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IINNTTRROODDUUCCTTOORRYY  WWOORRDD  
During the 4 years of my doctoral thesis, I was very lucky to work in an excellent established, 

efficient and well-respected laboratory which allowed me to learn a huge variety of scientific 

techniques and to exceedingly improve my knowledge about cancer research and immune 

biology in every way. The focus of my laboratory lies on the JAK-STAT signaling pathway and its 

impact on the immune system and tumor biology. My specific goal for the doctoral thesis was to 

elucidate the function of the transcription factor STAT1 in the development of breast cancer 

using a murine model system (see section 3.1). Previous studies and reports in mice and human 

had already indicated that it is worth investigating STAT1 in this context. I contributed as well to 

studies of several collaboration partners who worked either on STAT1 or on mammary cancer, 

thereby fitting perfectly into my field of interest (see section 3.2 and 3.3). In addition, I was 

intensively involved in the work of one of my lab-colleges working on the cell cycle kinase CDK6 

(see section 3.4). However, as it would be too extensive to discuss all studies in detail, here in 

this work I will focus on my main project dealing with the impact of STAT1 in mammary 

tumorigenesis. All additional work will be presented in form of published or submitted 

manuscripts and the part of my contribution will be delineated. I hope that the following pages 

can convince you, that I did my best to honestly achieve my doctoral degree. 
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SSUUMMMMAARRYY  
Interferons are important signaling molecules of the immune system that allow cells of an 

organism to react specifically to pathogens such as viruses, parasites, bacteria but also tumor 

cells. The transcription factor STAT1 (signal transducer and activator of transcription 1) is an 

essential mediator of interferon signaling and therefore a prerequisite for a fully functional 

immune system. STAT1 is also required for the efficient cytotoxic activity of T cells (CTLs) and 

natural killer (NK) cells. Functional deficiency or mutation of STAT1 leads to hypersensitivity to 

viral and bacterial infections in both mice and men. Besides being a key factor in immune 

regulation, STAT1 is also considered as an important tumor suppressor. A breast cancer study 

correlated a high expression and activation of STAT1 positively with an overall longer and 

relapse-free survival of cancer patients. In mouse models of ErbB2-induced breast cancer the 

complete but also the tissue specific deletion of STAT1 results in a decreased latency of tumor 

formation. These observations indicate STAT1 as important safeguard in mammary cancer 

development. However, the exact role of STAT1 in the mammary gland tissue and the 

mechanism how STAT1 confers mammary tumor suppression had not yet been clarified. 

During my PhD thesis I revealed that loss of STAT1 suffices to promote mammary tumor 

formation in mice. Stat1-/- mice developed spontaneous pregnancy-induced mammary tumors 

with an overall higher incidence and shorter latency when compared to Stat1+/+ controls. The 

importance of STAT1 in tumor suppression was further confirmed as STAT1-positive tumors of 

the control group showed a mosaic expression and partially down-regulation of STAT1 protein. 

Stat1-/- tumors displayed a heterogeneous histopathology and did not show a particular pattern 

of expression of the estrogen receptor (ER) or human epidermal growth factor receptor 2 

(HER2). This identifies STAT1 as a global mammary tumor suppressor that acts independent of a 

distinct oncogenic driver. The transplantation of Stat1-/- mammary tissue into wild type mice and 

vice versa linked the tumor suppressing role of STAT1 to both, the immune system AND the 

mammary tissue. Cytotoxic T cells were defined as the main executors of mammary tumor 

surveillance, whereas NK cells play only a marginal role. I further demonstrated that STAT1 is 

responsible for maintaining growth control in the mammary epithelium - an effect which is 
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mediated by IRF1, a downstream-factor of STAT1. Both transformed and primary Stat1-/- 

mammary epithelial cells displayed increased growth rates compared to wild type controls. 

Further, STAT1- and IRF1-deficiency resulted in the formation of unstructured mammospheres in 

3D cultures. Consistently, Stat1-/- mice developed mammary intraepithelial neoplasias (MINs) 

with high frequency. MINs are characterized by abnormal growth of mammary epithelial cells 

and represent a potential pre-carcinogenic stage as they have a high potential to develop into 

invasive breast cancer.  

In summary I unequivocally conclude from my data, that STAT1 controls mammary tumor 

formation in a dual way: On the one hand by sustaining efficient cytotoxic T cell surveillance and 

on the other hand by maintaining growth control of mammary epithelial cells. The growth 

inhibitory effect of STAT1 might be exerted via the transcription factor IRF1. 
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ZZUUSSAAMMMMEENNFFAASSSSUUNNGG  
Interferone sind wichtige Signalmoleküle des Immunsystems die es den Zellen eines Organismus 

ermöglichen zielgerecht auf Pathogene wie Viren, Parasiten, Bakterien aber auch Tumorzellen zu 

reagieren. Der Transkriptionsfaktor STAT1 (signaltransducer and activator of transcription 1) 

spielt eine zentrale Rolle in der Signalübertragung durch Interferone und ist daher 

Voraussetzung für ein voll funktionstüchtiges Immunsystem. STAT1 wird ebenfalls für die 

effiziente zytotoxische Aktivität von T Zellen (CTLs) sowie natürliche Killerzellen (NK Zellen) 

benötigt. Funktionelle Deletionen oder Mutationen des STAT1 Genes in Mäusen aber auch 

Menschen äußern sich in einer Hypersensibilität gegenüber viralen und bakteriellen Infektionen. 

Abgesehen von seiner Schlüsselfunktion im Immunsystem wird STAT1 aber auch eine wichtige 

Rolle als Tumor-Suppressor zugeschrieben. Eine Brustkrebsstudie an Frauen konnte eine hohe 

Expression und Aktivität von STAT1 mit einem längeren und rezidivfreien Überleben der 

Patientinnen positiv korrelieren. Mausmodelle mit ErbB2-induzierten Brusttumoren zeigten 

außerdem, dass die totale oder die gewebsspezifische Deletion von STAT1 zu einer verkürzten 

Latenz der Tumorentstehung führt. Diese Erkenntnisse weisen darauf hin, dass STAT1 eine 

wichtige Rolle in der Brustkrebsentstehung besitzt. Die genaue Funktion von STAT1 im 

Brustgewebe und der Mechanismus, wie STAT1 die Brustkrebsentstehung unterdrückt, konnten 

bislang jedoch noch nicht aufgeklärt werden. 

Im Rahmen meiner Dissertation konnte ich anhand von Mausmodellen zeigen, dass der Verlust 

von STAT1 ausreicht, um Brustkrebs auszulösen. Stat1-/- Mäuse entwickelten spontane 

schwangerschaftsvermittelte Brusttumore mit einer generell höheren Inzidenz und verkürzten 

Latenz als Stat1+/+ Kontrolltiere. Die Wichtigkeit von STAT1 in der Tumorentstehung wurde auch 

dadurch bestätigt, da STAT1-positive Brusttumore der Kontrollgruppe eine mosaikartige 

Expression und einen teilweisen Verlust des STAT1 Proteins aufwiesen. Stat1-/-  Tumore zeigten 

eine heterogene Histopathologie und kein einheitliches Expressionsmuster des 

Estrogenrezeptors (ER) oder des humanen epithelialen Wachstumsfaktors 2 (HER2). Dies 

bedeutet, dass sich die tumorsuppressive Funktion von STAT1 nicht auf einen bestimmten 

onkogenen Treiber beschränkt, sondern dass STAT1 als globaler Brusttumorsuppressor wirkt. Die 
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Transplantation von Stat1-/- Brustgewebe in Stat1+/+ Mäuse und vice versa zeigte, dass STAT1 im 

Immunsystem UND im Brustgewebe wichtig für die Unterdrückung der Krebsentstehung ist. 

Zytotoxische T Zellen wurden als Hauptmediatoren in der Überwachung von Brusttumoren 

identifiziert; NK Zellen spielen hierbei nur eine untergeordnete Rolle. Zusätzlich konnte ich 

zeigen, dass STAT1 im Brustepithel für die Aufrechterhaltung der Wachstumskontrolle zuständig 

ist - ein Effekt der über IRF1, einen Downstream-Faktor von STAT1 vermittelt wird. Sowohl 

transformierte als auch primäre Zellen des Brustepithels wiesen eine erhöhte Teilungsrate im 

Vergleich zu Wildtyp-Kontrollen auf. In 3D Kulturen bildeten Stat1-/- und Irf1-/- Brustepithelzellen 

unstrukturierte Mammospheren. Übereinstimmend damit fanden sich auffällig häufig 

sogenannte “mammary intraepithelial neoplasias” (MINs) in den Stat1-/- Mäusen. MINs zeichnen 

sich durch abnormes Zellwachstum aus und stellen ein präkarzinogenes Stadium dar, welches 

das Potential besitzt sich in invasiven Brustkrebs weiterzuentwickeln. 

Zusammenfassend kam ich durch meine Forschungsergebnisse zu dem eindeutigen Schluss, dass 

der Transkriptionsfaktor STAT1 die Brustkrebsentstehung über zwei unabhängige Mechanismen 

unterdrückt: Einerseits durch die Aufrechterhaltung einer effizienten Tumorüberwachung 

mittels zytotoxischer T Zellen, und andererseits durch die Wachstumskontrolle von Zellen des 

Brustepithels, welche über den Transkriptionsfaktor IRF1 vermittelt wird. 
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1 

IINNTTRROODDUUCCTTIIOONN  

1.1 The JAK-STAT signaling pathway 

 

Canonical JAK-STAT signaling 

The history of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling 

started in 1957 with the discovery of interferons (IFNs) by Alick Isaacs and Jean Lindenmann. 

These small proteins were found to be secreted by cells after virus infection and to confer 

protective effects towards noninfected cells 1,2. Intense biochemical and genetically studies on 

interferons lead to the identification of the tyrosine kinases JAKs and DNA-binding proteins 

STATs and uncovered a complex intercellular communication system 3,4. Today it is well 

described, that the JAK-STAT signaling pathway displays a fast track to transmit extracellular 

signals from cell surface receptors into the cell nucleus where it activates the transcription of 

specific target genes. Thereby, many important cellular functions such as growth and 

development, survival and apoptosis, homeostasis as well as immune responses are tightly 

regulated. Consequentially, dysregulation of the JAK-STAT pathway has severe impact on crucial 

cellular properties and is associated with a broad range of diseases, cancer development or 

immune disorders 5–7. Persistent STAT activation - particularly of STAT3 or STAT5 (but also 

STAT1) - has been described in various types of human cancers (a short selection is listed in 

TabIe I) 8. Gene mutations in all different components of the JAK-STAT signaling pathway have 

been associated with all kinds of human diseases 9. Therefore, the various modules of the JAK-

STAT pathway gained attention as they provide attractive potential targets for drug 

development and cancer therapy and are of great interest for basic but also translational 

research.   
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Table I. Activation of STATs in human cancers. (Taken from Yu and Jove, 2004 in Nat. Rev. Cancer 8) 
Constitutive STAT activation is often found in different cancer entities. Epstein Barr-Virus (EBV), human T-
lymphotrophic virus-1 (HTLV-1). 

 

 

 

In the canonical mode of JAK-STAT signaling the signal transduction from the cell surface into the 

nucleus is mediated by a series of tyrosine-phosphorylations carried out by the JAK proteins 

(Fig1.). Activation of the JAK-STAT pathway happens through the binding of cytokines, growth 

factors or other small peptides to cell-surface receptors. This results in receptor dimerization 

and subsequent trans-phosphorylation of receptor-associated JAKs on tyrosine residues. 

Activated JAKs further tyrosine-phosphorylate the cytoplasmic domains of the receptors, 

thereby creating docking sites for the Src-homology-2 (SH2) domains of the STAT proteins. The 

STAT proteins are then recruited to the JAK proteins where they get tyrosine-phosphorylated. 

Phosphorylated STAT proteins dimerize and translocate into the nucleus where they activate 

target gene transcription 6,7.  
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Figure 1. Canonical JAK-STAT pathway. (Taken from Levy and Darnell, 2002 in Nat. Rev. Mol. Cell Biol. 7) 
The classical activation of the JAK-STAT pathway is mediated by ligand binding to their cognate receptors. 
Dimerization of receptors then initiates a number of activating phosphorylation-steps: trans-
phosphorylation of receptor-associated JAKs, phosphorylation of receptor’s tyrosine-residues which 
creates docking sites for the SH2-domains of the STAT proteins, and finally phosphorylation of STATs. 
Activated STATs form dimers, translocate into the nucleus and switch on target gene transcription.  
 

 

Characteristic features of JAKs and STATs 

The JAKs belong to the family of protein tyrosine kinases (PTKs) and are associated with 

membrane bound cytokine receptors that lack intrinsic catalytic activities. The task of the JAKs is 

to transmit phosphate groups to tyrosine residues, thereby inducing activation. The four 

mammalian JAK proteins JAK1, JAK2, JAK3 and tyrosine kinase 2 (Tyk2) share a very similar 

protein structure (Fig2.): The carboxyl-terminus consists of a conserved kinase domain followed 

by a catalytic inactive pseudo-kinase domain. Due to these two domains, the proteins were 

called “Janus kinases”, based on the two-faced Roman god Janus, god of doorways, beginnings, 

and transitions (one apocryphal story is that the discoverer A.F. Wilks initially termed them 
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“Just-Another-Kinase”) 10. The amino-terminal domains JH3-JH7 also show sequence similarities 

between the different JAKs and mediate selective binding to cytokine receptors 7. JAK1, JAK2 and 

Tyk2 are ubiquitously expressed, whereas JAK3 is primarily restricted to hematopoietic  cells 11. 

All JAKs have been deleted in mice; gene-targeted mice confirmed their essential role in the 

signaling of various cytokine receptors. Further, the removal of different JAKs in mice uncovered 

severe defects in hematopoiesis, leading to perinatal death in JAK1-deficient mice 12, embryonic 

lethality in JAK2-deficient mice 13,14 and a severe combined immunodeficiency disease (SCID) 

in JAK3 deficient-mice 15. Tyk2-deficiency excites the weakest effects with defective clearance of 

certain viruses 16.  

The STATs comprise seven mammalian members: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b 

and STAT6. The dual function of the STATs can already be deduced from their name: they 

transmit extracellular signals into the nucleus, where they activate transcription of specific 

target genes. Unphosphorylated STAT proteins are latently present in the cytoplasm. After 

phosphorylation, STAT proteins form homo- or heterodimers, depending on the STAT protein 

and are shuttled into the nucleus. Also STAT proteins share a common structure (Fig5.): They 

consist of a N-terminal domain which is implicated in the regulation of STAT activity such as 

tetramer formation and protein-protein interactions 6, an adjacent coiled-coil domain which is 

involved in interactions with regulatory proteins, a STAT-specific DNA-binding domain and a SH2-

domain that mediates binding to phospho-tyrosines and therefore activation and dimerization of 

STATs. The C-terminal transactivation domain is involved in interactions with other transcription 

factors and co-activators and contains the phosphorylation sites necessary for STAT activation.  

Equal to the JAKs, all STATs have been deleted in mice. This defined essential, non-redundant 

roles for each of the STAT proteins 17. Animals deficient for STAT1 or STAT2 are highly 

susceptible to viral infections as they yield an impaired interferon signaling 18–20 (in a later 

section the characteristics of STAT1-deficient mice will be described in more detail). STAT4 

ablation leads to defective TH1-cell development due to impaired responses to IL-12 signals 21, in 

contrast to STAT6 deficiency which leads to impaired TH2-cell differentiation caused by a lack of 

IL-4-receptor signaling 22. The highly homologous STAT5a and STAT5b proteins (96% identity) 

own distinct roles in development, especially in hematopoiesis. STAT5a/b double-knockout mice 

are in >99% perinatal lethal but analysis of fetuses at embryonic day 18 revealed defective B and 

T cell development, absence of natural killer cells as well as severe anemia 23,24. Moreover, 

STAT5a is essential for prolactin and growth-hormone receptor signaling, thus STAT5a deficient 
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mice display impaired mammary gland development and lactogenesis 25. STAT3 displays a crucial 

role in normal development as STAT3 ablation leads to early embryonic lethality 26. Studies 

on conditional STAT3-knockout mice uncovered its role in mammary gland involution and 

several, also contradictory roles in cellular proliferation, survival, apoptosis and 

differentiation 27,28.  

 

 
Figure 2. The domain structures of JAKs and STATs. (Taken from Shuai and Liu, 2003 in Nat. Rev. 
Immunol. 6) 
a) JAKs share 7 highly homologous domains (JH1-JH7). JH1 encodes the active kinase domain. It contains 
tyrosine sites that are phosphorylated after ligand stimulation and mediate JAK activation. The adjacent 
pseudo-kinase domain JH2 lacks kinase activity and is implicated in the regulation of JH1. Domains JH3-JH7 
are involved in receptor binding. b) Also STAT proteins share conserved domains. The transactivation 
domain (TAD) contains the phosphorylation sites necessary for STAT activation. The TADs of individual 
STATs do not share sequence similarities but function. STATs further share a conserved SH2 domain, a 
linker domain, a DNA-binding domain, a coiled-coil domain and an amino-terminal domain. STAT activity 
can also be regulated by protein modifications such as methylation (Met), ISGylation (ISG15), acetylation 
(Ace) and sumoylation (SUMO).   
 

 

Despite their functions in mice, defects in the JAK-STAT signaling pathway have frequently been 

associated with a broad range of human malignancies. Very often the human disease reflects the 

phenotype of its knockout mouse model: JAK3 mutations in people have been associated with 

the SCID syndrome characterized by the absence of T cells and functionally defective B cells 29,30. 

Similarly, the STAT1 knockout mouse model recapitulates the human situation, as several 

reports of patients with germline STAT1 mutations or complete STAT1-deficiency revealed 

severe immunodeficiencies, especially susceptibility to mycobacterial and viral infections 31–
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35. The proven pivotal role of JAKs and STATs in human malignancies makes them not only 

interesting for basic but also translational research and offers a promising target for drug 

development.  

 

Achieving specificity in JAK-STAT signaling 

As we now know, there is only a limited panel of JAKs and STATs however the number of 

upstream cytokines is relatively large. The question remains how cytokines achieve their 

specificity. One answer is that each cell type and tissue expresses distinct receptor combinations 

which allow a fine-tuned response to cytokines released by the microenvironment or the whole 

organism. One cell is therefore able to combine the signals mediated by multiple receptors 17. 

Further, cell type and tissue specificity also determines the activation of only distinct sets of 

target genes. Besides the JAK-STAT pathway, several other signaling cascades exist (e.g. PI3-

kinase/Akt, Ras/MAPK pathway), each being activated by a distinct set of signaling molecules. As 

the components of the JAK-STAT pathway also cross-talk with components of other signaling 

cascades, one stimulus can activate an orchestra of signaling molecules that communicate with 

each other and ultimately lead to the appropriate cellular answer.  

On the other side, cytokine receptors are very restricted to their associated Janus kinases and 

use mainly only one JAK or JAK combination to transmit their received signals. For example, the 

IFNγ receptor uses only JAK1 and JAK2 whereas IFNα/β receptors use only JAK1 and Tyk2 (Fig3.). 

 

 
Figure 3. Cytokine receptor specificity. (Taken from Murray, 2007 in J Immunol. 17) 
Most cytokine receptors signal through three JAK combinations: JAK1 alone, JAK2 alone or JAK1 and JAK3. 
The IFNα/β receptors use JAK1 and Tyk2, whereas the IFNγ receptor requires JAK1 and JAK2. No receptors 
that use JAK2 and JAK3, JAK3 alone, Tyk2 alone or JAK3 and Tyk2 have been described yet.  
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Negative regulation of the JAK-STAT signaling pathway 

Upon activation, STAT proteins increase the transcription of distinct and cell specific target genes 

within minutes. However the time and extend of an active signal transduction has to be tightly 

controlled to avoid imbalances but also disease development. Therefore, the JAK-STAT signaling 

cascade may be interrupted at various stages (Fig4.) 6,7. The main mediators of negative JAK-

STAT regulation are the suppressor of cytokine signaling (SOCS) proteins, protein tyrosine 

phosphatases (PTPs) and protein inhibitors of activated STATs (PIAS).  

Suppressor of cytokine signaling (SOCS) proteins are the best studied regulators of JAK-STAT 

signaling. They are constantly present at low levels in unstimulated cells but become rapidly 

induced upon cytokine activation, thereby creating a negative feedback loop. SOCS proteins 

contain a SH2 domain which binds to tyrosine-phosphorylated JAKs and inhibit further signal 

transduction. Other members of the SOCS family termed CIS proteins bind directly to the 

receptor docking sites where they compete with STAT proteins. Moreover, SOCS proteins are 

also involved in the ubiquitin-proteasome pathway mediating the degradation of JAKs and other 

proteins. The protein tyrosine phosphatases (PTPs) regulate JAK-STAT signaling by 

dephosphorylating cytokine receptors, JAK or STAT proteins. In the nucleus, protein inhibitors of 

activated STATs (PIAS) block DNA-binding of STAT dimers.  

Further, naturally occurring C-terminally truncated forms of the STAT proteins (ß-isoforms) 

function as dominant negative regulators by DNA binding without activating transcription. 

Finally, distinct modifications such as ubiquitylation or ISGylation and the crosstalk between 

different cytokine-signaling pathways add another level of complexity to control this signaling 

circuit. 
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Figure 4. Negative regulation of the JAK-STAT pathway. (Taken from Shuai and Liu, 2003 in Nat. Rev. 
Immunol. 6) 
The JAK-STAT pathway can be regulated at various stages. SH2-domain-containing suppressor of cytokine 
signaling (SOCS) proteins can inhibit signal transduction through binding to phosphorylated tyrosines of 
JAKs or receptors. They are further involved in the ubiquitin-mediated degradation of JAKs and other 
proteins. Protein tyrosine phosphatases (PTPs) interfere by dephosphorylating JAKs, STATs or cytokine 
receptors. Protein inhibitor of activated STAT (PIAS) block the DNA-binding of activated STAT-dimers. In 
addition, C-terminally truncated forms of the STAT proteins can act as dominant-negative regulators.  
 

 

Non-canonical JAK-STAT signaling 

In addition to the classical JAK-STAT signaling described above (canonical pathway), a non-

canonical mode has been recently uncovered in drosophila. Unphosphorylated STAT (U-STAT) 

proteins are located in the nucleus and physically interact with heterochromatin protein 1 (HP1) 

to promote heterochromatin stability 36. Phosphorylation of STAT proteins causes their dispersal 

from heterochromatin and leads to HP1 displacement and heterochromatin destabilization. 

Importantly, for this process the induction of STAT transcriptional target genes is not required. 

This finding indicates that the JAK-STAT pathway is involved in chromatin remodeling and 
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possesses the ability to control the cellular epigenetic status 37. In line, unphosphorylated STAT 

proteins have been found to shuttle constitutively between nucleus and cytoplasm 38. Further, 

there is evidence that JAK1 and JAK2 are present in the nucleus 11,39. 

Additional functions of U-STATs have been described. They can also act as transcription factors 

thereby regulating genes distinct from their tyrosine-phosphorylated forms. For example, U-

STAT1 can confer prolonged resistance to virus infections. After the initial response to IFNγ, the 

tyrosine-phosphorylation of STAT1 is down-regulated rapidly. However, elevated levels of U-

STAT1 still persist in the nucleus and activate the expression of several immune regulatory and 

antiviral genes 40. 

 

The biology of STAT1  

The STAT1α protein - the first STAT to be discovered - is 750 amino acids in size and has a 

molecular weight of 91 kDa 4. It consists of 25 exons and is located on mouse chromosome 1 or 

human chromosome 2. STAT1α possesses two phosphorylation sites in its C-terminal 

transactivation domain: tyrosine 701 (T701) and serine 727 (S727). Activation of STAT1α 

depends on T701 phosphorylation, whereas S727 phosphorylation is required for maximal 

transcriptional activity 41. The naturally occurring spliced form STAT1β lacks the serine 727 site 

and acts as dominant-negative regulator against the full length STAT1α (Fig5.) 42.  

 

Figure 5. Schematic overview of STAT1α and STAT1β. (Adapted from Zhang et al., 1998 in The EMBO 
Journal. 43) 
The two isoforms of STAT1 are generated by alternative splicing. Full length STAT1α contains two 
phosphorylation sites at Y701 and S727, whereas the C-terminally truncated STAT1β lacks the S727 site. It 
is postulated that STAT1β can act as dominant negative regulator against STAT1α. Transcription activation 
domain (TAD).  
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STAT1 - an essential mediator of IFN signaling 

Interferons (IFNs) are cytokines that mediate antiviral, antiproliferative, proapoptotic and 

immunomodulatory effects. They play an essential role in the defense against viral infections 

and are crucial for the immunosurveillance of malignant cells 44. STAT1 is a central mediator of 

both type I IFNs (IFN-α/β) as well as type II IFN (IFN-γ) responses and has been identified as 

major effector of IFN-γ signaling (Fig6.) 18,19. In response to IFN-γ stimulation, STAT1 forms 

homodimeres which bind to gamma-activated sequence (GAS)-sites in the promoter regions of 

target genes, thereby activating transcription. In contrast, IFN-α/β stimulates heterodimeric 

interactions between STAT1 and STAT2. STAT1-STAT2 heterodimers associate with a third 

component, p48 (IRF9), thus forming the IFN-stimulated gene factor 3 (ISGF3) transcription 

factor complex which binds to IFNα-stimulated gene response element (ISRE)-sequences in the 

nucleus. IFN-α simulation can also induce STAT1 homo- or STAT1-STAT3 heterodimerization 

leading to activation of the GAS sequence 45.  

The generation and characterization of mice with a targeted disruption of the STAT1 gene has 

further highlighted the crucial role of STAT1 in IFN signaling. STAT1-deficient mice display no 

abnormalities in reproduction, tissue and organ development, but their cells fail to respond to 

either IFNα or IFNγ. The consequences are severe defects in the ability to resist microbial and 

viral infections 18,19. In contrast, the response to growth hormone, epidermal growth factor (EGF) 

and interleukin (IL)-10, which have been shown to activate STAT1 in vitro functions properly 46. 

In line, several reports of humans with homo- or heterozygote STAT1 mutations describe 

increased susceptibility to mycobacterial diseases and multiple viral infections, often with a 

lethal outcome in young years 31–35. 

STAT1 plays also a crucial role in promoting cell death via apoptotic but also necrotic and 

autophagic pathways 45. The expression of several death-modulating genes is transcriptionally 

regulated by STAT1 including several caspases 47, death receptors and their ligands (e.g. 

Fas/FasL, TRAIL/TRAIL-R) 48, inducible nitric oxide synthase (iNOs) and the pro-survival gene Bcl-

xL 49. Further, STAT1 is implicated in ROS-mediated necrosis and autophagy 45. The C-terminal 

domain of STAT1 interacts with the tumor suppressor p53 and acts as a coactivator, thereby 

regulating apoptosis through transcription-independent mechanisms. In response to DNA 

damage, the expression of p53 is reduced in STAT1 deficient cells, thereby weakening the p53-

activated apoptotic pathway 50. In addition, STAT1 acts as negative regulator of the p53 inhibitor 

Mdm2 51. In cardiac myocytes, overexpression of STAT1 is able to induce apoptotic cell death 
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which is dependent on S727 but independent of Y701 phosphorylation 48. Considering the role of 

STAT1 in apoptosis, it is not surprising that cells deficient for STAT1 are more resistant to 

apoptosis-inducing agents. Accordingly, mice lacking STAT1 show an increased incidence of 

spontaneous, chemically induced tumors compared to wild type mice 51.  

 
Figure 6. Activation of STAT1 by type I and type II interferons (IFNs). Taken from Platanias, 2005 in Nat. 
Rev. Immunol. 44) 
STAT1 can be activated either by type I IFNs (IFNα, β, ε, κ or ω) or type II IFNs (IFNγ). Type I IFNs bind to a 
common type I IFN receptor that is composed of the two subunits IFNAR1 and IFNAR2. IFNAR1 is 
associated with Tyk2, IFNAR2 with JAK1. Activation of type I IFN receptors result in the formation of 
STAT1-STAT2 dimers. Together with the interferon regulatory factor 9 (IRF9) they form the IFN-stimulated 
gene factor 3 (ISGF3) complex that translocates into the nucleus, binds to IFN-stimulated response 
elements (ISRE) and activates target gene transcription. In contrast, the type II IFN receptor is a 
heterodimeric receptor consisting of the two subunits IFNGR1 and IFNGR2 which associate with JAK1 and 
JAK2, respectively. Its activation results in the formation of STAT1-STAT1 homodimers that bind to 
interferon gamma-activated sites (GAS) in the proximity of IFN-stimulated genes (ISGs) and activate their 
transcription. Interferon alpha receptor (IFNAR), interferon gamma receptor (IFNGR). 
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In addition to mediating cell-death, STAT1 also has the ability to negatively regulate cell cycle 

progression. STAT1 directly interacts with cyclin D1 and the cell cycle kinase CDK4 thereby 

mediating cell cycle arrest 52. Further, STAT1 induces the transcription of the cell cycle inhibitor 

p21WAF1/cip1  by specifically binding to its promoter region 53.    

 

IFN-independent functions of STAT1 

Most anti-tumor activities of STAT1 depend on its property to act downstream of interferon 

signaling. However, also IFN-independent mechanisms of STAT1 are described. One example is 

the ability of STAT1 to act as inhibitor of Ras-mediated transformation and tumorigenesis by up-

regulating the expression of the cell cycle inhibitor p27Kip1 (encoded by the Cdkn1b gene) 54,55. 

The regulation of p27Kip1 occurs via two different mechanisms: On the one hand, STAT1 together 

with STAT3 specifically binds to the Cdkn1b promoter and activates the transcription of p27Kip1. 

Interestingly, this is dependent of STAT1 phosphorylation on Y701 and active STAT3 but is 

independent of STAT1 phosphorylation on S727 54. On the other hand, STAT1 binds to the 

promoter and decreases the expression of the S-phase kinase-associated protein 2 (Skp2), a 

protein with the ability to induce degradation of several antiproliferative and tumor-suppressive 

proteins such as p27Kip1. Of note, down-regulation of Skp2 in Ras-transformed cells cannot be 

detected in response to IFN treatment 55. Further evidence that STAT1 acts as a key regulator of 

Ras-mediated transformation is given as STAT1 acts as inhibitor of Ras-MAPK signaling, 

suppressor of Rho small GTPase expression and regulates the transcriptional activity of STAT3 

and STAT5. Thereby STAT1 can fundamentally influence gene expression in Ras-transformed 

cells 56. Another effect of STAT1 that is at least partly independent of IFN-signaling is its impact 

on lymphocyte survival and proliferation. STAT1-deficient T cells (but also Abelson virus-

transformed pre-B cells) display enhanced proliferation and decreased apoptosis compared to 

wild type controls. IFNs are known to confer antiproliferative activities; however the effects of 

IFNγ-deficiency on lymphoid cells are by far less pronounced than those mediated by STAT1-

deficiency. This suggests an additional mechanism of STAT1 which is not mediated by IFNs 57.  

 

Influences of STAT1 on the hematopoietic system  

The detailed analysis of Stat1-/- mice revealed several defects in hematopoietic compartments. 

NK cells of STAT1-deficient mice display highly impaired cytolytic activities as shown by in vitro 
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and in vivo experiments 58. The reason lies most likely in an “educational” defect of Stat1-/- NK 

cells as Stat1-/- mice comprise normal NK cell-numbers and an intact lytic machinery but the NK 

cells show reduced expression-levels of the maturation marker KLRG1 and a shift from the 

mature CD11b+/CD27- fraction towards the immature fractions CD11b+/CD27+ and CD11b-

/CD27+ 58,59. Further, STAT1 deficiency abolishes and mutation of the S727 phosphorylation site 

reduces cytotoxic T cell activity. This stems also partly from activation defects of Stat1-/- dendritic 

cells (DCs) which are incapable to stimulate the expansion of Ag-specific CD8+ T cells due to 

reduced MHC I expression 60,61. As already mentioned, Stat1-/- T cells show reduced apoptosis 

and increased proliferation capacities. This leads to an enhanced incidence of carcinogen-

induced thymic tumors in Stat1-/- mice 57,60. Concerning the erythroid cell compartment, deletion 

of STAT1 affects the distribution of erythroid progenitors and leads to a block in 

differentiation 62. A recent paper also described STAT1 to be involved in the development of 

JAK2V617F-caused myeloproliferative disorders (MPDs) 63. The JAK2 mutation V617F results in a 

constitutive active form of JAK2 and can lead to two phenotypic distinct diseases: polycythemia 

vera (PV) and thrombocytopenia (ET). The cause of the different disease outcomes of JAK2V617F 

was unknown until Chen et al. revealed that an increased activity of STAT1 results in the ET-like 

phenotype, whereas reduced activity of STAT1 leads to the PV-like phenotype 63. 

 

STAT1 as tumor suppressor 

Based on the observations described above, STAT1 has generally achieved the reputation to act 

as tumor suppressor. Several reports on mice and human strengthen this view. As already 

mentioned, the presence of STAT1 protects mice from developing carcinogen-induced tumors. 

When treated with the chemical methylcholanthrene (MCA), both STAT1-single knockout mice 

and STAT1/p53-double knockout mice develop tumors more rapidly and with a greater 

frequency than wild type or p53-single knockout mice 51. N-nitroso-N-methylurea (NMU)-

challenged Stat1-/- mice develop thymic tumors earlier and more frequently than wild type 

controls 57. STAT1-deficient MMTV-neu mice have been shown to be more susceptible to 

develop spontaneous ovarian teratomas than wild type controls 64. Further, STAT1 has been 

shown to act as suppressor of ErbB2-mediated mammary tumor development: in the presence 

of the ErbB2/neu-oncogene, Stat1-/- mice develop mammary carcinomas with decreased latency 

than controls animals 65,66. A breast cancer study correlated a high expression and activation of 

STAT1 positively with an overall longer and relapse-free survival of cancer patients and indicates 
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a prognostic value of STAT1 67.  However, under several circumstances STAT1 can also function 

as tumor-promoter. In the case of v-abl- and TEL/JAK2-induced leukemia, Stat1-/- mice are 

partially protected from disease development by down-regulating MHC class I levels on tumor 

cells, thereby enabling efficient NK cell lysis 68. Further, human studies connected STAT1 

activation with apoptotic resistance of Wilms’ tumor cells or resistance to docetaxel-treatment 

in prostate cancer cells 69,70. Therefore, even though STAT1 signaling exhibits an attractive target 

for therapeutic drugs, one should carefully consider its character in different cell or tumor types.  

 

 

 

1.2 STATs in mammary gland development and tumorigenesis  

 

STATs in mammary gland development  

STAT proteins play distinct roles in mammary gland development. STAT5a was originally 

described in lactating mammary glands of sheep and rats, which exhibited very high levels of this 

protein. Therefore STAT5a was initially named mammary gland factor (MGF) or milk protein 

binding factor (MPBF) as it was shown to bind to promoter sequences of milk protein genes and 

to activate their transcription 71. Further investigations revealed that all known STAT proteins 

(except STAT2) are expressed and act during distinct stages of mammary gland development, 

albeit at various levels (Fig7.). STAT1 and STAT3 are constitutively expressed but show a 

reciprocal pattern of tyrosine-phosphorylation: activated STAT1 is found only in virgin glands, 

early pregnancy and late involution, whereas STAT3 activation is restricted to the day of birth 

and involution. STAT5 expression rises during pregnancy when alveolar epithelial cells begin to 

appear. Reciprocal to STAT5, STAT4 is only expressed in virgin glands and during early pregnancy 

and is predominately activated in the stroma 7. STAT6 can be detected throughout adult 

mammary gland development with a peak during pregnancy 72. 
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Figure 7. STAT activity during mammary gland development. (Taken from Watson and Neoh, 2008 
in Semin Cell Dev Biol. 73) 
Tyrosine phosphorylation of STAT proteins was assessed throughout the different phases of mammary 
gland development. The requirements for each individual STAT was determined by gene deletion studies 
and overlap with the depicted pattern of activity. STAT1 is active in the virgin mammary gland and during 
late involution. Phosphorylated STAT6 can be detected throughout the whole developmental cycle. STAT5 
activity is essential for complete alveolar development and lactation, whilst STAT3 plays a crucial role 
during involution.   
 

 

For some of the STAT proteins, distinct roles in the mammary gland were delineated. STAT5a has 

an essential role in mammary gland development, as STAT5a-knockout mice display impaired 

lobualveolar development and fail to lactate after the first pregnancy 25,74. This stems from 

defective prolactin-signaling, a hormone that plays a central role in the promotion of 

mammopoiesis and lactogenesis. During late pregnancy and lactation, elevated levels of 

prolactin trigger the phosphorylation of STAT5a and STAT5b in a JAK2 dependent manner. This 

leads to the expansion and differentiation of milk-producing alveolar cells 75. Mice heterozygous 

for the prolactin receptor (PRLR) as well as mice with a mammary specific deletion of JAK2 

essentially recapitulate the phenotype of STAT5a-deficient mice and also display impaired 

alveologenesis 76,77. Interestingly, STAT5b-deficiency does not result in developmental defects of 

the mammary gland, likely because STAT5b is only present at low levels in the mammary tissue 

and cedes the key role to STAT5a. 78. However, multiple gestation cycles of STAT5a-knockout 

mice lead to an up-regulation of STAT5b protein expression, coinciding with a partial restored 

mammary differentiation and normal lactation in the absence of STAT5a. Therefore, under a 

persistent lactogenic stimuli STAT5b can partly compensate for the loss of STAT5a 79. Of note, 
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conditional deletion of both STAT5 genes results in the complete absence of alveolar cells 80. 

Further, STAT5a/b-double deficient mammary glands comprise a severe reduction of CD61+ 

luminal progenitor cells and re-expression of STAT5a is able to restore normal luminal progenitor 

populations and rescue alveologenesis 81.  The second STAT protein with a distinct function in 

the mammary gland is STAT3. Mice with a conditional deletion of STAT3 show a drastic decrease 

in apoptosis of mammary epithelial cells and a delay in involution after weaning. This might be 

due to reduced levels of the Insulin-like growth factor-binding protein 5 (IGFBP-5), a direct or 

indirect target of STAT3. Of note, precocious activation of STAT1 and elevated levels of 

p21WAF1/cip1 and p53 were noted in STAT3-deficient mammary glands and were described as 

compensatory mechanism to initiate delayed apoptosis 27.  

Until now, the exact function of STAT1 in the mammary gland is still unclear. The 

phosphorylation pattern  of STAT1 - elevated in virgin glands, low throughout gestation and 

lactation, rising again at late involution - is unique, which points to a discrete function of STAT1 

within the mammary tissue73. Further, STAT1 is expressed in the epithelial compartment of the 

mammary gland, suggesting that it plays a distinct role in breast epithelial cells 72. 

 

STATs in mammary tumorigenesis 

As STAT proteins are activated and their expression is tightly regulated during all different stages 

of mammary gland development, it is not surprising that dysregulation of the JAK-STAT signaling 

pathway is implicated in mammary tumorigenesis. Activation especially of STAT1, STAT3 and 

STAT5 has been described in breast cancer patients (Table I) 8,82,83. Several independent studies 

revealed high expression and activation of STAT5 in human breast tumors by employing 

immunohistochemistry, microarrays and western blotting techniques 82,84,85. Of note, high STAT5 

activation was associated with good prognosis. Further, the level of STAT5 activity correlated 

with the grade of differentiation of breast tumor cells; STAT5 activity was gradually lost during 

cancer progression and metastasis formation 84,85. This could be explained since STAT5 up-

regulates the expression of the invasion-suppressive adhesion molecule E-cadherin 86. In 

contrast to the human situation, in WAP-TAg transgenic mouse models (expression of the Simian 

Virus 40 T antigen (TAg) under the control fo the whey acidic protein (WAP) promoter induces 

formation of mammary adenocarcinoma after at least one round of pregnancy) the loss of one 

STAT5a allele resulted in a reduced incidence of mammary tumor formation 87. Therefore, STAT5 

might have a dual role in breast cancer: on the one hand it might serve as initiator of 
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tumorigenesis, but on the other hand also promotes the differentiation of already established 

tumors 88. Similarly, constitutive STAT3 activation was detected in the majority of primary breast 

cancers (50-60%) 80. In several human breast cancer cell lines the pharmacological inhibition of 

STAT3 as well as the introduction of the dominant negative form STAT3-Y705F resulted in 

reduced proliferative capacities and cell death 89,90. In mouse models, the growth of the murine 

breast cancer cell line 4T1 was abrogated by introduction of STAT3-Y705F; 50% of the challenged 

mice remained tumor free and 90% did not develop metastasis 91. Further, in the presence of a 

constitutive active form of STAT3, MMTV/neu-induced tumors developed faster and with 

increased metastasis potential 92. Inhibiting STAT3 activity in tumor cells has been associated 

with the induction of proinflammatory cytokines and chemokines and may therefore shape the 

immunogenicity of tumor cells by provoking efficient immune responses 91. Thus, targeting 

STAT3 signaling in breast tumor cells displays an attractive target for immunotherapy. 

 

STAT1 in breast cancer 

STAT1 has been characterized as critical factor modulating tumorigenesis 51,64,68. Several studies 

also investigated STAT1 in the context of mammary cancer development. Similar to STAT3 and 

STAT5, elevated levels of active STAT1 were described in human breast tumor tissue 83.  Analysis 

of breast cancer patients correlated high activity of STAT1 with an overall longer and relapse-

free survival and revealed an independent prognostic significance of STAT1 in breast cancer 67. 

Studies on mouse models further supported STAT1´s tumor suppressive role in mammary 

cancer: In two independent reports, Klover et al. and Raven et al. investigated the contribution 

of STAT1 in ErbB2/neu-induced mammary tumor development. Both studies reached the 

conclusion, that loss of STAT1 drastically decreases the latency of tumor formation 65,66. Of note, 

in the study of Klover et al., mammary gland-specific deletion of STAT1 was sufficient to 

accelerate tumor development as demonstrated by Stat1fl/fl x MMTV-neu-IRES-cre animals 65. 

This implies tumor suppressive functions of STAT1 within the mammary epithelium. Raven and 

coworkers showed that active ErbB2 expression is associated with accelerated phosphorylation 

of STAT1 on Y701 which can be blocked by pharmacological inhibition of ErbB2 66. This up-

regulation of STAT1 activity might represent an internal safeguard to counteract transformation. 

Further, when using p53-/-/Stat1-/- MEFs, Neu-mediated cell transformation was inhibited by 

STAT1 as demonstrated by in vivo transplantation studies. Interestingly, in the experiments done 

by Raven et al., tumor growth was reduced in the presence of STAT1 but also the 
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phosphorylation mutants STAT1S-727F and STAT1-Y701A. This indicates a tumor suppressive 

function of STAT1 that is independent of its phosphorylation. However, in a recent study 

published by Chan et al., the tumor suppressive function of STAT1 relied on phosphorylation of 

Y701. Their experiments were performed in Stat1-/- mammary tumor cell lines; the different 

cellular systems of Raven et al. and Chan et al. may explain their different outcomes. As the 

study of Chan et al. was released shortly after the publication of my own results, the data will 

not be described in detail in this introductory section but will be extensively reviewed in the 

discussion (see section 4). In brief, similar to my observations Chan et al. also described the 

development of spontaneous mammary tumors in Stat1-/- animals and confirmed some of my 

results quite nicely 93. A further study by Zhang et al. showed that also Tyk2 - one of the kinases 

necessary to activate STAT1 in response to IFNα and IFNβ - regulates breast cancer growth. Tyk2-

/- mice comprise highly effective myeloid-derived suppressor cells that inhibit T cell responses 

and therefore enable accelerated growth and metastasis of breast cancer cells 94.  

Recently, it has been postulated that STAT1 activation potentiates the cytotoxic effects of 

chemotherapeutical agents such as norcatharidin and doxorubicin in human breast cancer cell 

lines 95,96. On the other hand, genes of the IFN-signaling pathway and here especially STAT1 were 

reported to be highly overexpressed in radioresistant breast cancer cells 97,98. In summary, the 

effect of STAT1 in modulating cytotoxic effects of chemotherapeutic treatment still remains 

controversial and requires deeper investigations.  

Another interesting fact is that the C-terminal transactivation domain of STAT1 physically 

interacts with the well-described breast cancer gene BRCA1 (Breast Cancer 1) 99. Inherited 

mutations of BRCA1 confer a high risk to develop breast cancer but also ovarian cancer and a 

few other tumor types. The tumor suppressive role of BRCA1 is attributed to its role in regulating 

DNA damage response, cell cycle progression, apoptosis, genome integrity and transcription. 

BRCA1 itself is not a sequence-specific DNA binding transcription factor, however by binding to 

various transcription factors it functions as coregulator of transcription. It was shown to regulate 

expression of p21WAF1/cip1, p27Kip1, p53 and ERα. Together with STAT1, BRAC1 acts in concert to 

induce a subset of IFNγ responsive genes (such as p21WAF1/cip1) and potentiates IFNγ mediated 

growth inhibition and apoptosis. Of note, mutations of STAT1’s S727 site result in poor binding 

to BRCA1 which underlines the importance of S727 in the recruitment of transcriptional 

coactivators 99,100. This connection to the prominent breast cancer susceptibility gene BRCA1 
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makes STAT1 an even more interesting and promising candidate in the field of breast cancer 

research.  

 

IRF1 – a downstream factor of STAT1 

Interferon regulatory factor 1 (IRF1) is a transcription factor of the IFNγ signaling pathway and is 

activated by STAT1. It is ubiquitously expressed at low basal levels and acts as a weak 

transcriptional activator. IRF1 possesses several serine/threonine phosphorylation sites, 

although it is not verified whether the activity of IRF1 is regulated in a phosphorylation-

dependent manner 101. IRF1 activates the promoter of its close homologue IRF2 which binds to 

the same DNA consensus sequence and thereby antagonizes the transcriptional activation of 

IRF1 102. As IRF1 is a mediator of IFN-induced signals, it confers (similar to STAT1) the induction 

of typical IFN functions such as antiviral state, tumor surveillance and immune regulation. The 

tumor suppressive functions of IRF1 stem at least partly from its involvement in cell cycle 

regulation and apoptosis. IRF1 acts as a negative regulator of cell proliferation and the 

overexpression of IRF1 in various mammalian cells mediates growth inhibition 103–105. IRF1 can 

transcriptionally induce expression of several caspases, FasL and other pro-apoptotic genes. 

Moreover, IRF1 regulates expression of the anti-proliferative genes p27Kip1 and 

p21Waf/CIP1 <sup>106</sup><sup>106</sup><sup>108</sup>106,107. Several studies strongly point 

towards a cooperation of IRF1 with the tumor suppressor p53 to prevent DNA-damage 

accumulation by activating distinct cell cycle components 22,108. Gene deletion studies in mice 

surprisingly revealed that IRF1-deficiency does not change the expression of type I IFNs and does 

not result in an increased susceptibility to viral infections 109. However, in response to IFNγ or 

lipopolysaccharide (LPS) treatment, Irf1-/- macrophages produce no or very little nitric oxide (NO) 

which plays a crucial role in macrophage cytotoxicity. Therefore, Irf1-/- mice are more sensitive to 

Mycobacterium bovis infection than wild type mice 110.  Further, Irf1-/- mice display altered T cell 

development with a reduction of CD4-/CD8+ thymic cells 109,111 and a reduced cytotoxic activity of 

NK cells 112.  

It is not a big surprise that - similar to STAT1 - IRF1 has gained the reputation to act as tumor 

suppressor. Mutations, rearrangements or loss of IRF1 have been described in several cancers, 

including hematopoietic 113, gastric 114 and breast cancer 115. Tissue arrays of breast cancer 

patients revealed a significant negative correlation between IRF1 expression and tumor grade. 

High-grad ductal carcinomas in situ as well as invasive forms of breast cancer are more likely to 
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express lower levels of IRF1 than untransformed tissue 116,117. Moreover, overexpression of IRF1 

in the human breast cancer cell line MCF7 revealed tumor suppressive activities via induction of 

apoptosis 118.  

 

 

 

1.3 Breast cancer 

 

Facts and statistics 

Breast cancer is the worldwide most frequently diagnosed cancer and the leading cause of 

cancer death among women. Accounting to the GLOBOCAN 2008 estimates, about 384.155.000 

breast cancer cases and 850.000 deaths have been documented worldwide in 2008 119. The 

Statistics Austria counted 4611 breast cancer cases and 1531 deaths in 2007, making it as well in 

Austria the most prominent female cancer type (Fig8.). Even though men can develop breast 

cancer, it’s a relatively rare condition accounting for only about 1% of all cases. Over the last 

decades, breast cancer incidence has continuously increased, however mortality has slightly 

decreased (Fig9.). The reason for the constantly rising cancer statistic stems from population 

aging and the adoption of pro-cancer lifestyle. Increased screening intensities further boost the 

number of detected cancer cases. On the positive side, early detection through regular health 

screenings as well as new and improved treatment methods could significantly limit breast 

cancer death rates.  

 

Risk factors 

Apart from being a woman, numerous factors play a potential role for the development of 

breast cancer. Only about 5% to 10% of the cases are considered to be hereditary and the result 

of inherited gene defects. The by far most powerful breast cancer predictor is an inherited 

mutation in the tumor-suppressor genes BRCA1 or BRCA2 (Breast Cancer 1/2). People carrying 

germline mutations in one of these genes have a risk as high as 40-80% for developing breast 

cancer 120. Further gene mutations associated with inherited breast cancer have been defined in 

the ATM, TP53, CHEK2, PTEN, CDH1 and STK11 genes, albeit at low frequency 121,122. Overall, 

white Caucasian women are slightly more likely to develop breast cancer when compared to 
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African-American women. Other factors which are known to increase the risk to develop breast 

cancer are age, a late first pregnancy, late menopause, oral contraceptives, hormone 

replacement therapy, obesity and alcohol consumption. Especially, synthetic progesterone 

derivatives (progestins) which are used for hormone replacement therapies and contraceptives 

have been associated with an increased risk to develop breast cancer 123,124. A very recent study 

revealed, that progestins trigger the massive induction of RANKL (receptor activator of NF-kB 

ligand) in mammary epithelial cells125. The crucial role for RANKL in breast cancer development 

was underlined by genetic inactivation or deletion of RANKL’s receptor RANK (receptor activator 

of NF-kB) from the mammary epithelium which significantly reduced progestin induced tumor 

development.  

 

 
Figure 8. Incidence and mortality of selected cancer cases in women. (Taken from Statistik Austria 126) 
The evaluation covers all cancer cases registered between 2005-2007 in Austrian femals of all ages. Breast 
cancer is by far the most common form of cancer among women, considering incidence as well as 
mortality.  
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Figure 9. Breast cancer incidence and mortality trends in Austria (1990-2007). (Taken from Statistik 
Austria 126) 
Depicted are the numbers of newly diagnosed breast cancer cases per year. Rates are per 100.000 
women. Since 1990, the incidence of newly diagnosed breast cancer cases has increased, whilst mortality 
has decreased. In 2007, around 66 of 100.000 females were diagnosed with breast cancer, 18 out of 
100.000 died.  
 

 

Types of breast cancer and classification 

The primary role of the female mammary glands is to provide nutrition for the offspring. 

Mammary glands consist of lobules which are the milk producing glands and ducts that drain the 

milk to the nipple. Breast cancer may occur in all different areas of the breast - the ducts, the 

lobules, or less commonly also the stromal tissue in between. In both ductal and lobular 

carcinomas, one differentiates between in situ (“in its original place”) and invasive carcinomas. 

The in situ carcinoma is a non-invasive form of breast cancer, characterized by the malignant 

proliferation of epithelial cells which have not crossed the basement membrane of the milk duct 

or the lobule (Fig10.). It is still under debate whether in situ carcinomas represent a direct 

precursor of invasive breast cancer. However, the risk of developing invasive cancer after 
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diagnosis of an in situ carcinoma is relatively high, and there is the general consensus that an in 

situ carcinoma exhibits an intermediate step between normal breast tissue and invasive breast 

cancer 127. In the case of invasive cancer, malignant cells have already broken through the 

basement membrane and have begun to spread within the surrounding breast tissue and 

subsequently also into other areas of the body, developing metastasis. Bone, lungs, regional 

lymph nodes, liver and brain are the main targets for metastatic breast cancer, with the most 

common site being the bone. Metastasis represents an additional burden for breast cancer 

patients, as metastatic cancer cells frequently differ from the preceding primary breast cancer. 

They may display a different receptor status and have often developed resistance to previously 

used treatments. For this reason, the prognosis for metastatic breast cancer is poor and it 

accounts for approximately 90% of all breast cancer deaths. 

 

 

Figure 10. Range of ductal carcinoma in situ. (Taken from BreastCancer.org 128) 
Normal breast ducts are lined by a single layer of epithelial cells. Depending on the grade of abnormal cell 
growth and morphology, one can differentiate between ductal hyperplasia, atypically ductal hyperplasia, 
ductal carcinoma in situ or ductal carcinoma in situ with microinvasion. These abnormal forms are not 
cancerous yet, however they might harbor the risk to develop into an invasive form of cancer (invasive 
ductal cancer). 
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A successful therapy design and treatment depends on reliable predictive and prognostic 

factors. Therefore, breast cancer patients are rated by a combination of classical time-

dependent variables (called “staging”) including tumor size, the involvement of lymph nodes and 

extent of tumor spread, as well as biological variables including morphologic variables like tumor 

grade (how different do the tumor cells look from normal cells) and molecular markers such as 

hormone receptors (estrogen receptor, ER and progesterone receptor, PR) and human 

epidermal growth factor receptor 2 (HER2) status. In addition to this classical tumor 

classification, gene expression profiling using microarray-based methods has further improved 

our understanding of breast cancer biology in the past decade 129. This novel technology could 

associate numerous gene signatures with prognosis and response to systemic therapies. 

However, their use in routine clinical decision-making could not replace but complement the 

classical classification system. 

 

Current therapy and treatment methods 

Early detection of breast cancer is crucial for successful treatment. To detect a tumor in its early 

phase before it has begun to metastasize prevents painful and often ineffective therapies. 

Preventive screening tests imply regular breast-palpation for any suspicious lumps or alterations, 

and with increasing age also yearly screening mammograms. Once substantial suspicion for 

breast cancer occurs, different diagnostic tests such as ultrasound, breast MRI (magnetic 

resonance imaging) and biopsy follow to gather more information about the cancer type to 

guide decisions about treatment. Every breast tumor has to be excised, however prior to surgery 

very often neoadjuvant therapies are applied. The aim of neoadjuvant therapies is to reduce the 

size or at least the extent of the cancer, thus making treatment easier and more likely to 

succeed. Adjuvant therapy is applied after tumor surgery to reduce the risk of future breast 

cancer recurrence or metastasis development. Both neoadjuvant and adjuvant therapies include 

treatments such as chemotherapy, hormone therapy or targeted therapy as well as radiation 

therapy. Chemotherapy is the use of different cytostatic drugs alone or in combination to inhibit 

tumor cell growth. However, since they act systemic and affect all cells of the body, they are 

associated with heavy side effects. Targeted therapy includes substances that specifically 

interfere with target molecules involved in tumor growth to inhibit further proliferation and 

progression of the tumor. Thereafter, it is less harmful for normal cells. The monoclonal 

antibody herceptin (trade name: Trastuzumab) specifically binds to the human epidermal growth 

factor receptor 2 (HER2) and is therefore applied to HER2-overexpressing breast tumors. 
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Another monoclonal antibody called Avastin (trade name: Bevazezumab) inhibits vascular 

endothelial growths factor A (VEGF-A), an important stimulator of blood vessel formation 

(angiogenesis). Avastin was the first commercially available angiogenesis-inhibitor, and was 

recommended in combination with standard chemotherapy for the treatment of metastatic 

breast cancer. However in 2011, the U.S. Food and Drug Administration revoked its approval of 

the breast cancer indication for Avastin, as it was not proven to be safe and effective for that 

use 130. Avastin showed only a small effect on tumor growth and no evidence to prolong life or 

improve its quality compared to the use of standard chemotherapy alone. Therefore the use of 

Avastin cannot justify its severe side effects such as high blood pressue, heart attack or heard 

failure, bleeding, hemorrhaging or the appearance of perforations of the stomach or the 

intestine 130. Besides antibodies targeted therapy also includes small molecular weight inhibitors 

targeting kinases. The tyrosine-kinase inhibitor Lapatinib (trade name: Tykerb/Tyverb) binds to 

the ATP-binding pocket of both the epidermal growths factor receptor (EGFR) and HER2 

protein kinase domain and prevents activation of the signal transduction cascade. It is approved 

for the treatment of advanced or metastatic HER2 positive breast cancer. Hormonal therapy is 

generally a very effective way to treat breast cancer, however with the limitation that it can only 

be applied for hormone receptor positive (ER+, PR+) cancers. Blocking the estrogen receptor or 

lowering the amount of estrogen in the body is an effective way to inhibit the growth of ER+ 

receptor positive tumor cells. One well known example for an estrogen-receptor antagonist is 

tamoxifen. As hormone ER+ cancers have an easily accessible point of action, they are generally 

regarded to have a good prognosis.  

Although the treatment methods for breast cancer are constantly improving, there is still need 

for novel therapeutics, molecular targets and of course also for reliable prognostic and 

predictive markers to forecast drug responses, disease development and outcome. My study on 

the transcription factor STAT1 may hopefully improve the general knowledge about mechanisms 

involved in breast cancer development and provide potential starting-points for novel treatment 

methods.  
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2 

AAIIMM  OOFF  TTHHEE  TTHHEESSIISS  
The importance of STAT1 for tumor surveillance is well described since several years. STAT1 is a 

central mediator of interferon signaling and plays an essential role in innate as well as adaptive 

immunity. STAT1 deficiency manifests in impaired NK and T cell function and in a reduced 

capacity to induce apoptosis, therefore providing tumor promoting conditions. Regarding 

mammary cancer, several studies in mice and men already delineated STAT1 to act in a tumor 

suppressive way. In ErbB2-induced mammary tumor models complete but also tissue specific 

deletion of STAT1 results in accelerated mammary tumor formation. This indicates that STAT1 

plays a certain cell-autonomous tumor-suppressive role within the mammary gland. The exact 

mechanism how loss of STAT1 promotes mammary tumor development has not been elucidated 

until now, neither in the immune system nor cell-intrinsically.  

We observed the frequent occurrence of spontaneous mammary tumor formation in 

multiparous STAT1-deficient mice. As it is a novel finding that loss of STAT1 suffices to promote 

mammary tumor development, the aim of my thesis was to characterize this phenomenon in 

detail. A further goal was to deepen our understanding of STAT1’s immune-modulatory and cell 

autonomous contributions in mammary tumor formation. To dissect these two factors, 

reciprocal mammary gland transplantation experiments were performed (Stat1-/- mammary 

glands in Stat1+/+ immunological surrounding, and vice versa). All developing mammary tumors 

were analyzed and classified to find tumor patterns that correlate with STAT1 deficiency. I 

further investigated how loss of STAT1 affects immune control and which of the impaired 

immune cells (NK and/or T cells) are essential for mammary tumor surveillance. Therefore, I 

performed orthotopic transplantations of mammary tumor cell lines in mice lacking either NK 

cells and/or T cells. Finally, I analyzed the cell-specific function of STAT1 in mammary epithelial 

cells using a 3D culture system.  
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3 

RREESSUULLTTSS  
This section consists of 4 manuscripts. The results of the main project of my doctoral thesis are described 

in section 3.1. I additionally contributed to several other manuscripts and the results from these projects 

are described in section 3.2, 3.3 and 3.4. In each section, my contribution to the manuscript will be 

outlined briefly.   

 

3.1 Putting the brakes on mammary tumorigenesis – Loss of STAT1 predisposes to intraepithelial 
neoplasias. 

 Manuscript published in Oncotarget. 2011 Dec;2(12):1043-54. 

Schneckenleithner C , Bago-Horvath Z, Dolznig H, Neugebauer N, Kollmann K, Kolbe T,  Decker T, 
Kerjaschki D, Wagner KU, Müller M, Stoiber D, Sexl V. 

 

3.2 Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph 
node metastasis of human mammary carcinoma xenografts in mouse.  
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My contribution: Designed research, performed experiments, analyzed data, wrote paper. 
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My contribution: Performed all in vivo experiments and analyzed data.  

 

I performed the xenograft experiment to monitor metastasis formation of the human breast cancer cell 

line MCF7 in vivo (Fig6. and page 2004-2005). The purpose of the experiment was to validate whether 

ALOX15 is required for formation of lymph node metastasis by enabling the entry of tumor cells into 

intrametastatic lymphatic vessels. Therefore, MCF7/VEGF-C cells harbouring either a shRNA construct 

targeting ALOX15 or a non-coding shRNA construct were orthotopically injected in the mammary glands 

of female SCID mice. As MCF7 cells grow hormone-dependent, 2 days before orthotopic injection, slow-

release estrogen-pellets were subcutaneously implanted in the mice. The presence of a luciferase 

reporter construct allowed us to monitor cell growth. Tumor growth and lymph node metastasis 

formation was measured at 10-day intervals by non-invasive bioluminescence imaging. At termination of 

the experiment, primary tumors and lymph nodes were taken and further used for 

immunohistochemical analysis.  
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My contribution: Designed research, performed experiments.  

 

I performed the adoptive transfer experiments (Fig1. and page 2). The purpose of this experiment was to 

define the contribution of STAT1 in the hematopoietic versus non-hematopoietic cell compartment in 

the protection to Listeria monocytogenes infections. Wild type and Stat1-/- mice were lethally irradiated 

and reconstituted with bone marrow of the reciprocal genotype. To allow an accurate discrimination 

between donor and receptor, the Ly5.1/Ly5.2 system was used. Mice were checked for efficient 

engraftment and subsequently subjected to intraperitoneal infections with sublethal doses of Listeria 

monocytogenes. The following experiments on determining the bacterial burdens in different organs 

were carried out by Elisabeth Kernbauer.  
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My contribution: Designed research, performed experiments, analyzed data. 

 

I designed the cloning strategies and performed the cloning for the pMSCV-cdk6-R31C-puro construct 

(CDK6 mutant that fails to bind INK4 proteins) and the pMSCV-cdk6-K43M-puro construct (CDK6 kinase 

dead mutant). The constructs were used for several experiments throughout the whole study to 

delineate kinase-independent functions of CDK6 and display the specific regulation of p16INK4a through 

CDK6 (Fig1. h-j; Fig3. a-i; Suppl. Fig3. b-d; Suppl Fig4. a-d, Suppl. Fig8. d). I also designed the cloning 

strategy and performed the cloning of the doxycycline inducible Tet-On CDK6-construct. I was further 

involved in establishing cell lines that induce the expression of CDK6 in response to doxycycline in a 

concentration-dependent manner. This was achieved by retroviral infection of Cdk6-/- cell lines with the 

pRevTet-On regulatory plasmid and a GFP-expressing response plasmid (pRevTRE-GFP). Single cell clones 

were screened for clones with the highest doxycycline-dependent induction of GFP and the lowest 

background expression in the absence of doxycycline. Selected clones were then used for experiments 

with the CDK6-expressing response plasmid (pRevTRE-tight-Cdk6). The aim was to show that increasing 

levels of CDK6 expression do not induce apoptosis and to display that CDK6 regulates the expression of 

p16 INK4a and VEGF-A in a concentration dependent manner (Suppl. Fig1. e-h). I further established and 

conducted the shRNA knockdown of CDK6 in several human cell lines (Suppl. Fig11. a-i). The purpose of 

this experiment was to show that the regulatory effect of CDK6 on VEGF-A and p16INK4a is also present in 

the human system.  
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4 

DDIISSCCUUSSSSIIOONN  
The successful treatment of breast cancer patients requires reliable prognostic and predictive 

markers that allow appropriate therapy design. Therefore it is of great importance to define 

candidate genes that serve as stable predictors and help to estimate treatment responses and 

outcome. The transcription factor STAT1 has recently gained attention in the field of breast 

cancer research and is discussed as an independent prognostic marker. High expression of 

tyrosine phosphorylated and thus activated STAT1 protein in human breast cancer patients 

correlates positively with disease outcome and relapse-free survival 1. However, the exact 

function of STAT1 in mammary tumorigenesis and how STAT1 confers this positive effect had not 

been clarified. Using STAT1-deficient mice, I showed for the first time that the absence of STAT1 

suffices to significantly enhance the incidence of spontaneous mammary tumor development. 

Moreover, my studies revealed a dual function of STAT1 in suppressing mammary tumor 

formation: on the one hand STAT1 sustains efficient CTL dependent tumor surveillance and is 

required for full-fledged T cell cytotoxicity; on the other hand STAT1 regulates cell proliferation 

in the mammary epithelial cells themselves and acts as key factor controlling growth.  

Three related studies were performed in the laboratories of R. Schreiber 2, L. Hennighausen 3 

and A. Koromilas 4 all investigating the role of STAT1 in mammary tumor formation. In Table I 

and Table II the distinct study designs and outcomes of each individual report - including mine 5 - 

are summarized. Despite the use of different experimental conditions all studies reached similar 

conclusions and confirmed the tumor suppressing role of STAT1 in mammary tumorigenesis. 

Klover et al. (Hennighausen laboratory) reported on the generation of a novel floxed allele of 

Stat1; the selective STAT1 deletion in the mammary epithelium was achieved by crossing 

Stat1fl/fl mice to MMTV-neu-IRES –cre and used to study ErbB2/neu-induced tumor formation in 

virgin mice. Although first tumors were detectable in both groups 36 weeks after birth, the 

overall disease latency was significantly enhanced in “STAT1-deleter” mice being 49.4 weeks 

compared to 62.4 weeks in STAT1-expressing animals. In this experimental system all cells of the 
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tumor microenvironment do express STAT1; the tumor suppressing role of STAT1 is thereby 

unequivocally linked to a cell intrinsic function of STAT1 within the mammary epithelium.   

Similarly, Raven et al. (Koromilas laboratory) employed ErbB2/neu as an oncogene to drive 

tumor formation. They showed that ErbB2 induces phosphorylation of STAT1 on tyrosine 701 

(Y701) and serine 727 (S727). When they used purified bacterial lysates, ErbB2 directly 

phosphorylated STAT1 on Y701 in vitro. Whether this is actually the case in cells remains to be 

determined. Raven et al. excluded that these effects are mediated by JAK kinases or by Src 

family members using signal interceptors. The ErbB2-induced phosphorylation of STAT1 does not 

promote tumor formation but appears to serve as an internal safeguard counteracting 

transformation. ErbB2-transformed MEFs lacking both p53 and STAT1 formed large tumors upon 

transplantation into SCID mice; this tumor growth is significantly suppressed by the expression 

of wild type STAT1. Interestingly, the tumor suppressing effect is independent of STAT1 

activation as STAT1-Y701F as well as STAT1-S727A exerted comparable effects to wild type 

STAT1.  

Raven et al. also observed a clear tumor suppressing effect of STAT1 when they exposed STAT1-

deficient animals to ErbB2/neu-driven tumor formation. Both, virgin as well as parous females 

developed mammary tumors significantly faster in the absence of STAT1 when compared to wild 

type controls. No differences in histological appearances were detected between Stat1-/- and 

wild type tumors irrespective whether they were derived from virgin or parous mice. When cells 

obtained from these tumors were further orthotopically transplanted into wild type and Stat1-/- 

mice, a clear effect of the microenvironment became visible. The transplantation of Stat1-/- cells 

induced a significantly larger tumor growth in Stat1-/- mice than in wild type mice. Notably, no 

significant enhancement in tumor growth was observed when Stat1+/+ tumor cells were 

orthotopically injected which may point at a STAT1-dependent interaction between the tumor 

and the microenvironment. It is currently hard to interpret the data based on the low numbers 

of individual tumors investigated in this interesting experimental setting.   

Further evidence for a key role of STAT1 in the tumor microenvironment was obtained in the 

study of Chan et al. (Schreiber laboratory) as well as from my own data. Chan reported on the 

selective down-regulation of STAT1 protein in a large cohort of patients using 

immunohistochemistry in tumor biopsies. The down-regulation was most prominent in the 

tumor cells themselves and lower when compared to the surrounding stroma and infiltrating 

lymphocytes. The expression of STAT1 in the tumor stroma and the infiltrating lymphocytes may 
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explain why many researchers do find high STAT1 expression in breast cancer samples if they use 

methods that do not allow dissection of tumor stroma and the tumor cells themselves such as 

western blotting or microarrays of total tumors. There is increasing evidence highlighting the key 

role of the microenvironment for tumor development. Thus, it is necessary to perform single-cell 

resolution analysis in order to assign protein expression to a distinct cellular compartment. The 

availability of conditional knockout mouse strains and Cre mouse lines that allow the deletion of 

genes in distinct cellular subtypes will provide further insights.        

Similar to my study, Chan used spontaneous mammary tumor development to evaluate the 

impact of STAT1 in vivo and confirmed my findings. In her mouse cohort the tumor incidence in 

Stat1-/- animals was even higher and exceeded 90% in the parous mice compared to 55% in my 

cohort. While I never observed tumors in virgin mice, Chan also reported on a tumor incidence 

of 65% in in virgin animals. Slight differences were also found in the receptor expression of the 

tumors in both studies; whereas the tumors in Chan’s study displayed an estrogen receptor 

alpha (ERα)+ phenotype and closely resembled human progesterone receptor (PR)+/ERα+ tumors 

of the luminal subtype, “my” Stat1-/- tumors were only in 50% ERα+. One can only speculate on 

the underlying differences. One major difference is the background of the animals; while I was 

using BALB/c animals, Chan investigated 129S6/SvEv mice which are prone to develop mammary 

tumors 6. It should also be mentioned that two different knockout mouse model for STAT1 do 

exist which were both presented to the scientific community in 1996. The group around D. 

Levy’s laboratory deleted exon 7-10 which resulted in the complete loss of the STAT1 protein 7. 

In contrast, Schreiber’s lab targeted exon 1-3 which resulted in the appearance of an N- 

terminally truncated protein 8. I used the “Levy-mouse model” for my studies, whereas Chan 

initially worked with mice expressing the truncated version (the “Schreiber-mice”). During the 

course of her work she confirmed her findings by using the complete “Levy-knockout mouse”. 

This rules out that the N- terminus of STAT1 plays a major role - a consideration which is not a 

far- fetched as the experience with STAT5 deficient mouse models had revealed considerable 

activity of an N-terminally truncated protein even when expressed at low level 9,10. While 

complete STAT5 knockout mice display perinatal lethality 11, mice carrying an N-terminally 

truncated version of STAT5 are viable with minor phenotypes 9,10. One can also not exclude that 

the difference in mouse housing affects mammary tumor development which is known to be 

influenced by nutrition. Moreover, recent evidence has shown that the gut microbiota may alter 

phenotypes occurring in transgenic mouse strains 12. Therefore, I can also not exclude that 
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different microbiota contribute to the alterations in outcome between the study of Chan et al. 

and my own data.  

Both studies, Chan and my own work, report on the enhanced appearance of mammary 

intraepithelial neoplasias (MINs) in Stat1-/- animals. These alterations represent precancerous 

lesions and have the potential to develop into carcinomas. MINs are considered to result from 

an increased proliferative rate and the decreased capability to undergo apoptosis of the 

mammary epithelial cells. STAT1 has been implicated in both processes; on the one hand STAT1 

is an important regulator of cell growth and inhibits cell proliferation e.g. downstream of 

interferons. Among the STAT1-dependent target genes are important cell cycle regulators such 

as the cell cycle inhibitor proteins p27Kip1 and p21WAF1/cip1. Most importantly, the group of 

Koromilas has recently shown that the STAT1-p27 axis controls Ras-dependent transformation 

and proliferation 13,14. Both, p21WAF1/cip1 and p27Kip1 deficient mice are tumor prone; mice lacking 

p21WAF1/cip1 or p27Kip1 show increased frequencies of intestinal tumors in Apc mutatnt mice 15–17. 

Other STAT1 target genes involved in cell cycle regulation are D-type cyclins as well as CDK4 18. 

The significance of cyclinD/CDK4 complexes for mammary cancer development has recently 

come into the focus of attention and is currently a matter of debate in the field 19,20. On the 

other hand, STAT1 also regulates apoptosis as demonstrated in numerous reports. STAT1 was 

shown to regulate the expression of several caspases as well as of Fas and Fas ligand 21. 

Accordingly, Chan et al. were capable to induce apoptosis in STAT1-deficient breast cancer cell 

lines solely by the enforced expression of STAT1. Apoptosis induction required active STAT1 as 

only wild type but not STAT1-Y701F was capable to induced cell death. This opposes the findings 

by Raven et al. where tumor suppression did not rely on tyrosine phosphorylation and was also 

observed upon the expression of STAT1-Y701F. It has to be mentioned that Chan et al. 

performed annexin V stainings to unequivocally determine apoptosis, whereas Raven 

investigated tumor growth as read-out system and did not further dissect the underlying 

mechanisms. The reduced tumor growth may be related to altered apoptosis but as well to a 

reduced cell proliferation which has not been clarified. Moreover, the study of Raven et al. 

employed p53-/-Stat1-/- MEFs transformed with the ErbB2/neu-oncogene to monitor tumor 

growth upon transplantations in SCID mice whereas Chan et al. used Stat1-/- mammary tumor 

cells. Different cell types may certainly act in a different manner. Moreover, p53 has been 

reported to interact with STAT1, again representing a considerable difference in experimental 

models. It will be of great significance to decipher the molecular mechanism underlying the 

tumor suppressive effect of STAT1 in different experimental models. The interaction of p53 and 
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STAT1 and its relevance for mammary cancer needs to be unraveled, as both p53 and Stat1 have 

prognostic and/or therapeutic relevance in human breast cancer 1,22. In this regard it should also 

be noted that an interaction between STAT1 and BRCA1 has been reported which underscores 

the importance of studying STAT1 in human mammary tumors 23.     

I failed to detect any obvious signs of cell death or apoptosis in our experimental system. In 

contrast, I was clearly able to observe enhanced proliferation in vivo in both, non-tumorigenic 

and tumorigenic mammary epithelial cells. Further confirmation for a key role of STAT1 to 

regulate mammary epithelial cell growth came from my 3D culture studies. Jechlinger et al. 

developed the 3D culture system to study the effects of Kras(G12D) and MYC on the ability of 

mammary epithelial cells to form structured and polarized mammospheres 24. I used this novel 

and innovative technique to compare the formation of mammospheres derived from primary 

mammary epithelial cells of STAT1-deficient versus wild type virgin mice. The first steps of MIN 

formation were recapitulated in Stat1-/- mammospheres; Stat1-/- cells formed spheres with 

significantly thicker epithelial layers, displayed increased proliferation rates and in some cases 

started to fill the lumen of the acini. Therefore, I consider the 3D cultures system by Jechlinger et 

al. as an exciting novel tool to test the probability of primary epithelial cells to undergo MIN 

formation and may serve as valuable screening system.  

My data also suggest that the STAT1 downstream transcription factor IRF1 mediates the growth 

inhibitory effects of STAT1 in mammary epithelial cells. This assumption is supported by several 

lines of evidence. First, I found a significant down-regulation of IRF1 in STAT1-deficient 

mammary tumors. This result may be anticipated as STAT1 does regulate the expression of IRF1. 

Importantly, I found structural similarities in Stat1-/- and Irf1-/- mammary tissue when analyzing 

mammary gland whole mounts of 7 week old virgin mice. In both cases the density of ductal 

structures was enhanced when compared to wild type controls indicative of the increased 

proliferative capacity. Accordingly, when exposing Irf1-/- mammary epithelial cells to 3D cultures, 

I recapitulated the alteration seen in Stat1-/- mammospheres. Lastly, in vivo-BrdU incorporation 

experiments confirmed the overlap of phenotypes between STAT1 and IRF1 in mammary 

epithelial cells and revealed increased proliferative capacities of both Stat1-/- and Irf1-/- 

mammary epithelial cells. It is thus attractive to speculate that at least the effects of STAT1 on 

cell cycle control are mediated via IRF1. The importance of IRF1 is further supported by 

observation in human patients suffering from breast cancer; IRF1 is frequently heterozygous in 

tumor tissue 25 and high-grade ductal carcinomas in situ or node-positive invasive ductal cancers 
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express less IRF1 than normal tissue 26. Tissue microarrays confirmed the finding that IRF1 is 

down-regulated in high grade breast cancer 27. However, information on the expression levels of 

STAT1 is unfortunately missing in these studies; no parallel analysis of STAT1 has been done. It is 

thus not clear whether down-regulation of IRF1 correlates with loss of STAT1 or occurs 

irrespective whether STAT1 is expressed at regular levels. It is attractive to speculate that the 

loss of IRF1 occurs independently of alterations in STAT1 expression and suffices to trigger 

tumorigenesis. Support for this concept comes from observations in cell lines; the enforced 

expression of IRF1 may inhibit cell proliferation and suffices to induce apoptosis in mammary cell 

lines 28.  It is currently unclear under which conditions STAT1/IRF1 block proliferation and when 

they induce apoptosis. In my hands, STAT1/IRF1-deficiency resulted in increased proliferative 

capacities of mammary epithelial cells. Though, I can also not exclude the possibility that the 3D 

culture system is not perfectly suited to detect alterations in apoptosis but rather proliferation.    

One open question that still remains to be determined is the influence of STAT1 in already 

established tumors. It will be interesting to explore whether deletion of STAT1 in established 

tumors has the potency to modulate tumorigenesis. The fact that I found a mosaic expression in 

human (observation unpublished) and murine mammary tumors for STAT1 favors this possibility. 

The lack of STAT1 in wild type tumors was focal and restricted to certain areas of the tumors 

indicating that the tumor cell do down-regulate STAT1 after tumor induction. The loss of STAT1 

appears to be advantageous as huge homogenous patches of the tumor lacked STAT1. The 

availability and use of inducible conditional knockout mouse models will ultimately address this 

issue.  

Conditional mouse models will also be crucial in dissecting the contribution of individual cell 

types to STAT1 mediated tumor suppression. Besides the effects of STAT1 in the mammary 

epithelial cells themselves, there is a clear-cut effect of the microenvironment. Raven et al. were 

the first who described - using orthotopic transplantation of tumor cells – that mammary tumors 

develop significantly faster in a Stat1-/- microenvironment when compared to a wild type host. 

Interestingly, in his experimental setting the effect was only detectable when he transplanted 

STAT1-deficient tumors. Only minor effects were observed upon the transplantation of wild type 

tumors. I reached a similar conclusion - albeit with an entirely different system. I transplanted 

untransformed mammary gland tissue from 3 weeks old Stat1-/- and control animals into the 

cleared fat pad of both Stat1-/- and wild type recipients and monitored tumor incidence and 

tumor latency. In this setting and in line with the findings of Raven, mammary tumor 
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development occurred at the highest rate upon transplantation of Stat1-/- mammary cells into 

Stat1-/- recipients. The transplantation of Stat1-/- cells into wild type mice significantly reduced 

tumor incidence and increased disease latency. This indicates that STAT1 controls both, tumor 

onset as well as growth of a once established malignancy. Wild type mammary tumors also 

evolved, with a slightly higher incidence in Stat1-/- mice compared to wild-type animals again 

supporting a role for the tumor microenvironment. Further evidence came from the finding that 

tumor growth was significantly faster in a Stat1-/- microenvironment. As I detected a prominent 

infiltration of lymphoid cells within the mammary tumors, I concentrated on the influence of 

cytotoxic T lymphocytes (CTLs) and NK cells. Both cell types represent major components of the 

tumor microenvironment and the tumor surveillance system. Of note, this is also the case in 

human breast cancers which frequently display dense infiltrations of lymphoid cells; further, 

high numbers of tumor-infiltrating CD8+ T lymphocytes in invasive breast cancer have been 

correlated with a better prognosis 29. Immunohistochemical analysis of the tumors identified the 

infiltrates as primarily of T lymphoid origin. To test their impact, I made use of Rag2-/- mice 

which lack mature lymphoid cells but do express functional NK cells. The transplantation of four 

individually derived mammary tumor cell lines confirmed the dominating role of cytotoxic T cells 

in mammary tumor surveillance. Tumor growth was significantly enhanced in Rag2-/- mice 

irrespective whether the tumor cells did express STAT1 or not. A comparable increased tumor 

growth was observed in Stat1-/- mice which lack fully functional cytotoxic T cells as well as NK 

cells. The removal of Stat1-/- defective T cells by crossing Stat1-/- to Rag2-/- mice did not change 

tumor progression.  These findings underscore the importance of STAT1 for CTL dependent 

tumor surveillance. The loss of STAT1 suffices to completely abrogate CTL-dependent immune 

control as no further enhancement of the Stat1-/--phenotype was obtained by complete removal 

of the T cell compartment in Rag2-/-/Stat1-/- mice.  

Therefore, it is clearly of advantage for a breast tumor if the controlling CTLs express no or low 

levels of STAT1. Patients with STAT1 mutations do exist and have been described 30. However, 

these patients suffer from severe recurrent infections and most of them die at young age which 

does not allow to draw any conclusions or statements on tumor development. However, there is 

one interesting report in a murine model: mice which had been transplanted with a mammary 

tumor cell line displayed a time dependent down-regulation of STAT1 in the T lymphoid 

compartment 31. It is tempting to propose that the tumor may somehow induce the down-

regulation of STAT1 in order to facilitate its own proliferation and escape immune control. 

Tumor cells frequently display alterations that help them to escape immune control. Down-
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regulation of interferon receptors has been described in many tumor types 32. Interferons are 

considered as major players in tumor surveillance with STAT1 being a key transcription factor 

mediating IFN-induced effects. Nevertheless, the effects of STAT1 on mammary tumor 

development may not simply reflect the inability to react on interferons and are beyond the 

control of interferon only. STAT1 has been shown to suppress Ras-mediated transformation 

independent of IFNs by up-regulating p27Kip1 13,14. The mechanisms, how STAT1 regulates growth 

control of mammary epithelial cells and whether this occurs IFN-dependent or independent has 

not been addressed in my study and still needs further investigation.  

Several recent studies investigated the role of STAT1 in the context of mammary tumor 

formation and the evidence is compelling: it is safe to conclude that loss of STAT1 not only 

represents a predictive factor that correlates with disease outcome, but represents a true 

mammary tumor suppressor. All studies on STAT1’s role in mammary tumorigenesis – including 

mine – demonstrated the crucial role of STAT1 in the tumor initiating phase. It will be interesting 

to determine if and how STAT1 influences the progression of an already established breast 

cancer using inducible and conditional STAT1 mouse models.   

 

Table I. Recent publications on the topic “Stat1 acts as suppressor of mammary tumorigenesis in murine 
model systems”- Different experimental setups and outcomes are summarized. 
 

Ref. Mouse 
genotype 

(STAT1 exons 
deleted) 

Mouse 
background 

oncogenic 
driver 

parous
/ 

virgin 

Earliest 
tumor onset 

[weeks] 
(Stat1-/-/wt) 

median 
tumor onset 

[weeks] 
(Stat1-/-/wt) 

% tumor 
bearer 

(Stat1-/-/wt) 

Klover, 
P.J. et al. 3 

Stat1fl/fl x 
MMTV-neu-

IRES-cre 
(1-3) 

129SvEv MMTV-
neu 

virgin 36/36 49/62 100%/100% 

Raven, J.F. 
et al. 4 

Stat1-/- 
(7-10) 

BALB/c MMTV-
neu 

virgin 29/43 42/49 100%/100% 

Stat1-/- 
 (7-10) 

BALB/c MMTV-
neu 

parous 21/22 27/33 100%/100% 

Schnecken
leithner, 
C. et al. 5 

Stat1-/- 
(7-10) 

BALB/c none virgin no tumors no tumors 0%/0% 

Stat1-/- 
(7-10) 

BALB/c none parous 37/53 54/70 55%/10% 

Chan, S.R. 
et al. 2 

Stat1-/- 
(1-3) 

129SvEv none virgin 49/no 
tumors 

104/no 
tumors 

65%/0% 

Stat1-/- 
 (1-3) 

129SvEv none parous 50/no data 64/no data 99%/no data 

Stat1-/- 
(7-10) 

mixed 
129SvEv/BL6 

none virgin 40/no data 65/no data 65%/no data 
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Table II. Recent publications on the topic “Stat1 acts as suppressor of mammary tumorigenesis in 
murine model systems”- Different experimental setups and outcomes are summarized. 
 

Ref. Method used to test STAT1’s … in suppressing mammary tumor 
formation 

additional notes 

cell-intrinsic 

contribution 
immunological 

contribution 
phosphoryation 

status 
Klover, 
P.J. et 
al. 3 

mammary gland 
specific deletion of 

STAT1  

no data / no tumors in parous 
Stat1fl/fl x MMTV-cre 
mice after 15 month 

(numbers of 
pregnancies unknown) 

Raven, 
J.F. et 
al. 4 

xenografts of  
p53-/-/Stat1-/--

Neu MEFs 
reconstituted with 
STAT1; orthotopic 
injection of Stat1-/-

  and wt mammary 
tumor cells in Stat1-/-  

and wt mice 

orthotopic injection of 
Stat1-/-  and wt 

mammary tumor cells 
in Stat1-/-  and wt mice 

xenografts of  
p53-/-/Stat1-/--

Neu MEFs 
reconstituted with 

STAT1 Y701F/S727A: 
tumor suppressive 

function independent 
of P-Y701 and P-S727  

no tumors in Stat1-/-  
mice 

(gestation/latency 
unknown) 

Schnecke
nleithner, 
C. et al. 5 

orthotopic mammary 
gland transplanations, 

3D cultures of 
mammary epithelial 

cells 

orthotopic mammary 
gland transplantations, 
orthotopic injection of 
mammary tumor cell 
lines in wt, Stat1-/-, 

Rag2-/-, Stat1-/- Rag2-/- 
mice 

/ MIN formation in  
Stat1-/- mice; 

heterogeneous 
immunohistology of 
Stat1-/- tumors (50% 

ERα+/50% ERα-) 

Chan, S.R. 
et al. 2 

re-expression of STAT1 
in Stat1-/- mammary 

tumor cell lines 

no data re-expression of STAT1 
Y701F/S727A in Stat1-/-

 mammary tumor cell 
lines: tumor 

suppressive function 
dependent of P-Y701, 

independent of P-S727  

MIN formation in  
Stat1-/- mice;  

> 90% of Stat1-/-

 tumors ERα+, luminal 
subtype 

 

 

Additional thoughts - Why does pregnancy induce mammary tumorigenesis?  

During my thesis, I was frequently confronted with the question: “Why do only multiparous mice 

develop mammary cancer in your study, and not nulliparous ones? I always thought that 

pregnancy offers a certain protection against breast cancer?” One might only speculate to 

address this issue:  

Already in the 1700s, reports on childless nuns associated nulliparity with an increased likelihood 

to develop breast cancer 33. Subsequently, numerous studies associated an early first pregnancy 

(younger than 25) and a high number of full-term pregnancies to a protective effect, compared 

with nulliparous women and women with a late first pregnancy (after 30 years). The underlying 

mechanism mediating this protective effect towards breast cancer development remained 
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speculative and has not been unraveled yet. Changes that occur during pregnancy and lactation 

include a complex morphological, physiological and molecular remodelling of the mammary 

gland tissue. Recent evidence points at an increase in DNA repair capability of the mammary 

epithelium after pregnancy and involution. Parity induces a distinct “genomic signature” that is 

clearly distinct from the gene pattern found in nulliparous mammary glands. The transcription of 

genes controlling differentiation and programmed cell death is enhanced 34. Apparently, 

protection only occurs if the pregnancy and involution have been completed prior to the 

exposure of any damaging agent such as carcinogen exposure, radiation, smoking, etc. This 

explains why only pregnancies at early age do have a protective effect.  

Despite the overall reduced breast cancer risk in parous females, there is the consensus that 

each gestation temporarily increases the probability to develop breast cancer. After each full-

term pregnancy, the breast cancer risk is transiently increased 35. This may be explained two-

fold: in mouse models, Wagner et al. described a distinct parity-induced mammary epithelial cell 

population that accumulates during pregnancy without undergoing apoptosis during 

involution 36. These cells display features of multipotent progenitors such as self-renewal and 

have the capability to contribute to ductal and alveolar morphogenesis. Moreover, these parity-

induced mammary epithelial cells represent cellular targets for MMTV-neu-induced mammary 

tumorigenesis 37. In line, MMTV-neu-induced tumor formation is significantly enhanced in 

pregnant mice and ablation of parity-induced mammary epithelial cells reduces the risk for 

tumor formation. Beside this distinct cell population the microenvironment of an involuting 

mammary gland has been discussed to contribute to tumor formation. Involution is associated 

with inflammation and wound healing which are discussed to drive tumorigenesis in many types 

of tumors 38. However, the role in the mammary gland is unclear and matter of a vivid debate. 
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AABBBBRREEVVIIAATTIIOONNSS  
ATP   Adenosine triphosphate 

BRCA1/2  Breast cancer 1/2 

CTL   Cytotoxic T lymphocyte 

DNA   Deoxyribonucleic acid  

EGF   Epidermal growth factor 

ERα   Estrogen receptor alpha 

ET   Thrombocytopenia 

GAS-site  Gamma-activated sequence-site 

HER2   Human epidermal growth factor receptor 2 

HP1   Heterochromatin protein 1 

IFNα/β   Interferon alpha/beta 

IFNAR1/2  Interferon alpha receptor 1/2 

IFNGR1/2  Interferon gamma receptor ½ 

IGFBP   Insulin-like growth factor-binding protein 

IL   Interleukin 

IRF1/9   Interferon regulatory factor 1/9 

ISG   Interferon-stimulated gene 

ISGF3 complex  Interferon-stimulated gene factor 3 complex 

ISRE   Interferon-stimulated response element 

JAK   Janus kinase 

LPS   Lipopolysaccharide 

MAPK   Mitogen-activated protein kinases 
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MCA   Methylcholanthrene 

MIN   Mammary intraepithelial neoplasia 

MMTV   Mouse mammary tumor virus 

MPD   Myeloproliferative disorder 

MRI   Magnetic resonance imaging 

NK cell   Natural killer cell 

NMU   N-nitroso-N-methylurea 

NO   Nitric Oxide  

SCID   Severe combined immune deficiency 

PIAS   Protein inhibitors of activated STATs 

PI3K   Phosphoinositide 3-Kinase 

PR   Progesterone receptor 

PTP   Protein tyrosine phosphatases 

PV   Polycythemia vera 

RANK    Receptor activator of nuclear factor-kappaB  

RANKL   Receptor activator of nuclear factor-kappaB ligand 

ROS   Reactive oxygen species 

SH2 domain  Src-homology-2 domain 

SOCS   Suppressor of cytokine signaling 

STAT   Signal transducer and activator of transcription 

S727F   Serine at amino acid position 727 mutated to Phenylalanine 

TAD   Transactivation domain 

TAg   Simian virus 40 large T antigen 

Tyk2   Tyrosine kinase 

U-STAT   Unphosphorylated STAT 

VEGF-A   Vascular endothelial growth factor-A 

V617F   Valine at amino acid position 617 mutated to Phenylalanine 

WAP   Whey acidic protein 

Y701A   Tyrosine at amino acid position 701 mutated to Alanine 
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