GEOPHYSICAL RESEARCH LETTERS, VOL. 24, NO. 23, PAGES 3081-3084, DECEMBER 1, 1997

Geometry, kinematics and rates of deformation in a normal fault

segment boundary, central Greece

N.C. Morewood and G.P. Roberts

The Research School of Geological and Geophysical Sciences, Birkbeck and University College, London, U.K.

Abstract. The geometry, kinematics and rates of
deformation within a fault segment boundary between the
ends of two major active normal fault segments have been
investigated through examination of a faulted 126 ka marine
terrace. Slip-vector azimuths defined by striations on the
faults indicate N-S extension on ¢. E-W faults, sub-parallel
to those from earthquake focal mechanisms, together with
significant and contemporaneous E-W extension on c¢. N-S
faults. Summed rates of E-W extension along a c¢. 550 m
transect (0.17 mm/yr) are comparable with those for N-S
extension (0.20 mm/yr) along a c¢. 350 m transect. Qur
observations show that distributed non-plane strain
extension occurs in fault segment boundaries and this should
be noted when studying fault-tip fracture toughness and
regional deformation rates.

Introduction

Normal fault systems consist of individual fault segments,
tens of km in length, separated by areas of low fault
displacement, or fault segment boundaries. With the
exception of Susong et al. (1990) and Janecke (1993), who
mapped two fault segment boundaries in the western U.S.A.,
few studies of fault segment boundaries exist. Moreover,
very few data are available on their geometry, kinematics
and rates of deformation. The Perachora Fault Segment
Boundary (PFSB) is situated between the recently-ruptured
Xilokastro and South Alkyonides Fault Segments (Roberts
1996) (Fig. 1) and well-exposed minor faults cut a 126 ka
marine terrace. We present detailed maps of two sub-areas
within the PFSB and describe the geometry, kinematics and
rates of deformation. We discuss their implications for
studies of fault-tip fracture toughness and regional
deformation rates.

Geological background

The Gulf of Corinth study area lies in one of the fastest
extending regions of the Earth's continental crust (¢. 10
mm/yr of N-S extension, (Billiris et al. 1991)). The
Xilokastro and South Alkyonides Fault Segments bound the
southern sides of active marine depocentres. The eastern
segment was ruptured at the surface in 1981 (Jackson et al.
1982) and the western segment may have been ruptured in
1928 and 1981 (Armijo et al. 1996). The coseismic throws
associated with the onshore 1981 earthquake ruptures,
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decreased to zero towards the PFSB (Jackson er al. 1982).
Existing fault-slip data (Roberts 1996) (Fig. 1) show a
component of along-strike extension at the ends of fault
segments and provoked our interest in the current study.

Method and results

Seventy eight faults have been mapped within an area c.
4 km by c. 3.5 km (Figs. 2 and 3), including c. E-W and c.
N-S striking faults. Lineations on the faults, such as
scratches, grooves and corrugations, were measured wherever
possible. Slip is mainly dip-slip, producing both N-S and E-
W extension. Uplifted 126 ka raised-beach-shoreface
sediments (Vita-Finzi 1993) are downthrown by the faults.
This allows us to calculate deformation rates averaged over
the past 126 ka. The 126 ka sediments are not overlain by
younger deposits so that the faulting must have broken the
ground surface, presumably during palaeo-earthquake
rupturing prior to 1981, but post-126 ka. We assume that
these faults did not initiate after 126 ka; if they did, the
calculated deformation rates would be higher. The 126 ka
sediments are, in many places, underlain by algal bioherms.
The algal bioherms are un-dated, but we assume they also
formed at about 126 ka because if they were significantly
older they would be displaced by greater amounts than the
raised beach on faults that cut both units; however, similar
displacements are observed. For each fault, mean
displacement vector azimuths were calculated from our
measurements of lineations.

With the above information, we used trigonometry to
calculate the average deformation rates over 126 ka in the
vertical plane containing the displacement vector azimuth.
These include (1) the rate of throw accumulation, (2) the
horizontal extension rate and (3) the displacement rate
(Table 1). Averaged displacement-rates for 126 ka on
individual faults range from 0.01 to 0.31 mm/year, whereas
rates of horizontal extension and throw accumulation range
between 0.01 and 0.14 mm/year and 0.01 and 0.28 mm/year
respectively.

We have illustrated the rates of horizontal extension with
vector arrows on maps (Fig. 4). The orientations of the
arrows show the directions of movement and their lengths
are proportional to the rates of horizontal extension
averaged over the past 126 ka. Levels of certainty are
indicated in Fig. 4. The deformation is clearly not plane-
strain. We have summed horizontal extension rates along
two sub-perpendicular transects, oriented c¢. N-S and c. E-W,
to investigate the complex non-plane strain nature of the
extension (Fig. 4). The transects cross as many faults as
possible to maximise the summed extension rates. We do
not think that we have missed any major faults on our
transects. Trigonometry was used to calculate the
components of motion parallel to the N-S and E-W transects
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Figure 1. (a) Map of the Aegean. Inset box locates (b). (b) Thick lines show the Xilokastro (XFS) and South

Alkyonides Fault Segments (SAFS). Focal mechanisms are shown for all earthquakes >Ms 6.0 in the last 104 years (from
Billiris er al. 1991). Known and suspected surface ruptures are from Jackson et al. (1982), Abercrombie et al. (1995), and
Hubert et al. (1996). Dominant fault-slip directions from Roberts (1996). Inset box locates (c). (c) Geological map of the

Perachora Peninsula. Inset boxes locate Fig. 2.

where fault-slip is oblique to these directions. The summed
extension rate for 7 faults accommodating ¢. N-S extension
along line Y-Y' is 0.20 mm/yr and 0.17 mm/yr for 8 faults
accommodating c¢. E-W extension along line X-X'. The

lengths of the transects are similar, so the E-W extension
rates arc of a similar order of magnitude to the N-S
extension rates. If longer E-W transects were taken,
crossing other N-S dip-slip faults (Fig. 1), the summed rate
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Figure 2. Fault maps of sub-areas shown in Fig. 1. Omaments apply to both areas. Stereonets describe the fault
kinematics. Heavy arrows indicate the mean fault-slip directions. Lines A-A', B-B', C-C', D-D' and E-E' locate the cross-

sections in Fig. 3.



E
Marine terrace

Marine terrace

Algal bicherms

Calc-arenite

100 m

i’ "
[ RN ~ -
i Alluvium Algal bicherms NS ‘s 20m
\
y i ‘ PRI
- Sea =~
|-~V A Jemecasad— — — — — — — — — — — — — — —~ - TN
No - cak - . VRN
d hy ~ I, - |

Figure 3. Cross-sections showing faulting of the uplifted 126 ka marine terrace and algal bioherms located in Fig. 2.

Cobbles form the base of the algal bioherms.

Table 1. Fault orientation and deformation rate data

Fault; Mean Strike ~ Throw; Average rate of
and dip; Mean Displacement; throw, slip and
plunge and direction Horizontal horizontal extension

extension (m)

over the last 126 ka

(mm/yr)

1. 201/63. 60/273  4.0. 4.6, 2.3 0.03. 0.04, 0.02
2. 259/68. 67/343  20.0. 21.8. 8.5 0.16. 0.17. 0.07
4. 116/46. 37171 ?

5. 095/36. 34/161 7

6. 777/80. 74/326  10.0. 10.4. 2.9 0.08. 0.08. 0.02
7. 259/43. 42/343  10.0. 15.0. 11.1 0.08. 0.12. 0.09
8. 247/57. 61/326  7.0. 8.0. 3.9 0.06. 0.06. 0.03
9. 302/78. ?

11. 117/39. ?

12. 092/76. 70/197 ?

14. 008/46. 28/173 1.0. 2.1. 1.9 0.01. 0.02. 0.02
15. 076/56. ?

16. 110/73. 83/219 2

17. 013/62. 55/112 1.0. 1.2. 0.7 0.01. 0.01. 0.01
18. 104/76. 63 10.0. 11.2. 5.1 0.08. 0.09. 0.04
19. 109/82. 82/209 2

20. 262/53. 51/351 7

21. 278/55. 49/348 ?

22/29. 097/64. 11.0. 12.4. 5.6 0.09. 0.10. 0.04
63/190

30. 191/66. 61/326 5.0. 5.7. 2.8 0.04. 0.05. 0.02
31. 140/68. 64/206 35.0. 38.9. 17.1 0.28. 0.31. 0.14
32. 086/53. 63 6.0. 6.7. 3.1 0.05. 0.05. 0.02
33. 042/40. 44/149 ?

34. 047/51. 50/152 ?

35. 70. 63 19.0. 21.3. 9.7  0.15. 0.17. 0.08
37. 66. 55/1116 11.0. 13.4. 7.7 0.09. 0.12. 0.07
38. 66. 61/326 10.0. 11.0. 4.5 0.08. 0.09. 0.04
39, 66. 61/326 12.8. 14.0. 5.7 0.10. 0.10. 0.05
40. 67. 49/345 2.0. 2.7. 1.8 0.02. 0.02. 0.02
41. 67. 491345 5.0. 6.6. 4.3 0.04. 0.05. 0.03
43, 67. 491345 5.0. 6.6. 4.3 0.04. 0.05. 0.03
43. 67. 491116 ?

44. 67. 491345 40. 53. 35 0.04. 0.04. 0.03
45. 67. 491345 4.0. 5.3. 3.5 0.04. 0.04. 0.03
46. 67. 49/345 5.0. 6.6. 4.3 0.04. 0.05. 0.03
47. 64. 631190 ?

48. 66. 55/116 11.0. 13.4. 7.7 0.09. 0.12. 0.07
49. 66. 61/326 2.0. 2.3. 1.1 0.02. 0.02. 0.0t
50. 66. 61/326 2.0, 2.3. 1.1 0.02. 0.02. 0.01
51. 64. 631190 ?

52. 66. 66/206 ?

53. 67. 49/345 5.0. 6.6. 4.3 0.04. 0.05. 0.03
54. 67. 61/326 2.0. 2.3. 1.1 0.02. 0.02. 0.01
55. 53. 63 6.0. 6.7. 3.1 0.05. 0.05. 0.02

Deformation rates are stated for the vertical plane containing
the slip-vector azimuth. Numbers in italics are data inferred from
nearby, similar faults; dip values only.

of E-W extension would increase; our value is therefore only
a minimum for the entire PFSB. The overall deformation is
distributed oblate vertical flattening.

Discussion and conclusions

We have shown that along-strike extension occurs
between the ends of neighbouring normal fault segments,
and is synchronous with fault-normal extension. The above
is due to subsidence of neighbouring hangingwall basins.
Along-strike extension is consistent with what we expect
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following examination of (1) slip-directions on
neighbouring faults (Fig. 1), and (2) rates from modelled and
geodetically-measured earthquake motions, which show, for
single points at the ends of ruptures, along-strike motions
which are ¢. 20 % and c. 8-14 % respectively of the value
for coseismic fault-slip at the centres of the ruptures ( Ma &
Kusznir 1995; Clarke et al. 1997).

The measured oblate strain within the PFSB may be
linked to the observation that the 1981 rupture terminated
in the vicinity: perhaps such strain is associated with
increased fault strength. Similar strains may be present in
the western segment boundary to the XFS which was
suggested, following the 1992 Galaxidi earthquake (Ms 5.9),
and its exceptional lack of aftershocks, to be a high-
strength asperity along the Gulf of Corinth fault system
(Hatzfield et al. 1996).

The horizontal velocity field in the PFSB includes
components of E-W and N-S motion. In contrast, Roberts
(1996) shows that along-strike motion is negligible at the
centres of fault segments (Fig. 1). Such variation between
oblate and plane strain within a normal fault system should
be considered when trying to constrain the regional
horizontal velocity field. A further complication is that, at
the centres of fault segments in the Gulf of Corinth, and
probably elsewhere, fault-slip rates derived directly from
study of slip on faults (c. 1 mm/yr: see Pantosti ef al. 1996)
are much lower than those that include regional warping of
the rocks around the faults (7-8 mm/yr: Armijo er al. 1996);
the latter values are closer to those measured geodetically
for the region (Billiris er al. 1991). Thus, due to distributed
deformation, values for the regional extension rate should
be extracted from long (tens of km) geodetic baselines
across the centres of faults in order to maximise the chance
of measuring the maximum value of fault-normal strain rate,
and minimise the effect of along-strike motion.
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