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Abbreviations

VOC Volatile organic compound

VVOC Very volatile organic compound

SVOC Semi-volatile organic compound

POM Particulate organic matter

OHSA Occupational Health and Safety Act

EU European Union

EC European Council

EEC European Economic Community

REACH Registration, Evaluation and Authorisation of Chemicals

CAS Chemical Abstract Service

ISO International Organization for Standardization

GUM Guide to the expression of uncertainty in measurement

QC Quality control

QA Quality assurance

PT Proficiency testing

GC Gas chromatography

FID Flame ionisation detection/detector

MSD Mass spectrometric detection

ECD Electron capture detection

HPLC High-performance liquid chromatography
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LoD Limit of Detection

LoQ Limit of Quantitation

CRM Certified reference material

LRM Laboratory reference material

CS2 Carbon disulfide

RMS Root mean squared

S/N Signal-to-noise ratio

D Desorption efficiency

A Adsorption efficiency

R Recovery

IARC International Agency for Research on Cancer

NIOSH National Institute of Occupational Safety and Health
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1. Introduction

Organic pollutants, especially volatile organic pollutants (VOCs), are an important group of

chemical pollutants that are one of the main causes of indoor and outdoor air pollution problems.

Some of them may cause short- and long-term adverse health effects. Like other air pollutants,

one of the most significant characteristics of VOC exposure is the great variability of the

concentration levels in both occupational and non-occupational (environmental) settings. The

highest VOCs levels have been observed in industrial settings.

The Occupational Health and Safety Act (OHSA) of Estonia, states that the physical, chemical,

biological, physiological and psychological agents must not endanger the life or health of the

employee or any other person present in the workplace. The parameters of the chemical exposure

in the workplace must not exceed the national occupational exposure limit values set by the

regulation established by government. The OHSA also states that employer must conduct

occupational risk assessment, which will identify occupational hazards, if necessary, measure the

values of these parameters and assess the risks to health and safety of workers.

When a customer commissions analytical work from a laboratory, it is assumed that the

laboratory has a degree of expert knowledge that the customer does not have themselves. The

customer expects to be able to trust results reported and usually only challenges them when a

dispute arises. Thus the laboratory and its staff have a clear responsibility to justify the

customer’s trust by providing the right answer to the analytical part of the problem, in other

words results that have demonstrable ’’fitness for purpose’’. International Standard ISO/IEC

17025 states that: ,,Laboratory shall validate non-standard methods, laboratory-

designed/developed methods, standard methods used outside their intended scope, and

amplifications and modifications of standard methods to confirm that the methods are fit for the

intended use.’’

The aim of this work was to set up and validate the analytical method for determination of

volatile organic compounds (toluene, styrene, orto-, para- and meta-xylene) in industrial

workplace air. The method is based on International Standard – ISO 16200-1:2001 and during

the method validation, different experimental tests with calibration and reference standard
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solutions were conducted to characterise the important method performance parameters –

confirmation of identity, selectivity, linear and working ranges, limit of detection and

quantitation, recovery, trueness, precision and measurement uncertainty.

For the purpose of recovery experiments and assessment of method LOD and LOQ, trueness,

precision and measurement uncertainty, an experimental in-house setup was constructed for the

preparation of laboratory reference materials. The reference materials were prepared by spiking a

specially designed T-piece with reference solutions while pumping air through the T-piece

followed by a sorbent tube used for sampling. As a quality control implementation, a control R-

chart was designed and will be used during the routine use of this validated method.
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2. Literature overview

2.1 Volatile organic compounds (VOCs)

Organic pollutants, especially volatile organic compounds (VOCs), are an important group of

chemical pollutants that are one of the main causes of indoor and outdoor air pollution problems.

They evaporate easily at room temperature, emitted as gases from certain solids or liquids (e.g.

organic solvents). VOC means any compound of carbon, excluding carbon monoxide, carbon

dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which

participates in atmospheric photochemical reactions. In the European Union (EU), a common

definition is that VOCs are organic compounds with a vapour pressure greater than 10 Pa at 20

°C. This means that their composition makes it possible for them to evaporate under normal

indoor atmospheric conditions of temperature and pressure. The higher the volatility (lower the

boiling point), the more likely the compound will be emitted from a product or surface into the

air. VOCs typically detected in indoor air belong mostly to 9 groups of compounds, which most

of them are used as solvents: alkanes, cycloalkanes and alkenes, aromatic hydrocarbons,

halogenated hydrocarbons, terpenes, aldehydes, ketones, alcohols and esters. World Health

Organization (WHO) has classified VOCs based on their boiling points as following [1-8]:

- very volatile organic compounds (VVOCs), bp = < 0°C ... 100°C

- volatile organic compounds (VOCs), bp = 50°C ... 260°C

- semi-volatile organic compounds (SVOCs), bp = 240°C ... 400°C

- particulate organic matter (POM), bp = > 380°C

This classification, based on the boiling point, takes into account aspects of the analysis,

especially gas chromatography. VOCs give rise to concern on both local and global scales

because of their important roles in photochemical reactions and their toxic or mutagenic impact

on human and other organisms. Some of them may cause short- and long-term adverse health

effects. Key signs or symptoms associated with exposure to VOCs at low or moderate

concentrations in air include eye irritation, nose and throat discomfort, allergic skin reaction,

headache, nausea, fatigue, dizziness (vertigo) or euphoria, while higher levels may lead to

anaesthesia, cardiovascular and respiratory diseases and even death. Damage caused by long-
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term exposure to the Central Nervous System may include cognitive and emotional deficits as

well as overall chronic brain dysfunction. Toxic effects of VOCs were reported to harm the liver,

kidney and skin. In addition, according to International Agency for Research on Cancer (IARC),

there is sufficient evidence from both human and animal studies to believe that some VOCs have

carcinogenic and mutagenic effects on living organisms and human health [1-4, 6, 9].

Like other air pollutants, one of the most significant characteristics of VOC exposure is the great

variability of the concentration levels in both occupational and non-occupational (environmental)

settings. The problem of health risk resulting from exposure to VOCs present in the workplace is

very important for physicians, employers, the local government and workers. The highest VOCs

levels have been observed in industrial settings. The relationship between adverse healt effects

and exposure to VOCs was first recognised in the chemical industry, where there were high

concentrations of a great number of compounds. For instance, in the USA, the National Institute

of Occupational Safety and Health (NIOSH) estimated that in the late 1980s about 100 000

workers were likely to have some degree of toluene exposure. About 140 000 individuals have

potential exposure to xylenes during their work. So it is a very important problem, considering

the number of people exposed to VOCs. Common exposures to VOCs involve workers at many

different industry areas, e.g spray painting, wood based, metals or other. Oils, gasoline, industrial

solvents, paints and dyes are the major sources of VOCs in the workplace. High temperature and

improper manufacturing or operational practice causes rapid evaporation of liquid organics into

air. Lack of efficient administrative or engineering pollution control brings high levels of VOCs

in the workplace within a short time. Workers are exposed to VOCs by inhaling the

contaminated air, which is the dominant route of VOC exposure. The health effects depend on

the specific composition of the VOCs, the concentration, and the frequency and length of

exposure. The concentration of a VOCs in the space of a workplace varies with time over both

short and long periods. Moreover, workers move in varying patterns through an environment

where the VOC concentration varies within location, and the actions of the workers themselves

may cause the concentration to vary [5, 7, 9, 10].
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2.2 Regulations for VOC contents in workplace air in the EU and in the Republic of

Estonia

The concern about the uncontrolled production, emission and use of many chemical substances

and the lacking information on their environmental and health effects has increased in the EU

during the last decade. In this way, the aim of Registration, Evaluation and Authorisation of

Chemicals (REACH) system that came into force in June 2007 is to protect human health and the

environment from the impact of more than 34 millions of chemical substances registered to the

Chemical Abstract Service (CAS). REACH places a great responsibility on industry to manage

the risks that chemicals may pose to the human health and surrounding environment. An

employer following REACH regulation must also meet the requirements of European Union

Council Directive 98/24/EC of 7 April 1998. The objective of this directive is to lay down

minimum requirements for the protection of workers from risks to their safety and health arising,

or likely to arise, from the effects of chemical agents that are present at the workplace or as a

result of any work activity involving chemical agents. According to this directive, every EU

Member state must establish a national occupational exposure limit value for any chemical agent

for which an indicative or binding limit value is established at EU Community level, taking into

account the Community limit value, determining its nature in accordance with national

legislation and practice [2, 11,12].

The paragraph 5 of the Chemicals Act (law of Estonian Parliament of 6 May of 1998) states:

dangerous chemicals are chemicals that can be harmful to human health, surrounding

environment or property. The handling of dangerous chemicals and materials containing such

chemicals is regulated by the Chemicals Act and the Occupational Health and Safety Act. The

requirements for the use of dangerous chemicals and materials containing such chemicals has

been established by the regulation of Government of Estonia: Regulation No. 105 ,,The

Occupational Health and Safety Requirements for the Use of Hazardous Chemicals and the

Materials Containing These Chemicals’’ of 20 March of 2001, which is again based on the

European Union Council Directive 98/24/EC of 7 April 1998. The Occupational Health and

Safety Act of Estonia, paragraph 3, states that the physical, chemical, biological, physiological

and psychological agents must not endanger the life or health of the employee or any other

person present in the workplace. The parameters of the chemical exposure in the workplace must
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not exceed the national occupational exposure limit values. The occupational exposure limit

value is the average value of the measured exposure parameter in a unit of time, which does not

endanger employee’s health in an 8-hour workday (of a 40-hour workweek). Limit values are

mostly set for reference periods of 8-hour, but can also be set for shorter periods (15-minute).

The national chemical occupational exposure limits are established by the regulation of

government of Estonia: Regulation No. 293 ,,Chemical Occupational Exposure Limits’’ of 18

September of 2001, which have established binding or indicative exposure limits from the

European Union Directives 91/322/EEC, 2000/39/EC, 2006/15/EC and 2009/161/EU to

implement the Directives 80/1107/EEC and 98/24/EC [11,13-15, 31].

The Occupational Health and Safety Act of Estonia, paragraph 13, states that the employer must

conduct occupational risk assessment, which will identify occupational hazards, if necessary,

measure the values of these parameters and assess the risks to health and safety of workers. A

new risk assessment must be organized everytime when the conditions of a workplace change,

tools or technology is replaced or upgraded, if there is new data available about the effects of the

exposed chemicals on human health, if the risk level compared to the initial level has changed

after an accident or dangerous situation or if the occupational physician has discovered a new

work-related illness during a medical health check [13].

2.3 Measurement of occupational chemical exposures

Occupational chemical exposure is the condition of being subjected through employment to a

chemical agent. Exposure to a chemical agent is typically the contact of that agent with the outer

boundary of a subject, such as the respiratory system, skin or digestive system. In occupational

hygiene, the most concerned exposure is through the respiratory system. Exposure assessments

are used to investigate complaints of symptoms in workplaces, and, for this purpose, the

investigator may make measurements of symptomatic and control populations. Another use for

exposure assessment includes determining the need for, and effectiveness of engineering

controls, in which case measurements are made before and after implementation or changes in

the control technology. Perhaps the most common motivation for assessments is the need to

support allegations of non-compliance with regulations and standards covering exposure limits.
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Typically, measurements are targeted using professional judgement to those considered to have

the highest exposures. Since workplace contamination can vary significantly both in time and

space, close attention must be paid to monitoring the route of exposure as close to the worker as

possible. For airborne contamination measurements, these should be made as close as possible to

the breathing zone. Breathing zone is defined as space around the nose and mouth from which

breath is taken. Technically the breathing zone corresponds to a hemisphere (generally accepted

to be 30 cm in radius) extending in front of the human face, centered on the mid point of a line

joining the ears. The base of the hemisphere is a plane through this line, the top of the head and

the larynx. Nevertheless, dramatic differences between exposures measured at different points

over the head and upper torso may be observed if the atmosphere is at all heterogeneous, as is

frequently the case for vapour exposures from point sources [14, 16].

2.4 Analytical methods for VOC measurements in indoor air

There are three basic approaches for analysis and determination of VOCs in indoor air. These

differ with regard to the amount of work involved and the degree of information they provide.

The simplest way is to use a chemical detection system which does not separate the mixture into

its individual components. This principle is used in direct-reading instruments. Direct-reading

instruments are easy to use. They are portable and provide a real-time signal which makes it

possible to detect rapid concentration changes. As the instruments are calibrated with only one

compound, the signal represents all compounds of the mixture as an equivalent of this

compound. The output signal gives no information about the qualitative composition of the

mixture. In a more elaborate procedure the components of a chemical mixture are separated, and

the approach is then to sum the instrumental responses for the individual compounds, although

no identification is accomplished. Following the third approach, the constituents of the mixture

are separated to permit an identification of individual compounds [17].

In many cases the information obtained from direct-reading instruments is insufficient because

details are needed on individual organic compounds. To fulfill this need, the chemical mixture

has to be separated into its constituents. Most VOC analyses of indoor air are carried out using

sampling on a sorbent and subsequent separation by gas chromatography (GC). However, if
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special attention is paid to specific classes of VOCs, analytical techniques other than GC may be

used. As an example, aldehydes are frequently determined using high-performance liquid

chromatography (HPLC). Still, GC is by far the most common technique applied to determine

VOCs in air. VOCs analysis, whether in a gaseous, liquid or solid matrix, usually starts with pre-

concentration of VOCs. Sampling and pre-treatment end up with target VOCs in different

physical states. Being gaseous, dissolved in a liquid, trapped cryogenically or adsorbed on a solid

material, VOCs have to be introduced into the GC for separation. Injection of liquid or gaseous

samples is typically carried out by syringes and sample loops, employing on-column, split and

splitless injection. The proper selection of the column as well as the temperature program are

crucial as they influence the number of VOCs that can be identified by retention times or

subsequent mass spectrometric analysis. VOCs are typically separated on capillary columns,

which are commercialised under different names, e.g. AT-1, EC-1, DB-1, BP-1, HP-1, OV-1,

SPB-1 and MXT, for 100% polydimethylsiloxane. In most applications, separation of VOCs is

based mainly on the interaction with the stationary phase, since interactions with mobile phases,

such as He, N2 or H2, are negligible. Capillary GC analysis of VOCs typically employs FID

(flame-ionisation detection), MSD(mass-spectrometry detection) or ECD (electron-capture

detection). FID is the most common detector used for VOCs because it detects a very large

number of VOCs and is very stable and robust. In the FID, an organic compound is burned in a

hydrogen flame giving rise to ions which are attracted to a collector electrode. The resulting

electric current is amplified and recorded. The intensity of the signal depends primarily on the

number of carbon atoms of the molecule, but to some extent it is also influenced by the character

or structure of the chemical. Therefore, the same amount of molecules of two different VOCs

with the same number of carbon atoms can give rise to two different signals [2, 8, 17-18].
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2.5 Sampling and sample preparation of VOC air samples

Air is a complicated analysis object. It is a heterogeneous system composed of gases, liquid

droplets and solid particles and its composition can be affected by meteorological conditions,

diffusion, and reactivity. Therefore, sampling is crucial in air analysis. Sampling procedure must

allow representative samples to be taken, avoiding any variation in their composition. The most

common techniques used to sample and to preconcentrate VOCs in air are sampling of whole air

in special recipients or collection onto solid adsorbents. Selecting the right method or

combination of methods may depend on the compounds of interest, expected concentration

range, required sensitivity, accuracy and precision, selectivity, presence of interferences,

portability and cost [19].

Adsorptive enrichment on solid adsorbents is a technique often used to combine sampling with

preconcentration and is a well-established sample preparation technique for VOCs in air.

Sampling can be done either passively or actively. Depending on which alternative is chosen, the

sampling time will differ: whereas active sampling generally extends over periods of minutes to

hours, passive sampling is mostly covering hours or days. Active sampling consists of pumping a

measured volume of air containing gas and vapour molecules through few centimeters long and a

few millimeters wide sorbent tube that contains sorbent bed. The type of sorbent used for

sampling depends on the nature of the VOC mixture studied. Primarily, porous polymers or

charcoal-type sorbents are used. In the case of charcoal, the sorbent section contains

approximately 100 mg of charcoal and the back-up section approximately 50 mg. The sections

are separated and their contents are held in place with an inert material; for example glass wool

plugs (preferably silanised). Small battery-powered air pumps are attached to the belts of

workers and the inlets of the pumps are connected by flexible tubing to the sorbent tube, which is

attached to the lapel of the worker’s shirt, or some equivalent point near to the mouth or nose

(breathing zone). The pumps pull air at a fixed, calibrated flowrate through the sorbent tube. At

the end of the designated sampling period the pump is switched off and the start and stop time

and flow-rate are recorded. Typically the flow-rate has been calibrated at least at the beginning

and end of the sampling period, if not more often, and so the total volume of air sampled can be

recorded. Once the VOCs are collected on the sorbent, the sample is transported to the laboratory

for analysis. The procedure for transferring the pollutants from the sorbent to the separation and
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identification instruments has a strong influence on the sensitivity of the overall analytical

method [16-17, 19-20].

Collecting gases and vapours is only the first step in analysis. The second step is to recover the

collected species in a form that is presentable to an analyzer. There are essentially two methods

for the sample transfer: solvent extraction of the trapped VOCs from the sorbent and injection of

an aliquot of the extract into a gas chromatograph or thermal desorption of the adsorbed VOCs

from the sorbent into the flow of a pure carrier gas. Solvent extraction allows longer sorbent

beds, higher flow rates and larger total-sample volumes than thermal desorption. Furthermore,

samples can be analyzed repeatedly, and no expensive equipment is required. However, the

sample is diluted, and can be contaminated by the solvent. Still, usually most of the sorbents are

desorbed using solvent displacement. The choice of solvent is very important, as it must be

compatible with further steps of the process, especially considering the solvent molecules will

outnumber the collected molecules by about 1000:1. In the case of charcoal, CS2 has a unique

combination of good penetration into pores, high heat of adsorption on charcoal, and relatively

good solvation ability, at least for non-polar vapours. Additionally, it has a fast gas-

chromatographic elution and low background on the flame ionization detector. These properties

have made it a very popular desorbing solvent. However, it poses a serious risk to human health

and the environment. Also, low boiling compounds can evaporate due to the adsorption heat

released during desorption. Commonly, VOCs trapped in activated carbon are extracted by

adding 1 ml of CS2 and using ultrasonication or mechanical shaking to achieve better desorption

efficiency [15-17, 19-20].

2.6 Method validation

It is internationally recognised that validation is necessary in analytical laboratories. The use of

validated methods is important for an analytical laboratory to show its qualification and

competency. ISO 17025 states that: ,,Laboratory shall validate non-standard methods, laboratory-

designed/developed methods, standard methods used outside their intended scope, and

amplifications and modifications of standard methods to confirm that the methods are fit for the

intended use.’’ When a customer commissions analytical work from a laboratory, it is assumed



15

that the laboratory has a degree of expert knowledge that the customer does not have themselves.

The customer expects to be able to trust results reported and usually only challenges them when

a dispute arises. Thus the laboratory and its staff have a clear responsibility to justify the

customer’s trust by providing the right answer to the analytical part of the problem, in other

words results that have demonstrable ’’fitness-for-purpose’’ [21-23].

Method validation is a process of defining an analytical requirement, and confirming that the

method under consideration has performance capabilities consistent with what the application

requires. The basis of a good analysis rests on a clear specification of the analytical requirement.

The latter reflects the minimum fitness-for-purpose criteria or the different performance criteria

that the method must meet in order to solve the particular problem. On the one hand, the extent

of validation and the choice of performance parameters to be evaluated depend on the status and

experience of the analytical method. The laboratory has to decide which method performance

parameters need to be characterised in order to validate the method. Characterisation of method

performance is an expensive process and inevitably it may be constrained by time and cost

considerations. The laboratory should do the best it can within the constraints imposed, taking

into account customer requirements, existing experience of the method, and the need for

compatibility with other similar methods. Often a particular set of experiments will yield

information on several parameters, so with careful planning the effort required to get the

necessary information can be minimised. In the end, it is implicit in the method validation

process that the studies to determine method performance parameters are carried out using

equipment that is within specification, working correctly, and adequately calibrated. Likewise

the operator carrying out the studies must be competent in the field of work under study and have

sufficient knowledge related to the work to be able to make appropriate decisions from the

observations made as the study progresses. And most of all, regardless of how good a method is

and how skillfully it is used, an analytical problem can be solved by the analysis of samples only

if those samples are appropriate to the problem. Therefore, taking appropriate samples is a

skilled job, requiring an understanding of the problem and its related chemistry [21, 23].
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2.6.1 Validation parameters

2.6.1.1 Confirmation of identity and selectivity, interferences

It is necessary to establish that the signal produced at the instrumental analysis stage is only due

to the analyte and not from the presence of something chemically or physically similar or arising

as a coincidence. Whether or not other compounds interfere with the measurement of the analyte

will depend on the effectiveness of the isolation stage and the selectivity of the measurement

stage. Selectivity is a measure which assess the reliability of measurements in the presence of

interferences. The selectivity of a method is usually investigated by studying its ability to

measure the analyte of interest in test portions to which specific interferences have been

deliberately introduced (those thought likely to be present in samples). Where it is unclear

whether or not interferences are already present, the selectivity of the method can be investigated

by studying its ability to measure the analyte compared to other independent methods or

techniques. For analytical methods using gas GC-FID, gas chromatography with mass

spectrometric detection should be used to confirm the identity of the analyte. Organic

compounds which have the same or nearly the same retention time as the analyte of interest

during the gas chromatographic analysis will interfere. Interferences can be minimized by proper

selection of gas chromatographic colums and conditions [20-21, 23].

2.6.1.2 Scope of application, working and linear ranges

For any quantitative method, it is necessary to determine the range of analyte concentrations over

which the method may be applied. At the lower end of the concentration range the limiting

factors are the values of the limits of detection and/or quantitation. At the upper end of the

concentration range limitations will be imposed by various effects depending on the instrument

response system. Within the working range there may exist a linear response range, where the

signal response will have a linear relationship to the analyte concentration. The extent of this

range is established during the evaluation of the working range. Usually, multi-point (preferably

6+) calibration will be necessary. Regression calculations on their own are insufficient to
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establish linearity. In addition, residual values should be calculated by performing residual

analysis. Residuals represent the differences between the actual y value and the y value predicted

from the regression curve, for each x value. For linearity check, a visual inspection of the line

and residuals may be sufficient. If residuals, calculated by simple linear regression, are randomly

distributed about the regression line, linearity is confirmed, while systematic trends indicate non-

linearity. If such a trend or pattern is observed, this suggests that the data are best treated by

weighted linear regression. The relationship of the instrument response to concentration does not

have to be perfectly linear for a method to be effective but the curve should be repeatable from

day to day [21].

2.6.1.3 Limit of detection (LoD) and limit of quantitation (LoQ)

Where measurements are made at low analyte levels, it is important to know what is the lowest

concentration of the analyte that can be confidently detected and identified by the method. The

importance in determining this, and the problems associated with it, arise from the fact that the

probability of detection does not suddenly change from zero to unity as some threshold is

crossed. For validation purpose, it is normally sufficient to provide and indication of the level at

which detection becomes problematic. For this purpose the ’’blank + 3s’’ approach will usually

be sufficient. The limit of quantitation is the lowest concentration of analyte that can be

determined with an acceptable level of repeatability precision and trueness. It corresponds to the

analyte concentration of sample blank value plus 5,6 or 10 standard deviations of the blank

mean. Limit of detection and limit of quantitation can be distinguished at two levels,

instrumental and method. The instrumental limit of detection indicates the concentration that the

used instrument is capable of detecting with certain reliability. The method limit of detection

indicates the concentration that can be detected with certain reliability using the analysis method

under consideration. The instrumental limit of quantitation is the concentration that can be

quantitatively expressed with certain reliability for the instrument used. The method limit of

quantitation indicates the concentration that can be quantitatively expressed with certain

reliability using the method in concern [21, 25].
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2.6.1.4 Accuracy (trueness and precision)

Trueness and precision studies, which form a part of the measurement uncertainty estimate, are

the most important validation criteria. Accuracy expresses the closeness of a result to a true

value. Method validation seeks to quantify the likely accuracy of results by assessing both the

systematic and random effects on results. Accuracy is, therefore, normally studied as two

components: trueness and precision. In addition, common expression of accuracy is

measurement uncertainty, which provides a single figure expression of accuracy. The trueness of

a method is an expression of how close the mean of a set of results is to the true value, and also

an indicator of utility and applicability of that method with real samples. Trueness is normally

expressed in terms of bias. Practical assessment of trueness relies on comparison of mean results

from a method with known values, that is, trueness is assessed against a reference value

(conventional true value). Two basic techniques are available: checking against reference values

for a characterised material or from another characterised method. To check trueness using a

reference material, determine the mean and standard deviation of a series of replicate tests, and

compare with the characterised value of the reference material. The ideal reference material is a

certified, natural matrix reference material, closely similar to samples of interest. Clearly, the

availability of such materials is limited, therefore reference materials can be prepared in-house

by spiking typical materials with pure certified reference materials or other materials of suitable

purity and stability. Recovery is then calculated as the percentage of the measured spike of the

matrix relative to the amount of spike added to sample. The smaller the recovery, the larger the

bias that is affecting the method and thus the lower the trueness. Precision is a measure of how

close results are to one another, and is usually expressed by measures such as standard deviation,

which describe the spread of results. The two most common precision measures are repeatability

and reproducibility. They represent the two extreme measures of precision which can be

obtained. Repeatability (the smallest expected precision) will give an idea of the sort of

variability to be expected when a method is performed by a single analyst on one piece of

equipment over a short timescale, for example when a sample is analysed in duplicate. If a

sample is to be analysed by a number of laboratories for comparative purposes then a more

meaningful precision measure to use is reproducibility (the largest expected precision). It may be

that some in-between measure is the most useful in particular cases, for example precision
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measured between different analysts, over extended timescales, within a single laboratory. This

is sometimes known as intermediate precision, but the exact conditions should be stated. Both,

repeatability and reproducibility are generally dependent on analyte concentration, and so should

be determined at a number of concentrations and if relevant, the relationship between precision

and analyte concentration should be established. Relative standard deviation may be more useful

in this case because concentration has been factored out and so it is largely constant over the

range of interest provided this is not too great [21, 23].

2.6.1.5 Measurement uncertainty

Customers need measurement uncertainty together with the result to make a correct decision.

The uncertainty of the result is important, for example when looking at allowable (legal)

concentration limits. Laboratories need it to know the quality of their measurement results and to

improve the required quality. Also, evaluation of measurement uncertainty is required by

Standard ISO/IEC 17025. Measurement uncertainty is a single parameter (usually expressed as a

standard deviation or confidence interval) defining the range of values possible on the basis of

the particular measurement result. The basis for the evaluation is a measurement and statistical

approach, where the different uncertainty sources are estimated and combined into a single

uncertainty estimate. A measurement uncertainty estimate takes account of all recognised effects

operating on the result; the uncertainties associated with each effect are combined according to

well-established procedures. An uncertainty estimate for analytical chemistry should take into

account [21, 24]:

- the overall, long-term precision of the method

- possible bias and its uncertainty, including the statistical uncertainty involved in the

bias measurements, and the reference material or method uncertainty.

- calibration uncertainties. As most equipment calibration uncertainties will be

negligibly small by comparison with overall precision and uncertainty in the bias; this

needs only to be verified.

- any significant effects operating in addition to the above.
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A common way of presenting the different contributions to the total measurement uncertainty is

to use a so-called fish-bone (or cause-and-effect) diagram, especially in the ISO Guide to the

expression of uncertainty in measurement (GUM). ISO GUM approach may prove useful when

studying or quantifying individual uncertainty components separately. But, it has been shown

that in some cases this methodology underestimates the measurement uncertainty, partly because

it is hard to include all possible uncertainty contributions in such an approach. A more pragmatic

method is the Nordtest method. By using existing and experimentally determined quality control

(QC) and method validation data, the probability of including all uncertainty contributions will

be maximised. The most common ways of estimating the reproducibility within laboratory

component, u(Rw), is to periodically analyse stable control samples covering the whole

analytical process (one sample at low concentration level and one at high), but also unstable

control samples can be used. It is very important that the estimation must cover all steps in the

analytical chain starting from sample preparation and ending with the actual analysis. If the

laboratory does not have access to stable control samples, the reproducibility can be estimated

using analysis of natural duplicate samples. The results from the duplicate sample analysis can

either be treated in an R-chart, where the difference between the first and second analysis is

plotted directly, or as an R%-chart, where the absolute difference between the sample pair is

calculated in % of the average value of the sample pair. The latter approach is particularly useful

when the concentration varies a lot from time to time [24].

The most common ways of estimating the bias components are the use of CRM, participation in

interlaboratory comparisons (PTs) and recovery tests. Sources of bias should always be

eliminated if possible. According to ISO GUM approach, a measurement result should always be

corrected if the bias is significant and based on reliable data such as a CRM. However, even if

the bias is zero, the possible bias has to be estimated and treated as an uncertainty component.

For every estimation of the uncertainty from the method and laboratory bias, two components

have to be estimated to obtain u(bias) [24]:

1) the root mean square (RMS) of the bias values (as % difference from the nominal or

certified value for each CRM)

2) the uncertainty of the nominal/certified value, u(Cref) or u(Crecovery)
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Recovery test, for example the recovery of a standard addition to a sample in the validation

process, can be used to estimate the systematic error. In this way, validation data can provide a

valuable input to the estimation of the uncertainty [24].

The Nordtest uncertainty model is a simplification of the model presented in the ISO guide [24]:

࢟ =  + +ࢾ) ( + ࢋ (1)

y – measurement result of a sample

m – expected value for y

δ – method bias

B – laboratory bias

e – random error at within-laboratory reproducibility conditions, Rw

(࢟)࢛ = ࢝ࡾ࢙
 + (࢙ࢇ࢈)࢛ (2)

sRw
2 - the estimated variance of e under within-laboratory reproducibility conditions –

intermediate precision.

u(bias)2 – the estimated variance of method bias and laboratory bias.

The uncertainty of the bias, u(bias) can be estimated by:

(࢙ࢇ࢈)࢛ = ටࡹࡾ ࢙ࢇ࢈ࡿ
 + (ࢌࢋ࢘)࢛ (3)

ࡹࡾ ࢙ࢇ࢈ࡿ = ට
(࢙ࢇ࢈)ࢳ

ࡹࡾ
(4)

Measurement uncertainty should normally be expressed as U, the combined expanded

measurement uncertainty, using a coverage factor k = 2, providing a level of confidence of

approximately 95% [24].
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2.6.1.6 Recovery, adsorption efficiency, desorption efficiency

Recovery is defined as proportion of the amount of analyte, present in or added to the analytical

portion of the test material, which is extracted and eventually presented for measurement and can

be expressed as follows [25]:

࢟࢘ࢋ࢜ࢉࢋࡾ =
ࢇ ࢘ࢋ࢚ࢋࢊࢋ࢚࢟ࢇࢇࢌ࢚࢛ ࢊࢋ ࢘ࢌ ࢇ࢙ࢋࢎ࢚ ࢋ

ࢇࢋ࢛࢚࢘ ࢋ࢚࢟ࢇࢇࢌ࢚࢛ ࢇ࢙ࢋࢎ࢚ ࢋ
× % (5)

Analytical methods do not always measure all of the analyte of interest present in the sample

leading to recovery values below 100%. Because the true amount of a particular analyte present

in a test portion is usually unknown the above definition cannot be directly applied and instead of

the true concentration some reference concentration is generally used. An appropriate range of

analyte concentrations should be investigated where that is technically and financially possible,

because the recovery of the analyte may be concentration-dependent. One way to determine the

efficiency of extraction is to spike test portions with the analyte at various concentrations, then

extract the fortified test portions and measure the analyte concentration. The inherent problem

with this is that analyte introduced in such a way will probably not be held as strongly as that

which is naturally present in the test portion matrix and so the technique will give an

unrealistically high impression of the extraction efficiency. Alternatively it may be possible to

carry out recovery studies on certified reference materials (CRMs), if suitable materials are

available. Spiking recovery testing is however the most common ways of determining recovery

efficiency, and it is recognised as an acceptable way of doing so, and it is less costly than using

certified reference materials [10, 21].

Although complete recovery (100%) of the analyte from the sampler is most desirable, at a

minimum the estimated recovery of the analyte should be greater than or equal to 75%. If

recovery varies with analyte loading, results should be graphed as recovery versus loading during

the validation of the method, so that appropriate correction can be made to sample results, as

long as recovery is greater than 75%. Recovery values should always be established as part of

method validation, whether or not recoveries are reported or results are corrected, so that

measured values can be converted to corrected values as needed and vice versa [10, 25].
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In the context of VOC determination in air using sorbent tubes, recovery and desorption

efficiency are defined as follows [20]:

ࡰ =
ࢋ࢚࢟ࢇࢇ࢞ ࢊࢋ࢛࢙࢘ࢇࢋ

ࢊࢋ࢙ࢋ࢚࢟ࢇࢇ࢞ ࢚ࢋ࢈࢙࢚࢘
× % (6)

ࡾ =
ࢋ࢚࢟ࢇࢇ࢞ ࢊࢋ࢛࢙࢘ࢇࢋ

ࢊࢋ࢙ࢋ࢚࢟ࢇࢇ࢞ ࡹࡾࡸ࢚
× % (7)

Desorption efficiency (D) is an indicator for how well the VOC analytes are desorbed from the

charcoal sorbent using a desorption solvent at the sample preparation stage. Recovery (R), in this

case, is an indicator of how well the VOC analytes are adsorbed by charcoal sorbent in the

sampling stage and how well they are desorbed in the sample preparation stage, therefore

containing both adsorption and desorption efficiencies. When R and D have been determined

then it is possible to also assess the adsorption efficiency (A), by using equation [20, 33]:

 =
ࡾ

ࡰ
× % (8)

2.6.2 Quality control (QC) and quality assurance (QA)

The International Standard ISO/IEC 17025 states that: ’’The laboratory shall have quality control

procedures for monitoring the validity of tests and calibrations undertaken. The resulting data

shall be recorded in such a way that trends are detectable and, where practicable, statistical

techniques shall be applied to the reviewing of the results. Quality control (QC) data shall be

analysed and, where they are found to be outside pre-defined criteria, planned action shall be

taken to correct the problem and to prevent incorrect results from being reported ’’ [22].

In practical terms quality control describes the individual measures which relate to the

monitoring and control of particular analytical operations, whereas quality assurance (QA)

relates to the overall measures taken by the laboratory to ensure and regulate quality. Method

validation gives an idea of a method’s performance capabilities and limitations which may be

experienced in routine use while the method is in control. During the validation stage the method
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was largely applied to samples of known content. Once the method is in routine use, it is used for

samples of unknown content. Suitable control can be applied by continuing to measure samples

of known analyte content, thus allowing the analyst to decide whether the variety of answers

obtained truly reflects the diversity of samples analysed or whether unexpected and unwanted

changes are occurring in the method performance [21].

Internal QC includes the use of blanks, chemical calibrants, spiked samples, replicate analyses

and QC samples. The use of control charts is recommended, particularly for monitoring results

from QC control samples. Control charting is a powerful and a simple tool for the daily quality

control of routine analytical work. Its essence is that the laboratory runs control samples together

with the routine samples in analytical run. Material of control samples can be standard solutions,

real test samples, blank samples, in-house control materials and certified reference materials.

Preferably the control samples go through the entire analytical procedure, including sample

preparation. Different sorts of quality control may be used to monitor different types of variation

within the process. QC samples, analysed at intervals in the analytical batch will indicate drift in

the system; use of various types of blank will indicate what are the contributions to the

instrument signal besides those from analyte; duplicate analyses give a check of repeatability. A

range chart (R, r%) serves above all the purpose of repeatability control. A range chart has a

central line, an upper warning limit and an upper action limit. The range is defined as the

difference between the largest and smallest single result for two or more separate samples. For

practical applications in analytical laboratories the R-chart mostly appears only in its simplest

form, only duplicate determination (of samples to be analysed) in each analysis series. Using a

routine test sample as a control sample is valuable when it is not possible to have a stable control

sample. Duplicate measurements give a realistic picture of the within-run random variations for

natural samples [21, 26].
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3. Experimental

3.1 Chemicals, solutions and materials

3.1.1 Calibration and reference solutions

Primary standards of orto-xylene (99.0% certified, Ehrenstorfer), para-xylene (99.0% certified,

Ehrenstorfer), meta-xylene (99.5% certified, Ehrenstorfer), styrene (99.0% certified,

Ehrenstorfer) and toluene (99.7% Chromasolv®, Rathburn) were used for the preparation of

calibration and reference standard solutions, and for the identification of analyte peaks and

determination of their retention times on chromatograms. Mixed calibration solutions containing

each VOC at different concentration levels were prepared gravimetrically and the same

desorption solvent solution (CS2 with internal standard) that was used to desorb the samples was

used as solvent to fill up the volumetric flasks. The primary standard solution(5 mg/ml) was

prepared gravimetrically by weighing 0.125 g of each VOC’s primary standard into 25 ml

volumetric flask which was partially filled with desorption solvent solution. Six standard

working solutions were prepared into 10 ml volumetric flasks by diluting primary standard

solution to the following approximate concentration levels: 0.01, 0.025, 0.05, 0.10, 0.25, 1.00

and 2.00 mg/ml (Figure 1).

Figure 1. Preparation of calibration standard solutions from primary standard solution.

5 mg/ml

500x 2.5x

0.01 mg/ml 200x 5x 2 mg/ml

0.025 mg/ml 100x 50x 20x 1 mg/ml

0.05 mg/ml 0.25 mg/ml

0.1 mg/ml
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In need to prepare an in-house laboratory reference material, reference standard solutions were

prepared, using cyclohexane (99.9%, HPLC grade, Sigma-Aldrich) as solvent. Primary reference

standard solution (5 mg/ml) was prepared gravimetrically by weighing 0.125 g of each VOC’s

primary standard into 25 ml volumetric flask which was partially filled with cyclohexane

solvent. The solvent used for the preparation of the reference solution had to be different than the

solvent used for desorption (CS2) to achieve a proper adsorption of the VOC analytes onto

charcoal. Solvent used for spiking cannot be competitive with the analytes while spiking or with

CS2 while desorbing the analytes, meaning it needs to have worse ability to desorb the analytes.

Three different solvents (heptane, methanol and cyclohexane) were tested for suitability using

recovery and desorption efficiency experiments. The best results, with desorption efficiencies

and recoveries near 100%, were obtained with cyclohexane. From the primary standard reference

solution, a 10 times dilution was made for the preparation of the second reference standard

solution (0.5 mg/ml).

For the gas chromatographic analysis, a suitable internal standard had to be found and 27

different chemical compounds available in the laboratory were tested. The criteria for the internal

standard is given by Standard ISO 16200-1. Internal standard [20]:

- is not interfering with the compounds of interest (no chromatographic peak overlap)

- is not removed from the elution solvent by the sorbent

- is with average volatility compared to analytes

- is a stable compound

- is detected by FID

- is not usually found in industrial workplace air

The tested compounds were the following: acetonitrile; methyl tert-butyl ether; tetrahydrofuran;

hexane; heptane; ethylbenzene; decane; acrolein; 4-hydroxy-4-methyl-2-pentanone; 2,2,4-

trimethylpentane; 4-methyl-2-pentanol; methylacetate; methylisobutylketone; isobutylacetate; 2-

ethyl-1-hexanol; 1,2,3 – trimethylbenzene; tetradecane; hexadecane; acetylacetone;

methylmetacrylate; 3-methylstyrene; 2,3-butanediol; amylacetate; nonane; acetofenone;

acrylonitrile; hexanal.
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3.1.2 Laboratory reference materials (LRMs)

Since no certified reference materials (CRMs) of air contaminated with accurately known

quantities of VOCs were available for purchase, laboratory reference materials (LRMs) had to be

prepared using an in-house method. Six experimental setups were constructed for this purpose.

Method 1 - a 10 liter bottle was used as a container where to inject reference solutions into while

letting a stream of N2 pass through at a known flowrate (Figure 2). Reference solutions were

weighed with syringe and injected into the glass container through a septum, located at the top of

the container. Container was shaken for 10 times and introduced to nitrogen gas stream flow and

a charcoal tube was connected to the side of the container bottle for the collection of the spiked

analytes in the container.

Figure 2. LRM experiment design for method 1.
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Method 2 - the same design as for latter was used, but instead of letting a gas stream flow

through, the air sampling pump was used to pump the spiked air out of the container at a known

air flowrate (Figure 3).

Figure 3. LRM experiment design for method 2.

Method 3 – spiking of the weighed reference solution was done directly onto the charcoal

sorbent tube and a gas stream of nitrogen was introduced through at a known flowrate (Figure 4).

Figure 4. LRM experiment design for method 3.
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Method 4 - the same design as for latter was used, but with sampling laboratory air through the

tube at a known flowrate using sampling pump (Figure 5).

Figure 5. LRM experiment design for method 4.

Method 5 – laboratory reference material was constructed using a glass T-piece (Figure 6). A

plug of cotton wool was placed into the middle part of T-piece, where reference solution could

be injected onto through a septum, which was placed at the one end of the T-piece. A sorbent

tube was connected to the other end using plastic hosing and the third T-piece part was

connected to a nitrogen gas stream with a known flowrate.

Figure 6. LRM experiment design for method 5.
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Method 6 – the design was similar to latter, but instead of using a stream of nitrogen gas to flow

through, the T-piece was connected vertically to sampling pump via the sorbent tube and

laboratory air was pumped through the tube after injecting a weighed amount of reference

solution through the septum onto the cotton wool plug (Figure 7).

Figure 7. LRM experiment design for method 6.

3.2 Sampling

Sampling of analytes (VOCs) was performed using charcoal sorbent tubes (Orbo™ 32 Small

Activated Coconut Charcoal, 20/40 mesh, 100/50 mg) and air sampling pumps (SKC Aircheck

Sampler, 50 – 5000 ml/min) to draw the air through the sampling tube during a 15-minute time

period and at known air flowrate of about 500 ml/min to collect the analytes onto the surface of

the sorbent. The accurate flowrate was measured in the beginning and in the end of every

sampling period using a separate electronic rotameter (AGILENT FLOWTRACKER, 0 ml/min –
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500 ml/min). The difference between the two flowrates cannot exceed 10%, or the sample can be

considered as not representative and the sampling needs to be repeated [20]. Both ends of the

sorbent tube were broken and connected to the sampling pump via tubing so that the back section

would be nearer to pump and the arrow on the tube would be pointing downwards. Every sample

was taken in two replicates. This was done for two purposes. Firstly, this was for back-up for

avoiding the failure of the analysis when one of the samples is accidentally destroyed. Secondly,

the difference between the results of the two replicate samples can be used to construct an R-

control chart. Together with every sample, a field-blank sample was taken to account for possible

contamination and impurities introduced during sampling, transportation and/or sample

preparation, since it is treated similarly to real samples.

3.3 Sample preparation

Sample preparation was performed using desorption solvent solution to desorb the analytes from

the sorbent tube. Desorption solvent solution was prepared gravimetrically using carbon disulfide

(CS2 – 99.9%, ReagentPlus®, Sigma-Aldrich) as a primary solvent and 2,2,4-trimethylpentane,

also known as isooctane, (99.0%, Rathburn) as an internal standard. The concentration of the

internal standard in the desorption solvent solution was approximately 0.1 mg/ml, staying in the

middle part of the calibration range (Figure 1). The toxicity of carbon disulfide required that all

preparation stages would be conducted under fume hood while wearing protection gloves.

1 ml of desorption solvent solution was placed into 2 ml GC-vial using micropipettes. Since CS2

is a very volatile compound, pipetting had to be done in the following way: the solution pipetted

was drawn in and let out of the pipette two times before performing the actual transfer of the

solution at the third pipetting. The charcoal sorbent in the front and back section were placed into

separate vials and analysed individually. The vials containing sorbent and desorption solvent

were agitated for 30 minutes to ensure efficient desorption of the analytes. For the final

measurement result, the analyte contents in both sections were summed. Vials were placed into

mechanical shaker (ELMI SKYLINE Shaker DOS-10L) for 30 minutes to assure more efficient

desorption. The desorbed solutions were removed from the initial vials using glass syringes

(Optima 2 ml) and transferred into separate vials through microfilters (Whatman 0.45 μm PTFE)
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to avoid possible clogging of GC injector by charcoal pieces or other impurities. These vials

were taken to gas chromatography for subsequent instrumental analysis. When the collected

samples were not analysed within 8 hours after the sampling, they were stored in a refrigerator.

3.4 Instrumental analysis

For instrumental analysis, gas chromatograph HP 6890 equipped with flame ionisation detector

and HP 7683 series autosampler was used to determine the concentration of VOCs in the

desorbed samples. The chromatographic conditions were the following:

Injection parameters: 1 µl, splitless, 200 °C

Oven parameters: temperature-programmed, (50 – 280) °C, 31 minutes

Column parameters: SPB-1, bonded poly(dimethyl siloxane), 30m×320µm×0.25µm

Carrier-gas: N2 with flowrate 1.8 ml/min, constant pressure at 8 psi

Detector parameters: FID, 350 °C, hydrogen (30 ml/min) and air (300 ml/min)

Before the analysis of real samples, desorption solvent solution and field blank samples were

analysed, to account for possible impurities introduced during the sampling and sample

preparation stages. Field-blank sample was acceptable if the found chromatographic peak areas

of VOCs of interest were smaller than 10% of the real sample peak areas [20]. Within every

analysis run, two standard working solutions with different concentration levels (0.025 mg/ml

and 1 mg/ml) were analysed to check if calibration curve stays within the required limits. The

measured values of the standard solutions must not deviate from the initial calibration values by

more than 5% [25]. Within every analysis run, one should always start with the analysis of

sorbent tubes’ back-section and follow with the front-section, since the back-section contains

normally less or none of the VOC target analytes. This will prevent possible carry-over

impurities between front- and back-section of the samples. If the back-section of sorbent tube

contains more than 10% of the sample, or of any VOC component, sample needs to be discarded

as unreliable, and the sampling needs to be repeated [20].
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3.5 Calculation of results

All the measurement results were calculated according to following equation:

 =
 ା ି ࢈

ࡾ ࢂ×
(9)

C – concentration of analyte in the air sampled, corrected with recovery (mg/m3 = μg/l)

m1 – mass of analyte present in the front section of the sample (μg)

m2 – mass of analyte present in the back section of the sample (μg)

mb – mass of analyte present in the field-blank tube (μg)

R – recovery correction (unitless)

V – volume of sample taken (l)

The traceability of the result unit to SI has been achieved by the calibration process, as the

calibration solutions used to construct a calibration curve had been prepared gravimetrically. The

equipment used for validation and measurement, including analytical balances, glassware and the

sampling pumps, were all appropriately calibrated.

3.6 Estimation of measurement uncertainty

For the estimation of measurement uncertainties, the Nordtest approach was used, where the

systematic and random uncertainty effects obtained from the LRM recovery experiment results

were combined. Since the LRM recovery experiments contained both - the sampling and analysis

stage - there was no need to conduct separate experiments for the determination of sampling

uncertainty. Although no uncertainty effect of the sample inhomogeneity was included into

uncertainty estimation since the fluctuations of VOC concentrations in the location of space or in

time were not estimated.
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From the replicate measurements of LRM analysis, the standard deviation between the LRMs

prepared on different days was accounted for random effects as an intermediate precision, and

was defined according to the following:

࢝ࡾ)࢛ ) = ࢙ (10)

Rw – reproducibility of the experiments performed on different days (intermediate precision)

s – standard deviation of the single experiments performed on different days

The results of the same replicated experiments were used to assess the systematic component, the

uncertainty of bias. The systematic uncertainty components were the uncertainty of 100%

recovery, uncertainty of recovery correction and uncertainty of air volume sampled. The u(bias)

was calculated according to the following equation:

(࢙ࢇ࢈)࢛ = ට)࢛% (࢟࢘ࢋ࢜ࢉࢋ࢘ + (࢚ࢉࢋ࢘࢘ࢉ࢟࢘ࢋ࢜ࢉࢋ࢘)࢛ + ࢛࢜࢘ࢇ)࢛ ࢇ࢙ࢋ (ࢊࢋ (11)

Since the value of 100% for recovery is not certified, but it is a spike value with own uncertainty

added to LRM, the uncertainty of 100% recovery had to be estimated. Components within the

uncertainty of 100% recovery include the uncertainty originating from the preparation of the

reference solution u(ref.solut.prep.), which was used for spiking, and the uncertainty of the

volume of this solution injected - u(volume of syringe). The calculation was performed

according to the following equation:

%൫࢛ =൯࢟࢘ࢋ࢜ࢉࢋ࢘ ඥࢋ࢘.࢚࢛࢙.ࢌࢋ࢘)࢛. ) + ࢛࢜)࢛ (ࢋࢍ࢙࢘࢟ࢌࢋ (12)

The uncertainty of the reference solution contains the uncertainty of the calibration of the

volumetric flask into where the solution was prepared u(calibration of vol.flask) and the

uncertainty of the purity of the primary standards u(pure standard). The calculation was

performed according to the following equation:

.ࢋ࢘.࢚࢛࢙.ࢌࢋ࢘)࢛ ) = ඥ࢚ࢇ࢘࢈ࢇࢉ)࢛ (࢙ࢇࢌ.࢜ࢌ + (ࢊ࢘ࢇࢊࢇ࢚࢙ࢋ࢛࢘)࢛ (13)

The uncertainty of the syringe volume consists of the uncertainties of the precision and bias of

the syringe and is calculated according to the following equation:

࢛࢜)࢛ (ࢋࢍ࢙࢘࢟ࢌࢋ = ඥ(࢙ࢉࢋ࢘ࢋࢍ࢙࢘࢟)࢛ + (࢙ࢇ࢈ࢋࢍ࢙࢘࢟)࢛ (14)
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The uncertainty of the air volume sampled was obtained from the sampling pump calibration

certificate. Since, recovery correction was used in the calculation of results, the uncertainty of

recovery correction estimation – u(recovery correction) – was accounted in the uncertainty

budget instead of RMSbias. The uncertainty of the recovery correction estimation is defined as

standard deviation of the recovery experiments:

(࢚ࢉࢋ࢘࢘ࢉ࢟࢘ࢋ࢜ࢉࢋ࢘)࢛ = ࢙ (15)

s – standard deviation of the single experiments performed on different days

The standard combined measurement uncertainty was calculated according to the following

equation [24]:

ࢉ࢛ = ඥ࢝ࡾ)࢛ ) + (࢙ࢇ࢈)࢛ (16)

And the expanded measurement uncertainty with coverage factor k = 2 was calculated according

to [24]:

)ࢁ = ) =  × ࢉ࢛ (17)
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4. Results and discussion

4.1 Confirmation of identity and selectivity, internal standard

A typical chromatogram of the VOCs is presented in Figure 8. Primary standards of VOCs were

used for the identification of analyte peaks and determination of the retention times on

chromatograms. Since the chromatographic peaks of p- and m-xylene overlap totally, their signal

peak area was taken as a sum for the calculation of measurement results. This overlap was not a

problem, because the national exposure limit for xylenes is given as a sum of all its three isomers

(p-xylene, m-xylene and o-xylene) [15]. No other interfering compounds have been found during

the validation and prior use of this method. During the method validation, a suitable internal

standard had to be found and 27 chemical compounds available in the laboratory were tested for

the suitability [20]. For the experiments, a drop of chemical standard was added to a GC-vial

containing the calibration mixed standard solution and was analysed by gas chromatography.

Many compounds were not suitable because they were either interfering with the analyte

compounds by peak overlapping, had too low or too high volatility compared to analytes of

interest or were found to be too probable to be found in workplace air and therefore not suitable

as internal standards. 2,2,4-trimethylpentane (isooctane) complied with the criteria set by ISO

16200-1 method and was chosen as the internal standard, with retention time: tr = 3.214.

Isooctane does not interfere with the analytes, is not removed from the elution solvent by the

sorbent, has an average volatility compared to analytes, is a stable compound, can be detected by

FID and is usually not found in workplace air, according to the data from our laboratory [20].

The average retention times of analytes and desorption solvent were the following:

1) CS2 – desorption solvent, tr = 2.23

2) toluene – tr = 4.03

3) p- and m-xylene – tr = 5.85

4) styrene – tr = 6.19

5) o-xylene – tr = 6.28
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Figure 8. Chromatogram for the identification of peaks and determination of retention

times of VOCs.

4.2 Scope of application, linear and working ranges

The method was validated for determining 5 VOCs in industrial workplace air in the

concentration range of (10 – 200) mg/m3, except for p-and m-xylene, as their calibration curve is

constructed as their sum and therefore their calibration concentrations are two times higher

ranging from 20 mg/m3 to 400 mg/m3. For the analysis of non-industrial workplace air, method

should be re-validated by extending the scope of application for lower concentrations (below 10

mg/m3). The lower limit of the calibration range was chosen according to the concentration

expected usually in industrial air, concentration found in laboratory’s former testing results and

according to the successful recovery results obtained with the laboratory reference material

(LRM) experiments at low concentrations (see 4.4). The upper limit of the calibration range was

chosen according to the national exposure limits set for the analyte VOCs in industrial workplace

air and according to the usual maximum analyte concentrations tested on the same gas

chromatograph which was also used for this method [15].

Each standard working solution (0.01 – 2.00) mg/ml was analysed in three replicates and using

linear regression, an internal standard calibration curves were constructed for each individual

VOC, except for m- and p-xylene whose calibration curve is constructed as their sum. Besides

the visual linearity check, the obtained R-squared values (o-xylene: 0.9998; p- and m-xylene:
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0.9998; styrene: 0.9996; toluene: 0.9997) and the performed residual analysis indicated that good

linearity can be assumed for all the calibration curves within the working area (10 – 200) mg/m3

(Figures 9 – 16).

Figure 9. Calibration curve for orto-xylene.

Figure 10. Residual analysis for orto-xylene.
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Figure 11. Calibration curve for para- and meta-xylene.

Figure 12. Residual analysis for para- and meta-xylene.
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Figure 13. Calibration curve for styrene.

Figure 14. Residual analysis for styrene.

y = 0.7603x - 0.0347
R² = 0.9996

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20

A
st

yr
e

n
e
/A

in
t.

st
a

n
d

a
rd

Cstyrene/Cint.standard

styrene

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 2 4 6 8 10 12 14 16 18 20

R
e

si
d

u
al

s

Cstyrene/Cint.standard

styrene



41

Figure 15. Calibration curve for toluene.

Figure 16. Residual analysis for toluene.
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4.3 Signal-to-noise ratio (S/N), limit of detection (LoD) and limit of quantitation (LoQ)

4.3.1 Instrumental LoD and LoQ, S/N ratio

For the determination of signal-to-noise ratio (S/N) and instrumental LoD and LoQ, 20 times

dilution was made from the lowest working standard solution (10 μg/ml) to get a standard

solution with concentration 0.5 μg/ml and it was analysed in three replicates. Standard ISO

16200-1 requires that for this method a flame-ionisation detector, capable of detecting an

injection of 0.5 ng toluene with a signal-to-noise ratio of at least 5 to 1, should be used.

Injecting 1 μl of the above solution will introduce exactly 0.5 ng of the analyte. The

chromatographic peak of toluene standard was used for the determination of S/N ratio and

the obtained result is compatible with the ISO requirement (Figure 17) [20, 30]:

Figure 17. Chromatogram for the determination of S/N ratio of the instrument using

toluene as analyte [30].
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4.3.2 Method limit of detection (LoD) and limit of quantitation (LoQ)

For the determination of method LoD and LoQ, replicated experiments were conducted on

different days using the LRM design method 6 (Figure 7), where 200 μl of reference solution

with concentration 0.5 mg/ml was injected onto the cotton wool plug in the glass T-piece.

The air flowrate and sampling time period was the same as with the real samples – 0.5 l/min

during 15 minutes. Within an individual day when an experiment was conducted, a

laboratory air blank was collected to account for impurities in the laboratory room.

For the determination of concentration which to use for LoD experiments, recovery

experiments were conducted at several low concentrations and the concentration value of 10

mg/m3 was found to be suitable, since all the experiments with lower concentrations gave

recovery values lower than 75%, therefore being incompatible with the recovery criterion

limit of 75% [25]. When comparing the obtained LoD and LoQ values (Table 1) to average

VOC concentrations generally found in industrial environment according to the experience in

our laboratory, they can be said to be fit for purpose, because the average concentrations of

VOCs in most industries tend to be low, most lying in the range of 10 – 50 mg/m3. In

addition, it is a widespread convention for method validation criterion, that the LoD of the

analyte should be approximately 10 times lower than the respective maximum permissible

limit [25, 27]. This criterion is approximately fulfilled for all the VOC analytes in this work,

since the corresponding national exposure limits are [15]:

1) Xylenes: 450 mg/m3 (STEL, 15-min), 200 mg/m3 (TWA, 8-h)

2) Toluene: 384 mg/m3 (STEL, 15-min), 192 mg/m3 (TWA, 8-h)

3) Styrene: 200 mg/m3 (STEL, 15-min), 90 mg/m3 (TWA, 8-h)



44

Table 1. Instrumental and method LoDs and LoQs of VOCs.

Instrumental
LoD

Instrumental
LoQ Method LoD Method LoQ

VOC
mg/m3 mg/m3 mg/m3 mg/m3

Xmean + 3s Xmean + 10s Xmean + 3s Xmean + 10s

orto-xylene 0.34 0.37 11 13

meta- and para-
xylene 0.58 0.63 25 31

styrene 0.86 0.90 10 13

toluene 0.30 0.32 12 15

4.4 Desorption efficiency (D), adsorption efficiency (A) and recovery (R)

For the determination of desorption efficiencies, spiking experiments were conducted on

different days, where the charcoal sorbent of the first section of the sorbent tube was poured into

GC-vial and sorbents were spiked with three different concentrations of the reference solutions

and analysed similarly to real samples using GC. Initially, ultrasonic bath was used to agitate

desorbing samples in the vials. But after comparing the desorption efficiency results obtained

using a mechanical shaker and the ones obtained with ultrasonic bath, the results obtained with

the mechanical shaker were closer to 100%. A possible reason was that, the water temperature in

the ultrasonic bath increased during the work of the bath, thereby favoring evaporation of the

VOC analytes and possibly causing analyte losses. The estimated desorption efficiencies stayed

in the range of (88 – 106)% (Table 2). Possible reason for desorption efficiencies above 100%

are low-level contaminants that interfere with the analyte peaks. Because of their very low level

they do not cause problems at high analyte concentrations but they become significant at low

analyte concentrations.
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For the determination of method recoveries, replicated LRM analysis experiments using the

LRM design method 6 (Figure 7) were conducted on different days at three different

concentration levels. The concentrations and amounts of reference solution added in case of

both, desorption and recovery experiments, were the following:

1) 10 mg/m3: 100 μl of reference solution (0.5 mg/ml)

2) 100 mg/m3: 200 μl of reference solution (5 mg/ml)

3) 200 mg/m3: 400 μl of reference solution (5 mg/ml)

The obtained recovery results stayed in the range of (78 – 93)% (Table 2) and are compatible

with the widespread convention that recovery should be equal to or greater than 75% [25].

Recovery correction should be used for the calculation of the measurement results if it is

considered as a significant systematic effect, if the causal factor for the observed effect can be

identified, if the estimate for the biases are sufficiently accurate and if the correction applied

causes an useful reduction in uncertainty [29]. According to obtained recovery results, the initial

relative RMSbias values calculated ranged from 10% to 20%, which indicates that recovery is a

systematic effect that can be considered significant compared to maximum overall measurement

uncertainty requirement set by EVS-EN 482, which is U ≤ 50% [28]. The obvious reason for less

than 100% recoveries in the case of this work is the incomplete adsorption of the VOCs on the

sorbent during sampling and their incomplete desorption during sample preparation. The

obtained recovery results do not scatter significantly around their average, with the standard

deviation approximately around 2% (Table 3). This leads to a sufficient accuracy of recovery.

And finally, because of the use of recovery correction in the measurement results and the

estimate of uncertainty correction in the overall uncertainty estimation, a very useful uncertainty

reduction has been achieved. As a consequence, after the reduction, the calculated uncertainty

remains safely below the maximum allowed value of U ≤ 50% (4.6 and Table 3). Therefore

recovery correction is justified [28, 29]. According to the obtained recovery results (Table 3),

recovery correction will be used for all the calculated measurement results at all concentration

levels, since the before mentioned criteria has been fulfilled for all the cases.
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Table 2. Desorption efficiencies, adsorption efficiencies and recoveries of VOCs.

10 mg/m3 100 mg/m3 200 mg/m3

D A R D A R D A R

% % % % % % % % %

orto-xylene 102 86 88 97 88 85 92 93 86

meta- and 106 88 93 91 98 89 96 94 90

para-xylene

styrene 91 86 78 90 89 80 88 93 82

toluene 102 88 90 99 90 89 96 85 82

4.5 Accuracy (trueness and precision)

The results of the recovery experiments of LRMs were used to estimate the accuracy of the

method. For the determination of trueness and precision, 6 different experimental setups for the

preparation of in-house made LRMs were tested. The recovery values for method 1 (Figure 2)

were very low, staying just below 20%. Method 2 (Figure 3) gave no better results as recovery

was only increased to 30%. As the methods using a glass container gave no satisfactory results,

different other approaches were tried. Method 3 and 4 (Figures 4 and 5), where reference

solutions were injected directly onto the charcoal tube, gave recovery values at the other end of

the extreme, with recovery values of (120-130)%. In response to this, a third kind of design was

prepared using a glass T-piece, where the reference solution was injected onto a cotton wool plug

inside the T-piece. Method 5 (Figure 6), where nitrogen gas was flown through the T-piece, did

not still give satisfied results as recoveries stayed around 70%. Finally, the latter design was

upgraded to method 6 ( Figure 7), where sampling pump was used to sample air through the tube

instead of the use of gas stream and satisfactory recovery results were obtained, staying in the

range of (80-100)%. This last method design was used to determine the mean and standard

deviation of the five replicated measurements conducted on different days and compared with

the spiked values of VOC standards. The trueness of the method, expressed by obtained bias

values (Table 3), is compatible with the requirements set by Standards EVS EN 482 and ISO
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16200-1, staying below allowed maximum bias value of 5% [20, 28]. The precision of the

method is expressed by obtained reproducibility Rw values (Table 3).

4.6 Measurement uncertainty

From the replicate measurements of LRM analysis, the standard deviation between the LRMs

prepared on different days was accounted for random effect as an intermediate precision and the

values of u(Rw) were obtained (see Table 3), which stay near 2% for all the VOC analytes at all

concentrations. The results of the same replicated experiments were used to estimate the

systematic component, the uncertainty of bias. The systematic uncertainty components were the

uncertainty of 100% recovery, uncertainty of recovery correction and uncertainty of air volume

sampled. Since the uncertainty of recovery correction was estimated by the same standard

deviations as the reproducibility component, the estimates are equal and values stay near 2%.

The uncertainties of 100% recovery and air volume sampled are the same for all the cases with

values 0.8% and 0.9%, respectively. Initially calculated RMSbias values from the recovery

experiments gave large bias values of (10 - 20)% raising bias values to 20%, but after a justified

use of recovery correction, the overall uncertainty of bias component stay slightly above 2%,

leading to a combined uncertainty values ranging between 2.5% and 3%. After using a coverage

factor k=2 to expand the overall uncertainty, the calculated relative expanded measurement

uncertainty values stay in the range of (5 - 6) %, which are compatible with the requirements set

by EVS EN 482, staying below allowed maximum value of 50% [28]. It is important to stress

that the obtained uncertainty takes into account the uncertainty of sampling the air (the

uncertainty of air volume) but does not take into account the possible inhomogeneity of air at a

sampling site (which is considered to be a property of the analysis object).
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Figure 19. Fish-bone diagram of the uncertainty components, with recovery correction.

Table 3. Uncertainty components and expanded measurement uncertainties of

determination of VOCs.

VOC o-xylene p- and m-xylene styrene toluene

Concentration 10 100 200 10 100 200 10 100 200 10 100 200

(mg/m3)

u(rec.correct), % 1.5 1.6 1.6 1.8 1.8 1.6 1.8 1.5 1.7 1.6 1.9 1.7

u(Crecovery), % 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

u(air volume), % 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

u(bias), % 1.9 2.0 2.0 2.2 2.2 2.0 2.2 1.9 2.1 2.0 2.3 2.1

u(Rw), % 1.5 1.6 1.6 1.8 1.8 1.6 1.8 1.5 1.7 1.6 1.9 1.7

uc, % 2.5 2.6 2.6 2.8 2.8 2.5 2.8 2.5 2.7 2.5 3.0 2.7

U (k=2), % 4.9 5.2 5.2 5.7 5.6 5.1 5.7 4.9 5.3 5.1 6.0 5.3
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4.7 R-control charts

For the preparation of the R-control charts, the difference between the parallel real samples taken

within everyday analysis are plotted on a chart. By the time of the publication of this work, the

laboratory had only analysed few real samples, therefore the control chart is in setup phase and

the mean range and the limits of the control chart are changing continuously together with the

new collected data. After collecting at least 10 control data values, the limits can be let remain

stable and re-evaluated once a year. According to the initial QC data on R-charts, no

interpretations can be done on the continuous working status of the method, since it requires

stable control limits for a longer time to identify any change in the use of this method.

Figure 20. R-control chart of orto-xylene.
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Figure 21. R-control chart of para- and meta-xylene.

Figure 22. R-control chart of styrene.
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Figure 23. R-control chart of toluene.
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5. Summary

The aim of this work was to set up and validate the analytical method for determination of 5

volatile organic compounds (toluene, styrene, orto-, para- and meta-xylene) in industrial

workplace air. The method is based on International Standard – ISO 16200-1:2001 - Workplace

air quality - Sampling and analysis of volatile organic compounds by solvent desorption/gas

chromatography – Part 1: Pumped sampling method.

During the method validation, different experimental tests with calibration and reference

standard solutions were conducted to characterise the important method performance parameters

– confirmation of identity, selectivity, linear and working ranges, limit of detection and

quantitation, recovery, trueness, precision and measurement uncertainty. For the purpose of

recovery experiments and assessment of method LoD and LoQ, trueness, precision and

measurement uncertainty, in-house made laboratory reference materials (LRMs) were prepared

(sampling pump connected to a glass T-piece by a sorbent tube) by spiking them with reference

solutions containing VOCs while pumping air through a sorbent tube. A specially designed

experimental setup was created for the latter purpose.

Primary standards of VOCs were used for the identification of peak retention times on

chromatograms and determination of retention times. No other interfering compounds have been

found during the validation and prior to the use of this method. The method was validated for the

use of concentration range of (10 – 200) mg/m3, except for p-and m-xylene, as their calibration

curve is constructed as their sum and therefore their calibration concentrations are two times

higher ranging from 20 mg/m3 to 400 mg/m3. Besides the visual linearity check, the obtained R-

squared values (o-xylene: 0.9998; p- and m-xylene: 0.9998; styrene: 0.9996; toluene: 0.9997)

and the performed residual analysis indicated that good linearity can be assumed for all the

calibration curves within the working area. For the determination of concentrations which to use

for LoD and LoQ experiments, recovery experiments were conducted at several low

concentrations and the concentration value of 10 mg/m3 was found to be suitable. The estimated

method LoD values were: o-xylene: 11 mg/m3 , p- and m-xylene: 25 mg/m3, styrene: 10 mg/m3,

and toluene: 12 mg/m3; and method LoQ values were: o-xylene: 13 mg/m3, p- and m-xylene: 31

mg/m3, styrene: 13 mg/m3, and toluene: 15 mg/m3.
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For the determination of desorption efficiencies, spiking experiments at three different

concentration levels were conducted on the charcoal sorbent. The estimated desorption

efficiencies stayed in the range of (88 – 106)%. For the determination of method recoveries,

replicated LRM analysis experiments were conducted on different days at three different

concentration levels. The obtained recovery results stayed in the range of (78 – 93)%. The

recovery results are compatible with the widespread convention that recovery should be equal to

or greater than 75%. From the estimates of desorption efficiencies and recoveries, adsorption

efficiencies could be calculated, staying in the range of (85 – 98)%. According to the recovery

results, recovery correction will be used for all the calculated measurement results at all

concentration levels, since the criteria have been fulfilled for all the cases. Measurement

uncertainties were estimated according to Nordtest approach. From the replicate measurements

of LRM analysis on different days, intermediate precision as random components and

uncertainty of bias as systematic, were estimated and combined. The expanded overall

measurement uncertainties, using a coverage factor of k=2, stayed in the range of (5 – 6)%. As a

quality control implementation, control R-charts were designed and will be used during the

routine use of this method. The method has been already in routine use at the time of the

publication of this work by Air and Materials Testing Group of Health Board Central Chemistry

Laboratory. The method was assessed by the Estonian Accreditation Centre on 26th of March,

2013 and received flexible accreditation with no findings on non-conformities as it was validated

with a sufficient degree to be fit for purpose.
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6. Kokkuvõte

Gaasikromatograafilise metoodika valideerimine lenduvate orgaaniliste ühendite määramiseks

tööstusettevõtete õhus.

Sander Sannik

Selle töö eesmärgiks oli valideerida analüütiline meetod 5 lenduva orgaanilise ühendi (tolueen,

stüreen, orto-, para-, ja meta-ksüleen) määramiseks tööstusettevõtete õhus. Meetod põhineb

rahvusvahelisel standardil - ISO 16200-1:2001 - Workplace air quality - Sampling and analysis

of volatile organic compounds by solvent desorption/gas chromatography – Part 1: Pumped

sampling method.

Meetodi valideerimise käigus viidi läbi erinevad eksperimentaalsed katsed kalibreerimis- ja

referentslahustega, et iseloomustada tähtsamaid meetodi suutlikkuse parameetreid – analüütide

identifitseerimine, selektiivsus, lineaarne ja töö-ala, avastamis- ja määramispiir, saagis, tõesus,

kordustäpsus ja mõõtemääramatus. Saagise katsete läbiviimiseks, meetodi avastamis- ja

määramispiiri, täpsuse ja määramatuse hindamiseks valmistati laborisiseselt referentsmaterjalid

(proovipump ühendatud sorbenttoru kaudu klaasist T-tüki külge), kuhu süstiti kindlad kogused

referentslahuseid, samal ajal tõmmates ruumiõhku läbi sorbenttoru. Selle jaoks loodi spetsiaalselt

disainitud katseseade.

Lenduvate orgaaniliste ühendite põhistandardeid kasutati kromatogrammidel piikide

retentsiooniaegade kindlaks tegemiseks. Ühtegi segavat ainet (interferentsi) ei ole leitud meetodi

valideerimise ega varasemate labori analüüside käigus. Meetod valideeriti töötamiseks

kontsentratsioonivahemikus (10 – 200) mg/m3, välja arvatud p- ja m-ksüleenide korral, sest neile

valmistati ühine kalibreerimisgraafik, muutes nende kalibreerimisvahemiku kaks korda

kõrgemaks, jäädes vahemikku (20 – 400) mg/m3. Peale visuaalse kalibreerimisgraafikute

lineaarsuse kontrollimise, võib eeldada rahuldavat lineaarsust terve tööala ulatuses saadud R2-

väärtuste (o-ksüleen: 0.9998; p- and m-ksüleen: 0.9998; stüreen: 0.9996; tolueen: 0.9997) ja

läbiviidud jääkliikmete analüüside põhjal. Selleks, et saada teada kontsentratsioon, millega viia

läbi katsed avastamispiiri hindamiseks, viidi läbi saagise katsed laborireferentsmaterjaliga

mitmetel madalatel kontsentratsioonidel ja väärtuse 10 mg/m3 juures saadi kõige paremad
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tulemused. Meetodi avastamispiiride väärtusteks saadi: o-ksüleen: 11 mg/m3 , p- and m-ksüleen:

25 mg/m3, stüreen: 10 mg/m3, ja tolueen: 12 mg/m3; ning meetodi määramispiirideks saadi: o-

ksüleen: 13 mg/m3, p- and m-ksüleen: 31 mg/m3, stüreen: 13 mg/m3, ja tolueen: 15 mg/m3.

Desorptsiooniefektiivsuse hindamiseks viidi läbi lisamiskatsed proovivõtu toru sorbendile

kolmel erineval kontsentratsioonil. Desorptsiooniefektiivsused jäid vahemikku (88 – 106)%.

Meetodi saagise hindamiseks viidi läbi saagise katsed laborireferentsmaterjaliga erineval päeval

ja kolmel erineval kontsentratsioonil. Saagiste väärtused jäid vahemikku (78 – 93)%. Saadud

saagise katsete tulemused vastasid laialtlevinud saagise kriteeriumile, et saagis peaks olema

võrdne või suurem kui 75%. Desorptsiooniefektiivsuse ja saagiste hinnangutest oli võimalik

arvutada ka adsorptsiooniefektiivsused, mis jäid vahemikku (85 – 98)%. Vastavalt saadud

tulemustele kasutatakse saagiseparandit kõikide tulemuste arvutamiseks kõikide analüütide ja

kontsentratsioonide korral. Mõõtemääramatused hinnati kasutades Nordtest meetodit ning

saadud laiendmõõtemääramatused, arvutatud katteteguriga k=2, jäid vahemikku (5 – 6)%.

Kvaliteedikontrolliks valmistati R-kontrollkaardid, mida täidetakse ja jälgitakse käesoleva

meetodi edasisel rutiinkasutusel. Meetod on käesoleva töö avaldamise ajaks juba rutiinkasutuses

Terviseameti Kesklabori Keemialabori õhu- ja materjalide uuringute rühma töös. Meetodile viidi

2013-nda aasta 26. märtsil läbi väline audit Eesti Akrediteerimiskeskuse poolt ja meetod lisati

Terviseameti Keemialabori paindlikku akrediteerimisulatusse, sest hindamiste käigus ei leitud

ühtegi mittevastavust ISO 17025 standardi alusel, mis tähendab, et meetod oli piisava

ulatuslikkusega valideeritud ja kohane kasutamiseks talle mõeldud eesmärgil.
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