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SUMMARY

In the field of control engineering there is a need to study
the dynamic behaviour of systems which are subjected to randcm
disturbances., A technique which is of great practical use is to
describe the dynamic properties as a function of frequency. This
involves determining the frequency content, or spectrum, of the
disturbances, and the frequency response function of the system. There
are many analogue and digital techniques which are designed for this
type of spectral analysis. However, digital computer techniques are

often avoided because they are slow, and data must be collected 'off-line'.

A recently discovered computational method, termed the fast-
Fourier-transform (FFT), enables digital spectral analysis to be carried-
out in a much shorter time than was previously possible., In view of
this discovery it was decided to develop digital computer programmes
which would overcome the disadvantages of conventional digital spectral
analysis., Using these programmes a computer would be connected, via
an analogue to digital interface, to the signal source, and would process
the data as it entered the computer, In the jargon of computing, the

computer would be 'on-line! and analyzing the spectra in 'real-time'.

The first part of the project consisted of an investigation
of the FFT when programmed for an on-line digital computer. The
results of this investigation showed that a rapid, accurate, and compact
FFT could be programmed by using fixed-point arithmetic, and coding in
an assembly language, The speed of the transform was sufficient to

allow spectral analysis over a frequency rangé useful in control
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applications,

Two on=-line computer programmes based upon the FFT were then
written; one for 'real-time' spectral analysis of a single record, and
another for the 'real-time' estimation of the frequency response
function relating two signals., In order that the results of these
programmes could be sensibly interpreted, a statistical study was made
of the spectral estimators used in the programmes. Arising from this
study, several contributions to the field of digital spectral analysis
were made, These were :=

1) A more general covariance relationship for cross-spectral
estimators.

2) An examination of aliasing in digital spectral estimators.

3) Some theoretical results concerning spectral estimators for

closed Ibop systems with random disturbances inside the loop.

Some experimental work was conducted with the ‘real=-time!
spectral analysis programmes, and it was conclﬁded that the tecimique
is more powerful than conventional digital methods because it is on=-
line, and can provide estimates with improved resolution and
statistical stability., Real-time digital spectral analysis methods also
have the advantage that they may be simply and quickly modified to suit

specific applications.
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1, INTRODUCTION

This thesis deals with certain problems in the field of
digital spectral analysis. In particular it is concerned with a
method which enables a digital computer to be used as a real-time
spectrum analyser. The spectral estimates discussed in the thesis are
suitable for the analysis of random signals, and of linear, time-

invariant, systems which are subjected to random disturbances.

The purpose of this chapter is to present some background
information, and motivation for the work contained in this thesis. To
Justify the use of spectral analysis methods on random signals and
systems with random inputs, section 1.1, describes some uses of spectral
analysis of random data, The spectral analysis methods contained in
this thesis are designed for use with the fast-Fourier-transform (FFT).
To provide an introduction to these methods, section 1.2. discusses
digital spectral analysis methods used before the discovery of the FiT;
and section 1.3, describes the effect that the fast-Fourier-transform
has had upon spectral calculations, Finally, in sections 1,4, and 1.5.

the specific work contained in the thesis is outlined.



l.1. Some Applications of Spectral Analysis

Wherever physical phenomena can be expressed as the
reaction of a system to a signal, there is a'need to characterise
the dynamic behaviour of the system. In many practical cases the
system can be assumed to be approximately linear, and time-—
invariant. This type of system czn be completely specified by
its dynamic or transient response. The dynamic response of such a
system can be presented in two ways s- a) as a function of time,

or b) as a function of frequéncy.

These descriptions are termed respectively the "time-
domain" response and the "frequency-domzin" response of the system.
The two domains are related by.the Laplace integral transform, and
;n,a more restricted sense by the Fourier integral transform. For
many engineering applications the Laplace transform is too general,
and the Fourier transform is used. Since the time and frequency
domains are complementary the choice of which system response

description to use is largely subpjective.

Tﬁe writer's main interest is in control engineering, and
in this field both time-domain and frequency-domain analysis
techniques are highly developed. However, for linear, time-
invariant control systems, most practical design techniques are
formulated in the ffequency—domain. Therefore, for practical

purposes, presenting system information to the control engineer in

terms of frequency is the natural way.



Over the last twenty years random signal theory has
found wide applications in control engineering. The main reasons
for such developmehts are s-— 4

a) When system disturbances are random, and therefore
cannot be described exactly, feedback control is used. To determine
the type of control which is best, statistical descriptions of the
signals are used.

b) The high cost of taking expensive control plant off-
line has meant that systems ﬁust be studied 'in-situ'. Therefore,
measurements must be made in the presence of the normal plant
operating signals. To differentiate between the system response to
the test signal and the operating signal, statistical methods must
be used.

'
The frequency-domain study of a system subjected to
random disturbances involves determining the frequency characteristics
(or spectra) of the disturbances, and the frequency response of the
systems In the linear, iime-invariant case a knowledge of the
frequency response is sufficient to specify the system. This process
of specifying a system is usually termed 'identification', and its
purpose is to enable the control engineer to assess and improve the

performance of the control system.

Thus it ig seen that there is a definite need for
experimental procedures to analyse the spectral properties of
random signals, and to identify the frequency response of systems

in the presence of random disturbances.



l.2. Conventional Digital Spectra. Analysis Procedures

We now confine our discussion to digital spectral analysis
techniques. Until recently the role of digifal methods in spectral
analysis has been rather limited. This was because the digital
version of the Fourier transform, the discrete Fourier transform,
takes a lgng time to calculate. The discrete Fourier transform of

a time series xi,(i = 041y eeces N-1) is defined as s-

N -1

1 ZE—— ik
Ak = 'N,‘ xin k-O,l, scece N-l

i=20

27T
where Wy = exp(-J W )

The reason why it takes a long time to calculate the

:
discrete Fourier transform can be seen if the transform is
considered as a complex matrix multiplication of an N x N matrix
and an N vector. In a computer, multiplication is a lengthy
operation, so the speed with which the discrete Fourier transform
can be calculated is limited by the time taken to compute N'
complex multiplications. Even for small values of N this can take
a long time. (For example, in a typical computer it might take up
to twenty minutes to transform a 500 point complex series.)
Clearly then if the engineer can manipulate and présent digital
data adequately in the discrete time-domain there is no advantage

in making a time consuming transformation into the discrete

frequency-domaine.



In the field of random signal analysis the same
difficulty existed, but with the added inconvenience that the
discrete estimate "of the autospectrum of a random signal is not a
consistent estimator. A consistent estimator is one whose
variance and bias tend to zero as the number of observations is
increasedr Unfortunately, the variance of discrete autospectrum

estimators are independent of the number of observations.

A discrete autospectrum estimate of a zero mean signal

x(t) can be obtained from the discrete Fourier transform as s=

2 N
cxx(wk) = NA'{IAkI} ; k = 0,1, ee e 'é‘
21T k
where; i e YN
’ ZB = the sampling rate
Ak = the discrete Fourier transform of an N point time
series, obtained by sampling x(t) at A second
interval~

This discrete estimate of the autospectrum consists of a
set of estimates of points on the true autospectrum. The true
autospectrum [;x@u) of a stationary process X(t) is defined as the

Fourier transform of the autocovariance function, Xx:x(u).
+

_qu

fxx(@) = S xx(u)e du

-

¥ (w) Cov{x(t),x(tm)}

XX

Where Cov{_ ' } is the covariance operator.



The discrete autospectrum esvimate is often termed the
‘periodogram', and for brevity we will follow this practice. The
periodogram is inconsistent because the comp&nents of the
periodogram are statistically independent, and since the periodogram
based upon N observations will have g components, each component
is effectively based upon only two observations of the random

signal. The periodogram thus has a variability which is independent

of the number of observations.

The process of obtaining consistent autospectral estimates
is termed periodogram smoothing. This entails further lengthly
discrete Fourier transforms and provides another argument against

the use of digital spectral techniques.

The forms of periodogram smoothing originally used to
obtain consistent estimates of the spectrum both used the same
premises By averaging n independent estimates of the same quantity,

; ; - ) -1 . 3
a reduction in variance of n is achieved.

a) Averaging over frequency

This technique was due to J.P. Daniell (ref. 1l.1.), and
uses the fact that the components of a periodogram are independent.
If n neighbouring periodogram elements are averaged, and the true
spectrum is 'smooth' over the averaged frequency band, then the
result is an improved estimate of the sp;ctrum in that frequency

band. To improve the variance further more periodogram elements

can be used. The new estimate represents an average over a wider



frequency range, so that the variability of the estimated
spectrum is reduced by % y and the bandwidth of the estimators is

increased by n.

b) Averaging over time

This method is usually associated with M.S. Bartlett
(ref. 1.1.). The technique used is to average n independent
periodograms obtained by observing the same signal. The resultant
smoothed periodogram has a variance of ;th of the raw periodograms.
The method is applied to a single record in the following way s-
An N point set of observations is sub-divided intq n sub-sets of
g points each. A smoothed periodogram is then obtzined by
averaging the periodograms of the sub-sets. In a similar way to

method a), this reduces the variance by & factor of % at the

expense of a bandwidth increase proportional to n.

Both smoothing methods reduce the variability of the
digital spectral estimates by increasing the bandwidth of the
frequency filter through which the true spectrum is observed. In
this sense both methods involve spectral estimates which are
averages over frequency. Except for differences in the 'shape' of
the frequency filter, both methods give similar results. By proper
design of spectral estimation experiments the différences caused by
these filters can be reduced to negligible proportions. Therefore,

the choice between methods a) and b) is based upon the amount of

computation involved in sach method.



In method a) an N point pericdogram is computed, so at
least N2 multiplications are required. However, inlmethod b)
there are n periodograms calculated. Rach périodogram involves g
points, so at least N2/n multiplications are required. Because of
this computational advantage method b) is the most popular

traditional approach to spectral analysis.

In texts on digital spectral analysis, smoothing by
averaging over time rarely appears explicitly. This is because a
different computational procedure, which gives the same results,
but which is not obviously equivalent has become established as
the best way to estimate smoothed spectra. This computational
procedure is known as the 'Lagged—Products' or 'Indirect' route;
&t,became the accepted approach to spectral estimation largely
through the book "The Measurement of Power Spectra" by Blackman

and Tukey (ref. l.2.), which was for many years the only book which

treated digital spectral analysis from an engineering stand-point.

The 'Lagged-Products' route uses the following procedures
1) Estimate the autocovariance function,
2) Multiply the.estimated autocovariance function by a
function 1(t). This function is often called a 'window function',

and a class of windows which are in wide use satisfy the following

general conditions s-

a) 1(0) = 1

b) 1(t) = 1(-t)

sz

) 1(t) = 03 [|tI>



By varying the shape of tha window function the user
can control the shape of the freguency filter through which the
true spectrum is viewed.

3) Finally the smoothed periodogram is calculated by taking
the.discrete Fourier transform of the 'windowed' estimate of the

autocovariance function.

The 'Lagged-Prcduct' route is held to be better than
direct use of method b) because an estimate of the autocovariance
function is obtained 'en-route'. Method b) also provides auto-
covariance estimates, but these are based upon records of duratiion
X y whereas the 'Lagged-Product' estimate is based upon the entire,

n
N point, record.



l.3. The Effect of the FFT on Spectral Analysis Procedures

Until the mid-1960's the 'Lagged-Products' route remained
entrenched computationally as the most efficient way of estimating
spectra. In 1965 however, the 'Fast-Fourier-Transform' (FFT)
algorithm was formulated, and the computational advantage was

removed from the 'Lagged-Products' route.

In their paper "An Algorithm for the Machine Calculation
of Complex Fourier Series",.Cooley and Tukey (ref. l.3.) showed
that by clever programming it is possible to execute the discrete
Fourier transform of an N point complex vector (where N = rm)
using about N.m complex multiplications instead of N2. So for
example the discrete Fourier fransform of a 2048 point block can be
tnansformed in 38 seconds instead of 376 minutes as before. The
family of algorithms which enabled this to be done became known

collectively as the Fast Fourier Transform.

The advent oflthe FFT has meant that the transformation
between time and frequency domains is no longer the key factor in
calculating computation time. Indeed the FFT enables the systems
analyst to transform back and forth between the domains with no
great computational penalty. This means that data may be handled

in whichever domain is the more convenient (ref. 1l.4.).
In spectral analysis of random signals, the 'Lagged-

Products' method is no longer obviously the more efficient method,

and the choice between methods a) and b) is open. Both these

10



methods are now in common use (ref. 1.5., 1.6.).

The speed advantage of the FFT has'also lead to the
formulation of spectral analysis methods that would not have been
feasible using the direct discrete Fourier transform. Most notable
among these is the method of complex demodulates (ref. 1.6.). This
technique is really a discrete version of the analogue, heterodyne,
spectrum analyzer. Using digital demodulation, th; frequency of
interest is translated to zero frequency. The demodulated data is
then low-pass filtered, this may be done using the FFT method
described in reference 1.4. Then by squaring and averaging the
filtered series, an estimate of the power near the demodulated

frequency is obtained.

To summarise, the FFT has lead to a rebirth of interest
in the direct methods of snectral enalysis, and has made possible
more sophisticated spectral analysis routines. In the general
field of data handling the FFT has lead to a greater flexibility

in data manipulation.
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le4s Motivation and Content of the Thesis

The work contzined in this thesis was initiated by an
idea due to Dr. M.T.G. Hughes. The suggestién was, that if the FFT
could be efficiently programmed on an 'on-line' digitial computer,

it would be possible to estimate spectra in 'real-time'.

In this context the term 'on-line' means that the
computer is collecting data directly, and not through some inter-
mediate medium, such as punched paper tape. The term 'real-time'
is used in the sense that the computer collects and processes data
at a raté determined by data analysis requirements, and not by the
limitations of the computer. Therefore, an 'on-line' digital
computer analyzing physical data in 'real-time' reads analogue data
hipectly via an analogue/digital interface, and analyses it as it
becomes available at the interface. When analyzing random data,
some form of averaging of estimates is often required, so that an
on-line computer could display current estimates, and update the
estimates as more data becomes available. Thus, a properly
programmed on-line digital computer would function like, and form

a useful alternative tec an analogue spectrum analyzer.

Such a computer would be superior to analogue machines

for the following reasons s-

a) A programmed computer is more flexible than a special
purpose machine, so that 'real-time' digital spectral analysis
procedures may be easily tailored to suit specific application.

Furthermore, the computer is not committed solely to spectral

12



analysis, and can be used for other puiposes when not required for
spectral measurements.

b) Permanent recordings of the analysis.results may be
produced in a variety of ways through the computer peripherals.
If required, addition computations may be done on the results

before outputting.

The first phase of the project work was a study of the
FFT applied to on-line computers, ii particular the programming
in assembly code of the fixed-point arithmetic FFT. This aspect
of the thesis is described in chapters 2 and 3. Chapter 2 gives a
description of the FFT algorithms, and chapter 3 presents the
results of the study of the fixed-point, assembly coded, FFT.

The assembly code FFT was then used as the basis of a
'real-time' digital autospectirum estimation programme for an
on-line digital computer. A description of this programme, and the

statistical properties of the extimator used, is given in chapter 4.

The success of the 'real-time' autospectrum estimation

routines led to the development of a progremme to estimate (in real-
time) frequency response functions from noise-like data. A

description of this programme and the properties of the estimators

involved is given in chapter 5.

In chapter 6 the problem of estimating the frequency

response of transfer functions associated with closed loop systems

13



is considered. In particular the statistical properties of a

frequency response estimator of the forward path transfer function

are discussed.

Chapter 7 presents some results of experiments conducted
using the.'real—time' autospectrum and frequency response
estimation routines. The thesis is concluded with a brief assess-—

ment of the real-time spectral analysis method, and a proposal for

further work.

14



l.5« Contribution of the Thesis

This thesis makes five contributions to the field of
digital spectral enalysis, and frequency resﬁonse estimation from
random data. These contributions are listed below s

~a) The first is a practical one, and is the development of
'real—timg' digital autospectrum estimation procedures. This
involves an application of the ‘'averaging over time' smoothing
method described in section 1.2. At its conception this application
was thought to be novei? Hoﬁever, since then several commercial
instruments have appeared on the market, and these use the same
technique.

As a direct exfension of the auto-spectrum estimation
procedures, 'real-time! digitai frequency response estimation
éephniques were developed. To the euthors knowledge no published
work exists which describes frequency response estimation using
these techniques.

b) An r.m.s. round-off error analysis for the fixed-point FFT
is developed in chapter 3. This error znalysis is an extension of
the previous analysis (ref. 1.7.) for sign/magnitude binary
arithmetic to the more common two's-complement binary arithmetic.

c) A new expression for the covariance of sample cross-—
spectiral estimators is given in Appendix 2. This expression is
more general than existing expressions (for examplé Jenkins,
ref. 1.8.) since it assumes a general window function.

d) In chapter 6 a study is made of the estimation of the
frequency response function of the forward path transfer function
of a closed loop system wi‘h noise in the léop. Approximate

e t&;: a{}w ds Cwﬁ :i\k)t'{ ot o anlor
arlimaka S on-ne  a~d  w - ‘ ka,‘ 1S moker A© sud
Qu‘ﬂ,@ww\. 15



variance and bias expressions for the c¢stimators of gain and phase
ere derived, and confidence intervals are given for the ;pecial
case of noise-free feedback. To the authorsAbest knowledge these
results have not been presented before.

8) In chapter 5 the problem of aliasing in the discrete
spectral gnalysis of noise-like data is approached. An expression
for the covariance of aliased sample cross-spectrzl estimators is
givep (Appendix 3), and expressions for the bias and variance of

aliased frequency response estimates are developed. It is believed

that these expressions are original.

16
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2e THE FAST FOURIER TRANSFORM

2¢1e Introduction

The FFT is a method which computes the discrete Fourier
transform (DFT) of a complex, N point, time series more rapidly
than other zlgorithms available at the moment. The algorithm
obtains its speed advantage from the fact that, if N has many
factors. then the number of operations required to execute a DPT
can be very much reduced. To be specific, if N = R" the FPP takes
a number of operations, ('operation' meaning a complex multi-
plication) proportional to Ne.m to compute the DFT. By comparison,
the direct approach takes a number of operations proportional to

N2.

The FFT has the further advantage that it requires less
computer store than the direct method, and it compuies tke DFT

with reduced round-off errors.

In this chapter the basic FFT elgorithms for radix 2
operation (N = 2m) are described, and their extension to radix R,
and mixed radix operation is explained. The use of the FFT to
process real data is discussed and the round-off errors are
commented upon. Finally reversible "Algol" procedures for the
fast-Fourier-transformation of complex, and rezl, time series are

presented.
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2.2+ The Fast-Fourier-Transform Algorithm

In this section a brief description of the two principal
FFT algorithms is given. These algorithms afe known as the
decimation-in-time and decimation-in-frequency FFT's. For
simplicity the radix 2 forms of the algorithms are given, so it is

assumed initially that N = 2", (where m is an integer).

2.2.1. Decimation-in-time
This is the original form of the FFT used by Cooley &
Tukey (ref. 2.1.). It is termed the decimation-in-time FFT because
it operates on the time series, decomposing it into successive sets
of sub-series, and operates on.the sub-series to form the discrete

Fourier coefficients.

Suppose we have 2 ccmplex, N point, itime series Xk, and

that the DFT of X, is A_. Let Y_and Z_ be sub-series of X_
k r k k k

defined by s-

Te = %

nj =
1
-

k=0,l, ceesoy eeeoenae 2‘1!

Ze = X o1

. 1 - o 5 =
Now, let Yk and Zk nave DFT's Br and Cr’ defined thus s
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N
I‘so,l te e -2"'1 seecrece 2.2.

5-1
o 2 kr
S I
k=0 /2
ALN
Where Wy = exp( - S )

The DFT of Xk can be written in terms of the sub-series

as follows -

+

=
=
K
=
-’
"~
-
s 1
N
N
-
=
=5
)
Z’:‘i

2 T
-E{Br""wN cr} r‘o,l’ ce e ‘2"‘1 Cecvescoe 2'3.

For N/2 €r<N-1it is recalled that B, and C_ are

periodic in N/2 so that we can show that -

1 T+ N
AI‘+H = 5 BI‘+_1‘_I+WN 2 Cr+-N—
2 F N
Ar+H = ?{Br-wN Cr} r:O,l, ts e 5-1 ses s 2040
2 .
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Equations 2.3., and 2.4., are the decimation-in-time
algorithm generating equations. They show that the DFT of an N
point series can be found by forming a linear combination of the

DFT's of the sub-series Yk and Zk-

.The speed advantage of the FFT can now be illustrated.
Assuming 2 times (N/2)2 operations (complex multiplies) were

2
taken to form Br and Cr. Then only g + g operations are needed
: : 2 ;
to form Ar using equations 2.3., and 2.4., while N operations

are needed when direct summation is used.

The full 'decimation-in-time' algorithm is generated from
equations 2.3., and 2.4., in the following way. The sub-series
Yk,and Zk are split to further sub-series Pk’ Lk and Qk’ Vk,

respectively. These new series are defined by -

w
Pprm Yo
Ly Tok + 1 .
k-O,l coooo—‘"l
= 7 4
Do ok
Vo™ Bop 41

Using the equations 2.3., and 2.4., the DFT's Br’ Cr can
be expressed in terms of Be, Bo, Ce, and CO, the DFT's of the sub-
series Pk’ Lk’ Qk’ and Vk. This process of sub-division can be
continued until there are only two elements in each sub-series.
The DFT of the complete series can then be found using the DFT of

these two element sub-geries.



As an example a signal-flow chart of the decimation-in~time
algorithm applied to an eight point series is given in fig. 2.1l.
(This figure is based upon illustrations used in ref. 2.2.)s By
reference to this flow-chart two more features of the FFT may be
shown. Firstly, the data is initially ordered in binary bit-
reversed order. (By rearranging the flow-chart the strict
Cooley/Tukey algqrithm can be obtained, with correctly ordered
input data and bit-reversed output data.) The other feature of
the FFT which can be obtained from the flow-chart is the 'in-pleace'

computation property.

To illustrate this point consider the in-place calculation
of the eight point transform in figure 2.1l. The computational

sequence is -

a) Compute Bg and Bi, and overwrite XO and X4 with the

newly computed values.

Compute BS and B. and overwrite X

0 1
until all the first stage is calculated.

2 and X6, and so-on,

b) Having completed all the operations in the first stage,

we commence calculating the second stage.

and B

Calculate B, and B2, and overwrite B

0
0 0’
o

1 and B1 and so-on .

¢) Finally, having computed the second stage, calculate

Calculate B

o GCo

and BB’ and overwrite B

the final array Ak and overwrite the B's and C's.

Thus the FFT enables the calculation of the DFT with no
additional store area being required. The bit-reverse ordering of

the data can also be done 'in-place'.
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The number of operations required to perform a fast-
Fourier-transformation can be found by continuing the sum used to
determine the number of operations required to czlculate Ar from

Br and cr 3 -

Number of operations using one sub-division of Ak

2(V2)? + V2

Number of operations using two sub-division of Ak

2 282 + Wa )y « V2w a(Nya)? 1+ Np2 4 V2

This sum may be extended, until we arrive at the result
for a full FFT, which (for N = 2m) involves m sub-divisions. For

) y . N
m sub-division the number of operations by the FFT is 5 m

2.2.2, Decimation-in-Frequency
This form of the FFT was devised by Sande (ref. 2.3.), and

as its name suggests operates by subdividing the discrete Fourier

coefficients,

Let the complex, N point, time series X, have a DFT A. As
before the time series is split into two sequences each of‘%
terms. . The first sub-series, Yk’ consists of the first g terms of

N
Xk, and the other sub-series, Zk consists of the last 3 terms of Xe*
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thus :=-

series,

k = O,l ee s

N

The DFT of Xk may be written in terms of the Yk and Zk's,

K
> - 1
Nr
é 2 kr
Yk+zk VVN V’N e e s v e rs 0 2.5‘

k=0

The discrete Fourier coefficients Ak are split into two sub-
The first, Rr consists of even numbered points and the other,

S_, consists of odd numbered points.

r

=]
f
2|~

r = 0,1, aa.o-c-é'-l

r ™ brsa
Substituting Rr in equation 2,5,, gives :-

5= 1

rk
Z (Y + %) W,,/2 BTRERUEIE X P

That is, Rr is the mean of the TFT!'s of Yk and Zk.
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Similarly for Sr t-

N

5-1
1 :E Kk
SI=N (Yk-zk) W§/2 WN treveccaveas 2.70
k=0

Thus S is the DFT of the function (Yk - zk) wﬁ.

Equations 2.6,, and 2.7., are the decimation-in-frequency
algorithms generating enuations, Using these expressions the full
decimation~in-frequency FFT can be derived in a similar way to that in

which the decimation-in-time FFT was developed in the previous section.

In addition, all the properties of the FFT discussed with

reference to decimation-in=-time arnly to decimation-in=-frequency,

2.2,3, Radix R Algorithms
In the previous sections the FFT algorithms for N of the
form 2" were described, Similar algorithms for N of the form R"
(R integer) can be written., If N is not composite of this form, then

m

algorithms to handle N = l l p; can be written, where the p; are
i= <
prime, Such FFT's are termed 'mixed~radix' algorithms, and, because

of the complex indexing they require, they are usnally avoided in

favour of the simpler single radix algorithms,

Cooley and Tukey (ref. 2.1,) have shown that the most
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efficient FFT has radix 3. However, the binary radices (2,4,8,16,)
have other advantages. These are, (i) binary indexing may be used,
This is useful in binary arithmetic machines aﬁd; (ii) use may be
made of the symmetry in the discrete Fourier transforms of binary
radix point blocks to further reduce the number of operations
involved ;n the FFT, The larger the binary radix used, the fewer
operations are required. Working with large binary radices has two
disadvantages, Firstly, the programme instruction store area
increases in proportion to the radix, and secondly the usable values
of N become widely separated, The latter disadvantase may be overcome
by using a mixed binary radix algorithm, For instance, a 4,2 mixed
radix transform can transform data blocks of the form 2m. When m = 2k
a pure 4 radix FFT is used, and when m = 2k + 1 a radix 4 FFT is used
.fqr the first 2k stages and the transform completed with a 2 radix

final stage,
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2.3, Processing Real Time Series

The FFT algorithms described here can be used to transform
(or inverse transform) complex data blocks, In many data
processing applications, however, we require the DFT of real time
series, The FFT can be used directly to transform such series, by
forming the complex series Zk = Xk + jO, This is wasteful of computer
time and étore space, since by using the conjugate symmetry Ak = A;_k
of the DFT's of real time series we can write routines to transform
two real time series of N points each using one complex N point transform,
With a little extra effort it is possible to transform a single real N

point series in one complex N/2 point FFT,

2.3.1, Transforming Two Real Time Series

If we have two series Xk and Yk of the same length, then the

auxiliary complex time series Zk is formed, Thus :=-

Zk = Xk+‘ij; k = 0,1, teescee N1

We now show that the DFT's of Xk and Yk may be obtained from

the DFT of Zk' Let Cr, Ar, and Br be the DFT's of Zk’ Xk and Yk

respectively.
Then :=-
N-1. N-1
1 k1 T
Cr ’N 2 ka BN z (Xk + j Yk)w eeress e 2080
k=0 k=0 )
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* 1 j;
Cer = & (%, =3 Yk)wrk 3

k=0

Solving equations 2.8., and 2.9., for Ar and B, gives

-4 )
B, = 3 (CN-r Cr)
rco,l, l.l.'g L B B B B R I B A 2.10l
1 *
Ar =2 (CN-r *® Cr)

Hence, the N point DFT's of Xk and Yk can be generated

using a single complex N point FFT,

2,3,2, Transforming a Single Real Time Series
A more useful technique than that described in 2,3.1, is now
given, This enables us to transform a single real series, Xk, using
a complex'-Ii point FFT,

2
Defining the auxiliary complex series 7, t=

=

-1

N

Zk = ng + 1 x2k o 1’ k = 0 1 DR

Now, using an | point FFT, the DFT of Zk is obtained

2 EE r
Ar = N (xzk 2k + 1) wk @ss e s v 2011.
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sl N
Def = i '
efining Br and Cr as the 5 point DFT's of sz and ng +1

respectively, then from 2,11, and using the result of section 2.3.1.

e s ereceans 2.120

Now refering to section 2.2.1., we can use the algorithm
generating equation 2,3,, to show that Dr’ the DFT of Xk, is given

by :-

1 b5
D = > Br+Wr(,r} erssevcsnna 21130

Note that because of the conjugate symmetry of Dk’ all the

useful information is contiained in the first half of the Dk'
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2,4, A Comment on Round-off Errors in the FFT

The FFT has the important advantage that the round=off
errors incurred are smaller than those incurred by direct summation.
The reduction in errors has often been erroneously coupled with the
reduced number of operations required by the FFT, The FFT involves
less round-off error because of the way in which the discrete Fourier
coefficieﬁts are calculated, If a discrete Fourier coefficient is
expressed in terms of Xk and WN using the FFT it may be seen that the

FFT calculates each coefficient by a series of nested multiplications.

An analogy may be made between the calculation of the DFT
and the evaluation of a polynominal, In this analogy the direct
method of calculating 2 complex Fourier coefficient is compared with
‘the direct evaluation of a polynominal, and the FFT method of
calculating a Fourier coefficient is compared with the nested multi-
plication method of calculation of a polynominal, This analogy may be
pursued to obtain an error vound for the FFT using the results of
Wilkinson (ref. 2.4.) obtained fcr the nested product evaluation of a
polynominal, However this is not the purpose of the comparison, which
is merely to point out that the FFT gains its numerical efficiency by
calculating the discrete Fourier coefficients by nested multiplications.
The round-off error in the FFT is studied more thoroughly in Chapter 3.
In this study the errors incurred by using fixed-point arithmetic are

considered, For an error analysis when floating-point arithmetic is

used the reader is referred to reference 2.,5.
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2.5, Computer Prosrammes for the FFT

"Algol" procedures to execute the FFT have been prepared by
the author, and since they are of general interest, 1istings of them
are given in appendix 1. The first two procedures are reversible FFT
algqrithms operating on the complex arrays REA, TMA of size N = Rm.

One procedure uses the decimation-in-time algorithm, the other the

decimation-in-frequency algorithm,

The remaining vrocedure is a reversible algorithm for
transforming (or inverse-transforming) a single real time series, and

is used with either FFT procedure.

The timing of the FFT vrocedures for various N is compared
with the direct method in TABLE 2,1, These figures are for the trans-
formation of complex time series, When ODDEVEN is used to transform

N real data points the timing for the N point complex FFI''s should be

halved.

32



Execution Time on Elliot 4130

TABLE 2,1.

FFT FFT Direct
N dec-in-time dec~in~freq Method
(seconds) (seconds) (minutes)
128 1 1 1.45
256 3 4 5.85
512 7 8 22,5
1024 17 17 94.3
2048 38 39 376%
4096 84 85 1505%
8192 184 184 6004 *

* These figures were calculated by extrapolating
the times for N = 128, 256 and 512, and assuming
the execution time is proportional to the square

of N,
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3. AN ASSEMBLY CODE STUDY OF THE FRT

3.1. Introduction

The purpose of this project is to investigate real-time
spectral analysis techniques, using an on-line digital computer.
If it is intended to analyze the signals in real-time we must be
able to execute the discrete Fourier transform quickly and
accurately. As was shown in the previous chapter, the FFT enables
us to do this, and so forms a suitsble basis for a real-time
spectral analysis system. However, further reductions in computation
time can be achieved by coding the FFT in an assembly language, and
using fixed-point arithmetic. Therefore, as the key part of our
spectral analysis facility we aim at evolving an assembly code FFT

programme using fixed-point arithmetic.

In this chapter the results of a micro-programming study
of the fixed-poinf‘FFT are presented. Section 3.2. deals with the
selection of the algorithm type and radix, and outlines the
programme structure. In section 3.3. the accuracy and speed of the
fixed-point FFT are discussed. It is shown that true fixed-point
is inaccurate, and suggests array-scaling as an alternative
technique. Some ways of implementing the array-scaled FFT are given,

and their speed and accuracy compared.

The assembly code used in this study was .the SYMBOL
language developed by Scientific Data Systems. All assembly code
programmes were implemented using a General Electric Company 90/2

digital computer.
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LIST OF SYMBOLS

th
A(k) the k component of the discrete Fourier transform
of Xo(v).
Im(w) the mean value of the imaginary part of the trigonometric

coefficients Wk.

Imz(xp) the mean square value of the imaginary part of the
complex array Xp.

Imfxp) the mean value of the imaginary part of the complex

array X .
d P
K the mean square modulus of the complex array Xo.
m the index of the number of points Fourier transformed in

a radix 2 FFT.

N ' the number of poinfs in a radix 2 FFT.
P the number of the stage reached in an FFT computation.
Re(W) the mean value of the real part of the trigorometric

coefficients Wk.

Rez(xp) the mean square value of the real part of the complex

array Xp.

Re(xp) the mean value of the real part of the complex array Xp-

t the number of binary bits in a computer word.
W the complex coefficient exp(—jg%l).
Xm(v) the vth component of the complex FFT array after

completion of the FFT.

Xo(v) the vth component of the complex FFT array before trans-

formation.
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the vth component of the complex FFT array after p
stages of an FFT..
the error in the real and imaginary components of the
complex array Xp.
the error in the real and imaginary components of the
coefficients Wk.
variance of the error caused by rounding a number to a
t bit, two's-complement, binary number.
variance of the error czused by discarding the least
significant bit of a two's-complement binary number.
mean value of the error caused by rounding a number to a
t bit, two's-complement, binary number.

mean value of the error caused by discarding the least
significant bit of a t bit, two's-complement, binary

number.
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3.2. General Description of the FFT assembly code programme

In planning an FFT programme the first decision which must
be made is whether to use the decimation-in-time algorithm, or the
decimation—in—frequency algorithm, Both algorithms use the same
arithmetic structure, the difference between them being in the
indéxing procedures, The algorithm selection must therefore be based
upon the suitability of the indexing procedures to a binary indexing
machine., The difference between the two algorithms may be summarised

as follows :=-

The decimation-in-time FFT requires relatively little
indexing, but the indices are altered in bit-reversed fashion,
Conversely, the decimation-in-frequency algorithm requires much more
indexing, but the indices are altered in a fairly orthodox fashion.
The obvious choice for a binary indexing machine is therefore a binary

radix decimation-in-time FFT,

In selecting the decimation-in-time FFT we have also
restricted the choice of radix to a binary number, If the usalle
values of N are to be sensibly spaced, we must also stipulate that N
take the form 2" (m, integral). This restricts our choice to either
a radix 2 or a mixed, 4 plus 2 radix algorithm, To aid the decision
between these two radices both were programmed in assembly code and
their performances compared, The 4 plus 2 radix algorithm was found
to be slightly the faster (10%), but required about twice as much
code space as the radix 2 algorithm. Since the mixed radix algorithm
was not dramatically faster, the more compact radix 2 algorithm was

selected,
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Having justified choosing a radix 2 decimation-in-time
FFT to form the basis of the real-time spectral analysis facility,
the structure of the assembly code programme for this algorithm is
given. = For the purposes of this discussion the programme can be
conveniently split into four blocks; These blocks are described
below 3- |

1) RESERVED STORE AREAS

These are sections of the computer memory ressrved for
exclusive use of the FFT algorithm. The store areas are, a) scratch
index and work space; and b) scratch parameter block; c) arrays for
'look~up' tables of trigonometrical coefficients and bit-reversed

integers; and d) an N point complex array.

Areas a) and b) are sections of the computer scratch
memory pad, which is an area of store which can be accessed more
quickly than other store areas. Areas c¢) and d) are arrays
associated with the FFT. These arrays vary in size with N, so they
are situated at the top of the store.and are expanded downward

when necessary.

2) SET-UP ROUTINES

When a new value of N is required these routines calculate
the new FFT parameters and compile a suitable bit-reversed integer

table.

3) FPFT ALGORITHM

.

Operating in the scratch work space this section calculates
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the discreie Fourier transform of the contents of the N point

complex arraye.

4) BIT-REVERSED SEQUENCE
After the discrete Fourier transformation this block
uses the bit-reversed integer array to rearrange the discrete

Fourier coefficients in the correct order.

The programme is coded in such a way that it may be used
as a separately loaded subroutine, or as a part of a main programme.
The set store areas are in the main programme store reservations.

If the FFT programme is loaded as a separate routine, the addresses
of the indices and arrays are copied into the FFT at load time.

This avoids wasteful indirect indexing between main and sub-programmes.

Whén the FPT sub-routine is first entered the required
value of 'm' must be in the machine ‘A'register. The sub-routine
compares this new 'm' with the existing m in the parameter black, and
if necessary enters the set-up routines and alters the FFT para-
meters accordingly. The machine then exits from the FFT routine.
To forward transform the contents of the complex array the FFT sub-
routine is entered with the preset value of ms To inverse transform
the contents of the complex array the FFT routine is entered with

the negative of the preset value of m.

The maximum usable value of m is set by the length of the

trigonometrical table. This table is fed into store at load time
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from a paper tape prepared on the University Elliot 4130 computier.
Currently used tapes allow a maximum value of N = 256, but this
figure can be increased. The ultimate limit on N is set by the

size of the computer store.
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3¢3. Numerical Procedures in the Fixed-Point FFT

The radix 2 FFT operates upon a complex, N point array,
Xo(v),v = Oyly eeeee N - 1., where N is an integer power of two.
In a computer the complex array is represented by two real N -
point arrays. EKach real array member conéists of one computer
word, and it is assumed that the binary point is situated to the
left of the most significant bit (excluding the sign bit). There-
fore, the range of values which can be stored in one word is =1
to +1, and the contents of each complex array point is bounded by
the unit square enclosed by the lines 1 + jl, 1 - jl, =1 -jl, and

The FFT of a 2m point complex array is executed in 'm'
stages. For example, the 8 point FFT described in chapter 2 is
executed in three stages, these stages are indicated in figure 2.1.
The contents of the complex arrg at a particular stage are
identified by an appropriate suffix. For instance, ai the nth
stage the array is designated Xn(v). .Each stage of the FFT consists

of an arithmetic loop and some indexing routines, and it is the

purpose of this section to describe the arithmetic loop.

In the loop the complex arithmetic expression igi;quation
set 3.1. IS; applied (with suitable changes in indices, v, q, k) to
the array. The wduiwr \:/;} b e oltoed « e ¢ crplax
Jokion  ofte cads application ) de b 2l Sua
e prpora % B soction o &, 2}(11@4». a\[x Je
fomancok  propastos %«L FET lopp, e doxny
pre<e duwey  wned t NeT , v, 9, B e A S &OLMLQJ‘
“The preone  Acee ;J\J«Q wdezing pmw ot duld s

) oS bee 4 wbo A X 2".
A de PSS cho Ry 22 T*%



1~

Xp_l(v) + Xp_l(q) W

X, ()

Ve s P E O ser e 301.

x,(a) 2 (v) - X () W

“VWhere W = exp(-jg%l)

Equation set 3.1l. is a typical computation pair in the
pth loop of the FFT. In this loop the pth complex array is obtained
by applying equation set 3.1; to the p-lth array. The equation set
is applied g times, so that all N array members are processed.

After m stages, the discrete Fourier coefficients, Xm(v) are

obtained.

’ Moving from stage to stage; the modulus of the array
members, in a mean square sense, doubles. At each stage therefore
there is a possibility of overflow in the newly computed array. If
an overflow does occur, then it must be rectified by rescaling the
array. Rescaling is accomplished by shifting the contents of the
array store words to the right until the overflow is cleared. Fach

shift to the right is equivalent to dividing by two.

There are two ways of avoiding overflow in the arithmetic
loop. These are s-
1) Rescale the array before every loop. This ensures that
overflow will not occur, and at the end of the mth loop we have

computed s=-
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N -1
R :EE: X, (v)

va=0

wrk

Which is the correctly scaled discrete Fourier transform
of Xb(v). Since the same array scale factor is maintained through-
out the transform, this rescaling technique is true fixed-point
arithmetic. In general, fixed-point arithmetic is undesirable
since overflow will not oceur at every stage, and some of the
rescalings will be redundant, causing unnecessary inaccuracy.

2) An alternative to irue fixed-point is array-scaled arithmetice
Array-scal ing is a compromise between the speed and inaccuracy of
fixed-point arithmetic, and the slow efficiency of floating-point
arithmetice It is a form of scaling used extensively in computer
calculations with matrices (ref. 3.1.). The technique treats all
the matrix elements as mantissi of a single floating-point number,
and stores the matrix characteristic in a single computer word.

If any of the mantissi overflow the entire matrix is rescaled.
When applied to the FFT, array scaling operates in the following
way s-—

To decide whether an overflow will occur in a loop a
test is applied to the array members. If the test proves positive,
and an overflow can occur, then all the array members are rescaled
by the same amount. At the end of the transform we have the
complex array Xm(v), which has been rescaled, say 1 times. The

discrete Fourier transform of Xo(v) is then given by s-

Alk) = 2@ xm(kj



3¢3.1. Implementing Array Scaling in the FFD
There are several ways in which the FFT can be programmed
using array scalirige The different methods érise initially from
the different tests which can be applied to the array members to
decide whether rescaling of the array is necessary. Secondary
differencgs arise over the choice of when in a loop to rescale the
array. There are two principal rescaling criteria. These are,

the Modulus test and the Overflow test.

a) The Modulus Test

This technique uses a knowledge of the structure of the
arithmetic expressions executed in the FFT loop. By testing the
P—lth array, and using a knowledge of equation set 3.1l., the
50ﬁsibility of an overflow in the pth loop can be predicted.
Consider either of the expressions in equation set 3.1l. If the
moduli of the p—lth array are controlled to be less than % y then

from 3.1. it can be seen that the moduli of the new array will be

: . th
less than one, and there will be no overflows in the p loop.

Once the necessity for a rescaling of the array has been
established, there is a choice of when to rescale the data. The

alternatives are s-

1) Rescale the array before entering the loop to compute the

next array.

2) Enter the loop, and rescale the array members immediately

after the new array members are calculated.
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The first method is the simpier of the two, because the
loop can be entered and the new array calculated with no allowance
for overflows. The second method was first éuggested by Shively
(ref. 3.2.). It has the advantage that rescaling is delayed from
the,p-lth array until the pth array, thus reducing errors. Its
disadvantage lies in the added programming involved in allowing

for an overflow in the computation of equation set 3.1l.

b) The Overflow Test

This rescaling criterion assumes no knowledge of the
equations to be calculated. The loop is entered, and allowing for
overflow, the new array is calculated. If an overflow occurs, the
offending number is rescaled. vThe entire array, consisting of
;qme new array members and some old,'is then rescaled by the same
factor, and computation continued. The rescaling need not be done
in any specific order, so the rescaling routine should be no more
complex than that required in the Modulus test (type 1). The
Overflow test requires mbre programming than either of the Modulus

test transforms since allowance must be made for two overflows in

the array calculations.

3.43:.2. ReM.S. Error Bound for the Array--Scaled FFT
To compare the three array scaled FFT's, their r.me.s.
round-off error bounds were derived. The r.m.s. error criterion
was used because it is more useful than the absolute error in

assessing the accuracy of random signal measurements. An r.m.se
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error bound will therefore.be useful later when we are calculating
the measurement noise in the spectral analysis programmes. The
error analysis presented here is substantialiy the same as that
used by Welsh (ref. 3.3.). Modification of Welsh's analysis was
necessary because his theory was developed for sign/magnitude
arithmetiq, and the machine used in this project used two's-

complement arithmetic.

Errors in Two's-Complement Arithmetic

The operations which cause round-off error in the array
scaled FFT are 1) rounding of multiple precision numbers to single
precision; znd 2) rescaling of single precision numbers before an

operation which might otherwise involve an overflow.

+ 1) Rounding
When, in a t bit word machine, a double precision word

is rounded to single precicion, the least significant word is

- -t .
tested. If it is greater than or equal to 2 (t+1), then 2 is
added to the most significant word. If the least significant word
is less than 2—(t+1), nothing is done. Following Hamming (ref. 3.4.)

the binary sequence of errors caused by this rounding may be
approximated by a random variable uniformly distributed in the

range —2—(t+1) to +2—(t+1). The mean and the variance of the

rounding error can therefore be calculated as s-

Pl = 0 i L B B B I B A 3. 2.
52 . o=2%
1 12
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2) Rescaling
When a t bit number is rescaled, it is cycled to the
right one place, and the least significent bit discarded. The
binary sequence of errors caused by rescaling can be represented
by a binary random variable. This random variable may take the
values O and 2—t with equal probability. Accordingly, the mean
and variance of the rescaling error can be found as :-

M, - 2—(t+1)

®ecscscncee 303.

2 -2(t+1)
6'2-2

Error Analysis

In this section the upper bound on the r.m.s. round-off
error for a typical array-scaled radix 2 FFT is calculated. The
array scaling technique considered uses the Modulus rescaling

criterion, with scaling belore the loop. In the analysis it is

assumed that the sum computed by the FFT is s-

N -1
x (k) = Zxo(v)wkv

v=20

The correctly scaled discrete Fourier trgnsform is

obtained at the end of the transform by dividing by Ne.
By computing the FFT in this way the magnitude of the

members of the complex array will increase a@ each stage. To

accommodate such increases it will be assumed that at each rescaling
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the binary point is shifted one place to the right. The magnitude
of all the numbers in the complex array is therefore doubled after
each rescaling. This applies to rounding and rescaling errors as
well, so that after p rescalings the error caused by rounding a

doub;e precision number will have zero mean and variance (4p) 612.
Thé error caused by the p + lth rescaling of a number will have a

mean value 23#2 and a variance of 4p6é2.

The following result is used in the analysise. This

relates the mean square modulus of the complex array at the pth

stage with the mean square modulus of the complex array at the p—lth

(A} - s nl)

stage.

This result is due to Welsh (ref. 3.3.), and it may be
obtained by taking the expectation of the squared modulus of
equation 3.1. Using this result we can say that if K is the mean
square modulus of the input array, then the mean square modulus of

the output array is 2mK.

To obtain an upper r.m.s. error bound it is assumed that

& rescaling is found necessary prior to every loop. It is also

assumed that the rounding errors are uncorrelated with each other,

and the array members.

Consider a typical real computation at the pth stage of

the FFT. From equations 3.l such a computation is s=—
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Re{xp(v)} - Re{xp_l(v)} + Re{xp_l(q)} (W) + Im{xp_l(Q)} Re (W)

To a first order approximation the error in this typical
computation can be expressed as a linear function of the errors in
the array members and trigonometric coefficients. Using such an
approximation the mean square error at the pth stage can be
obtained by adding the variances of the error terms, and the square
of the expected values of the error terms. This process can be
extended to the entire FFT computation by separately calculating
the variance and the mean error in the FFT, and combining them to

obtain the mean square round-off error.

In the error analysié that follows the error in the real
Ang imaginary components of the pth array, Xp, is denoted €5p. The
variance of the error at the pth stage is indicated by Var(EEp),
and the mean error is denoted by é;p. The error in the trigonometric
coefficients, Im(wk) and Re(wk) is denoted an. This error is
caused by representing the coefficients by a t bit binary number,

. at
and has zero mean and a variance 2 .
12

Variance of the Error

The initial array will require rescaling to avoid over-

flow in the first loop. So, denoting the error in the rescaled

initial array by Go, the variance of the error is s-—
var (€.} = 5,
0 2

2 s
Where Eé is the round-off error caused by the initial rescaling
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The first loop

In this loop the value of wk in the FFT computation
(equations 3.1.) is either +l. Therefore the computations reduce
to a set of additions and subtractions.

A typical computation is :-

Re{xl(v)} = Re {:Xo(v.)} + Re{xo(q)}
From which the error in the array after the first loop

is 3—~

Va.r{jel}‘= 2 Var{eo} = 2 522

The second loop

In this loop the value taken by wk is +1 or +j, so again

the FFT computations reduce to a set.of additions and subtractions.

Var{FBQ} = 2 VarGEl} + 2(4 5&2)

The first term in the above equation is the variance
transmitted through the FFT calculation. The second term is the
variance due to rescaling the data prior to the second loope. The
factor of 4 in the rescaling variance is present because the
binary point was shifted one bit to the right by the first

rescaling.

The third loop

In this loop half the computations are additions and
subtractions, and half are proper FFT computations. We estimate

the variance of the error in each half of the computations, and
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average the results, to obtain an overall error variance for the
third loop. The error in the first half of the third loop will

be denoted €3 and the error in the second half as €;.

The first half may be treated in the same way as loops
one énd two.

Var ( 6’3) = 2 Var ( €2) + 2(42 622)

A typical computation in the second half is s-
Re{x3(v)} = Re{xz(v)} + Re{xz(q)} Im{wk}+ Im{XQ(q):} Re{wk:}

Coe v ss v 304.

The variance of the error in such a computation is given

by -
Var{ é;,(v) . Var{ez} + Var{-GQ(Im W 4 Re wk)}
+ Var{ew(Re XQ(Q) + Im xz(Q))}

4+ Variance due to rounding and scaling

DR R R ) 3:50

Where ew is the error in the stored values of the

trigonometric coefficients. Taking the mean over all of the

calculations in the second half of the third loop.

wo{ Jor(e]) - ([T ). (]
vl )[R

s 2 Var{€2}+ 22K qZ + 42 522 + ,43 512 seminge 360
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The overall error variance at the end of the third loop
is ¢-

Var{€3}= 2 Var{e2}+ 2K 5'12 ;4 €>;,2 + 2.4 6;2 + 34" 6;2

L0 LR B L B 3.7.

In the fourth loop a quarter of the operations are
additions and subtractions, and in subsequent loops fewer still are
additions and subfractions. Therefore, to ease the task at hand,
it is assumed that in the fourth and subsequent loops all operations
are normal FFT computations. By extending the variance figure for
the second half of loop three, the variance of the error at the

end of the fourth loop is found to be s-

Var{€4}= 2 Var{€3}+ 23 K512 + 44 65.2 + 43522 swwess e

The variance at the end of the mth loop can be obtained
by extending equation 3.8., and substituting for Var{E%hi} etc.

This gives the approximate variance expression :-—

3 m-1 2 2m+l > 2 2m-1 -2
Var{ €, ] & (m-2)2" kT2 + 2™ B 24 2PN E,S Ll 3.

Mean of the Error

Denoting the mean error in the pth array by G%, the

mean error in the rescaled initial arrey is s-

e% = /42

Where }12 is the mean error caused by rescaling.

The first loop consists of a set of additions and sub-
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tractions; there being an equal number of each. To find the mean
error at the end of the first loop we estimate the mean error in
the additions and the mean error in the subtractions, and average

the two.

The mean error in computations involving additions is

2)¢2, and the mean error in the subtractions is zero. Therefore 3-
€. =
1 Jo

The second loop can be handled in the same way as loop

one. The mean error at the end of the second loop is 3~

S - é1+2}"2

In the above equation the first term is the error carried
through from the first loop, and the second term is the error
introduced by rescaling. The factor of 2 is present because the

binery point was shifted by the first rescaling.

Half of the third loop calculations consists of additions
and subtractions, the other half consists of normal FFT computations.
As before, the mean error in each set of calculations is calculated,
and the two values averaged. The mean error in the first half of

the calculations is denoted by é;, and in the second half by éj

The mean error in the first half may be found using the

.

methods of loops one and two s-
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-

= = 2

A typical FFT computation in the second half of the third

'loop is given in equation 3.4. The mean error for such a computation is

given by :=-

& - & ye E{ a4 net)

+ éw {_ Re(X,) + Im(X2)}

vhere €y = Py = 0 and Im(¥) = Re(W) = 0

Therefore the mean error at the end of the third loop is given by :=

2
63., 62+2)J.2

The fourth loop and subsequent loops may be treated in the

same way, and so on, At the end of the mth loop the mean error is given

by -

= = -1 —_—— m
em = em’-l+2m 2 (m—>o0) 2/‘2 cesenesees 310,

Combining the variance and the mean erroy the mean square

error at the end of the transform is :=

v M= 5—2 2m+1 2 2m-1 2 2m 2
m.s.e. 2 (n-2%)2" R e - A e T PPR B 9

The method used by Welsh (ref. 3.3.) can now be used to calculate

the ratio :=

mean square error - m.S.e.
mean square value of the input m,s,.i,

where

The mean square modulus of the output array is 2mK, Wisowe K is
the mean square modulus of the input array., The mean square value of the
input data is % and the mean square value of the output data is 2m.§.

Therefore :=
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= \ - 2 2m
MeSe€s (n-2}%)2" % 6’12+22m+1 512+22m ! 5’2 +2 /L,,Q

m. s.o. 2m‘ K/2

. ; 2 2 :
Substituting for C%_ y 5; and )12 , neglecting small
terms, and square rooting we obtain an approximate expression for

the r.m.s. error due to round-off errors.

m
r.Mm.Se. €rror 0.74 2 /2 2_t
£‘. (formlarge) EEEEEEEE N 30110

TelleSeOe TreM.Sei.

For a computer using a B bit word, B-l bits are used to
represent the magnitude of a two'!s-complement number. Therefore,

t = B-1 in the above equation.

The r.m.s. error bbund given by equation 3.1l. assumes
that a rescaling of the data is necessary at each stage. In
practice it will not be necessary to rescale before every loop
unless a strong periodic component is present in the initial data.
On the other hand it may be necessary to rescale the data twice
before the first loop. This happens whenever the magnitude
rescaling criterion is used. If the initial array is correctly
scaled it is possible that the maximum initial array modulus is
greater than unity. 1If this is so, then two rescalings are needed

to control the modulus to be less than 3.

The approximate r.m,s. error bound in this case is :-

m+2
r.n.s.,e, ___ 2 ¢ ot 0.74
r.m.S.O. I‘.m.S.i.
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The rem.s. error becunds for the other rescaling criteria

are g-—

a) The Overflow test

Tellle SeCe 2 2 0041
iy

TelMeSeOe TeM.S.ie

b) The Modulus test with rescaling in the FFT loop

m4-2
Tele SeCe 2 2 2_t 0.41
o
Tellle SeOe r-m.s.io

3.3.3. Experimentzl Work
a) Verification of RMS Error Bounds
The theoretical error bounds for the array-scaled FFT

were checked by comparing them with the actual rms errors. The
actual errors in the FFT were estimated by transforming a signal
using array-scaling and comparing the result with the same signal
transformed in floating-point. The rms error was then found by
assuming the floating-point programme was exact, and calculating
the rem.s. difference between the fixed-point and floating-point
transforms. To obtain a consistent estimate of the error each
transform was repeated several times with different samples of the
test signal. The test signal used was a random number generator
generating numbers in the range -4 to +%. To ensure that a
rescaling would be necessary at each stage of the transform, a

strong mean level was added to the signal. The actuzl and
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theoretical r.m.s. errors for various values of m are compared in

graphs 3.1l., 3.2., and 3.3.

The predicted errcr bounds all slightly under estimate
the maximum r.m.se. errors. Possible reasons for this are -

a) The approximations made in obtaining the theoretical
error bound. In particular, the errors caused by the rounding in
the trigonometrical coefficients were neglected.

b) Differences betﬁeen the theoretical variances and means
and the actual variance and means in the rescaling and rounding
operations. For instance, Weinstein (ref. 3.5.) found that
experimentally determined values of variance due to rounding-off
typical FFT sums differed significantly from theoretical values.

A further difference between the actual and theoretical
T.m.s. errors was that the experimental error increased with m at
a greater rate than that predicted by the theoretical error bound.
This behaviour has been Eommented on by VWeinstein (refe 3.5.). He
concluded that correlation between the signal and round-off noise

could cause this to happen.

b) Timing of the Transforms
The transform times for the various array scaling
techniques were compared by measuring the time taken by each
programme to forward Fourier transform a 256 point complex data

block. The data transformed was such that all the programmes

rescaled the array four times in the course of a transformation.
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GRAPHS TO COMPARE THE THEORETICAL AND EXPERIMENTAL
UPPER BOUNDS ON RMS ERROR IN THE ARRAY SCALED FFT.

EXPERIMENTAL. RESULTS WERE OBTAINED FROM A 12 BIT WORD
MACHINE USING TWOS-COMPLEMENT ARITHMETIC

GRAPH 3. 1. SHOWS RESULTS OBTAINED USING THE OVERFLOW TEST
GRAPH 3. Z. SHOWS RESULTS OBTAINED USING THE MODULUS TEST
WITH RESCALING BEFORE THE LOOP

GRAPH 3. 3. SHOWS RESULTS OBTAINED USING THE MODULUS TEST
WITH RESCALING IN THE LOOP

THE CONTINUQUS LINE SHOWS THE UPPER THEORETICAL RMS
ERROR BOUND. THE CIRCLES MARK EXPERIMENTAL POINTS

GRAPH 3. 1.
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The times taken by the programmes are tabulated in TABLE 3.1.

TABLE 3.1.

Transform times for array scaled FFT's. Times are for the forward
discrete Fourier transform of a complex 256 point block, computed

on a GEC 90/2 computer.

Using the Modulus Using the Modulus
Using the Overflow Rescaling test Rescaling test
Rescaling Test with rescaling in with rescaling
the loop before the loop
0.78 seconds 0.52 seconds 0.4 seconds

From the table it is seen that the overflow rescale test
transform is substantially slower than either of the Modulus test
trarsforms. This is because s-

a) Allowing for, and testing, for two overflows in the
computation of equation set 3.1l. requires more operations than
testing the moduli of the array members,

and; b) If a rescale is known to be needed in a loop, as is
the case with the Modulus test, then half the data rescalings can
be done by using the 'divide-by-two' inherent in two's-complemsnt
multiplication. The time saved in this way would be significant
in any computer. 1In this case the saving is increased because

the GEC 90/2 has no 'shift-right' instruction, and rescaling must
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be done by a long shift left.

The timing experiment was a little unfair on the Overflow
test, because it was arranged that each transform rescaled the data
the same number of times. In pratice it is possible that the
Modulus test will cause more rescalings than the Overflow test.

The extra rescaling is necessary to control the magnitude of the
initial array such that |x°(v)] < 1. However, even allowing for
an extra rescaling in the modulus test criterion, the overflow

rescaling test is still significantly slower than the modulus test.

303.40 Conclusions
The micro-programming of the fixed-point FFT has been
discussed, and the choice of a radix 2 decimation-in~-time

algorithm for a binary arithmetic computer justified.

A comparison of various ways of implementing array scaling
in the fixed-point FFT has also been given. The comparison was made
by programming the FFT in SYMBOL assembly code using various
scaling techniques, and measuring the r.m.s. error in each transform,

and the time taken to execute a transformatione

The transforms using the Modulus rescaling criterion
were easily the faster. This was because they were easier to
programme and’'could take advantage of the rescaling which is

inherent in two's-complement multiplication. The fastest transform
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used the Mcdulus rescaling test with rescaling before the FFT loop.

This transform was however also the least accurate.

The Modulus test (with rescaling in the loop) and the
Overflow test gave rise to the same upper r.m.s. error bound.
However, when transforming data which does not require rescaling
at every stage, the overflow test transform will be more accurate.
This is because the modulus test transform rescales the data if
there is a possibility of an overflew. It is possible therefore
that the modulus test might rescale the data unnecessarily. In
spite of this disadvantege the Modulus test (with rescaling in the
loop) provides the most efficient method in terms of speed and

accuracy of implementing array scaling in the FFT.
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3¢4s Additional Comments

3.4.1. Processing Real Data
The complex fixed-point FFT can be used to transform real
data by using the algorithm described in section 2.3. This
algorithm shows that with an extra set of additions and subtractions
the discrete Fourier transform of two, equal length, real time
series can be obtained from a single complex FFT. The accuracy and

speed of this technique are now considered.

a) Errors
No additional errors are introduced by the extra addition/
subtraction required in the transforming of real time series. This
is because the coefficient of % in equation 2.10. can be omitted
without risk of an overflow by combining the addition/subtraction
routine with.other subsequent routines. Therefore, the upper rms
error bounds in seétion 3.3+42. apply directly to the fixed-point

discrete Fourier transform of two real N point series.

b) Timing

Compared with the time required to execute the FFT, the
time taken to execute equations 2.10. is negligible. Therefore,

the times given in Table 3.1. are also the times taken to FFT two

real time series.
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3.4+42. Error Bounds for Data Input from the Analogue/
Digital Converter

The analogue-to-digital converter fitted to the GEC 90/2
computer used in this project is wired so that full scale at the
analogue input is equivalent to 0.5 in the computer. Because of
thié, data input from the analogue to digital converter requires
(at most) m-1 rescalings in a o™ point FFT. Therefore, the r.m.s.
error bounds in section 3.3.2. should be divided by (2)% when

applied to data input via the analogue-to-digital converter.
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4, AUTOSPECTRUM ESTIMATION

4.1, Introduction
This chapter deals with the properties of a real-time
digital autospectrum estimation technique., Section 4.2. develops the
statistical properties of the autospectrum estimator used by the
technique, and in section 4.3.,, a computer routine for the implementation
of the digital autospectrum estimation technique is described. Finally,

in section 4.4., the properties of the computer routine are discussed.
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Caox(w)
Cxx(w)
Cxele, )
Goaxy ()
£(w)
1(t)

1,(%)
1(t)
Ly (@)

Iy ()

x(t)

»l

x(w)
8 xx(t)
[c(w)

List of Symbols for Chapter 4

expectation of a chi~-square variate
component of a power series expansion of %‘{l( t)*l(t)_}
component of the discrete Fourier transform of xili
the sample autospectrum of x(t)
smoothed estimate of the autospectrum of x(t)
smoothed, discrete autospectrum estimate
Aliased smoothed autospectrum estimate
power transfer function of a low-pass filter
a data window function
a discrete data window function
the Generalised Hanning data window
the rectangular data window
the Fourier transform of lH(t)
the Fourier transform of IR(t)
the number of points in a time series
the integral over time of 12(t) (discrete or continuous)
time
duration of a data sample
a part of the function LR(&O
a signal
a time series obtained by sampling x(t)
the sample mean of x(t)
the Fourier transform of x(t)1(t)
the auto-covariance of x(t)
the autospectrum of x(t)

the sampling period
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the mean value of x(t)

the degrees of freedom of a chi-square variate
angular frequency
half power bandwidth of LH@~0
cutoff frequency of a low=-pass filter
the discrete frequency 2
AN
the break-point of the function UHG»)
the sampling frequency

a e mM

Q.Agu_,qoi jr&yxﬂMﬁ .
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4.2, Properties of the Autospectral Estimator

The on-line digital computer programmes for autospectrum
énalysis calculate a smoothed periodogram of a signal by averaging
the periodograms of consecutive segments of a data record. The smoothed
periodogram so obtained provides a discrete estimate of the signal
antospectrum. In this section the statistical properties of this type
of discrete autospectrum estimator are discussed, This is done by
deriving the prOpérties of an equivalent continuous auntospectrum
estimator, The properties of the discrete estimator are then obtained

by analogy.

4.,2,1, Definition of Autospectrum
The autospectrum [xx() of a stationary, zero mean, random
process x(t) is defined as the Fourier transform of the autocovariance

function Sxx(t).

Where :=-
+T
1lim )1
6xx(t) S Pe\op J x(u) x(u-t) du
7
and :- 40O —jwt
[ ) = J (e dt

4.2,2, Definition of the Sample Autospectrum and the Periodogram
In the on-line digital computer programme for autospectral

analysis the discrete Fourier transform of each segment of data is
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found usirg the FFT, Its periodogram is then obtained by calculating
the squared modulus of all the Fourier coefficients, In this section
the periodogram of a data segment is defined and is related to the

sample spectrum which is the continuous equivalent of the periodogram.

a) The Sample Autospectrum

Istimators of the autospectrum of a process x(t) are often
based upon the defining equations of the autospectrum, and are there-
fore expressed as the Fourier transform of the estimated autocovariance,
An alternative way of formulating an autospectrum estimator is to
express it in terms of the squared modulus of the Fourier transform of
the process, When the FFT is used, this direct approach is the more
efficient way of computing an autospectrum estimate (ref., 4.1,). For
this reason the direct method is used in the real-time autospectrum

estimation programmes,

If we have a sample of a zero-mean, gaussian, random process
x(t), for --2'1-‘ <Y ¢ +-§ , then the sample autospectrum computed

using the direct approach is defined as :-

+00
~jwt 2

c &) = % J 1(t) x(t) e at eveeereeens A1,

-0

In the jargon of spectral analysis the function 1(t) is
termed a 'window function', and multiplying the data record by a
window function is known as 'linear modification', The class of window

functions used in this thesis satisfies the general conditions :=
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1(=t) = 1(t)

) =0 5 It1> 3 wsassnnissas doe
+00
2
q = f 1°(t)at
-

In the next section it is shown that the sample autospectrum
is a biased estimator, and that only as the sample duration, T, tends
to infinity does the bias become zero, However, for finite sample
durations, and specific autospectrum shapes, the bias can be minimised
by controlling the nature of the bias error. This is the purpose of
linear modification, since by varying the shape of the window function
we can control the shape of the frequency filter through which the true
autospectrum is observed, This point is discussed more fully in

sections 4.2.3., and 4.2.6.

b) The Periodogram

The discrete sample autospectrum (the periodogram) used in
the real-time digital computer programmes is defined as follows :=
Consider an N point time series Xy
(Whereg for N even, i = -g U « By +-g- 1) obtained by
sampling a zero-mean, gaussian, random process every A seconds, If
the time series is multiplied by a weighting sequence 1i which satisfies

the conditions ;=
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i -i

N . N
li = O H -‘5 >l }'é’ Cesecceeven 413-
X
2 2
%E 1, = aq
TR
2

Then tbe periodogram of x; can be defined as a discrete

version of a sample autospectrum.

NA 2
“q IAk I

Cxx(e )

+ =

2 ik
Xili WN Cos vt 4-40

N
2

N
2

=

Where; A

k

i= -

2
k- AN

=
ll

exp(-35- )

4423+ Statistical Properties of the Sample Autospectrum
The properties of the sample zutospectrum are now
developed. The corresponding properties of the discrete autospectral
estimator are derived in section 4.2.7.

a2) The Bxpected Value
From equation 4.l. the expected value of the sample auto-

spectrum is s-
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- 00

=jwo(t, =t
E{éxxﬁdi} = % E Jj;(tl)l(t2) x(tl)x(tz)e & 1 2)dt1dt2
, _m+m
= 2T1\‘q JLz(v) rxx(v—-oo) dv sansssossisy . iSe

Where L(w) is the Fourier transform of 1(t), and [xx(w)

is the antospectrum of x(t).

The integral in equation 4.5. is the well known
convolution integral, and equation 4.5. was obtained using the
expressions which relate multiplication and convolution in the time-

domain and frequency-domain. These expressions are s-

+® T . +®
J~ x(t) y(t) e dt = 57?-‘[ X(v) Y(v-w) dv
+o 400 N

J x(u) y(t-u) du e at = Y(w) X(w)

Where W and v are angular frequencies

The convolution integral is usually represented by a star.

Using this notation equation 4.5. is written as s-

ploxx)) = g {1%er Rxw))

21Mq

The constant q was chosen so that when the signal is
white, and the bias due to windowing is zero, the expectation of

the sample autospectrum estimator is the same as the true auto-

T2



spectrum. For instance, consider the case when x(t) is a white noise
process with vaeriance O%x2. In this case the autospectrum of
x(t) is constant and equal to the variance. Substituting for the

autospectrum in equation 4.1l., and applying Parseval's Theorem we

obtain -
2 +C0
E{Cxx(w)} = 20133(; JL2(U)) dw = 07{12
-

When the true spectrum is not a constant, then the sample
autospectrum is a biased estimator. The estimator is biased

because the window function 1(t) is of finite duration. As the

2
duration of the record (and the window) increases 1;hen‘—Ii—-§:’l tends
to a unit impulse. The sample autospectrum is therefore

asymptotically unbiased.

Approximate expressions for the bias due to finite record
length can be obtained using the method of Jenkins (ref. 4.2.).

The bias is given by s-

B{Cxx(w)} - E{Cxx(w)} - [x)

+00 -jwt
) J‘ {1(t)*1gt) - 1} Exx(t)e dt
q

LB B L B 4.6'

The term 1(t)*1(t) denotes the self convolution of the

window function. kxpanding %-{l(t)*l(tj} as a power series in the

range - g to + g , and assuming ZSxx(t) is zero for t greater than
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T .
5 s Wwe can write s-—-

02 4 )
. t t -t
B{Cn(w)} o J{aETz ¢ a:4 + veens [Oxx(t)e o dt
(n)
N RO VR S .
e s

(-1)° 7T

eee s e 4.70

Where l;x(n)@u) is the n'® derivative of [xx(w) with

respect tow, a, is the nth coefficient in the power series expansion

ot 2{1(1)1(v)) .

For most practical purposes only the term in a, need be
considered when evaluating the bias in autospectrum estimators.
Neglecting all the higher terms in equation 4.7. we can say that

the bias due to windowing may be controlled by choosing T such that

=XE I |
xx” {0) &2 and ‘Shooming s window 1(+) which minimises the
Fex(w) &

term o
82

b) The Covariance

The covariance of the sample cross-spectrum is derived
for the zero mean, gaussian case in appendix 2. From appendix 2
the covariance of the sample autospectrum at the frequencies(Aﬁ

andw2 is given by s-

T4



; 2 2
C°V{C”(w1) Cxx(wz)} " lamg)? rxx(we){l‘(wl'“é *L(wl'(%)}

2 2
+ Txx()) (o v w10 40) )

The variance of the sample autospectral estimator at
frequcucy W, can be obtained by rewriting the above expression in

an equivalent form -

2

ch‘{Cxx(co)} - (_2_;1‘-;2 {Lz(‘*’) * Ez(w):}2+ Lz(w){:L(w) %* &x(w)}

eeeceececons 4-9.

The spectral windows L(w) have low-pass characteristics,
and decay rapidly either side of W= 0. Therefore, to a good

approximation -
Var{Cxx‘(OJ)} [ E2{Cxx(&))} R EEEEEEEEEE) 40 100
Except whenw is close to.zero, then :=

Var{Cxx(w)} e 2 E?'{Cxx(w)}

From equation 4.10. we have the important result that
the variance of the sample autospectrum does not decrease when the
eample duration, T, is increased. To decrease the variability of
the estimator, some sort of smoothing is required. The method
used to smooth the estimates in the on-line digital computer
programmes is to average the periodograms of successive data blocks.
The analogous technique in continuous time is to smooth by averaging

the sample autospectra of successive data blockse In the next
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section the properites of smoothed autospectral estimates obtained

in this way are given.

. 4e2.4. Properties of the Smoothed Autospectrum Estimator
Let a continuous record of a signal x(t) of duration
nT seconds be sub-divided into n segments, where the ith segnent

is defined by :-

x(i)(t)=x(t+i'1‘—-§) ; _-g-<t<%

Then, if the ith sample spectrum is defined as s-

+o

. —jwt
| Jx(l)(t)l(t)e : dt

-0

(1) 2

Cxx(w) =

Q=

The smoothed sample autospectrum is -

= ; = (1)
Cxx(w) = o Z Cxx (w) sisssnsissnns Balle
i=1

We now consider the expected value and the variance of

the smoothed autospectrum estimator.

a) The Expected Value

Since the expected values of the component sample auto-
spectra are equaly then the expected value of the smoothed

autospectrum estimate is equal to the expected value of the sample

autospectrum estimators.
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b) Thz Covariance

For n independent samples of the random variable x(t)
fhe variability of the smoothed estimate will be % times that of
the sample estimator. It can also be shown that if the samples
are consecutive windowed segments of the same record, the
variability of the smoothed estimate is still reduced by % .
This is contrary to the suggestion of Bartlett (ref. 4.3.), who
states that 6xx(t) should be zero for t> T if the periodograms

of "ad jacent segments are to be independent.

4e2+.4. The Effect of Correcting the Autospectrum Estimator
for Non-Zero Mean

The autospectrum of a random signal x(t) has been defined
as the Fourier transform of its autocovariance function Oxx(t).
For a random signal with a non-zero mean P the autocovariance

function is defined by s-

Toco

Bxx(t) = 10 é_PJ (x(w) =p)(x(t=0) = p) Qu

Up to now we have assumed that the random signal x(t)
has zero mean. If however, the signal has a significant mean

level, it must be removed prior to Fourier transformation.

First consider the effect of correcting the sample auto-

spectrum using the true mean. The expected value of the corrected

estimator is :-

7



Where Sxx(w) is the Fourier transform of the auto-

correlation function Rxx(t).

- The effect of correcting using the true mean is to
subtract an impulse of strength )Lz from the w = 0 point of Sxx(W).
Note that if the mean were not adjusted for, the spectrum around
w = 0 would distorte. To correct this distortion the function

1 _
p L2@D)}*2 would have to be subtracted from Cxx(w).

In the on-line digital computer programmes for auto-
spectrum estimafion the periodograms cannot be corrected using the
true signal mean, since it will not generally be known. Because
of this‘the mean level is compensated for by subtracting the sample

mean, x , from each segment. Where the sample mean is defined as :-

x(t)dt

il
1
=1 L
IR YOI [

Since the sample mean is only an estimate of the true mean, it is
to be expected that the statistics of the corrected autospectral

estimztes will be zltered.

.

Consider the expected value of the mean-corrected sample
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autospectrum s-

—Jw(tl—tz)

E@u(w):} = ;11- detldtzl(ti)l(tz) E {(x(tl)- ;)(x(tz)-— ;)}e

TTITE{Lz(w)* Boxe) + 1) essssssnnes Galls

+T
w7
=T

2

Where I1 is the error due to correcting for non-zero

mean with the sample mean.

From equation 4.12. the effect of using the sample mean
to correct for non-zero mean is to introduce extra bias terms in
the region of w = 0. The size of the additional bias terms depends
upon the sample record length, and the extent to which the bias
near the origin affects other regions of the auto-spectrum .s

governed by the shape of the spectral window, L(w).

The effect on the variability of the autospectrum
estimator of using the sample mean to correct for a non-zero mean
level is more difficult to evaluate. However, using the methods
of appendix 2 it can be shown that the variance of the mean-

corrected autospectrum estimator is approximately given by s-
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- r
Var { Cxx(w) — Var{ Cxx(w)) + I essosensscns Belde
{ } corrected & :} 2

I, - —f_’;—— 1) {1) * Fx()) i

_Frém equation 4.13. it is seen that the effect on the
covariability of correcting for the mean level is to inflate the
covariance in the region & = 0. Like the additional bias, the
extent to which the extra cévariability affects regions of the
spectrum in the vicinity of the origin depends upon the shape of
the spectral window L(w). However, unlike the extra bias terms,

the extra covariability reduces with 'n'.

To show the likely magnih.ide of these effects consider

z

the following simple example. Let, x(t) be a gaussian white noise
5 .
process with variance G'x:r; and let the window function be the

simple rectangular function 1R(t), defined as s-

% T

lR(t) = (T) Itl < 3

T

IR(t) = 0 1t >§
ap = 1

Substituting for lR(t) and putting [x(@w) = Oxx in
equations 4.12., the bias error due to correcting with sample

mean is g-
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&
2 sin\ 2
I © 2o o
I1 XX Wl
2
When ¢ = 0, I; = = Oxx’. Therefore at zero frequency

*
the expectation of the sample mean-corrected autospectrum is zero.

Ag the frequency is increased the magnitude of I1 decreases

rapidly, and at w = E%L the error has its first zero. Beyond this

2
frequency the meximum value that I, attains is - Oxx” 0.045 at

;4

w = 0,
T

Substituting for lR(t) and [xx(w) in equation 4.13., the

additional variance term caused by the sample mean-correction is :=-

2

¢ [l

" Oxx sin\ 2

I, = 12 = oT
2

From this expression it is seen that, at«w = 0 the
vaiiability is inflated by a factor of 12 by the sample mean
correction. However above this frequency the additional variability,

like the bias error, decreases rapidly and is negligible for

w > 2;‘ o Therefore in this simple example we have shown that the

errors introduced by correcting the autospectrum estimete using the

- ™ )
sample mean are negligible above W = gf- « In discrete auto-

spectrum estimation this means that only the d.c. periodogram

component need be discarded. au) .
* i uﬂw,\ L—(W) w sacdanc o5 OV A D
/ﬂu-b [0, (V) S‘* At w
Jurctien, :thxux::k¥t\ produc  dhe o{f12~mr O s
e lML U'(J"} ~ D\Yb {rua wShe~e L ( uo) V> TN CSW»Q A H ANy

Wid oo, -



4¢2¢5¢ Sampling Distribution and Confidence Intervals for
Autospectrum Estimators

The sample spectrum of a normal r.v. x(t) may be written

as s$-

Cxx(w)

% Jl(tl)x(tl) cos wt,dt, ’ + '<lI fl(tz)x(tz)sinwtzdtz
frofxe)) ¢ [mfxe))”

Where X(w) is the Fourier transform 2of x(t)1(t).
Both [Re X(w)] , and [Im X(w)] are
chi-square variates with one degree of freedom. Using the
10 Cosut, it can be shown that [Re X(w)]

and [Im X(w)] are independent. Hence Cxx(w) is distributed as a

orthogonality of sinwt

chi-square variate with two degrees of freedom. In a similar fashion,
the smoothed spectrum estimator can be approximated to a chi-square

distribution.

If the approximating distribution is a chi-square
distribution with Y degrees of freedom and expected value a, the
parameter a, and ) can be found by equating the first two moments

of the estimator to the corresponding moments of the distribution.

E {_ Exx(wg = aV
Var {Exx(w)} = 2a2V

Therefore s-

Y i E{Cxxw} o on
Var{Cxx(w} ) P ARRPRT—— ) 17, £

{Cxx w N xﬂwz
y 14

®
il
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I)Ekx w

xx ()

distributed with 2n degrees of freedom. Note that this applies no

The quantity is approximately chi-square
matter what window function 1(t) is used. Confidence intervals for

|§x@o) can be constructed using tabulated chi-square distributions.

4.2.6. Linear Modification

In this section the recsons for linearly modifying the
data segments are given, and the properties of the window function

used in the on-line digital computer programme are discussed.

The expected value of the autospectrum estimator has been
shown to be the convolution of L2@0) with the true spectrum [xx(w).
Ideally L2G~9 should be impulsive, however this is only so in the
limiting case when the sample duration tends to infinity. In
practice Lgﬁo) will have the cheracteristics of a low pass filter,
that is, it will have a non-zero bandwidth and a finite asympiotic
decay rate. The estimeted autospecfrum is thus a distorted version
of the true autospectrum. There are two types of distortion that
can be expected, one due to the 'smearing together' of close
frequencies, and the other due to the interaction of distant
frequencies. The first of these is determined by the bandwidth of
the spectral window, and to reduce local distortion a narrow
bandwidth is required. The interaction of distant parts of the
autospectrum is termed 'leakage', and is the phenomenon whereby a
strong periodic component in an autospectrum can swamp low amplitude

variations in the autospectrum. To suppress this type of inter-
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action a window function with & high asymptotic decay rate is

required.

Unfortunately the bandwidth, and asymptotic decay rate
of a window cannot (for fixed T) be independently specified.
Improving one feature tends to affect the other adversely. Because
of this trade-off between bandwidth and asymptotic rate,the choice
of window must depend upon the shape of the autospectrum to be
measured. In the on-line digital computer programmes the author
sought to overcome this problem by using the most sophisticated
window that could be rapidly executed in a real-time spectral
eénalysis programme, and to build into the window some control over
the trade-off between bandwidth and asymptotic rate. This enables
the operator to adjust the balance between bandwidth and asymptotic

rate at run-time.

We now restrict our attention to the data window function
used in the on-line digital computer programmes. This is tue

Generalised Hanning window, defined by :-

lH(t) =3 T-%{l - cos'(wp‘t + ¢)} : = g< t < "iT'(%.- p)

-1

ol ; - (3 - p)<t<T(3 = D) cecccccces 4150

i3

= & T_%{l - cos(wpt - ¢)} ; (4 - p) <t<

27T T . "
wherecup = Top ? and @ = Qi.E.’ and T is the duration of the data

sample, the parameter p may take any value between O and 3.
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The Generalised Hanning window was chosen as the most
efficient for real-time use because it can operate using the
existing FFT trignometric look-up tables. Alternative windows of
comparable sophistication (ref. 4.4.) employ power law curves and
would thus require separate look-up tables. The possibility of
of working without look-up tables was explored but rejected

because it seriously wasted computing time.

The Fourier transform of the Generalised Hanning window
is 1=~

Ly() = Lp@,T(1-p)) . Uy(,p) vsspaswms e, 4ol

(1-p)
Where, Lo (w,7(1-p)) = {T(l—p)} SJ::’T (l-—)—p

and,  Uglw,p) = (1-p) J

The Fourier transform of the Generalised Hanning window
is given as the product of the transform of a rectangular window
of duration T(1-p) seconds and the function UH. This function is
fairly constant fromew = 0 to wp, its envelope then decays at a
rate proportional to w-z. It therefore controls the asymptotic
rate of decay of the Generalised Hanning window, since by varying

P between O and 4, the breakpoint of Uy can be varied between %E

and infinity.
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The effect upon the rectangular window of varying p is
to alter the bandwidth. When p is small the width of LR is small,
and as p increases so does the width of the rectangular spectral
window. Since the bandwidth of LH is controlled by LR’ varying
P results in a trade-off between bandwidth and asymptotic rate.
The half-power bandwidth of the Generalised Hanning window is

approximately given by s-

_ 21T
QJB “{ S5 (1 + 2p)

The asymptotic decay rate of the Generalised Hanning
window is proportional to u)_l for0)<§¥%3and proportional to
w’3 for w>2_TT .

Tep

The effect of varjing p on the bandwidth and asymptotic
rate is illustrated by graphs 4.1. tb 4.6. These grephs cshow the
behaviour of L;@d) for various values of p. The verti~al scales
are normalised so that LE(O) = 1, and the horizontal scales are

celibrated in multiples ofzég The arrows indicate the breakpoints

of the function UH'

Graph 4.1. (p = 0.5) shows the most extreme use of the
Generalised Hanning window when the entire record is modified.
Note the wide central lobe, and the rapid decay rate of the minor
lobes. Graph 4.6. (p = 0) shows the limiting case of the
Generalised Hanning window, when none of the data is modified. In
this case the window becomes a rectangular function LSQU,T). Note

the narrow central lobe, and the slow decay rate of the minor lobes.
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The bias due to application of the Generalised Hanning
window is now considered. In section 4.2.3. it was shown that an
approximate expression for the bias due to windowing can be
obtained in terms of the power series expension of %{:1(t)*l(tﬁ.
Using this technique the bias can be expressed in terms of the

derivatives of rgx@n) and the coefficients of the series exvansion.

The first four polynominal coefficient in a polynominal

expansion of lH(t) ) 1H(t) are tabulated for various values of p

q
in Table 4.1. These figures were obtained by fitting a degree

twenty polynominal to the numerically convolved Ceneralised Hanning
window. The curve fitting was done on a digital computer using

the orthogonal polynominal method of Forsythe (ref. 4.5.).

It may be seen from the table that as p decreases, the size
of the high-order coefficients increases rapidly. This indicates
that when the autospectrum contains rapid fluctuetions (associated
with high order derivatives), the bias may be minimised by using
P = 0.5 in the Generalised Hanning window. Conversely, when the
autospectrum is relatively smooth there is little advantage in
choosing a large value of p. When used in conjunction with the
numerically differentiated measured autospectrum the figures in
Table 4.1. may be employed to obtain some degree of bias compensation.
In practice only the coefficient a, need be used, and a mean value for

this coefficient when the Generalised Hanning window is used is =6.2,
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In the real-time autospectrum estimaiion programme bias
compensation should nect be necessary since the parameters N and p
can be varied on-line to reduce the bias to negligible proportions.
However the technique of expressing bias as a function of derivatives
of the autospectrum is still extremely useful because it enables us
to establish the cause of bias errors. In chapters 5 and 6 for
instance the technique is used to establish the possible sources of

bias error in frequency response estimators.
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TABLE 4.1.

Table of the first four polynominal coefficients obtained
by fitting an order twenty orthogonal polynominal to the

self convolute of the Generalised Hanning window for

various values of p.

P 8, 2, ag ag
0.5 -6.56 ) 20.2 -41.35 1.3
0.4 -6.1 26.3 -113.2 376.7
0.3 -6.25 - 38.7 ~204.9 704
| 0.2 -6.67. 56.7 -371 1487
0.1 -6.73 64.7 -441.5 1785
0 -6.43 66 -470 1918

In the table an is defined by s-

20
i on) = > e
n=0

and because the Generalised Hanning window is an even function,

coefficients of odd powers of t are zero.
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4.2.7. Discrete Autospectrum Estimation
4.2.7.(a) Discrete Estimation Formulea
In the previous pages the properties of a continuous auto-
spectrum ‘estimator have been presented. In this section these results
are used to obtain the corresponding properties of the equivalent
discrete autospectral estimator, This discrete estimator is the one

used throughout the real-time digital autospectrum estimation programmes.

Firstly the expressions which relate the discrete Fourier
transform and the continuous Fourier transform are given :-
The discrete Fourier transform of an N point time series Xgy

modified by the window function li’ is defined as :-

X
2
’ 1 ik
T Z x;1; Wy
i= - >
where, W, = ex (-:j—2—TL )
I PA\=Iy

The Fourier transform of a signal x(t) modified by 1(t) is defined as :=

+
-J wt

X(w) = Jx( t)1(t)e at

-0

If the time series was obtained by sampling x(t) every

A seconds, then the discrete, and continuous, Fourier transforms are

related by :=-
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At AT D M)

eeeceevsnoae 4-170

w = 2T

' k
Where — N
The discrete Fourier transform is thus a discrete aliased,

form of continuous Fourier transform.

Now the properties of the discrete autospectral estimators
are obtained assuming that the spectrum of x(t) is zero above @ = —E— )
and that spreading of the spectrum caused by windowing can be neglected.
Under these circumstances the aliasing can be ignored, so that from

section 4.2,2. the discrete sample autospectrum is :=

2
N.OD
C)Cx(wk) = T { IA‘kI} RN 4-180
2Tk N
Where wk = N ’ aJld k = 0, esvee 2

The function Cxx(b.}k) is termed the 'raw' periodogram of x(t),
and is a set of g— + 1 points on the continuous sample autospectrum

spaced at frequency intervals ofzil% « The smoothed discrete autospectral
estimator is obtained by averaging raw periodograms of adjacent segment
of time series, This is known as the smoothed periodogram.

The smoothed periodogram is defined by :-

(1) '
Cxx(wk) = %n ZC)DC wk) vesecsceasse 4.19,
i=1
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Where Cxx(l) are independent raw periodograms., The
expected value of the smoothed periodogram is a discrete form of

equation 4,5.

E{En(wk)} b %i Lz(wv) Foc(e, )

V= =00

= % Lz(wk) * r)-(X(wv_k) Cessr e e er e 40200

. 2
Here the star indicates the discrete convolution of L QQV)
and r;xﬁqv). The covariance of the smoothed periodogram components

at the discrete frequenciesoak anduoh can be found by writing equation

4.9. in discrete form, Thus :=
Cov{Cxx(wk) , Exx(wh)}
2 2
1 Py
- q2n r}xagh) {§Q~k_h) * L@uk_h)}

. 2 2
v Pl (16y,) * ey )

LR B B 4.21.

The discrete form of the Generalised Hanning window can be

obtained from equation 4.16,

L) = Lo, , N(1-p)) Uy(w,) ceevereeenes 4,22,

3
where Ln(),N(1-p) ) ={\5 s1ariion) )
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cos(ivkp)

wd Te) = (1) ;
1-(2pk)

The smoothed periodogram is a set of g + 1 estimates of the
autospectrum, spaced at frequency intervals %g% . Since A.N is
analogous to T(the sample duration),the calibration of the frequency
axes in gr;phs 4.1, to 4.6, corresponds with the spacing of the members

of the periodogram, Two important results which use this fact can be

obtained from the graphs.

The first concerns the Generalised Hanning window when p = O,
In this case L2H@dk,N) is (from graph 4.6.) identically zero when
W o %{%E (k £ 0), Therefore, from the discrete covariance relationship
(equation 4,21.), the members of an unmodified periodogram (raw or
smoothed) form a statistically independent set of estimators, The
second result concerns the generalised Hanning window when p = 0.5, In
this case L2(w, % ) is (from graph 4.1.) identically zero when

W i;;k (k £0,1), Therefore, each members of a fully Hanned

reriodogram is correlated only with its immediate neighbours.

4.2,7.(b) The Effects of Aliasing

We now consider the effects of aliasing upon the discrete
autospectrum estimator. For simplicity it is assumed that the spectrum
of x(t) is low-pass, and decays sufficiently fast so that only the
first alias need be considered. Therefore from equation 4.17. we can

write ;-

A = A—I%{ X@,) + x*(wN_k)} EORTEN )
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277k *
w v
where, K 7%}ﬁ», and X (w) denotes the complex

conjugate of X(w).

. From equation 4.23. we now define the aliased Fourier transform

of x(t)1(t) as :=

X,0) = x(@) + x*(wN_k)

From this definition the aliased sample autospectrum is :=

1 2
CHA(wk) = "q. , XA(wk) I teseccc s 4.24.
1 * A
— )
- 3 | X@) + X (@)

Now let us consider the expectation and variance of the
aliased estimator. From appendix 3 the expccted value of the aliased

autospectrum estimator is :=
S
E{CXXA(wk)} S— [)_DC(wk) + rJéC(“)N_k) Cecesvrr v 4-250

Also from appendix 3, the variance of the aliased auto-

spectrum estimator is given by :~
Var@xx w ):} o EQ@xx ) 4.26
A k A k L L L R B N . Ll

From the above results we conclude that aliasing does not

effect the variability of the autospectral estimator, and that the
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results of section 4.2.5. can be applied to aliased autospectral
estimators, The undesirable effect of aliasing is to introduce bias
errors into the estimated autospectrum. This bias may be controlled
by introducing a low-pass filter into the autospectrum measurement
scheme, If a low pass filter with power transfer function f(w) is
intrc;duced between the signal source and the on-line computer, the

measured aliased autospectrum will have an expectation :-
Bfonog (o)) = 16) Baxy) + £y ) Feley )

The measured autospectrum can be compensated by dividing by
f(wk). Under these circumstances the bias due to aliasing is given

by :=

£loy )

£e,) i) et

B@’“A("’k)} -

Thus the bias error due %o aliasing can be controlled to be
less than €, rn_oc(wN \c) by choosing a filter whose power transfer

function satisfies the relationship.

f(“)N--k) < € whenw, < Wr

fzwks

The useful frequency range is 0 to wr’ and ideally wr is as
close to the folding frequency as is possible. Several filter
functions can be used to control aliasing in this way, and a discussion

of some suitable filters is given in the next chapter (section 5.3.3.).
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4.3, Real-Time Digital Autosvectrum Estimation Using an on-line

Digital Computer

4.3.1, Real-Time Autospectrum Estimation by Averaging Raw
: Periodograms

In the previous section the poor statistical properties of
the raw periodogram were mentioned, The raw periodogram is an
inconveniept estimator of the autospectrum., Its variance is equal to
the square of its expected value, and so does not decrease as the sample

size decrecases.

A way of overcoming this unfortunate property is to average
n independent peridograms of the same signal. The variance of the
smoothed periodogram calculated in this way would be'% times the
variance of the raw periodogram.. In section 4.2.4. it was shown that
%h;s method can be applied to a single record, by segmenting the data
into n consecutive lengths and averaging the raw periodograms of the
segments, It is now shown that this method can be applied to an on-line
digital computer to obtain autospectral estimates in real-time, First

the basic method is discussed, then a detailed flowchart is given,

The signal to he analysed is fed into the computer analogue/
digital (A/D) interface., The programme, under control of the reﬁl-time
clock, samples the signal at a uniform rate (the clock frequency fc Hz)
and stores the samples in an 'input array'. ‘hen a déta segment of
size N has been read into the 'input array', the data is transferred
to a 'working array', and the input routine reset so that the next
signal reading starts filling the 'input array' again. In the

description that follows it is understood that when a new signal reading
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is due, the real-time clock interrupt stcos the computation flow

temporarily to insert the new data point in the input array.

After transferring the data to the working array the
programme sets about computing (rapidly) the periodogram of the data
block, This is done using the fixed-point FFT described in chapter 3
and the roﬁtines for transforming real data (also from chapter 3), and
conjugate multiplying the Fourier components. The peridogram of the
data block is then added into 'an accumulator array, and the programme
goes to an idling loop until the input array is again full when the

process is repeated.

To show why this method was not viable before the discovery

of the FFT, consider the timing requirements of the algorithm,

The maximum frequency component which can be studied is fc/z,
i.e., half the maximum clock Ifrequency. This is determined by the time,
t(N), taken to compute the periodogram of an N point data block. The
time taken to read in an N point data block is N/fc‘ Clearly this
cannot be less than t(N), otherwise the computer will begin calculating
the periodogram of the new data block before the periodogram of the
previous block is stored., Therefore, N/fcmust be greater than t(N) to
allow the computer time to compute and store the periodogram of an

N point data block, and return to the idling loop.

There is no 1limit to the lowest sampling frequency, so the

useful frequency range which can be analysed using this on-line
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~ technique is :=

N
O""’m Hz

Using the traditional discrete Fourier transform and floating-
point arithmetic from table 2,1. +(1024) & 20 minutes, so the useful

frequency range would be :
0 — 0.42 Hz

Using the FFT in fixed-point t(1024) & 1 second, so that the

useful frequency range is :=

0 --» 500 Hz

The FFT thus enables digital spectral analysis to be carried

out on-line and in real-time over a wide band of sampling frequencies,

The important advantage of tﬂis system is the statistical
stability of the spectral estimates, Provided that the signal is
stationary the computer can continue averaging periodograms until the
spectrum accumulator is full, The possible stability of the estimate
depends upon the accumulator size. The programme described here can
average 8192 periodograms without overflow, giving a possible variance
improvement of 1/8192. This improvement would not be possible using
off-line techniques, since it would require storage space in the
computer for a data record of 8192.N points, Even for modest values

of N the storage requirements would be very large.
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To summarise, the method of averaging independent periodograis
can be implemented in real-time on a digital computer. The FFT is used
to calculate rapidly the periodogram of consecutive data blocks. The
technique was not viable using the traditional DFT because its slowness
imposed severe restrictions on the maximum sampling rate, The key
advantage of the method is that (practically) arbitrary statistical
stability can be attained if the signal is stationary, and if a

sufficiently long record is available,

4.3.2, Description of the On-Line Autospectrum Estimation
Programme

In this section a real-time on-line autospectrum estimation
routine programmed on a GEC 90/2 on-line computer is described, This
is done with the aid of the flowchart Fig., 4.1. appended to this
chapter, The flow chart consists of three routines, the RTC routire,

the analogue input routine, and the main routine.

Mobility between routines is made possible by the 'priority
interrupt! system. The (Real Time Clock) routine has the highest
priority and when the interrupts are enabled can interrupt any instruction
box starred thus :- * ., It does this at the clock frequency. The
analogue input routine has the second priority and can interrupt any
flow~chart block crossed thus := + . It interrupts whenever the input
A/D converter signals the completion of a conversion., This occurs a
short time after the RTC routine initiates A/D conversion. After

"servicing" an interrupt routine, the computer returns to the point in

the programme at which it was interrupted.
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MAIN PROGRAMME.

$START

Set parameters, clear spectral accummulator,
and wait on breakpoint | .

Run when breakpoint | set, and
enable interrupt.

%
+ Display loop ; display contents of spectral
accummulator.
A
It breakpoint 2 set, disable interrupt . — <G — —‘
f Transfer time series to working array, remove I
sample mean and linearly modify,
* lat
&+ Form perlodogram, add into spectral accummulator. I
W |
REAL-TIME-CLOCK INPUT ROUTINE . |
ROUTINE. |
Select analogue ¥ | convert analogue input and
Input. read into input array . I
Return to main % | It inputarray full, reset e __'
programme at input counter and skip to A .
interrupted instruction. &

FIGURE 4,1,

Return te main programme

at interrupted Instruction.

SCHEMMATIC FLOW CHART FOR_THE REAL TIME AUTCSPEC TRUM

ESTIMATION  ROUTINE. .




The main routine has no interript associated with it.
During run-time the programme is controlled by the RTC routine, Ultimate
programme control is in the operator's hands; the 'breakpoints' on the
computer console determine when to stert/stop the estimation, and

control the various data output routines,

4.3.2
R . (2) Initial Parameter Settings

At the start of an experiment various parameters must be set,
they are (i) the size of the data block N, (ii) is suppression of the
d.c. component required?, (iii) is linear modification of the data
required? (This refers to the 'windowing' of the data blocks prior to
Fourier transformation. The effects and purpose of this are discussed
in section (4.2.6.)), (iv) the parameter p to be used.(This is connected
wiéh the data windowing and governs the fraction of the data that is
modified.) The sampling frequency is set-up by attaching the output of a

square wave generator of appcopriate frequency to the external RTC input.

4.3.2.(b) Ruming the Programme

After the parameters have been set, the programme computes
the bit-reversed table appropriate for that value of N, and sets the
subsidiary programme parameters, The computer then erters a wait mode.
To start the programme BPT 1 is depressed (set), this transfers the
programme to a display loop which the RTC, and analogue input routines
can interrupt, The display loop is a routine which,via the analogue

outPutS,diSplays on an oscilloscope screen the contents of the spectrum
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~accumulator, This is the equivalent of the idle loop mentioned in
4.3.1., and enables the operator to see the current estimate of the
autospectrum while “the computer is not calculafing the periodogram of

a data block,

When the Nth data point of a block has been read by the
analogue input routine, the routine resets the input parameters.
Instead of returning programme control to the appropriate point in the
display loop, the routine diverts control to block A on the flowchart,
This part of the programme transfers the newly completed data block to
a working array. Here the followihg operations take place :=-

(i) If suppression of the signal mean is required, the sample mean
is calculated and subtracted from the working array
! , (ii) If linear modification is required the data is multiplied by the
Generalised Hanning window function.

(iii) The discrete Fourier transform of the data is then obtained

using the FFT and a routine for transforming real data.

(iv) The discrete Fourier coeificients are then conjugate multiplied
and added into the spectral accumulator,

The programme then returns to the display loop and the updated

spectrum appears on the oscilloscope screen,

4.3.2(c) Stopping the Programme and Subsequent Data Handling
When the operator decides that the.displayed spectrum is
sufficiently smooth, the programme can be stopped. This is done by

depressing BPT 2, this causes the RTC interrupt to be disabled, The
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programme now rests in the display loop.

The possibility arises that the operator wishes to obtain
'smoother' estimates from the existing estimates., This may be done by
averaging adjacent spectral estimates, this increases the statistical
stability of the estimates but also increases their bandwidth, so each
estimate mﬁst be thought of as the average spectral power over an

increased bandwidth,

Provision is made for additional smoothing using the Hanning
filter weights %4, %4, 2. Depressing BPT 4 convolves the accumulated

spectrum with the weights 4, %, 4. By repeatedly depressing BPT 4

the spectrum can be smoothed as much as desired., Should the operator
feel he has smoothed the spectrum too much, the original accumulated

r

spectrum can be recalled,

Permanent records of the accumulated spectrum can be teken
by :- (i) photographing the oscilloscope trace, (ii) using the on-line
graph plotting facility. (This is triggered by set/resetting SES §.)
(iii) punching the data on paper-tape. (This is triggered by set/reset

BPT 3.)

The paper tape with the accumulated autospectrum punched on
it is then used as data for an off-line "Algol" programme, This
programme is coded for the University Elliot 4130 computer, and plots
out the estimate of the autospectrum to either logarithmic or linear

axes, The programme also prints out the autospectrum estimate.
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4.4. Practical Aspects of Real-Time Digital Autospectrum
Estimation

4.4.1, Accuracy
The accuracy of the digital autospectrum estimation programmes

is determined by the size of the errors involved in collecting N data
points and calculating the periodogram. The main error sources are;
quantisatign error at the analogue-to-digital converter, and round-off
error in the calculation of the FFT, For the purpose of assessing the
accuracy of the method, these errors can be lumped together, and
replaced by an equivalent white noise source n(t). If the measurement
noise is independent of the signal, the measured autospectrum of x(t)

will have an expected value given by :-

{:l;oc(oo)} = Ix@) + 071112 sinspssiense §e28s

’ measured

Where OTn® is the variance of n(t) and [xx(w) is the auto-

spectrum of x(t),

The variance of the error sources is now determined., Consider
first the quantisation error: The GEC 90/2 computer used in this
project has an eleven bit analogue-to-digital converter. The leading
bit is used to indicate the sign of the signal, and the remaining
ten bits represent the magnitude of the signal. The GEC 90/2 uses a
twelve-bit word, and the output of the analogue-to-digital converter
is inserted in the least significant end of the word., Therefore,
assuming that the binary point is to the right of the most significant
bit, the quantisation error in the analogue-to-digital conversion is

12 12

to +2°°°, and has a variance

uniformly distributed in the range -2~
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1,24
of 17 2 .
The round-off error in the fast Fourier transform was
considered in chapter 3. From section 3.4. of chapter 3, the upper
bound on the variance of the round-off error in transforming a o™

point real data block is C2.2".2722,

The constant C depends upon the type of array-scaling used
in the fast Fourier transform. The FFT used in this project employed
the modulus rescaling criterion with rescaling in the loop. From

chapter 3, the value of C for this FFT is +0.41.

The upper bound on the variance of the measurement noise is

%hgrefore t-

ooy 2?2 4 L, o2
z C22m2-22 LA B B L B 4.29.

Since the digital autospectrum estimates are scaled so that
the maximum component lies between 1 and %, the measurement noise
level can be conveniently expressed with respect to the magnitude of
the maximum component of the measured autospectrum., In logarithmic
terms the upper bound on the measurément noise level is approximately

m
20 loglo(C é /j'll)dB compared with the maximum autospectrum component.

The above noise figure represents an upper bound on the

measurement noise, since it assumes that a rescaling occurs at each
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stage of the FFT. If only s rescalings vccur, then an approximate
measurement ncoise level can be obtained as 20 loglo(C 4F/éL11)dB
down on the maximum autospectrum component, The value of s may be
read from the computer after an autospectrum measurement, and used to

determine the approximate measurement noise level,

4.4.2. Limitation on Sampling Frequency and Frequency Resolution
In this section the maximum sampling, and the frequency

resolution of the real-time autospectral estimation programmes are
given, Firstly we consider the sampling frequency. For an N point
block the maximum sampling frequency is determined by the time taken
to estimate the periodogram of an N point real time series, Specifically,
if'it takes t seconds to calculate the periodogram of N data points,
the maximum sampling frequency is fm = %’. The time taken to
calculate the periodogram depends upon the type of fixed-point FFT
used in the programme, and the ancillary data processing routines,
(such as d.c. suppression and data windowing). The fixed point F¥T
which is used in the project uses the modulus rescaling test with
rescaling in the loop., From chapter 3 this I'FT can transform a 256~
point real time series in 0.27 seconds., An extra 0.015 seconds are
required for other computations, and so, assuming that no extra data
processing is required, the maximun sampling frequency that can be
used is :=-

£ = $00 Hz

If the mean level is suppressed and linear modification is
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used, the time required to compute the p2riodogram is increased to
0.32 seconds. Under these circumstances the maximum sempling

frequency is reduced to :=~

f = 800 Hz
m

These maximum sampling frequencies can be increased at the
expense of accuracy by using the least accurate fixed-point TFFT
(described in chapter 3). Using this transform the maximum sampling

frequency can be increased to 1 KHz,

The frequency resolution is determined by the half-power
bandwidth of the data window, In the on-line digital computer
programmes the Generalised Hanning window is used. This window is
hegcribed in section 4.2.6., and from that description the half power

bandwidth of the Generalised Hanning window is given by :=

wB Q‘/ g:v_s (1+2p) CRC R R B R 4030.
pel
Where,oas is the angular sampling frequency, and p is a
parameter of the Generalised Hanning window, This parameter can

theoretically take any value between O and %. However, in the

programmes described here it is restricted to be a binary fraction,

As well as affecting the resolution of the Generalised
Hanning window, p also controls the asymptotic decay rate., In auto-

spectral analysis the decay rate of the Generalised Hanning spectral

window is proportional to co-z for W <6ub and proportional toca-6
w
for W w , where W = =— .
p P P
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Therefore the parameter p shou’d be set at run-time to control
the asymptotic decay rate of the Generalised Hanning window. The
appropriate data block size is then found by substituting OJS, &JB and
P in equation 4.30, It is not possible to select any specific data
block size because of two restrictions upon N, The first restriction

is set by the size of the FFT trignometrical 'look-up' tables used.
In the proérammes described here the maximum value of N is 256, This
limit was set arbitrarily at the time of assembling the autospectrum
estimation programmes, and can be easily increased by extending the
'look-up' table. The ultimate limit upon N is set by the size of the
computer store, For the GEC 90/2 with an 8K memory it should be

possible to have N = 1024,

The second restriction upon N is due to the FFT' algorithm
which restricts the programme to processing data blocks of size o
(m integer). Therefore, the maximum resolution of the real-time

w
digital autospectrum analysis programmes is 53% (1 + p). This can be

doubled by selecting N = 128, and so on.

4.4.3. Restrictions Upon the Useful Frequency Range Set by
Aliasing

Aliasing has been shown in section 4.2.7. to introduce bias
errors in autospectrum estimation. It was also shown that these
errors can be controlled by low-pass filtering the data before
measuring the autospectrum, If the low-pass filter has a power
transfer function f(®), then the bias due to aliasing at frequ.encywk

is given by equation 4.27. In chapter 5, some suitable low-pass
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filter functions are discussed. The simplest and the most readily
available filter function treated in this chapter has the Maximally
Flat, Butterworth response., It is shown that using a fourth order
Butterworth low-pass filter with cut-off frequency wc = 0.3&)5, the
alias distortion in the frequency range W = 0 to O.4<-0s is less than

0.04 hex(eo -w),

Therefore in practical autospectral measurements ifwl, is
the maximum frequency of interest and the sampling frequency is set
at 2.5, fhen a fourth order Butterworth guerd filter (w, = 0,754)
is sufficient to ensure that the bias due to aliasing is less than

0.04 ln_cc(ws-wl) in the frequency range W = 0O to(dl.
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5. FREQUENCY RESPUNSE ESTIMATION

5.1. Introduction

This chaﬁter deals with some aSpectsAof frequency response
estimation from noise-like data., Section 5.2, describes the prcperties
of a continuous frequency response estimator obtained from finite joint
records of a system input and output signals. In section 5.3. the
corresponding discrete estimators are presented. Also in this section
the problem of suppressing aliasing in discrete frequency response

estimation is treated.

Section 5.4, describes the application of these discrete
estimators to on-line computers. In particular it is shown that, using
the FFT, digital frequency respénse estimates over a wide frequency
range can be obtained in real-time, A real-time frequency response
estimation programme is described, and in section 5.5. its accuracy,

resolution, and frequency wonge are discussed,
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£(w)

H()

ko)
K&y, ()
1(t)

n(t)

Pry(w)
Qxy(w)
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List of Symbols for Chapter 5

kth coefficient of the discrete Fourier transform of xili

" .n " " " " " " yili

Sample autcspectrum of x(t)

smoothed estimate of the autospectrum of x(t)

smoothed discrete estimate of the autospectrum of x(t)

aliased, smoothed estimate of the autospectrum of x(t)

sample cross-spectrum of x(t) leading y(t). The modifications
to denote, aliased,'discrete, and smoothed autospectrum
estimates also apply to the cross-spectral estimate.

power transfer function of a filter

the frequency response function of a system

aliased estimate of HGO)

the squared coherency betweeﬁ x(t) and y(t)

the aliased estimate of K)2cy(w)

a data window function

a discrete data window function

number of samplé spectra averaged to obtain a smoothed estimate
a gaussian, zero mean, noise source

a probability

smoothed estimate of the co-spectrum of x(t) leading y(t)

" " n " quad_spectmn" " " "

£

the power transfer ratio of a filter
: fh&ki
bexoy)

.

()

the autospectral ratiom

the duration of a data sample
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x a time series obtained by sampiing x(t)

1
x(t) input signal to a system

X(w) the Fourier transform of x(t)1(t)

XA(w) the aliased Fourier transform of x(t)1(t)
y 4 a real variable

vy 2 time series obtained by sampling y(+t)
y(t) output signal of a system

Y(w) the Fourier transform of y(t)1(t)

YA(w) the aliased Fourier transform of y(t)1(t)
4 a real variable

r;oc(w) autospectrum of x(t)

[xy () cross-spectrum of x(t) leading y(t)

A | a sample period .

. AR confidence band associated with  H(W)
N T
J\-x'y(w) co-spectrum of x(t) leading y(t)

o 2 a2 variance

Blw) the argument of H(w)

ﬁA(w) the aliased estimate of P(w)

\Iny(w) the guad-spectrum of x(t) leading y(t)

W angular frequency
Uc the angular cutoff frequency of a filter
27
b ™ the discrete angular frequency B_NE
w, the angular sampling frequency .
2 .
i He CA%‘TUJ v e {3 ¢ ((r) (dl.wu«zh o (mMm&)
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input
S x(t) LINEAR, TIME-INVARIANT,
e e

TWO PORT NETWORK.

FIGURE 5. |. LINEAR SYSTEM WITH OUTPUT CORRUPTED BY NOISE .

5.2. Statistical Properties of Open Loop Freguency Response
Estimators

5.2.1, Introduction

In this section we consider the properties of :‘requency
response estimators associated with open loop éystem identification,
The type of system considered is the two-port, linear, time-invariant
network shown in fig. 5.1., whose output is corrupted by noise, The
input, x(t) and output y(t) of the system are assumed to be normally
distributed random variables, with zero mean levels, The corrupting

noise n(t) is also assumed to be a normally distributed random variable,

and is uncorrelated with the input sigmal,
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5.2.2, The Estimators
The frequency response function, H(w), of the system shown
in figure 5.1, may be measured using the input autospectrum [;x, the
output autospectrum [yy and the cross-spectrum between x(t) and y(t),
r;y. The frequency response may be obtained from these functions

using the equation :-

Hw) o) 5.1

ihere  [y() = Axylw) + 3 Pryeo)
./\nyO) is the reél part of [xy(w) and is termed
the co-spectrun of x(t) leading y(t)
%ﬁmy@U) is the imaginary part of lxy(w) and is

termed the quad-spectrum of x(t) leading y(t)

In practice H(w) must be measured using estimaics of the auto
and cross-spectra. When assessing the quality of these estimates it
is useful to have a frequency-domain measure of the correlation

between x(t) and y(t), This measure is provided by the squared coherency

function, defined by :-

2

2
) ) e

The squared coherency function can be rewritten in tems of

the input auntospectrum and the noise autospectrum, Thus :=-
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1

1+ ——-—-L)——Em =
|5(w) | < Bex(w)

-
Kzylw) =

3

= e LR R B 5030
1 +__(_lr5nw
[22(w)

Where, from figure 5.1., [zz(w) is the autospectrum of the

noise-free system output,

From equation 5.3. it is seen that the squared coherency is
bounded by O and 1. The actual value that the squared coherency takes
is governed by ratio of the noise-free output spectrum to the noise
spectrum; [zz(w)/ Tno). When the squared coherency is unity, the
noise spectrum is zero, and the system output is entirely composed of
components due to the input, Conversely, when the squarci coherency
is zero, the odtput signal to noise spectrum ratio is zero, and the
system output is composed only of the noise n(t). Thus, the squared
coherency gives a measure of the correlation between the input and
output signals, It is therefore useful in assessing the quality of a

frequency response estimate,

Estimators of the frequency response and squared coherency
based upon finite samples of x(t) and y(t) are now defined. Let x(t),
y(t), (0 <:t {nT) be jointly recorded samples of the input and output

signals of H(w). These samples are each sub-divided into n segments

of duration T seconds. The ith segments are defined as :-

115



x(i)(t) = x(t + iT -’—g— )

cesecscoce Dolde

i
N3
/\
o
A
N3

y(i)(lt) = y(t+ir-2)

The ith sample auto, and cross-spectra are obtained using

the expressions :=

N ¥ 00 . N 5
C)(cx2w) - -‘1; Jx(l)(t) 1(t)e e

i : -ju 2
C§y2&)) = -;-' J’y(l)(t) l(t)e ’ tdt R 5050
Cxy(w) = 3 x () 1(t)e at, | ¥y (1) 1(t)e dt

Where 1(t) is a window function drawnh from the class of

functions defined by equation 4.2,

The smoothed semple auto and cross-spectra based upon the

samples x(t) and y(t) are defined by :-
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= (1)

Gox(e) = L E Cxx (@)
i=1

_ . (4)

Syy() = %zcw () vevesseseens 5.6
i=1

a S
Cy(w) = %ZCW ()

i=l

The smoothed cross-spectral estimator ﬁxy@D) is complex, and

is defined as :=-

Cxy(@) = Pryl) + 3§ Do)

Where Pxy(w) is the real part of Cxy(w), and is the smoothed
sample co-spectrum of x(t) leading y(t); and Qxy(w) is the imaginary

part of Cxy(w), and is the smoothed sample quad-spectrum of x(t) leading

y(t).

Note that in our definition of cross-spectrum we have used
the 'plus' convention, this convention is adhered to throughout this
thesis, The alternative convention is to define the, cross-spectrum

estimate as :=
Cxylw) = Pxy(w) - §j Txyw)

And thence define Qxy(w) as the sine Fourier transform of the odd part

of the cross-covariance estimate, (see for example ref, 5.1.).
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The frequency response and coherency estimators associated

with these auto-and cross-spectrum estimators are :=
A Cxy(w
H(w) -Cﬂ(—)- LR R ) 5.7.

2
Rxy(@) =

eecscsveree 5.8.

Cxx(w) Cyy(w)

The frequency response estimate is usually expressed in

terms of its modulus |f(w)| and argument 8@50; thus :=
) = 1R exp(s ) )

The modulus and argument of H(w) are termed the 'gain' and
'phase' respectively, and they are defined in terms of the auto- and

cross-spectrum estimators as :=-

(i« e’
1) - (@) + Oxy(w)

Caox(w)

N -l|= w
pw) = tan (W)

5.2.3., Variance and Bias of the Estimators

Approximate expressions for the variance of the estimated

frequency response, and squared coherency may be obtained by expanding
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the estimators in a Taylor series expansion about their expected
values as indicated in appendix 4. Using this technique the variance
of ﬁ@») and ﬁxy@») can be expressed approximately in terms of the
covariance matrix of the smoothed spectral estimators., Using the
results of appendix 2 the covariance matrix of the smoothed estimators

of equation 5.6. can be obtained as :=

- - [ - 2 N
cov [T | & 2 e, [yl 2= (Bry + ), 2 (Fiy - F0)
Cyy 5
?xy ,;y y _rgx(EY‘*'}x)vér';m(EY'I;x)
| &y | 2 LB ey 9.l B
%(Ey+fh+2fhfsv).zg(ﬁy-rﬁ)
2 2
: 12 b =By

veessesav s 5090

In this matrix, S denotes diagonal symmetry. <le bias error

due to windowing has been neglected, as has the dependence of che auto-
and cross-spectra upon W , This practice is maintained throughout the

remainder of the chapter, and the reader is asked to take the dependence
of spectral functions upon w as being implicit. Using the elements of

matrix 5.9,, the following approximate variance expressions are

obtained :=~
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lHi 2n ;;;
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V]

1 (1
Va.r{ﬁ:} P bl 1 eereereress 5,10,
v {ﬁe:} | 2 [ 2 > |2
L . (k% (1 - Kky)
K%y n

These expressions show that the variability of all estimators
depend upon the coherency between the input and output. When the
squared coherency is unity, the variances are zero, and (neglecting
bias errors) the parameters can be measured exactly. Conversely, as
the coherency decreases, the variance of the gain, phase and coherency
estimators ié increased, The effect of smoothing is shown, since the
variance expressions are all inversely proportional to n, the number

of sample spectra that are averaged.

Approximate expressions for bias due to windowing may be
obtained by expressing the bias of the estimators in terms of the bias
in the auto, and cross-spectral estimators, (as shovm in appendix 4).
Using this approach, and the results of section 4,2,2, on bias errors,
the approximate bias expressions for gain, phase and squared coherency

are §e-
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¥
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: (N lHl(ié)}

-3,

B{ﬁ} - ',H'. S dad e snds Bulls

b
o
) o
+
N
o

B{%%y} N % (1 - K%y) + S% Kxy Kxy = {ﬂ Kxi}z

Where a, is the second term in the power series expansion of
%{:l(t) * l(t)} , T is the sample duration, and the dot notation is
used to indicate the first and second derivatives with respect to
angular frequency. In the on-line digital computer routines for
frequency response estimation the linear data window used to modify
the records is the Generalised Hanning window, From TABLE 4,1,, the

value of a, for this window is approximately -6,

The foliéwing relevent points can be made concerning these
bias expressions,

i) The bias due to finite record lengths is inversely proportional
to the square of the sample record length, T. In discrete estimation
expressions this is replaced by N the number of data points per
periodogram, and the derivatives become appropriate finite differences,

ii) The bias in the gain and coherency estimators contain terms
proportional to é2, the squared first derivative of phase, This implics
that if there is a large time delay T between x(t) and y(t), then the
bias in gain and coherency will be proportional to {:%'}2. If T is
of the same order of magnitude as the sample ?ecord length, then

significent bias errors may occur, In the estimation procedure used
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in the on-line computer programmes, it is unlikely that such large
delays would be encountered, However, should such delays occur, they
can be compensated for by entering new readings of x(t) into an S stage
sﬁift register, and storing the shift register output in the input
array referred to in the programme description (section 5.4.2.). This
compensates for an S.2\ sec. time delay between x(t) and y(t), where

A is the sampling periocd.,

The problem of time delays has been discussed by Akaike
(ref, 5.2.) in connection with the 'Lagged-Products' method of spectral
analysis, This method employs a data record of fixed duration, which
we may call TR seconds, to obtain spectral estimates., To reduce the
variability of the estimates they are effectively, smoothed by averaging

.n sample estimates obtained from n consecutive segments of the record.

T 4
Each segment is of duration T seconds, where T = _R , and typically

v lth 1 th n
T might lie between 10 and 160 of TR' Therefore time delays which

are insignificant compared with TR’ may bejcomparable magnitude with

‘T, thus causing severe bias errors (réf. 5.3.). This situation could
not arise in the on-line computer routines (section 5.4.) because the
effective sample duration T is specified initially, and smoothing is
accomplished by increasing TR.

i3i) The bias is the squared coherency estimate contains a temrm
inversely propertional to n, The Taylor series approximation to the
bias suggests that the bias due to insufficient smoothing is equal to
‘% . ﬁowever, experimental studies indicate that the smoothing bias is

given by % (1 - K%) as shown in the bias equation, This result

corresponds with the empirical findings of Benignus (ref. 5.4.).
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5.2.4. Confidence Statements

In order to make confidence statements about the frequency
feSponse functions, we must first find appropriate sampling
distributions for the estimators. A comprehensive study of the sampling
distributions associated with frequency response estimation has been
made by Goodman (ref, 5.5.). Goodman obtained his results by extending
the theory of statistical analysis of multivariate real-time series to
the analysis of bi-variate complex series. The discrete Fourier
transforms of the real-time series x(i) and y(i), which we denote as
X@%{) and Y@%{), form a bi-variate set of complex series, The joint
distribution of these series can be obtained and used to formulate the
distribution of functions associated with the frequency response

estimator,

Specifically, Goodman assumes that the complex random variables
xi(“k), Yié*k),(i'u 1, ..... n) form a set of independent estimates of
the Fourier transform of the input x(t) and y(t) at a particular
frequencyw, , Then he determines distributions associated with the

k

frequency response estimator H(w) defined by :=

n

ilei @) ¥, ()
ﬁ(wk) - — sussenessns Dulby
X, |
g 1 (@) x5

This is exactly the form of estimator that we use when
estimating the frequency response function, Hence, the results of

Goodman apply diréctly to the estimators obtained in this chapter.
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Imaginary

FIGURE 5 .2. FREQUENCY RESPONSE ESTIMATE CONFIDENCE REGIONS .

5.2.4(a) Confidence Statements for Gain and Fhase
Goodman has shown that the density function of the random

variable z associated with the modulus of the complex error ﬁ - H is

given by :-

2n(1 - k&)

= «1 i K%y)+y%}n+l sessscsveces Dol3,

£4(y)

Where in this context y = z.%ﬁ% , and z is the random variable associated

with the modulus of the complex error g -m

The cumulative distribution of y is given by :=-

-n
le

=T T Sesvecvevane 0140
(1-k%y) ’

FY(yl) = 1~(14+
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This can be used to make a prcbability statement about

A
[H - H|, which in turn can be used to make joint probability state-

ments about the gain and phase, From reference 5.4., and using the

symbols of figure 5.2., the following probability statement may be
made :-

' Al 1Al Al
Pl‘ob 1 + IHI > 'H’ > 1 o .—ﬁ{—l— EEEEEEEEE] 5015l

and Ag> 8-¢> -Ag )Prob{lzt(AlHl:}
Now, if we define the probability P as :=

P - Prob{: |zl<A|HB

Then equation 5.14. can be used to show that :=-

. st -1} (- M
ﬁgl ) O-P)" =1 \gy - teeeseeses 5416,
A = ~ﬂndﬁgﬁi

From expression 5.15. the approximate simultaneous 100 P%

confidence intervals for gain H, and phase P are

81{1 5 a8 ; 8 { 1 40)

Jenkins and Akaike (refs. 5.6., and 5,7.) have also studied

the sampling distribution of frequency response estimators, and have
shown that the function Cixx |fI - le.(n~l)(0nn)-1 is approximately

Fisher distributed with degrees of freedom 2, and 2n-2 respectively,
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A
Thus confidence statements concerning |HE! and 8 can be made using the

widely tabulated Fisher distribution.

However, a transformation of the Fisher distribution with
degrees of freedom 2, and 2n-2 shows that the distribution of Iﬁ - H|
is the same as Goodman's distribution, The methods are thus equivalent,
Use of Goodman's method is advocated since it is simpler than that of

Jenkins and Akaike,

5.2.4.(b) Confidence Statements for Squared Coherency
Tﬁe sampling distribution associated with the squared coherency

has been determined by Goodman (ref. 5.5.), and tabulated percentage
.ppints are available for n<20 (ref. 5.8.). For larger values of n
the cumulative distribution function can be computed. However, as n
increases the time required to calculate the curulative distribution
rapidly becomes excessive. Goodman and Enochson (ref. 5.9.) have
investigated the sampling distriosution of the coherency function, and
they show that the lengthy computations associated with the exact
distribution can be avoided by using a gaussian approximation to the
distribution, This approximation involves transforming the coherency,

using the transformation :=

Z == %hl l—t}_{& e rerrecrvaee 50170
1 - Kxy

Where, for n > 20 the transformed variable, z, has, to a

close approximation, a normal distribution, The variance and mean of
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this distribution are :=-

1,01+  eeiienie.. 5.18.
1 - B(Kxy)

5 1.6k%y + 0,22
- 1 - (0,004)

Tsiigechy

The variance expression is that quoted by Benigus (ref. 5.4.).
In his extensive study of the squared coherency estimator, he shows
that using the expressions 5.18. the normal approximation to the
distribution of squared coherency holds for the entire range of

possible coherency values.
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563, Discrete fstimation of Frequercy Response Functions

5.3.1, Discrete Estimation Formulae
In this section the discrete estimation formulae that are
used in the real-time, digital, frequency response estimation
programmes are given., The discrete estimators are obtained from the

continuous estimators of section 5.2. using the analogy of section

4.2.7.

Let x, and vy be N-point real time series obtained by

i
sampling x(t) and y(t) every &> seconds. The discrete Fourier transforms
of the time series (modified by li’ a window function drawn from the

class of functions defined by equation 4.3.) are :=

N
, 2 =4
1 ik
Ae = ¥ ; e
i= -3
2
N A
5 = 1
1 :E ik
Bk = ﬁ,— N y’ili WN e e srsnse 5-190
i= - 5
Where WN = exp(-jgél)

The raw periodograms of the input and output are given by :=-
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2
o) = BE{al)
- _ AN g |
cyy((*)‘k) = —q-{ IBI(I } deeecosvavenae 5-200

Cayly) = %ﬂ{ A;Bk-_}

— 27Tk
Where W, = Ax k

= 0, seeee

i

Smoothed discrete éstimates are obtained by recording an nN
point time series of x(t) and y(t), segmenting each time series into
n time series, of N points each, and averaging the periodograms obtained
from the segments. The smoothed periodograms obtained in this way are
defined by :=- |

r

Caxw) = <% :EE Cxx(i)@ok)
i=1

Eyy(wk) - 'rl-x E ny(i)(wk) sescesunands Dulls
i=l

Gl = = > oMy

i=1

Where Cxx(i), ny(i), and ny( i) are the raw periodograms

obtained from the ith segment of the nN point series,

The discrete frequency response estimate and squared coherency
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estimate obtained from these smcothed periodograms are given by t=

HER) . ».. or-m ) pehRbRameins Tnl2,

2
ﬁ,%y(wk) = [
. Crox(y ) Syyoy )
Where “Jk = 21%£ o K w By ssqen g

5¢3.2. Aliasing

The discrete estimation formulae given above are discrete
, aliased versions of the continuous estimators given in section 5.2,
The effect of aliasing is to distort £he discrete estimates so that
they are no longer faithful versions of the continuous functions. In
this section we consider the nature of this distortion as it affects

the expected value and variance of aliased frequency response estimators,

If the continuous Fourier transforms of x(t) 1(t) and y(t)1(t)
are X(w) and Y(w) respectively, then the discrete Fourier transforms

of xil1 and yili are related to the continuous transforms by :=

Qe e v s v r e 5.23‘
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Now, if the spectra of x(t) end y(t) are low-pass,
then we are justified in assuming that all but the first alias can be

neglected, Under this assumption the aliased spectra of 1(t)x(t) and

1(t)y(t) cen Ve defined as :-

X)) = OF & X)) + X*(wll-k)

: @t e PPt saR 5'24

Y00 = ANB 2 v) + T,

The aliased auto, and cross-spectral estimators obtained

,from these aliased spectra are :=-

’

. 2
o) = g [%6) |
Cyy, @) = l|1r(w)|2 » 525
yyA k ) q A }l" e ce v
nyA(wk) = % XZ(wk) YA(wk)

5.3.2.(2) Bias

From appendix 3, the expected values of the auto- and cross-

spectral estimators, (neglecting the effect of windowing) are given by:=
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Blooc (@) = Fex) + Declioy )

lyyw) + Fyly)  oeeenenns

E{CWA(wk)}

eyl + ey

: (ox,@30)

Using these expressions approximate formulae for the bias error in

aliased frequency response and squared coherency estimators can be

obtained, These formulae are :=-

B{IQA(wk)l} i Fexop ) rne {H*(“’N-k) ~ 1}}
el ). L L)

o Bea)) = -

B{f{’z‘yA(“’k)}A boxtoy ) {2Re{ T ey 1}} - Tyl
[

5
Ky, )

50302-(b) Variance

From appendix 3, approximate expressions for the variance of

the aliased, smoothed, auto and cross-spectral estimators are :-

Ez{bxxA@gka

==

Var{?xxA@vkﬁ £

==

Var(Cyy, ) = & B, e) sawsimisuos GED

=3

Var By, () = {z?{axy‘&@k)} v 2 { Ty Byt )

- Ty() G«(coN_Q}}
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The methods described in section 5.2.3. can be used to obtain
from equations 5.28, approximate variance expressions for the aliased,
smoothed, frequency response estimator. However, the expressions
obtained in this way are cumbersome, and do not directly indicate the
effect of aliasing., The expressions simplify if we restrict our
attention to the band of frequencies in the region of the folding
frequency; This is the area we are primarily interested in, since it

is in this band of frequencies that the effects of aliasing are most

noticeable,

For frequencies near the folding frequency we are justified
in making the approximationtuk =0y 0 in equations 5.28, The

resultant approximate variance expressions for the aliased gain and

" phase estimators are :=

Var{: lﬁAGO)D "

1
@17 2n | y,@)

R R A A ) 5-29

var (8,()) o L { e (5))

From these relationships the following conclusions can be
draw :=-
i) The variance of the aliased gain estimate near the folding
frequency is determined by the aliased coherency; Now the aliased
coherency is given by :-

2
A= P S

K%ykﬁo) =
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Therefore, if the cross-spectrum is not real near the
folding frequency, the variance of the aliased gain estimate will be
inflated, 1In the ‘extreme case of an imaginar& cross-spectrum, the
variance will become infinite,

ii) The variance of the aliased phase estimates near the folding
frequencx is independent of the coherency., It is governed by the
square of the tangent of the phase, So again if the cross-spectrum
near the folding frequency is imaginary, the variance of the aliased

phase estimate will become very large.

These results explain the rapid increase in the variability

of discrete frequency estimates as the Plding frequency is approached,

s From the above results we can conclude that if the quadrature-
spectrum is zero near the folding frequency, then aliasing will not
increase the variability of frequency response estimators. A
corresponding comment can be made concerning the bias due to aliasing,
since if the substitutiohcok =0y is made in equations 5.27., then
the condition for zero bias error is that the quadrature-spectrum be
zero, Therefore, aliasing errors in frequency response estimates are
minimised if the cross-spectrum is adjusted so that it is real near
the folding frequency., The cross-spectrum can be adjusted in this way
by using the alignment procedure outlined in section 5.2.3. This
procedure is not recommended as the sole means of controlling aliasing,
but rather as an adjunct to a more reliable method, such as the
filtering technique described in the next section,
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5¢3+3. The Control of Aliasing Errcrs by Filtering
This section deals with a technique for the reduction and
control of aliasing errors in digital frequendy response estimation,
The method employed is to insert low-pass guard filters at appropriate
points in the frequency response measurement scheme, These filters
are used po control the shape of the system input and output auto-
spectra, and thence to reduce the aliasing errors in the frequency

response estimates,

From equations 5.27. the bias errors in the aliased gain,
rhase and squared coherency estimates at frequencyc»k are proportional

to the autospectral ratios Rxx@Dk) and Ryy@dk), defined by :=

Ex(b«ﬁ_k )

l?cx(wk)

Rxx(uk) =
APPSR P 2
Ryyﬂa& %zzfﬁ:kl

lyy(@,)

Therefore, if the autospectrum of the system input x(t) and
output y(t) can be controlled so that Rxx(w) and Ryy(w) are negligible,
then the bias errors in the digital frequency response estimates can
be neglected. The autospectra of x(t) and y(t) can be controlled by
using appropriate low-pass guard filters. Two possible schemes which
employ guard filters are shown in fig. 5.3. Figure 5.3.(a) shows the
case in which the system is identified using its normal operating
input, and Fig, 5.3.(b) shows the alternative situation where the

system is identified by superimposing a noise-like test signal upon the
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FIGURE §.3a. FREQUENCY RESPONSE MEASUREMENT SCHEMES.
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normal operating record.

If the guard filters in fig. 5.3. are identicaikand have a
power transfer function f(w), then the aliasing errors are controlled
by the autospectral ratios of the filtered system input x (t) and the
filtered system output y' (t). In temms of the filter power transfer

function these autospectral ratios are :-

£y ) ooy,

2(0,) becle)

Rx ¥ @uk) =
covasssmmsns Jo3l

) veop,)
£(w,) yy(w )

Ry y' (wk) -

Now, assuming that :=
i) The test signal is a white-noise source,
ii) The corrupting noise is white.

iii) The system H(w) is such that :=

IH( ) D 1aW)l
w s
for W Q%g s Where 7; is the folding
frequency.

-

Then, the autospectral ratios Rxx(w) and Ryy(w) will be less
than, or equal to, the power transfer ratio R(w) of the guard filters,

This function is defined by :=

£y )
( ) = R"‘J}%—‘]&_ [ LR R R R ) 5033
¥ Sema commt a@ma Aom ~ oS ead  Fldan
~ e anb ScJ“Ln~lb Sé ? gg ae  covXop~ad
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Thus, under these fairly general conditions, the aliasing
error can be controlled by proper choice of the guard filter

characteristics., ‘Now, the digital frequency fesponse estimates,

a g " 2nk

H(wk), are situated at the discrete frequenciesw, = T+, (where
kw01, sovvs g ). Therefore, to control the aliasing errors, filter

characteristics should be chosen which minimise R(w) in the range

w
w=0 to w = %E , (where Ef = 7; , the folding frequency).

The ideal guard filter has the low-pass, brick-wall, power

transfer function, defined by :=~

fw) = 1 '“J'<:(%f
e e v s v e 5034
w
| -3
=0 '“9 2 2

In this case R(wW) is zero between zero frequency and the
folding frequency, and so the estimates will be unaffected by aliasing.
However, the ideal brick-wall filter is physically unrealizeable, and
a suitable approximation must be used, There are several well known
filter types which embody approximations to the brick-wall function,

we will consider three of the best known, these are :=

a) the Butterworth, Maximally Flat, filter
b) the Chebyshev, equal ripple, filter
c) the Optimal 'L' filter

These filters are defined and described in reference 5,10,

When selecting a particular type of filter, two main para-
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meters must be specified, These are the half-power, or cutoff
frequency,cuc, and the order of the filter, n, First we consider the

factors which determine the selection of an appropriate cutoff frequency.

The correct filter cutoff frequency is that frequency which
minimises the function R(W) in the range 0 tOS%? . The optimum choice
has been investigated, and for all the above filter types it has been
established that W = O minimises R(w) for all n, In practice, if a
cutoff frequency of zero were used, the autospectrum would be highly
attenuated for much of the frequency band, In this situation the
'measurement noise' (described in section 5.1,) may seriously impair
the accuracy of the frequency response estimates., For this reason, a

higher value of cutoff frequency is recommended.

The effect upon R(;O of increasing the cufoff frequency is
shown for a typical filter in graph 5.2, This shows the power
transfer ratio of a third order, Butterworth filter for various .

In this graph the frequency scale is normalised so that the scmpling
frequency is unity, the 0,5 Hz point on the normalised frequency axis,
therefore denotes the folding frequency, From graph 5.2,, it is seen
that R(w) does not increase significantly when the cutoff frequency is
increased from zero to 0.3003, but asw, is increased slighfly beyond
0.3wy, to 0.4wy, the power transfer ratio increases rapidly. It is
therefore concluded that O.3ug is a suitable guard filter cutoff

frequency,

Having selected an appropriate cutoff frequency, the

performances of the three filter types listed above may be compared,
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GRAPH 5.3.
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GRAPH 5.5.
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Such a comparison is made in graphs 5.1. to 5.6. These graphs show
the power transfer ratios of the Butterworth, Chebyshev, and Optimum
'L' filters, for various Orders, n, Graph 5.1, shows the power
transfer ratio of the Butterworth filter. In the Chebyshev filter
design the maximum pass-band ripple can be specified, so graphs 5.3,
5.4, and 5.5, illustrate the Chebyshev power transfer ratio for variocus
pass-band ripples. Finally, graph 5.6. shows the power transfer ratio

of the Optimum 'L' filter,

Concerning these graphs the following points can be made :=-
(i) The power transfer ratios of all the filters decrease as n
is increased.

(ii) For any specific order n, the Chebyshev filter provides the
minimum (and therefore the best) power transfer ratio. The performance
of the Optimum 'L' filter is only slightly worse than the Chebyshev
filter, and the Butberworth filter is the least efficient type for
suppressing aliasing errors.

(1ii) For n greater than three the power transfer ratio of the
Chebyshev filter is insensitive to the amount of pass-band ripple.
However, when n is equal to or less than three, the performance

improves as the permissible pass-band ripple is increased,

The graphs of power transfer ratio's for the Butterworth,
Chebyshev and Optimum 'L' filters can be used to specify the type,
and order of guard filter required to limit aliasing errors in discrete
frequency response estimation. For example, suppose frequency response

estimates of a system H(W) are required in the range O tow , and
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fourth orasr Butterworth filters are available to control aliasing.
If a measurement scheme of the type illustrated in figure 5.3. is
used, what cutoff frequency and sampling frequency should be

employed in order that the bias error in the gain estimate at cor will

be less than 10% ?

Making the assumptions that the system input x(t) and the
corrupting noise have flat autospectra, and that IH(wr)l > |HW)| for
w >wr. Then the worst case bias errors occur at wr' and (from

equations 5.27, and 5.32.) they are given by :-

B{ |H,()
.{—é.__r_i_}. \< _QR(wr)
|5, @)

() < ar

B{ﬁ)'?cy A(ourj}

2
Ky, @)

Now from graph 5.1. the power transfer ratio of a fourth
order Butterworth filter with cutoff frequency 0.3ws, is 0.04 at
0.40\%. If the maximum required frequency w,, is made equal to O.4ws,
and a cutoff frequency of 0.300s is used, then the worst case bias
errors will be :=-

Gain bias ;s - 8%

Phase bias 3 + 0.04 radians,or + 2.3 degrees

Squared Coherency bias ; = 16%
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In terms of‘wr the sampling frequency is 2.5wr, and the

filter cutoff frequency is O.75cur.

Therefore, if fourth order Butterworth filters, with
cutoff frequency 0.75 Wy and a sampling frequency ofws = 2.5wr are
used in the frequency response measurement scheme, then the bias in the
gain will be less than =85 at w, . The corresponding worst case errors
in phase and squared coherency are + 2,3 degrees and ~16% respectively.

For frequencies belovsr(_.)r the errors rapidly become insignificant,
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5.4. Real-Time Frequency Response Estimation using an On-~Line

Digital Comnuter

5.4.1. General Description

A digital estimate of the frequency response function of a
system of the type discussed in 5.2. may be obtained using the smoothed
periodogram of the input x(t), and the smoothed cross-periodogram of
the input and output y(t). The smoothed periodogrem of x(t) is
obtained by averaging n raw periodograms, and the smoothed cross-
periodogran is obtained in a similar way by averaging raw cross-
periodograms., The discrete estimate of the frequency response function
is then found by dividing the smoothed cross-periodogram by the smoothed
auto-peridogram, This method can be applied to jointly recorded time
series of the input and output, by segmenting each series into n
segments and calculating the periodograms of each segment, The smoothed

discrete frequency response estimate obtained in this way has a variance

inversely proportional to n.

It is shown below that this method can be programmec. for an
on-line digital computer, and that by using the fixed-point FIT,
frequency response functions can be estimated in real-time, The input,
x(t), and output, y(t), of the system shown in figure 5.1, are fed
into the on-line computer via an analogue-to-digital interface, Then,
under control of the computer real-time clock (RTC), the computer
samples the signals x(t) and y(t) at the RIC frequency, fc., The pairs
of data points obtained in this way are stored in a pair of 'input
arrays', ihen N pairs of data points have been read into the inpui
arrays, they are transferred to a pair of 'working arrays'. The

computer then commences to process the data in the working arrays.,
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This processing is interrupted every RT? period, and a new pair of

data readings are collected and stored in the input arrays.

The discrete Fourier transform of the data in the working
arrays is obtained using an N point complex I'FT as described in chapter
3. The periodogram of the system input and output are formed using
the discfete Fourier coefficients, These periodograms are added into
arrays in a 'spectral accumulator', the computer then returns to an
idling loop. The computer remains here until the input arrays are
full again. When this happens the new N pairs of data points are
transferred to the working arrays, and the processing starts again.

The computer continues in this way, adding periodograms into the
spectral accumulator, and the contents of the accumulator become
smoother estimates of the auto and cross-spectra. 'hen the periodograms

in the spectral zccunulator arrays are sufficiently smooth, the

periodogram averaging is halted., The frequency response estimate is

then calculated.

The usefulness of this real-time estimation procedure is
determined by the maximum frequency component of a frequency response
function, H(w), that can be estimated. This is limited by the
maximum RTC frequency which can be used. If t(N) is the time taken
to process a pair of N point data blocks, Then, following the
reasoning of section 4.3.l., the maximum frequency component that can
be studied %(N) Most of the processing time is occupied by the
discrete Fourier transformation of the data blocks, Now, two real

1024 point data blocks can be transformed in-about 2 seconds, using
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the fixed-point FFT of chapter 3. Therefore, the maximum frequency
component that can be studied in real-time is approximately 250 Hz,
Thus, using a properly programmed on-line digital computer, a wide

range of systems can be studied.

The principal advantage of on-line frequency response
estimation over off-line methods is that the result is available
immediately, The on-line method has the additional advantage that
extremely stable estimators can be cbtained, even in bad measurement
conditions, For instance, the programme described in the next section -
can average, at most, 8192 pcriodograms. From equation 5,10., this
means that provided sufficient input/output data is available, it is
possible to estimate frequency response functions with a variance of

1%, when the squared coherency is only 1/83.

4n alternative method which could be used for real-time
frequency response estimation is to calculate the frequency response
estimate after each new set of periodograms have been added iito the
spectral accumulator., This method has the advantage that the current
estimate of the frequency response function is always available in
the computer., However, the division required to calculate the
frequency response estimate must, for accuracy, use floating-point
arithmetic, This greatly increases the processing-time, and reduces

the maximum sampling frequency that can be used., For this reason this

method is not recommended.
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5¢4.2, Programme Description
This section describes the operation of a frequency.response
estimation routine programmed for an on-line éomputer. The routine is
programmed in assembly code for use on a GEC 90/2 computer,

a) Initial Parameter Setting

_ At the start of the programme, the computer types a request
for various parameters. The parameters are; N the number of data
points per block; and p, the Generalised Hanning window parameter, If
the input/output signals of the system under test have significant mean
levels, these can be suppressed by depressing SES switch @ on the
computer control console, The sampling frequency is set by patching
a square wave generator of the desired frequency to the external RTC
input,

b) Running the Programme

’

To start the programme breakpoint 1 on the control console
is depressed (set)., When this is done, the computer commences
averaging periodograms. After each pair of data blocks has been
processed, and before the next pair is complete, the computer waits
in a display loop. While in this loop, the current estimates of the
auto and cross-spectra can be selected for display on an oscilloscope
screen, Which spectra is displayed is determined by a set of SES

switches as follows :=

SES 1 set, digplays the input autospectrum estimate

SES 2 ] n " output n "
SES 3 » " "  co-spectrum "
SES 4 v " " quad-spectrum "
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¢) Stopping the Programme

When the estimates appear sufficiently smooth the averaging
process can be stopped by setting breakpoint 2. This disconnects the
real-time clock and transfers the programme to the display loop. To
calculate the frequency response function the breakpoint 3 is set/reset,
The computer then divides the estimated cross-spectrum by the estimated

autospectrum, and displays the result as follows :=

SES 1 set displays the frequency response in polar form,
SES 2 set displays the real-part of the frequency response,

SES 3 set displays the imaginary-vpart of the frequency response,

The effect upon the frequency response estimate of further
smoothing may be observed by set/resetting SES 5. This convolves the
realrand imaginary parts of the cstimate.with the Hanning filter weights
%, %, 4. By repeatedly depressing SES 5, the estimate can be smoothed
as much as desired, but with & corresponding loss of frequency resolution,
A permanent record of the frequency response estimate can be obtained in
one of several ways := (i) fhotographing the oscilloscope display, (ii)
using the on-line graph-plotter. (This is triggered by set/resetting
SES 6) or (iii) punching the contents -of the spectral accumulator on to
paper tape, (This is triggered by set/resetting breakpoint 4). The
paper tape containing the contents of the spectral accumulator can then

be used as data for an off-line data handling programme,

d) Restartins the Programme

The variance of the frequency response estimate is inversely
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proportional to the coherency between input and output, and the
number of periodograms averaged, Therefore, if the coherency is low,
it is possible that the auto, and cross—spectfum estimators will
appear smooth, but the corresponding frequency response estimate will
not. In such a case the operator can restart averaging by set/
resetting breakpoint 1, The computer will then inquire, vie the type=-
writer, if the spectral accumulator is to be cleared. If the operator
types 'False! the computer will start averaging periodograms again
with the contents of the spectral accumulator undisturbed.

e) Resetting the Programme

To reset the programme breakpoint 1 should be reset, and
breakpoint 4 set/reset. This returns the programme to the initial

setting-up stage, and allows the operator to select new programme

parameters,
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5.5. Practical Aspects of Real-Time Digital Frequency Response

Estimation

5.5.1. Accuracy
Neglecting the noise sources associated with the systems
under test, the accuracy of the frequency response estimation routines
described in section 5.4. is determined by the errors in the
collection and processing of the data. The chief sources of these
errors are the round-off error in the fixed-point FFT, and the

quantisation error caused by analogue-to-digital conversion,

These errors can be combined to form an equivalent measure-
ment noise source, If mi(t) is the mecasurement noise incurred by
processing data collected from the input to the system, and mo(t) is
the measurement noise involved in processing data collected from the
output of the system, then, assuming that mi(t) and mo(t) are
independent, and neglecting other bias errors, the measured frequency

response has an expectation :=-

E{: H(w) } el .| o) AR ceerenenenss 5235,

measured 1+ Eif‘*’ 2
ex(w )

Where [1i(w) is the autospectrum of the ifput measurement

noise mi(t).

It is justifiable to assume that the measurement noise is
white, Therefore, if the measurement noise has a variance CI{i2, and

. . . 2 . _
the input signal is white with variance Oxx » ‘fhe bias error
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introduced by measurement errors is approximately :-

G—.'.2
Bém»ﬁ- - - C;;Z Hw),) AT ssunnn Dk

The frequency response estimation programme described in
section 5.5. uses a double precision fixed-point FFT, so that the
rounding error is negligible when compared with the quantization
error., From section 4.4.1. the quantization error in the GEC 90/2
anaiogue-to-digital converter has a variance of-%; 2724 in the
computer scaling. The analogue to digital converter is scaled so that

10 volts signal is equivalent to % in the computer. The quantisation

error in the GEC 90/2 is therefore 8.4 gk volts2, and the fractional

. bias error caused by measurement error is :-

B(Hw) o _ 842722
H(w) O_‘xe

So, for exampie, if the r.m.s. level of x(t) is greater

than 0,5 volt, the mean measurement error will be negligible (& 0,001%).

5¢5.2. Limitation on Sampling Frequency and Fregquency Resolution

The theoretical maximum sampling frequency of the real-time

frequency response estimation programme described here is determined

by the time taken to process a pair of N-point real data blocks, This

pProcessing involves, i) a complex N-point fixed-point FFT, ii) The

removal of the sample mean levels, iii) Linear modification of the

S()ch\oj:\ e (o> A FUNEYS ' s sty tl\ou\ 'l—,‘(u.)
) U'QJB 149 X ),



data, iv) and forming three periodograns.

Using the fixed-point FFT, which employs rescaling in the
FFT loop by the modulus test, the processing time for a pair of
256-point data blocks is approximately 0.62 seconds., Therefore, the
maximum theoretical sampling frequency is 410 Hz, and the useful

frequency range is 0 to 200 Hz,

The practical maximum sampling frequency of the programmes
using the GEC 90/2 computer is set up by the GEC analogue input
multiplexer, This takes 8.8ms to switch from reading one analogue
input to another. To avoid errors due to fluctuations in the multi-
plexer reset time, a software delay of 9ms is programmed into the
’ youtines. This limits the maximum practical sampling freguency to

55 Hz, giving a useful frequency range of 0 to 25 Hz,

The frequency resolution of the frequency response estimation
routines is determined by N, tho number of points per block;cus, the

sampling frequency; and p, the Generalised Hanning window parameter.

From section 4.2.6., the frequency resolution using the
Generalised Hanning window is determined byCJB, its half power band-
width,

Wg
As described in section 4.2.6., p is chosen to set the

desired asymptotic decay rate of the Generalised Hanning window
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frequency response., In theory p may take any value between O and %,
but in the computer programmes p is restricted to be a binary

.fraction_(%, Iy coces )o

Having set p, and chosen an appropriate sampling frequency,
N can be selected to give the required resolution, In the on-line
computer programmes N is restricted by the FFT algorithm to be of the
form 2”(m.integer). The meximum value of N is 256, this limit is
set by the length of the trigonpmetric 'look-up' tables used in the
FFT., The choice of 256 as the maximum value was an arbitrary one made
during the initial compilation of the programmes, The maximum value
of N can be increased by extending the trigonometric table. The
ultimate limit is set by the size of the computer store, on the GEC 90/2

computer, with 8K of store, this limit is 512 points,
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6. THE SSTIMATION OF FREQUENCY RESPONSE FUNCTIONS ASSOCIATED WITH

CLOSED-LOOP SYSTIMS

6.1, Introduction

This chapter presents new theoretical results concerning
frgquency response estimators associated with closed loop systems.
The system considered is shown in fig. 6.1. In this system the
frequency response function of the forward path is chkb, and the
feedback path is H2«»). The overall frequency response function is
designated G(w) and is defined by :-

) ()

G(w) = T = = LU B R R ) 6.1.
1+H1H20~0

The following assumptions are made concerning the system :-

i) The input signal is a stationary, zero-mean, gaussian noise
source,

ii) A1l transfer functions are linear, time-invariant, two port
networks,

iii) There is a stationary, zero-mean, gaussian noise source
associated with the forward and the feedback path, and these sources
and the input signal are mutually uncorrelated.

iv) The feedback path cannot be broken to make measurements,

The fourth assumption is made because, often we have to make
frequency response measurements on closed-loop systems with the
system 'in-situ' and operatiocnal, Under these conditicns the feed-

back path cannot be broken without endangering the nermal operation
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FIGURE 6. 1. A CLOSED LOOP SYSTEM.

diy

()  + e(t) + X Y(t)
-——’Q——ﬁ H, | e
z(t)
"4 H
2 e R
s(t) i
_FI_GURE 6.2. AN EQUIVALENT OPEN LOOP SYSTEM,,
n(t)
x(t) + + Y(t)




of the system, Unfortunately, 'normal' estimates of Hl(u» and
HZGJ) based upon earlier techniques, and made with the loop closed,

yield biased results.

The aim of this chapter is to develop some of the statistical
properties of an estimator which overcomes this difficulty., In
section 6.2, the shortcomings of 'normal!' estimators are described,
and a new, unbiased, estimator is presented., Section 6.3, deals with
the variance and bias of this new estimator, and in the remaining

sections confidence intervals for the estimator are discussed.
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List of Symbols in Chapter 6

E;xﬁa) smoothed autospectrum estimator

EQyGO) smoothed'cross—spectrum estimator

d(t) the noise source associated with the feedforward path

e(t) the error signal

Ek(kﬂ Fourier transform of the i sample of e(t)

Glw) the overall Frequency response function

Hlﬁu) forward path frequency response function

Hy (w) feedback path freq;ency response function

n(t) a noise source

n the number of sample spectra averaged to obtain a smoothed
spectral estimate

'P a probability

Py (w) smoothed estimate of the co-spectrum of x(t) leading y(t)

Qxy(w) smoothed estimate of the quad-spectrum of x(t) leading y(t)

r radius of a z=-plane confidence circle

R radius of a w-plane confidence circle

s(t) the noise sourcé associated with the feedback path

Sd@d) ratio of the noise autospectrum to input signal autospectium

u a real variable

Wy real co-ordinate of the centre of a w-plane confidence circle

uo real nart of the forward path frequency response function

v a real variable

Ve imaginary co-ordinate of the centre of a w~-plane confidence
circle

Yo : imaginary part of the forward path frequency response
function
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A (@)

a complex variable

centre point of a w-plane confidence circle
the complex point denoting chﬂ) in the w-plane
a real variable

the real co-ordinate of G(w) in the z-plane
the input
Fourier transform of the i™> sample of x(t)
a real variable

the imaginary co-ordinate of G(«) in the z-plane
the output
Pourier tranpfork of the 1 sample of y(t)
a complex variable

the feedbhack signal
upper confidence limit of Arg{:ﬁlcﬂ) - HlGJﬂ
lower confidence limit on Arg{ﬁl(w) - Hl(w)}
imaginary part of O
real part of A

autospectrua of‘x(t)

cross-spectrum of x(t) leading y(t)
upper confidence limit on Iﬁl(w) - Hl(w)l
lower confidence limit on Iﬁl@d) - Hl@~0|

the argument of G:e(w)

the argument of [xy()

the point }Iz(w) = dn the z=plane

the argument of Hl@0)

angular frequency
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6.2, The Bstimators

It is assumed that smoothed auto, and cross-spectral
estimators are obtained, in the manner of chapfer 5, from continuous,
Jointly recorded, samples of the input, error and output signal, The

relevant, smoothed, spectral estimators are :-

n

Ooxle) = 2> o)
i=1

@ = 2> P
i=1

Gy = 2> onMw)
i=1 :

’ n |
Cxe(w) = ;];-ZACxe(l)(w)

i=l

As before, these estimates are obtained by sub-dividing each

sample into n segments, and averaging the spectra of the segments,

6.2.1, The Overall Transfer Function
An estimate of the overall frequency respo;se function of
the system in figure 6.1. may be obtained using the methods of
chapter 5. An equivalent two port is given in figure 6,2, In this
figure G(w) is the overall transfer function of the closed-loop

system, and the spectrum of the equivalent noise source n(t) is
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given by :=-
27
@) = Lo + [1,) [mg() } |2+ B @)

The appropriate unbiased estimator of the overall transfer

function is, from chapter 5, given by :-

6(&)) = Cx = ‘ ere oo v 6‘30

Cxx(w)

6.2,2, The Forward Path Transfer Function
The normal estimator of chn) as used in open loop analysis
-is of little use in estimating the forward path frequency response
fﬁnction. This is because even if the effects of finite records are
negligible, it gives a biased estimate, This may be seen if the
expectation of the 'normal'! estimator §2§§§} is considered., Neglecting

the bias caused by finite record lengths, the expected value of the

'normal'! estimator is :=

H, ()

B Cey(w B () 1+ Ss(w) ((A)) H (w)
Cee(w) HmpT ’—-2
1+ S, (@) + S4(@) By

fsn

E@guq 3 - rhjuﬁ
e | T T

Note that the 'mormal' estimator will be unbiased only if the

noise in the forward path is zero, or if the feedback is disconnected.
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To illustrates the nature of the bias associated with this estimator,

consider the following example. Suppose that Hl@») e s the

1+jw
input signal x(t) .and the corrupting noise d(t) are white, and are of
equal variance; and there is unity (noise-free) feedback, The

normal estimation procedure will yield an estimate of HlQu) whose

expectation is :=-

y A 1
Cey(w) P
Eee(w)} e ——5—1-(—1 e {Hl(w):}

Thus it is clear that estimates based on the techniques of
chapter 5 are biased in such a way that they may cause false
conclusions to be drawn concerning the dynamic structure of the system.
* Por instance, in the above example we.would be led to believe that, in

addition to a first order lag, there is differential acticn in the

forward path.

The bias associated wich normal estimators arises because,
due to the feedback, the signal e(t) is correlated with the noise
sources, An unbiased estimator of HIGLO may be obtained by introducing
the input signal x(t) into the estimator, and using a ratio of cross-
spectra as our frequency response function estimator. A suitable

unbiased estimator of the forward path transfer function is :=-

/ﬁl(w) = __C_H((‘)) Sver s 6.40
Cxe
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6.2.3, The Feedback Path Transfer Function
Using similar reasoning, the 'normal' estimator of Hzﬁo)
can be shown to be biased, The expected value of the 'normal'
estinator Cya(w) is (neglecting the effects of finite duration

Cyy(w)
records) given by :-

- 2 H, ()

. Cyz(w) N H, (@) lHl(w)l + 5y(w) - EN ) 5,(@)
2 2

Gyy(e) @)+ 560 + [ @) s )

laa (e , and 5 (@) = Jas(w)

Where : - Sd(w) - Ex(w)

lx(w)

The conditions for zero bias error are that the feed-forward
}OOp be broken, or, that the noise in the feedback path be zero., As
in the forward path case the bias error is caused by correlation
between the noise sources and the signals in the loop, and an unbiased
estinator may be obtained oy introducing a reference signal which is
uncorrelated with the noise sou~ces, A suitable reference source is

the input signal x(t), and an unbiased estimator formed by using

x(t) as a reference is :-

ﬁz(w) = _CT)E((‘Q) R N A R 6050
Cxy X

In the sections that follow some statistical properties of
the forward path transfer function estimate defined by equation 6.4,
are given, The properties of the feedback path transfer function

estimate are cnitted, since they can be calculated by an obvious
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rearrangement of the results for the forward path transfer function.
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6.3. Variance and Bias of Forward Path Estimators

6.3.1, Variance

The forward path frequency response estimator is defined

Bxy(w) + § Bxy(w)

B0
Pre(®) + § Gxe(w)

The gain estimator is defined as :=~

_ B + adw) }%
{?xg(w) + @xg(w) }%

|, )

and the phase estimator is defined as :=-

N\
Yoo o gan [OO) | g Te)
Py() Fe(w),

Therefore, using the methods of section 5.2.3. approximate
expressions for the variance of the gain and phase estimators may be

obtained in terms of the covariance matrix of Pxy, Oxy, Pxe, {xe(w),

The covariance matrix (obtained using the results of
appendix 2) is given in equation 6,7, In this matrix the S denotes
diagonal symmetry, and for compactness the dependence upon the

frequency hes been dropped.,
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The approximate expressions for the variance of the forward

rath gain and phase estimates obtained from the covariance matrix are :=

Var{lil(w)[} o i sd(w)
ln,@]% 2n |loe)|?

LU R I A B R 6'90

0 Sy 1 S . ()
v Yo 2 o ,i)?}

Where, G(w) is the overall frequency response function; and

_ faae)
a.n'd, Sd(w) » Ex(w) .

The above expressions are given in terms of the noise and
signal spectra so that the effect that the noise signals have upon.the
estimators may be directly assessed., To provide a basis for this
assessment, 'the variance figures for the 'open-loop' estimate of H]ﬁu»
are now given in terms of the noise and signal spectra, These 'open-
loup' variance expressions are those'which would apply if the feedback
path were opened and the frequency response of Hl@v) were estimated

. Cxy(w) ) N )
using = . Denoting this estimator as Hlﬁv)o/L we can write :=-
Cxx(w)

var(/f), @), /LD& [ 5@
) |2 2 |y

o L 54)
o/ I, @12

Var (f%xﬁ
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And denoting the 'closed-loop! estimator Cxy() as ﬁl(w)C/L , then
Cxe(w)
we can write :=
Va:r:{: lﬁ‘ () | |1+ um (w)|2 var{ [T ()
1o/ }= + i, ax( [ O/LD

SN ) R
Va:c{ (F(w)C/L:} = Il + H1H2(w), Var{‘f*)(w)o/l:—}

From these expressions it may be seen that the variability

- 2
of the estimator ZX() jg |1 4 H )| tines that which would ocour
Cxe@)
if the loop were opened and the 'normal' estimator were used., Therefore,
the variability of the estimator M depends upon the nature of the
Cxe(w)
feedback as well as upon the usual factors.,

As an example, consider the simple case where the forward

path transfer function is 1 ..:-l;jw ; the input signal x(t), and the

2 2

disturbance d(t) are white noise signals with variances Oxx“ and Odd

respectively, and the feedback transfer function is the real constant

B, The variance of the forward path gain estimate atw = 1 radians/

second is from equation 6,9, :=

vae(Ro) o {a« B +1)
B irat =t on O’

If the constant B were unity, the variance figure would be :-

5, &l
2n'o;x2
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If the constant B is doubled, the variance figure also
doubles, and to reduce the variability to its previous level we would
have to double n, or increase the r.m.s, level of the input signal by

a factor of root two.

The approximate variance expressions given in equations 6.9.
indicate that the variability of the forward path frequency response
estimator is nominally independent of the disturbance in the feedback
loop., This interesting result arises because in arriving at equations
6.9, we have neglected all but first order terms in a Taylor series
expansion of the gain and phase estimators (see appendix 4). This
point may be clarified if we consider the forward path frequency
rasponse estimator in terms of the autospectrum of x(t) and the cross-

spectra between x(t) and the noise sources s(t) and d(t). The forward

path estimator expanded in this way is :-

= = B
1. 22 4 2 )
Cxx HICxx

B = 5@
H2de

1 - Cxs (o) -

)
Cxx Cxx J

Now, when s(t) and d(t) are uncorrelated with x(t), the

smoothed cross-spectral estimates Cxs(w) and Cxd(w) have expected

values of zero, and variances proportional to-%, so that as n is

955«0) and QEQ«J) will become small, Assuming

Cxx(w) Cxx ()
that these terms are much smaller than one, we can make the

increased the terms

approximation :-
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H £ Exs, EXd/ 62{3 H CXd
R ne) (1 - 220, By iy, B L 2y

Cxx HICxx Cxx

o 1) { 1+ 24) o)
L Cxx

Thus we have verified that, to a first order approximation,
the variability of the forward path frequency response estimate is

independent of s(t).

6.3.2, Bias
The method used to derive expressions for the bias due to
data~windowing in the open-loop case can be extended to determine the
bias due to data-windowing in the closed loop case, The approximate

bias expressions.obtained in this way are :=

a e :
B{|§\1|}5.L--T-§ |5, | +2IH :Eel lnll(‘f’e ‘F>\)\ vevenes 6.9,
O IE e | e
B{?} -g- 7)+2-ﬁ{i— (SU+€)+TI-£-:I—-LP
Where : q) = Arg (Hl)
A = 2rg (xy)
€ = irg ([xe)
a, = the coefficient of t2 in the power series

or— (1(t) * l(t)), and the dot notation
is uqed to indicaua derivatives with

respect tow .
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Comparing the above expressions with the open-loop
expressions for bias due to windowing the following points can be
made :=

i) Both gain and phase biases are inflated by additional terms
proportional to the first derivative of |[xel.

ii) The gain bias contains terms preportional to YE ama LP)\
Therefore, if large transport delays occur between x(t), e(t) and x(t),
y(t) significant.bias errors in the gain estimate can be expected.

For the reason given in chapter 5 this type of error is not
significant in the estimators used by the author, However, should

the 'lagged-products' method of spectral estimation be used, care
should be taken to align x(t), e(t) and x(t), y(t) prior to estimating

the cross-spectra,
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6.4, Sampling Distributions Associated with the Forward Path

Frequency Response Estimator

In this section the problem of obtaining sampling
distributions to suit estimators of the form of equation 6.4., 6.5.,

is discussed.

6.4.1., The General Case
We can study the general case of estimating forward path
frequency response using an approach similar to Goodman's (ref. 6.1.)
Such an approach leads us to consider the joint statistical propertie:
of a tri-variate complex normal random series, The work involved in
this is complex and considerably more lengthy than Goodman's analysis
, For this reason the analysis was not attempted. Instead a special

dase was considered, which enables direct use of Goodman's results,

6.4.2. A Special Case
Consider the problem of estimating the forward path
frequency function Hl@O) of figure 6.1, when the feedback noise source
is negligible. In this case the problem reduces to the estimation of
the spectrum of a two-dimensional stationary gaussian process, and

the work of Goodman can be used directly. .

Defining the sample spectra of the input, output and error

signals as :=
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Xi@xb = the spectrum of the s sample of x(t)
Y10¥0 ~ the spectrum of the i sample y(t)

Eiﬁxb"n the spectrum of the Via sample of e(t)

Now, Goodman developed sampling distributions associated

with the complex regression coefficient of Y(w) on X(w), defined

by :=

. :sz X: Y10¢»

i=1
fw) =
n
*
z X; X, (@)
i=1

And we are interested in the sampling distributions associated with

the function :=

z X; ¥, ()

i=1 :
- ﬁl(w)
n
*
Z X; B; )
i=1

If the noise source in the feedback path is negligible, then these

two functions are related by :=

B @)

LA A R A 6.10.

A
G(w =
©o B, () ()

Therefore, in the special case of noise~free feedback, the
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distributions associated with the estimator of the forward path
transfer function can be obtained by a transformation of the

distributions associated with overall transfer function estimate.
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6.5. Confidence Regions for the Forward Path Frecuency Response

Estimator

6.5.1, Conformal Mapping of Goodman's Confidence Regions

Confidence statements concerning the forward path frequency
response estimator can be obtained by using equation 6,10, to transform
the probability density functions given by Goodman in reference 6.1.
However, in this section an alternative method is employed. Using
this method confidence statements for the forward path frequency
response estimator are obtained by a complex conformal mapping of the
confidence regions for the overall frequency response estimator., These

confidence statements apply to the special case of noise-free feedback,

Define the complex variables z and w as follows :=-

R 6,11

w = u+ jv

Let the point X1 Yy in the z-plane represent the true value

of the forward path frequency response function at frequencycui.

Defining the complex constant, 0 as the inverse complex

feedback fraction at frequency(ca. We can say :=

y-. 1
Hy (@)

LR L B 60120

= 5-&- Jp
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Then, atC~i, the z-plane is mapped into the w-plane by

the bilinear conformal transformation :=

Cee e s v e 6.130

From section 5.2.4., we can draw circles of radius r, centre
X9 Yot in the z-plane and attach a probability P, to the event that
the overall frequency response estimate will lie inside that circle.
Using the transformation equation 6.13. we can draw corresponding
contours in the w-plane, and attach the same probability to the event
that the forward path frequency response estimate will lie inside the

region mapped by the interior of the w~plane circle.

Using the properties of bilinear transformations (ref. 6.2,)

we can show that the circles (r, X yo) in the z~plane map contours

which are circles (R, U,y vc) in the w-plane. The radius and centre

of the w-plane circles are given by :-

2
R & I~ r
(8-x)% + (By)? - 1°
2 2 2 /
x|pl =-8(x_ +y. - ;3
uc . O/D 2 2 C I A A A 6.140
2 2
(8 -x )2+ (B-y )" = r
2 2 2 2
i} Yolrl © =Pz, + ¥, = %)
C

2 2 2
(B=-x)°+(B=~-y)" -7
The true value of the forward path frequency response function HlGdl)

is at Uy Vo, and is given by :=~
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2 2 2
x |PI7 - ZS(xo ¥ )

(3-x )2 + (B-y)°

CRC IR A N ] 60150

vypf = BGE + ¥2)

(5-x )% + (8- y,)

Fron these equations, the w=plane confidence regions are a
set of eccentric circles, For small r the circles are (approximately)
centred at Uy Ve As r increases the centre points move away from

L Voo However, the circles always contain the Ugs Vo point.

Consider the area mapped in the w-plane by the interior of
the z-plane circles, From figure 6.3, :=

a) The contour Cy

The interior of Cl maps the interior of Kl' This interior-

to-interior mepping continues as the radius of the circles is increased,

until the contour 02 is reached,
b) The contour c,
The contour 02, which has the point/) upon it, maps s

q int_o the straight line K2 given by i~
2 2 2 2 2 2 2 2
(B (xg + ¥y = %) = xJpl°) + 2v(B(x) + vy = ) =y pl)

2,2 _R_ 2y
= Iﬂl (I‘ = xo + }’o ) s r v 6.160

And the interior of C2 maps into a section of the w-plane,

c) The contour C3

The interior of C3 maps, the exterior of the corresponding
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FIGURE 6.3, THE MAPPING OF THE Z~PLANE ON TO THE W.PLANE.

Z—-PLANE.
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contour K, in the w-plane, The point Uy Voo lies outside KB'

3

Summarising, confidence circles in the z-plane, which do
not contain the point//o , map interior-to-interior. Confidence
circles in the z-plane, which contain the point o, map interior-to-
exterior, Clearly, the mapping of confidence regions which contain
O are of little use in attaching confidence limits to the estimator
ﬁl@u), because the transformed circles do not contain Hl@u) (the true
value), Therefore, only circles which exclude,o are of interest to

/()
us. Recalling that is associated with 2 and that Xo ¥y is

H
the point l+élH2 oy P fhen,/o can never coincide with Xy Yge SO

there will always be a set of z-circles which give useful transformed

w=circles,

6.5.2, Joint Confidence Statements for Gain and Phase

If a probability P can be attached to the event that the
overall frequency response function will lie inside a circle radius
.ry centre X0t Vo then the same probability can be attached to the
event that the sample forward path frequency response function will
lie inside the transformed circle radius R, centre Uy vc. Using
the same procedure as in section 5.2.4., the transformed confidence
region can be used to obtain joint confidence statements for the gain
and phase of the estimator of the forward path frequency response
function. From figure 6.4.,, if the circle C is the transformed circle
associated with the probability P that the forward path frequency

response function will lie inside the circle radius R, then the
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following confidence statement can be made te

r|wo| 4 A1> Iﬁl(w)[> |wol‘ - A,

Prob < > P

Voo >ty g

-

where VAN

1 Ra+'( jugd ~ W1

VAN R=(lwl - w]l)

..=1] R
O(l = sin I-W;l- +(8-‘V)

X, = Sin-l{]%} -©-Y)

LR A 60170

L A L L »6018.

R is defined by eqﬁation 6.14, as the radius of the trans-

formed cirele, Also :-

|W°| = the true gain I}Il("«i)l

LP = the true phase Arg Hl(wl)
2 2 %

|Wc| - {uc + vc:}

From expression 6,17. the approximate 100

4
o

simultaneous

confidence intervals for the forward path gain and phase are :-

IR ()l + A > H(W) > m@) =4,

/\
Py v o, > Yoy >Fe -
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As an example of the use of these confidence statements
consider the simple case of a closed loop systems with forward path

transfer function s and noise-free unity feedback, Consider

I+ jewo
the 73% confidence intervals for the overall, and forward path,
frequency response functions at «w = 1 radian/second, If n = 100
and K%y(l) = 0.5, then from the previous chapter the 75% confidence

intervals for the overall gain and phase can be shown to be :=

0.4496 + 0,053, and -26.69i 6.8° respectively.

These figures can be used to obtain the 755 confidence bands
for the forward path estimator atw = 1, but first we must determine
the appropriate values for Xor Vo1 Ugr Vs s Voo The overall

1
frequency response at W= 1 is - therefore,xon-%, and e P g. The

2+j ?
1

forward path frequency response function atw = 1 is 123, therefore,uou-%

and Vo = - % « Also, because the radius of the confidence circle for
the overall transfer function is small, u & U and v R v . Since

the feedback is unity, then from equation 6.12, p =1

Substituting these figures in the expression for R, the
radius of the 75% confidence circle for the forward path frequency
response is approximately 0,132, Hence, the 755 confidence intervals
for the gain and phase of the forward path at w =1 are :=-

0.7117 + 0,132, and -459i 10.70, respectively,

6.5.3. Experimental Justification of the Confidence Regions

To test the validity of thetransformmed confidence circles,

a typical system was simulated using a digital computer, The system
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was a unity forward path transfer function corrupted by noise n(t),
and with a feedback transfer function B, The input signal x(t) and
the noise n(t) are independent noise sources, but with identical

autospectra, The amplitudes of x(t), and n(t) were chosen so that

the squared coherency between input and output was 0.75.

One hundred and twenty eight independent estimates of
Hl(w) were made, each estimate having 10 degrees of freedom., A
scattergram of the estimates was then constructed and 50% transformed
confidence circles superimposed upon the scattergram, Typical results,
for various B, are shovm in graphs 6.1, to 6.3. In these graphs the
estimates, and confidence circles are plotted in sets of 32 at 90o
intervals on the unit circle., This was done to make counting the
experimental confidence region population easier, In all cases tried
the actual populations of tﬁe 50% confidence circles were close to

the expected population of sixteen.

6.5.4., Confidence Statements for the General Case when the
Feedback Path is Subjected to Random Disturbances

The confidence statements derived in this section apply in
the special case of noise-free feedback. However, from section 6.3,,
the variability of the forward path frequency. response estimate is
(to a first order approximation) independent of the feedback noise,
Therefore, in the absense of more general confidence statements, we
are justified in suggesting that, althoﬁgh the confidence statements
of equation 6,17, are not strictly valid, theymay be used to obtain

approximate confidence intervals in tﬁe general case of noisy feedback,
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This technique is only tentatively suggested, and in order that its
validity may be tested a more thorough examination of the variability

of the estimator'gﬂ(w) is proposed in section 8.2,
Cxe
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Te EXPERTMENTAL WORK

Tele Introduction

This chapter presents some experimental results obtained
using the real-time digital spectral analysis programmes. The
results are presented to illustrate some theoretical points made
in chapter 4 and 5, and to show some applications of the real-time

spectral techniquee.

The first two sections are concerned with demonstrating
sources of error in the real-time spectral analysis techniquese.
One section deals with bias due to data windowing, and the other
with bias and variance due to aliasing. Normal variability errors
are not illustrated. This is because in most cases the programmes
can be left running until the variance of the estimates is
negligibles In the cases where this is not possible the confidence

statements of chapters 4 and 5 may be used.

The last three sections present applicationg of the re-1l-
time digital spectral analysis programmes. The first of these
applications is in the autospectral analysis of acoustic data, and
the second is in the auto, and cross-spectral analysis of vibration
data. Finally, the identification of an internal combustion

engine/dynamometer test rig is described.
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Te2+ Bias Errors due to Data Windowing

As explained in chapter 4 using a data window, 1(t), of
finite duration causes two types of bias error. These are local
bias error, and long-term bias error (leakage). These errors are
now‘discussed as they occur in the real-time autospectrum

estimation programme.

Spectral lezkage is the long-term bias which causes
spectral components to be swamped by leakage from large peaks in
the autospectrum. Graph T.l. demonstrates leakage as it effects
the measured spectrum of a sine-wave. The data window used in this
measurement was the Generalised Hanning window with p = O. This
window has slowly decaying side lcbes (graph 4.6.), and is the same
as the spectrum of a simple.rectangular data window. The spectrum
measured in this way falls away slowly, and so small amplitude
peaks near 10 Hz could easily be obscured. Theoretically the
spectrum should decay as 0T4, however aliasing prevents it reaching

this rate.

The reduction of leakage caused by increasing p is shown
by graph 7.2. This shows the spectrum of the same sinusoid, only
measured using the Generalised Hanning window(parameter p = 0.5.).
As can be seen the spectrum falls away very rapidly, and soon
becomes lost in the measurement noise. The estimated noise level
( shown dotted) was calculated using the expression given in section

4040 1.
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Local bias is due to the non-zero width of the spectral
window's central lobe. This form of bias can be compensated for
using the power series expansion method of chapter 4. However,
we are more likely to use a 'trial-and-error' approach, in an
attempt to reduce the bias to negligible proportions. This may
be done by reﬁeatedly estimating a spectrum using increasing values

of N, until the peaks in the spectrum are resolved. This technique,
which is similar to the 'window-closing' of Jenkins (ref. T.l.), is
illustrated by graphs 7.3. to 7.6. These plots were obtained on-
line, and show the smoothed periodograms of a band-pass noise source
for various N. Remembering the simple relationship between the
half-power width of the spectral window and of the periodogranm
points, the third plot (graph 7.5.) would be chosen as being

sufficiently resolved.
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Te3s Aliasing Errors

This section uses the real-time frequency response
estimation programme to illustrate the effects of aliasing upon
digital frequency response estimates. The results presented here
are practical confirmation of the theoretical conclusions drawn in

Chapter 5.

The system identified in this section is a time advance.
This is physically unrealisable, but may be easily simulated using
the time delay inherent in the GHC 90/2 computer interface. The
interface analogue to digital converter takes 9ms to change from
reading one analogue input to read another. Therefore, there is
in the frequency response estimation programme a time delay between
To

sampling the input of the system being studied and the cutput.

compensate for this delay another delay of equal duration would have

to be incorporated in the system under test. Therefore, when the
system under test is a unity gein transfer function, ‘the frequency
response estimation progremme telieves it to be a time advance of

9ms. A time advance can thus be simulated by connecting the test

signal to the input and output samplers at the computer interface.

In all the results given here the test signal used was a
laboratory white noise source. The noise was low-pass filtered
using a variable cutoff point, fourth order, Butterworth filter.

This filter fulfilled the purpose of the guard filters in figure

5' 30
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703o10 Bias

Graphs T.7. and 7.8. show the measured frequency response
function and coherency in the absense of noise. The continuous
curves are the measured values, and the dotted curves are the

theqretical, expected, curves calculated using results of section

5‘ 30 30

The sampling frequency used for these and all other
results, was 50Hz. The maximum frequency scale marking, 25 Hz, is
the spectral folding frequency. The filter cutoff frequency used
to obtain graphsl-7T.4, 7.8, was 15 Hz, this corresponds to the
figure of 0.3 (fs) recommended in chapter 5. These estimates are

therefore the best that can be expected using this particular guard

filter.

The detrimental effect of increasing the guard filter

cut--of f frequency is shown by graphs 7.9, and 7.10. These show the

measured frequency respbnse and squared coherency of the time

advance, when the filter cut-off frequency is 0.4 f8(20 Hz).

In theory the cut—off frequency which minimises alias

bias error for all low pass filter approximations is zero. In

practice however chosing a low cut-off frequency will cause other

error sources to become significant.

The first of these errors is spectral leckage. If a low

cutoff frequency is used the spectra will have most of their power
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GRAPH 7.8.
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GRAPH 7.9.
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GRAPH 7.10.
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concentrated at low frequencies. If the data window used has a

low asymptotic decay rate, then spectral leakage from the low
frequency components may overwhelm the true high frequency

spectral components. Specifically, this form of error will occur
when the asymptotic decay rate of the spectral windew is less than
that of the guard filter. Graphs 7.11, and 7.12, illustrate such

a situation. The cutoff frequency used here was 0.1 fs(S Hz), and
the Generalised Hanning Qindow with p = 0, was used to modify the
data linearly. When p = O, the spectral window has a low decay
rate (see graph 4.6.), and the lezkage soon swamps the true spectra.
Under these conditions the measured frequency respoase, and coherency

tend to unity @s the frequency increases.

When the spectral leakage is negligible, the measurement
noise (described in chapter 5) can distort the estimates. At the
higher frequencies the autospectrum of the filtered test signal
may become smzll compared with the measurement noise autospectrum.
Under these conditions the expected Qalues of the gain end coherency
will tend to zero as frequency increases. The expectation of the
phase estimzte will be unaltered, but an increase in variability
may be expected beczuse of non-zero correlation between mezsurcement

noise sources over a finite sample.

This type of distortion is shown by graphs T.13, and 7.14.
The leakage between estimates was supressed by using p = 0.5 in
the Generalised Hanning window. The gusrd filter cutoff frequency

used was 0.1 fs’ (5 Hz).
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GRAPH 7.11.
FREQUENCY RESPONSE ESTIMATE FOR:-—

A SIMULATED TIME AQVANCE OF 9 MS. BIAS DUE TO LEAKAGE;
GUARD FILTER CUTOFF FREQUENCY TOO LOW.
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GRAPH 7. 12.

COHERENCY ESTIMATE FOR: —

A SIMULATED TIME ADVANCE OF 9 MS. BIAS DUE TO LEAKAGE ;

GUARD FILTER CUTOFF FREQUENCY TOO LOW.
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GRAPH 7.13.
FREQUENCY RESPONSE ESTIMATE FORs: —

A SIMULATED TIME ADVANCE OF 9 MS. BIAS DUE TO
MEASUREMENT NOISE; GUARD FILTER CUTOFF FREQUENCY TOO LOW.
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GRAPH 7.14.

COHERENCY ESTIMATE FOR: —

A SIMULATED TIME ADVANCE OF 9 MS. BIAS DUE TO
MEASUREMENT NOISE,; GUARD FILTER CUTOFF FREQUENCY TOO LOW.
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Te3e2« Variance
To indicate the effect of zliasing upon the varisnce of
frequency response estimates, a small noise component was added to
the output of the simulated time advance. The noise signal was
filtered in the same way as the test signal, so that the coherency
between input signal and output signal was constant. In the
absence of aliasing, the variance of the gain and phase estimates

is constant with frequency.

The estimated gain and phase are shown by graphs T7.15.
and T.16. As predicted the variance of the estimates increases
greatly as the folding frequency is approached. This occurs
because the cross—spectrum near the folding freauency is
predominantly imaginary. When the cross-spectrum is real at the
folding frequency the variance of the estimates is not inflated.
This point is illustrated by graphs 7.17, 7.18. These curves are
the estimated gein, phase and coherency of a .time delay. The delay

was simulated using a P.R.B.S. generétor.

It can be seen from graphs 7.17, and 7.18, that the
condition which minimises the variance due to :liasing also minimises
the bias. Therefore, the effect of aliasing can be reduced by
arranging that the cross-spectra between input and output of a
System is real zt the folding point. This may be done on-line using
the alignment shift register technique described in chapter 5;
Alignment cen then serve the dual purpose of reducing the effects

of aliasing, and reducing possible bias due to large time delays.
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GRAPH 7.15.
FREGQUENCY RCSPUNSE ESTIMATE FOR: —

A SINULARTED TIME ADVANCE CF 2 MS. SHOWING THE EFFECT OF
ALIASING UPON VARIANCEI' CO SPECTRUM ZERO AT THE FOLDING FREQUENCY.
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GRAPH 7.16.
COHCRENCY ESTIMATE FOURz—

A SIMJLATEL TIrle FCVYANCE OF 2 MS. SHOWING THE EFFECT OF
ALIASING UPON VARIANCE; CO SPECTRUM ZERO AT THE FOLDING FREQUENCY .
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GRAPH 7.17.
FREQUENCY RESPONSE ESTIMATE FOR: —

A SIMULATED TIME DELAY SHOWING THE EFFECT OF ALIASING
UPON VARIANCE, QUAD SPECTRUM ZERO AT THE FOLDING FREQUENCY.
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GRAPH 7. 18.

COHERENCY ESTIMATE FOR:—

A SIMULATED TIME DELAY SHOWING THE EFFECT OF ALIASING
UPON VARIANCE; QUAD SPECTRUM ZERO AT THE FOLDING FREQUENCY.
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Alignment should not be used instead of guard filtering, but in

addition to ite

The variance of aliased coherency estimates was not
derived in chepter 5, and so the variability o the coherency
estimates of greph 7.16, and 7.18, caunot usefully be commented
upon. It has however been noticed that the variance of coherency

estimates is fairly insensitive to aliasing.
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T.4. Auvtosvectral Analysis of Acoustic Noise Inside a Passenger

Motor Car
In the qgality control of motor car production, an essential
task is to ensure that the audible noise inside a typical car does not
exceed a certain level, This is done by periodically testing a new car
selected at random from the production line, The car is driven at a
fixed speed over a test surface, and a tape~-recording made of the noise
inside, A spectral analysis of the record is then conducted, and the

estimated power spectrum is compared with the permissible power level.

Traditionazlly, analogue spectrum analyzers of the parallel
bank filter type are used in this type of acoustic application. Digital
techniques have not been favoured because the time series are usually
long (requiring large amounts of store), and the digital analysis is
‘off-line' (ref. 7.2.). The real-time.autospectrum estimation technique
overcomes these difficulties. It also has the advantage of presenting
the results in a way visually similar to that of the parallel bank
analyser., This will appeal to users of this type of analogue spectrum
analyser, The spectral aﬁalysis of acoustic data is theretore a natural

application of the real-time autospectrum estimation programme.

Graphs 7.19, and 7.20., show the digitally estimated auto-
spectrum of the audible noise inside a large family sgloon car, Tor
convenience, the power is plotted with respect to a reference tone,
The noise records were obtained by driving the car at a constant speed
of 40 m.p,h. over a standard road surface, and recording the noise
detected by microphone inthe front and rear of the car interior. To

enable the required frequency range to be covered by the real-iime
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autospectrum estimation programme, the tape recording was played back
at reduced speed, Aliasing was suppressed by lbw-pass filtering in

the manner described in chapter 4., The guard filter had a fourth order
Butterworth characteristic, and cutoff at 0.3 fs' The graphs are
plotted up to a freguency of 0.4 fs, and at this frequency the worst

case bias error is + 4%.

The antospectrum programme parameters for both graphs were,
N = 256 and p = 0.5. The number of periodograms averaged to obtain
each curve was 80, The confidence bars are therefore based upon a

chi~square distribution with 160 degrees of freedom.
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7.5. Svectral Analysis of a Bogey Suspension System

This section presents some results obtained during real-time
spectrum analysis experiments carried-out by the author on behalf of
the Engineering Research Division of British Rail. The analysis was
condgcted upon random data from strain gauges attached to one of the
bogeys of a fully laden goods wagon. The data was obtained by tape
recording the output of these gauges while the wagon was pulled over
a section of jointed track, The track ccndition was consistent over
the section, and the wagon speed constant, so it may be assumed that

the strain gauge data is stationary,

The data analysed here was taken from joint records of the
outputs of strain gauges attached to a bogey axle box and the bogey
bolster (to clarify these terms the reader is referred to fig. 7.1.).
The axle box gauge (gauge X) was situated on an axle box on the bogey
side section. This gauge indicates directly the vibration of the bogey
due to unevenness in the track. The bolster gauge (gauge Y) was
attached to the bolster section, whicﬁ supports the wagon superstructure,
Between the bogey side section and the bolster is the suspension system
of the bogey. Therefore, the output of gauge Y contains a component
which is due to the vibration sensed by gauge X after they have been
passed through the suspension., By jointly observing the output of

the strain gauges the nature of the bogey suspension may be deduced,

The data from the two gauges can be considered for simplicity

as the input and output of a two-port system. Gauge X represents the

input to the system from the railway track, gauze Y represents the
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gauge X

gaugeY

bolster

~ P

suspension units are hatched thus:- AN

FIGURE 7.1. A RAILWAY GOODS-WAGON BOGEY.

FIGURE 7.2. INPUTS AND OUTPUTS OF THE ENGINE/DYNAMOMETER TEST RIG.

INPUTS
|
| 1
l throttlie position l load current
ENGINE . OUTPUT SHAFT DYNAMOMETER ,
icngine speed shaft torque
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output of the system, with the bogey suspension unit as the system,
In reality the situation is more complex than this, Since there are
fbur wheels per bogey, the true system has multiple inputs, Also,
because pairs of wheels are drawn over the same track, the inputis are
correlated by pairs. The transfer function relating pairs will be a

time delay determined by wagon speed and wheel spacing.

The parameters of the autospectrum programme were set at
N = 256, p = 0,25, Aliasing was supressed by fourth order Butterworth
filters. The autospectrum of the strain gauge signals are shown in
graph 7,21. The major peak in the autospectrum of gauge X corresponds
with the frequency at which the wagon was drawn over the rail joints,
Comparison of the autospectra suggests that the suspension system heas
a high Q resonance at about 3.0 Hz, Also peaks in the spectra at

harmonics of the joint-crossing frequency indicate that the suspension

is non-linear,

The cross-spectra between géuge X and gauge Y is shown in
graphs 7.22, These curves confirm that a resonance exists near 3,0 Iz,
A frequency response estimate based upon this cross-spectrum estimate
is given in graph 7.23. This estimate is of little value, since it
assumes that the system is a linear two-port, and the actual system is
a.non—linear, multiple (coherent) input system. However, one useful
point emerges from the estimates, They indicate a peak in the phase
near 3 Hz, This is known to indicate (ref. 7.3.) the presence of two

or more coupled modes near the phase peak.

It is concluded therefore, that the suspension system is
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non-linesr vith two or more high Q modes near 3 Hz., This is
consistent with the suspension system being a lightly damped, multiple
spring unit, The high degree of non-linearity is probably due to the

wagon being fully laden.
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GRAPH 7. 21.
AUTOSPECTRA ESTIMATES FOR:—

BOGEY SUSPENSION SYSTEM
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GRAPH 7.22.
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GRAPH 7. 23.
FREQUENCY RESPONSE ESTIMATE FOR;s —

BOGEYY SUSPENSION SYSTEM
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GRAPH 7.24.

COHERENCY ESTIMATE FOR«—

BOGEY SUSPENSION SYSTEM
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7.6. Identification of an Internal Combustion Enrine/ Dynamometer
Test Rig

This section presents some results obtained when the real=-
time frequency response estimation programme was used to identify an
1eCe engine/dynamometer test rig., The engine was a Hillman Hunter,
1725ce, petrol engine, loaded with an eddy-current dynamometer. A
description of the rig is given by J. Monk and J. Comfort in reference

(7.4.), and is amplified in their doctoral theses.

The aim of the identification experiment was to obtain frequency
response curves which relate certain control parameters =nd controlled
variables, These curves can then be used to construct a mathematiceal
model of the test rig., The controlled variables measured were the
shaft torque and the dynamometer speed, and the control parameters were
the throtfle butterfly angle and the dynamometer load current, A
schematic diagram of the variables is given in fig. 7.2. To fully
correlate the control and controlled variables, four transfer functions
must be known. These are :=-

i) Throttle / Torgue
ii) Throttle / Speed
iii) Load / Torque

iv) load / Speed

The frequency response estimates were obtained by superimposing
a small amplitude gaussian white noise test signal on to the nomal
operating signal of the control parameter. The test signal and the
appropriate output signals were then passed through guard filters, and

fed to the GEC 90/2 computer, The guard filters were usad to suppress

194



aliasing in the mamner described in section 5.3.3. The filters had
fourth order Butterworth characteristics, and cutoff frequencies of

0.3 fs. All results are plotted up to a maximum frequency of 0.4 £
Therefore, from chapter 5, the bias due to aliasing is a maximum at

0.4 :s' The worst case bias values at this frequency are -85 gain
error, + 0,04 radians phase error, and -16% squared coherency error,

The parameters of the real-time frequency response estimation programme
were set at N = 256, p = 0,25, throughout the experiment, and in each case

the programme was allowed to run until a smooth estimate was obtained,

The results of the experiment are presented in graphs 7.25,
to 7.32., the continuous curves are results obtained using the real-time
frequency response estimation programme, and the points marked by circles
'iqgicate results obtained by sine-wave testing., The estimated frequency
The

response functions are plotted on logarithmic or linear scales,

gain functions shown plotted logarithmically are flat (within 1 dB)

below the lowest plotted frequencies.

The sine-wave results were obtained at the same operating
point as used in the random-signal tests, using a test signal of r.m.s,
level equal to that of the noise test signal, The sine-wave results
were taken as a verification of the curves obtained using the real-time
frequency recponse estimation programme. This verification was thought
necessary because the i.c. engine/dynamometer test rig is non-linear
(ref. 7.4.), and it was feared that some distortion in the real-time
frequency response estimates might be encountered., The random-signal

method and the sine-wave method handle non-linearities differently, so
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that if non-linear effects were serious, we would see significant
differences between the two sets of results., Fortunately the results

agree well, and so we can conclude that the real-time estimates are not

seriously distorted by non-linearities.

196



GRAPH 7.25.
FREQUENCY RESPONSE ESTIMATE FOR: —
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GRAPH 7. 26.
COHERENCY ESTIMATE FORs—

THROTTLE — TORQUE
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GRAPH 7. 27.
FREQUENCY RESPONSE ESTIMATE FOR:—
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GRAPH 7. 28.

COHERENCY ESTIMATE FOR: —

THROTTLE — SPEED
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GRAPH 7. 29.
FREQUENCY RESPONSE ESTIMATE FOR;: —

LOAD — TORQUE
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GRAPH 7.30.

COHERENCY ESTIMATE FOR: —
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GRAPH 7.3I.
FREQUENCY RESPONSE ESTIMATE FOR;: —
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GRAPH 7.32.
COHERENCY ESTIMATE FQRs—
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8.  CONCLUSIONS

This thesis presents a technique which enables digital
spectral analysis to be carried out on-line and in real-time. To
demonstrate its validity programmes which implement the technique
on a GEC 90/2 on-line digital computer are presented. These
programmes allow autospectral and frequency response measurements
to be made in real-time up to a maximum frequencies of ~ 500 Hz
and ~ 250 Hz respectively. Theoretical support is provided by a
description of the stetistical properties of the estimators used in
the programmes. The frequency response estimatiog\programmes
presented here are for the analysis of linear, time-invariant, open-
loop, two-vort systems. It was recognised that in a large class of
measurement situations the system under test is closed-loop, and
the loop.cannot be opened to meke measurements. In such cases
normel estimation methods are inadequate, and for this reason a

study of frequency response estimators for closed-loop systems is

also presented.
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8.1. Assessment of the Real -Time Spectral Analysis Technique

The author would at this point like to present his brief
assessment of the real-time digital spectral analysis method as
compared with alternative techniquese. The assessment is presented
under a series of headings, each heading being concerned with a
desirable feature we would wish to incorporate in a spectral
analysis technique.

i) Prequency Resolution and Statistical Stability

These features are required in a spectral analysis method
so that reliable spectral estimates with low variability and
negligible bias error may be obtained. The real-time spectral
analysis method, in common with special purpose machines, can
combine the qualities of good resolution and statistical stability.
This is.a significant advantage over off-line techniques, which
generally work from fixed duration records, and sacrifice resolution
to obtain stable estimates.

ii) Availability of Results

If the user is to conduct experiments quickly and
efficiently, the results of his analyses should be rapidly available.
Here again the real-time digital method and on-line special purpose
machines have the advantage over off-line techniques, sinco they
Present results in real-time.

iii) Frequency Range

In order that a wide range of signal and systems can be
studied, a good spectral analysis technique should allow measure-
menis over a wide range of frequencies. In this respect off-line

methods znd special purpose machines are usually superior, since
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the maximum frequency range of the real-time technique is limited
by the speed with which the computer can execute the FFT. The
programmes described in this thesis have upper frequency limits
of ~ 500Hz and ~ 250 Hz for autospectral and frequency response
measurements respectively. These limits may be extended if a
faster computer is used, and estimated frequency ranges for a
typical modern machine are given in section 8.2.
iv) Accuracy

If we are to attach any significance to our results, it is
important that the analysis be carried out with as little error as
possible. In this respect it is expected that the digital methods
would be generally superior to analogue special purpose machines.
This is because of the great accuracy that can be achieved with
digital arithmetic.

v) Flexibility

If economic use is to be made of a spectral analysis
machine it should be easily adaptable to suit a wide variety of
problems. In this respect programmed.computers have clear acvantage
over special purpose machinery. This is because it is cheap and
easy to alter the coding of a computer programme, while the
modification of a specizl purpose machine might be impractical, or

involve the purchase of ancillary equipment.

To summarise, real-time digital spectral methods over-
come the major disadvantuges of off-line digital methods, and are

potentially more accurate and flexible than special purpose machines.
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An important feature of spectral estimation methods
not mentioned above is the way in which the analysis is conducted.
Generally speaking, if we have to obtain an estimate of a
continuous curve (such as a frequency response function) we set
about it by estimating a set of points on the curve, and then obtain
an estimated curve by fitting a curve to the set of points. The
estimated points may be obtzined in one of two ways s- either we
can form estimates of the complete set of points concurrently, or
we can obtain estimates point-by-point. These methods are known
respectively as 'parallel' and 'serial' estimation.

N

A parallel estimation procedure is employed in the real-
time spectral analysis routines. Its chief advantage is that an
overall appreciation of the curves being estimated is quickly
obtained, thus enebling the user to react immediately to results,
and optimise estimation parameters. This is in direct contrast
with the serial mode of estimation where the-user must wait until
the set of estimates is compiete befdre he can begin to asseas the

results.

The disadvantages of the parallel estimation procedure
applied to real-time spectral analysis is s-

i) The set of estimated points are equally spaced on the
frequency axis. This is a disadvantage when small sections of a
curve contain sharp peaks or troughs, and so require closely spaced
points to described them, while the remainder of the curve is

relatively smooth and can adequately be described by widely spaced
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pointse The equi-spzcing of points iec also inconvenient when
the data is plotied to logarithmic scales, since most of the
points then become bunched at the upper end of the scale.

ii) When used to estimate frequency response functions, the
pargllel mode of the real-time spectiral analysis technique is
often inefficient. This occurs when the squared coherency is low
only over a limited band of frequencies and the estimates are
correspondingly unstable in this region. This may mean that much
smoothing may have to be used on a set of estimates, which are only

unstable over a limited region.

These disadvantages are not shared by serial mode
estimation procedures, since the spacing of estimates and the amount

.

,o{ averaging per estimate may be varied from point to point.

From the preceding paragraphs it may be seen that
parallel and serial estimation procedures are in some ways
complementary snd, if used together in a real-time estimation routine,
can form a powerful combination. For instance, a parallel estimation
procedure can be used to form an initial set of estimates. Then
from this set, areas of interest can be selected, and studied in
detail using a2 serizl estimation procedure. A proposal for such a

real-time spectral znalysis facility is given in the following

section.
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8.2. rroposals for Further Work

In view of the general criticisms of parallel parameter
estimation and the deficiences of the GEC 90/2 computer programmes,
there is a strong case for the development of a flexible recal-time
spectral anzlysis facility on a larger computer. Since the School
of Engineering Science is (probably) acquiring an XDS Sigma 5
computer it is expected that the facility will be implemented on

this machine.

The proposzl is that a digital spectral\gnalysis programme
package that contains a parallel and serial estimation procedure
be developed. The package will be built around the fixed-point
FPT, and will allow estimation of autospectra, cross-spectra or
frequency response functions in parallel or serial mode. This will
enable the user to obtain real-time estimates using the parallel

estimation procedure, select areas of interest, and use the serial

estimation procedure to amplify results in those regions.

The parallel spectral estimation technique used will be the

one described in this thesis, and it is suggested that the serial
technique use the method of complex demodulates outline in the

first chapter.

It should be possible to programme this package

efficiently on the Sigma 5 computer because s-—

i) The Symbol assembler is used, SO 90/2 routines can be

easily reprogrammed.
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ii) Both parallel and serial estimation methods can use the
same fixed-point FFT programme block.
iii) The Sigma 5 uses a 32 bit word so that look-up tables

and data can be stored twc elements per word.

The Sigme 5 is a faster, larger and more accurate
machine than the GEC 90/2 computer. The performance of the real-
time spectral analysis programme will therefore be improved. It
is estimated that the Sigma 5 spectral anal&sis facility will be
able to handle data blocks of (at least) 2048 points,and analyze
frequencies up to 3 KHz, (autospectra) and 1.5 Ksz(frequency

response).

Further theoreticel work that is proposed arises from the
work contained in chapter 6 cn closed-loop systems, and from the
serial estimation procedure in the proposed real-time spectral

analysis facility.

Firstly, consider the results of chapter 6. Approximate
variance expressions for the forward path frequency response
function were obtained, and these indicated that disturbances in the
feedback loop are of secondary importance in assessing the
variability of the forward path frequency response estimators.
Confidence statements were developed for the special case of noise-
free feedback, and it was suggested that since the feedback noise
is a second order effect, (and in the absense of more rigorous

results) these confidence st:tements may be used to assess the
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quality of estimates obtained in the genaral case of noisy feed-

forward and feedback paths,

To extend these results the following two items of study are
proposed., Firstly, it is suggested that variance expressions which
given some indication of the effect of feedback noise be derived.
Secondly,'it is suggested that the sampling properties of the forward
path frequency response estimator be fully developed by considering the
probability distributions associated with tri-variate, complex, gaussian
process, These results may then be applied to the estimation of closed-
loop freguency response functions, and to the more geﬁeral field of
tri-variate spectral analysis. Of particular interest in this field
would be the linear, time-invariant, system with two coherent inputs
‘and one output.

The proposed real-time spectral analysis facility, which
combines serial and parallel estimation techniques, will require theo=-
retical support., This will be necessary to design and justify an
appropriate serial spectral estimation method. The method of complex
demodulates was suggested as a suitable serial method because it can be
conveniently programmed to operate using the same FFT programme block
as the parallel estimation routine, It is therefore suggested that a

thorough study of the complex demodulates method be undertaken.
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APPENDIX 1: ALGOL PROGRAMMES FOR FOURIER TRANSFORMATION,

FFTT & FFTF
PROCEDURKS FFTT AND FFTF EXECUTE THE FAST

FOURIER TRANSFORMATION ALGORITHM, THEY OPERATE ON THE N
POINT COMPLEX ARRAY REA[IJ+JIMA[I], 1I:=0,~==N=1, THE
BLOCK SIZE IS N=RtM,
CALL:

TO FORWARD TRANSFORM THE N POINT COMPLEX TIME
SERIES XR+JXI, CALL FFTT(R,M,N,XR,XI);

TO INVERSE TRANSFORM THE N POINT COMPLEX FOURIER
COEFFICIENTS XR+JXI, CALL FFTT(R,M,N,XR,XI);
TIMING:

EXECUTION TIMES FOR TYPICAL N ARE GIVEN IN TABLE 2,1,

"PROCEDURE" FFTT(R,M,N,REA,IMA);

"COMMENT" THIS PROCEDURE EXECUTES THE FAST FOURIER TRASFORM US ING
DECIMATION IN TIME;

"VALUE"R,M,N; " INTEGER"R,M,N;

"ARRAY""REA, IMA;

"BEGIN"

"INTEGER"I,L,MLESS1, ILESS2,NLESS1,LTOP ,KTOP,JT ,JW,RMI,RI1,

K,V,Q,SUM,P,JJ,NN;

"REAL" TPN,A, B, ATR,ATI,BTR,BTI,TENP;

"INTEGER" "ARRAY" J[O:M-1];

"IF" N<O "THEN" NNg= -N "ELSE" NN$= N;

MLESS1:=M-1; TPN:= -6,283185307180/N; NLESS1:= NN-1;

llmR" I == l"STEP"l"UNTIL"H"m"

"BEGIN'" RMIs=Ri(M-1); RIlg=Rt(I-1);

LTOP:=RI1=1; KTOP:=RMI-1; ILESS2:=I=2;

"FOR"Ls=0"STEP' 1""UNTIL"LTOP"DO"

"BEGIN" "IF"L”O"'I“EN"

"BEGIN" "FUR"P::O "STKP"]. "IJNTIL" ILEsszﬂm"

J[P]:=0; JWe=JTs=0; "END" .

"ELGE" "BEGIN" P:=ILESS2;

RETURN: J[P]:=J[Pl+1;

"IF" J[P]=R "THEN" "BEGIN" J[P]:=0; P:=P-1;

"GOTO" RETURN; "END";

JVWe=JT:=0;

"EOR" P:=0 "STEP” 1 "UNTIL" ILESSZ nwn

"BEGIN" JW:=JVW+J[P]*RTP;

JT:=JT+J[P]*RT (MLESS1-P); "END"; "END";

A:=C0S (REI*IJWHTPN ) ;

B3=SIN(RMI*JW*TPN);

"FOR" K:=KTOP "STEP" -1 "UNTIL" o0 "pQ"

"BEGIN" V:=K+JT; Q:=V+RMI;

TEMP:=REA{Q]+A=- IMA[Q]*B;

ATR:=REA[V]+TEMP; BTR:=REA[V]-TEMP;

TEMP¢=IMA[QJ*A +REA[Q]*B;

ATI;=IMA[V]+TEMP; BTI:=IMA[V]-TEMP;

REA[V]:=ATR; IMA[V]:=ATI;

REA[Q]:=BTR; IMA[Q]:=BTI; "END";

"END" L me; R

"END" I LU.)P;

"FOR" P3=0 "STEP" 1"UNTIL" NLESS1 "DO"
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""BEGIN" K:=P;
BACK: SUM:=0;
"FOR"I:=1 "STEP" 1 "UNTIL" MLESS1 "DO"
"BEGIN" Q:=K"DIV"R;
JJ ¢=K=Q*R;
SUMs=SUM*R+JJ;
K== ; "END";
K:=SUM*R+K;
"IF" K<P "T}{EN" "G)'IU" BA(X;
"IF" K "NE" P "THEN"
"BEGIN" ATR:=REA[K]; ATI:=IMA[K];
REA[K]:=REA[P] ; IMA[K]:=IMA[P];
REA[P]:=ATR; IMA[P]:=ATI; "END";
"END" P LOOP;
"IF" O<N '"THEN" "FOR" I3=0 "STEP" 1 "UNTIL" NLESS1 "DO"
"BEGIN" REA[I]:= REA[I]/NN;
IMA[I]:= IMA[I]/NN;
"END";
"END" OF FFIT;

""PROCEDURE" FFTF(R,M,N,REA, IMA);
""COMMENT" THIS PROCEDURE EXECUTES THE FAST FOURIER TRANSFORM USING
DECIMATION IN FREQUENCY;
"VALUE" R,M,N; "INTEGER" R,M,N;
"ARRAY" REA, IMA;
"BEGIN"
'""INTEGER" NN,NLESS1,RMI,KTOP,LTOP,MLESS1,KDASH,L,K,KA,KB,OLDRMI,
P,Q,JJ,SUNM;
"REAL" TPN,C,S,ATR,ATI ,BTR,BTI,TPNIND;
"IF''"N<O '"'THEN'" NN3=-N
"ELSE" NN:=N;
NLESS1 s= NN=-1; RMI := NN"DIV" R; _ >
KTOP $= RMI-1; LTOP $=1; MLESS1 $=M-1;
TPN $=-6,283185307180/N; ‘
"I'T)R" I:= 1 IISTEPH 1 "UNTIL" M"Do"
"BEGIN" KDASH :=0; TPNIND := TPN4LTOP;

"mR" L = 1 "STEP" 1 "UNTIL" me "w"
"BEGIN"

"mR" K I 0 "STEP" 1 "UNTIL" Kmp "m"
"BEGIN"

C &= COS (X*TPNIND);

S t= SIN (K*TPNIND);

KA := K+KDASH; KB 3= KA+RMI;

ATR := REA[XA] + REA [KB];

ATI := IMA[XA] + IMA [KB];
BTR $= (REA[KA] - REA[KB]) *C = (IMA[KA] = IMA[KB])*s;
BTI := (IMA[KA] - IMA[XB ])*C + (REA[KA] = REA[KB])*s;
REA[KA] := ATR; REA[K B] := BTR;
IMA[KA] := ATI; IMA[KB] := BTI;
"“END" OF KLOOP;
KDASH := KDASH + OLDRMI;
"END" OF LOOP;
LTOP s= R*LTOP; OLDRMI $= RMI;
RMI $= RMI"DIV" R; KTOP := RMI =1;
“YEND" OF 1 LOOP;
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"IF" N>O "THKN"
“FOR" I 3= 0 "STEP" 1 "UNTIL" NLESS1 "DO"
"BEGIN"
REA[X] := REA[ I]/NN;
' IMA [X] := IMA [I]/NN;
"END ";
"FOR" P := 0 "STEP" 1 "UNTIL" NLESS1 "pO"
""BEGIN"
: K :=P;
BACK: SUM :=0;
- "FOR" I := 1 "STEP" 1 "UNTIL" MLESS1 "DO"
"BEGIN"
Q := K'"DIV" R;
JJ $= K~Q*R;
SUM 3= SUM*R+JJ;
\ K :=Q;
'mD";
K = SUM*R:X;
"IF“ K<p HTHEN" "mm" BACK;
"IF" x "NE" P "mEN"
"BEGIN"
ATR $= REAIK]; ATI := IMA[K];
REA[K] := REA[P]; 1MA[K] := IMA[P];
REA[P] := ATR; IMA[P] := ATI;
"END";
"END" OF P LOOP;
"END" OF FFTF;

ODDEVEN

PROCEDURE ODDEVEN IS USED WITH FFTT OR FFTF (AND A
RADIX OF TWO) TO DISCRETE FOURIER TRANSFORM A REAL TIME
SERIES X[I], I:=0,===== “=N=1,
CALL:

TO FORWARD TRANSFORM THE N POINT REAL TIME SERIES X[I],
STORE X[I] IN THE N/2 COMPLEX ARRAY XR+JXI, I3=0,==c==N/2,
SUCH THAT:-

XR[I]s=X[2*K]

XI[1]:=x[2*%K+1] Ki= Q,m====N/2-1,
XI[N/23,XR[N/2] UNASS IGNED WORK SPACE,
THEN CALL:-

FFTF(2,M-1,N"DIV'"2,XR,XI);
ODDEVEN{N"DIV"2,XR,XI);
ARRAY XR,XI NOW CONTAIN THE FIRST N/2+1 CORRECTLY ORDERED
DISCRETE FOURIER COEFFICIENTS.,
TO INVERSE TRANSFORM THE DISCRETE FOURIER COFFICIENTS
IN XR+JXX CALL;:-
ODDEVEN(~N"DIV''2,XR,XI);
FFTT(2,M~1,=N"DIV"2,XR,XI);

THE REAL TIME SERIES IS NOW IN XR+XI IN THE ODD-EVEN
ORDER SPECIFIED FOR THE FORWARD TRANS FORM,
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"PROCEDURE" ODDEVEN (N,REA, IMA);
"COMMENT" THIS PROUCEDURE IS USED WITH FFT TO TRANSFORM REAL DATA;
YVALUE"N; '"INTEGER'N;
"ARRAY" REA, IMA;
"BEGIN"
"INTEGER' NN,HALFN,K;
"REAL' ATR,ATI,BTR,BTI,S,C,TPN;
NN:="1IF" N<0Q "THEN" =N "ELSE" N;
HALFN:=NN"DIV"2;
TPN$==3,14159265359 /NN;
- "IF" N>0 "THENN
"BEG‘IN"
REA[NN]:=REA[0];
IMA[NN]:=1MA[O];
"END";
"mR" K:=o "STEP" 1 "UNTIL" HALFN "w"
"BEGIN"
ATR$=REA[K J+REA[NN-K1;
ATI:=IMA[K]- IMALNN=-K];
"IF" N>o "T}[EN"
"BEGIN"
BTR$= (IMA[K ]+ IMA[NN=K ])*0,25;
BTIs=(REA[NN~K]-REA[K])*0,25;
S:=SIN(TPN#K); ATR:=ATR¥0,25;
Ce=00S (TPN*K); ATI:=ATI*0,25;
"END"
“EISE"
"BEGIN"
BTR¢=REA[K ]=-REA[NN=-K]; -
BTI¢=IMA[K ]+ IMA[NN=K];
¢=C0S (TPN*K);
Ce=SIN(TPN#K);
"END";
REA[K ] $=ATR+C*BTR=S*BTI;
REA[NN-K]:=ATR=-C*BTR+S*BTI;
IMA[KJ¢=ATI+S*BTR+C*BTI;
IMA[NN~K ]s=- AT I+S*BTR+ C*ETI;
"END";
"END" OF ODDEVEN;
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APPRNDIX 2

The Covariance of Sample Cross-snectral Fstimators

Let x(t), v(t), P(t), z(t). (- —rg'<t < 2), be samples of
gaussian, zero mean, signals, The sample cross-spectral estimators

of x(t) leading v(t), and P(t) leading %( t) are :-

oo +jwt e ~jwt ¥
Cxylw) = %— #(4) Ut) e  db. | y(t) 1(t) e  at
i -
s +iwt ~ ~jwt
Cpz(w) = -Clz o(t) 1(t) e at. | =(t) W(t) e  at
-G il

The covariance of these cross-spectral estimators at

frequencies wl and w2 is given by :=

Cov {ny(wl),cpz(coz)} = E{ny( wl),CDZ(toz)} - E{C)cv(wl)}r':{cnv( w?)}

Now :=
oo ) -Jeq (=3t =tg
K {\xv( 1) an(wZ)} = ;-2 dtldtzdt3dt4 A.e

Qe v e s s A.?,l,

where A = 1(£,)1(£,)1(4;)1(t,) B{ x(t))¥(%,)0(t,)a(t,))
and B {x(t))v(t,)n(t;)a(t,)}= Bxnlty-t)) Eyalt,-t,)

+Z§n(t4~tl)2$yp(t3-t2) +Sacr(ty=t)) Bpalty=ty) oouiiini.. K202,

$s@ SCRNEIEI &},\&m %7/
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The covariance can be obtained by substituting the three
term expansion of A,2.2., into ecuation A.2.1., and integrating out
each term, The first two terms require the use of the following
approximation :e=

-jwt ~jwt

ey {1e)e }= (uomie )

This approximation holds provided L(w) is impulse=like

compared with the cross-spectra, The covariance exvression obtained

using this avnproximation is :=-

Cov {: Cx'y(wl) ,sz(wQ):} -

. 2
(2maf I Lo, = “’2)*1'((*’1'“)2)' ' Ez(wl)'l;y@l)

v fuep 0y s )] Fone). (e h2.3

1 2 o 1 2 p l- 1 LR B LR R . e e
Whenwl U-’2, this expression can be written in the modified

forn t=

cov { oxy(e), an(w)} q)? 12()* [xa@). 1) [py(w)

+ ,L(?w)* L(2w),2 ,;_p(w) l:y(w) W . 3 (N

The snectral window functions, L(w), have low pass
characteristics., The class of functions used in this thesis have pass-
bands that are of the order of ;I‘l Hz wide, and out-side their pass-bands
their responses fall away as (W), The width of the pass-band and

the decay rate are determined by the shape of the data window 1(t),
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A simplified covariance exvression may be obtained by
assumming that the cross-spectra Ixz(w) and f;;@») are flat over the
pass~band of the spectral window function, The expression can be
further simplified by noting that for frequencies greater then the
window pass-band the second term in equation A,2.4. is much smaller

than the first term,

The simplified covariance expression is :=

Cov {ny(w),CpZ(w)} = '—;’z(w). Ey(w) Y -3

The covariance expressions A,2,3, and A,2,4. are general, and
can be applied to any window functions, 1(t) which satisfies the

conditions :=

Ut) = 1(~t)

) = o 5 sl >3
+o

a . le(t)dt
= Q0

As an example of the use of the general covariance expréssion,
the covariance relation for a specific window function will be derived.
A well known result is that given by Jenkins and Watts on page 415 of
"Spectral Analysis and its Application" (Holden Day, 1968)., This gives
the covariance for cross-spectral estimators obtained using a
rectangular data window, This covariance expression may be obtained

from the general covariance expression A.2,3, as follows :=
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The appropriate data window is the rectangular function

].R(t), defined by :=

Lt = ®F 5 quc i
L(t) = 0 ; 1t >3
40
2
Gp = Jlﬁ(t)dt = 1
-m®

The Fourier transform of lﬁ(t) is denoted LR(w). In expression
A.2,3, we reguire the function IR(w)*Ln(w), this may be evaluated

 indirectly by determining its Fourier transform first. Thus :-

+® —juwt

e at

=jw i

PR - o | ey e o

L}
-alr:‘"
N 0 ol

sm{ww}
2
m

Lz

= ZNN—

The covariance expression for rectangular windowing is thus

obtained as -

Cov {ny(wl) ’CPZ(("‘)Q)} -

2 2

sjn{T(w;"w?) . {T(w ..%) 3

e Ixz(eo)) Toy(w)) + -—5'(;;7;;)— Cxp(w)) Tay(e,)
J

=
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APPENDIX 3

Expectation and Covariznce of Aliased Cross-Spectral Estimators

Let X(w) be the continuous Fourier transform of the
sample x%(t) {— -g— <t <—g~} of a gaussian signal modified by the
window function 1(t) (defined in Chapter 4). Also let A be the
discrete Fourier transforms of the time series X, {i - S BEERRE
g - %}modificd by the window function li. Then, if the time series
is obtained by sampling x(t) every A seconds, the discrete and

continuous Fourier transforms are related by :-
\!

1 +

Aew (AW Sx(w ) 5w, - 20

If the spectrum of x(t) is assumed to be low pass, then
to a good approximation all but the first alias can be neglected.

Under this assumption we can define the aliased spectrum of x(t)

as XA(ak) =AN A . So that -

X)) = X(w) + X () NP . 5 1

The aliased spectra of the gaussian signal sample y(t),

P(t), 2(t), may be defined in a similar way as s-

,(9) = YY)+ Y*(wN_k)
P() = P) + P )
z2,W) = aw) + z*ng_k>

214



And the aliased cross-spectrum of x(t) leading y(t) may

be defined as g=-

nyA(q{) = %x:(ui() YA(%) sonesaseenss RodeBe

Similarly the aliased sample cross-—spectrum of p(t) leading z(t)
is s~

opz,y () = %PZHJ 7,(3) R W T B

a) The Expected Value

The expected value of the aliased sample cross—spectrum

is g~
E{nyA(wk)} = 21{ E{xz(‘”k) YA(wk)}

2]

.l...

L) Ry(w) + 12 _0* b )
21mq

Assuming the cross-spectrum is smooth over tlLe pass-band
of the spectral window, the approximate expected value of tle

aliased sample cross-spectrum is -

E {nyAﬂa&i} o I;y(ak) + E}@Lh_k) senseseses Asldede

b) Covariance

The covariance of the aliased sample cross-spectra of

x(t) leading y(t), and p(t) leading z(t) is given by 1=

Cov(Cxy, () ,Comy (@ V) = Bfoxy, @) .oz, @)} = Boxy, ) e,
AY k AY N-k A k AN N=k AN k7 LS AY Nek
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This expression can be evaluated in a way similar to
that used in appendix 2. Mzking the usual approximation that the

cross-spectra are -smooth in the pass-~band of the spectral window,
the approximate covariance expression is :=

cov{ Cxy, («3),02,(0)) 2 Fiy(ea)s Bya) + Fole_ ) Foxeoy )

+ Ixp@). l-372(wN_k) + fpx(w ) U.Y(WN_R)

Sene e e v e A.}.S.

The covariance expression for smoothed, aliased, cross-

spectral estimators, nyA(w), EpzA(w), obtained by averaging n

independent sample, aliased, cross-spectral estimators can be
written directly as s-

Cov @xyA(wk) ’ 'C*pzA(wk)} =

S

Cov@xyA(w) szA( k):} cecesvece Audib

From equations A.3.4. and A.3.5. the variance expressions
for smoothed, aliased, auto- and cross-spectral estimates can be
written in terms o

their expected values. Thus s-

eliega)e 2 P

Var{ny( Ez\_nyA( )} + 2 xxw (‘*ﬁ k) "FY( )

R BN R R Ao3n7o
From these expression we conclude that aliasing will
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modify the variability of cross-spectral estimators, but not
auto-spectral estimatorss The extent to which the variance of
cross—spcctral estimators is altered can be judged by considering
the behaviour of expression A.3.7. as the folding frequency, -L:;—q
is approached. Near the folding frequency we are justified in
making the approximation() = wN-—k. Substituting for -k in
Ae3eTe gives -

Var {(-)xyA(wkj} c % EQ{EXYA(“’]J'} + 2 r;x(“ﬁ() G}'(‘*’k){il‘](?fy(wk)‘}

\ 00..;.0-000.‘&.3080

Therefore, since the squared coherency is bounded by O and 1, the

variability of cross—-spectral estimates is generally increzsed by

aliasing.
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APPENDTX

Bias and Variance of Non-Linear Functions of Random Variables

Supnose f(xl,xQ, A sv xn) is a non-linear function of the
random variables Xl,XQ, sih e Xn. Approximate expressions for the
bias and variance of f(xl,xz, S san xn) in terms of the bias and
covariances of the random variables may be obtained from a Taylor
series expansion, To a first order approximation, f(xl,x2, eevee xn)

in the region of PysPos eeees D is ziven by :=

n
z of
f(xl,xz, :cn)-‘_L f(nl,.p2 pn) + (‘&:)‘(xf%)

i=1 n

CIC RN R 40411'

a) Bias
If the random variables X19Xp sceee X aTE associated with
estimators of the ‘parameters DysDpy eeees Py then the bias in the

estimator associated with f'(xl,x?, vevae xn) is approximately :=-
n

B{f(xl,nr.?, P xn)}& Z (;ii) B{xi:} sumenwaiie Nolads

i=1 P

b) Variance
If the expected value of xl.xz. sass xn ia denoted
}-11, )-12. vesee }‘J‘n’ then the first order approximation about the mean

is :

i d
€0y wnee ) = £ty pop, -----)*J&Z(-g{;)# (xg=Py)

i=1



And the variance is anproximatelv

n n

Var(f(xl,xz, idwn xn)_}& Z COV(XJ,xi (%;:)l‘ (‘g:{:‘)#

i=

—~
=
I}

]

trveeev v, Aa4l30
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APPENDIX 5

Errors in Frequency Response Measurements caused by Non-Identical Guard

Filters

In section 5.3.3. a technique for the suppression of aliasing
errors using a pair of identical guard filters is described. In this
appendix we consider the errors ihat occur when the guard filters do
not have identical frequency responses. This situation may be caused

by variations in filter component values.

Let us assume that in figure 5.7. the frequency response
function of the filter for x(t) is g (w) and that the frequency response

function of the filter for y(t) is gz(w), then neglecting errors caused

by windowing and aliasing, the expected value of the frequency response

between x'(t) and y'(t) is :-

g, (w)
Eff(w)]} = {m . H(w) P T, (1

From this equation it can be seen that the fractional bias

error in the gain estimate is -

B lﬁ(@lﬂ _ |82(w)| ) |
) = Te ()] 1 cereeeneens M52,

and also that the bias error in the phase estimate is :-

B d(w)l - Arg{gz(w)} erereeenes ASL3.

81(m5
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The following simple example illustrates the likely
magnitude of these errors. Assume that the guard filters in figure
5.3. have fourth order Butterworth characteristics, but that their
cutoff frequencies are slightly different. The guard filter for the
input signal x(t) has a cutoff frequency of 0.3fs HZ (the value
recommended in section 5.3.3.), and the guard filter for the output
signal y(t) has a cutoff frequency of O.3fs(l + 0)HZ (where 0 is a
small constant). The errors associated with various values of ©
have been plotted using equations.A.5.2. and A.5.3. and are shown in
graphs A.5.1. and A.5.2. The frequency scale on these graphs is
normalised so that the sampling frequency is unity and the 0.5 HZ

point on the normalised frequency axis therefore denotes the folding

frequency.

It can be seen from the graphs that even for small differences
between the two guard filters the errors in the gain and phase estimates
can be large. It is therefore important that the guard filters have
identical responses. In some cases, however, it may be impractical
to obtain or construct matched guard filters and in these cases the use

of the following procedure is advocated.

1) Match the guard filters as closely as possible and then
estimate the frequency response between x'(t) and y'(t) using one of
the measurement schemes shown in figure 5.3. Neglecting windowing and
& lasing errors this estimate will have an expectation given by equation

A.5.1.
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TYPICAL ERRORS IN FREQUENCY RESPONSE ESTIMATES CAUSED BY GUARD

FILTERS WITH UNEQUAL CUTOFF FREQUENCIES.

(FOURTH ORDER BUTTERWORTH

FILTERS; FOR THE INPUT FILTER fc = O.3fs, AND FOR THE OUTPUT FILTER

£, = O.3fs(l +0)).

PERCENTAGE GAIN ERROR

PHASE ERROR(DEGREES)

GRAPI' A.5.1. PERCENTAGE GAIN ERROR
NORMALISED FREQUENCY
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2) Disconnect the system under test and replace it with

a short-circuit.

3) Estimate the frequency response between x' (t) and y' (t)
g, (w)
again, i i ’ i D220
g Its expectation will now be EICEY From equations A.5.2. and
A.5.3. this estimate can be used to obtain values for the gain and phase

error and these in turn can be used to correct the estimated frequency

response of the system under test. \

The disadvantage of this procedure is that two frequency
response measurements are required instead of one. However, this is
not a serious disadvantage because the second frequency response

measurement is noise-free and thus occupies little time.
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