
APPROACHES FOR CONTEXTUALIZATION AND
LARGE-SCALE TESTING OF MOBILE APPLICATIONS

A Thesis
Presented to

The Academic Faculty

by

Jiechao Wang

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
August 2013

Copyright c© 2013 by Jiechao Wang

APPROACHES FOR CONTEXTUALIZATION AND
LARGE-SCALE TESTING OF MOBILE APPLICATIONS

Approved by:

Professor Raghupathy Sivakumar, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Ghassan Al-Regib
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Raheem Beyah
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 8 May 2013

To my father Yi Wang,

and

my mother Yuping Wen.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Prof.

Raghupathy Sivakumar, for his unflagging guidance and support. This thesis would

not have been possible without all the insightful discussion with him. During my

thesis study, he has acted as an excellent role model of a researcher with intense en-

thusiasm and drive. His high standards for clear thinking and effective communication

will continue to guide me in my future endeavors.

I would like to thank Profs. Ghassan Al-Regib and Raheem Beyah for serving in

my thesis committee. I am grateful for their valuable advices and opinions, which

helped me improve the quality of this thesis a lot.

My gratitude extends to the present and past members of the Georgia Tech

Networks and Mobile Computing Research Group. I thank Sandeep Kakumanu,

Cheng-Lin Tsao, Shruti Sanadhya, Chao-Fang Shih, Bhuvana Krishnaswamy and

Uma Parthavi Moravapalle for their valuable feedback and assistance in my disserta-

tion.

Last but not the least, I would like to thank my father and my mother. Their

encouragement, support, and sacrifices have helped me go through this journey. To

them, I dedicate this thesis.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

SUMMARY . 1

I MOBILE APPS AND CONTEXT AWARENESS 2

1.1 Introduction . 2

1.2 Problem Statement/Motivation . 3

1.3 Related Work . 8

1.3.1 Definition of Context . 8

1.3.2 Approaches to Context-awareness 9

1.3.3 Applications of Context-awareness 9

II CONTEXTIFY: AN OVERLAY APPROACH TO CONTEXTU-
ALIZING MOBILE APPS . 11

2.1 Solution Design . 11

2.1.1 Problem Restatement . 11

2.1.2 Solution Overview . 12

2.1.3 Input Actions and Context 12

2.1.4 Design Elements . 13

2.2 Solution Implementation . 14

2.2.1 T-Square . 14

2.2.2 Use Case 1 . 15

2.2.3 Use Case 2 . 16

2.2.4 System Architecture . 19

2.2.5 Other Use Cases . 19

III PERFORMANCE EVALUATION OF CONTEXTIFY 25

3.1 Quantitative . 25

v

3.2 Qualitative . 26

IV LARGE-SCALE TESTING OF MOBILE APPS 29

4.1 Introduction . 29

4.2 Problem Statement/Motivation . 29

4.2.1 Motivation . 30

4.2.2 Focus Only on Client-Server model 31

V ACT: AUTOMATED CLOUD TESTING PLATFORM FOR MO-
BILE APPS . 32

5.1 Solution Design . 32

5.1.1 Design Principle . 32

5.1.2 Design Elements . 32

5.2 Solution Implementation . 33

5.2.1 Architecture . 33

5.2.2 Test Preparation . 35

5.2.3 Test Conducting . 37

5.2.4 Additional Features . 40

VI PERFORMANCE EVALUATION OF ACT 43

6.1 Correctness . 43

6.2 Scalability . 44

6.3 Cost-efficiency . 45

6.4 Time-efficiency . 46

VII CONCLUSIONS . 50

7.1 Main Contributions . 50

REFERENCES . 52

vi

LIST OF FIGURES

1 Network Architecture of *Mobile . 6

2 T-Square website on PC . 15

3 Upload page on mobile device . 17

4 The list of recently-edited files recommended by contextify 18

5 After user selects one of the recently-edited files to upload 19

6 Before user enters the Resources tool 20

7 A list of recently-viewed files recommended by contextify in the order
of number of view . 21

8 User clicks on a button . 22

9 The page for the Resources tool . 23

10 The overall architecture of contextify 24

11 Search for the emails related to a person 24

12 Time to complete use case 1 in normal T-Square and contextified T-
Square . 27

13 Number of actions to complete use case 1 in normal T-Square and
contextified T-Square . 27

14 Time to complete use case 2 in normal T-Square and contextified T-
Square . 28

15 Number of actions to complete use case 2 in normal T-Square and
contextified T-Square . 28

16 Architecture of the Large-Scale Testing Solution 34

17 Android Emulator with *Mobile Icon 35

18 Steps for Test Preparation and Conducting 36

19 The configuration of an AVD . 38

20 An exception reported by ACRA . 41

21 Checkpoint Reporting Results in Google Spreadsheet 42

22 ACT correctness evaluation experiment results 44

23 Duration of each ACT round . 46

vii

24 Cost per user hour for each Amazon EC2 instance type 47

25 ACT Acceleration Experiment Results 49

viii

SUMMARY

In this thesis, we focused on two problems in mobile application development:

contextualization and large-scale testing. We identified the limitations of current

contextualization and testing solutions. On one hand, advanced-remote-computing-

based mobilization does not provide context awareness to the mobile applications it

mobilized, so we presented contextify to provide context awareness to them without

rewriting the applications or changing their source code. Evaluation results and user

surveys showed that contextify-contextualized applications reduce users’ time and

effort to complete tasks. On the other hand, current mobile application testing solu-

tions cannot conduct tests at the UI level and in a large-scale manner simultaneously,

so we presented and implemented automated cloud computing (ACT) to achieve this

goal. Evaluation results showed that ACT can support a large number of users and

it is stable, cost-efficiency as well as time-efficiency.

1

CHAPTER I

MOBILE APPS AND CONTEXT AWARENESS

1.1 Introduction

Mobile applications are very convenient and powerful today. People access their

functionalities from anywhere and at any time they want. However, there are still a

lot of PC applications that people could only access from their PCs. Therefore, one

of the problems in mobile application development is how to make the functionalities

of these PC applications also available on mobile devices, i.e. mobilization of PC

applications into mobile applications.

There are mainly four approaches to mobilization: building, porting, simple re-

mote computing and advanced remote computing. The limitation of building is that

it takes too much time and effort. The limitations of porting are it’s time- and effort-

consuming and infeasibility. The limitation of simple remote computing is that it

will give very bad user experience on mobile devices. The fourth approach, advanced

remote computing, don’t have any of the aforementioned limitations.

However, because PC applications are not context-sensitive, when advanced re-

mote computing solutions (such as *Mobile) mobilize PC applications, the resulting

mobile applications are not context-sensitive either. By context we mean ”any in-

formation that can be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the interaction between a user

and an application, including the user and applications themselves. [37] But provid-

ing context awareness in mobile applications are quite beneficial. Thus we focus on

providing context awareness to *Mobile-mobilized applications in this work.

2

1.2 Problem Statement/Motivation

With the rapid growth in the industry, smartphones have recently hit a long-anticipated

milestone: they overtook PCs in terms of the global shipments [31]. The dramatic

growth in smartphones, e.g. 87.2% shipment increase in the worldwide market in

2010 [21], demonstrates its promising potentials. Smartphones have occupied more

than one quarter of the mobile phone population in US and Europe [15], and they

are expected to dominate the mobile market in the near future [32].

Meanwhile, a lot of mobile apps are also created and downloaded for mobile de-

vices, especially from Apple’s App Store for iOS devices and Google’s Google Play

for Android devices. Apple’s App Store, the largest digital distribution platform for

mobile apps, provides a collection of 550,000 mobile apps. More than 25 billion apps

have been downloaded so for in Apple’s App Store. Google Play is catching up with

300,000 apps [13].

Since mobile devices almost entirely rely on its mobile applications to provide

functionalities to the users, mobile applications are very important to these mobile

devices. However, there are many PC applications that don’t have counterpart mobile

applications on mobile devices. But people still want to access the functionalities of

these PC applications from their mobile devices. Therefore, one challenge in develop-

ing mobile applications for mobile devices is how to make PC applications available

on mobile devices.

To solve this challenge, we need application mobilization to provide functionalities

of PC applications on mobile devices. Application mobilization means the process

of enabling a PC application to be used from mobile devices [44]. There are four

approaches to achieve application mobilization today:

1. Building. People can build the application from scratch and provide some set

of functionalities of its PC counterpart on mobile devices. This requires the

most effort, because no PC application code is reused. For example, some

3

social networking sites originally written in web programming languages are

now completely rewritten for iOS and Android devices. The limitation of this

approach is that the functionalities of a PC application are needed to be com-

pletely rewritten for the mobile devices. Sometime this would take another few

weeks or months and a lot of effort for each of the mobile platforms that people

want to support. Also, after investing a significant amount of time and effort

in building the applications, the applications typically expose only a subset of

the capabilities of their counterpart PC applications.

2. Porting. People can also port some PC applications to mobile devices. This

usually requires less effort than the first approach, since it reuses some of the

existing PC application code. One popular example is porting PC applications

written in Java to mobile applications written in Android. However, one of the

limitations of this approach is that the functionalities of a PC application are

required to be partially rewritten for the mobile devices. Moreover, even when

the time and effort of this rewriting are affordable, this approach is usually

infeasible because of the fact that PC applications and mobile applications are

typically written in different programming languages. Take the Java to Android

porting example, the development effort could still be non-trivial: developers

still need to rewrite all of the Java UI code in Android since the widely-used

Java UI libraries Swing and AWT are not supported in Android.

3. Simple remote computing. People could use simple remote computing solutions

such as Virtual Network Computing [34] to achieve application mobilization.

Simple remote computing solutions allow users to remotely access and control

another computer from their computers. Mobile device users can also use simple

remote computing solutions to access applications run on PCs. But the views

and user interfaces of the PC applications given by simple remote computing

4

solutions do not fit the small screens of mobile devices, resulting in very bad

user experience. Users need to take much more time and effort to complete the

same task on their mobile devices than on their PCs.

4. Advanced remote computing. [44] introduces an advanced remote computing

solution called *Mobile. At the high level, *Mobile uses a proxy-based network

architecture to mobilize PC applications for mobile devices without explicit

effort in development [44]. Moreover, its interface properly fits the requirements

of a mobile device and it can expose the full functionalities of a PC application.

It consists of a backend and a frontend. The backend resides on a PC and the

frontend resides on a mobile device. The *Mobile backend offers an ”optimized

window” into the backend application for the mobile device user to view and

control the application on the *Mobile frontend. This solution does not require

explicit development effort and can mobilize PC applications dynamically for

multiple mobile platforms.

*Mobile does not have any of the aforementioned limitations. It reuses the PC

application logic and does not require rebuilding of the mobile applications. It can

achieve application mobilization in a fraction of time and effort of the first and second

approaches. It can apply to virtually all PC and web applications. The mobile

applications mobilized by it can be run on different mobile platforms (iOS, Android,

smartphones and tablets) and guarantee good mobile user experience. Therefore,

*Mobile is the most attractive application mobilization approach and we pick it to

be studied in our work of contextualization.

Figure 1 illustrates the network architecture of *Mobile. The *Mobile backend

runs on a backend PC, which communicates with the *Mobile frontend running on

a mobile device. The frontend receives updates to the application views from the

backend, and renders those views. The frontend sends any user-input back to the

backend, and the backend executes these inputs on the PC application. The *Mobile

5

frontend shown in Figure 1 is a single native application launcher on the mobile device

that contains one mobile application to be launched for each application installed on

the PC.

Figure 1: Network Architecture of *Mobile

The problem with *Mobile is that it does not provide context awareness to the

applications it mobilizes.

We choose the following context definition [37] to use in this work as it considers

the interaction between a user and an application: ”context is any information that

can be used to characterize the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a user and an application,

including the user and applications themselves.

The context in PC application is usually unchanged. For example, a PC applica-

tion is typically always used in the same location as the PC itself does not move. As

a result, there is no benefit of building context awareness into a PC application and

thus PC applications are not designed to be context sensitive.

But unlike PC application, mobile application is typically used in a changing

context. Mobile user might want to know the nearest restaurant and this information

changes based on the current location of the mobile device. The user might also want

to know the most desirable path for him to drive from one place to the other. This

path is time-sensitive as the traffic conditions in different sections of different paths

vary with time. It is desirable to provide context awareness in mobile applications so

6

that we can save some of user’s time and effort when using it.

Here is an example demonstrating the benefit of providing context awareness into

*Mobile solution: suppose that a user is viewing a document when using an appli-

cation mobilized by *Mobile on his mobile device and wants to print this document.

When he issues a print command from his mobile device, there will be a dialog or

window popping up asking him to type in the name of the printer or choose one of

the printers from a drop-down list. Assuming that other people around him all use a

particular printer and *Mobile is aided by context awareness, it would automatically

recommend that printer to the user (showing as the first printer in the drop-down

list). The user can then issue that print command from his mobile device without

taking the time and effort in typing the printer name or making a decision as to which

printer to use.

However, the applications mobilized by *Mobile do not come with context aware-

ness, since the PC application itself does not have any context awareness. So one

of the problems we are going to solve in this work is to obtain and provide context

information in *Mobile-mobilized applications in a seamless fashion to save users’

time and effort when they are using them. We will refer to this as the contextualiza-

tion problem in the following sections. Note that some derivations of our work may

also apply to other mobilization approaches, but we only focus on providing context

awareness to *Mobile-mobilized applications in this work.

To summarize, PC applications do not have built-in context awareness. Therefore,

if we mobilize these PC applications through advanced remote computing solutions

such as *Mobile, the resulting mobile applications don’t have context awareness either.

So what we want to do in this thesis is overlaying context in those mobile applications

to improve user experience and reduce user burden without rewriting the applications

or changing their source code.

7

1.3 Related Work

There has been significant work in ”context-aware computing”. Many of them focus

on one of the following three topics: definition of context, approaches to context-

awareness and applications of context-awareness.

1.3.1 Definition of Context

The works in this category focus on providing a better definition or understanding of

context.

For example, [37] discusses some of the research challenges in understanding con-

text and developing context-aware applications. They also give a well-cited definition

of context: ”context is any information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and applica-

tions themselves”. We use this context definition in our work since it considers the

interaction between a user and an application.

[36] provides an operational definition of context and discuss the different ways

that context can be used by context-aware applications. They use the same context

definition as in [37]. They also present the Context Toolkit, an architecture that

supports common features required by context-aware applications: capture and access

of context, storage, distribution, and independent execution from applications. Unlike

our work, this architecture focuses on general context-aware applications, not on

mobile applications specifically. Moreover, this architecture focus only on physical

context, while we focus on both physical context and application state.

[35] defines context, identifies categories of contextual information, and character-

izes context-aware application behaviors. The authors present a conceptual frame-

work that separates the acquisition and representation of context from the delivery

and reaction to context by a context-aware application.

8

1.3.2 Approaches to Context-awareness

The works in this category focus on the approaches for computing devices, such as

mobile devices, to get context information from environments they are in.

For example, [38] argues that facilitating the interaction between a user and a

mobile device requires a personalization of the context awareness. They present

that there are two approaches to context awareness: the ontology approach and the

unsupervised approach. They argue that the latter one is more workable compared

to the former one.

[45] presents a prototype implementation for the detection of movement patterns

based on the built-in sensors of an Android smartphone, which processes sensor in-

formation in a neural network to match them to certain contexts of a mobile user.

Unlike our work that focuses on both acquiring and using different kinds of context,

this work only focuses on acquiring of movement patterns.

[41] proposes a new way to collect context in situations with many devices, such

as mobile phones. Unlike our work that focuses on providing context awareness to

mobile applications, this work focuses on the determination of context by multiple

mobile devices when they are close to each other.

1.3.3 Applications of Context-awareness

The works in this category focus on presenting a variety of applications to demonstrate

the usefulness of context-awareness.

For example, [40] presents a quality-of-serviceaware decision engine for content

adaptation service of mobile devices. This work focuses on building a good content

adaptation service for mobile devices so that users can access the variety of rich web

hypermedia content from their mobile devices.

[43] describes ConChat, a context-aware chat program that enriches electronic

communication by providing contextual information and resolving potential semantic

9

conflicts between users.

[42] proposes two systems in a computer supported ubiquitous environment for

language learning. The first one is a support system for Japanese polite expressions

learning. The second one detects the objects around learner using RFID tags and

provides the learner the educational information.

[46] presents a Kimura system that augments and integrates independent tools

into a pervasive computing system and monitors a user’s interactions with the com-

puter, an electronic whiteboard, and a variety of networked peripheral devices and

data sources. They seek to design an office that better supports knowledge workers:

business professionals who interpret and transform information.

10

CHAPTER II

CONTEXTIFY: AN OVERLAY APPROACH TO

CONTEXTUALIZING MOBILE APPS

2.1 Solution Design

2.1.1 Problem Restatement

Mobile applications are very powerful and convenient. People access their function-

alities from anywhere and at any time they want. However, there are still a lot of

PC applications that people could only access from their PCs. Therefore, one of

the problems in mobile application development is how to make the functionalities

of these PC applications also available on mobile devices, i.e. mobilization of PC

applications into mobile applications.

There are mainly four approaches to mobilization: building, porting, simple re-

mote computing and advanced remote computing. The limitation of building is that

it takes too much time and effort. The limitations of porting are it’s time- and effort-

consuming and infeasibility. The limitation of simple remote computing is that it

will give very bad user experience on mobile devices. The fourth approach, advanced

remote computing, don’t have any of the aforementioned limitations.

However, because PC applications are not context-sensitive, when advanced re-

mote computing solutions (such as *Mobile) mobilize PC applications, the resulting

mobile applications are not context-sensitive either. But providing context aware-

ness in mobile applications are quite beneficial. Thus we focus on providing context

awareness to *Mobile-mobilized applications in this work.

11

2.1.2 Solution Overview

In this section, we introduce the overview of contextify. When users are required

to give inputs, our solution first records users’ input actions and the context where

these input actions happen in the mobile applications. Then our solution learns or

configures the relationship between the context and these input actions. Using this

relationship, our solution can then provide overlaid suggestions for users’ input actions

through some UI elements in the mobile application. This is done by using any of

the three kinds of contexts introduced in the next section.

2.1.3 Input Actions and Context

We define users’ input actions as any clicks, scrolls, touches or keyboard presses that

user performs on UI elements in the mobile application. Four things are recorded in

the mobile application that we want to provide context awareness to: the types and

sequences of these input actions, the time when these input actions happen and the

context in which these input actions happen.

Three kinds of mobile-application-related contexts are utilized in contextify:

1. What this user did before.

2. What this user did on PC.

3. What other users did before.

Recall that the context definition we use in this work is ”any information that can

be used to characterize the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a user and an application,

including the user and applications themselves. [37]. All of the above three kinds of

contexts fall under this definition.

Once the related input actions and contexts are recorded, we need to establish the

12

relationship between these input actions and these contexts in order to give recom-

mendations for users’ input actions later in the given context. This relationship can

be established in one of the two ways:

1. It can be learnt automatically if there are previous users who give input actions

in the same contexts. In this case, we can predict that the new user will probably

perform the same input actions if the mobile application is in the same context.

These input actions tell us what task the new user will probably perform, so

that we can recommend the new user to do the same task through some new

UI elements added to the mobile application. If the new user does intend to

perform the recommended task, then his/her time and effort are saved.

2. In cases we cannot get previous users’ input actions in the same context, the re-

lationship between the context and the input actions cannot be learnt automat-

ically. So we configure these relationships in contextify. After the relationships

are established in this way, when the mobile application is in one of the recorded

contexts, we can map the current context to a sequence of input actions and

recommend the user to do the task accomplished by these input actions. Similar

to the above case, if the user does intend to perform the recommended task,

then his/her time and effort are saved.

2.1.4 Design Elements

In this section we present the three design elements of contextify:

1. Frontend UI elements. They are added to the *Mobile-mobilized applications

for providing context awareness. These UI elements are used to recommend

input actions to the users and allow them to perform the predicted task in a

more time-efficient and effort-efficient way. Normally these UI elements are a

page or a dialog containing a list of recommended items. If users find these

13

recommendation lists useless, they can easily dismiss them with only one ad-

ditional click. In this way, contextify only adds very small overhead to users’

time and effort when its recommendations are not useful.

2. A online file storage service. We use it to provide file information to our system.

Instead of editing files on mobile devices, it is much likely for users to edit these

files on PCs. But users may want to upload and view these files on their mobile

devices wherever they go and at any time they want, so this service or at least

the file information provided by this service should be accessible from both PCs

and different mobile devices.

3. A backend database. The third design element in contextify is a database at

the *Mobile backend to maintain and provide information for recommendations.

It will record and maintain context information such as which files have been

viewed and how many times each of these file has been viewed. We place this

database at the backend so that the information it maintains can be used in all

*Mobile-mobilized applications across all mobile devices.

2.2 Solution Implementation

2.2.1 T-Square

In this section, we introduce the implementation of contextify. We first introduce the

*Mobile-mobilized application that we want to provide context awareness to and two

of its use cases. Then we introduce the system architecture of contextify. contextify

is a general solution that applies to all *Mobile-mobilized applications. But in this

work, we only implement it in the following application.

T-Square is a Collaboration and Learning Environment (CLE) based on the code

produced by the Sakai open source community, of which Georgia Tech is a leading

member [33]. Its user can be either a Georgia Tech instructor or a Georgia Tech

student. It has a site for each of the courses taught by an instructor or taken by a

14

student, and inside each site, a set of tools is provided to the instructor or the student

to use for that course, such as the Resources tool to upload, view and download files,

the Announcements tool for instructors to make announcements and for students to

view them, the Wiki tool for instructors and students to collaboratively add, edit

and read information about that course, etc. It is a popular PC application among

Georgia Tech instructors and students. It has also been mobilized by *Mobile. So we

choose to base our implementation on it in this work.

Please see Figure 2 for a screenshot of T-Square website running in a Chrome

browser on a PC.

Figure 2: T-Square website on PC

2.2.2 Use Case 1

We’ve identified and implemented two use cases in T-Square that can be benefited

from context awareness. We introduce use case 1 in this section.

Use case 1: a student recently edits some files in his Dropbox folder on the PC.

When he goes to the upload page in the Resources tool from a mobile device, he will

be prompted with a dialog asking him which of these files he wants to upload. He can

15

then choose one of the files by clicking on the corresponding button or dismisses the

dialog if he doesn’t want to upload any of these files. The context here is the upload

page in the Resources tool and the users’ input actions are the click and scroll actions

that are needed to upload one of his recently-edited files. This is the case where there

is no way to learn the relationship between the context and the input actions, so we

configure the relationship here in contextify.

We now introduce the implementation of this use case. We add code to the

*Mobile-mobilized application frontend so that we can know when the user enters the

upload page in the Resources tool. When he does so, contextify uses Dropbox API

to tell us which files in this users’ Dropbox folder are edited recently and prompt a

list of these files in a dialog to the user. The user can then choose to dismiss the

dialog or click on a button representing one of the files. If the user clicks any such

button, we use Dropbox API to download the selected file from his Dropbox folder

to his mobile device, and then he can upload this file from his mobile device to the

Resources tool, without the need to browse his local file system and locate the file he

wants to upload.

Screenshots for this use case are shown in Figure 3, Figure 4 and Figure 5. Figure 3

shows the upload page in the Resources page where users can click on the ”Choose

File” button and select a file to upload. After a user clicks on that button, contextify

shows a list of files that the user recently edits in his Dropbox folder on the PC, as

shown in Figure 4. Figure 5 shows that the ”Display Name” field has been updated

with the name of the file chosen by the user.

2.2.3 Use Case 2

We introduce use case 2 in this section.

Use case 2: some Georgia Tech students have recently downloaded some files.

When another Georgia Tech student goes to the Resources tool from a mobile device,

16

Figure 3: Upload page on mobile device

there will be a dialog asking him whether he wants to download and open any of

those files. He can then download and open one of these files by clicking on the

corresponding button. The context here is the Resource tool and the input actions

are those click and scroll actions that are needed for other Georgia Tech students to

download these files. Contrast to use case 1, this is the case where the relationship

between the context and the input actions can be learnt automatically because the

other users perform these input actions in this context. From these input actions,

contextify learns that the users were trying to download a set of files. Both these

input actions and the context are recorded in contextify so that whenever the mobile

application is in the same context again, contextify can recommend the same set of

files for the user to download. If the user indeed wants to download a file from the

recommended set, he can directly click on the corresponding button, without the need

to locate these files in the Resources tool.

We now introduce the implementation of this use case. We add code to the

*Mobile-mobilized application frontend so that we know whenever a user enters the

Resources tool. These users may download and open some files in the Resource tool.

17

Figure 4: The list of recently-edited files recommended by contextify

If they do so, contextify at the application frontend will record the names of these files

and send this information to the application backend. At the application backend, we

maintain the names of the files viewed by users in the Resources tool and how many

times each of these files is viewed. By utilizing this information, whenever the mobile

application is in the Resource tool, the top ten most viewed files are recommended

to the user as a list of buttons in a dialog.

Screenshots for this use case are shown in Figure 6, Figure 7, Figure 8 and Figure 9.

Figure 6 shows the page before the Resources tool. After the user clicks on the

”Resources” button, contextify prompts him with a page containing a list of files.

Those files are recently viewed by all the users of this site and are recommended to

the user to open. After the users selects a button, the corresponding file is opened

with a file reader program on the device, as shown in Figure 8. After the user finishes

viewing the file, he can go back to the T-Square Resources tool by clicking on the

hardware back button, as shown in Figure 9.

18

Figure 5: After user selects one of the recently-edited files to upload

2.2.4 System Architecture

The system architecture includes three parts: an Android add-on to the *Mobile-

mobilized application frontend for detecting and collecting context information and

providing user interface for users to interact with the whole system; A Dropbox file

storage and sharing component to allow users to edit files on their PCs and provide

information of these files to the other parts of this system; a database at the *Mobile-

mobilized application backend server to record names of the files viewed by users and

how many times they are viewed. The overall architecture is shown in Figure 10

2.2.5 Other Use Cases

In this section, we introduce three other use cases and their implementations. They

are considered but not implemented in this work.

Use case 1: suppose that a user is viewing a document in a *Mobile-mobilized

application on his mobile device and would like to print this document. When he

issues a print command from his mobile device, he will see a dialog popping up

asking him to type in the name of the printer or choose one of the printers from a

19

Figure 6: Before user enters the Resources tool

drop-down list. Assuming that other people around him all use a particular printer,

it would automatically recommend that printer to the user (showing as the default

value and the first printer in the drop-down list). The user can then issue the print

command from his mobile device without taking the time and effort to enter the

printer name or making a decision as to which printer to use.

We now introduce the implementation of this use case. We maintain a database

at the *Mobile backend to record related information when any user issues a print

command. Each entry in the database contains four elements: the name of the Wi-

Fi network the device is connecting to, the location of the mobile device, the printer

name and the number of times this printer has been used. Note that it is possible that

more than one printers have been used in the same Wi-Fi network and at the same

location, so we also record all these printers and the number of times each printer is

used in the database. When a new user issues a print command, we will only suggest

the most-used printer with the matching Wi-Fi and location. If there is no printer in

the database that has both matching Wi-Fi and location, we will suggest the printer

either with matching Wi-Fi only or matching location only.

20

Figure 7: A list of recently-viewed files recommended by contextify in the order of
number of view

Use case 2: depending on users’ moving speeds, we reduce the number of UI

elements they can see on *Mobile-mobilized applications. We have three levels of UI

elements richness according to users’ three moving states: static, walking and jogging.

When a user is in static state, no UI elements will be reduced from *Mobile-mobilized

applications to ensure his access to full functionalities. When he is in walking state,

we reduce some of the UI elements and only show him the UI elements that he will

likely want to see on the mobile device. When he is in jogging state, we will only

show a smallest set of UI elements to him. This set contains only the UI elements

that he may need to access when he is moving at this fast speed.

We now introduce the implementation of this use case. The walking speed of

a human being is 2.5 to 4 miles an hour and the average jogging speed is anywhere

between 4 to 5.5 mph [28], so we use 2.5 as the threshold to distinguish between static

and walking and 4 to distinguish between walking and jogging. Any speed lower than

2.5 is considered as static and any speed higher than 4 is considered as jogging. We use

Android location API [11] to determine the moving speed of mobile devices and use

that information in *Mobile-mobilized applications. We use *Mobile’s zoom service

21

Figure 8: User clicks on a button

to dynamically reduce the UI elements in *Mobile-mobilized applications. The zoom

service allows a user to adjust richness of the frontend with several zoom levels. The

lowest zoom level provides the simplest user interface with the most limited set of

features, and the highest zoom level enables all features that the user wants to access

from a mobile device [44]. We also maintain a database at the *Mobile backend to

record how many times each UI elements on each page is used by each user in each

state.

Use case 3: assuming that two people are meeting at a place such as Starbucks.

One of them is using a *Mobile-mobilized email client on his mobile device and would

like to search for the emails sent from or to the other person. He goes to the search

page in the email client and sees the text field to type in the name of the other

person. Figure 11 shows the search page in the Gmail app. The *Mobile-mobilized

email client should be able to suggest the name or the email address of the other

person he is meeting with by providing it as a default value or the first item in the

drop-down suggestion list.

We now introduce the implementation of this use case. Since the two people in

22

Figure 9: The page for the Resources tool

meeting are sitting or standing close to each other, their mobile devices are also close

to each other. So we use Android Bluetooth API [8] to get related information about

the other person’s mobile device. Android users often associate their Gmail accounts

with their mobile devices so that we can get the Gmail address of the other person

in the meeting. We can then provide this email address as a default value or the

first item in the suggestion list of the *Mobile-mobilized email client search text field

where the user is expected to type in the name of the other person.

23

Figure 10: The overall architecture of contextify

Figure 11: Search for the emails related to a person

24

CHAPTER III

PERFORMANCE EVALUATION OF CONTEXTIFY

In this chapter, we introduce the evaluation criteria and results for contextify. We

use both quantitative and qualitative criteria to evaluate contextify.

3.1 Quantitative

We have designed two scenarios that our recommendations in the two implemented

use cases are useful in one scenario and non-useful in the other scenario. For use

case 1, when a user goes to the upload page in the Resources tool, he is prompted

with a list of recently-edited files to upload. If he indeed wants to upload one of these

recommended files, he can click on the corresponding button and the recommendation

is useful in this case; otherwise, if he wants to upload a file other than the files in

the recommended list, he needs to dismiss the list and locate that file. In this case,

the recommendation is not useful. For use case 2, when a user goes to the Resources

tool, he is prompted with a list of files opened by all users. If he indeed wants to

open one of these recommended files, he can clicks on the corresponding button and

the recommendation is useful in this case; otherwise, if he wants to open a file not

recommended here, he needs to dismiss this list and enter the target folder in the

Resources tool to open the target file. The recommendation is not useful in this case.

We ask ten volunteers to perform the two implemented use cases in contextualized

T-Square application, under both useful scenario and non-useful scenario. We ask

them to perform the same two use cases in normal T-Square application as well. In

order to eliminate the influence of learning curve that volunteers tend to take less

time and make less errors when doing the same use case in the second application,

we alternate the order of the two applications each volunteer performs use cases in:

25

the first volunteer would perform use cases in contextualized T-Square application

first and then in normal T-Square application; the second volunteer would perform

use cases in normal T-Square application first and then in contextualized T-Square

application; the third volunteer would perform use cases in contextualized T-Square

application first and then in normal T-Square application, etc.

The ten volunteers involved in this evaluation experiment are all Georgia Tech

students. They include both experienced smartphone users as well as new smartphone

users. Some of them are technical persons, some of them are not. Throughout the

whole experiment, we record both the time and the number of input actions needed

for each volunteer to complete each use case in each scenario in each application.

The results are shown in Figure 12 through Figure 15. Compared to normal T-

Square, we observe from these four figures that users’ time and effort (measured in

number of actions) in performing both use cases in contextified T-Square are reduced

significantly under useful scenario, but increased only slightly under non-useful sce-

nario. Since users need to dismiss the recommendation lists in both use cases under

non-useful scenario, the slightly increase of users’ time and effort are expected. The

reduce in users’ time and effort under useful scenario are much larger than the over-

head occurred under non-useful scenario, demonstrating the effectiveness of contextify

in saving users’ time and effort.

3.2 Qualitative

After each volunteer completes his experiment, we ask him to rate his user experience

on using both contextualized T-Square application and normal T-Square application

on the scale of 1 to 5, with 1 representing the worst user experience and 5 representing

the best user experience. This is called the Likert scale [39] and is the most widely

used scale. The average rating of normal T-Square given by these ten volunteers is

3.3, while that of contextified T-Square under both useful and non-useful scenarios is

26

Figure 12: Time to complete use case 1 in normal T-Square and contextified T-Square

Figure 13: Number of actions to complete use case 1 in normal T-Square and con-
textified T-Square

4, demonstrating the effectiveness of contextify in bettering user experience.

27

Figure 14: Time to complete use case 2 in normal T-Square and contextified T-Square

Figure 15: Number of actions to complete use case 2 in normal T-Square and con-
textified T-Square

28

CHAPTER IV

LARGE-SCALE TESTING OF MOBILE APPS

4.1 Introduction

Many popular mobile applications today are used by a large number of concurrent

users. Hence it is important for mobile application testers to know if a mobile appli-

cation can support this number of concurrent users without compromising its basic

functionalities, performance and stability. This can be done by conducting different

types of mobile application testings in a large-scale manner. By ”a large-scale man-

ner”, we mean running a large number of instances of the same mobile application

simultaneously during the testing.

On the other hand, in order to truly mimic the user interactions and provide infor-

mation about user experience with the concerned mobile application, it is beneficial

to conduct mobile application testings at the UI level, instead of recording and then

relaying the network traffic between the mobile application’s clients and servers.

However, there is no solution to conduct mobile application testings in the large-

scale manner and at the UI level at the same time. The mobile testing solutions

available today can only achieve one of the above two aspects. Therefore, in this

work, we present a solution to enable testers to conduct a variety of mobile application

testings in the large-scale manner and at the UI level at the same time.

4.2 Problem Statement/Motivation

In this section, we first present the motivation of this work. We then give two reasons

for why do we choose to only focus on testing mobile applications that follow client-

server model.

29

4.2.1 Motivation

As of March 2013, there are about 6 billions mobile subscriptions [16]. Popular mobile

applications are used by a large number of users. Sometimes these users even use the

same mobile application simultaneously. Therefore, to be able to figure out if a mobile

application can support multiple concurrent users and how many concurrent users it

can support are very important. These can be done by various kinds of mobile

application testings (such as functional testing to validate a mobile application by

checking its basic functionalities, performance testing to see how a mobile application

performs in terms of responsiveness and stability, and stress testing to test the stability

of a mobile application when it is used beyond normal operational capacity) in a large-

scale manner. By a large-scale manner, we mean running a large number of instances

of the same mobile application at the same time during the testing. We will call

”testing of mobile application in a large-scale manner” as ”large-scale testing” in the

following sections.

On the other hand, testing mobile applications through interacting with their

UIs is also important, since this is how users actually use these mobile application.

Moreover, a testing solution can use UI interaction to tell how the user experience

on these mobile applications is. We will call mobile applications testing through UI

interaction as ”at the UI level” in this work.

However, there is no standard way of achieving the above two aspects at the same

time, i.e., no standard solution for conducting large-scale testing of mobile applica-

tions at the UI level. The currently available mobile application testing solutions are

either only able to test a few instances of a mobile application at one time, or cannot

support mobile application testing at the UI level. For example, for all the large-scale

testing or load testing solutions we have surveyed, CloudTest [14], NeoLoad [24] and

Agileload [30] only simulate traffics generated by users’ interactions with UI elements,

whereas Contus [26] and uTest [1] only provide load testing as a service.

30

So the motivation of our work is to provide a UI-level large-scale testing solution

for mobile applications.

4.2.2 Focus Only on Client-Server model

Our solution focuses only on mobile applications that follow client-server model. A

mobile application that follows this model has both a client part and a server part.

The client part is on the mobile devices (iOS or Android, smartphones or tablets)

which contacts its server to request resources (typically data and computational ca-

pacity). The server part of the application typically resides in the cloud and shares

resources with potentially a large number of clients. One of the reasons that we only

focus on client-server model mobile applications is that this model is quite popular

with mobile applications, since mobile devices don’t have enough computational ca-

pacity to do the computation or storage to store all the data so that these tasks are

done by the server part of mobile applications. We have conducted survey on how

popular this model is in Apple App Store and Google Play. Results show that six

out of the top ten free iOS apps and eight out of the top ten free Android apps for

smartphones follow this model.

The other reason that we focus only on this model is, mobile apps that do not

follow this model don’t need large-scale testing. Since they only have a client part on

mobile devices for users to use (a local games on mobile devices for example), there

is no central place and potential bottleneck in supporting a large number of clients.

Because of that, there is no problem with these mobile applications to serve a large

amount of users and hence there is no point in conducting various kinds of testings

in a large-scale manner.

31

CHAPTER V

ACT: AUTOMATED CLOUD TESTING PLATFORM FOR

MOBILE APPS

5.1 Solution Design

We introduce our large-scale testing solution in this section. We will first introduce

the design principle and then introduce the three design elements of our solution.

5.1.1 Design Principle

We want to design a solution to enable the conduction of a variety of mobile applica-

tion testings at the UI level and in a large-scale manner simultaneously. Conducting

the testing at the UI level can truly mimic users’ interactions and provide information

about user experience on the concerned mobile application. On the other hand, con-

ducting mobile application testing, such as functional testing, performance testing,

stress testing, etc., in a large-scale manner can tell whether the concerned mobile

application can support many concurrent users without compromising its basic func-

tionalities, performance and stability.

5.1.2 Design Elements

Based on the above design principle, we have three design elements in this solution:

1. Emulation: We use emulators instead of real mobile devices in our testing so-

lution, since it is infeasible to obtain a large number of real mobile devices.

Furthermore, unlike other testing solutions that simply record and then play

back the network traffics between the clients and the servers, emulators allow

us to interact with the application in the UI level.

32

2. Automation: Since we cannot manually launch and then interact with so many

clients, automation is also necessary if we want to support a large number of

users. In our solution, after we make the necessary configuration, we can auto-

mate the following three processes: creating and launching enough computing

instances in the cloud, launching a large number of emulators in these com-

puting instances and launching and interacting with application clients in these

emulators.

3. Cloud: We use the cloud to quickly obtain enough computing instances so that

we can run a large number of clients of a particular mobile application in these

instances. In this way, functional testing, performance testing, stress testing

and other kinds of testings can be conducted in a large-scale manner.

Because of these design elements, we will call our solution ”automated cloud

testing” (ACT) in the following sections.

5.2 Solution Implementation

In this section, we first introduce the architecture of ACT. Then we introduce the

steps to prepare and conduct the testing and some additional features we’ve built

into the testing.

5.2.1 Architecture

This section introduces the system architecture in terms of the implementation of the

three design elements. Figure 16 shows the overall architecture.

1. For the emulation, we use Android emulator [10] to run the Android version of

*Mobile (which is introduced in the previous chapter) frontend in this testing.

Figure 17 shows an Android emulator with *Mobile icon on the right bottom

corner. The *Mobile frontend is an application launcher for launching the mo-

bilized mobile applications. Once a mobile application is launched, users will

33

Figure 16: Architecture of the Large-Scale Testing Solution

see the mobile application frontend on their devices. Users interact with the

mobile application through user interface in this mobile application frontend.

2. For the automation, we configure automatic logon for each computing instance

that Android emulators will run on. Then we use three kinds of script files

to launch Android emulators and monkeyrunner [27] instances. Monkeyrunner

is a tool that provides an API for writing programs that control an Android

device or emulator from outside of Android code [27]. We use monkeyrunner to

automatically launch, login and do randomized testing in the mobile application

launched in *Mobile

3. For the cloud, we use Amazon Elastic Compute Cloud (Amazon EC2), which

is a web service that provides resizable compute capacity in the cloud [6]. We

use Amazon Web Services (AWS) Java API [23] in a standalone Java program

running on a PC to launch, start, stop and terminate a large number of EC2

34

instances. These EC2 instances are used to launch Android emulators, launch

the mobilized mobile application and the monkeyrunner instances. We call

these EC2 instances ”frontend instances” in the following sections, as the mobile

application frontends reside on these instances.

Figure 17: Android Emulator with *Mobile Icon

5.2.2 Test Preparation

In this section, we introduce the steps to prepare ACT. Figure 18 shows the steps to

prepare for and conduct the test.

5.2.2.1 Write script files used for test automation

We have created three kinds of script files for automating the test. The first one is a

Windows batch file that is used to download all the other necessary script files and

execute one of them. We call it downloader file and put it in the Startup folder of

a frontend instance in order to execute it automatically once the OS is ready. The

second one is also a Windows batch file that is used to launch a specified number of

Android emulators (equal to the number of users we want to support in this frontend

instance) and their corresponding monkeyrunner instances. We call it launcher file

35

Figure 18: Steps for Test Preparation and Conducting

and put it in the Public folder of our Dropbox account so that it can be downloaded

via a URL. This file is the file executed by the downloader file. The third kind of

script files are a number of Python files also in the same Dropbox folder. Each Python

file is used by one monkeyrunner instance to control an Android emulator.

The reason that we want to include a downloader file only used for downloading

all the other files is, we want to put any file that we may need to change later outside

of frontend instances so that when these files are changed, we don’t need to create a

new image to make this change effective to all the frontend instances used in testing.

The content of the downloader file is not going to change, because we will always

need to download these files and execute the launcher file. But the contents of the

launcher file and Python files might change. For example, we might want to support

a different number of users in a particular round of testing so that we need to change

the launcher file. We might also want to change the duration of randomized testing

(explain later) so that we need to change all the Python files.

36

5.2.2.2 Launch and configure a frontend instance and create an Amazon Machine
Image from it

We first launch a frontend instance through AWS control console [3] as a template for

all the frontend instances used in conducting the large-scale testing. We use Microsoft

Windows Server 2008 R2 Base image provided by Amazon for this instance. After it

is ready, we put the downloader file in its Startup folder. Then we configure the au-

tomatic logon [20] and create 16 Android Virtual Device (AVD) [25] for this instance.

We can only launch up to 16 Android emulators on each frontend instance with these

16 AVDs. This is the maximum number of Android emulators (hence, users) that can

be supported in one EC2 instance [22]. Figure 19 shows the configuration of an AVD.

Except for their names, all the AVD use the same configuration. After all the above

configurations are complete, we stop this instance and create an Amazon Machine

Image (AMI) [7] from it. All the frontend instances used in conducting the large-scale

testing will be launched from this AMI.

5.2.3 Test Conducting

In this section, we introduce the steps to conduct ACT.

5.2.3.1 Launch and terminate a specified number of frontend instances from that
AMI

We have written a standalone Java program that uses AWS Java API. We put Access

Key ID and Secret Access Key associated with our AWS account as the credentials

in this program to access AWS. This program is executed on a PC and is used

for launching a specified number of frontend EC2 instances and then terminating

them later. When launching instances, AWS Java API allows us to specify many

parameters, such as the number of instances, which AMI to use, which security group

they belong to, etc. We launch frontend instances one by one in a manner that there

is a fixed time gap between their launches. We also terminate those instances in the

37

Figure 19: The configuration of an AVD

same order and manner.

5.2.3.2 Launch Android emulators on each frontend instance

Because all the frontend instances used in the testing are launched from the same

AMI, they will be automatically logon once their operating systems are ready. Then

the downloader file is automatically executed, downloading all the other files and

executing the launcher file. Then the launcher file launches a specified number of An-

droid emulators one by one from Windows terminal using tools provided by Android

SDK [12]. The launcher file will then wait for some time for those Android emulators

to be ready, and then launch monkeyrunner instances one by one, each with a Python

38

script file.

5.2.3.3 Launch *Mobile app on each Android emulator

A Python script file is used to control what monkeyrunner will do to applications

on an Android emulator. There are three kinds of user events that monkeyrunner

can generate on Android applications: a drag event, a keyboard press event and a

finger touch event. Monkeyrunner is also able to launch a specified application on

android emulator and take screenshot. We use monkeyrunner along with the Python

script file to unlock the keypad of the Android emulator and then launch *Mobile

application.

5.2.3.4 *Mobile login and mobile application login

Some of the mobile applications might require login before users can use them. In the

case of this testing, we need to log into *Mobile and the application mobilized by it.

All logins have some similar characteristics: there are some input fields that once they

are touched, users can type in username and password; some applications may also

require the user to choose some item from a drop-down list; finally, a confirmation

button is touched and login process finishes after some time. In this testing, we use

Pixel Perfect [29] to determine the exact coordinates of input fields in order to write

code in Python files to touch them, and then send username and password hard-coded

in Python file to these input fields on the Android application through monkeyrunner.

Choosing whatever needed to login and touching the confirmation button can be done

by sending touch events at their coordinates on the screen.

5.2.3.5 Randomized testing

We conduct randomized testing after we complete the mobile application login. By

randomized testing, we mean we generate a specified number of random user events

and execute them on the Android application through monkeyrunner. Monkeyrunner

39

by itself does not provide the capacity to generate and execute random user events; it

can only be used to generate and execute deterministic user events though its Python

API. However, we can use our own algorithm to generate pseudo-random user events

and then execute them on the mobile application. The algorithm we use to generate

and execute a pseudo-random user event in monkeyrunner is: Algorithm 1: The

generation and execution of a pseudo-random user event

Generate a random number n in the range of [1, 6]:

• If n is less than 3, this is a drag event

– Generate another four random numbers x1, y1, x2, y2, where x1, x2 are

small than the screen width and y1, y2 are smaller than the screen height

– Generate and execute a drag event from (x1, y1) to (x2, y2)

• Otherwise if n is 3, this is a keyboard press event

– Generate another random number k to determine which key to press in

this event

– Generate and execute a keyboard press event with this key

• Otherwise this is a finger touch event

– Generate another two random numbers t1 and t2, where t1 is small than

the screen width and t2 is smaller than the screen height

– Generate and execute a touch event at (t1, t2)

The above process can be repeated many times to generate and execute sufficient

amount of random user events on the mobile application being tested.

5.2.4 Additional Features

In this section, we introduce two additional features we’ve built into the testing. They

can be used in conducting functional testing, performance testing and stress testing

40

in a large-scale manner.

5.2.4.1 Exceptions reporting

We want to be notified whenever an exception occurs in the mobile application being

tested. We use ACRA [2] for the *Mobile frontend. ACRA is an open-source library

enabling Android Application to automatically post their crash reports to a Google

Docs form. It is targeted to android applications developers to help them get data

from their applications when they crash or behave erroneously. For the *Mobile

backend server, we send an email to a support email account whenever any UI and

non UI-related exception occurs. Figure 20 shows an exception reported by ACRA

to a Google Spreadsheet.

Figure 20: An exception reported by ACRA

5.2.4.2 Checkpoints reporting

We want to be notified when the execution of a mobile application reaches some

checkpoints. Hence, we implement a checkpoint reporting mechanism. Three types

of checkpoints are reported: *Mobile user portal connected, *Mobile backend server

connected and *Mobile-mobilized application login. We implement these at the *Mo-

bile frontend by incorporating some Android code which uses google-spreadsheet-lib-

android [18] into the *Mobile frontend codebase. Google-spreadsheet-lib-android is

a third party Java open-source library, which helps to develop Android applications

which access Google Spreadsheets. It uses Google Documents API [17] and Google

Spreadsheets API [19] to allow developers to create, view, edit, and delete Google

41

Spreadsheets associated with the user accounts on mobile devices. The reporting

code we incorporate into the *Mobile frontend codebase will be executed whenever

a checkpoint is hit. It will then insert a new record entry into a worksheet in a

Google spreadsheet. Figure 21 shows some checkpoint reporting results in Google

Spreadsheet.

Figure 21: Checkpoint Reporting Results in Google Spreadsheet

42

CHAPTER VI

PERFORMANCE EVALUATION OF ACT

We use four criteria to evaluate ACT: correctness, scalability, cost-efficiency and time-

efficiency.

6.1 Correctness

Whether we can get useful evaluation information about the mobile application being

tested is determined by the correctness of the testing solution itself. By a correct

testing solution, we mean that it should be able to correctly tell whether each user

of a particular mobile application passes or fails the test. If a user fails, it should be

able to provide sufficient information for testers to diagnose the cause of the failure

as well.

Monkeyrunner script file allows us to capture the screenshots of the Android em-

ulator it controls. We configure the monkeyrunner script file in the frontend instance

template so that all the frontend instances will save screenshots to the same Dropbox

folder. Thus we have a central place to view all the screenshots for all the users sup-

ported in any ACT round. Each screenshot is captured whenever a particular step in

a ACT round is complete in each Android emulator. The name of each screenshot file

is prefixed with a random number so that we can distinguish between the screenshots

for each Android emulator. Each Android emulator would generate 10 screenshots so

that we know when a particular round of ACT is complete by counting the number

of screenshots in that Dropbox folder.

By examining the screenshots, we know whether a particular ACT round passes

or not. If it passes, both the ACT and the mobile application being tested are correct.

If it fails, these screenshots can also tell us whether this failure comes from the ACT

43

itself or the mobile application.

We conduct 20 rounds of ACT with 1 to 20 users to evaluate its correctness.

Figure 22 shows the experiment results. We can see from the figure that not all ACT

rounds pass because of three kinds of failures. All these failures come from *Mobile,

which is being tested in these 20 ACT rounds. All the ACT rounds are able to tell

whether each user passes the test or not, and when any user fails the test, they are

able to tell what are the causes of their failures. Therefore, the correctness of ACT is

100%, while the correctness of *Mobile is 89.05% (187 out of 210 users pass the test).

Figure 22: ACT correctness evaluation experiment results

6.2 Scalability

The goal of ACT is to enable testers to conduct large-scale testing of the concerned

mobile application at the UI level, hence the number of users ACT can test the mobile

44

application against, i.e., the scalability of ACT, is naturally one of the evaluation

criteria.

We conduct 20 rounds of ACT with 1 to 20 users to evaluate its scalability. We

record the start time of each ACT round, which is defined as the time when we run

the standalone Java program to launch a specified number of frontend instances. We

also record the end time of each ACT round, which is defined as the time when all

the users in this round finish the testing. We can know when all the users finish

the testing by counting the number of screenshots in the Dropbox folder. We then

calculate the duration of each ACT round from its start time and end time.

Figure 23 shows the durations of these 20 ACT rounds. We can see from the

figure that the duration for each ACT round does not increase with the increase

of the number of users. Therefore, ACT is scalable in terms of the time it needs.

However, the cost of each ACT round increases with the increase of the number of

users. This may result in a huge cost that would limit the number of users ACT can

support. Therefore, we discuss and evaluate its cost-efficiency in the next section.

6.3 Cost-efficiency

Using Amazon EC2 services is the only cost in ACT. There are several types of cost in

using Amazon EC2 services (such as using EC2 instances, using volume, data transfer,

etc), but we will only focus on reducing the cost of using EC2 instances since other

types of cost are neglectable. We want to have the flexibility of launching a specified

number of a specific type of EC2 instances whenever we want, so we choose to use

Amazon EC2 On-Demand Instances [5] in ACT. There are 18 types of EC2 instances

[4] that can be used as On-Demand Instances, each with different capacity (CPU,

memory, etc) and different cost per hour. On most of the 18 types of instances, we

can launch more than one Android emulators (hence support more than one users).

The duration of each round of ACT is not affected by the type of EC2 instance used.

45

Figure 23: Duration of each ACT round

Therefore, in order for ACT to be cost-efficient, we need to determine how many

users each type of EC2 instances can support without compromising the correctness

of ACT.

Figure 24 shows cost per user hour for each Amazon EC2 instance type. Each

instance type is represented with its API name in the figure. We can see that the

most cost-efficient instance type has API name ”t1.micro”, which represents micro

instances. Micro instances only costs $0.02 for supporting one user in one hour and

can only support one user. Because micro instance is the most cost-efficient instance

type, we always use this type of instance in conducting and evaluating ACT with

other criteria.

6.4 Time-efficiency

We should also care about how time-consuming our ACT is. In terms of the speed

at which ACT is conducted, we support two kinds of testings, a normal ACT and an

accelerated ACT. In a normal ACT, the test will be conducted as fast as the users’

46

Figure 24: Cost per user hour for each Amazon EC2 instance type

interactions with the mobile application. Normal ACT tries to mimic how users use

the concerned mobile application as closely as possible. But sometimes testers may

only be concerned about some checkpoint or end results of the mobile application

so that they would like to conduct the test as soon as possible. Because of that

requirement, we also present accelerated ACT and use time-efficiency (how fast an

accelerated ACT can be conducted) as one of the evaluation criteria.

We base our accelerated ACT implementation on *Mobile. Once *Mobile is

launched, users will first see an activation dialog. Users will need to type in their

*Mobile activation credentials to activate *Mobile. This is just a one-time process

but we still include it in the ACT acceleration experiment. When this activation

is done, the *Mobile frontend will try to connect to a *Mobile backend. Once this

connection is done, users will see a container page. This page contains icons that

represent all the applications mobilized by *Mobile for that user. Users can then

click on an icon to launch the corresponding mobile application. Once the mobile

47

application is launched, users would usually see a login page for that mobile appli-

cation. Users can then type in their credentials for that mobile application to login.

When users log into the mobile application, we consider accelerated ACT is complete

in our implementation.

We divide the whole ACT procedure into ten steps: launching frontend instances,

executing test scripts, launching Android emulators, connecting to Android emula-

tors, launching *Mobile, *Mobile activation, connecting to *Mobile backend, launch-

ing mobile application, entering login credentials and mobile application login. Of the

above ten steps, four of them are under our control and can be accelerated: launch-

ing *Mobile, connecting to *Mobile backend, launching mobile application and mobile

application login.

Now we introduce the implementation of accelerated ACT. In a high level, since

we can get checkpoint information in the *Mobile frontend Android code but the

progress of ACT is controlled by the monkeyrunner Python script, the acceleration

requires the communications between them. We have set up four checkpoints in

*Mobile frontend Android code based on the occurrences of some UI elements. Each

of the four checkpoints is used to notify the monkeyrunner Python script that one of

the four acceleratable steps is complete, so that the next step can start immediately.

Whenever a checkpoint is hit, *Mobile frontend will create a checkpoint file in the

SD Card folder of the Android emulator. The monkeyrunner Python script keeps

checking whether the checkpoint file exists or not by invoking ”adb pull” command

[9] periodically. ”adb pull” command is used to copy files from the local file system

of a device or emulator to the local file system of the underlying development PC. It

has return code to indicate whether this can be done or not based on the existence

of the checkpoint file. Therefore, once a checkpoint is hit, the monkeyrunner Python

script will know from invoking ”adb pull” command and proceed to conduct the next

step of accelerated ACT.

48

In order to evaluate the time-efficiency of accelerated ACT, we have designed

three scenarios: brute-force, manual and accelerated. In a manual scenario, instead

of implementing acceleration through the above approach, we conduct many rounds

of ACT and get a sense of how long each of these four steps would take. Then we

hard-code how long the monkeyrunner Python script should wait for each of the four

steps to finish and then execute the next step. In a brute-force scenario, we don’t

have any information about how long each step would take and just use the longest

time determined by the manual scenario for all four steps. In an accelerated scenario,

we first implement acceleration through the above approach and conduct a round of

ACT with ten users. We then record and calculate the average time needed by each

step in this round of ACT.

Figure 25 shows the comparison of the above three scenarios. Compared to brute-

force scenario, we can see from the figure that our acceleration implementation can

significantly reduce the time needed by ACT. Moreover, it is even more time-efficiency

than ACT in manual scenario.

Figure 25: ACT Acceleration Experiment Results

49

CHAPTER VII

CONCLUSIONS

In this thesis, we focused on two problems in mobile application development: con-

textualization and large-scale testing. We identified the limitations of current contex-

tualization and testing solutions. Advanced-remote-computing-based mobilization

does not provide context awareness to the mobile applications it mobilized, so we

presented contextify to overcome this limitation. Evaluation results showed that

contextify-contextualized applications require less time and effort for users to com-

plete tasks. Current mobile testing solutions cannot conduct tests at the UI level and

in a large-scale manner simultaneously, so we presented automated cloud computing

(ACT) to achieve this goal. Evaluation results showed that ACT can support a large

number of users and it is stable, cost-efficiency as well as time-efficiency.

7.1 Main Contributions

• We presented a solution called contextify to provide context awareness to mobile

applications mobilized by advanced remote computing solutions. Contextify can

save users’ time and burden in using mobile applications without rewriting the

mobile applications.

• Based on contextify, we designed five use cases and implemented two of them as

an overlay on an Android application frequently used by Georgia Tech students,

faculty and staff.

• We evaluated and demonstrated the effectiveness of contextify by comparing

users’ time and effort in using normal application and contextified application

under two different scenarios. We also conducted users survey and showed that

50

user experience has been improved.

• We presented a solution called automated cloud computing (ACT) to allow

testers to conduct mobile application testing at the UI level and in a large-scale

manner at the same time.

• We implemented ACT by launching Android emulators in compute instances

in the cloud and use monkeyrunner for automation. We also implemented ad-

ditional features such as exceptions reporting and checkpoints reporting to aid

the conducting of functional testing and performance testing.

• We evaluated and demonstrated the effectiveness of ACT against four criteria:

correctness, scalability, cost-efficiency and time-efficiency.

51

REFERENCES

[1] “About us page for utest.” http://www.utest.com/about.

[2] “Acra.” http://code.google.com/p/acra/.

[3] “Amazon ec2 console dashboard.” https://console.aws.amazon.com/ec2/home.

[4] “Amazon ec2 instance types.” http://aws.amazon.com/ec2/instance-types/.

[5] “Amazon ec2 pricing.” http://aws.amazon.com/ec2/pricing/#on-demand.

[6] “Amazon elastic compute cloud (amazon ec2).” http://aws.amazon.com/ec2/.

[7] “Amazon machine images (amis).” https://aws.amazon.com/amis.

[8] “Android bluetooth apis.” http://developer.android.com/guide/topics/ connec-
tivity/bluetooth.html.

[9] “Android debug bridge.” http://developer.android.com/tools/help/adb.html.

[10] “Android emulator.” http://developer.android.com/tools/help/emulator.html.

[11] “Android location and maps guide.” http://developer.android.com/guide/topics/
location/index.html.

[12] “Android sdk.” http://developer.android.com/sdk/index.html.

[13] “Apple ahead of google with 25b app downloads.”
http://www.informationweek.com/mobility/smart-phones/apple-ahead-of-
google-with-25b-app-downl/232601991.

[14] “Cloudtest with the global test cloud for load testing.”
http://www.soasta.com/products/campaign-global-test-cloud/.

[15] “The comscore 2010 mobile year in review.”
http://www.comscore.com/Insights/Presentations and Whitepapers/2011/2010
Mobile Year in Review.

[16] “Global mobile statistics 2013.” http://mobithinking.com/mobile-marketing-
tools/latest-mobile-stats/a#uniquesubscribers/.

[17] “Google documents list api version 3.0.” https://developers.google.com/google-
apps/documents-list/.

[18] “google-spreadsheet-lib-android.” http://code.google.com/p/google-
spreadsheet-lib-android/.

52

[19] “Google spreadsheets api version 3.0.” https://developers.google.com/google-
apps/spreadsheets/.

[20] “How to turn on automatic logon in windows.”
http://support.microsoft.com/kb/324737.

[21] “Idc: Q4 2010 smartphone shipments increase 87.2%.”
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111#.
UWggCaV0Uy0.

[22] “it seems too many emulator instances are running on this machine.
aborting.” https://groups.google.com/forum/?fromgroups=#!topic/android-
beginners/oD g3i7EFzg.

[23] “Java developer center for amazon web services.” http://aws.amazon.com/java/.

[24] “Load testing mobile applications in neoload.”
http://www.neotys.com/product/mobile-load-testing.html.

[25] “Managing virtual devices.” http://developer.android.com/tools/devices/index.
html.

[26] “Mobile application testing in contus.” http://mobileappstesting.contussupport.
com/.

[27] “monkeyrunner.” http://developer.android.com/tools/help/monkeyrunner conc
epts.html.

[28] “Normal or average walking, jogging and swimming speed of a human.”
http://www.yogawiz.com/blog/walking/normal-walking-speed.html.

[29] “Optimizing your ui.” http://developer.android.com/tools/debugging/debugging-
ui.html.

[30] “Simulate realistic user load in agileload.” http://www.agileload.com/agileload-
features/product-presentation/simulate-realistic-user-load.

[31] “Smartphones have conquered pcs.” http://money.cnn.com/2011/02/09/technol
ogy/smartphones eclipse pcs/index.htm/.

[32] “Smartphones to overtake feature phones in u.s. by 2011.”
http://blog.nielsen.com/nielsenwire/consumer/smartphones-to-overtake-
feature-phones-in-u-s-by-2011/.

[33] “T-square project site.” http://info.t-square.gatech.edu/.

[34] “Vnc.” http://www.realvnc.com/.

[35] Anind K. Dey, G. D. A. and Salber, D., “A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware applications,”
Human-Computer Interactions (HCI) Journal, 2001.

53

[36] DEY, A. K., “Understanding and using context,” Personal and Ubiquitous
Computing, Special issue on Situated Interaction and Ubiquitous Computing 5,
2001.

[37] Dey, A. K. and Abowd, G. D., “Towards a better understanding of con-
text and context awareness,” in HUC ’99: Proceedings of the 1st international
symposium on Handheld and Ubiquitous Computing, p. 304307, London, UK.
Springer-Verlag, 1999.

[38] Flanagan, J. A., Context Awareness in a Mobile Device: Ontologies versus
Unsupervised/Supervised Learning. Nokia Research Center, 2005.

[39] Likert, R., “A technique for the measurement of attitudes.,” in Archives of
Psychology, New York : [s.n.], 1932.

[40] Lum, W. Y. and Lau, F. C., “A context-aware decision engine for content
adaptation,” IEEE Pervasive Computing, 2002.

[41] Mantyjarvi, J., Huuskonen, P., and Himberg, J., “Collaborative context
determination to support mobile terminal applications,” IEEE Pervasive Com-
puting, 2002.

[42] Ogata, H. and Yano, Y., “Context-aware support for computer-supported
ubiquitous learning,” in IEEE International Workshop on Wireless and Mobile
Technologies in Education (WMTE), 2004.

[43] Ranganathan, A., Campbell, R. H., Ravi, A., and Mahajan, A., “Con-
chat: A context-aware chat program,” IEEE Pervasive Computing, 2002.

[44] Tsaoc, C.-L., Rapid Application Mobilization and Delivery for Smartphones.
PhD thesis, Georgia Institute of Technology, 2012.

[45] Uta Christoph, Janno von Stlpnagel, K.-H. K. and Terwelp, C.,
“Context detection on mobile devices,” in Context-Systems Design, Evaluation
and Optimisation (CoSDEO), 2011.

[46] Voida, S., Mynatt, E. D., MacIntyre, B., and Corso, G. M., “Integrat-
ing virtual and physical context to support knowledge workers,” IEEE Pervasive
Computing, 2002.

54

	Dedication
	Acknowledgements
	List of Figures
	Summary
	Chapter 1 — Mobile apps and context awareness
	Introduction
	Problem Statement/Motivation
	Related Work
	Definition of Context
	Approaches to Context-awareness
	Applications of Context-awareness

	Chapter 2 — Contextify: an overlay approach to contextualizing mobile apps
	Solution Design
	Problem Restatement
	Solution Overview
	Input Actions and Context
	Design Elements

	Solution Implementation
	T-Square
	Use Case 1
	Use Case 2
	System Architecture
	Other Use Cases

	Chapter 3 — Performance Evaluation of Contextify
	Quantitative
	Qualitative

	Chapter 4 — Large-Scale Testing of Mobile Apps
	Introduction
	Problem Statement/Motivation
	Motivation
	Focus Only on Client-Server model

	Chapter 5 — ACT: Automated Cloud Testing Platform for Mobile Apps
	Solution Design
	Design Principle
	Design Elements

	Solution Implementation
	Architecture
	Test Preparation
	Write script files used for test automation
	Launch and configure a frontend instance and create an Amazon Machine Image from it

	Test Conducting
	Launch and terminate a specified number of frontend instances from that AMI
	Launch Android emulators on each frontend instance
	Launch *Mobile app on each Android emulator
	*Mobile login and mobile application login
	Randomized testing

	Additional Features
	Exceptions reporting
	Checkpoints reporting

	Chapter 6 — Performance Evaluation of ACT
	Correctness
	Scalability
	Cost-efficiency
	Time-efficiency

	Chapter 7 — Conclusions
	Main Contributions

	References

