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ABSTRACT

A novel approach to providing guidance for helicopters with under-slung loads is presented. Rapidly-exploring Ran-
dom Trees are adapted to plan trajectories for simplified helicopter-load models. The algorithm is presented with a task
to place a load in a specific location at a moment when the load is motionless, mimicing the actions of helicopter-based
Christmas tree harvesting. The solutions provided by the RRT method vary in aggressiveness and precision, and are
not ready for live implementation, but show promise in future development of this approach.

NOTATION

P: the pivot point of the pendulum

M: the pendular mass

7: position vectors, with subscript denoting point P or point M
7}: unit vector pointing from P to M

p: air density (slugs/ft*)

f: equivalent flat plate area of the load (ft?)

o: sling length (ft)

: mass of load (slugs)

gravitational acceleration in vector form

d.: centripetal acceleration

dsp: acceleration of the load due to acceleration of the pivot
D: viscous drag

Feg: virtual force for constraint enforcement

kck,cce: spring and damping coefficients used for constraint
enforcement

T: unit vector in the direction of pivot acceleration

T,6: magnitude and angle of pivot acceleration

X: state vector

i: vector of control inputs

J: the value of the cost function

a: relative cost weighting between position error and velocity
error

~
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INTRODUCTION

Automatic guidance and control are rapidly becoming an in-
tegral part of civil aviation operations. However, there are a
number of tasks which, thus far, still require the skill, adapt-
ability, and experience of a human pilot. One task in particu-
lar that requires an especially skilled pilot is helicopter slung-
load operations.
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Fig. 1. Helicopter loading a Christmas tree for transport.

Slung-loads, used in such operations as disaster relief,
fighting forest fires, and Christmas tree harvesting (Figure 1),
have highly nonlinear dynamics that are strongly coupled to
the aircraft. Additionally, helicopters typically do not have
any additional control mechanisms to handle the additional
degrees of freedom represented by such a load. Motion plan-
ning thus is an important aspect of slung-load operations, as it
needs to ensure a load is transported to its destination quickly
and safely while avoiding excessive forces.

Review of Relevant Literature

The field of motion planning has been well-studied, includ-
ing the unique aspects of the problem presented by aircraft.
Planning Algorithms by Lavalle (Ref. 1) is possibly the most



complete resource available, serving as the textbook for more
than a dozen robotics courses at universities across the US.

However, a helicopter carrying a slung-load presents a
unique set of challenges to the motion planning problem. De-
pending upon the complexity of the model, it brings at least
two additional degrees of freedom to the dynamic system, typ-
ically without any additional control mechanism. The prob-
lems inherent in slung load operation have been studied since
the earliest days of helicopters (Ref. 2). There have been ef-
forts to model slung-load dynamics (Refs. 3, 4), classify the
system stability (Ref. 5), and develop methods to directly im-
part control forces upon the load via aerodynamic surfaces
(Ref. 6), winches (Ref. 5), or even reaction wheels (Ref. 7).
More recently, researchers have classified the dynamics using
empirical system identification techniques (Refs. 8,9).

One body of research of particular interest was developed
by Bisgaard, la Cour-Harbo, and several other authors. They
created an extremely detailed dynamic model in (Ref. 10).
Their model includes load attitude, line collapse and line colli-
sion (or “snap”), and load aerodynamics including rotor wake
effects, in addition to standard helicopter dynamics. They also
developed a method for estimating the load state using vision
(Ref. 11), stabilizing the load via input shaping (Refs. 12, 13),
and planning trajectories (Ref. 14).

A natural candidate approach to motion planning for heli-
copters with slung loads is Rapidly-exploring Random Trees,
or RRTs. RRTs have been shown to be able to efficiently
search high-dimensional spaces with nonlinear metrics and
constraints. Lavalle and Kuffner introduced RRTs in 1998
(Ref. 15) and subsequently proved and demonstrated a num-
ber of properties of RRTs (Ref. 16), as well as exploring
several key variants (Refs. 17, 18). Their applications have
included systems with many degrees of freedom as well as
holonomic and nonholonomic constraints. Frazzoli and Kara-
man (Ref. 19) have extended this work by developing a ver-
sion of RRTs that can approximate an optimal solution.

This paper will be organized as follows. First, the frame-
work of the RRT used in this research will be described,
including the dynamic model(s) for the helicopter-load sys-
tem and the logic used to extend the tree and connect new
nodes. Second, results from simulations of increasingly com-
plex models will be presented. Finally, a discussion of the key
insights developed in this research will be presented.

PROBLEM FORMULATION

Guidance Algorithm

While there are a wide variety of extensions to the basic RRT
method, the research here will use one of the most basic. It
is very similar to the basic kinodynamic planning presented
in (Ref. 17). This method does not promise optimality; how-
ever, it does ensure that the planned path is dynamically fea-
sible by construction. The tree is expanded by generating a
random state from a set of uniform distributions (though oc-
casionally the goal state is selected according to a user-defined

bias). The nearest node in the existing tree is selected using a
distance function. That node is the point from which the tree
grows. The input space of the system is reduced to a series
of basis functions selected and scaled randomly. The tree is
grown from the nearest node using the selected control and
simulating forward in time. Barring failed constraint or col-
lision checks, the state at the end of the control sequence is
added to the tree (Algorithm 1).

Algorithm 1 Generate RRT (adapted from (Ref. 15))
1: procedure GENERATE_RRT (xjir, Xgout, K, At, bias)
2 T.init (xim't);
3 for k=1to K do
4. Xrand < RANDOM _STATE (x4, bias);
5: Xnear < NEAREST _NEIGHBOR(T, x,4,4);
6.
7
8

u + SELECT_INPUT();
Xpow < NEW_STATE(Xpear, i1, AL);
T.add node_and_edge(xnew, Xnear, 1);

9: if X0 = Xgoqs then
10: break;
11: end if
12: end for

13: Xnearest < NEAREST_NEIGHBOR(T, x4041);
14: U < ASSEMBLE_CONTROL_SEQ(T, Xsieqrest);
15: return U

16: end procedure

Dynamic Models for Planning

For the purposes of this paper, the helicopter-load system
will be modeled as a pendulum attached to, alternatively, a
constant-altitude double integrator, a two-degree-of-freedom
double integrator (Equations (1) - (10)), and a point mass with
first-order pitch and thrust dynamics (Equations (11) - (13)).
The equations of motion for these systems are formulated
using multibody equations of motion, with a virtual spring-
mass-damper in the linkage to enforce the constraint between
the pivot and the mass. These models are drastic simplifica-
tions of real aircraft with slungloads, but are being examined
to determine if they are “good enough” for planning purposes.
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The coefficients on the constraint enforcement are set so
that the spring-mass-damper frequency is an order of magni-
tude faster the pendulum frequency, but the period is less than
half of the numerical integration time step size.

This same set of equations applies to the pitching particle
model, with T and 0 added to the state vector, and the follow-
ing modifications to equation (10):

(1)

12)

13)

Note that these models are generic enough to be adapted to
three dimensions, with only changes to the definition of T by
including a second orientation parameter to the state (in this
case, probably heading) and a corresponding control input.

Task and Test Conditions

The guidance system will be presented with a task which
mimics the Christmas tree harvesting task pictured in Figure
1. Specifically, the initial condition will have the aircraft and
load in a stable hover 300 feet away from the goal configura-
tion. The goal configuration will specify a load position cor-
responding to where the load could drop straight down into a
hypothetical truck bed (Figure 2.) The load should have near-
zero velocity at this point, enabling the aircraft to release the
load for vertical drop.
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Fig. 2. Diagram of planning task.

One characteristic of RRTs is that the parameters of the
planner, in particular the cost function and/or distance metric,
must be carefully selected in order to reward the desired air-
craft behavior. This cost function will generally vary based on
the specific task. For the experiments described here, a cost
function was designed to strongly penalize position error and
ignore velocity error when the aircraft is far from the goal,
while nearly ignoring position error near the center of the tar-
get and heavily penalizing load speed (Eq. 14, 15). This is
accomplished by selecting the weighting parameter, o, based
on the distance to goal. For the work done here, the constant
C is selected to be 2.

o = C( NP goar—T| /o) (14)
J= (1 - (X) H?M,goal _;:MH2 +a H?M,goal _;}MH2 (15)

Metrics

The quality of a planned trajectory can measured a number
of ways. Here, we will use planned time of flight and the
final value of the cost function as a measure of overall opti-
mality. Because of the stochastic and non-optimum seeking
characteristics of the flavor of RRT used, performance will be
presented in aggregate as distributions of results from a series
of Monte Carlo experiments. Additionally, the final tree, se-
lected trajectory, and “cost to go” history will be presented for
both the shortest returned trajectory and a randomly-selected
“typical” one. Average computation time will be presented as
well; however, note that an implementation of this software
for flight would be orders of magnitude faster, and so compu-
tation time is included for comparison between different mod-
els only.



Table 1. Dynamic System Paramters.

Parameter Value

Line Length 40 ft

Load Mass 20 Ibm
Load Equiv. Flat Plate Area 1 ft?

Air Density 0.002378 slug/ ft3

Table 2. Planner Parameters.

Parameter Value
Number of Nodes 1000
Terminal Condition Cost < 0.001

[~X,0,X], X ~U(0,3) f1/5*
[-Y,0,Y],Y ~U(0,1.4) rad/s

Control Space (linear)
Control Space (angular)

Branch Length T~U(0,3)s
Integration Time Step 0.05s
Goal Bias 0.1

Sampling Domain
Ry ~ [U(—=20,320),
U(0,100)]7 ft
Ry ~ [U(~50,50),
U(—10,50)]" ft

Load Position

Load Velocity

SIMULATION RESULTS AND DISCUSSION

Model and Test Parameters

In order to prepare for porting of this planning algorithm for
flight test, the parameters of the system and planner were se-
lected to mimic the GTMax guidance, navigation, and control
research testbed (Ref. 20). The parameters used in this work
are included in Tables 1 and 2.

The simulations were carried out 100 times for each model
in Matlab running under Ubuntu 12.04 LTS (32-bit) on an 8-
core Intel Xeon 3.20 GHz CPU with 8 GB of memory.

Constant-Altitude Double Integrator

The constant altitude double integrator performed somewhat
well, presumably due to the fact that the starting altitude of
the load was very close to the target altitude. The average tra-
jectory duration was about 44 seconds (Figure 3), an average
speed of 6.8 ft/s, which is quite docile for this scale aircraft.
This model, however, was the only one that could consistently
put the load inside the target at low speed—typically within 6
ft of the target and less than 2 ft/s. The fastest trajectory was
completed in just under 23 seconds, which is an average of
13 ft/s, a significantly faster clip. The trees of the fastest and
“typical” solutions are a bit distorted due to the limited verti-
cal separation of the branches (Figures 4 and 7). It is notable
that while the RRT does not produce an optimal flight path,
it did produce in nearly every case a trajectory in which the
cost function monotonically decreased from start to finish. In
other words, the trajectory solution will constantly drive the
system toward the goal configuration (Figure 6).
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Fig. 3. Distribution of flight times for returned trajectory,
constant altitude model.
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Fig. 4. Final RRT for best-time trajectory, constant alti-
tude model. Tree in blue; final selected branch in red.
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Fig. 5. System trajectory for best-time solution, constant
altitude model. Load position and path in red; selected
line configurations in blue.



4 Two-Degree-of-Freedom Double Integrator

x10

The double integrator generated trajectories which were both
more aggressive and less able to precisely drop the load in the
target location. The average time of flight was about 36 sec-
onds, a little more than 8 ft/s. However, the load was dropped
further away, an average of 10 ft, and while moving faster, an
average of 7 ft/s.

Cost Function Value
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Fig. 6. “Cost-to-go” history for best-time trajectory, con- 25
stant altitude model.
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Fig. 9. Distribution of flight times for returned trajectory,
2DOF model.
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Fig. 7. Final RRT for a typical trajectory, constant altitude
model. Tree in blue; final selected branch in red.
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Fig. 8. System trajectory for a typical solution, constant
altitude model. Load position and path in red; selected Fig. 10. Final RRT for best-time trajectory, 2DOF model.
line configurations in blue. Tree in blue; final selected branch in red.
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Fig. 11. System trajectory for best-time solution, 2DOF
model. Load position and path in red; selected line con-
figurations in blue.
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Fig. 12. Final RRT for a typical trajectory, 2DOF model.
Tree in blue; final selected branch in red.
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Fig. 13. System trajectory for a typical solution, 2DOF
model. Load position and path in red; selected line con-
figurations in blue.

Pitching Particle

The pitching particle model produced the fastest trajectories,
but resulted in even less precision hitting the goal state. The
average flight time was about 25 seconds, a speed of 12 ft/s,
but the load missed the target by an average of 25 feet, and
was moving at an average of 20 ft/s at the trajectory end.

Two things were notable about the performance of this
model that were distinct from the other two models. First,
the best-time trajectory looks amazingly similar to the tra-
jectories flown by human pilots in Christmas-tree harvesting
(Figure 16). Though the human pilots are not necessarily op-
timal, through training and repetition they have become very
efficient and it is promising that the planner here is finding
similar trajectories. Second, since this model is more repre-
sentative of the actual dynamics of a helicopter, it gives some
intuition about the difficulty of this task.
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Fig. 14. Distribution of flight times for returned trajectory,
pitching particle model.
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Fig. 15. Final RRT for best-time trajectory, pitching par-
ticle model. Tree in blue; final selected branch in red.



N ®

altitude (ft AGL)

0 50 100 150 200 250 300
x (ft)

Fig. 16. System trajectory for best-time solution, pitching
particle model. Load position and path in red; selected
line configurations in blue.
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Fig. 17. Final RRT for a typical trajectory, pitching parti-
cle model. Tree in blue; final selected branch in red.
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Fig. 18. System trajectory for a typical solution, pitching
particle model. Load position and path in red; selected
line configurations in blue.

Discussion of Results

The results shown above indicate that this method is not quite
ready for implementation in a live system, but does show
some promise. The primary problem is one that affects many
systems that use RRTs, namely that there is significant ex-
cess motion. Additionally, the lack of precision with the more
aggressive models would be problematic for practical appli-
cations. However, the approach still shows some promise.

First, while the RRT approach has not performed well for
the relatively simple task shown here, it may yet perform well
in more complex scenarios. RRTs have been shown in the past
to handle obstacles, constraints, and dimensionality with little
degradation of performance.

Second, the modular nature of RRTs mean that perfor-
mance can be improved via a number of adjustments or mod-
ifications. The performance of the algorithm is highly sen-
sitive to the selection of cost function, so a different choice
could improve the results. The control input selected for each
branch is uniformly random here, but could instead be se-
lected to drive the system in a certain direction. Other flavors
of RRT could mean a great deal of improvement; for exam-
ple, RRT-Connect (Ref. 21) could provide more precision at
the end of the trajectory, and RRT* (Ref. 19) could eliminate
excess motion and produce optimal trajectories. Finally, the
number of computations per tree scale at O(N?), where N is
the number of nodes in the tree. Any ways to reduce compu-
tation could allow a deeper search of the solution space, with
possibly a better result. Finally, reducing the size of the tree
and re-running the algorithm multiple times may produce a
better solution.

Computation time between the three models did not vary
drastically—most trees took between 50 and 60 seconds to
compute. The greatest computational cost was in nearest-
Neighbor lookups (see Algorithm 1). In the work shown here,
this lookup was performed by exhaustive search of all the
nodes in the tree. A faster approach could be the use of an
index that groups nodes by location—such a system would
only search a subset of near nodes to find the nearest. A more
radical approach would be to employ a tree method that does
not require nearest neighbor lookups; for example, kinematic
trees (Ref. 22) or Monte Carlo tree search (Ref. 23).

CONCLUSIONS

The work so far has pointed to several conclusions about the
use of RRTs for helicopter-slungload guidance. First, RRTs
are likely a viable method for motion planning of the sys-
tem, though work remains to fine-tune parameters and sub-
elements of the method. In particular, the method seems to be
sensitive to the cost function, and tends to produce excess mo-
tion and variable precision. Future research will investigate
modifications to these elements, as well as different planning
models or possibly entirely different tree-based methods.
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