample size 

 
2003 84 3,486 10,458 – 17,430 

2006 48 1,128 3,384 – 5,640 

2009 35 595 1,785 – 2,975 

 
There are two issues, however, that should be addressed with use of random 

samples from the PISA population. The first one is related to OECD countries that have 

the greatest number of schools. Canada, Mexico, and Switzerland had more than 500 

hundred schools participate in 2003. Similarly, Canada, Italy, Mexico, Spain, and UK had 

around 500 or more schools participate in the 2006 and 2009 cycles. The issue is whether 

a random sampling of about 500 students from each country ensures enough diversity. In 

other words, is the reduced sample an accurate representation of all 15-year-olds within 

the same country? In the aforementioned countries, it is very likely that students from 

some schools may not be represented in the sample. However, between-school variance 

for those countries is relatively very low (OECD, 2009a). Student profile, student 

performance, and educational characteristics are similar across all schools in these 

countries.  Instead, the variation among students mainly lies at the within-school level. 

Therefore, having a smaller number of observations than the number of participating 
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schools is not expected to introduce bias to the random sampling. 

 The second issue regarding the use of random sampling is PISA’s sample design. 

Students who participated in PISA for a given country might not provide equal 

representation of the entire student population within the same country if random 

sampling is used without weights. This is because PISA does not use simple random 

sampling (SRS) to begin with. Instead, a two-stage sample design is used where schools 

are first drawn from a list of schools with 15-year-old students. Schools are selected 

systematically with probabilities that are proportional to a measure of size referred to as 

probability proportional to size (PPS) sampling. The measure of size is a function of the 

estimated number of eligible 15-year-old students enrolled. The second-stage sampling 

units are students within the sampled schools. Once schools are selected for inclusion in 

the sample, 35 students are selected with equal probability from the list of 15-year-old 

students within each school having more than 35 students. For lists of fewer than 35, all 

students on the list were selected. To sum up, PISA does not use a simple random 

sampling (SRS) procedure. Participating students are not all equally representative of the 

entire student population within the same country. Therefore, student weights and 

stratification parameters needs to incorporated into the statistical analyses. For this study, 

17,000 respondents were selected through random sampling. Appropriate student weights 

and stratification variables are incorporated into confirmatory factor analysis (CFA). 

Statistical Analyses 

This section provides information on what statistics and indices are reported in 

each section of results by cycle, why these statistics and indices are used, and what they 
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mean. First, model-fit indices are discussed. Then, statistics individual parameters are 

explained. Lastly, tests for model comparison are provided. The section for results 

follows the same order within each cycle. That is, the results for model-fit indices 

precede that of individual parameters and model comparisons, respectively. 

The computer program Mplus 6.12 (Muthén & Muthén, 1998-2011) was used to 

conduct confirmatory factor analyses for three cycles of PISA: 2003, 2006, and 2009. 

Three different types of models were evaluated: single-factor models (Model 1), one-

level correlated factors models (Models 2-4), and two-level factor models (Models 5-7). 

The second and third types of models were formed for each of three different dimensions: 

content, process (competency), and context (situations). There was one model of the first 

type and three models of the second and the third types for each cycle evaluated. 

Therefore the total number of models evaluated and compared for each cycle was seven 

(1+3+3). 

The default estimator for analyzing categorical variables is a weighted least 

squares mean variance (WLSMV) estimator – a robust weighted least squares (WLS) 

estimator using means and variances to adjust the chi-square test statistic (𝜒!). WLSMV 

estimators are “weighted least square parameter estimates using a diagonal weight matrix 

with standard errors and mean- and variance-adjusted chi-square test statistic that use a 

full weight matrix” (Muthén & Muthén, 2012, p.603).  

The chi-square test (𝜒!) for the model-fit tests the null hypothesis that the model 

at hand is not different than the baseline (independence) model, in which all observed 

variables are uncorrelated. A significant chi-square test statistic, 𝜒!, (p < 0.05) results in 
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the rejection of the null hypothesis. That is, the model does not fit the data. Other fit 

indices to assess the fit of each model include Comparative Fit Index (CFI), the Tucker-

Lewis Index (TLI), Root-mean-square Error of Approximation (RMSEA), and Weighted 

Root-mean-square Residual (WRMR).  

CFI and TLI measure the improvement of fit by comparing the hypothesized 

model with the baseline model (a more restricted one where the observed variables are 

mutually uncorrelated) (Bentler & Bonett, 1980). Both the CFI and TLI have a range of 

[0-1]. Closer to 1 means a good fit for the model. Hu and Bentler (1999) recommend a 

critical minimum value of 0.95 for a good fit. 

The Root-mean-square Error of Approximation (RMSEA) is a measure of the 

residual variances and covariances. An RMSEA value of zero implies a perfect fit. Small 

values of the RMSEA indicate a good fit. Hu and Bentler (1999) recommend a value of 

0.06 or lower for the RMSEA. Mplus also provides a statistic for the probability that 

RMSEA is less than 0.05 as well as confidence intervals. 

Weighted Root-mean-square Residual (WRMR) measures the average differences 

between the sample and estimated population variances and covariances. Yu (2002) 

found 1.0 to be an acceptable cut-off for the WRMR for both continuous and 

dichotomous outcomes. However, the credibility of this index is still controversial. 

Muthén and Muthén (2012) recommend not relying on WRMR since it is an 

experimental fit statistic that should not be of concern. Table 4.2 provides a summary of 

criteria for a good model-fit. 
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Having discussed model-fit indices, individual parameter estimates and their 

criteria for good model-fit are presented next (see Table 4.2 for a summary). There are 

two important types of statistics that apply to all models: factor loadings and R-square 

values. Factor loadings specify the statistical value for how much connection there is 

between the observed indicators and their related latent factors. For higher order models 

level-1 latent variables also have factor loadings onto level-2 latent variables. The cut-off 

value for a factor loading is 0.400 (Wang & Wang, 2012). R-square values are basically 

the squared values of factor loadings. The critical value for R-squares is 0.250 (Wang & 

Wang, 2012), meaning that 25% of the variation in the responses to mathematics items is 

explained by the model at hand. If it falls below 0.25, then there are other unknown 

factors causing the variation above and beyond the model.  

Correlation coefficients are another type of statistic reported but they only apply 

to correlated-factors (1-level) models (Models 2-4). Values close to 1 in absolute value 

imply high correlation between the factors while values close 0 mean low or negligible 

correlation. Other values are considered as a sign of moderate correlations between the 

factors (see Table 4.2). There is a hypothesis testing for each of the factor loadings, R-

squares, and correlation coefficients. If the hypothesis test results significant then it 

rejects the null hypothesis that the estimate is no different than 0. That is, estimated factor 

loadings, R-square values, and correlations are significantly different than 0 and are 

important elements of the model that is being tested. 

Model comparison for confirmatory factor analysis (CFA) models is typically 

done using a chi-square difference testing. Two models that are nested within each other 
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could be compared using CFA methods. More restrictive (parsimonious) models (i.e., 

less parameterized) with more degrees of freedom are nested in less restrictive models 

with fewer degrees of freedom. It is important note that the unidimensional CFA model 

(Model 1) in this study is the most restrictive model. The 2-level models (Models 5-7) are 

less restrictive than the unidimensional model but more restrictive than the 1-level 

(Models 2-4) models. 

Table 4.2. Critical values for model fit indices and individual parameter estimates 

Index/Parameter Possible Values Criterion 

TLI [0,1] > 0.95 

CFI [0,1] > 0.95 

RMSEA [0.1] < 0.06 

WRMR [0, ∞) < 1.00 

Factor Loading 
 

(0,1) > 0.40 

R-Square (0, 1) > 0.25 

Correlation 
Coefficient 

[-1, 1] close to 1 implies 
high correlation 

 
∆CFI [-1, 1] > -0.01 points to 

unrestricted model 
 

 
The chi-square statistic for the difference testing is then the difference in chi-

square values with difference in degrees of freedom: 

∆𝜒!∆!" = (𝜒!!" − 𝜒
!
!")(!"!"!!"!") 
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where 𝜒!!" and 𝜒!!" are the chi-square values of the more restrictive and the less 

restrictive models. Similarly, 𝑑𝑓!" and 𝑑𝑓!" are the degrees of freedom for the more 

restrictive and the less restrictive models. 

The chi-square value for WLSMV estimator cannot be used for chi-square 

difference testing in the regular way. In other words, for binary or categorical data, model 

comparisons cannot be done with the chi-square difference testing. Instead, the 

DIFFTEST method, which provides the appropriate adjustment to the chi-square 

difference test when using WLSMV chi-square, should be used to compare nested 

models (Muthén & Muthén, 2012). A significant test result means a significant amount of 

fit is lost with restriction. That is, a less restrictive model is better. A non-significant 

result implies that there is no significant amount of fit loss with the restriction. Although, 

the latter result conveys the message that the model-fits are essentially the same for both 

models that are being compared, one would choose a more restrictive model to move 

forward because parsimony is preferred with CFA models (Kline, 2010). However, since 

DIFFTEST is a derivative of the chi-square test, there is chance of Type-I error with the 

large sample size in this study. Cheung and Rensvold (2002) propose a ∆GFI method to 

compare models based on the difference of goodness of fit indices (GFI) other than chi-

square.  

∆𝐺𝐹𝐼 = 𝐺𝐹𝐼!" − 𝐺𝐹𝐼!" 

where 𝐺𝐹𝐼!" and 𝐺𝐹𝐼!" are the values of some selected GFI estimated with 

respect to the more restrictive and less restrictive model. While their study is about 

invariance across groups, the use of delta GFIs is extended for nested models in this 
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dissertation. Among the GFIs Cheung and Rensvold (2002) proposed, only CFI applies to 

analyses in this study because of the WLSMV estimator selection for CFA analyses. A 

value of ∆CFI greater than -0.01 indicates that the null hypothesis of invariance between 

the more restrictive and less restrictive models should not be rejected (see Table 4.2). 

Stated differently, a ∆CFI less than or equal to -0.01 gives a significant result. A ∆CFI 

greater than -0.01, then, means models are no different from each other. In this case, a 

more restrictive model (i.e., the unidimensional model) is preferred over the less 

restrictive one (e.g., a 2-level model) for the data because it does not lose significant 

amount of fit (Kline, 2010). 

The formal hypotheses are given in chapter 3.  However, it is worth it to recall 

what these are. The first model (single-factor) hypothesizes that PISA mathematics items 

measure a single construct labeled as general mathematical literacy (GML). The second 

type of model (Models 2-4) hypothesizes that the PISA mathematics items helps explain 

mathematics knowledge, competencies, and skills in terms of correlated factors of related 

dimension (content, process, or context) as the latent constructs. The third type of model 

(Models 5-7) hypothesizes that the PISA mathematics items measure GML (level-2 

factor) by factors of related dimension (the level-1 latent variables). 

The remainder of this chapter is devoted to the results that are presented cycle-by-

cycle. For each cycle, model-fit indices are presented first, which are followed by 

individual parameter estimates, and then, model comparisons. The sections for model-fit 

indices and individual parameter estimates correspond to the first research question 

(relationship between the dimensional structure of student responses and assessment 
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framework). The sections for model comparisons relate to the second research question 

(overall dimensionality of the PISA mathematics items). Lastly, models are evaluated 

across cycles, addressing the third research question about the longitudinal aspect of 

dimensionality of PISA mathematics items.  

CFA Results: 2003 Cycle 

Assessment of Models 

Table 4.3 summarizes the model-fit indices for each of the seven models in the 

2003 cycle. The chi-square test statistics (𝜒!) for each model with 2003 data range from 

3859.488 (with df = 3396) to 3898.008 (with df = 3402), p < 0.001 for all models, which 

rejects the null hypothesis of a good fit. However, as mentioned before, 𝜒! statistics are 

highly sensitive to sample size. Although reduced sample sizes were used in this study to 

decrease the power, it might be the case that the reduced sample is still large enough to 

produce significant results. Therefore, the significance of the 𝜒! statistics should not be 

definitive by itself to conclude that models do not fit the data (Wang & Wang, 2012).  

In regards to other fit indices, TLI and CFI values for all models are greater than 

the critical value of 0.95. This implies a good fit for all of the models. Moreover, 

estimated values of RMSEA for all models are found to be very close to zero. The 

probability that RMSEA is less than the cut-off value of 0.05 is almost 1. This means that 

all models fit the data fairly well. Although, the WRMR value is greater than the critical 

value of 1.0 for all models, the credibility of this index is still controversial. WRMR is an 

experimental fit statistic that should not be of concern (Muthén & Muthén, 2012). Other 

fit indices CFI, TLI, and RMSEA are within the interval for a good fit. Overall, it 
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can be concluded that each of the seven models for PISA 2003 mathematics items fit the 

data well. Moreover, the values for the model-fit indices are nearly identical for all the 

models. 

Individual Parameter Estimates 

 There were 84 mathematics items in 2003. Factor loadings and R-square values 

for these are given in the following sub-sections for each of the seven models as well as 

correlations between factors where it is applicable. These estimated values relate to the 

first research question and will help determine how the mathematics framework is 

reflected in the response data with respect to the three dimensions. 

Model 1: Single-factor model (1F-GML) 

 All of the observed indicators except for items M75, M82, and M83 have a factor 

loading greater than the cut-off value of 0.400. M75, M82, and M83 have a lower 

standardized factor loading of 0.383, 0.334, and 0.344, respectively. This normally 

suggests that these items are a weaker indicator of the latent factor GML (general 

mathematical literacy). However, their factor loadings are statistically significant (p < 

0.001) meaning that they are significantly different from 0. They might be very important 

theoretically to keep in the model, but might not contribute to good model-fit necessarily. 

Items M28, M45, M48, and M80 have the greatest factor loadings (higher than 0.800). 

The factor loadings for the majority of the items lay between 0.500 and 0.700. Estimated 

R-square values are the square of standardized factor loadings and provide information 

on how much variance of each observed variable is explained by related latent factors. 

For example, estimated standardized loading for M01 is 0.512, and then its R-square 
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value is (0.512)2 = 0.262 meaning that about 26% of the variance in item M01 is 

explained by GML. M28 has the highest R-square value (0.804) while M82 has the 

lowest (0.15). A majority of the items have an R-square value greater than 0.250. Only 13 

items (M20, M24, M36, M40, M41, M57, M65 M66, M68, M75, M82, M83, and M84) 

have R-square values below 0.250. However, all R-square values are found to be 

statistically significant (p < 0.001). This further provides additional support for 

unidimensional model for 2003 response data. Since PISA only made 31 of the 84 items 

publicly available (see Appendix B for sample items), none of the items whose factor 

loadings or R-square values that are either at the lower or upper end of the scale are 

among the ones that have been released by PISA. So, it is not possible to do a finer grain-

sized analysis of the other item characteristics like content, language, or context. 

Although the classifications of these items with respect to the three dimensions of 

content, process, and context are known (see Appendix A), the items themselves are not 

available to make further qualitative analyses. To summarize, although some factor 

loadings and R-square values are lower than their critical values and, thus, might not 

contribute to good model-fit, all of the individual parameter estimates are statistically 

significant and should be kept in the model from a theoretical point of view. 

Model 2: 1-level (four-factor) content model 

As in the single factor model, all of the observed indicators (except M75, M82, 

and M83) have a factor loading greater than the cut-off value of 0.400. M75 and M83 

have a lower standardized factor loading (0.388 and 0.347, respectively) on QT (quantity) 

content dimension while M82 has a standardized factor loading of 0.335 on UN 
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(uncertainty) content dimension. This normally suggests that these items are a weaker 

indicator of their related latent factor. However, their factor loadings are statistically 

significant (p < 0.001). So, they might be very important theoretically to keep in the 

model, but might not contribute to good model-fit necessarily. On the other hand, factor 

loadings for the items M07, M27, M28, M45, M48, M63, and M80 are higher than 0.800. 

The factor loadings for the majority of the items range between 0.500 and 0.700. M28 has 

the highest R-square value (0.866) while M82 has the lowest (0.112) as in the single-

factor model. A majority of the items have an R-square value of 0.250 or greater. Only 11 

items (M20, M24, M36, M40, M41, M57, M66, M68, M75, M82, and M83) have R-

square values 0.249 or less. This means 25% or more of the variance in 73 of the items is 

explained by their related factors.   

Table 4.4. Correlations between 2003 content dimensions 
 

 
QT SS CR UN 

QT 1 
   SS 0.905 1 

  CR 0.973 0.911 1 
 UN 0.990 0.907 0.984 1 

 
The four latent variables QT, SS, CR, and UN are highly correlated to each other 

(p < 0.001). Among six correlations between four content factors, the lowest one is 

between SS (space and shape) and QT (quantity): 0.905, which is still very high (see 

Table 4.4). UN and QT pair has the highest correlation (0.990). It seems that all of four 

content factors essentially behave as one unifying construct rather than four different 

latent factors. This provides evidence that supports a unidimensional model much better 

than a correlated factors content model. 
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Lastly, none of the items whose factor loadings or R-square values that are either 

at the lower or upper end of the scale are available for further analysis. However, all 

factors loadings, correlations, and R-square values are found to be statistically significant. 

This implies that 4F-Content model accounts very well for the relationships among the 

2003 mathematics items. However, despite the good model-fit results for 4F-Content 

model, high correlations between factors provide strong support towards a 

unidimensional model, which also showed good model-fit results as described in the 

previous section. 

Model 3: 1-level (three-factor) process model 

All of the observed indicators of three-factor process model but three are loaded 

onto their related factors with a 0.400 loading value or higher. M82 and M83 have a 

lower standardized factor loading on CON (connections) process dimension (0.335 and 

0.345, respectively) while M75 has a standardized factor loading of 0.389 on REP 

(reproduction) process dimension. Since their factor loadings are statistically significant 

(p < 0.001), they are significantly different from 0. They might be very important 

theoretically to keep in the model, but might not contribute to good model-fit necessarily. 

On the other hand, factor loadings for the items M28, M45, M48, and M80 are higher 

than 0.800. The factor loadings for the majority of the items are above 0.500. R-square 

values range from 0.112 to 0.810. A majority of the items have an R-square value of 

0.250 or greater. Only 12 items (M20, M24, M36, M40, M41, M57, M66, M68, M75, 

M82, M83, and M84) have R-square values 0.249 or less. This means 25% or more of the 

variance in 72 of the items is explained by their related factors.  
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The three latent variables (REP - reproduction, CON - connections, and REF - 

reflection) are significantly correlated to each other. The correlation coefficients are 

found to be higher than 0.95. Table 4.5 shows the values of correlation coefficients 

between all process sub-dimensions, which are very highly correlated to each other with 

values close to 1. This supports the interpretation that all of the three process factors 

essentially look like one unifying construct rather than three different latent factors. This 

provides evidence that supports a unidimensional model much better than a correlated 

factors process model. 

Table 4.5. Correlations between 2003 process dimensions 
 

 
REP CON REF 

REP 1 
  CON 0.975 1 

 REF 0.966 0.997 1 
 
Lastly, none of the items with high/low factor loadings or R-square values are 

available for further analysis. Like previous models, this 3F-Process model also accounts 

very well for the relationships among the 2003 mathematics items. However, high latent 

factor correlations provide evidence favoring a unidimensional model over this 1-level 

process model. 

Model 4: 1-level (four-factor) context model 

 Factor loadings for observed indicators in the 1-level context model range in 

value from 0.342 to 0.899. All but three indicators load onto their related factors more 

than 0.400. M75 load onto PER (personal) while M82 and M83 load onto SCI (scientific) 

context latent variables with values of 0.342, 0.352, and 0.382, respectively. Although 
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these values are less than the cut-off value of 0.400, they are significant (p < 0.001). On 

the other hand, the factor loadings for the items M15, M28, M45, M48, and M80 are 

higher than 0.800. The factor loadings for the majority of the items are above 0.500. R-

square values for observed indicators vary from 0.117 to 0.809. All but 13 indicators 

have an R-square value greater than 0.250. The amount of variation in student response to 

mathematics items explained by this model falls below 25% for items M20, M24, M36, 

M40, M41, M57, M65, M66, M68, M75, M82, M83, and M84. None of these items are 

available for further analysis. Like the models for other dimensions, all factors loadings, 

correlations, and R-square values are statistically significant. Therefore, it is concluded 

that 4F-Context model accounts very well for the relationships among the 2003 

mathematics items. Yet, high correlations between factors provide evidence favoring a 

unidimensional model over this 1-level context model. The four context factors are 

highly correlated with each other with correlation coefficients ranging from 0.939 to 

0.985 (Table 4.6). It seems that all of four context factors essentially behave as one 

unifying construct rather than four different latent factors. This provides evidence that 

supports a unidimensional model much better than a correlated factors context model. 

Table 4.6. Correlations between 2003 context dimensions 
 

 
PER EDOP PUB SCI 

PER 1 
   EDOP 0.984 1 

  PUB 0.985 0.972 1 
 SCI 0.982 0.939 0.962 1 
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Model 5: 2-level content model 

In this model, all but three observed indicators have a factor loading greater than 

the cut-off value of 0.400. M75 and M83 have a lower standardized factor loading (0.388 

and 0.347, respectively) on QT (quantity) content dimension while M82 has a 

standardized factor loading of 0.335 on UN (uncertainty) content dimension. On the other 

hand, factor loadings for the items M07, M27, M28, M45, M48, M63, and M80 are 

higher than 0.800. The factor loadings for the majority of the items are greater than 

0.500. All of the level-1 content factors (QT, SS, CR, and UN) load highly onto the level-

2 latent variable GML, ranging from 0.914 to 0.996. The proportions of variance in the 

level-1 factors explained by the level-2 factor are 0.992, 0.835, 0.970, and 0.990 for QT, 

SS, CR, and UN, respectively. This provides strong support for a higher order structure of 

the construct that underlies the mathematics items. That is, level-1 factors QT, SS, CR, 

and UN are good measures of the level-2 variable, GML (general mathematical literacy). 

R-square values range from 0.113 to 0.866. A majority of the items have an R-square 

value of 0.250 or greater. 11 items (M20, M24, M36, M40, M41, M57, M66, M68, M75, 

M82, and M83) have R-square values 0.249 or less. This means 25% or more of the 

variance in 73 of the items is explained by their related factors. None of the items whose 

factor loadings or R-square values that are either at the lower or upper end of the scale 

are available for further analysis. As in 1-level content factor, all of the factors loadings 

and R-square values are statistically significant despite some being lower than cut-off 

values. Thus, evidence also supports this 2-level model.  
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Model 6: 2-level process model 

 All but three of the observed indicators have a factor loading of 0.400 or higher. 

M75 has a lower loading on level-1 factor REP. Likewise, M82 and M83 have lower 

factor loading on level-1 factor connections (CON). Items M28, M45, M48, and M80 

have factor loadings greater than 0.800. The factor loadings for the majority of the items 

are above 0.500. All of the level-1 content factors (reproduction, connection, and 

reflection) load highly onto the level-2 latent variable GML, ranging from 0.984 to 0.993. 

This provides a strong support for higher order structure of the construct that underlies 

the mathematics items. That is, level-1 factors REP, CON, and REF are good measures of 

the level-2 variable, GML (general mathematical literacy) in terms of process dimension. 

The proportions of variation in the level-1 factors REP, CON, and REF explained by the 

level-2 factor are 0.968, 0.986, and 0.975, respectively. This indicates that the 2-level 

structure provides a good account for the covariances among the level-1 latent variables. 

The R-square values for all but 12 items (M20, M24, M36, M40, M41, M57, M66, M68, 

M75, M82, M83, and M84) are higher than 0.250. The 2-level process model, then, 

explains 25% or more of the variation in the responses to the majority of the items. All of 

the factors loadings and R-square values are statistically significant in spite of some low 

values. None of the items whose factor loadings or R-square values are either at the lower 

or upper end of the scale are available for further analysis. The conclusion made here is 

similar to the ones in unidimensional and 3-Factors correlated models: the level-2 model 

also provides a good structural representation of the PISA 2003 mathematics items in 

terms of process dimension. 
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Model 7: 2-level context model 

All items load onto their first level context factors with more than 0.400 factor 

loading values except for three items: M75, M82, and M83. Items M15, M28, M45, and 

M48, and M80 have high factor loadings greater than 0.800. The factor loadings for the 

majority of the items are greater than 0.500. Level-1 context factors PER (personal), 

EDOP (educational/occupational), PUB (public), and SCI (scientific) load highly onto 

level-2 latent variable GML with values 0.990, 0974, 0.995, and 0.967, respectively. The 

proportions of variation in the level-1 context factors explained by the level-2 factor are 

0.980, 0.949, 0.991 and 0.935, respectively. This indicates that the 2-level structure 

provides a good account for the covariances among the level-1 latent variables for 

context dimension. This provides a strong support for higher order structure of the 

construct that underlies the mathematics items. That is, level-1 factors PER, EDOP, PUB, 

and SCI are good measures of the level-2 variable, GML (general mathematical literacy) 

in terms of the context dimension. A majority of the items have R-square values greater 

than 0.250. The items M20, M24, M36, M40, M41, M57, M65, M66, M68, M75, M82, 

M83, and M84 have a low R-square value. None of these items, however, are available 

for further analysis. As in its 1-level model, all of the factors loadings and R-square 

values are statistically significant. Thus, overall, the 2-level model also provides a good 

structural representation of the PISA 2003 mathematics items in terms of context 

dimension. Table 4.7 summarizes results for individual parameter estimates and shows 

that items, which have critical values for individual parameter estimates related to them, 

do not differ across the models. In other words, it is almost the same items that land 
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around the upper/lower boundaries of factor loadings and R-square values with slight 

differences from one model to the other. None of these items are available for further 

qualitative analyses. Moreover, correlations among factors are very high across all 1-

level models. These results provide evidence for a unidimensional model. Thus, it is 

concluded that individual parameter estimate results for unidimensional and 1-level 

models for 2003 response data in mathematics imply that mathematical literacy is a 

unidimensional construct that unifies all three dimensions (content, process, and context) 

and their sub-dimensions. Although all of the items could be assigned to a different 

category in terms of different dimensions, they essentially measure the same overall 

construct: mathematical literacy. The factors loadings of level-1 latent variables are very 

high for 2-level models. This, however, provides a strong support for higher order 

structure of the construct that underlies the mathematics items. That is, level-1 factors are 

good measures of the level-2 variable, GML (general mathematical literacy) in terms of 

the three dimensions. These results, considered altogether, do not contradict the 

multidimensionality of 2003 mathematics items. However, there is more evidence that 

supports the unidimensionality of PISA mathematics items. 
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Table 4.7. Summary of individual parameter estimates for 2003 
 

Models 

Item loadings 
Items with low 

R-square (<0.250) 

Correlations 
b/w L-1 
factors 

L-1 
loadings 
onto L-2 

Low 
(<0.400) 

High 
(>0.800) 

 
Model 1: 
1F-GML 

 
M75, 
M82, 
M83 

 
M28, M45, 
M48, M80 

 
M20, M24, M36, M40, 
M41, M57, M65, M66, 
M68, M75, M82, M83, 
M84 
 

 
N/A 

 
N/A 

Model 2: 
1-L 
Content 

M75, 
M82, 
M83 

M07, M27, 
M28, M45, 
M48, M63, 
M80 
 

M20, M24, M36, M40, 
M41, M57, M65, M66, 
M68, M75 M82, M83 
 

>0.905 N/A 

Model 3: 
1-L 
Process 

M75, 
M82, 
M83 

M28, M45, 
M48, M80 

M20, M24, M36, M40, 
M41, M57, M65, M66, 
M68, M75, M82, M83, 
M84 
 

>0.966 N/A 

Model 4: 
1-L 
Context 

M75, 
M82, 
M83 

M15, M28, 
M45, M48, 
M80 

M20, M24, M36, M40, 
M41, M57, M65, M66, 
M68, M75, M82, M83, 
M84 
 

>0.939 N/A 

Model 5: 
2-L 
Content 

M75, 
M82, 
M83 

M07, M27, 
M28, M45, 
M48, M63, 
M80 
 

M20, M24, M36, M40, 
M41, M57, M65, M66, 
M68, M75 M82, M83 
 

N/A >0.914 

Model 6: 
2-L 
Process 

M75, 
M82, 
M83 

M28, M45, 
M48, M80 

M20, M24, M36, M40, 
M41, M57, M65, M66, 
M68, M75, M82, M83, 
M84 
 

N/A >0.968 

Model 7: 
2-L 
Context 

M75, 
M82, 
M83 

M15, M28, 
M45, M48, 
M80 

M20, M24, M36, M40, 
M41, M57, M65, M66, 
M68, M75, M82, M83, 
M84 

N/A >0.967 
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Model Comparisons 

As mentioned above, DIFFTEST method is used to compare nested models 

(Muthén & Muthén, 2012). However, since DIFFTEST is a derivative of the chi-square 

test, there is chance of Type-I error with the large sample size in this study. Therefore, in 

the case of a significant result for a DIFFTEST between any two nested models, the ∆CFI 

method, an extension of Cheung and Rensvold’s (2002) ∆GFI method, is used to 

compare models in this dissertation.  A value of ∆CFI greater than –0.01 indicates that 

the null hypothesis of invariance between the more restrictive and less restrictive models 

should not be rejected (see Table 4.2). Stated differently, a ∆CFI less than or equal to -

0.01 gives a significant result. A ∆CFI greater than -0.01, then, means models are no 

different from each other. This same conclusion is arrived as well when DIFFTEST 

results in a non-significant value. In these cases, a more restrictive model (e.g., Model 1: 

1F-GML) is preferred over the less restrictive one (e.g., Model 5: 2L-Content) for the 

data because it does not lose significant amount of fit (Kline, 2010). 

In total, there are seven models tested in each cycle. However, when comparing 

the models by using either DIFFTEST or ∆CFI methods, all seven cannot be evaluated all 

together at once. Models have to be compared in pairs and they have to be nested within 

each other. The unidimensional model is the most restrictive among the all models. It is 

nested in each and every of the other six models. So, it can be compared to all other six 

models one by one. 2-level models are nested in 1-level models in terms of each 

dimension. To be more specific, the 2-level content model is nested only in the 1-level 

(4F) content model, not in the 1-level process and context models. Basically, nine 
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possible comparisons could be made in each cycle: unidimensional model compared to 

every other model (six comparisons in total) and the 2-level model compared to the 1-

level model for each of three dimensions (3 comparisons in total).  

Table 4.8. DIFFTEST results for 2003 models 

1F-GML versus  
L2-Content L2-Process L2-Context 

    
Value 122.009 11.607 42.992 
∆df 4 1 4 
p-value 0.0000* 0.0000* 0.0000* 
  

 

L2-content  
vs. 

4F-Content 

L2-Process 
vs. 

3F-Process 

L2-context  
vs. 

4F-Context 
    
Value 

 
8.036 

 
3.935 

 
0.859 

∆df 2 2 2 
p-value 0.0180* 0.1398 0.6507 

1F-GML versus 
 

  
 

 
 4F-Content 3F-Porcess 4F-Content 

Value 
 

131.131 14.378 14.171 
∆df 6 3 6 
p-value 0.0000* 0.0024* 0.0278* 
* Significant at 0.05  

 
Table 4.8 summarizes the DIFFTEST results for all the model comparisons in the 

2003 cycle. Among all comparisons, only two are found to be non-significant: L2-

Process versus L1-Process and L2-Context versus L1-Context. So, 2-level and 1-level 

models perform about the same for the process and context dimensions. However, the 

more restrictive models (i.e., the 2-level models when compared to the 1-level models) 

are preferable because of their parsimony. All other comparisons are found significant, 
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which, however, might be resulted from a large sample size. Therefore, ∆CFI method is 

further applied for these comparisons. The results are given in Table 4.9. ∆CFI results 

show that only two comparisons are significant: 1F-GML versus L2-Content and 1F-

GML versus 4F-Content. The L2-Content and L1-Content models are preferred to the 1F-

GML (∆CFI = -0.02). When the 1-level and 2-level models are compared to each other 

for the content dimension, it is found that model comparison is not significant (∆CFI = 

0). Therefore, the more restrictive model, L2-content is chosen. ∆CFI results also support 

the non-significant result obtained through DIFFTEST. 

Table 4.9. ∆CFI results for 2003 model comparisons 
 

 1F-GML vs. 
L2-Content 

1F-GML vs. 
L2-Process 

1F-GML vs. 
L2-Context 

∆CFI 
 

-0.02* 0 0 

 L2-Content vs. 
4F-Content 

L2-Process vs. 
3F-Process 

L2-Context vs. 
4F-Context 

∆CFI 
 

0 0 0 

 1F-GML vs. 
4F-Content 

1F-GML vs. 
3F-Process 

1F-GML vs. 
4F-Context 

∆CFI -0.02* 0 0 

* Significant at -0.01  

 
To summarize the model comparison results, it would make sense to take them at 

hand according to each dimension. For the content dimension, the 2-level model is 

preferred to the 1-level correlated four-factors model, which is preferred to the 

unidimensional model. Although there are no specific rankings for the process and 

context dimensions because of no significant differentiation among different models, 

there is a preference: the more restrictive model is preferred. Therefore, the 
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unidimensional models are preferred over the 2-level models and the 1-level correlated 

factors models.  

 

Figure 4.1. Model Comparisons for 2003 

Figure 4.1 illustrates the summary of models comparisons for 2003.  The “>” sign 

refers to a ranking where the model on the left is preferred to the one on the right. The 

“≥” sign is used for models that are indifferent in terms of their fit performance to the 

data but the model on the left is always preferred for its parsimony. 

Summary of 2003 Results 

 First, all seven models for the PISA 2003 mathematics items fit the 2003 data 

well. This implies that the dimensional structure of the 2003 mathematics items do not 

contradict any of the models proposed by the PISA mathematics framework. Connecting 

these results to the first research question (response-framework correspondence), overall 

model-fit results do not indicate any contradiction for the correspondence between 

dimensional structure of the mathematics items and mathematical literacy framework. 

However, there is more evidence supporting the unidimensionality of the mathematics 

items. To better understand how each model corresponds to individual items, parameter 

estimates were evaluated. First of all, all parameter estimates were found significant for 

each of the seven models, meaning that all models provide a good account for factor 

Content: 2-Level Model > 1-Level Model > 1F-GML Model 

Process: 1F-GML Model ≥ 2-Level Model ≥ 1-Level Model 

Context: 1F-GML Model ≥ 2-Level Model ≥ 1-Level Model 



 

86 

loadings. In other words, each mathematics item plays an important role in different 

dimensionality models. This further support the evidence that mathematics framework is 

reflected in the mathematics items through student response data with respect to the three 

dimensions. 

What is interesting, however, is that the items whose factor loadings and R-square 

values are around lower and upper boundaries of critical values are almost the same items 

in all models (see Table 4.7). Unfortunately, none of these items are available for any 

further analysis. Moreover, the factor loading values for each mathematics item are 

almost identical across models (see Appendix C for individual factor loadings). It can be 

concluded that the items psychometrically behave the same in all dimensions. That is, 

regardless of the dimension (e.g., whether it is an uncertainty (UN), a reflection (REF), or 

scientific (SCI) question) an item’s loading and explained variation by a specific model is 

the same.  

Correlations between the latent variables for 1-level models are very high for all 

dimensions (see Table 4.4, Table 4.5, and Table 4.6). High correlations provide evidence 

supporting a unidimensional model rather than either multidimensional correlated-factor 

models. The level-1 factors’ factor loadings onto level-2 latent variable (GML) are very 

high for all dimensions. This provides a strong support for higher order structure of the 

construct that underlies the mathematics items. Model comparisons indicate that the 

unidimensional model is preferable over all models for the process and context 

dimensions (see Figure 4.1). For the content dimension, the 2-level model is preferred to 

the1-level correlated four-factors model, which is preferred to the unidimensional model. 
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QT (quantity), SS (space and shape), CR (change and relationship), and UN (uncertainty) 

dimensions are a measure of the global construct, GML (general mathematical literacy). 

Going back the second research question, the unidimensional model is preferable. 

However, in terms of content structure of mathematics items, the 2-level model better 

represents the dimensional structure of the PISA 2003 mathematics items. To conclude, 

unidimensional structure explains the mathematics items best when process and context 

dimensions are evaluated. However, a rather multidimensional structure represents the 

mathematics items in terms of the content dimension. The results provide evidence for 

both unidimensionality and multidimensionality. However, there is additional evidence 

for the unidimensionality (high correlations between the 1-level models). Thus, overall 

results conclude that although the multidimensionality cannot be disproven, there is 

stronger evidence that supports the unidimensionality of the PISA mathematics items. 

CFA Results: 2006 Cycle 

 CFA analyses produced similar results for 2006 cycle as follows. 

Assessment of Models 

The model-fit indices of models for 2006 are given in Table 4.10. The chi-square 

statistics (𝜒!) for each model range from 1307.484 (with df = 1074) to 1347.497 (with df 

= 1080). As in 2003, chi-square tests for all models are significant (p < 0.001), which 

reject the null hypothesis of a good fit. However, the sample size might have inflated chi-

square statistics. Therefore, other fit indices are more reliable to make conclusions for 

this study. 
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TLI and CFI values for all models are greater than the critical value of 0.95. 

Therefore, TLI and CFI values support a good fit for all of the models. Moreover, 

RMSEA values for all models are found to be very close to zero. The probability that 

RMSEA is less than the cut-off value of 0.05 is almost 1. This means that all models fit 

the data fairly well. Although, the WRMR value is greater than the critical value of 1.0 

for all models, the overall fit of each model is found to be very good for 2006 

mathematics items. 

Individual Parameter Estimates 

 There were 48 mathematics items in 2006. Factor loadings and R-square values 

for these are given in the following sub-sections for each of the seven models as well as 

correlations between factors where it is applicable. These estimated values relate to the 

first research question and will help determine how the mathematics framework is 

reflected in the mathematics items through the student response data with respect to the 

three dimensions. 

Model 1: Single-factor model 

 Only one item, M24, among 48 items has a low factor loading (0.373) in the 

unidimensional model. This item had a moderate loading (around 0.450) in 2003 models. 

The remaining indicators load onto GML more than the critical value of 0.400. Their 

factor loadings range from 0.426 to 0.874. About half of the factor loadings are between 

0.500 and 0.700. Items M28, M37, M45, and M80 have the greatest factor loadings 

(higher than 0.800). All factor loadings including that of M24 are significant (p < 0.001). 

This unidimensional model explains 25% or more of the variation in student responses to 
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a majority of the items (39 of the 48) in 2003. The amount of variance explained falls 

below the cut-off level 25% for the items M01, M24, M39, M40, M51, M65, M68, M75, 

and M84. This signals the presence of other factors causing the variation above and 

beyond the unidimensional model for these items. Although some factor loadings and R-

square values are lower than their critical values, all individual parameter estimates are 

significant. This further provides additional support for the unidimensionality of the PISA 

2006 mathematics items. None of the items, whose factor loadings or R-square values 

that are either at the lower or upper end of the scale, are released. So, it is not possible to 

do a finer grain-sized analysis of the other item characteristics like content, language, or 

context. 

Table 4.11. Correlations between 2006 content dimensions 
 

 
QT SS CR UN 

QT 1 
   SS 0.863 1 

  CR 0.936 0.905 1 
 UN 0.899 0.846 0.955 1 

 
Model 2: 1-level (four-factor) content model 

All item loadings onto their related factors (QT, CR, SS, and UN) are statistically 

significant. Factor loadings in the 1-level content factor range from 0.406 to 0.917. Factor 

loadings for the items M15, M27, M28, M37, M45, M48, and M80 are higher than 0.800. 

The factor loadings for the majority of the items range between 0.500 and 0.700. There 

are only five items whose variation could not be explained by the four-factor content 

model more than 25%. These items are M24, M40, M51, M65, and M75. Their R-square 

values range from 0.157 to 0.239. None of these items are available for further analysis. 
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The fact that all of factors loadings, correlations, and R-square values are statistically 

significant indicates that the 4F-Content model accounts for the relationships among the 

PISA 2006 mathematics items very well, although there are some low factor loadings and 

R-square values. Four content factors (QT, CR, SS, and UN) correlate with each other 

significantly high. Correlation coefficients vary from 0.846 to 0.955 as shown in Table 

4.11. CR and UN factors correlate the most while the lowest correlation is between SS 

and UN. It seems that all of four content factors essentially behave as one unifying 

construct rather than four different latent factors. This provides evidence supporting a 

unidimensional model, which also showed good model-fit results as described in the 

previous section, rather than a multidimensional content model.  

Model 3: 1-level (three-factor) process model 

All of the observed indicators of the three-factor process model load onto their 

related factors with a 0.400 loading value or higher except indicator M24, which loads 

onto CON factor with a value of 0.373. The factor loadings for the items M15, M28, 

M37, M45, and M80 are higher than 0.800. The factor loadings for the majority of the 

items are above 0.500. R-square estimates are statistically significant with values ranging 

from 0.139 to 0.799. Only 8 items (M24, M39, M40, M51, M65, M68, M75, and M84) 

have R-square values 0.249 or less. This means 25% or more of the variance in the 

majority (40) of the items is explained by their related factors through this model. None 

of these are available for further analysis. This model explains all factor loadings, 

correlations, and R-square values at a significant level. Therefore, 3F-process model fits 

the data for the PISA 2006 mathematics items very well. 
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Table 4.12. Correlations between 2006 process dimensions 
 

 
REP CON REF 

REP 1 
  CON 0.906 1 

 REF 0.971 0.976 1 
 

Model 4: 1-level (four-factor) context model 

 The three latent variables (REP, CON, and REF) are significantly correlated to 

each other. As shown in Table 4.12, the correlation coefficients are found to be higher 

than 0.90. All of three process dimensions essentially look like one unifying construct 

rather than three different latent factors. This provides support towards a unidimensional 

model for 2006 mathematics items. 

Factor loadings for the observed indicators in the 1-level context model range 

from 0.378 (M24 on PUB) to 0.888 (M45 on SCI). M24 is the only one item with a factor 

loading less than 0.400. The factor loadings for the items M15, M28, M37, M45, M48, 

and M80 are higher than 0.800. The factor loadings for the majority of the items are 

above 0.500. R-square values for observed indicators vary from 0.143 (M24) to 0.789 

(M45). All but 7 indicators have an R-square value greater than 0.250. The amount of 

variation explained by this model falls below 25% for items M24, M40, M51, M65, M68, 

M75, and M84. None of the items whose factor loadings or R-square values are either at 

the lower or upper end of the scale are available for further analysis. Like the models for 

other dimensions, all of the factors loadings, correlations, and R-square values are 

statistically significant. Therefore, it is concluded that the 4F-Context model accounts 

very well for the relationships among the PISA 2006 mathematics items. 
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Table 4.13. Correlations between 2006 context dimensions 
 

 
PER EDOP PUB SCI 

PER 1 
   EDOP 0.930 1 

  PUB 0.946 0.930 1 
 SCI 0.969 0.924 0.925 1 

 
Four context factors, PER (personal), EDOP (educational/occupational), PUB 

(public), and SCI (scientific), are highly correlated with each other as shown in Table 

4.13. This indicates that all of four context factors essentially behave as one unifying 

construct rather than four different latent factors, thus, supporting rather a unidimensional 

model. 

Model 5: 2-level content model 

This model produced factor loadings greater than the cut-off value of 0.400 for all 

items at level-1. Factor loadings for the items M15, M27, M28, M37, M45, M48, and 

M80 are higher than 0.800. The factor loadings for the majority of the items range 

between 0.500 and 0.700. Also, all of the level-1 content factors (QT, SS, CR, and UN) 

load highly onto the level-2 latent variable GML, ranging from 0.906 to 0.998. This 

provides a strong support for higher order structure of the construct that underlies the 

mathematics items. That is, level-1 factors QT, SS, CR, and UN are good measures of the 

level-2 variable, GML (general mathematical literacy). The proportions of variance in the 

level-1 factors explained by level-2 factor are 0.892, 0.821, 0.996, and 0.903 for QT, SS, 

CR, and UN, respectively. This indicates that this higher-order structure provides a very 

good account for the covariances among the level-1 factors. R-square values range from 

0.157 to 0.842. All but five of the items (M24, M40, M51, M65, and M75) have an R-
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square value of 0.250 or greater. None of these items are available for further analysis. As 

in 1-level content factor, all of the factors loadings and R-square values are statistically 

significant despite some lower than cut-off values. Thus, the 2-level content model results 

reveal that it provides a good account for the PISA 2006 mathematics items.  

Model 6: 2-level process model 

 All observed indicators have a factor loading of 0.400 or higher except M24, 

which loads onto CON factor with a loading value of 0.374. M45 has the biggest loading 

onto REF factor (0.882). The factor loadings for the items M15, M28, M37, M45, and 

M80 are higher than 0.800. The factor loadings for the majority of the items are above 

0.500. All of the level-1 content factors (REP, CON, and REF) load very highly onto the 

level-2 latent variable GML, ranging from 0.979 to 0.992. This provides a strong support 

for higher order structure of the construct that underlies the mathematics items. That is, 

level-1 factors REP, CON, and REF are good measures of the level-2 variable, GML 

(general mathematical literacy) in terms of process dimension. The proportions of 

variation in the level-1 factors REP, CON, and REF explained by the level-2 factor are 

0.958, 0.969, and 0.983, respectively. This indicates that this 2-level structure provides a 

good account for the covariances among the level-1 latent variables. The R-square values 

for all but 8 items (M24, M39, M40, M51, M65, M68, M75, and M84) are higher than 

0.250. The 2-level process model, then, explains 25% or more of the variation in the 

responses to a majority of the items. All of the factors loadings and R-square values are 

statistically significant despite some low estimates. None of the items whose factor 

loadings or R-square values are either at the lower or upper end of the scale are available 
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for further analysis. Overall, the 2-level process model provides a good structural 

representation of the PISA 2006 mathematics items in terms of process dimension.  

Model 7: 2-level context model 

All items load onto their first level context factors with more than 0.400 factor 

loading values except item M24. The factor loadings for the items M15, M28, M37, M45, 

M48, and M80 are higher than 0.800. The factor loadings for the majority of the items are 

above 0.500. The level-1 context factors EDOP, PUB, SCI, and PER load highly onto the 

level-2 latent variable GML with values 0.958, 0.960, 0.967, and 0.986, respectively. The 

proportions of variation in the level-1 context factors explained by level-2 factor are 

0.917, 0.923, 0.936, and 0.972, respectively. This indicates that the 2-level structure 

provides a very good account for the covariances among the level-1 latent variables for 

the context dimension. This provides a strong support for higher order structure of the 

construct that underlies the mathematics items. That is, level-1 factors PER, EDOP, PUB, 

and SCI are good measures of the level-2 variable, GML (general mathematical literacy) 

in terms of context dimension. All but seven items have R-square values greater than 

0.250. The items M24, M40, M51, M65, M68, M75, and M84 have a low R-square value. 

However, these R-square values are statistically significant. So are all of factor loadings. 

Therefore, the 2-level context model provides a good structural representation of the 

PISA 2006 mathematics items in terms of context dimension as well.  

Overall, individual parameter estimate results are similar to the ones in 2003. 

There are some slight differences that will be discussed in longitudinal discussion section 

at the end of this chapter. As Table 4.14 shows, items that have critical values for 
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individual parameter estimates related to them do not differ across the models. In other 

words, it is almost the same items that land around the upper/lower boundaries of factor 

loadings and R-square values with slight differences from one model to the other. None 

of these items are available for further qualitative analyses. Moreover, correlations 

among factors are very high across all 1-level models. This provides evidence for a 

unidimensional model. Thus, it is concluded that individual parameter estimate results for 

the PISA 2006 mathematics items imply that mathematical literacy is a unidimensional 

construct that unifies all three dimensions when 1-level and unidimensional models are 

evaluated. Although all of the items could be assigned to a different category in terms of 

different dimensions, they essentially measure the same overall construct: mathematical 

literacy. The factors loadings of level-1 latent variables are very high for 2-level models. 

This, however, provides a strong support for higher order structure of the construct that 

underlies the mathematics items. That is, level-1 factors are good measures of the level-2 

variable, GML (general mathematical literacy) in terms of the three dimensions. These 

results, considered altogether, do not contradict the multidimensionality of the PISA 2006 

mathematics items. However, there is stronger evidence that supports the 

unidimensionality. 

Model Comparisons 

As mentioned above, DIFFTEST method is used to compare nested models 

(Muthén & Muthén, 2012). To remedy large sample size effect for significant results, an 

extension of ∆CFI method (Cheung & Rensvold, 2002) is used. To revisit the criterion, a 

∆CFI less than or equal to -0.01 gives a significant result, which provides evidence less 
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restrictive model. In case of non-significant results for both DIFFTEST test and ∆CFI 

method, the conclusion is the same: although the fit of models are the same, more 

restrictive model is preferred over the less restrictive one for the data because it does not 

lose significant amount of fit.  

Table 4.14. Summary of individual parameter estimates for 2006 
 

Models 

Item loadings Items with low 
R-square 
(<0.250) 

Correlations 
b/w L-1 
factors 

L-1 
loadings 
onto L-2 

Low 
(<0.400) 

High 
(>0.800) 

 
Model 1: 
1F-GML 

 
M24 

 
M28, M37, M45, 
M80 

 
M01, M24, M39, 
M40, M51, M65, 
M68, M75, M84 
 

 
N/A 

 
N/A 

Model 2: 
1-L 
Content 

- M15, M27, M28, 
M37, M45, M48, 
M80 
 

M24, M40, M51, 
M65, M75 

>0.846 N/A 

Model 3: 
1-L 
Process 

M24 M15, M28, M37, 
M45, M80 

M24, M39, M40, 
M51, M65, M68, 
M75, M84 
 

>0.906 N/A 

Model 4: 
1-L 
Context 

M24 M15, M28, M37, 
M45, M48, M80 

M24, M40, M51, 
M65, M68, M75, 
M84 
 

>0.924 N/A 

Model 5: 
2-L 
Content 

- M15, M27, M28, 
M37, M45, M48, 
M80 
 

M24, M40, M51, 
M65, M75 

N/A >0.906 

Model 6: 
2-L 
Process 

M24 M15, M28, M37, 
M45, M80 

M24, M39, M40, 
M51, M65, M68, 
M75, M84 
 

N/A >0.958 

Model 7: 
2-L 
Context 

M24 M15, M28, M37, 
M45, M48, M80 

M24, M40, M51, 
M65, M68, M75, 
M84 

N/A >0.967 
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Table 4.15. DIFFTEST results for 2006 models 

1F-­‐GML	
  versus	
   	
  
L2-­‐Content	
   L2-­‐Process	
   L2-­‐Context	
  

	
  	
  	
  	
  
Value	
   105.733	
   8.150	
   34.841	
  
∆df	
   4	
   1	
   4	
  
p-­‐value	
   0.0000*	
   0.0043*	
   0.0000*	
  
	
   	
  

	
  

L2-­‐content	
  	
  
vs.	
  

4F-­‐Content	
  

L2-­‐Process	
  
vs.	
  

3F-­‐Process	
  

L2-­‐context	
  	
  
vs.	
  

4F-­‐Context	
  
	
  	
  	
  	
  
Value	
  

	
  
2.891	
  

	
  
15.100	
  

	
  
2.214	
  

∆df	
   2	
   2	
   2	
  
p-­‐value	
   0.2356	
   0.0005*	
   0.3306	
  

1F-­‐GML	
  versus	
  
	
  

	
   	
  
	
  

	
  
	
   4F-­‐Content	
   3F-­‐Process	
   4F-­‐Content	
  

Value	
  
	
  

111.713	
   22.529	
   34.834	
  
∆df	
   6	
   3	
   6	
  
p-­‐value	
   0.0000*	
   0.0001*	
   0.0000*	
  
* Significant at 0.05 	
  

 
As in the 2003 cycle, there are seven models compared to each other in groups of 

two. The DIFFTEST results are given in Table 4.15 and ∆CFI results are given Table 

4.16. According to the DIFFTEST results, only two comparisons are found to be non-

significant: L2-Content versus L1-Content and L2-Context versus L1-Context. So, 2-

level and 1-level models perform about the same for the content and context dimensions. 

However, the more restrictive models (i.e., 2-level models) are preferable because of their 

parsimony. All other comparisons are found significant, which, however, might be 

resulted from a large sample size. Therefore, ∆CFI method is further applied for these 

comparisons. The ∆CFI results show that four comparisons are significant: 1F-GML 
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versus L2-Content, 1F-GML versus 4F-Content, 1F-GML versus L2-Context, and 1F-

GML versus 4F-Context. The L2-Content and L1-Content models are preferred to the 1F-

GML (∆CFI = -0.02). The L2-Context and L1-Context models are preferred to the 1F-

GML (∆CFI = -0.01). When the 1-level and 2-level models are compared to each other 

for the content and context dimensions, it is found that model comparison is not 

significant (∆CFI = 0). Therefore, the more restrictive (2-level) models are better for the 

content and context dimensions. ∆CFI results also support the non-significant result 

obtained through DIFFTEST. These results however somewhat different than model 

comparison results for 2003. The differences will be discussed in the longitudinal section 

at the end of this chapter.  

Table 4.16. ∆CFI results for 2006 model comparisons 
 

 1F-GML vs. 
L2-Content 

1F-GML vs. 
L2-Process 

1F-GML vs. 
L2-Context 

∆CFI 
 

-0.02* 0 -0.01* 

 L2-Content vs. 
4F-Content 

L2-Process vs. 
3F-Process 

L2-Context vs. 
4F-Context 

∆CFI 
 

0 0 0 

 1F-GML vs. 
4F-Content 

1F-GML vs. 
3F-Process 

1F-GML vs. 
4F-Context 

∆CFI -0.02* 0 -0.01* 

* Significant at -0.01  
 
To summarize the model comparison results, it would make sense to take them at 

hand according to each dimension. For the content and context dimensions, the 2-level 

model is preferred to the1-level correlated four-factors model, which is preferred to the 

unidimensional model. Although there is no specific ranking for the process dimension 
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because of no significant differentiation among different models, there is a preference. 

The more restrictive model is preferred. The unidimensional model is preferred over the 

2-level process and 1-level correlated factors (3F-Process) models. 

 

Figure 4.2. Model Comparisons for 2006 

Figure 4.2 illustrates the summary of models comparisons for 2006. The “>” sign 

refers to a ranking where the model on the left is preferred to the one on the right. The 

“≥” sign is used for models that are indifferent in terms of their fit performance to the 

data but the model on the left is always preferred for its parsimony. 

Summary of 2006 Results 

 First, all seven models for the PISA 2006 mathematics items fit the data pretty 

well. This implies that the dimensional structure of the PISA 2006 mathematics items do 

not contradict any of the models proposed by the PISA mathematics framework. 

Connecting these results to the first research question (response-framework 

correspondence), overall model-fit results do not indicate any contradiction for the 

correspondence between dimensional structure of the mathematics items and 

mathematical literacy framework. However, there is more evidence supporting the 

unidimensionality of the mathematics items. To better understand how each model 

corresponds to individual items, parameter estimates were evaluated. First of all, all 

Content: 2-Level Model > 1-Level Model > 1F-GML Model 

Process: 1F-GML Model ≥ 2-Level Model ≥ 1-Level Model 

Context: 2-Level Model > 1-Level Model > 1F-GML Model 
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parameter estimates were found significant for each of the seven models, meaning that all 

models provide a good account for factor loadings. In other words, each mathematics 

item plays an important role in different dimensionality models. This further support the 

evidence that mathematics framework is reflected in the PISA 2006 mathematics items 

through the student response data with respect to the three dimensions. 

What is interesting, however, is that the items whose factor loadings and R-square 

values are around lower and upper boundaries of critical values are almost the same items 

in all models (see Table 4.14). Unfortunately, none of these items are available for any 

further analysis. There are slight differences between the 2003 and 2006 results in terms 

of these critical items, which will be discussed later in the chapter. Moreover, the factor 

loading values for each mathematics item are almost identical across models (see 

Appendix C for individual factor loadings). It can be concluded that the items 

psychometrically behave the same in all dimensions. That is, regardless of the dimension 

(e.g., whether it is an uncertainty (UN), a reflection (REF), or scientific (SCI) question) 

an item’s loading and explained variation by a specific model is the same. 

Correlations between the latent variables for 1-level models are very high for all 

dimensions (see Table 4.11, Table 4.12, and Table 4.13). High correlations provide 

evidence supporting a unidimensional model rather than either multidimensional 

correlated-factor models for each the three dimensions. Correlations coefficients slightly 

decreased when level-1 models are compared to their counterpart in 2003. This might be 

caused because of less number of items. It might also be possible that the items there are 

not included in 2006 (36 in total) are more related to each than others items. The majority 
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of these items 2003 items that are not included in 2006 are released (see Appendix C). 

However, since none of the other 2006 items are released, the two sets of items could not 

be further compared qualitatively.  

The level-1 factors’ factor loadings onto level-2 latent variable (GML) are very 

high for all dimensions. This provides a strong support for higher order structure of the 

construct that underlies the mathematics items. 

Model comparisons also indicate that the unidimensional model is preferable over 

the 1-level and 2-level models for the process dimension. For the content and contexts 

dimensions, the 2-level model is preferred to the1-level correlated four-factors model, 

which is preferred to the unidimensional model. QT (quantity), SS (space and shape), CR 

(change and relationship), and UN (uncertainty) dimensions are a good measure of the 

global construct, GML (general mathematical literacy) in terms of content. Similarly, 

PER (personal), PUB (public), EDOP (educational/occupational), and SCI (scientific) 

dimensions are also good measures of the GML construct in terms of context. Revisiting 

the answer to the second research question, the unidimensional model is preferable for 

process dimension. However, in terms of content and context structures of mathematics 

items, the 2-level models better represent the dimensional structure of the PISA 2006 

mathematics items. To conclude, unidimensional structure explains the mathematics 

items best when process dimension is taken into account. However, a rather 

multidimensional structure represents the mathematics items in terms of the content and 

context dimensions. The results provide evidence for both unidimensionality and 

multidimensionality. However, there is additional evidence for the unidimensionality 



 

103 

(high correlations between the 1-level models). Thus, overall results conclude that 

although the multidimensionality cannot be disproven, there is stronger evidence that 

supports the unidimensionality of the PISA mathematics items. 

CFA Results: 2009 Cycle 

Assessment of Models 

The model-fit indices of models for 2009 are given in Table 4.17. The 𝜒! 

statistics for each model range from 711.152 (with df = 554) to 743.474 (with df = 760). 

As in both the 2003 and 2006 cycles, chi-square tests for all models are significant (p < 

0.001). Again, although these results suggest a poor fit, the sample size might have 

inflated the statistics. Therefore, we should evaluate other fit indices. TLI and CFI values 

for all models are greater than the critical value of 0.95, as in the 2003 and 2006 cycles. 

Therefore, TLI and CFI values are in favor of a good fit for all of the models. Moreover, 

RMSEA values for all models are found to be very close to zero: they range from 0.004 

to 0.005. The probability that RMSEA is less than the cut-off value of 0.05 is almost 1. 

This means that all models fit the data fairly well. Although, WRMR value is greater than 

the critical value of 1.0 for all models, the overall fit of each model is found to be good 

for the 2009 cycle as well. 

Individual Parameter Estimates 

There were 35 mathematics items in 2009. Factor loadings and R-square values 

for these are given in the following sub-sections for each of the seven models as well as 

correlations between factors where it is applicable. These estimated values relate to the 

first research question and will help determine how the mathematics framework is 



 

104  

 
M

od
el

 1
: 

M
od

el
 2

: 
M

od
el

 3
: 

M
od

el
 4

: 
M

od
el

 5
: 

M
od

el
 6

: 
M

od
el

 7
: 

 
1F

-G
M

L
 

4F
-C

on
te

nt
 

3F
-P

ro
ce

ss
 

4F
-C

on
te

xt
 

L
2-

C
on

te
nt

 
L

2-
Pr

oc
es

s 
L

2-
C

on
te

xt
 

 C
hi

-S
qu

ar
e 

T
es

t o
f M

od
el

 F
it 

   
V

al
ue

 
74

3.
47

4 
71

1.
15

2 
74

1.
59

6 
72

9.
42

8 
71

3.
74

1 
74

2.
58

7 
73

1.
87

1 
   

D
eg

re
es

 o
f f

re
ed

om
 

56
0 

55
4 

55
7 

55
4 

55
6 

55
9 

55
6 

   
p-

va
lu

e 
0.

00
00

 
0.

00
00

 
0.

00
00

 
0.

00
00

 
0.

00
00

 
0.

00
0 

0.
00

0 
 C

FI
/T

L
I 

   
C

FI
 

0.
98

0 
0.

98
3 

0.
98

0 
0.

98
1 

0.
98

3 
0.

98
0 

0.
98

1 
   

TL
I 

0.
97

9 
0.

98
2 

0.
97

9 
0.

98
0 

0.
98

2 
0.

97
9 

0.
98

0 
 R

M
SE

A
 (R

oo
t M

ea
n 

Sq
ua

re
  

E
rr

or
 o

f A
pp

ro
xi

m
at

io
n)

 
   

Es
tim

at
e 

0.
00

5 
0.

00
4 

0.
00

5 
0.

00
5 

0.
00

4 
0.

00
5 

0.
00

5 
   

90
 P

er
ce

nt
 C

.I.
  

0.
00

4-
0.

00
5 

0.
00

3-
0.

00
5 

0.
00

4-
0.

00
6 

0.
00

4-
0.

00
5 

0.
00

3-
0.

00
5 

0.
00

4-
0.

00
5 

0.
00

4-
0.

00
5 

   
Pr

ob
ab

ili
ty

 R
M

SE
A

 <
= 

.0
5 

 
1.

00
0 

1.
00

00
 

1.
00

0 
1.

00
0 

1.
00

00
 

1.
00

0 
1.

00
0 

 W
R

M
R

 (W
ei

gh
te

d 
R

oo
t  

M
ea

n 
Sq

ua
re

 R
es

id
ua

l) 
1.

16
8 

1.
12

5 
1.

16
7 

1.
15

3 
1.

12
7 

1.
16

7 
1.

15
5 

 V
al

ue
s 

th
at

 s
at

is
fy

 th
e 

cr
ite

ria
 fo

r g
oo

d 
m

od
el

 fi
t a

re
 b

ol
d-

fa
ce

d.
  

Ta
bl

e 
4.

17
 M

od
el

 fi
t i

nd
ic

es
 fo

r 2
00

9 

 



 

105 

reflected in the PISA 2009 mathematics items through the student response data with 

respect to the three dimensions. 

Model 1: Single-factor model 

Among the 35 items, only two items, M65 and M75, have a low standardized 

factor loading: 0.351 and 0.392, respectively. The factor loadings range from 0.411 to 

0.913. The items M27 and M28 have the greatest factor loadings (higher than 0.800). The 

factor loadings for the majority of the items are higher than 0.500. All factor loadings 

including that of M65 and M75, which have low factor loadings, are significant (p < 

0.001). This unidimensional model explains 25% or more of the variation in the 

responses to the most of the items (26 out of 35) in 2009. The amount of variance 

explained falls below 25% for the items M01, M20, M36, M40, M51, M65, M66, M75, 

and M83. This signals the presence of other factors causing the variation above and 

beyond the unidimensional model for these items. None of the items whose factor 

loadings or R-square values are either at the lower or upper end of the scale are released 

for further analysis. However, the variation this unidimensional model explains is found 

to be statistically significant for all items including those, which have low R-square 

values. This further provides additional support for the unidimensionality of the PISA 

2009 mathematics items.  

Model 2: 1-level (four-factor) content model 

Factor loadings in 1-level content factor range from 0.367 to 0.945. Only item 

M75 has a loading smaller than 0.400 onto QT latent variable. All items load onto their 

related factors (QT, CR, SS, and UN) at a statistically significant level (p < 0.001). The 
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items M27 and M28 have the greatest factor loadings (higher than 0.800). The factor 

loadings for the majority of the items are higher than 0.500. There are only five items 

whose variation could not be explained by the four-factor content model more than 25%. 

These items are M40, M51, M65, M66, and M75. Their R-square values are significant, 

although they are low, ranging from 0.135 to 0.232. All of the variations explained by 

this model are significant.   

Table 4.18. Correlations between 2009 content dimensions 
 

 
QT SS CR UN 

QT 1 
   SS 0.876 1 

  CR 0.917 0.898 1 
 UN 0.883 0.860 0.962 1 

 
Four content factors correlate with each other significantly high. Correlation 

coefficients vary from 0.860 to 0.962 as shown in Table 4.18. CR and UN factors 

correlate the most while the lowest correlation is between SS and UN. This shows that all 

of the four content factors essentially behave as one unifying construct rather than four 

different latent factors. This evidence provides support for a unidimensional model, 

which also showed good model-fit results as described in the previous section, rather than 

a multidimensional content model.  

Model 3: 1-level (three-factor) process model 

In this three-factor process model, all of the observed indicators load onto their 

related factors with a 0.400 or higher loading value except for two indicators: items M65 

and M75. Both of these items load onto REP factor with loading values of 0.352 and 

0.392, respectively. The factor loadings for the items M27 and M28 are higher than 
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0.800. The factor loadings for the majority of the items are above 0.500. Only 9 items 

(M01, M20, M36, M40, M51, M65, M66, M75, and M83) have R-square values 0.249 

or less. This means 25% or more of the variance in most of the items (26 out of 35) is 

explained by their related factors via the three-factor process model. Since all parameter 

estimates are statistically significant despite some low values, this 3F-Process model also 

provides a good fit for the PISA 2009 mathematics items through student response data in 

terms of individual parameters.  

Table 4.19. Correlations between 2009 process dimensions 
 

 
REP CON REF 

REP 1 
  CON 0.988 1 

 REF 0.986 0.981 1 
 

The three latent variables (REP, CON, and REF) are significantly correlated to 

each other. As shown in Table 4.19, the correlation coefficients are found to be higher 

than 0.90. All of three process dimensions essentially look like one unifying construct 

rather than three different latent factors. This provides support towards a unidimensional 

model for the PISA 2009 mathematics items. 

Model 4: 1-level (four-factor) context model 

Table 4.20. Correlations between 2009 context dimensions 
 

 
PER EDOP PUB SCI 

PER 1 
   EDOP 0.948 1 

  PUB 0.937 0.907 1 
 SCI 0.947 0.974 0.941 1 
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Factor loadings for observed indicators in the 1-level context model range from 

0.273 (M75 on PER) to 0.920 (M28 on PUB). The items M01, M36, M40, M65, and 

M75 have a factor loading less than the critical value (0.400). On the other hand, the 

factor loadings for the items M27 and M28 are higher than 0.800. The factor loadings for 

the majority of the items are above 0.500. R-square values for the observed indicators 

vary from 0.074 (M75) to 0.847 (M28). All but 8 indicators have an R-square value 

greater than 0.250. The amount of variation in the student responses explained by this 

model falls below 25% for items M01, M20, M36, M40, M51, M65, M66, and M75. 

However, all of the factor loadings, correlations, and R-square values are statistically 

significant. Therefore, it is concluded that the 4F-Context model provides a good account 

for the relationships among the PISA 2009 mathematics items. However, high 

correlations between factors provide evidence favoring a unidimensional model over this 

1-level context model as shown in Table 4.20. Four context factors PER, EDOP, PUB, 

and SCI are highly correlated with each other. The correlation coefficients range from 

0.907 to 0.974. This indicates that all of the four context factors essentially behave as one 

unifying construct rather than four different latent factors. This provides evidence that 

supports a unidimensional model much preferred to a correlated factors context model. 

Model 5: 2-level content model 

In this model, all items load onto their related level-1 factors more than the cut-off 

value of 0.400 except the item M75, which loads onto QT factor with 0.368. The items 

M27 and M28 have the greatest factor loadings (higher than 0.800). The factor loadings 

for the majority of the items are higher than 0.500. Also, all of the level-1 content factors 
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(QT, SS, CR, and UN) load highly onto the level-2 latent variable GML, ranging from 

0.917 to 0.986. This provides a strong support for higher order structure of the construct 

that underlies the mathematics items. That is, level-1 factors QT, SS, CR, and UN are 

good measures of the level-2 variable, GML (general mathematical literacy). The 

proportions of variance in the level-1 factors explained by the level-2 factor are 0.880, 

0.841, 0.972, and 0.912 for QT, SS, CR, and UN, respectively. This indicates that the 

higher-order structure explains the covariances among the level-1 factors very well. R-

square values range from 0.135 to 0.894. All but five of the items (M40, M51, M65, 

M66, and M75) have an R-square value of 0.250 or greater. None of these items are 

available for further analysis. To sum up, individual estimate results reveal that the 2-

level content model provides a good fit for the PISA 2009 mathematics items. 

Model 6: 2-level process model 

All observed indicators have a factor loading of 0.400 or higher except items M65 

and M75, which load onto CON factor with loadings of 0.353 and 0.397, respectively. 

The factor loadings for the items M27 and M28 are higher than 0.800. The factor 

loadings for the majority of the items are above 0.500. All of the level-1 content factors 

(REP, CON, and REF) load highly onto the level-2 latent variable GML, ranging from 

0.989 to 0.993. This provides a strong support for higher order structure of the construct 

that underlies the mathematics items. That is, level-1 factors REP, CON, and REF are 

good measures of the level-2 variable, GML (general mathematical literacy) in terms of 

process dimension. The proportions of variation in the level-1 factors REP, CON, and, 

REF explained by level-2 factor are 0.978, 0.986, and 0.992, respectively. This indicates 
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that the 2-level structure explains the covariances among the level-1 latent variables very 

well. The R-square values for all but 9 items are higher than 0.250. That is, 2-level 

process model explains 25% or more of the variation in the responses to the most of the 

items. All of the factor loadings and R-square values are statistically significant although 

some of their estimates are below the acceptable values. Therefore, the 2-level model 

provides a good structural representation of the PISA 2009 mathematics items through 

the student response data in terms of process dimension. 

Model 7: 2-level context model 

Factor loadings for this model range from 0.274 to 0.920. All items load onto 

their first level context factors with more than 0.400 factor loading values except five 

items: M01, M36, M40, M65, and M75. On the other hand, the factor loadings for the 

items M27 and M28 are higher than 0.800. The factor loadings for the majority of the 

items are above 0.500. The level-1 context factors SCI, PUB, EDOP, and PER load 

highly onto the level-2 latent variable GML with values 0.939, 0.974, 0.986, and 0.994, 

respectively. The proportions of variation in the level-1 context factors explained by the 

level-2 factor are 0.882, 0.949, 0.972, and 0.988, respectively. This indicates that the 2-

level structure provides a good account for the covariances among the level-1 latent 

variables for context dimension. This provides a strong support for higher order structure 

of the construct that underlies the mathematics items. That is, level-1 factors PER, 

EDOP, PUB, and SCI are good measures of the level-2 variable, GML (general 

mathematical literacy) in terms of context dimension. All but eight items have R-square 

values greater than 0.250. The items M01, M20, M36, M40, M51, M65, M66, and M75 
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have a low R-square value. However, their R-square values are significant. Therefore, 2-

level model, overall, provides a good structural representation of the 2009 mathematics 

items in terms of context dimension.  

Table 4.21 shows items that have critical values for their individual parameter 

estimates. None of these items are available for further qualitative analyses. Moreover, 

correlations among factors are very high across all 1-level models. These results provide 

evidence for a unidimensional model. Thus, it is concluded that individual parameter 

estimate results for unidimensional and 1-level models for the PISA 2009 mathematics 

items imply that mathematical literacy is a unidimensional construct that unifies all three 

dimensions (content, process, and context) and their sub-dimensions. Although all of the 

items could be assigned to a different category in terms of different dimensions, they 

essentially measure the same overall construct: mathematical literacy. The factor loadings 

of level-1 latent variables are very high for 2-level models. This, however, provides a 

strong support for higher order structure of the construct that underlies the mathematics 

items. That is, level-1 factors are good measures of the level-2 variable, GML (general 

mathematical literacy) in terms of the three dimensions. These results, considered 

altogether, do not contradict the multidimensional structure of the PISA 2009 

mathematics items. However, there is more evidence that supports the unidimensionality.  

Model Comparisons 

As mentioned above, DIFFTEST method is used to compare nested models 

(Muthén & Muthén, 2012). To remedy large sample size effect for significant results, an 

extension of ∆CFI method (Cheung & Rensvold, 2002) is used. To revisit the  
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Table 4.21. Summary of individual parameter estimates for 2009 
 

Models 

Item loadings Items with low 
R-square 
(<0.250) 

Correlations 
b/w L-1 
factors 

L-1 
loadings 
onto L-2 

Low 
(<0.400) 

High 
(>0.800) 

 
Model 1: 
1F-GML 

 
M65, M75 

 
M27, M28 

 
M01, M20, M36, 
M40, M51, M65, 
M66, M75, M83 
 

 
N/A 

 
N/A 

Model 2: 
1-L 
Content 
 

M75 M27, M28 M40, M51, M65, 
M66, M75 
 

>0.860 N/A 

Model 3: 
1-L 
Process 

M65, M75 M27, M28 M01, M20, M36, 
M40, M51, M65, 
M66, M75, M83 
 

>0.981 N/A 

Model 4: 
1-L 
Context 

M01, M36, 
M40, M65, 
M75 

M27, M28 M01, M20, M36, 
M40, M51, M65, 
M66, M75 
 

>0.907 N/A 

Model 5: 
2-L 
Content 
 

M75 M27, M28 M24, M40, M51, 
M65, M75 
 

N/A >0.841 

Model 6: 
2-L 
Process 

M65, M75 M27, M28 M01, M20, M36, 
M40, M51, M65, 
M66, M75, M83 
 

N/A >0.989 

Model 7: 
2-L 
Context 

M01, M36, 
M40, M65, 
M75 

M27, M28 M01, M20, M36, 
M40, M51, M65, 
M66, M75 

N/A >0.882 

 
criterion, a ∆CFI less than or equal to -0.01 gives a significant result, which provides 

evidence for a less restrictive model. In case of non-significant results for both 

DIFFTEST test and ∆CFI method, the conclusion is the same: although the fit of models 

are the same, a more restrictive model is preferred over the less restrictive one for the 

data because it does not lose significant amount of fit.  
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Table 4.22. DIFFTEST results for 2009 models 
 

1F-­‐GML	
  versus	
   	
  
L2-­‐Content	
   L2-­‐Process	
   L2-­‐Context	
  

	
  	
  	
  	
  
Value	
   55.116	
   1.878	
   23.658	
  
∆df	
   4	
   1	
   4	
  
p-­‐value	
   0.0000*	
   0.1705	
   0.0001*	
  
	
   	
  

	
  

L2-­‐content	
  	
  
vs.	
  

4F-­‐Content	
  

L2-­‐Process	
  
vs.	
  

3F-­‐Process	
  

L2-­‐context	
  	
  
vs.	
  

4F-­‐Context	
  
	
  	
  	
  	
  
Value	
  

	
  
4.512	
  

	
  
0.851	
  

	
  
3.715	
  

∆df	
   2	
   2	
   2	
  
p-­‐value	
   0.1048	
   0.6535	
   0.1561	
  

1F-­‐GML	
  versus	
  
	
  

	
   	
  
	
  

	
  
	
   4F-­‐Content	
   3F-­‐Process	
   4F-­‐Content	
  

Value	
  
	
  

60.436	
   1.667	
   26.756	
  
∆df	
   6	
   3	
   6	
  
p-­‐value	
   0.0000*	
   0.6442	
   0.0002*	
  
* Significant at 0.05 	
  

 
As in the 2003 and 2006 cycles, there are seven models compared to each other in 

groups of two. The DIFFTEST results are given in Table 4.22 and ∆CFI results are given 

in Table 4.23. According to the DIFFTEST results, five comparisons are found to be non-

significant: 1F-GML versus L2-Process, 1F-GML versus L1-Process, L2-Content versus 

L1-Content, L2-Process versus L1-Process, and L2-Context versus L1-Context. So, the 

two models in each pair of comparisons perform about the same. However, the more 

restrictive models are preferable because of their parsimony. Thus, the unidimensional 

model is preferred over the other multidimensional models of process dimension. 
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Similarly, 2-level models are preferred over 1-level models for all three dimensions 

(content, process, and context. The other four comparisons are found to be significant. 

Table 4.23. ∆CFI results for 2009 model comparisons 
 

 1F-GML vs. 
L2-Content 

1F-GML vs. 
L2-Process 

1F-GML vs. 
L2-Context 

∆CFI 
 

-0.03* 0 -0.01* 

 L2-Content vs. 
4F-Content 

L2-Process vs. 
3F-Process 

L2-Context vs. 
4F-Context 

∆CFI 
 

0 0 0 

 1F-GML vs. 
4F-Content 

1F-GML vs. 
3F-Process 

1F-GML vs. 
4F-Context 

∆CFI -0.03* 0 -0.01* 

* Significant at -0.01  
 

The ∆CFI results revealed exactly the same conclusions as DIFFTEST results. 

Four comparisons are significant: 1F-GML versus L2-Content, 1F-GML versus 4F-

Content, 1F-GML versus L2-Context, and 1F-GML versus 4F-Context. The L2-Content 

and L1-Content models are preferred to the 1F-GML (∆CFI = -0.03). Likewise, the L2-

Context and L1-Context models are preferred to the 1F-GML (∆CFI = -0.01). When the 

1-level and 2-level models are compared to each other for the content and context 

dimensions, it is found that model comparison is not significant (∆CFI = 0). Therefore, 

the more restrictive (2-level) models are better for the content and context dimensions. 

These results however somewhat different than model comparison results for 2003. The 

differences will be discussed in the longitudinal section at the end of this chapter.  

To summarize the model comparison results, it would make sense to take them at 

hand according to each dimension. For the content and context dimensions, the 2-level 



 

115 

model is preferred to the1-level correlated four-factors model, which is preferred to the 

unidimensional model. Although there is no specific ranking for the process dimension 

because of no significant differentiation among different models, there is a preference.   

The more restrictive model is preferred. The unidimensional model is preferred over the 

2-level process and 1-level correlated factors (3F-Process) models.  

Figure 4.3 illustrates the summary of models comparisons for 2006. The “>” sign 

refers to a ranking where the model on the left is preferred to the one on the right. The 

“≥” sign is used for models that are indifferent in terms of their fit performance to the 

data but the model on the left is always preferred for its parsimony.  

Summary of 2009 Results 

To begin with, all seven models for the PISA 2009 mathematics items fit the data 

pretty well as in the 2003 and 2006 cycles. This implies that the dimensionality of the 

PISA 2009 mathematics items do not contradict any of the models proposed by the PISA 

mathematics framework. Connecting these results to the first research question (response-

framework correspondence), overall model-fit results do not indicate any contradiction 

for the correspondence between dimensional structure of the mathematics items and 

mathematical literacy framework. However, there is more evidence supporting the 

unidimensionality of the mathematics items. To better understand how each model 

corresponds to individual items, parameter estimates were evaluated. First of all, all 

parameter estimates were found significant for each of the seven models, meaning that all 

models provide a good account for factor loadings. In other words, each mathematics 

item plays an important role in different dimensionality models. This further supports the 
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evidence that the mathematics framework is reflected in the PISA 2009 mathematics 

items through the student response data with respect to the three dimensions. 

 

Figure 4.3. Model Comparisons for 2009 
 

What is different than the 2003 and 2006 results is that the items whose factor 

loadings and R-square values are around lower and upper boundaries of critical values 

are not as similar across all models as in 2003 and 2006 results (see Table 4.21). 

Unfortunately, none of these items are available for any further analysis. There are also 

some differences from the 2003 and 2006 results in terms of these critical items, which 

will be discussed later in the chapter. Moreover, the factor loading values for each 

mathematics item are almost identical across models (see Appendix C for individual 

factor loadings). It can be concluded that the items psychometrically behave the same in 

all dimensions. That is, regardless of the dimension (e.g., whether it is an uncertainty 

(UN), a reflection (REF), or scientific (SCI) question) an item’s loading and explained 

variation by a specific model is the same. 

Correlations between the latent variables for 1-level models are very high for all 

dimensions (see Table 4.18, Table 4.19, and Table 4.20). High correlations provide 

evidence supporting a unidimensional model rather than multidimensional correlated-

factor models for each the three dimensions.  

Content: 2-Level Model > 1-Level Model > 1F-GML Model 

Process: 1F-GML Model ≥ 2-Level Model ≥ 1-Level Model 

Context: 2-Level Model > 1-Level Model > 1F-GML Model 
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The level-1 factors’ factor loadings onto level-2 latent variable (GML) are very 

high for all dimensions. This provides a strong support for a higher order structure of the 

construct that underlies the mathematics items. 

Model comparisons also indicate that the unidimensional model is preferable over 

the 1-level and 2-level models for the process dimension. For the content and contexts 

dimensions, the 2-level model is preferred to the 1-level correlated four-factors model, 

which is preferred to the unidimensional model. QT (quantity), SS (space and shape), CR 

(change and relationship), and UN (uncertainty) dimensions are a good measure of the 

global construct, GML (general mathematical literacy) in terms of content. Similarly, 

PER (personal), PUB (public), EDOP (educational/occupational), and SCI (scientific) 

dimensions are also good measures of the GML construct in terms of context. Revisiting 

the answer to the second research question, the unidimensional model is preferable for 

process dimension. However, in terms of content and context structures of mathematics 

items, the 2-level models better represent the dimensional structure of PISA mathematics 

items. To conclude, unidimensional structure explains the mathematics items best when 

process dimension is taken into account. However, a rather multidimensional structure 

represents the mathematics items in terms of the content and context dimensions. The 

results provide evidence for both unidimensionality and multidimensionality. However, 

there is additional evidence for the unidimensionality (high correlations between the 1-

level models). Thus, overall results conclude that although the multidimensionality 

cannot be disproven, there is stronger evidence that supports the unidimensionality of the 

PISA mathematics items. 
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Longitudinal Evaluation of Results  

The third research question in this dissertation is about the change in the 

dimensional structure of the PISA mathematics items over time. This is basically 

comparing the answers to the first and the second research questions across the three 

cycles. The results related to the first research question, model-fit indices and individual 

parameter results, are first discussed across cycles. Then, the model comparison results, 

which relate to the second research question, are also compared across cycles. 

First of all, overall results for model-fit for all seven models were found to be 

unchanged across cycles. There are some changes in values of fit indices; however, those 

changes are very small and negligible. For example, TLI/CFI values increase from 

0.970’s to 0.980’s from 2003 to 2006 for all models. These values remain almost the 

same from 2006 and 2009. Thus, all seven models for the PISA mathematics items fit the 

data in all the cycles: 2003, 2006, and 2009, which implies that there is evidence 

supporting both unidimensionality and multidimensionality of the PISA mathematics 

items in terms of the content, process, and context dimensions. However, there is 

additional evidence for the unidimensionality (high correlations between the 1-level 

models). Thus, overall results conclude that although the multidimensionality cannot be 

disproven, there is stronger evidence that supports the unidimensionality of the PISA 

mathematics items. 

There are some differences across cycles in terms of critical items, whose factor 

loadings or R-square values are either at the lower or upper end of the scale. For example, 

the items M75, M82, and M83 have low factor loadings for all seven models in 2003  
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while only the item M24 has the lowest factor loading in 2006 and so do the items M65 

and M75 in 2009. On the other hand, there are many commonalities, too. For example, 

the item M28 is among the highest factor loadings in all cycles. Table 4.24 gives a full 

comparison of interesting items by models and cycles. Identifying interesting items is 

important because one could determine what a good/poor mathematics item looks like in 

terms of a measure of the construct, mathematical literacy’s different dimensions. Further 

analyses that are qualitative in nature are needed to make those judgments, but 

unfortunately, since none of these interesting items were made public by PISA, those 

analyses could not be included in this dissertation.  

Appendix C provides all the factor loadings by each item for different cycles and 

models. Individual factor loading values for each mathematics item do not change much 

in value across cycles or across models. This is very interesting because this means that 

when an item has a high factor loading in one model, then it tends to have high factor 

loadings in the other models as well. That is, the degree to which that item is explained 

by the different dimensions of the construct, general mathematical literacy, in all seven 

models is about the same. Having such stability in the factor loadings indicates the 

consistency of the PISA mathematics items and the PISA mathematics framework across 

cycles.  

Model comparison results for 2006 and 2009 revealed similar conclusions. For the 

content and context dimensions, the 2-level model is preferred to the1-level correlated 

four-factors model, which is preferred to the unidimensional model. Although there is no 

specific ranking for the process dimension because of no significant differentiation 
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among different models, there is a preference. The more restrictive model is preferred. 

The unidimensional model is preferred over the 2-level process and 1-level correlated 

factors (3F-Process) models. The same conclusions for the content and process 

dimensions apply in the year 2003. However, for the 2003 context dimension, the results 

were different. There is no significant differentiation among different models for 2003 

context dimension. However, the more restrictive model, 1F-GML, is preferred. 

When each dimension is evaluated longitudinally, it is found that the content 

dimension is stable across cycles. The 2-level model is always better. The results are also 

consistent for the process dimension across cycles. However, the unidimensional 

structure is better supported by evidence than the higher order process structures. Lastly, 

it appears that the context dimension showed some inconsistency in terms of best 

structural representation of mathematics items. In 2003, the unidimensional model is 

preferable over the multidimensional context models. In 2006 and 2009, 2-level model is 

found significantly preferable to the unidimensional model. However, when all of it is 

taken together, it could be concluded that 2-level model is the best structural 

representation for the context dimension.  

To conclude, model comparison results revealed pretty consistent results across 

cycles. The 2-level model is found performing better with the mathematics items in terms 

of the content and the context dimensions. That is, a multidimensional content and 

context models are preferable to the unidimensional model. However, this is not the case 

for the process dimension. Multidimensional process models are not preferred to the 

unidimensional model. These conclusions imply that the dimensional nature of content 
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and context dimensions in the assessment framework is reflected in the PISA 

mathematics items through the student responses. QT (quantity), SS (space and shape), 

CR (change and relationship), and UN (uncertainty) dimensions are a good measure of 

the global construct, GML (general mathematical literacy) in terms of content. Similarly, 

PER (personal), PUB (public), EDOP (educational/occupational), and SCI (scientific) 

dimensions are also good measures of the GML construct in terms of context.  

The dimensional structure of the process dimension given in the mathematics 

framework is not clearly reflected in the mathematics items. Therefore, as provided in the 

PISA’s mathematics assessment framework, REP (reproduction), CON (connections), 

and REF (reflection) dimensions might not be a good measure for general mathematical 

literacy. There are two possible explanations for this. The process dimension might not 

be as fully developed as the other two dimensions. The process dimension comprises of 8 

competency clusters: mathematical thinking and reasoning, mathematical argumentation, 

modeling, problem posing and solving, representation, symbols and formalism, 

communication, and aids and tools (OECD, 2009a). In order to operationalize these 

competencies, they are grouped into three process dimensions. It might be the case that 

these clusters do not differ much so they behave as one construct. Secondly, the items 

might not be well categorized in terms of these competency clusters. That is, a question 

might be drawn significantly on more than one dimensions of process. Therefore, this 

dimension and item categorizations based on it should be revisited. 
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Summary of Results 

The results in this chapter are organized in the following order: model-fit indices, 

individual item parameters, and model comparisons. The summary of the overall results 

here follows the same organization. Results for model-fit indices and individual 

parameter estimates address the first research question: What is the correspondence 

between the dimensional structure of the PISA mathematics items and PISA’s 

mathematical literacy assessment framework in terms of the content, process, and context 

dimensions? Model comparison results in each cycle explore the models that best 

represent the dimensional structure of the PISA mathematics items in terms of different 

dimensions. These relate to the second research question. Finally, looking across the 

cycles to see how different models change over time provides the longitudinal aspect and 

addresses the last research question. A summary of results is given for each cycle at the 

end of each results sub-section. Although the results could nicely be partitioned into 

sections in order to draw conclusions for this study, all the evidence gathered has to be 

considered as a whole. Overall results are summarized next. 

All seven models, including the unidimensional and multidimensional, for the 

PISA mathematics items were found a good fit for all three implementation cycles: 2003, 

2006, and 2009. In other words, an analysis of the mathematics items does not contradict 

any of the models proposed for the dimensionality of PISA mathematics framework. 

Relating these results to the first research question (response-framework 

correspondence), overall model-fit results indicate a good reflection of the mathematical 

literacy framework in the structural representation of the PISA mathematics items 
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through student responses. This conclusion implies that there is evidence supporting both 

the unidimensionality and multidimensionality of mathematics framework in terms of the 

content, process, and context dimensions. 

Second, all of the parameter estimates are found significant in each model and 

each cycle, meaning that all models provide a good account for factor loadings. In other 

words, each mathematics item plays an important role in different dimensionality models 

across cycles. This further supports that the mathematics framework is reflected in the 

PISA mathematics items through the student response data with respect to the three 

dimensions. There are some differences across cycles in terms of critical items whose 

factor loadings or R-square values are either at the lower or upper end of the scale. 

However, further item analysis to study what might cause these differences was not 

possible because none of these items have been released by PISA. Limited number of 

items has been released. Sample released items are given in Appendix B.  

Model comparison results are very consistent for the content and context 

dimensions across the cycles. The 2-level model is found to be performing better with the 

PISA mathematics items in terms of the content and the context dimensions. That is, a 

multidimensional content and context models are more plausible than the unidimensional 

model.  However, this is not the case for the process dimension, where the 

unidimensional model is preferred to the multidimensional models. 
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Chapter 5: Discussion and Conclusions 

Mathematical literacy is defined as a multidimensional construct as it is widely 

documented in the literature (e.g., Kilpatrick, Swafford, & Findell, 2001; OECD, 2003; 

Ojose, 2011; Steen, 2001). When assessing students’ mathematical literacy, whether the 

focus is in the classroom or large-scale, assessment tasks should operationalize 

mathematical literacy as a multidimensional construct rather than a single measure (e.g., 

general mathematics ability). A rigorous assessment design in mathematics requires 

designers (e.g., mathematics teachers, educators, and researchers) to pay careful attention 

to the connection among (1) the definition and nature of mathematical literacy as a 

construct and how people learn it, (2) development of assessment tasks that elicit 

mathematical literacy, and (3) an interpretation framework, which relate with the 

construct, of responses (NRC, 2001). This connection between the important components 

of an assessment design could only be ensured through a well-developed theoretical 

framework and empirical evidence that shows this theoretical framework is well-reflected 

in the assessment structure when observing students’ responses. Therefore, the 

multidimensional structure of a mathematical literacy framework should reflect itself in 

its assessment. 

What this connection implies is that an item should be designed to be a measure 

of mathematical literacy in a way that is defined in the assessment framework, and that 

this construct should be elicited in students’ responses to the item. After the design, each 

item should statistically be investigated to ensure it measures what it is supposed to 

measure. Moreover, the test on the collection of items, as a whole, should reflect the 
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structure of the construct being measured, which should be consistent with the theoretical 

framework supporting the construct being measured. Measuring what is intended to 

measure is referred to as the validity of an assessment (AERA, APA, NCME, 1999; 

Cizek, Rosenberg, & Koons 2008; Loveinger, 1957; Messick, 1989). Dimensionality 

analyses provide empirical evidence for the correspondence between the theoretical 

framework and the assessment instrument. This, in turn, also means providing evidence 

for the construct validity of a set of items given in an assessment. Thus, dimensionality 

analysis is seen as very important for construct validation of an assessment. It is only 

possible to analyze the dimensionality of a set of items through the use of student 

responses to the items. When there is a strong prior expectation about the dimensional 

structure of an assessment (i.e., when there is a robust framework), confirmatory factor 

analysis (CFA) is used to analyze the dimensionality of the set of items through student 

responses (Tate, 2002) and verify for structural consistency. 

The psychometric techniques that are used to calibrate items and produce final 

performance scores for individuals, and average performance scores for groups, 

comparison purposes might rely on the some basic assumptions about the dimensionality 

of an assessment instrument. The majority of contemporary tests are based on IRT 

models that assume unidimensionality (e.g., Rasch models). If the structure of an 

assessment designed using a Rasch model fails to satisfy this assumption of 

unidimensionality, then the interpretation of performance results might be inaccurate and 

misleading, generating damages in the consequential validity of the test (Messick, 1989). 
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Therefore, the dimensionality analysis is an important aspect of a validity study of an 

assessment instrument. 

PISA provides a very rigorous mathematical literacy framework. In this 

framework, mathematical literacy is defined as a multidimensional construct comprising 

of the content, process, and context dimensions (OECD, 2009a). However, whether this 

multidimensionality is reflected in its mathematics assessment has not been widely 

studied. Schwab (2007) investigated the scientific literacy and dimensionality of the 

PISA 2003 science items. She found that student responses to the PISA 2003 science 

items reflected a unidimensional structure. Thus, the multidimensionality of PISA’s 

scientific literacy framework is not reflected in the PISA 2003 science items. Ekmekci 

and Carmona (2012) explored the factorial structure of the PISA 2003 mathematics items 

for students in the United States. They detected unidimensionality in the PISA 2003 

mathematics items as well. Both of these studies had a narrower focus, using only a 

subset of the available data. The first study used the student response data from English 

speaking countries (Australia, Canada, Ireland, New Zealand, the United Kingdom, and 

the United States). The latter study looked only at the U.S. data for PISA 2003 

mathematics items. 

This study investigated the dimensionality of the PISA mathematics items for 

three different cycles (2003, 2006, and 2009) using the student responses from 30 OECD 

countries. Dimensionality analyses were conducted through CFA methods. Seven CFA 

models were proposed based on the OECD’s mathematical literacy framework. These 

models were then compared to each other to test the hypotheses about the dimensional 
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structure of PISA mathematics items for the three cycles. The models were: single factor 

model (interpreting the general mathematical literacy, GML, as the only latent factor), 1-

level (four-factor) content model, 1-level (three-factor) process model, 1-level (four-

factor) context model, 2-level (higher order) content model, 2-level (higher order) 

process model, and 2-level (higher order) context model.  

 CFA analyses comprised three parts for each cycle: fit of models, individual 

parameter estimates, and model comparisons. Model-fit indices and individual parameter 

estimates for each model in each cycle provided evidence to address the first research 

question (correspondence between the framework and student responses). Model 

comparisons relate to the second research question (the best representation of 

dimensional structure). Finally, evaluating these results over time across the cycles and 

making longitudinal conclusions addressed the third research question. Answers to the 

research questions and their implications for assessment in mathematics are given below. 

Research Questions and Conclusions 

The first research question guiding this study is: 

What is the correspondence between the dimensional structure of the PISA 

mathematics items and PISA’s mathematical literacy assessment framework in 

terms of the content, process, and context dimensions? 

Seven models (including the unidimensional and six multidimensional models) were 

proposed based on the theoretical framework for PISA’s mathematical literacy domain. 

All models for the PISA mathematics items were found to have a good model-fit when 

analyzing the student responses to the PISA mathematics items for three implementation 
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cycles: 2003, 2006, and 2009. This shows that the PISA mathematics items do not 

contradict any of the models proposed for their dimensionality based on the PISA 

mathematics framework. This conclusion implies that there is evidence supporting both 

the unidimensionality and multidimensionality of the PISA mathematics items in terms of 

the content, process, and context dimensions. However, the answer to the first research 

question becomes clearer after the relationships among the PISA mathematics items are 

further evaluated through their individual parameter estimates.  

All of the parameter estimates are found to be significant for each of the seven 

models and for three implementation cycles (2003, 2006, and 2009), meaning that all 

models provide a good account for the relationship among the PISA mathematics items. 

In other words, each mathematics item plays an important role in different dimensionality 

models across cycles. Moreover, the factor loadings for level-1 variables were very high 

in all 2-level models for all cycles. This supports the evidence that the multidimensional 

nature of the mathematics framework is reflected in the mathematics items with respect 

to the three dimensions. On the other hand, correlations between the latent variable in all 

1-level models were very high, supporting the existence of unidimensionality. This is 

consistent with CFA model-fit results, in which the unidimensional models fit the 

response data for the mathematics items well enough.  

Although the results could nicely be partitioned into sections in order to draw 

conclusions for this study, it is important to look at and make sense of all the evidence in 

its totality. When considered as a whole, the results indicate evidence supporting both 

unidimensionality and multidimensionality. However, stronger evidence was found to 
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support the unidimensionality of the PISA mathematics items. This satisfies the 

unidimensionality assumption for the IRT, contributing to the validation of the use of the 

Rasch model to produce and scale performance scores for the PISA mathematical literacy 

assessment. However, it is not supportive of the theoretical framework of the 

multidimensional nature of mathematical literacy.   

Therefore, the connection between the interpretation and cognition components 

(NRC, 2001) of PISA mathematics assessment is not very strong. The reflection of the 

multidimensional nature of mathematical literacy in the PISA’s framework on the 

mathematics items is subtle. Thus, the answer to the first research questions is that the 

OECD’s mathematical literacy framework is reflected only minimally in the PISA 

mathematics assessment.  

Although the models for multidimensionality agree with the mathematics items, 

stronger evidence for the unidimensionality implies essential unidimensionality (Stout, 

1987). Therefore, weaker indication of multidimensionality might stem from the minor 

dimensions around the dominant ability (Tate, 2002) of general mathematics literacy 

(GML). That is, the construct GML is so dominant that other dimensions could only 

minimally explain the relationship between the mathematics items. The relaxation of the 

strict unidimensionality (Brandt, 2008; Stout, 1987, 1990; Tate 2002) reconciles the 

evidence for both unidimensionality and multidimensionality found in the PISA 

mathematics items.  

To conclude, large-scale assessments could be valuable only if they are well 

designed and appropriately used (NRC, 2001). One of the important questions to be 
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addressed in a good assessment design is what views of mathematical literacy are these 

large-scale assessments designed to reflect? The weak connection between PISA’s 

assessment framework and PISA mathematics items implies a discrepancy between the 

cognition and interpretation components, endangering the construct validity of PISA. 

Moreover, consequences of this discrepancy might have direct and important impact on 

educational systems of countries because the ministries of education in participating 

countries take PISA results seriously. Thus, the ways that could strengthen the connection 

between the cognition and interpretation components of the PISA assessment design 

should be looked for.  

The second research question guiding this study was: 

What is the best representation for the dimensional structure of the PISA 

mathematics items for implementation cycles 2003, 2006, and 2009? 

The model comparison results provided evidence to address this question. The results for 

2006 and 2009 produced identical conclusions for the content and the context 

dimensions: the 2-level content and context models are preferable to their 1-level 

counterparts (correlated four-factors model), which are preferable to the unidimensional 

model. This implies that multidimensionality is preferable to unidimensionality in terms 

of content and context dimensions in the 2006 and 2009 cycles. The same conclusion was 

reached for the content dimension in 2003. However, in terms of the context dimension in 

2003, multidimensional models and the unidimensional model perform about the same. 

Thus, there is no specific ranking for the context dimension in 2003, although there is a 

preference for the more restrictive model, which is the unidimensional model. 
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 Model comparison for the process dimension was consistent across all cycles. No 

significant difference was found among the unidimensional, 1-level, and 2-level process 

models. As for the context dimension in 2003, the more restrictive model is preferred. 

The unidimensional model is preferred over the 2-level process and 1-level correlated 

factors (3F-Process) models.  

The results, then, imply different things for each of the three dimensions. In terms 

of the content dimension: QT (quantity), SS (space and shape), CR (change and 

relationship), and UN (uncertainty) dimensions are a good measure of the global 

construct, GML (general mathematical literacy). This conclusion is consistent across all 

cycles. In terms of the process dimension, a unidimensional model is preferred although 

all of the models were found to be equally good with respect to response data for the 

mathematics items. So, for the process dimensions, there is not a single best 

representation for the dimensional structure of the PISA mathematics items. This 

conclusion is also consistent throughout different cycles. There are two inconsistent 

conclusions, however, for the context dimension. In 2003, a unidimensional model is 

preferred although all of the models for context dimension were found to be equally good 

with respect to the student response data for the PISA mathematics items. In 2006 and 

2009, PER (personal), PUB (public), EDOP (educational/occupational), and SCI 

(scientific) dimensions were found to be good measures of the GML construct in terms of 

the context dimension.  

Therefore, results again provide evidence for both unidimensionality and 

multidimensionality in terms of different dimensions, giving a non-definitive answer to 

the second research question: the best representation of the dimensional structure of the 

PISA mathematics items depends on the dimension of mathematical literacy.  



 

133 

The multidimensionality with respect to some dimensions is more evident than it 

is for other dimension(s). Relating to the essential dimensionality discussion (Tate, 2002), 

it could be the case that content and context sub-dimensions behave as the minor 

dimensions around the major construct, GML, explaining the relationships among the 

PISA mathematics items to some extent. However, process sub-dimensions cannot 

explain any of the relationships among the mathematics items. A revision of the 

definition and organization of the process dimension or the classification of the 

mathematics items might be needed. Reconceptualization of the process dimension of the 

PISA mathematical literacy framework might help for reaching a better multidimensional 

process structure in the mathematics items. 

The third research question guiding this study is: 

How does the dimensional structure of the PISA mathematics items change over 

time? 

One of the findings from the longitudinal analysis is that there were some differences 

across cycles in terms of the items whose factor loadings or R-square values were either 

too low or too high. Since none of these items are among the ones that have been released 

by PISA, it was not possible to do a finer grained-size item analysis by looking at the 

actual item (see Appendix B for sample released items). If they had been available, 

qualitative item analysis techniques could have been conduced to further investigate what 

might explain their variation (by the least amount or the most) through different models.  

Secondly, the individual factor loadings for each mathematics item did not change 

much in value across cycles or across models. This is very interesting because this means 

that an item, depending on its quality, is explained by a different underlying factor 
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(different dimensions of mathematical literacy) by the same amount. An item loads by 

about the same amount onto GML factor (as single dimension) and other factors, say, 

quantity, (a content dimension), reproduction (a process dimension), and personal (a 

context dimension). This might be because all different factors behave as one since the 

items do not distinguish much among the factors (constructs) in terms of their 

relationships to the constructs as proposed in the CFA models. This seems to further 

support the unidimensionality of the PISA mathematics items. 

Lastly, the model comparison results were very stable across cycles for the 

content and process dimensions. The 2-level model is found to be performing better with 

the response data for the PISA mathematics items in terms of the content for all cycles. 

That is, a multidimensional content structure is preferable to the unidimensional 

structure. However, for the process dimension, evidence supports a unidimensional 

structure over multidimensionality. The unidimensional model and the multidimensional 

process models were found to perform equally well in all cycles. In this case, 

unidimensional model is preferred for its parsimony.  

For the context dimension, the results were not found to be as consistent. In 2003, 

the unidimensional model and the multidimensional context models performed equally 

well. In 2006 and 2009, the 2-level context models were found to be performing better. 

To summarize, the mathematics items are found to be very stable across cycles in 

terms of their variation explained by the models. Explanations of the mathematics items 

by underlying latent constructs within each dimension were also stable. The model 

comparisons were also consistent across cycles except for the context dimension.  
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The overall conclusions are trifold. First, the PISA mathematics items are pretty 

stable, psychometrically speaking, across cycles. Second, the response data for the PISA 

mathematics items does not contradict their unidimensionality nor does it contradict their 

multidimensionality. Lastly, the multidimensionality of the content and context 

dimensions is prominent in all cycles, while the process dimension could not reflect its 

multidimensionality in any cycle. 

Therefore, evidence supports both the IRT assumption of unidimensionality and 

the expectation of multidimensionality. However, there is stronger evidence for 

unidimensionality, validating the use of a Rasch model and contradicting the 

multidimensional nature of mathematical literacy as supported in the theoretical 

framework. In an attempt to reconcile the evidence for both unidimensionality of 

multidimensionality of a construct and an assessment instrument in practice, some 

researchers have addressed the relaxation of the strict dimensionality assumptions (e.g., 

Tate 2002). “It is universally recognized that the strict assumption of unidimensionality is 

always violated to some degree, and practitioners are usually willing to accept essentially 

unidimensional structure for an IRT-based test (Stout, 1987)” (Tate, 2002, p. 159).  

Psychometrically speaking, although the findings are mixed in terms of statistical 

structure of the PISA mathematics items as concluded from evidence for both 

multidimensionality and unidimensionality, they are stable throughout different cycles, 

contributing to the construct validity (Loevinger, 1957) of the PISA assessment. These 

findings appear to be somewhat complicated. However, it is clear that none of the models 

contradict either the assumption of unidimensionality for IRT based assessments or 
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multidimensionality expectations provided in the rigorous assessment framework of 

PISA for mathematics domain. In practical terms, the following two statements hold: 

• The unidimensionality assumption of IRT models is not violated in PISA. 

• The multidimensional structure of the PISA mathematics framework is not 

violated. 

 While this study uses one of the most robust tools, CFA, to analyze the 

dimensionality (Tate, 2002) of one of the most robust and respected international 

assessment designs, PISA, in mathematics (OECD, 2009a), the results are, 

psychometrically speaking, somewhat complicated and ambiguous. By only looking at 

psychometric measures/methods, it is difficult to determine what the test is measuring. 

Qualitative analyses looking at the individual mathematics items are definitely needed to 

make sound judgments about the construct validity of each PISA mathematics item. It is 

important to determine what each item measures conceptually especially considering the 

high stakes decisions associated with the interpretation of results, which include national 

decisions on educational reform for many countries. Having said that, very few items 

have been released and made available for PISA mathematics domain, all of which had 

moderate to high factor loadings. Appendix B provides sample items. None of the items 

whose individual parameter estimates fall below the cut-off values or are among the ones 

with highest factor loadings have been released.  

Implications 

The results of this study demonstrated rather a weak relationship between the 

dimensional structure of the PISA mathematics items and PISA’s mathematical literacy 
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framework. In terms of score reporting, this finding suggests that the common practice of 

reporting separate dimension scores (i.e., a score for Quantity, another score for Change 

and Relationship, etc.) does not have strong psychometric support. 

Loveinger (1957) suggests that the items which best conform to the structural 

model should be used in the actual assessment. The conclusions made in this study, then, 

have the following implications for PISA in the light of this recommendation. First, since 

they have the least conformity to the structural models produced out of the assessment 

framework, the PISA mathematics items that have low factor loadings should be re-

visited for their content, language, scoring, and other characteristics such as item format. 

The dimensionality of revised set of items should be re-assessed ordinarily. If the same 

items still psychometrically perform poor, they should be discarded to increase the 

correspondence between the assessment framework and the actual test items, in turn 

increasing the construct validity of the whole assessment and, thus, the accuracy of the 

interpretations to be made. 

In addition, this study, in parallel with the literature, also demonstrated that the 

dimensionality analysis is important in the sense that having one of most the robust 

frameworks for mathematical literacy and strong content validation (expert opinions) 

such as PISA’s does not ensure a perfect execution of the intended assessment plan. So, 

the psychometricians need to be more cautious about the item selection and construct 

validation as well as other gathering evidence for other types of validity (Loveinger, 

1957).  



 

138 

Psychometricians should also be cautious about what Loveinger (1957) calls “the 

problem of homogeneity,” when developing an assessment test. If the goal of the 

assessment is to predict a single construct such as mathematical literacy, which is defined 

in the literature in a multidimensional manner, then the data should not conform to 

unidimensional model. Likewise, if the data conforms to a unidimensional model then the 

assessment cannot undertake to predict a construct in a multidimensional manner.  

This might have implications for the mathematics education community. 

Mathematics educators might need to reconsider and conceptualize the mathematical 

literacy as a construct. Learning, instruction, and assessment are intertwined. If PISA's 

current design does not allow assessing mathematical literacy in a multidimensional 

manner, then one alternative would be to consider mathematical literacy in a 

unidimensional manner. However, the fact that mathematical literacy encompasses 

several knowledge and skills as clearly (and in a very robust way) demonstrated in the 

literature from the cognitive sciences and other fields of study disagrees treating 

mathematical literacy as a single-dimensional construct in learning and instruction. 

Therefore, it might be the Rasch models preventing from assessing mathematical literacy 

in a multidimensional and valid way. If this is the case, then that other psychometric 

techniques or assessment designs are required. 

Policy makers, too, need to be aware of the issues related to test construction and 

validation. The dimensionality analysis is one of the important components to be 

addressed in test construction and use. Policy makers need to consider these validity 
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issues when making judgments about the students’ mathematical literacy and when 

making educational policies based on them.   

Lastly, although it is clear that the dimensions are useful for organizing 

mathematics domain and mathematical literacy assessments and therefore have utility 

independent of the dimensional structure of the assessment, a weaker support for 

multidimensionality might imply that dimensions of mathematical literacy are so 

intertwined that teachers, schools, and curriculum materials should emphasize a holistic 

view of mathematical literacy. That is, rather than focusing on and teaching one 

dimension (or aspect) of mathematical literacy at a time, it should be handled with strong 

connections to other dimensions (or aspects). For example, students are typically taught 

specific mathematics concepts such as average, ratio etc. as stand-alone skills usually out 

of context. However, making connections with other quantitative reasoning skills and 

utilizing many skills to solve a real life problem might become more critical in the 

contemporary education.  

This study analyzed PISA’s framework on the mathematical literacy (OECD, 

2009a), which is a well-developed and comprehensive framework. This framework 

integrates several research-based perspectives on mathematics literacy, which provide a 

detailed description of the multidimensional nature of this construct. For example, the 

literature defines the mathematical literacy in terms of proficiencies or competencies 

(e.g., Kilpatrick, Swafford, & Findell, 2001) and knowledge and skills (e.g., Ojose, 

2011), or according to its connection to real life situations (e.g., Steen, 2001) and content-

wise decomposition of mathematical literacy (e.g., Steen, 2001). PISA’s framework 
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seems to bring all of these views together, therefore providing a broader and more 

detailed view on mathematical literacy. However, some views on mathematical literacy 

are left out from this framework such as critical education (e.g., Freire, 1970; Ojose, 

2011), social and democratic aspects (Frankenstein, 1992; Moses & Cobb, 2001) as well 

as cultural identity perspective (Jablonka, 2003). 

This study provided a dimensionality analysis using data from one of the most 

widely-recognized assessment designs in the world, PISA, which has a well-articulated 

and comprehensive framework on mathematical literacy and a robust psychometric 

design. Yet, the multidimensional nature of mathematical literacy cannot be reflected in 

the assessment instrument well enough. Psychometric methods currently being used for 

most large-scale assessments (Rasch models) may be too limiting to provide evidence for 

the types of constructs the field of mathematics education is interested in and in need of 

assessing. Therefore, other psychometric methods that can be better coordinated with 

multidimensional constructs could provide more valid assessments. The field of 

mathematics education is in high need of new assessment designs that would bring in 

other views on mathematics literacy -beyond those addressed in PISA, together with 

more current psychometric models that allow for assessment of multidimensional 

constructs, and therefore providing a more encompassing perspective and more valid 

assessments, especially those that are implemented at a large-scale and that have such 

high stakes decisions based on these results. 
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Appendix A: 2003 Mathematics Item Descriptions  

ITEM	
   2006	
   2009	
  
Content	
  
Dimension	
  

Process	
  
Dimension	
  

Context	
  
Dimension	
  

M01	
   Yes	
   Yes	
   SS	
  	
   REP	
  	
   PER	
  	
  
M02	
   Yes	
   Yes	
   SS	
  	
   CON	
  	
   EDOP	
  	
  
M03	
   -­‐	
   -­‐	
   CR	
   REP	
  	
   PER	
  	
  
M04	
   -­‐	
   -­‐	
   CR	
  	
   CON	
  	
   PER	
  	
  
M05	
   -­‐	
   -­‐	
   SS	
  	
   REP	
  	
   EDOP	
  	
  
M06	
   -­‐	
   -­‐	
   SS	
  	
   CON	
  	
   EDOP	
  	
  
M07	
   -­‐	
   -­‐	
   SS	
  	
   CON	
  	
   EDOP	
  	
  
M08	
   -­‐	
   -­‐	
   SS	
  	
   CON	
  	
   EDOP	
  	
  
M09	
   -­‐	
   -­‐	
   SS	
  	
   REP	
  	
   EDOP	
  	
  
M10	
   -­‐	
   -­‐	
   CR	
  	
   REP	
  	
   SCI	
  	
  
M11	
   -­‐	
   -­‐	
   CR	
  	
   REP	
  	
   SCI	
  	
  
M12	
   -­‐	
   -­‐	
   CR	
  	
   CON	
  	
   SCI	
  
M13	
   Yes	
   Yes	
   CR	
  	
   CON	
  	
   SCI	
  	
  
M14	
   Yes	
   Yes	
   CR	
  	
   CON	
  	
   SCI	
  	
  
M15	
   Yes	
   Yes	
   CR	
  	
   REF	
  	
   SCI	
  	
  
M16	
   Yes	
   Yes	
   CR	
  	
   CON	
  	
   SCI	
  
M17	
   -­‐	
   -­‐	
   UN	
  	
   CON	
  	
   PUB	
  	
  
M18	
   Yes	
   Yes	
   CR	
  	
   CON	
  	
   EDOP	
  	
  
M19	
   -­‐	
   -­‐	
   SS	
  	
   CON	
  	
   EDOP	
  	
  
M20	
   Yes	
   Yes	
   SS	
  	
   CON	
  	
   EDOP	
  	
  
M21	
   Yes	
   -­‐	
   CR	
  	
   REP	
  	
   PUB	
  	
  
M22	
   Yes	
   -­‐	
   CR	
  	
   CON	
  	
   PUB	
  	
  
M23	
   Yes	
   -­‐	
   CR	
  	
   REF	
  	
   PUB	
  	
  
M24	
   Yes	
   -­‐	
   SS	
  	
   CON	
  	
   PUB	
  
M25	
   -­‐	
   -­‐	
   CR	
  	
   CON	
  	
   PER	
  	
  
M26	
   -­‐	
   -­‐	
   CR	
  	
   REF	
  	
   PER	
  	
  
M27	
   Yes	
   Yes	
   SS	
  	
   CON	
  	
   PUB	
  	
  
M28	
   Yes	
   Yes	
   SS	
  	
   CON	
  	
   PUB	
  	
  
M29	
   -­‐	
   -­‐	
   SS	
  	
   REF	
  	
   PUB	
  	
  
M30	
   Yes	
   Yes	
   UN	
  	
   CON	
  	
   PUB	
  	
  
M31	
   Yes	
   Yes	
   QT	
  	
   REP	
  	
   PUB	
  	
  
M32	
   Yes	
   Yes	
   UN	
  	
   CON	
  	
   PUB	
  	
  
M33	
   -­‐	
   -­‐	
   QT	
  	
   REP	
  	
   PUB	
  	
  
M34	
   -­‐	
   -­‐	
   QT	
  	
   REP	
  	
   PUB	
  	
  
M35	
   -­‐	
   -­‐	
   QT	
  	
   REF	
  	
   PUB	
  	
  
M36	
   Yes	
   Yes	
   UN	
  	
   REF	
  	
   PER	
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ITEM	
   2006	
   2009	
  
Content	
  
Dimension	
  

Process	
  
Dimension	
  

Context	
  
Dimension	
  

M37	
   Yes	
   -­‐	
   UN	
  	
   REP	
  	
   EDOP	
  	
  
M38	
   Yes	
   -­‐	
   UN	
  	
   REF	
  	
   EDOP	
  	
  
M39	
   Yes	
   -­‐	
   UN	
  	
   REF	
  	
   EDOP	
  	
  
M40	
   Yes	
   Yes	
   UN	
  	
   REP	
  	
   PER	
  	
  
M41	
   -­‐	
   -­‐	
   UN	
  	
   REP	
  	
   PUB	
  	
  
M42	
   -­‐	
   -­‐	
   UN	
  	
   CON	
  	
   PUB	
  	
  
M43	
   Yes	
   Yes	
   QT	
  	
   REF	
  	
   PUB	
  	
  
M44	
   Yes	
   Yes	
   CR	
  	
   REP	
  	
   SCI	
  	
  
M45	
   Yes	
   Yes	
   CR	
  	
   REF	
  	
   SCI	
  	
  
M46	
   Yes	
   Yes	
   SS	
  	
   REP	
  	
   PUB	
  	
  
M47	
   Yes	
   Yes	
   SS	
  	
   REF	
  	
   SCI	
  	
  
M48	
   Yes	
   Yes	
   SS	
  	
   CON	
  	
   PUB	
  	
  
M49	
   -­‐	
   -­‐	
   UN	
  	
   REP	
  	
   PER	
  	
  
M50	
   -­‐	
   -­‐	
   UN	
  	
   REP	
  	
   EDOP	
  	
  
M51	
   Yes	
   Yes	
   QT	
  	
   REP	
  	
   EDOP	
  	
  
M52	
   -­‐	
   -­‐	
   QT	
  	
   CON	
  	
   EDOP	
  	
  
M53	
   Yes	
   Yes	
   QT	
  	
   CON	
  	
   PUB	
  	
  
M54	
   Yes	
   Yes	
   QT	
  	
   CON	
  	
   PUB	
  	
  
M55	
   -­‐	
   -­‐	
   UN	
  	
   REF	
  	
   SCI	
  	
  
M56	
   -­‐	
   -­‐	
   UN	
  	
   REF	
  	
   SCI	
  	
  
M57	
   -­‐	
   -­‐	
   QT	
  	
   CON	
  	
   EDOP	
  	
  
M58	
   -­‐	
   -­‐	
   UN	
  	
   CON	
  	
   EDOP	
  	
  
M59	
   -­‐	
   -­‐	
   QT	
  	
   REP	
  	
   PER	
  	
  
M60	
   -­‐	
   -­‐	
   QT	
  	
   REP	
  	
   PER	
  	
  
M61	
   -­‐	
   -­‐	
   QT	
  	
   CON	
  	
   PER	
  	
  
M62	
   -­‐	
   -­‐	
   SS	
  	
   REP	
  	
   EDOP	
  	
  
M63	
   -­‐	
   -­‐	
   SS	
  	
   CON	
  	
   PER	
  	
  
M64	
   Yes	
   Yes	
   QT	
  	
   REF	
  	
   PUB	
  	
  
M65	
   Yes	
   Yes	
   QT	
  	
   REP	
  	
   PUB	
  	
  
M66	
   Yes	
   Yes	
   UN	
  	
   REF	
  	
   PUB	
  	
  
M67	
   Yes	
   Yes	
   CR	
  	
   REF	
  	
   SCI	
  	
  
M68	
   Yes	
   -­‐	
   SS	
  	
   REF	
  	
   PER	
  	
  
M69	
   Yes	
   Yes	
   QT	
  	
   CON	
  	
   SCI	
  	
  
M70	
   Yes	
   Yes	
   QT	
  	
   CON	
  	
   SCI	
  	
  
M71	
   -­‐	
   -­‐	
   UN	
  	
   CON	
  	
   PUB	
  	
  
M72	
   -­‐	
   -­‐	
   CR	
  	
   REP	
  	
   PUB	
  	
  
M73	
   -­‐	
   -­‐	
   CR	
  	
   REF	
  	
   PUB	
  	
  
M74	
   Yes	
   -­‐	
   UN	
  	
   CON	
  	
   PUB	
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ITEM	
   2006	
   2009	
  
Content	
  
Dimension	
  

Process	
  
Dimension	
  

Context	
  
Dimension	
  

M75	
   Yes	
   Yes	
   QT	
  	
   REP	
  	
   PER	
  	
  
M76	
   Yes	
   Yes	
   UN	
  	
   CON	
  	
   EDOP	
  	
  
M77	
   -­‐	
   -­‐	
   QT	
  	
   REP	
  	
   EDOP	
  	
  
M78	
   Yes	
   -­‐	
   QT	
  	
   CON	
  	
   PER	
  	
  
M79	
   Yes	
   -­‐	
   QT	
  	
   CON	
  	
   PER	
  	
  
M80	
   Yes	
   -­‐	
   CR	
  	
   REF	
  	
   PER	
  	
  
M81	
   Yes	
   Yes	
   CR	
  	
   REP	
  	
   SCI	
  	
  
M82	
   Yes	
   Yes	
   UN	
  	
   CON	
  	
   SCI	
  	
  
M83	
   Yes	
   Yes	
   QT	
  	
   CON	
  	
   SCI	
  	
  
M84	
   Yes	
   -­‐	
   SS	
  	
   CON	
  	
   PER	
  	
  

 
Released items are bold-faced.  
Items that were included in the other cycles are labeled as “Yes” for the  

corresponding cycle.  
Content Dimensions: QT-quantity, SS-space and shape, CR-change and  

relationship, UN-uncertainty. 
Process Dimensions: REP-reproduction, CON-connections, REF-reflection. 
Context Dimensions: PER-personal, EDOP-educational/occupational,  

PUB-public, SCI-scientific.
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Appendix B:  Sample Released Items 

M03 

 

The picture shows the footprints of a man walking. The pacelength P is the distance 
between the rear of two consecutive footprints. For men, the formula, n/P =140 , gives an 
approximate relationship between n and P where, 

n = number of steps per minute, and 
P = pacelength in metres. 

 
If the formula applies to Heiko’s walking and Heiko takes 70 steps per minute, what is 
Heiko’s pacelength? Show your work. 
 
Content: Change and Relationship 
Process: Reproduction 
Context: Personal 
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M09 

In this photograph you see six dice, labelled (a) to (f). For all dice there is a rule: 
The total number of dots on two opposite faces of each die is always seven. 
 
Write in each box the number of dots on the bottom face of the dice corresponding 
to the photograph. 

 
 
Content: Space and Shape 
Process: Reproduction 
Context: Educational/Occupational 
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M25 

Mark (from Sydney, Australia) and Hans (from Berlin, Germany) often communicate 
with each other using “chat” on the Internet. They have to log on to the Internet at the 
same time to be able to chat. 
 
To find a suitable time to chat, Mark looked up a chart of world times and found the 
following: 
 

 
At 7:00 PM in Sydney, what time is it in Berlin? 
Answer: ………… 

 
Content: Change and Relationship 
Process: Connections 
Context: Personal 
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M33 

Mei-Ling from Singapore was preparing to go to South Africa for 3 months as an 
exchange student. She needed to change some Singapore dollars (SGD) into South 
African rand (ZAR). 
 
During these 3 months the exchange rate had changed from 4.2 to 4.0 ZAR per 
SGD. Was it in Mei-Ling’s favour that the exchange rate now was 4.0 ZAR instead 
of 4.2 ZAR, when she changed her South African rand back to Singapore dollars? 
Give an explanation to support your answer. 
 
Content: Quantity 
Process: Reflection  
Context: Public 
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Appendix C:  Factor Loadings for PISA Mathematics Items 

2003	
  
ITEMS	
  

Model1:	
  
1F-­‐GML	
  

Model	
  2:	
  
1L-­‐CNT	
  

Model	
  3:	
  
1L-­‐PRO	
  

Model	
  4:	
  
1L-­‐CXT	
  

Model5:	
  
2L-­‐CNT	
  

Model6:	
  
2L-­‐PRO	
  

Model7:	
  
2L-­‐CXT	
  

M01	
   0.512	
   0.537	
   (SS)	
   0.520	
   (REP)	
   0.511	
   (PER)	
   0.537	
   0.516	
   0.511	
  
M02	
   0.586	
   0.613	
   (SS)	
   0.588	
   (CON)	
   0.595	
   (EDOP)	
   0.613	
   0.590	
   0.595	
  
M03	
   0.677	
   0.687	
   (CR)	
   0.687	
   (REP)	
   0.675	
   (PER)	
   0.686	
   0.684	
   0.675	
  
M04	
   0.775	
   0.785	
   (CR)	
   0.779	
   (CON)	
   0.773	
   (PER)	
   0.784	
   0.780	
   0.773	
  
M05	
   0.609	
   0.638	
   (SS)	
   0.619	
   (REP)	
   0.617	
   (EDOP)	
   0.637	
   0.616	
   0.617	
  
M06	
   0.589	
   0.617	
   (SS)	
   0.592	
   (CON)	
   0.597	
   (EDOP)	
   0.617	
   0.593	
   0.597	
  
M07	
   0.780	
   0.812	
   (SS)	
   0.783	
   (CON)	
   0.790	
   (EDOP)	
   0.813	
   0.785	
   0.791	
  
M08	
   0.695	
   0.727	
   (SS)	
   0.698	
   (CON)	
   0.704	
   (EDOP)	
   0.727	
   0.699	
   0.704	
  
M09	
   0.733	
   0.765	
   (SS)	
   0.744	
   (REP)	
   0.745	
   (EDOP)	
   0.765	
   0.741	
   0.745	
  
M10	
   0.703	
   0.716	
   (CR)	
   0.713	
   (REP)	
   0.722	
   (SCI)	
   0.716	
   0.710	
   0.722	
  
M11	
   0.543	
   0.552	
   (CR)	
   0.550	
   (REP)	
   0.557	
   (SCI)	
   0.552	
   0.548	
   0.556	
  
M12	
   0.619	
   0.631	
   (CR)	
   0.622	
   (CON)	
   0.635	
   (SCI)	
   0.631	
   0.623	
   0.635	
  
M13	
   0.506	
   0.513	
   (CR)	
   0.507	
   (CON)	
   0.517	
   (SCI)	
   0.512	
   0.508	
   0.517	
  
M14	
   0.673	
   0.681	
   (CR)	
   0.675	
   (CON)	
   0.687	
   (SCI)	
   0.681	
   0.676	
   0.687	
  
M15	
   0.784	
   0.796	
   (CR)	
   0.786	
   (REF)	
   0.802	
   (SCI)	
   0.795	
   0.791	
   0.802	
  
M16	
   0.532	
   0.540	
   (CR)	
   0.534	
   (CON)	
   0.544	
   (SCI)	
   0.539	
   0.535	
   0.544	
  
M17	
   0.614	
   0.618	
   (UN)	
   0.616	
   (CON)	
   0.615	
   (PUB)	
   0.617	
   0.617	
   0.613	
  
M18	
   0.624	
   0.634	
   (CR)	
   0.627	
   (CON)	
   0.633	
   (EDOP)	
   0.634	
   0.627	
   0.633	
  
M19	
   0.541	
   0.573	
   (SS)	
   0.543	
   (CON)	
   0.550	
   (EDOP)	
   0.573	
   0.544	
   0.550	
  
M20	
   0.442	
   0.467	
   (SS)	
   0.444	
   (CON)	
   0.450	
   (EDOP)	
   0.467	
   0.444	
   0.449	
  
M21	
   0.608	
   0.617	
   (CR)	
   0.616	
   (REP)	
   0.611	
   (PUB)	
   0.617	
   0.614	
   0.611	
  
M22	
   0.579	
   0.588	
   (CR)	
   0.581	
   (CON)	
   0.582	
   (PUB)	
   0.588	
   0.582	
   0.583	
  
M23	
   0.711	
   0.721	
   (CR)	
   0.712	
   (REF)	
   0.715	
   (PUB)	
   0.721	
   0.718	
   0.715	
  
M24	
   0.444	
   0.468	
   (SS)	
   0.446	
   (CON)	
   0.446	
   (PUB)	
   0.467	
   0.447	
   0.446	
  
M25	
   0.507	
   0.516	
   (CR)	
   0.510	
   (CON)	
   0.506	
   (PER)	
   0.516	
   0.510	
   0.506	
  
M26	
   0.608	
   0.617	
   (CR)	
   0.609	
   (REF)	
   0.607	
   (PER)	
   0.617	
   0.613	
   0.606	
  
M27	
   0.781	
   0.811	
   (SS)	
   0.785	
   (CON)	
   0.783	
   (PUB)	
   0.811	
   0.785	
   0.783	
  
M28	
   0.897	
   0.930	
   (SS)	
   0.900	
   (CON)	
   0.899	
   (PUB)	
   0.930	
   0.901	
   0.899	
  
M29	
   0.661	
   0.688	
   (SS)	
   0.663	
   (REF)	
   0.663	
   (PUB)	
   0.688	
   0.667	
   0.663	
  
M30	
   0.520	
   0.523	
   (UN)	
   0.522	
   (CON)	
   0.522	
   (PUB)	
   0.523	
   0.523	
   0.522	
  
M31	
   0.651	
   0.658	
   (QT)	
   0.660	
   (REP)	
   0.652	
   (PUB)	
   0.658	
   0.657	
   0.652	
  
M32	
   0.531	
   0.534	
   (UN)	
   0.534	
   (CON)	
   0.532	
   (PUB)	
   0.534	
   0.534	
   0.532	
  
M33	
   0.741	
   0.749	
   (QT)	
   0.750	
   (REP)	
   0.743	
   (PUB)	
   0.748	
   0.748	
   0.743	
  
M34	
   0.788	
   0.799	
   (QT)	
   0.799	
   (REP)	
   0.790	
   (PUB)	
   0.798	
   0.796	
   0.790	
  
M35	
   0.630	
   0.638	
   (QT)	
   0.631	
   (REF)	
   0.631	
   (PUB)	
   0.638	
   0.635	
   0.631	
  
M36	
   0.468	
   0.469	
   (UN)	
   0.469	
   (REF)	
   0.467	
   (PER)	
   0.470	
   0.472	
   0.467	
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2003	
  
ITEMS	
  

Model1:	
  
1F-­‐GML	
  

Model	
  2:	
  
1L-­‐CNT	
  

Model	
  3:	
  
1L-­‐PRO	
  

Model	
  4:	
  
1L-­‐CXT	
  

Model5:	
  
2L-­‐CNT	
  

Model6:	
  
2L-­‐PRO	
  

Model7:	
  
2L-­‐CXT	
  

M37	
   0.781	
   0.788	
   (UN)	
   0.794	
   (REP)	
   0.791	
   (EDOP)	
   0.787	
   0.790	
   0.791	
  
M38	
   0.536	
   0.540	
   (UN)	
   0.537	
   (REF)	
   0.542	
   (EDOP)	
   0.539	
   0.540	
   0.542	
  
M39	
   0.597	
   0.602	
   (UN)	
   0.598	
   (REF)	
   0.604	
   (EDOP)	
   0.601	
   0.602	
   0.604	
  
M40	
   0.441	
   0.444	
   (UN)	
   0.447	
   (REP)	
   0.440	
   (PER)	
   0.444	
   0.446	
   0.440	
  
M41	
   0.452	
   0.455	
   (UN)	
   0.460	
   (REP)	
   0.455	
   (PUB)	
   0.455	
   0.458	
   0.455	
  
M42	
   0.653	
   0.655	
   (UN)	
   0.656	
   (CON)	
   0.656	
   (PUB)	
   0.656	
   0.657	
   0.656	
  
M43	
   0.714	
   0.720	
   (QT)	
   0.715	
   (REF)	
   0.718	
   (PUB)	
   0.720	
   0.720	
   0.718	
  
M44	
   0.680	
   0.691	
   (CR)	
   0.689	
   (REP)	
   0.697	
   (SCI)	
   0.692	
   0.686	
   0.697	
  
M45	
   0.801	
   0.814	
   (CR)	
   0.803	
   (REF)	
   0.821	
   (SCI)	
   0.815	
   0.808	
   0.822	
  
M46	
   0.665	
   0.703	
   (SS)	
   0.677	
   (REP)	
   0.668	
   (PUB)	
   0.702	
   0.673	
   0.668	
  
M47	
   0.562	
   0.591	
   (SS)	
   0.563	
   (REF)	
   0.576	
   (SCI)	
   0.591	
   0.567	
   0.576	
  
M48	
   0.823	
   0.865	
   (SS)	
   0.827	
   (CON)	
   0.826	
   (PUB)	
   0.866	
   0.828	
   0.826	
  
M49	
   0.685	
   0.690	
   (UN)	
   0.697	
   (REP)	
   0.683	
   (PER)	
   0.689	
   0.694	
   0.683	
  
M50	
   0.519	
   0.520	
   (UN)	
   0.528	
   (REP)	
   0.528	
   (EDOP)	
   0.521	
   0.526	
   0.528	
  
M51	
   0.504	
   0.508	
   (QT)	
   0.511	
   (REP)	
   0.511	
   (EDOP)	
   0.508	
   0.509	
   0.512	
  
M52	
   0.726	
   0.733	
   (QT)	
   0.729	
   (CON)	
   0.741	
   (EDOP)	
   0.732	
   0.730	
   0.740	
  
M53	
   0.660	
   0.665	
   (QT)	
   0.662	
   (CON)	
   0.663	
   (PUB)	
   0.665	
   0.663	
   0.663	
  
M54	
   0.528	
   0.532	
   (QT)	
   0.530	
   (CON)	
   0.531	
   (PUB)	
   0.532	
   0.531	
   0.531	
  
M55	
   0.560	
   0.562	
   (UN)	
   0.561	
   (REF)	
   0.574	
   (SCI)	
   0.562	
   0.565	
   0.574	
  
M56	
   0.527	
   0.528	
   (UN)	
   0.527	
   (REF)	
   0.538	
   (SCI)	
   0.529	
   0.531	
   0.538	
  
M57	
   0.450	
   0.453	
   (QT)	
   0.452	
   (CON)	
   0.457	
   (EDOP)	
   0.454	
   0.453	
   0.457	
  
M58	
   0.596	
   0.598	
   (UN)	
   0.598	
   (CON)	
   0.606	
   (EDOP)	
   0.598	
   0.599	
   0.606	
  
M59	
   0.628	
   0.635	
   (QT)	
   0.636	
   (REP)	
   0.626	
   (PER)	
   0.635	
   0.634	
   0.626	
  
M60	
   0.687	
   0.695	
   (QT)	
   0.697	
   (REP)	
   0.685	
   (PER)	
   0.695	
   0.694	
   0.685	
  
M61	
   0.545	
   0.552	
   (QT)	
   0.548	
   (CON)	
   0.544	
   (PER)	
   0.552	
   0.548	
   0.544	
  
M62	
   0.579	
   0.607	
   (SS)	
   0.587	
   (REP)	
   0.588	
   (EDOP)	
   0.607	
   0.585	
   0.588	
  
M63	
   0.793	
   0.831	
   (SS)	
   0.798	
   (CON)	
   0.791	
   (PER)	
   0.832	
   0.799	
   0.791	
  
M64	
   0.559	
   0.567	
   (QT)	
   0.561	
   (REF)	
   0.563	
   (PUB)	
   0.567	
   0.564	
   0.563	
  
M65	
   0.498	
   0.502	
   (QT)	
   0.506	
   (REP)	
   0.499	
   (PUB)	
   0.502	
   0.504	
   0.499	
  
M66	
   0.480	
   0.482	
   (UN)	
   0.481	
   (REF)	
   0.481	
   (PUB)	
   0.482	
   0.483	
   0.481	
  
M67	
   0.597	
   0.606	
   (CR)	
   0.598	
   (REF)	
   0.615	
   (SCI)	
   0.607	
   0.601	
   0.614	
  
M68	
   0.426	
   0.446	
   (SS)	
   0.427	
   (REF)	
   0.424	
   (PER)	
   0.445	
   0.430	
   0.424	
  
M69	
   0.523	
   0.528	
   (QT)	
   0.525	
   (CON)	
   0.536	
   (SCI)	
   0.528	
   0.525	
   0.536	
  
M70	
   0.531	
   0.536	
   (QT)	
   0.532	
   (CON)	
   0.544	
   (SCI)	
   0.536	
   0.533	
   0.544	
  
M71	
   0.547	
   0.550	
   (UN)	
   0.549	
   (CON)	
   0.549	
   (PUB)	
   0.550	
   0.550	
   0.549	
  
M72	
   0.697	
   0.708	
   (CR)	
   0.708	
   (REP)	
   0.701	
   (PUB)	
   0.709	
   0.705	
   0.701	
  
M73	
   0.784	
   0.798	
   (CR)	
   0.785	
   (REF)	
   0.788	
   (PUB)	
   0.799	
   0.790	
   0.789	
  
M74	
   0.506	
   0.508	
   (UN)	
   0.509	
   (CON)	
   0.507	
   (PUB)	
   0.509	
   0.509	
   0.507	
  



 

150 

2003	
  
ITEMS	
  

Model1:	
  
1F-­‐GML	
  

Model	
  2:	
  
1L-­‐CNT	
  

Model	
  3:	
  
1L-­‐PRO	
  

Model	
  4:	
  
1L-­‐CXT	
  

Model5:	
  
2L-­‐CNT	
  

Model6:	
  
2L-­‐PRO	
  

Model7:	
  
2L-­‐CXT	
  

M75	
   0.383	
   0.388	
   (QT)	
   0.389	
   (REP)	
   0.382	
   (PER)	
   0.388	
   0.387	
   0.382	
  
M76	
   0.706	
   0.709	
   (UN)	
   0.708	
   (CON)	
   0.718	
   (EDOP)	
   0.709	
   0.709	
   0.718	
  
M77	
   0.636	
   0.641	
   (QT)	
   0.645	
   (REP)	
   0.646	
   (EDOP)	
   0.642	
   0.643	
   0.646	
  
M78	
   0.545	
   0.550	
   (QT)	
   0.547	
   (CON)	
   0.543	
   (PER)	
   0.551	
   0.548	
   0.543	
  
M79	
   0.585	
   0.592	
   (QT)	
   0.587	
   (CON)	
   0.583	
   (PER)	
   0.592	
   0.588	
   0.583	
  
M80	
   0.806	
   0.821	
   (CR)	
   0.807	
   (REF)	
   0.804	
   (PER)	
   0.822	
   0.813	
   0.804	
  
M81	
   0.564	
   0.571	
   (CR)	
   0.575	
   (REP)	
   0.578	
   (SCI)	
   0.571	
   0.572	
   0.578	
  
M82	
   0.334	
   0.335	
   (UN)	
   0.335	
   (CON)	
   0.342	
   (SCI)	
   0.335	
   0.335	
   0.342	
  
M83	
   0.344	
   0.347	
   (QT)	
   0.345	
   (CON)	
   0.352	
   (SCI)	
   0.347	
   0.345	
   0.352	
  
M84	
   0.483	
   0.508	
   (SS)	
   0.485	
   (CON)	
   0.482	
   (PER)	
   0.508	
   0.486	
   0.482	
  

Released items are bold-faced.  
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2006	
  
ITEMS	
  

Model1:	
  
1F-­‐GML	
  

Model	
  2:	
  
1L-­‐CNT	
  

Model	
  3:	
  
1L-­‐PRO	
  

Model	
  4:	
  
1L-­‐CXT	
  

Model5:	
  
2L-­‐CNT	
  

Model6:	
  
2L-­‐PRO	
  

Model7:	
  
2L-­‐CXT	
  

M01	
   0.496	
   0.529	
   (SS)	
   0.511	
   (REP)	
   0.507	
   (PER)	
   0.529	
   0.504	
   0.509	
  
M02	
   0.586	
   0.627	
   (SS)	
   0.586	
   (CON)	
   0.609	
   (EDOP)	
   0.626	
   0.591	
   0.609	
  
M13	
   0.553	
   0.561	
   (CR)	
   0.553	
   (CON)	
   0.564	
   (SCI)	
   0.560	
   0.556	
   0.563	
  
M14	
   0.693	
   0.702	
   (CR)	
   0.693	
   (CON)	
   0.709	
   (SCI)	
   0.701	
   0.697	
   0.709	
  
M15	
   0.795	
   0.806	
   (CR)	
   0.809	
   (REF)	
   0.815	
   (SCI)	
   0.805	
   0.801	
   0.815	
  
M16	
   0.564	
   0.571	
   (CR)	
   0.564	
   (CON)	
   0.577	
   (SCI)	
   0.571	
   0.568	
   0.577	
  
M18	
   0.616	
   0.627	
   (CR)	
   0.617	
   (CON)	
   0.646	
   (EDOP)	
   0.626	
   0.618	
   0.648	
  
M20	
   0.530	
   0.562	
   (SS)	
   0.531	
   (CON)	
   0.556	
   (EDOP)	
   0.561	
   0.534	
   0.556	
  
M21	
   0.685	
   0.693	
   (CR)	
   0.705	
   (REP)	
   0.695	
   (PUB)	
   0.693	
   0.697	
   0.698	
  
M22	
   0.611	
   0.617	
   (CR)	
   0.611	
   (CON)	
   0.624	
   (PUB)	
   0.617	
   0.616	
   0.625	
  
M23	
   0.718	
   0.726	
   (CR)	
   0.731	
   (REF)	
   0.734	
   (PUB)	
   0.726	
   0.724	
   0.734	
  
M24	
   0.373	
   0.396	
   (SS)	
   0.373	
   (CON)	
   0.378	
   (PUB)	
   0.396	
   0.374	
   0.378	
  
M27	
   0.766	
   0.802	
   (SS)	
   0.766	
   (CON)	
   0.776	
   (PUB)	
   0.803	
   0.768	
   0.775	
  
M28	
   0.864	
   0.917	
   (SS)	
   0.864	
   (CON)	
   0.875	
   (PUB)	
   0.917	
   0.867	
   0.875	
  
M30	
   0.594	
   0.623	
   (UN)	
   0.595	
   (CON)	
   0.607	
   (PUB)	
   0.622	
   0.598	
   0.607	
  
M31	
   0.649	
   0.675	
   (QT)	
   0.672	
   (REP)	
   0.664	
   (PUB)	
   0.675	
   0.662	
   0.665	
  
M32	
   0.540	
   0.565	
   (UN)	
   0.541	
   (CON)	
   0.552	
   (PUB)	
   0.565	
   0.544	
   0.552	
  
M36	
   0.542	
   0.567	
   (UN)	
   0.554	
   (REF)	
   0.553	
   (PER)	
   0.566	
   0.547	
   0.555	
  
M37	
   0.842	
   0.876	
   (UN)	
   0.877	
   (REP)	
   0.880	
   (EDOP)	
   0.877	
   0.860	
   0.878	
  
M38	
   0.510	
   0.528	
   (UN)	
   0.519	
   (REF)	
   0.529	
   (EDOP)	
   0.528	
   0.514	
   0.528	
  
M39	
   0.487	
   0.505	
   (UN)	
   0.496	
   (REF)	
   0.506	
   (EDOP)	
   0.505	
   0.491	
   0.506	
  
M40	
   0.426	
   0.450	
   (UN)	
   0.440	
   (REP)	
   0.436	
   (PER)	
   0.449	
   0.436	
   0.437	
  
M43	
   0.734	
   0.765	
   (QT)	
   0.747	
   (REF)	
   0.752	
   (PUB)	
   0.765	
   0.740	
   0.752	
  
M44	
   0.749	
   0.758	
   (CR)	
   0.772	
   (REP)	
   0.765	
   (SCI)	
   0.758	
   0.762	
   0.766	
  
M45	
   0.874	
   0.882	
   (CR)	
   0.894	
   (REF)	
   0.888	
   (SCI)	
   0.882	
   0.882	
   0.889	
  
M46	
   0.614	
   0.651	
   (SS)	
   0.629	
   (REP)	
   0.627	
   (PUB)	
   0.650	
   0.624	
   0.627	
  
M47	
   0.688	
   0.737	
   (SS)	
   0.700	
   (REF)	
   0.700	
   (SCI)	
   0.737	
   0.694	
   0.700	
  
M48	
   0.797	
   0.848	
   (SS)	
   0.798	
   (CON)	
   0.816	
   (PUB)	
   0.848	
   0.803	
   0.815	
  
M51	
   0.471	
   0.488	
   (QT)	
   0.487	
   (REP)	
   0.489	
   (EDOP)	
   0.488	
   0.480	
   0.489	
  
M53	
   0.729	
   0.759	
   (QT)	
   0.729	
   (CON)	
   0.740	
   (PUB)	
   0.760	
   0.732	
   0.740	
  
M54	
   0.608	
   0.631	
   (QT)	
   0.608	
   (CON)	
   0.617	
   (PUB)	
   0.631	
   0.611	
   0.617	
  
M64	
   0.600	
   0.628	
   (QT)	
   0.614	
   (REF)	
   0.613	
   (PUB)	
   0.628	
   0.606	
   0.613	
  
M65	
   0.438	
   0.453	
   (QT)	
   0.452	
   (REP)	
   0.445	
   (PUB)	
   0.453	
   0.448	
   0.444	
  
M66	
   0.529	
   0.558	
   (UN)	
   0.539	
   (REF)	
   0.536	
   (PUB)	
   0.557	
   0.535	
   0.536	
  
M67	
   0.687	
   0.699	
   (CR)	
   0.701	
   (REF)	
   0.709	
   (SCI)	
   0.698	
   0.695	
   0.709	
  
M68	
   0.470	
   0.504	
   (SS)	
   0.478	
   (REF)	
   0.478	
   (PER)	
   0.503	
   0.474	
   0.478	
  
M69	
   0.523	
   0.541	
   (QT)	
   0.523	
   (CON)	
   0.539	
   (SCI)	
   0.541	
   0.524	
   0.539	
  



 

152 

2006	
  
ITEMS	
  

Model1:	
  
1F-­‐GML	
  

Model	
  2:	
  
1L-­‐CNT	
  

Model	
  3:	
  
1L-­‐PRO	
  

Model	
  4:	
  
1L-­‐CXT	
  

Model5:	
  
2L-­‐CNT	
  

Model6:	
  
2L-­‐PRO	
  

Model7:	
  
2L-­‐CXT	
  

M70	
   0.638	
   0.663	
   (QT)	
   0.639	
   (CON)	
   0.659	
   (SCI)	
   0.663	
   0.641	
   0.659	
  
M74	
   0.565	
   0.585	
   (UN)	
   0.565	
   (CON)	
   0.577	
   (PUB)	
   0.585	
   0.569	
   0.577	
  
M75	
   0.460	
   0.480	
   (QT)	
   0.471	
   (REP)	
   0.468	
   (PER)	
   0.479	
   0.466	
   0.469	
  
M76	
   0.735	
   0.767	
   (UN)	
   0.735	
   (CON)	
   0.762	
   (EDOP)	
   0.767	
   0.740	
   0.763	
  
M78	
   0.637	
   0.666	
   (QT)	
   0.637	
   (CON)	
   0.647	
   (PER)	
   0.665	
   0.641	
   0.647	
  
M79	
   0.718	
   0.752	
   (QT)	
   0.718	
   (CON)	
   0.731	
   (PER)	
   0.751	
   0.722	
   0.730	
  
M80	
   0.855	
   0.862	
   (CR)	
   0.872	
   (REF)	
   0.872	
   (PER)	
   0.863	
   0.862	
   0.871	
  
M81	
   0.730	
   0.739	
   (CR)	
   0.751	
   (REP)	
   0.744	
   (SCI)	
   0.739	
   0.743	
   0.744	
  
M82	
   0.577	
   0.604	
   (UN)	
   0.578	
   (CON)	
   0.590	
   (SCI)	
   0.603	
   0.582	
   0.590	
  
M83	
   0.582	
   0.609	
   (QT)	
   0.583	
   (CON)	
   0.595	
   (SCI)	
   0.609	
   0.586	
   0.595	
  
M84	
   0.484	
   0.520	
   (SS)	
   0.485	
   (CON)	
   0.492	
   (PER)	
   0.519	
   0.487	
   0.492	
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2009	
  
ITEMS	
  

Model1:	
  
1F-­‐GML	
  

Model	
  2:	
  
1L-­‐CNT	
  

Model	
  3:	
  
1L-­‐PRO	
  

Model	
  4:	
  
1L-­‐CXT	
  

Model5:	
  
2L-­‐CNT	
  

Model6:	
  
2L-­‐PRO	
  

Model7:	
  
2L-­‐CXT	
  

M01	
   0.488	
   0.518	
   (SS)	
   0.490	
   (REP)	
   0.379	
   (PER)	
   0.517	
   0.243	
   0.142	
  
M02	
   0.623	
   0.662	
   (SS)	
   0.624	
   (CON)	
   0.622	
   (EDOP)	
   0.661	
   0.389	
   0.388	
  
M13	
   0.695	
   0.704	
   (CR)	
   0.697	
   (CON)	
   0.706	
   (SCI)	
   0.705	
   0.485	
   0.498	
  
M14	
   0.676	
   0.686	
   (CR)	
   0.678	
   (CON)	
   0.687	
   (SCI)	
   0.686	
   0.459	
   0.473	
  
M15	
   0.782	
   0.798	
   (CR)	
   0.790	
   (REF)	
   0.798	
   (SCI)	
   0.798	
   0.619	
   0.638	
  
M16	
   0.532	
   0.540	
   (CR)	
   0.533	
   (CON)	
   0.541	
   (SCI)	
   0.540	
   0.284	
   0.293	
  
M18	
   0.633	
   0.652	
   (CR)	
   0.634	
   (CON)	
   0.629	
   (EDOP)	
   0.651	
   0.401	
   0.395	
  
M20	
   0.491	
   0.516	
   (SS)	
   0.493	
   (CON)	
   0.490	
   (EDOP)	
   0.516	
   0.243	
   0.240	
  
M27	
   0.844	
   0.867	
   (SS)	
   0.845	
   (CON)	
   0.847	
   (PUB)	
   0.869	
   0.714	
   0.718	
  
M28	
   0.913	
   0.945	
   (SS)	
   0.915	
   (CON)	
   0.920	
   (PUB)	
   0.945	
   0.836	
   0.847	
  
M30	
   0.578	
   0.606	
   (UN)	
   0.580	
   (CON)	
   0.586	
   (PUB)	
   0.606	
   0.336	
   0.343	
  
M31	
   0.655	
   0.687	
   (QT)	
   0.659	
   (REP)	
   0.663	
   (PUB)	
   0.686	
   0.438	
   0.440	
  
M32	
   0.526	
   0.549	
   (UN)	
   0.527	
   (CON)	
   0.532	
   (PUB)	
   0.549	
   0.278	
   0.283	
  
M36	
   0.482	
   0.504	
   (UN)	
   0.487	
   (REF)	
   0.372	
   (PER)	
   0.504	
   0.235	
   0.138	
  
M40	
   0.411	
   0.438	
   (UN)	
   0.413	
   (REP)	
   0.313	
   (PER)	
   0.436	
   0.173	
   0.098	
  
M43	
   0.709	
   0.745	
   (QT)	
   0.716	
   (REF)	
   0.718	
   (PUB)	
   0.743	
   0.508	
   0.516	
  
M44	
   0.682	
   0.696	
   (CR)	
   0.686	
   (REP)	
   0.696	
   (SCI)	
   0.697	
   0.474	
   0.484	
  
M45	
   0.743	
   0.756	
   (CR)	
   0.751	
   (REF)	
   0.756	
   (SCI)	
   0.756	
   0.559	
   0.571	
  
M46	
   0.628	
   0.660	
   (SS)	
   0.631	
   (REP)	
   0.635	
   (PUB)	
   0.659	
   0.401	
   0.403	
  
M47	
   0.615	
   0.652	
   (SS)	
   0.620	
   (REF)	
   0.625	
   (SCI)	
   0.651	
   0.382	
   0.391	
  
M48	
   0.737	
   0.776	
   (SS)	
   0.739	
   (CON)	
   0.745	
   (PUB)	
   0.775	
   0.545	
   0.555	
  
M51	
   0.460	
   0.482	
   (QT)	
   0.463	
   (REP)	
   0.460	
   (EDOP)	
   0.481	
   0.216	
   0.211	
  
M53	
   0.632	
   0.662	
   (QT)	
   0.633	
   (CON)	
   0.637	
   (PUB)	
   0.663	
   0.400	
   0.406	
  
M54	
   0.542	
   0.566	
   (QT)	
   0.542	
   (CON)	
   0.546	
   (PUB)	
   0.566	
   0.294	
   0.298	
  
M64	
   0.531	
   0.560	
   (QT)	
   0.536	
   (REF)	
   0.537	
   (PUB)	
   0.559	
   0.285	
   0.288	
  
M65	
   0.392	
   0.406	
   (QT)	
   0.395	
   (REP)	
   0.394	
   (PUB)	
   0.407	
   0.157	
   0.155	
  
M66	
   0.443	
   0.470	
   (UN)	
   0.448	
   (REF)	
   0.446	
   (PUB)	
   0.468	
   0.199	
   0.199	
  
M67	
   0.648	
   0.667	
   (CR)	
   0.656	
   (REF)	
   0.666	
   (SCI)	
   0.666	
   0.425	
   0.443	
  
M69	
   0.501	
   0.524	
   (QT)	
   0.501	
   (CON)	
   0.513	
   (SCI)	
   0.524	
   0.251	
   0.263	
  
M70	
   0.648	
   0.681	
   (QT)	
   0.649	
   (CON)	
   0.667	
   (SCI)	
   0.683	
   0.421	
   0.445	
  
M75	
   0.351	
   0.367	
   (QT)	
   0.352	
   (REP)	
   0.273	
   (PER)	
   0.368	
   0.125	
   0.075	
  
M76	
   0.741	
   0.776	
   (UN)	
   0.743	
   (CON)	
   0.740	
   (EDOP)	
   0.778	
   0.552	
   0.547	
  
M81	
   0.723	
   0.736	
   (CR)	
   0.727	
   (REP)	
   0.736	
   (SCI)	
   0.737	
   0.532	
   0.541	
  
M82	
   0.528	
   0.552	
   (UN)	
   0.529	
   (CON)	
   0.539	
   (SCI)	
   0.551	
   0.280	
   0.290	
  
M83	
   0.497	
   0.524	
   (QT)	
   0.498	
   (CON)	
   0.505	
   (SCI)	
   0.523	
   0.248	
   0.255	
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