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SU , MMARY 

In the field of control engineering there is a need to study 

the dynamic behaviour of systems which are subjected to random 

disturbances. A technique which is of great practical use is to 

describe the dynamic properties as a function of frequency. This 

involves determining the frequency content, or spectrum, of the 

disturbances, and the frequency response function of the system. There 

are many analogue and digital techniques which are designed for this 

type of spectral analysis. However, digital computer techniques are 

often avoided because they are slow, and data must be collected 'off-line'. 

A recently discovered computational method, termed the fast- 

Fourier-transform (FFT), enables digital spectral analysis to be carried- 

out in a much shorter time than was previously possible. In view of 

this discovery it was decided to develop digital computer programmes 

which would overcome the disadvantages of conventional digital spectral 

analysis. Using these programmes a computer would be connected, via 

an analogue to digital interface, to the signal source, and would process 

the data as it entered the computer. In the jargon of computing, the 

computer would be 'on-line' and analyzing the spectra in 'real-time'. 

The first part of the project consisted of an investigation 

of the FFP when programmed for an on-line digital computer. The 

results of this investigation showed that a rapid, accurate, and compact 

FFT could be programmed by using fixed-point arithmetic, and coding in 

an assembly language. The speed of the transform was sufficient to 

allow spectral analysis over a frequency range useful in control 
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applications. 

Two on-line computer programmes based upon the YPP were then 

written; one for 'real-time' spectral analysis of a single record, and 

another for the 'real-time' estimation of the frequency response 

function relating two signals. In order that the results of these 

programmes could be sensibly interpreted, a statistical study was made 

of the spectral estimators used in the programmes. Arising from this 

study, several contributions to the field of digital spectra. analysis 

were made. These were : - 

1) A more general covariance relationship for cross-spectral 

estimators. 

2) An examination of aliasing in digital spectral estimators. 

3) Some theoretical results concerning spectral estimators for 

closed loop systems with random disturbances inside the loop, 

Some experimental work was conducted with the real-time' 

spectral analysis programmes, and it was concluded that the tec: inique 

is more powerful than conventional digital. methods because it is on- 

line, and can provide estimates with improved resolution and 

statistical stability. Real-time digital spectral analysis methods also 

have the advantage that they may be simply and quickly modified to suit 

specific applications. 
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1. Il1TRODUCTICN 

This thesis deals with certain problems in the field of 

digital spectral analysis. In particular it is concerned with a 

method which enables a digital computer to be used as a real-time 

spectrum analyser. The spectral estimates discussed in the thesis are 

suitable for the analysis of random signals, and of linear, time- 

invariant, systems which are subjected to random disturbances. 

The purpose of this chapter is to present some baekgroind 

information, and motivation for the work contained in this thesis. To 

justify the use of spectral analysis methods on random signals and 

systems with random inputs, section 1.1. describes some uses of spectral 

analysis of random data. The spectr: A_ ar alyL. is methods contained in 

this thesis are designed for use with the fast-Fourier-transform (FT). 

To provide an introduction to these methods, section 1.2. discusses 

digital spectral analysis methods used before the discover-, - of the F? T; 

and section 1.3. describes the effect that the fast-Fourier-transform 

has had upon spectral calculations. Finally, in sectior. s 1.4, ý, nd 1.5. 

the specific work contained in the thesis is outlined. 
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1.1. Some Applicatinns of Spectral Analysis 

Wherever physical phenomena can be expressed as the 

reaction of a system to a signal, there is a need to characterise 

the dynamic behaviour of the system. In many practical cases the 

system can be assumed to be approximately linear, and time- 

invariant. This type of system can be completely specified by 

its dynamic or transient response. The dynamic response of such a 

system can be presented in two ways s- a) as a function of time, 

or b) as a function of frequency. 

These descriptions are termed respectively the "time- 

domain" response and the "frequency-domain" response of the system. 

The two domains are related by the Laplace integral transform, and 

in, a more restricted sense by the Fourier integral transform. For 

many engineering applications the Laplace transform is too general, 

and the Fourier transform is used. Since the time and frequency 

domains are complementary the choice of which system response 

description to use is largely suojective. 

The writer's main interest is in control engineering, and 

in this field both time-domain and frequency-domain analysis 

techniques are highly developed. However, for linear, time- 

invariant control systems, most practical design techniques are 

formulated in the frequency-domain. Therefore, for practical 

purposes, presenting system information to the control engineer in 

terms of frequency is the natural way. 
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Over the last twenty years random signal theory has 

found wide applications in control engineering. The main reasons 

for such developments are s- 

a) When system disturbances are random, and therefore 

cannot be described exactly, feedback control is used. To determine 

the type o. f control which is best, statistical descriptions of the 

signals are used. 

b) The high cost of taking expensive control plant off- 

line has meant that systems must be studied 'in-situ'. Therefore, 

measurements must be made in the presence of the normal plant 

operating signals. To differentiate between the system responso to 

the test signal and the operating signal, statistical methods must 

be used. 

The frequency-domain study of a system subjected to 

random disturbances involy. s determining the frequency characteristics 

(or spectra) of the disturbances, and the frequency response of tha 

system. In the linear, time-invariant case a knowledge of the 

frequency response is sufficient to specify the system. This process 

of specifying a system is usually termed 'identification', and its 

purpose is to enable the control engineer to assess and improve the 

performance of the control system. 

Thus it is seen that there is a definite need for 

experimental procedures to analyse the spectral properties of 

random signals, and to identify the frequency response of systems 

in the presence of random disturbances. 
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1.2. Conventional Digital 
_Spectra! 

Analysis Procedures 

We now confine our discussion to digital spectral analysis 

techniques. Until recently the role of digital methods in spectral 

analysis has been rather limited. This was because the digital 

version of the Fourier transform, the discrete Fourier transform, 

takes a long time to calculate. The discrete Fourier transform of 

a time series xi, (i = 0,1, ..... N-1) is defined as %- 

N-1 
1 

WN 
ik 

Ak 3N 'ý i 
i=0 

k 0,1, ..... N-1 

where ? IN = exp(-j-- ,7) 

The reason why it takes a long time to calculate the 

discrete Fourier transform can be seen if the transform is 

considered as a complex matrix multiplication of an NxN matrix 

and an N vector. In a computer multiplication is a lengthy 

operation, so the speed with wh'ch the discrete Fourier transform 

2 
can be calculated is limited by the time taken to compute N 

complex multiplications. Even for small values of N this can take 

a long time. (For example, in a typical computer it might take up 

to twenty minutes to transform a 500 point complex series. ) 

Clearly then if the engineer can manipulate and present digital 

data adequately in the discrete time-domain there is no advantage 

in making a time consuming transformation into the discrete 

frequency-domain. 
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In the field of random signal analysis the same 

difficulty existed, but with the added inconvenience that the 

discrete estimatß'of the autospectrum of a random signal is not a 

consistent estimator. A consistent estimator is one whose 

variance and bias tend to zero as the number of observations is 

increased. Unfortunately, the variance of discrete autospectrum 

estimators are independent of the number of observations. 

A discrete autospectrum estimate of a zero mean signal 

x(t) can be obtained from the discrete Fourier transform as s- 

Cxx(c, )= Nis. 
( IAkI)2 ;k 0p1, ..... ZN 

where; k= 
27T k 

the sampling rate 

Ak the discrete Fourier transform of an N point time 
series, obtained by sampling x(t) atA second 
interval-1 

This discrete estimate of the autospectrum consists of a 

set of estimates of points on the true autospectrum. The true 

autospectrum 
1xx(W) 

of a stationary process X(t) is defined as the 

Fourier transform of the autocovariance function, xx(U). 

+c 

-jwu rx(w) 
_ jýxp(u)e du 

_I, 

x(u) = cov(x(t), x(t+u)) 

Where Cov( as 
) is the covariance operator. 
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The discrete autospectrum estimate is often termed the 

'periodogram', and for brevity we will follow this practice. The 

periodogram is inconsistent because the components of the 

periodogram are statistically independent, and since the periodogram 

based upon N observations will have 
2 components, each component 

is effectively based upon only two observations of the random 

signal. The periodogram thus has a variability which is independent 

of the number of observations. 

The process of obtaining consistent autospectral estimates 

is termed periodogram smoothing. This entails further lengthly 

discrete Fourier transforms and provides another argument against 

the use of digital spectral techniques. 

The forms of periodogram smoothing originally used to 

obtain consistent estimates of the spectrum both used the same 

premises By averaging n independent estimates of the same quantity, 

a reduction in variance of n-l is achieved. 

a) Averaging over frequency 

This technique was due to J. P. Daniell (ref. 1.1. ), and 

uses the fact that the components of a periodogram are independent. 

If n neighbouring periodogram elements are averaged, and the true 

spectrum is 'smooth' over the averaged frequency band, then the 

result is an improved estimate of the spectrum in that frequency 

band. To improve the variance further more periodogrem elements 

can be used. The new estimate represents an average over a wider 
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frequency range, so that the variability of the estimated 

spectrum is reduced by 
n, 

and the bandwidth of the estimators is 

increased by n. 

b) Averaging over time 

This method is usually associated with M. S. Bartlütt 

(ref. 1.1. ). The technique used is to average n independent 

periodograms obtained by observing the same signal. The resultant 

lth 
smoothed periodogram has a variance of n 

of the raw periodogram's. 

The method is applied to a single record in the following way z- 

An N point set of observations is sub-divided into n sub-sets of 

n 
points each. A smoothed periodogram is then obtained by 

averaging the periodograms of the sub-sets. In a similar way to 

method a), this reduces the variance'by a factor of 
n 

at the 

expense of a bandwidth increase proportional to n. 

Both smoothing methods reduce the variability of the 

digital spectral estimates by ii. creasing the bandwidth of the 

frequency filter through which the true spectrum is observed. In 

this sense both methods involve spectral estimates which are 

averages over frequency. Except for differences in the 'shape, of 

the frequency filter, both methods give similar results. By proper 

design of spectral estimation experiments the differences caused by 

these filters can be reduced to negligible proportions. Therefore, 

the choice between methods a) and b) is based upon the amount of 

computation involved in. each method. 
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In method a) an N point periedogram is computed, so at 

least N2 multiplications are required. However, in method b) 

there are n periodograms calculated. Each periodogram involves 
n 

points, so at least N2/n multiplications are required. Because of 

this computational advantage method b) is the most popular 

traditional approach to spectral analysis. 

In texts on digital spectral analysis, smoothing by 

averaging over time rarely appears explicitly. This is because a 

different computational procedure, which gives the same results, 

but which is not obviously equivalent has become established as 

the best way to estimate smoothed spectra. This computational 

procedure is known as the 'Lagged-Products' or 'Indirect' route; 

It, became the accepted approach to spectral estimation largely 

through the book "The Measurement of Power Spectra" by Blackman 

and Tukey (ref. 1.2. ), which was for many years the only book which 

treated digital spectral analysis from an engineering stand-point. 

The 'Lagged-Products' route uses the following procedure: 

1) Estimate the autocovarianec function, 

2) Multiply the estimated autocovariance function by a 

function 1(t). This function is often called a 'window function', 

and a class of windows which are in wide use satisfy the following 

general conditions s- 

a) 1(0) 1 

b) 1(t) 1(-t) 

itl > ri 
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By varying the shape of th? window function the user 

can control the shape of the frequency filter through which the 

true spectrum is viewed. 

3) Finally the smoothed periodogram is calculated by taking 

the discrete Fourier tr&nsform of the 'windowed' estimate of the 

autocovariance function. 

The 'Lagged-Prcduct' route is held to be bettar than 

direct use of method b) because ,n estimate of the autocovariance 

function is obtained 'en-route'. Method b) also provides auto- 

covariance estimates, but these Lie based upon records of duration 

N, 
whereas the 'Lagged-Product' estimate is based upon the entire, 

N point, record. 

r 
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1.3. The Effect of the FFT on Spectral Analysis Procad, ires 

Until the mid-1960's the 'Lagged-Products' route remained 

entrenched computationally as the most efficient way of estimating 

spectra. In 1965 however, the 'Fast-Fourier-Transform' (FFT) 

algorithm was formulated, and the computational advantage was 

removed from the 'Lagged-Products' route. 

In their paper "An Algorithm for the Machine C<; lculation 

of Complex Fourier Series", Cooley and Tukey (ref. 1.3. ) showed 

that by clever programming it is possible to execute the discrete 

Fourier transform of an N point complex vector (where N= rm) 

using about N. m complex multiplications instead of N2. So for 

example the discrete Fourier transform of a 2048 point block can be 

transformed in 38 seconds instead of 376 minutes as before. The 

family of algorithms which enabled this to be done became known 

collectively as the Fast F-urier Transform. 

The advent of the FFT has meant that the transformation 

between time and frequency domains is no longer the key factor in 

calculating computation time. Indeed the FFT enables the systems 

analyst to transform back and forth between the domains with no 

great computational penalty. This means that data may be handled 

in whichever domain is the more convenient (ref. 1.4")" 

In spectral analysis of random signals, the 'Lagged- 

Products' method is no longer obviously the more efficient method, 

-nd the choice between methods a) and b) is open. Both these 
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methods are now in common use (ref. 1. §., 1.6. ). 

The speed advantage of the FFT has also lead to the 

formulation of spectral analysis methods that would not have been 

feasible using the direct discrete Fourier transform. Most notable 

among these is the method of complex demodulates (ref. 1.6. ). This 

technique is really a discrete version of the analogue, heterodyne, 

spectrum analyzer. Using digital demodulation, the frequency of 

interest is translated to zero frequency. The demodulated data is 

then low-pass filtered, this may be done using the FFT method 

described in reference 1.4. Then by squaring and averaging the 

filtered series, an estimate of the power near the demodulated 

frequency is obtained. 

To summarise, the FFT has lead to a rebirth of interest 

in the direct methods of snectral G. nalysis, and has made possible 

more sophisticated spectral analysis routines. In the general 

field of data handling the FFT has lead to a greater flexibility 

in data manipulation. 
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1.4. Motivation and Content of tho Thesis 

The work contained in this thesis was initiated by an 

idea due to Dr. M. T. G. Hughes. The suggestion was, that if the FFT 

could be efficiently programmed on an 'on-line' digitial computer, 

it would be possible to estimate spectra in 'real-time'. 

In this context the term 'on-line' means that the 

computer is collecting data directly, and not through some inter- 

mediate medium, such as punched paper tape. The term 'real-time' 

is used in the sense that the computer collects and processes data 

at a rate determined by data analysis requirements, and not by the 

limitations of the computer. Therefore, an 'on-line' digital 

computer analyzing physical data in 'real-time' reads analogue data 

directly via an analogue/digital interface, and analyses it as it 

becomes available at the interface. When analyzing random data, 

some form o averaging of estimates is often required, so that an 

on-line computer could display current estimates, and update the 

estimates as more data becomes available. Thus, a properly 

programmed on-line digital computer would function like, and form 

a useful alternative to an analogue spectrum analyzer. 

Such a computer would be superior to analogue machines 

for the following reasons s- 

a) A programmed computer is more flexible than a special 

purpose machine, so that 'real-time' digital spectral analysis 

procedures may be easily tailored to suit specific application. 

Furthermore, the comp'iter is not coriitted solely to spectral 
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analysis, and can be used for other purposes when not required for 

spectral measurements. 

b) Permanent recordings of the analysis results may be 

produced in a variety of ways through the computer peripherals. 

If required, addition computations may be done on the results 

before outputting. 

The first phase of the project work was a study of the 

FFT applied to on-line computers, ® particular the programming 

in assembly code of the fixed-point arithmetic FFT. This aspect 

of the thesis is described in chapters 2 and 3. Chapter 2 gives a 

description of the FFT algorithms, and chapter 3 presents the 

results of the study of the fixed-point, assembly coded, FFT. 

r 

The assembly code ITT was then used as the basis of a 

'real-time' digital autospectrum estimation programme for an 

on-line digital computer. A description of this programme, and the 

statistical properties of the estimator used, is given in chapter 4. 

The success of the 'real-time' autospectrum estimation 

routines led to the development of a programme to estimate(in real- 

time)frequency response functions from noise-like data. A 

description of this programme and the properties of the estimators 

involved is given in chapter 5. 

In chapter 6 the problem of estimating the frequency 

response of transfer functions associated with closed loop systems 

13 



is considered. In particular the statistical properties of a 

frequency response estimator of the forward path transfer function 

are discussed. 

Chapter 7 presents some results of experiments conducted 

using the 'real-time' autospectrum and frequency response 

estimation routines. The thesis is concluded with a brief assess- 

ment of the real-time spectral analysis method, and a proposal for 

further work. 

I 
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1.5. Contribution of the Thesis 

This thesis makes five contributions to the field of 

digital. spectral analysis, and frequency response estimation from 

random data. These contributions are listed below : 

a) The first is a practical one, and is the development of 

'real-time' digital autospectrum estimation procedures. This 

involves an application of the 'averaging over time' smoothing 

method described in section 1.2. At its conception this apolication 

was thought to be novel. However, since then several commercial 

instruments have appeared on the market, and these use the same 

technique. 

As a direct extension of the auto-spectrum estim^tion 

procedures, 'real-time' digital frequency response estimation 

techniques were developed. To the author's knowledge no I? ubli. shed 

work exists which describes frequency response estimation using 

these techniques. 

b) An r. m. s. round-off error analysis for the fixed-point FF`i' 

is developed in chapter 3. This error analysis is an extension of 

the previous analysis (ref. 1.7. ) for sign/magnitude binary 

arithmetic to the more common two's-complement binary arithmetic. 

C) A now expression for the covariance of sample cross- 

Spectral estimators is given in Appendix 2. This expression is 

more general than existing expressions (for example Jenkins, 

ref. 1.8. ) since it assumes a general window function. 

d) In chapter 6a study is made of the estimation of the 

frequency response function of the forward path transfer function 

of a closed loop system ki"h noise in the loop. ApproximEte 
ýf 1L EQs C 

i 
(, S 

, tQ ow ý'` 
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variance and bias expressions for the c; stimators of gain and phase 

are derived, and confidence intervals are given for the special 

case of noise-free-feedback. To the authors best knowledge these 

results have not been presented before. 

e) In chapter 5 the problem of aliasing in the discrete 

spectral analysis of noise-like data is approached. An expression 

for the covariance of aliased sample cross-spectral estimators is 

given (Appendix 3), and expressions for the bias and variance of 

aliased frequency response estimates are developed. It is believed 

that these expressions are original. 

t 
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2. THE FAST FOUR iE1 TRAN FORM 

2.1. Introduction 

The FFT is a method which computes the discrete Fourier 

transform (DFT) of a complex, N point, time series more -rapidly 

than other algorithms available at the moment. The algorithm 

obtains its speed advantage from the fact that, if N has many 

factors. then the number of operations required to execute a DFT 

can be very much reduced. To be specific, if N= Rm the FFT 'cakes 

a number of operations, ('operation' meaning a complex mul''L. i- 

plication) proportional to N. m to compute the DFT. By comparison, 

the direct approach takes a number of operations pr. oportioria1 to 

9 
N 

The FFT has the further advantage that it requires less 

computer store than the direct method, and it co; iDutes the DFT 

with reduced round-off errors. 

In this chapter the basic FFT algorithms for radix. 2 

operation (N - 2m) are described, and their extension to radix R, 

and mixed radix operation is explained. The use of the FFT to 

process real data is discussed and the round-off errors are 

commented upon. Finally reversible "Algol" procedures for the 

fast-Fourier-transformation of complex, r. nd real, time series Fre 

presented. 

18 



List of Symbols Used in Chapter 2 

Ar rth component of the discrei. e Fourier transform of Xk 

B 
r rth of It it � it it Yk 

e kth of of ,... .... ., 

Bo kth It to .... .... ., Pk 

C rth to It Z 
r k 

Ce k kth it If � ,. to of to v k 

Co k kth of It to � it it to k 

D rth of of it of it of it a real r time series 

Lk kth component of a sub-series of Yk 

m index used in an FFT 

N number of points in an FFTi' array 

Pk kth component of a sub-series of Yk 

Qk kth to of to to it Zk 

R radix used in an FFT 

Rr rth component of a sub-series of Ak 

S rth of to of ,.., A 
r. k 

v k Kth .. ,. .,.. � Zk 

1V . 
27 

exp(- -j N 

Xk kth component of a complex N point time series 

Yk kth � .. .. ýý 2 
point sub-series of Xk 

kth 2 
point sub-series of Y. 

ý` 
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2.2. The Fast--Fourier-Transform Algorithm 

In this section a brief description of the two principal 

FF? algorithms is given. These algorithms are known as the 

decimation-in-time and decimation-in-frequency FFT's. For 

simplicity the radix 2 forms of the algorithms are given, so it is 

assumed initially that N=2m, (where r is an integer). 

2.2.1. Decimation-in-time 

This is the original form of the FFT used by Cooley & 

Tukey (ref. 2.1. ). It is termed the decimation-in-time FFT because 

it operates on the time series, decomposing it into successive sets 

of sub-series, and operates on the sub-series to form the discrete 

Fourier coefficients. 

Suppose we have _ complex, N point, time series X,., and 

that the DFT of Xk is Ar. Let Y and Zk be sub-series of X, 

defined by s- 

Yk '12k 

001, ..... 9 
2-1.....,.. 2.1. 

Zk R2k 
+1 

Now, let Yk and Zk have DFT's B and Cr9 defined thus s- 
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Br 
rNk 

Yk wN 
2 

k0 

ry0,1 ..... 
N-1....... 

2.2. 
2 

N 

kr 
Cr 

N 
Zk WN/2 

k=0 

Where WN = ezp( - jj ) 

The DFT of XF can be written in terms of the sub-series 

as follows s- 

N-1 

kr 
Ar 

N Yk wP1/ 
2 

k .'0 

2ýBr+W Cr. 
) 

r 
+ Z W W 

K N /2 N 

rs0,1, ..... 
2-1....... 2.3. 

For 
N/2 ,r<N-1 it is recalled that Br and Cr are 

periodic in 
N/2 

so that we can show that s-- 

r+ 
Ar+N 2 Br+N+WN Cr+N 

222 

Ar+N 
(Br-WNCrý 

rs0,1, ...... 
2-1 

....... 2.4. 

2 
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Equations 2.3., and 2.4. E are the decimation-in-time 

algorithm generating equations. They show that the DFT of an b" 

point series can be found by forming a linear combination of the 

DFT's of the sub-series Yk and Zk. 

The speed advantage of the FFT can now be illustrated. 

Assuming 2 times (N/2)` operations (complex multiplies) were 
2 

taken to form Br and Cr" Then only 2+2 operations are needed 

to form Ar using equations 2.3", and 2.4., while N2 operations 

are needed when direct summation is used. 

The full 'decimation-in-ti. me' algorithm is generated from 

equations 2.3", and 2.4., in the following way. The sub-series 

Yk, and Zk are split to further sub-series Pk, Lk and Q, 
K, 

Vk, 

respectively. These new series are defined by s- 

pk = Y2k 

-k 
Y2k+1i 

k=0,1 ..... 
4-1 

1c ý Z2k 

ýk Z2k 
+1 

Using the equations 2.3., and 2.4., the DFT's Br Cr can 

be expressed in terms of Be, Bo, Ce, and Co, the DFT's of the sub- 

series Pk, Lk, Qk, and Vk. This process of sub-division can be 

continued until there are only two elements in each sub-series. 

The Dl`T of tue complete series cE. n then be found using the DFT of 

these two element sub-series. 

22 



As an example a signal-flow chart of the decimation-in-time 

algorithm applied to an eight point series is given in fig. 2.1. 

(This figure is based upon illustrations used in ref. 2.2. ). By 

reference to this flow-chart two more features of the FFT may be 

shown. Firstly, the data is initially ordered in binary bit- 

reversed order. (By rearranging the flow-chart the strict 

Cooley/Tukey algorithm can be obtained, with correctly ordered 

input data and bit-reversed. output data. ) The other feature of 

the FFT which can be obtained from the flow-chart is the 'in-place' 

computation property. 

To illustrate this point consider the in-place calculation 

of the eight point transform in figure 2.1. The computational 

sequence is s- 

e 
a) Compute B0 and B1, and overwrite X0 and X4 with the 

newly computed values. 

Compute Bp and Bi and overwrite X2 and X6, and so-on, 

until all the first stage is calculated. 

b) Having completed all the operations in the first stage, 

we commence calculating the second stage. 

Calculate BC and B2, and overwrite Be and B0. 

Calculate B1 and B39 and overwrite Be and Bi and so-on. 

c) Finally, having computed the second stage, calculate 

the final array Ak and overwrite the B's and C's. 

Thus the FFT enables the calculation of the DFT with no 

additional store area being required. The bit-reverse ordering of 

the data can also be done 'in-place'. 
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INPUT ARRAY 

first stage 

Xo 

X4 

X2 

X6 

xi 

x5 

X3 

X7 

second stage 

i 

k 
2 

4 
3 

k4 

ý5 

% 6 

7 

FIGURE 2.1. SIGNAL FLOW CHART FOR AN EIGHT POINT DECIMATION- 

OUTPUT ARRAY 

third stage 

1Ao 

IN-TIME FF T ALGORITHM. 
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The number of operations required to perform a fast- 

Fourier-transformation can be found by continuing the sum used to 

determine the number of operations required to calculate A from 
r 

Br and Cr :- 

Number of operations using one sub-division of Ak 

2(N/2)2 + 
N, 2 

Number of operations using two sub-division of Ak 

2( 2(N/4)2 + 
N/4 )+ N/2 

° 4(N/4)2 + 
N/2 

+ 
N/2 

This sum may be extended, until we arrive at the result 

for a full FFT, which (for N= 2m) involves m sub-divisions. For 

m sub-division the number of operations by the FFT is 
2. m 

2.2.2. Decimation-in-Frequency 

This form of the FFI' was devised by Sande (ref. 2.3. ), and 

as its name suggests operates by subdividing the discrete Fourier 

coefficients. 

Let the complex, N point, time series Xk have a DFT Ak. As 

before the time series is split into *wo sequences each of 
2 

terms. i The first sub-series, Yk, consists of the first 2 terms of 

Xk, and the other sub-series, 7, k consists of the last 
2 

terms of Xk" 
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Yk = Xk 

k 0,1 ..... 
2-1 

Zk Xk 
+N 

2 

The DFT of Xk may be written in terms of the Yk and 2kIs 

thus :- 

2 
Nr 
2 

Ar 
N 

Yk + 7k ý7N VlN ............ 2.5. 

k=0 

The discrete Fourier coefficients Ak are split into two sub- 

series. The first, Rr consists of even numbered points and the other, 

Sr, consists of odd numbr'rod points. 

Rr = A2r 

r 0,1, ..... 
2-1 

Sr A2r 
+1 

Substituting Rr in equation 2.5., gives :- 

N 
2 

rk 

............ 2.6. Rr N- Yk + Zk) NN/2 

k-0 

Th7. t is, P, 
r 

is the rnf=tn of thr ý! LT's of Zk and Z, 
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Similarly for S 
r 

N 

Sr =N Yk - ? k) WNk ............ 2.7. 

k=0 

Thus Sr is the DFT of the function (Yk - zký ' 
N' 

Equations 2.6., and 2.7., are the decimation-in-frequency 

aljorithms enerat. ing enuations. Using these expressions the full 

decimation-in-frequency FFT can be derived in a similar way to that in 

which the decimation-in-time FFT was developed in the rrevious section. 

In addition, all the properties of the FFT discussed with 

reference to decimation-in-time arn]. y to deci. mation-in-f--equency. 

2.2.3. Radix R Algorithms 

In the previous sections the FPP algorithms for. N of the 

form 2m were described. Similar algorithms for N of the form Rm 

(R integer) can be written. If N is not composite of this form, then 
m 

algorithms to handle N=I pi can be written, where the pi are 
i= 

prime. Such FFTP's are termed 'mixed-radix' algorithms, and., because 

of the comnlex indexinm they require, they are, usually avoided in 

favour of the simpler single radix algorithms. 

Cooley and 'Aukey (ref. 2.1. ) have shown that the most 

26 



efficient FIT has radix 3. However., the binary radices (2,4,8,16, ) 

have other advantages. These are, (i) binary indexing may be used. 

This is useful in binary arithmetic machines and; (ii) use may be 

made of the symmetry in the discrete Fourier transforms of binary 

radix point blocks to further reduce the number of operations 

involved in the FFT. The larger the binary radix used, the fewer 

operations are required. Working with large binary radices has two 

disadvantages. Firstly, the programme instruction store area 

increases in prorortion to the radix, and secondly the usable values 

of N become widely separated. The latter Iisadvantage may be overcome 

by using a mixed binary radix algorithm. For instance, a 4,2 mixed 

radix transform can transform data blocks of the form 2m. When m= 2k 

a pure 4 radix FFT is used, and when m= 2k +1a radix 4 FFP is used 

for the first 2k stages and the transform completed with a2 radix 

final stage. 

`" 1 
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2.3. P-°ocess. i Real Time Series 

The FM. algorithms described here can be used to transform 

(or inverse transform) complex data blocks. In many data 

processing applications, however, we require the DFT of real time 

series. The FFT can be used directly to transform such series, by 

forming the comrlex series Zks Xk + j0. This is wasteful of computer 

time and store space, since by using the conjugate symmetry Ak = AN_k 

of the DFT's of real time series we can write routines to transform 

two real. time series of N points each using one complex N point transform. 

With a little extra effort it is possible to transform a single real N 

point series in one complex 
N/2 

point FFT. 

2.3.1. Transforming Two Real Time Series 

If we have two series Xk and Yk of the same length, then the 

auxiliary complex time series Z1 is formed. Thus :- 

7k Xk +j Yk ;k=0,1, ....... N-1 

We now show that the DFT's of X. 
k and Yk may be obtained from 

the DFT of Zk. Let Cr, Ar, and Br be the DFT's of Zk, X, and Yk 

respectively. 

Then :- 

1 
Nk 

rkN Orý Z yY 

k=0 

N-1 

(xk +j Yk)Wrk 

k=0 

............. 2.8. 

28 



N-1 

CN-r =N-J Yk)w rk 
............. 2.9. 

k=O 

Solving equations 2.8., and 2.9., for. Ar and Br gives 

Br 2 ýcN_r crý 

r-0,1, ..... 
2 

............. 2.10. 

Ar 2 (CN-r + Cr) 

Hence, the N point DF1"s of 3Ck and Yk can be generates 

using a single complex N point M. 

r 

2.3.2. Transformin-, a Single Real Time Series 

A more useful te(, Lnninue than that described in 2.3.1. is now 

given. This enables us to transform a single real series. ; Ck, using 

a complex 2 point 
M. 

Defining the auxiliar. -, r complex series Zk 

71k0, ]., ..... 2 _k =X+j X2k 
+ 

Now, using an point FFT, the DFT of Zk iss obtained 

N 
2 

As 
rN 

(X? 
k +j X2k 

+ 1ý `N/2 """"""""... 2.11. 

ka0 
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Defining Br and C, as the 
2 
11 

noii. t DF'T's of X2k and X2k 
+1 

respectively, then from 2.11. and using the result of section 2.3.1. 

Br =2 Ar + AN 
?-r 

........... 2.12. 

Cr 2( Ar '4N 
2-r 

Now refering to section 2.2.1., we can use the algorithm 

generating equation 2.3., to show that Dr, the DFT of Xk, is given 

by :- 

DA1 B+ Tr c ........... 2.13. 
r2rN r} 

I 

Note that because of' the conjugate symmetry of Dk, all. the 

useful information is contained in the first half of the Dk. 
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2.4. A Comment on Round-off Errors in the FI'T 

The FFT has the important advantaie that the round-off 

errors incurred are smaller than those incurred by direct summation. 

The reduction in errors has often been erroneously coupled with the 

reduced number of operations required by the FFT. The FFT involves 

less round-off error because of the way in which the discrete Fourier 

coefficients are calculated. If a discrete Fourier coefficient is 

expressed in terms of Xk and WN using the FFT it may be seen that the 

F'FT calculates each coefficient by a series of nested multiplications. 

An analogy may be made between the calculation of the DFT 

and the evaluation of a polynominal. In this analogy the direct 

method of calculating a complex Fourier coefficient is compared with 

the direct evaluation of a polynominal, and the FFT method of 

calculating a Fourier coefficient is compared with the nested multi- 

plication method of calculation of a polynominal. This analogy may be 

pursued to obtain an error wound for the FFT usinp- the results of 

Wilkinson (ref. 2.4. ) obtained fcr the nested product evaluation of a 

polynominal. However this is not the purpose of the comparison, which 

is merely to point out that the FFT gains its numerical. efficiency by 

calculating the discrete Fourier coefficients by nested multiplications. 

The round-off error in the FFT is studied more thoroughly in Chapter 3. 

In this study the errors incurred by using fixed-point arithm ti. c are 

considered. For an error analysis when floating-point arithmetic is 

used the reader is referred to reference 2.5. 
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2.5. ^omnuter Pror*rsmme for the FFT 

"Alroi" procedures to execute the FFT have been prerared by 

the author, and since they are of general interest, listings of them 

are given in appendix 1. The first two procedures are reversible FFT 

algorithms operating on the complex arrays REA, TMA of size N= Rm, 

One procedure uses the decimation-in-time algorithm, the other the 

decimation-in-frequency algorithm. 

The remaining procedure is a reversible algorithm for 

transforming (or inverse-transforming) a single real time series, and 

is used with either FFT procedure. 

The timing of the FW -orocedur. es for various N is compared. 

with the direct method in TABLE 2.1. These figures are for the tr. -. -ns- 

formation of complex time series. When OT)Dr7lTN is used to transform 

N real. data points the timing for the N point complex FFT's should be 

halved. 
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Execution Time on Elliot 430 

TABLE 2.1. 

FFT FFT Direct 
N dec-in-time dec-in-freu Method 

(seconds) (seconds) (minutes) 

128 1 1 1.45 

256 3 4 5.85 

512 7 8 22.5 

1024 17 17 94.3 

2048 38 39 376* 

4096 84 85 1505* 

8192 184 184 6004 

These figures were calculated by extrapolating 
the times for N= 128,256 and 512, and assuming 
the execution time is proportional to the square 
of N. 
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3. AN ASSEMBLY CODE STUDY OF THE PVT 

3.1. Introduction 

The purpose of this project is to investigate real-time 

spectral analysis techniques, using an on-line digital computer. 

If it is intended to analyze the signals in real-time we must be 

able to execute the discrete Fourier transform quickly and 

accurately. As was shown in the previous chapter, the FFT enables 

us to do this, and so forms a suitable basis for a real-time 

spectral analysis system. However, further reductions in computation 

time can be achieved by coding the FFT in an assembly language, and 

using fixed-point arithmetic. Therefore, as the key part of cur 

spectral analysis facility we aim at evolving an assembly code F? T 

programme using fixed-point arithmetic. 

In this chapter the results of a micro-programming study 

of the fixed-point FFT are presented. Section 3.2. deals with the 

selection of the algorithm type and radix, and outlines the 

programme structure. In section 3.3. the accuracy and speed of the 

fixed-point FFT are discussed. It is shown that true fixed-point 

is inaccurate, and suggests array-scaling as an alternative 

technique. Some ways of implementing the array-scaled FFT are given, 

and their speed and accuracy compared. 

The assembly code used in this study was-the SYMBOL 

language developed by Scientific Data Systems. All assembly code 

programmes were implemented using a General Electric Company 90/2 

digital computer. 
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LIST OF SYMBOLS 

A(k) the kth component of the discrete Fourier transform 

of X(v). 

im WQ) the mean value of the imaginary part of the trigonometric 

coefficients Wk. 

Im2(Xp) the mean square value of the imaginary part of the 

complex array X. 

Im Xp) the mean value of the imaginary part of the complex 

array X. 

K the mean square modulus of the complex array Xo. 

m the index of the number of points Fourier transformed in 

a radix 2 FFT. 

N the number of points in a radix 2 FFT. 

p the number of the stage reached in an FFT computation. 

Re W) the mean value of the real part of the trigonometric 

coefficients Wk. 

Re2(Xp) the mean square value of the real part of the complex 

array X. 

Re Xp) the mean value of the real part of the complex array X. 

t the number of binary bits in a computer word. 

W the complex coefficient exp(-j? ). 
N 

Xm(v) the with component of the complex FFT array after 

completion of the FFT. 

X0(v) the with component of the complex FFT array before trans- 

fcrmation. 

36 



(v) X I'll 
the v component of thc: con pl:: x r r'T ez rnf e. l ter p p 

stages of an FFT. 

p the error in the real and imaginary components of the 

complex array X X. 

E the error in the real and imaginary components of the W 

coefficients Wk. 

Si variance of the error caused by rounding a number to a 

t bit, two's-complement, binary number. 

2 
ZS2 variance of the error caused by discarding the least 

significant bit of a two's-complement binary number. 

I1 mean value of the error caused by rounding a number to a 

t bit, two's-complement, binary number. 

µ2 mean value of the error caused by discarding the least 

significant bit of at bit, two's-complement, binary 

number. 
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3.2. General Description of the FFT assembly code nrogramn; e 

In planning an FFT programme the first decision which must 

be made is whether to use the decimation-in-time algorithm, or the 

decimation-in-frequency algorithm. Both algorithms use the same 

arithmetic structure, the difference between them being in the 

indexing procedures. The algorithm selection must therefore be based 

upon the suitability of the indexing procedures to a binary indexing 

machine. The difference between the two algorithms may be summarised 

as follows :- 

The decimation-in-time FFT requires relatively little 

indexing, but the indices are altered in bit-reversed fashion. 

Conversely, the decimation-in-frequency algorithm requires much more 

indexing, but the indices are altered in a fairly orthodox fashion. 

The obvious choice for a binary indexing machine is therefore a binary 

radix decimation-in-time FFT. 

In selecting the decimation-in-time FP we have also 

restricted the choice of radix to a binary number. If the usaidle 

values of 11 are to be sensibly spaced, we must also stipulate that N 

take the form 2m (m, integral). This restricts our choice to either 

a radix 2 or a mixed, 4 plus 2 radix algorithm. To aid the decision 

between these two radices both were programied in assembly code and 

their performances compared. The 4 plus 2 radix algorithm was found 

to be slightly the faster (100%), but required about twice as much 

code space as the radix 2 algorithm. Since the mixed radix algorithm 

was not dramatically faster, the more compact radix 2 algorithm was 

selected. 
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Having justified choosing a radix 2 decimation-in-time 

FFT to form the basis of the real-time spectral analysis facility, 

the structure of the assembly code programme for this algorithm is 

given. For the purposes of this discussion the programme can be 

conveniently split into four blocks; These blocks are described 

below s- 

1) RESERVED STORE AREAS 

These are sections of the computer memory reserved for 

exclusive use of the FFT algorithm. The store areas are, a) scratch 

index and work space; and b) scratch parameter block; c) arrays for 

'look-up' tables of trigonometrical coefficients and bit-reversed 

integers; and d) an N point complex array. 

Areas a) and b) are sections of the computer scratch 

memory pad, which is an area of store which can be accessed more 

quickly than other store areas. Areas c) and d) are arrays 

associated with the FFT. These arrays vary in size with N, so they 

are situated at the top of the store and are expanded downward 

when necessary. 

2) SET-UP ROUTIN; S 

When a new value of N is required these routines calculate 

the new FFT parameters and compile a suitable bit-reversed integer 

table. 

3ý FFT ALGORITHM 

OFeiating in the scratch work space this section calculates 
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the discrete Fourier transform of the contents of the N point 

complex array. 

4) BIT-REVERSED SEQUENCE 

After the discrete Fourier transformation this block 

uses the bit-reversed integer array to rearrange the discrete 

Fourier coefficients in the correct order. 

The programme is coded in such a way that it may be used 

as a separately loaded subroutine, or as a part of a main programme. 

The set store areas are in the main programme store reservations. 

If the FFT programme is loaded as a separate routine, the addresses 

of the indices and arrays are copied into the FFT at load time. 

This avoids wasteful indirect indexing between main and sub-programmes. 

When the FFT sub-routine is first entered the required 

value of 'm' must be in the machine'A'register. The sub-routine 

compares this new 'm' with the existing rn in the parameter block, and 

if necessary enters the set-up routines and alters the FFT para- 

meters accordingly. The machine then exits from the FFT routine. 

To forward transform the contents of the complex array the FFT sub- 

routine is entered with the preset value of in. To inverse transform 

the contents of the complex array the FFT routine is entered with 

the negative of the preset value of in. 

The maximum usable value of m is set by the length of the 

trigonometrical table. This table is fed into store at load time 
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frone a paper tape prepared on the University Elliot 4130 computer. 

Currently used tapes allow a maximum value of N= 256, but this 

figure can be increased. The ultimate limit on N is set by the 

size of the computer store. 
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3.3" Numerical Procedures in the Fixed-Point FFT 

The radix 2 FFT operates upon a complex, N point array, 

Xo(v), v - 0,1, ..... N-1., where N is an integer power of two. 

In a computer the complex array is represented by two real N- 

point arrays. Each real array member consists of one computer 

word, and it is assumed that the binary point is situated to the 

left of the most significant bit (excluding the sign bit). Thare- 

fore, the range of values which can be stored in one word is -1 

to +1, and the contents of each complex array point is bounded by 

the unit square enclosed by the lines 1+ jl, 1- jl, -1 -jl, and 

-1 + jl. 

The FFT of a2m point complex array is executed in 'm' 

stages. For example, the 8 point FFT described in chapter 2 is 

executed in three stages, these stages are indicated in figure 2.1. 

The contents of the complex arrzyat a particular stage are 

identified by an appropriate suffix. For instance, at the nth 

stage the array is designated Xn (v). Each stage of the FFT c: ons: sts 

of an arithmetic loop and some indexing routines, and it is the 

purpose of this section to describe the arithmetic loop. 

In the loop the complex arithmetic expression insequation 

set 3.1. MW applied (with suitable changes in indices, v, q, k) to 

the array. -nvp- V, 3, czp ýs, 
Vý fJ2u 

pýA CQ ý1P LQ C'ý. l O`i\ lÄ äJ ýý Cýý`lý Q/ý ý( 

tL J 
CA-, Xct^-jJ 

WL1 "ate IlJýJ1Q 

ýG 

`"jU'ý 

ýý %. 
ý. 

cýTEý Af OCG. ¢ 'Q 0, 

' \Q p ?ec , v2 /ý ýuIV ýn 
ÖtczZý 

y 

/// 

ýA1_c uý2 2s Cý 
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Xp(v) xp-, (V) + Rp_l(q) ; ýý: 

............. 3.1. 

Xp-1(q. ) wk 

Where W exp-j27 14 

Equation set 3.1. is a typical computation pair in the 

pth loop of the FFT. In this loop the pth complex array is obtained 

by applying equation set 3.1. to the p-lth array. The equation set 

is applied 2 
times, so that all N array members are processed. 

After m stages, the discrete Fourier coefficients, Xm(v) are 

obtained. 

Moving from stage to stage, the modulus of the array 

members, in a mean square sense, doubles. At each stage therefore 

there is a possibility of overflow in the newly computed array. If 

an overflow does occur, then it must be rectified by resealing the 

array. Resealing is accomplished by shifting the contents of the 

array store words to the right until the overflow is cleared. Fach 

shift to the right is equivalent to dividing by two. 

There are two ways of avoiding overflow in the arithmetic 

loop. These are s- 

1) Rescale the array before every loop. This ensures that 

overflow will not occur, and at the end of the mth loop we have 

computed s- 
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N-1 

2-m xo(v) wrk 

v=0 

Which is the correctly scaled discrete Fourier transform 

of X(v). Since the same array scale factor is maintained through- 

out the transform, this resealing technique is true fixed-point 

arithmetic. In general, fixed--point arithmetic is undesirable 

since overflow will not occur at every stage, and some of the 

rescalings will be redundant, causing unnecessary inaccuracy. 

2) An alternative to true fixed-point is array-scaled arithmetic, 

Array-sealing is a compromise between the speed and inaccuracy of 

fixed-point arithmetic, and the slow efficiency of floating-point 

arithmetic. It is a form of scaling used extensively in computer 

calculations with matrices (ref. 3.1. ). The technique treats all 

the matrix elements as mantissi of a single floating-point number, 

and stores the matrix characteristic in a single computer word. 

If any of the mantissi overflow the entire matrix is resealed. 

When applied to the FFT, array scaling operates in the following 

way s- 

To decide whether an overflow will occur in a loop a 

test is applied to the array members. If the test proves positive, 

and an overflow can occur, then all the array members are resealed 

by the same amount. At the end of the transform we have the 

complex array Xm (v), which has been rescaled, say 1 times. The 

discrete Fourier transform of X0(v) is then given by s- 

A(k) = 21-m Xm(k) 
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3.3.1. Implementing Array Scaling in the FFT 

There are several ways in which the FFT can be programmed 

using array scaling. The different methods arise initially from 

the different tests which can be applied to the array members to 

decide whether rescaling of the array is necessary. Secondary 

differences arise over the choice of when in a loop to rescale the 

array. There are two principal rescaling criteria. These are, 

the Modulus test and the Overflow test. 

a) The Modulus Test 

This technique uses a knowledge of the structure of the 

arithmetic expressions executed in the FFT loop. By testing the 

p-1th array, and using a knowledge of equation set 3.1., the 

po, sibility of an overflow in the pth loop can be predicted. 

Consider either of the expressions in equation set 3.1. If the 

moduli of the p-lth array are controlled to be less than 
29 

then 

from 3.1. it can be seen that the moduli of the new array will be 

less than one, and there will be no overflows in the pth loop. 

Once the necessity for a rescaling of the array has been 

established, there is a choice of when to rescale the data. The 

alternatives are 

1) Rescale the array before entering the loop to compute the 

next array. 

2) Enter the loop, and rescale the array members immediately 

after the now array members are calculated. 
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The first method is the simper of the two, because the 

loop can be entered and the new array calculated with no allowance 

for overflows. The second method was first suggested by Shively 

(ref. 3.2. ). It has the advantage that rescaling is delayed from 

the p-lth array until the pth array, thus reducing errors. Its 

disadvantage lies in the added programming involved in allowing 

for an overflow in the computation of equation set 3.1. 

b) The Overflow Test 

This resealing criterion assumes no knowledge of the 

equations to be calculated. The loop is entered, and allowing for 

overflow, the new array is calculated. If an overflow occurs, the 

offending number is resealed. The entire array, consisting of 

solve new array members and some old, is then resealed by the same 

factor, and computation continued. The resealing need not be done 

in any specific order, so he resealing routine should be no more 

complex than that required in the Modulus test (type 1). The 

Overflow test requires more programming than either of the Modulus 

test transforms since allowance must be made for two overflows in 

the array calculations. 

3.3.2. R. N. S. Error Bound for the Array--Scaled FFT 

To compare the three array scaled FFT's, their r. m. s. 

round-off error bounds were derived. The r. m. s. error criterion 

was used because it is more useful than the absolute error in 

assessing the accuracy of random signal measuroments. An r. nm. s. 
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error bound will therefore be useful later when we are calculating 

the measurement noise in the spectral analysis programmes. The 

error analysis presented here is substantially the same as that 

used. by Welsh (ref. 3.3. ). Modification of Welsh's analysis was 

necessary because his theory was developed for sign/magnitude 

arithmetic, and the machine used in this project used two's- 

complement arithmetic. 

Errors in Two's-Complement Arithmetic 

The operations which cause round-off error in the array 

scaled FFT are 1) rounding of multiple precision numbers to single 

precision; rnd 2) resealing of single precision numbers before an 

operation which might otherwise involve an overflow. 

1) Rounding 

When, in at bit word machine, a double precision word 

is rounded to single preci^ion, the least significant word is 

tested. If it is greater than or equal to 2-(t+l)s then 2-t is 

added to the most significant word. If the least significant word 

is less than 2-(t+l), nothing is done. Following Hamming (ref. 3.4. ) 

the binary sequence of errors caused by this rounding may be 

approximated by a random variable uniformly distributed in the 

range _2-(t+l) to +2-(t+l). The mean and the variance of the 

rounding error can therefore be calculated as s- 

1=o 
52 2-2t 

22 1 12 
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2ý Rescaling 

When at bit number is resealed, it is cycled to the 

right one place, and the least significant bit discarded. The 

binary sequence of errors caused by rescaling can be represented 

by a binary random variable. This random variable may take the 

values 0 and 2-t with equal probability. Accordingly, the mean 

and variance of the rescaling error can be found as :- 

a 
.......... 3.3. 

6j 2a 
2-2(t+l) 2 

Error Analysis 

In this section the upper bound on the r. m. s. round-off 

error for a typical array-scaled radix 2 FFT is calculated. The 

array scaling technique considered uses the Modulus rescaling 

criterion, with scaling bcfore the loop. In the analysis it is 

assumed that the sum computed by the FFT is s- 

N-1 

X1(k) 
> 

X0(v)Wkv 

v-0 

The correctly scaled discrete Fourier transform is 

obtained at the end of the transform by dividing by N. 

By computing the FFT in this way the magnitude of the 

membeisof the complex array will increase at each stage. To 

accommodate such increases it will be assumed that at each r. esciling 
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the binary point is shifted one place to the right. The magnitude 

of all the numbers in the complex array is therefore doubled after 

each resealing. This applies to rounding and resealing errors as 

well, so that after p rescalings the error caused by rounding a 

double precision number will have zero mean and variance (4p) ßj12. 

The error caused by the p+ 1th resealing of a number will have a 

mean value 2 p)L2 
and a variance of 4p622. 

The following result is used in the analysis. This 

relates the mean square modulus of the complex array at the pth 

stage with the mean square modulus of the complex array at the p_lth 

stage. 

EC IX .2 
E( I XP_1I2 

This result is due to Welsh (ref. 3.3"), and it may be 

obtained by taking the expectation of the squared modulus of 

equation 3.1. Using this result we can say that if K is the mean 

square modulus of the input array, then the mean square modulus of 

the output array is 2mK. 

To obtain an upper r. m. s. error bound it is assumed that 

a rescaling is found necessary prior to every loop. It is also 

assumed that the rounding errors are uncorrelated with each other, 

and the array members. 

Consider a typical real computation at the pth stage of 

the FFT. From equations 3.1. such a computation is %- 
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Re(Xp(v)) = ReSXp-1(v)) + Re(XP-1(9))Io(Wk) + Im(Xp-1(q))Re(Wk) 

To a first order approximation the error in this typical 

computation can be expressed as a linear function of the errors in 

the array members and trigonometric coefficients. Using such an 

approximation the mean square error at the pth stage can be 

obtained by adding the variances of the error terms, and the square 

of the expected values of the error terms. This process can be 

extended to the entire FFT cömputation by separately calculating 

the variance and the mean error in the FFT, and combining them to 

obtain the mean square round-off error. 

In the error analysis that follows the error in the real 

and imaginary components of the pth array, XP, is denoted G 
P& 

The 

variance of the error at the pth stage is indicated by Var( Ep 

and the mean error is denoted by GP. The error in the trigonometric 

coefficients, Im(Wk) and Re(Wk) is denoted e. This error is 

caused by representing the coefficients by at bit binary number, 

and has zero mean and a variance 2 
12 

Variance of the Error 

The initial array will require rescaling to avoid over- 

flow in the first loop. So, denoting the error in the resealed 

initial array by e0, the variance of the error is :- 

Var (Bo) = S2 

Where a2 is the round-off error caused. by the initial rescaling 
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The first loop 

In this loop the value of Wk in the FFT computation 

(equations 3.1. ) is either +1. Therefore the computations reduce 

to a set of additions and subtractions. 

A typical computation is :- 

is %- 

Re 
( 

XI(v)) = Re 
( 

X(v + Re( X(q)) 

From which the error in the array after the first loop 

Var S 61) 
=2 Var ()=2Ö2 

The second loop 

In this loop the value taken by Wk is +1 or +j, so again 

the FFT computations reduce to a set. of additions and subtractions. 

Var(E2) -- 2 Var(61) + 2(4 S22) 

The first term in the above equation is the variance 

transmitted through the F? 1' calcalation. The second term is the 

variance due to rescaling the data prior to the second loop. The 

factor of 4 in the rescaling variance is present because the 

binary point was shifted one bit to the right by the first 

rescaling. 

The third loop 

In this loop half the computations are additions and 

subtractions, and half are proper FFT computations. We estimate 

the variance of the error in each half of the computations, and 

51 



average the results, to obtain an overall error variance for the 

third loop. The error in the first half of the third loop will 

be denoted E3 and the error in the second half as E3" 

The first half may be treated in the same way as loops 

one and two. 

Var ( E3) 
=2 Var ( E2) + 2(42 622) 

A typical computation in the second half is s- 

Re(X3(v) = Re{X2(v)) + Re(X2(q)) Im(Wk 
)+ 

Im(X2(q)) Ro(WIc 

.......... 3.4. 

The variance of the error in such a computation is given 

by s- 

Var 
( E. (v ^- Var 

(E2 
+ Var 

2(Im 
Wk + Re Wk)} 

+ Var 
{ EW(Re X2(q) + Im X2(q))) 

+ Variance due to roundin. - and scaling 

.......... 3,5. 

Where G is the error in the stored values of the 
w 

trigonometric coefficients. Taking the mean over all of the 

calculations in the second half of the third loop. 

Vary 
3 

ýýVar E2 + Var( e 
2) 

[Re2 
Wk) + Im2{ Wk}j 

LJ 

+ Var(E 
)[ 

Re2{X2) + Im2 X2}] 

+ 42 622 + 43 672 

2 Var 2) + 22K 12+ 42 22 +432 ....... 3.6. 
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; he overall error variance at the end of the third loon 

is t- 

Var{E3) =2 VarýG2} +2K U12 + 42 ý2 + 2.4 22 + 2.42 2 

.......... 3.7. 

In the fourth loop a quarter of the operations are 

additions and subtractions, and in subsequent loops fewer still are 

additions and subtractions. Therefore, to case the task at hand, 

it is assumed that in the fourth and subsequent loops all operations 

are normal FFT computations. By extending the variance figure for 

the second half of loop three, the variance of the error at the 

end of the'fourth loop is found to be s- 

+ 23 K Ölt + 44 Ölt + 43(522 Var 
lE4}2 

...... 3.8. (a3C 

The variance at the end of the mth loop can be obtained 

by extending equation 3.8", and substituting for. Var 
(em 

-1) 
etc. 

This gives the approximate variance expression : 

J- 

Var1 E (m-2, )2m-1 K171 
2+ 22m+1 51 2+2 2m-1 d2 2 

...... 3-9- 
ml}- 

Mean of the Error 

Denoting the mean error in the pth array by P, the 

mean error in the resealed initial arri. y is s- 

ED a )2 

Where ]a2 is the mean error caused by resealing. 

The first loop consists of a set of additions and sub- 
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tractions, there being an equal number of each. To find the mean 

error at the end of the first loop we estimate the mean error in 

the additions and the mean error in the subtractions, and average 

the two. 

The mean error in computations involving additions is 

2 k2ý and the mean error in the subtractions is zero. Therefore : - 

E12 

The second loop can be handled in the same way as loop 

one. The mean error at the end of the second loop is s- 

22 = El +2 )2 

In the above equation the first term is the error carried 

through from the first loop, and the second term is the error 

introduced by rescaling. The factor of 2 is present because the 

binary point was shifted by the first rescaling. 

Half of the third loop calculations consists of additions 

and subtractions, the other half consists of normal FFT computations. 

As before, the mean error in each set of calculations is calculated, 

and the two values averaged. The mean error in the first half of 

the calculations is denoted by and in the second half by P3" 

The mean error in the first half may be found using the 

methods of loops one and two t- 
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C3 2+2J2 

A typical FFP computation in the second half of the third 

loop is given in equation 3.4. The mean error for such a computation is 

given by : - 
E3 =2+2 

22 
+E{( Im(1'! )+ Re( ek 

+ Ew He(X2) + Im(X2) 
) 

where 
w 

µl = 0, and Im(Wk) a Re(ý9k) 0 

Therefore the mean error at the end of the third loop is given by :- 

+ 22 FA2 E3 
o2 

The fourth loop and subsequent loops may be treated in the 

same way, and so on. At the end of the mth loop tue mean error is given 

by :- 

2m-1 2m Em 
s 

Em-1 +ý2 r2 
.......... 3.10. 

Combining the variance and the mean error, the mean square 

error at the end of the transform is :- 

m. s. e. i(m-2i)2m-1K S2 + 22m+1 S12 + 22 m-i 22 + 22mr22 ....... 3.11. 

The method used by , 7elsh ref. 3.3. ) can now be used to calculate 

the ratio :- 
moan sguare error 

_ 
m. s. e. 

mean square value of the input m. s. i. 

wke" 

The mean square modulus of the output array is 2$JK is 

the mean square modulus of the input array. The mean square value of the 

input data is 
2 

and the mean square value of the output data is 2m"2" 

There ore :- 
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1m-1 2 2mß-1 2+22m-1 S 2+22m 2 
m. s. e. (m-<ý)2 KÖl +2 51 

2? 

m. s. o. 2. /2 mK 

Substituting for 51 2, Ö2` and 2, neglecting small 

terms, and square rooting we obtain an approximate expression for 

the r. m. s. error due to round-off errors. 

r. m. s. error 0.74 2m/2 2-t 
(for m large) .......... 3.11. 

r. in. s. o. r. m. s. i. 

For a computer using aB bit word, B-1 bits are used to 

represent the magnitude of a two's-complement number. Therefore, 

t= B-1 in the above equation. 

The r. m. s. error bound given by equation 3.11. assumes 

that a resealing of the data is necessary at each stage. In 

practice it will not be necessary to rescale before evLry loop 

unless a strong periodic component is present in the initial data. 

On the other hand it may be necessary to rescale the data twice 

before the first loop. This happens whenever the magnitude 

resealing criterion is used. If the initial array is correctly 

scaled it is possible that the maximum initial array modulus is 

greater than unity. If this is so, then two rescýlings are needed 

to control the modulus to be less than 2. 

The approximate r. m. s. error bound in this case is 

r. m. s. e. 
_ 

r. m. s. 0. 

m+2 
22 2-t 0.74 

r. m. s. i. 
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The r. m. s. error bounds for the other rescaling criteria 

are : - 

a) The Overflow test 

r. m. s. e. 

m+2 
22 2-t 0.41 

r. m. s. o. r. M. S. i. 

b) The Modulus test with rescaling in the FFT loop 

rn+. 2 

r. m. s. e. 22 2-t 0.41 

r. M. S. o. r. M. S. i. 

3.3.3" Experimental Work 

a) Verification of RMS Error Bounds 

The theoretical error bounds for the array-scaled FFT 

were checked by comparing them with the actual rms errors. The 

actual errors in the FFT were estimated by transforming a signal 

using array-scaling and comparing the result with the same signal 

transformed in floating-point. The rms error was then found by 

assuming the floating-point programme was exact, and calculating 

the r. m. s. difference between the fixed-point and floating-point 

transforms. To obtain a consistent estimate of the error each 

transform was repeated several times with different samples of the 

test signal. The test signal. used was a random number generator 

generating numbers in the range -- to +i. To ensure that a 

resealing would be necessary at each stage of the transform, a 

si, rong mean level was added to the signal. The actual and 
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theoretical r. m. s. errors for various values of m are compared in 

graphs 3.1., 3.2., and 3.3. 

The predicted error bounds all slightly under estimate 

the maximum r. m. s. errors. Possible reasons for this are e- 

a) The approximations made in obtaining the theoretical 

error bound. In particular, the errors caused by the rounding in 

the trigonometrical coefficients were neglected. 

b) Differences between the theoretical variances and means 

and the actual variance and means in the rescaling and rounding 

operations. For instance, Weinstein (ref. 3.5. ) found that 

experimentally determined values of variance due to rounding-off 

typical FFT sums differed significantly from theoretical values. 

A further difference between the actual and theoretical 

r. m. s. errors was that the experimental error increased with m at 

a greater rate than that predicted by the theoretical error bound. 

This behaviour has been commented on by Weinstein (ref. 3.5. ). He 

concluded that correlation between the signal and round-off noise 

could cause this to happen. 

b) Timing of the Transforms 

The transform times for the various array scaling 

techniques were compared by measuring the time taken by each 

programme to forward Fourier transform a 256 point complex data 

block. The data transformed was such that all the programmes 

resealed the array four times in the course of a transformation. 
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GRAPHS TO COMPARE THE THEORETICAL AND EXPERIMENTAL 
UPPER BOUNDS ON RMS ERROR IN THE ARRAY SCALED FFT. 

EXPERIMENTAL. RESULTS WERE QBTt9INE0 FRO" 
MACHINE USING TWOS-COMPLEMENT f1RITHME7Ii 
GRAPH 3.1. SHOWS RESULTS OBTAINED USING 
GRAPH 3. Z. SHOWS RESULTS OBTFIINED USING 
WITH RESCALING BEFORE THE LOOP 
GRAPH 3.3. SHOWS RESULTS OSTAINEO USING 
WITH RESCALING IN THE LOOP 

A 12 BIT WORD 

THE OVERF-Low 7E5T 
THE MODULUS TEST 

THE MODULUS TEST 

THE CONTINUOUS LINE SHOWS THE UPPER THEORETICAL RMS 
ERROR BOUNO. THE CIRCLES MARK EXPERIMENTFIL POINTS 

GRAPH 3.1. 
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The times taken by the programmes are tabulated in TABLE 3.1. 

TABLE 3.1. 

Transform times for array scaled FFT's. Times are for the forward 
discrete Fourier transform of a complex 256 point block, computed 
on a GEC 90/2 computer. 

Using the Modulus Using the Modulus 
Using the Overflow Rescaling test Resealing test 

Resealing Test with resealing in with resealing 
the loop before the loop 

0.78 seconds 0.52 seconds 0.4 seconds 

From the table it is seen that the overflow rescale test 

transform is substantially slower than either of the Modulus test 

transforms. This is because s- 

a) Allowing for, and testing, for two overflows in the 

computation of equation set 3.1. requires more operations than 

testing the moduli of the array members, 

and; b) If a rescale is known to be needed in a loop, as is 

the case with the Modulus test, then half the data rescalings can 

be done by using the 'divide-by-two' inherent in two's-complement 

multiplication. The time saved in this way would he significant 

in any computer. In this case the saving is increased because 

the GEC 90/2 has no 'shift-right' instruction, and rescaling must 
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be done by a long shift left. 

The timing experiment was a little unfair on the Overflow 

test, because it was arranged that each transform resealed the data 

the same number of times. In praKtice it is possible that the 

Modulus test will cause more rescalings than the Overflow test. 

The extra resealing is necessary to control the magnitude of the 

initial array such that IX 
0 

(v)I < 1. However, even allowing for 

an extra resealing in the modulus test criterion, the overflow 

rescal5. ng test is still significantly slower than the modulus test. 

3.3.4" Conclusions 

The micro-programming of the fixed-point FFT has been 

discussed, and the choice of a radix 2 decimation-in-time 

algorithm for a binary arithmetic computer justified. 

A comparison of v&irious ways of implementing array scaling 

in the fixed-point FFT has also been given. The comparison was made 

by programming the FFT in SYMBOL assembly code using various 

scaling techniques, and measuring the r. m. s. error in each transform, 

and the time taken to execute a transformation. 

The transforms using the Modulus resc3. ling criterion 

were easily the faster. This was because they were easier to 

programme and'could take advantage of the rescaling which is 

inherent in two's-complement multiplication. The fastest transform 
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used the Modulus rescaling test with rescaling before the FFT loop. 

This trnsfcrr was however also the least accurate. 

The Modulus test (with resealing in the loop) and the 

Overflow test gave rise to the same upper r. m. s. error bound. 

however, when transforming data which does not require resealing 

at every stage, the overflow test transform will be more accurate. 

This is because the modulus test transform rescales the data if 

there is a possibility of an overflow. It is possible therefore 

that the modulus test might rescale the data unnecessarily. In 

spite of this disadvantage the Modulus test (with reseEd ing in the 

loop) provides the most efficient method in terms of speed and 

accuracy of implementing array scaling in the FFT. 
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3.4" Idditional Comments 

3.4.1. Processing Real Data 

The complex fixed-point FFT can be used to transform real 

data by using the algorithm described in section 2.3. This 

algorithm shows that with an extra set of additions and subtractions 

the discrete Fourier transform of two, equal length, real time 

series can be obtained from a single complex FFT. Tho accuracy and 

speed of this technique are now considered. 

a) Errors 

No additional errors are introduced by the extra addition 

subtraction required in the transforming of real time series. This 

is because the coefficient of in equation 2.10. can be omitted 

without risk of an overflow by combining the addition/subtraction 

routine with other subsequent routines. Therefore, the upper rms 

error bounds in section 3.3.2. apply directly to the fixed-point 

discrete Fourier transform of two real N point series. 

b) Timing 

Compared with the time required to execute the FFT, the 

time taken to execute equations 2.10. is negligible. Therefore, 

the times given in Table 3.1. are also the times taken to FFT two 

real time sories. 
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3.4.2. Error Bounds for Data Input from the Analogue/ 
Digital Converter 

The analogue-to-digital converter fitted to the GEC 90/2 

computer used in this project is wired so that full scale at the 

analogue input is equivalent to 0.5 in the computer. Because of 

this, data input from the analogue to digital converter requires 

(at most) m-1 rescalings in a 2m point FFT. Therefore, the r. m. s. 
I 

error bounds in section 3.3.2. should be divided by (2)4 when 

applied to data input via the analogue-to-digital converter. 
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4, AUTOSP, XTR1TM ESTIMATION 

4,1, Introduction 

This chapter deals with the properties of a real-tine 

digital autospectrum estimation technique. Section 4.2. develops the 

statistical properties of the autospectrum estimator used by the 

technique, and in section 4.3., a computer routine for the implementation 

of the digital autospectrum estimation technique is described. Finally, 

in section 4.4., the properties of the computer routine are discuszed. 
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List of Symbols for Chapter 4 

a expectation of a chi-square variate 

n, nth component of a, power series expansion of q 
i(t)*l(t 

Ak, kth component of the discrete Fourier transform of x. l. 

Cxx(w) the sample autospectrum of x(t) 

Cxx(w) smoothed esti_mate of the autospectr m of x(t) 

Cýc( k) smoothed, discrete autospoctrum estimate 

CxxA(W) Aliased smoothed autospectrum estimate 

f(W) power transfer function of a low-pass filter 

1(t) a data window function 

li a discrete data window function 

1}J(t) the Generalised Hanning data window 

1H(t) the rectangular data window 

LH(w) the Fourier transform of 1H(t) 

Lýý(w) the Fourier transform of 1H(t) 

N the number of points in a time series 

q the integral over time of 12(t) (discrete or continuous) 

t time 

T duration of a data sample 

UH(W) a part of the function LR(W) 

x(t) a signal 

xi a time series obtained by sampling x(t) 

the sample mean of x(t) 

X(W) the Fourier transform of x(t)l(t) 
6 

xx(t) the auto-covariance of x(t) 

Ixx(w) 
the autospectrum of x(t) 

Z, 
the sampling period 
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/ AA- the mean value of x(t) 

the degrees of freedom of a chi-square variate 

fv angular frequency 

WB half power bandwidth of LH(w) 

Gvc cutoff frequency of a low-pass filter 

th2TTk e the discrete frequency 
N 

Wp the break-point of the function UH(w) 

(. Js the sampling frequency 

U. G Atu. Q A'Z aJ zý 

UT c-- q-J c-e 7", cti 
J 
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4.2. ? ronerties of the Autospectral Estimator 

The on-line digital computer programmes for autospectrum 

analysis calculate a smoothed periodogram of a signal by averaging 

the periodograms of consecutive segments of a data record. The smoothed 

periodogram so obtained provides a discrete estimate of the si, -, -ncl 

autospectrum. In this section the statistical properties of this type 

of discrete autospectrum estimator are discussed. This is done by 

deriving the properties of an equivalent continuous autospectrum 

estimator. The properties of the discrete estimator are then obtained 

by analogy. 

4.2.1. Definition of Autospectrum 

The autospectrurn 
fxx(J) 

of a stationary, zero mean, random 

process x(t) is defined as the Fourier transform of the autocovariance 

function ý5xx(t) 
. 

'i; here :- 

+T 

T-*'ý2T 
f 

J 

. - and 
fe(w) 

-m 

x(i) x(u-t) du 

(t) e dt 

4.2.2. Definition of the Smple Autospectrum and the Periodojrýrn 

In the on-line digital computer programme for autospectral 

analysis the discrete Fourier transform of each segment of data is 
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found using the FFT. Its periodogram is then obtained by calculating 

the squared modulus of all the Fourier coefficients. In this section 

the periodogram of a data segment is defined and is related to the 

sample spectrum which is the continuous equivalent of the periodogra'n. 

a) The Sample Autospectrum 

estimators of the autospectrum of a process x(t) are often 

based upon the defining equations of the autospectrum, and are there- 

fore expressed as the Fourier transform of the estimated autocevariance. 

An alternative way of formulating an autospectrum estimator is to 

express it in terms of the squared modulus of the Fourier transform of 

the process. When the FFT is used, this direct approach is the more 

efficient way of computing an autospectrum estimate (ref. 4.1. ). For 

this reason the direct method is used in the real-time autospectrum 

estimation programmes. 

If we have a sample of a zero-mean, gaussian, random process 

x(t), for -2<t<+2, then the sample autospectrum computed 

using the direct approach is defined as :- 

+cA 2 
J1(t) 

C() = -1 

1 

x(t) e dt ............ 4.1. 

-CO 

In the jargon of spectral analysis the function 1(t) is 

termed a 'window function', and multiplying the data record by a 

window function is known as 'linear modification'. The class of window 

functions used in this thesis satisfies the general conditions :- 
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i(-t) - 1( t) 

i(t) =o; 

q= 12(t) at 

ItI >?............ 1.2. 

In the next section it is shown that the sample autospectrwn 

is a biased estimator, and that only as the sample duration, T, tends 

to infinity does the bias become zero. However, for finite sample 

durations, and specific autospectrum shapes, the bias can be minimised 

by controlling the nature of the bias error. This is the purpose of 

linear modification, since by varying the shape of the window function 

we can control the shape of the frequency filter through which the true 

autospectrum is observed. This point is discussed 

more fully in 

sections 4.2.3., and 4.2.6. 

b) The Periodorrram 

The discrete sample autospectrum (the periodogram) used in 

the real-time digital computer programmes is defined as follows 

Consider an N point time series x 
i 

ti7her for N even, 1-`N ( e, ,=2,,,,., 0,...., +j- 1) obtained by 

sampling a zero-mean, gaussian, random process every A seconds. If 

the time series is multiplied by a weighting sequence 1i which satisfies 

the conditions :- 
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1i =1 
-i 

1. =0 
N1 
22 

q 
N 

N 

-N> iý 2 
.......... 4.3. 

Then the periodogram of xi can be defined as a discrete 

version of a sample autospectrum. 

Cmx(wk) = 
NO IAk I2 

N 
2 

Where; Ak =N> xili WNlk 

N 

21Tk 

Wk ON 

ýVN = exp(-j2N ) 

.......... 4.4. 

4.2.3" Statistical Properties of the Sample Autospectrum 

The properties of the sample autospectrum are now 

developed. The corresponding properties of the discrete autospectral 

estimator are derived in section 4.2-7- 

a) The Expected Value 

From equation 4.1. the expected value of the sample auto- 

spectrum is :- 
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-jW(t t) 
E Cxx(w)} =qE 

ffi(t1)1(t2) 
x(tl)x(t2)e 

12 dt1dt2 

-oo 
+m 

=1- L2(v) rxx. (v- w) dv ............ 4.5. 
2 TT q 

_C, 

Where L(w) is the Fourier transform of 1(t), and rx(w) 

is the autospoctrum of x_(t). 

The integral in equation 4.5. is the well known 

convolution integral, and equation 4.5. was obtained using the 

expressions which relate multiplication and convolution in the time- 

domain and frequency-domain. These expressions are s- 

J-jt 
x(t) y(t) e dt - 2ý J X(v) Y(v-w) dv 

- 00 -oc) 

+ao too jW t 
ff 

x(u) y(t-u) du e at Y(w) ; C(w) 

Where W and v are angular frequencies 

The convolution integral is usually represented by a star. 

Using this notation equation 4.5. is written as :- 

El Cxx(W)) 
27T q 

(L2)* 1 
x(w)) 

The constant q was chosen so that when the signal is 

white, and the bias due to windowing is zero, the expectation of 

the sample autospectrum estimator is the same as the true auto- 
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spectrum. For instance, consider the case when x(t) is a white noise 

process : with variance Cy-x2 
. In this case the autosnectrum of 

x(t) is constant and equal to the variance. Substituting for the 

autospectrum in equation 4.1. E and applying Parseval's Theorem we 

obtain :- 

rr 
q 

E cxx(w)) _ 2TT q 

a00 

J L2(W) dw = 
ýxx2 

When the true spectrum is not a constant, then the sample 

autospectrum is a biased estimator. The estimator is biased 

because the window function 1(t) is of finite duration. As the 

duration of the record (and the window) increases then 
(W) 

tends 

to a unit impulse. The sample autospectrum is therefore 

asymptotically unbiased. 

Approximate expressions for the bias due to finite record 

length can be obtained using the method of Jenkins (ref. 4.2. ). 

The bias is given by :- 

B 
(Cxx(w)) 

aE 
(Cxx(W)j 

- 
rxx(w) 

+Co -j I'at 
f jl t *1 t- 1) xx(t) e dt 
Jq 

- .......... 4.6. 

The term l(t)*l(t) denotes the self convolution of the 

window function. u: xpanding q 

(1(t)*l(t)) 
as a power series in the 

ran, 3e - to +, and assuming 
6xx(t) is zero for t greater than 

22 
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T 
2' we can write s- 

B(Cxx(W) : 

co t 
f a2t2 a4t4 

_00 
2 T 

+ 4 T 
+ ..... 

J6xx(t)etdt 

a2 rX(2)ýW) 
+ ..... 

-T 

an 
FIX(n) 

n 
(_1)2 Tn 

.......... 4.7. 

Where rxx(n)(w) is the nth derivative of 
rx(w) 

with 

respect to w, an is the nth coefficient in thy' power series expansion 

of 
gl(t)1(t)} 

. 

For most practical purnoses only the term in a2 need be 

considered when evaluating the bias in autospectrum estimators. 

Neglecting all the higher terms in equation '1.7. we can say that 

the bias due to windowing may be controlled by choosing T such that 

ý and choosing a window 1(t) which minimises the 
rX(2)() 

<< T2 
rxx(ý. ý) a2 

term a2. 

b) The Covariance 

The covariance of the sample cross-spectrum is derived 

for the zero mean, gaussian case in appendix 2. From appendix 2 

the covariance of the sample autospectrum at the frequencies 

and w2 is given by s- 
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Cov ^, xx(wCl) rxx(W2} =12 
rxx( ý L(wl- 2)*L(wc2 

2 

(2TTq} 

+ fxx(w2)LLiý)*L(i+)} l2 

............ 4.8. 

The variance of the sample autospectral estimator at 

frequciicy W, can be obtained by rewriting the above expression in 

an equivalent form : - 

Var Cxx(w) 1f (L2(cý, 
) * (xz(W) 

2+ 
L2(r,, ) 

jL(w) 
* ýX(c. ý) 

2 

(2TTq) 21 

........... 4.9. 

The spectral windows L(w) have low-pass characteristics, 

and decay rapidly either side of 0. Therefore, to a good 

approximation : - 

VarOxx(W)} E2CCxx(w)) ............ 4.10. 

Except when w is close to. zero, then : - 

Var(Cxx(w)) -2 2 E2(Cxx(W)) 

From equation 4.10. we have the important result that 

the variance of the sample autospectrum does not decrease when the 

sample duration, T. is increased. To decrease the variability of 

the estimator, some sort of smoothing is required. The method 

used to smooth the estimates in the on-line digital computer 

programmes is to average the periodograms of successive data blocks. 

The analogous technique in continuous time is to smooth by averaging 

the sample autospectra of successive data blocks. in the next 
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section the properites of smoothed autospectral estimates obtained 

in this way are given. 

4.2.4. Properties of the Smoothed Autospectrum Estimator 

Let a continuous record of a signal x(t) of duration 

nT seconds be sub-divided into n segments, where the ith segment 

is defined by s- 

z(1)(t) =X(t+iT-2 ); -t<22 

Then, if the ith sample spectrum is defined as s- 

(i) 
1I 

Y(1) 
-jwt 2 

CYx(ý>) _ (t)1(t)e dt 
I 

q 
-Co 

The smoothed sample autospectrum is : - 

n (i) 
Cxx(w) =1 Cxx (CO) ............ 4.11. 

n 
i=1 

We now consider the expected value and the variance of 

the smoothed autosnectrum estimator. 

a) The Expected Value 

Since the expected values of the component sample auto- 

spectra are equal, then the expected value of the smoothed 

autospectrum estimate is equal to the expected value of the sample 

autospectrum estimators. 
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b) Ths Covariance 

For n independent samples of the random variable x(t) 

the variability of the smoothed estimate will be 
1 

times that of 
n 

the sample estimator. It can also be shown that if the samples 

are consecutive windowed segments of the same record, the 

variability of the smoothed estimate is still reduced by 
1 
n 

This is contrary to the suggestion of Bartlett (ref. 4.3. ), who 

states that 
ZSxx(t) 

should be zero for t>T if the periodograms 

of'adjacent segments are to be independent. 

4.2.4" The Effect of Correcting the Autospectrum Estimator 
for Non-Zero Mean 

The autospectrum of a random signal x(t) has been defined 

as the Fourier transform of its autocovariance function 6 
xx(t). 

For a random signal with a non-zero mean ' the autocovariance 

function is defined by : 
}T 

; 6xx(t) 
=T 

im 
2r 

(x(u) -ýL)(x(t-u) -)A) flu 

-T 

Up to now we have assumed that the random signal x(t) 

has zero mean. If however, the signal has a significant mean 

level, it must be removed prior to Fourier transformation. 

First consider the effect of correcting the sample auto- 

spectrum using the true mean. The expected value of the corrected 

estimator is s- 
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Ir E{Cxt(cý)ý 
1 ý2TT 

l 
L2(w) * Sx. c(cti> - L2(W)2 

q 

1 
2TT q 1. L2(w) *F x(w)j 

Where Sxx(w) is the Fourier transform of the auto- 

correlation function Rxx(t). 

The effect of correcting using the true mean is to 

subtract an impulse of strength I. h. 
2 

from thew -0 point of Sxx(w). 

Note that if the mean were not adjusted for, the spectrum around 

0 would distort. To correct this distortion the function 

1 (W)IIJ- 2 
would have to be subtracted from Cxx(W). 

Q 

r 

In the on-line digital computer programmes for auto- 

spectrum estimation the periodograms cannot be corrected using the 

true signal mean, since it will not generally be known. Because 

of this the mean level Is compensated for by subtracting the sample 

mean, x9 from each segment. 

T 
2 

X=Tf x(t)dt 

T 
2 

Where the sample mean is defined as :- 

Since the sample mean is only an estimate of the true mean, it is 

to be expected that the statistics of the corrected autospectral 

estim: -tes will be altered. 

Consider the expected value of the mean-corrected sample 
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autospectrum :- 

+m - jW(tl-t2) 

EcCxx(w)) =q ffdt1dt21(t)1(t2) E 
c(x(t1)- 

x)(x(t2)- x)]e 

_co 

2 
(L2(c. 

))* ýx(w)ý 
+ I1 ............ 4.12. 

4J 

+T 

-L 
T 

Ia Lw 
[L) 

w (1- fit)) ýxx(t)dt 
- 

rx 
c-ý- L(c.. w)* yin 21 x 

qTT wT 

-T 
2 

Where I1 is the error due to correcting for non-zero 

mean with the sample mean. 

From equation 4.12. the effect of using the sample mean 

to correct for non-zero mean is to introduce extra bias terms in 

the region of w=0. The size of the additional bias terms depends 

upon the sample record length, and the extent to which the bias 

near the origin affects other regions of the auto-spectrum ;s 

governed by the shape of the spectral window, L()). 

The effect on the variability of the outospectrum 

estimator of using the sample mean to correct for a non-zero mean 

level is more difficult to evaluate. However, using the methods 

of appendix 2 it can be shown that the variance of the mean- 

corrected autospectrum estimator is approximately given by t- 
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Var 
{Cxx(w) 

Var (Cxx(w)) + I2 
corrected 

2 
I2 6232 L(W) 

(L(W) 
* rx(W 

q 71 n 

From equation 4.13. it is seen that the effect on the 

covariability of correcting for the mean level is to inflate the 

covariance in the region cý = 0. Like the additional bias, the 

extent to which the extra covariability affects regions of the 

spectrum in the vicinity of the origin depends upon the shape of 

the spectral window L(W). However, unlike the extra bias terms, 

the extra covariability reduces with 'n'. 

To show the likely magnitude of these effects consider 

the following simple example. Let, x(t) be a gaussian white noise 
2 

process with variance Qrxx, and lot the window function be the 

simple rectangular function 1R(t), defined as : - 

lh(t) _ (T) 
2 

It, <2 

1R(t) 0 Iti >1 

qR 1 

2 
Substituting for l. 

R(t) and putting 
rx(w) 

= 
6xa in 

equations 4.12., the bias error due to correcting with sample 

mean is %- 
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Il =- (Yxx 
W, 1 

2 

sink 
71 

wT 
2 

When Co = 0, Il =- a'-xx2. Therefore at zero frequency 

the. expectation of the sample mean-corrected autospectrum is zero. 

its the frequency is increased the magnitude of 11 decreases 

rapidly, and at w= 
27T 

the error has its first zero. Beyond this 

frequency the maximum value that I1 attains is - 
O-xx2 0.045 at 

3TT 
T 

Substituting for 1R(t) and 
r 

x(w) in equation 4.13", the 

additional variance term caused by the sample mean-correction is :- 

wT1 
2 

I 12 
ýý4 sin 2J 

2n wT 
2 

From this expression it is seen that, at w=0 the 

variability is inflated by a factor of 12 by the sample mean 

correction. However above this frequency the additional variability, 

like the bias error, decreases rapidly and is negligible for 

w> 2ý 
. Therefore in this simple example we have shown that the 

errors introduced by correcting the autospectrum estimate using the 

sample mean are negligible above tN 
27T 

. In discrete auto- 

spectrum estimation this means that only the d. c. periodogram 

component need be discarded. 
v. (A 

A 

Wýaý, 
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4.2. . Sampling Distribution and Confidence Intervals for 
Autospectrum Estimators 

The sample spectrum of a normal r. v. x(t) may be written 

as s- 

21 fl(t2)x(t2)sin 
Cxx(W) = q-1l(tl)x(tl) cos w tldtl +q wt2dt2 

J 

2 
=lRe lX(W))J + 

{Im(X))2 

dl here X(&') is the Fourier transform of x(t) 1(t) . 
22 

Both (Re X (w) ], 
and 

[Im X (w) j 
are 

chi-square variates with one degree of freedom. Using the 
2 

orthogonality of sin wtl, cos'-Jt2, it can be shown that [Re X((a)] 
2 

and 
[Im X(W)] are independent. Hence Cxx(W) is distributed as a 

chi-square variate with two degrees of freedom. In a similar fashion, 

the smoothed spectrum estimator can be approximated. to a chi. -square 

distribution. 

If the approximating distribution is a chi-square 

distribution with v degrees of freedom and expected value a, the 

parameter aq and y can be found by equating the first two moments 

of the estimator to the corresponding moments of the distribution. 

EC Cxx(w)) =aV 

Var Cxx(w)) 2a21 

Therefore s- 

2 E2(Cxx w)) 2n 
Var(Cxx(w) 

_ 
EýCxx w)ý -n- 

rxx 
a Y 

............ 4.14. 
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The quantity 
'd Cxx w is approximately chi-square 

rx(W) 

distributed with 2n degrees of freedom. Note that this applies no 

matter what window function 1(t) is used. Confidence intervals for 

rx(w) 
can be constructed using tabulated chi-square distributions. 

4.2.6. Linear Modification 

In this section the rer. sons for linearly modifying the 

data segments are given, and the properties of the window function 

used in the on-line digital computer programme are discussed. 

The expected value of the autospectrum estimator has been 

shown to be the convolution of L2(w) with the true spectrum rxx(w). 

Ideally L2(w) should be impulsive, however this is only so in the 

limiting case when the sample duration tends to infinity. In 

practice L2(w) will have the characteristics of a low pass filter, 

that is, it will have a non-zero bandwidth and a finite asymptotic 

decay rate. The estimated autospectrum is thus a distorted version 

of the true autospectrum. There are two typos of distortion that 

can be expected, one due to the 'smearing together' of close 

frequencies, and the other due to the interaction of distant 

frequencies. The first of these is determined by the bandwidth of 

the spectral window, and to reduce local distortion a narrow 

bandwidth is required. The interaction of distant parts of the 

autospectrum is termed 'leakage', and is the phenomenon whereby a 

strong periodic component in an autospectrum can swamp low amplitude 

variations in the autospectrum. To suppress this type of inter- 
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action a window function with a high asymptotic decay rate is 

required. 

Unfortunately the bandwidth, and asymptotic decay rate 

of a window cannot (for fixed T) be independently specified. 

Improving one feature tends to affect the other adversely. Because 

of this trade-off between bandwidth £nd asymptotic rate, the choice 

of window must depend upon the shape of the autospectrum to be 

measured. In the on-line digital computer programmes the author 

sought to overcome this problem by using the most sophisticated 

window that could be rapidly executed in a real-time spectral 

analysis programme, and to build into the window some control over 

the trade-off between bandwidth and asymptotic rate. This enables 

the operator to adjust the balance between bandwidth and asymptotic 

rate at run-time. 

We now restrict our attention to the data window function 

used in the on-line digital computer programmes. This is ti. e 

Generalised Hanning window, defined by s- 

1(t) 
2 

2T{1- cos(w t2<t<- 
ý(y 

p) HP 

i 

=Ts- T(f - P) <t< T(2 - p) .......... 4.15. 

T 
Cl 

- cos( pt - 0)f ; T(: - - p) <t<2 

where w=2 and =WT and T is the duration of the data 
p 1ip p2 

sample, the parameter p may take any value between 0 and z. 
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The Generalised Nanning window was chosen as the most 

efficient for real-time use because it can operate using the 

existing FFT trignometric look-up tables. Alternative windows of 

comparable sophistication (ref. 4.4. ) employ power law curves and 

would thus require separate look-up tables. The possibility of 

of working without look-up tables was explored but rejected 

because it seriously wasted computing time. 

The Fourier transform of the Generalieed '? anning window 

is : - 

Lg(W) = LR(L , T(1-P)) " UH(w, P) ........... 4.16. 

1 ý,, m 
2 sin 2 Where, LR((-), T(1-n)) _ 

(T(1-p)) 

wT 
2 

(1-P) 

T1 

and, u (C-, P) _ (1-p) cos 2 P1 

H 1--(ýT) 2 

p 

The Fourier transform of the Generalised Hanning window 

is given as the product of the transform of a rectangular window 

of duration T(l-p) seconds and the function UH. This function is 

fairly constant from w=0 to wpI its envelope then decays at a 

rate proportional to w 2. It therefore controls the asymptotic 

rate of decay of the Generalised Harping window, since by varying 

p between 0 and 2, the breakpoint of UH can be varied between 
T 

and infinity. 
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The effect upon the recttingular window of varying p in, 

to alter the bandwidth. When p is small the width of Lh is small, 

and as p increases so does the width of the rectangular spectral 

window. Since the bandwidth of LH is controlled by Lx, varying 

p results in a trade-off between bandwidth and asymptotic rate. 

The half-power bandwidth of the Generalised Hanning window is 

approximately given by :- 

w 27T' (1+2P) 
BT 

The asymptotic decay rate of the Generalised Hanning 

window is proportional to W -1 for W< 27T 
and proportional to 

P 

L , j-3 forw>Tu 
P 

The effect of varying p on the bandwidth and a;; ymptotic 

rate is illustrated by graphs 4.1. to 4.6. These graphs show the 

behaviour of L2(w) for various values of p. The verti-al scales 

are normalised so that L2(0) = 1, and the horizontal scales are 

calibrated in multiples of'2R The arrows indicate the breakpoints 

of the function UH. 

Graph 4.1. (p = 0.5) shows the most extreme use of the 

Generalised Nanning window when the entire record is modified. 

Note the wide central lobe, and the rapid decay rate of the minor 

lobes. Graph 4.6. (p = 0) shows the limiting case of the 

Generalised Hanning window, when none of the data is modified. In 

this case the window becomes a rectangular function L2(W, T). Note 

the narrow central lobe, and the slow decay rate of the minor lobes. 
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The bias due to application of the Generalised Hanning 

window is now considered. In section 4.2.3" it was shown that an 

approximate expression for the bias due to windowing can be 

obtained in terms of the power series expansion of 
qý 

1(t)*1(t)}" 

Using this technique the bias can be expressed in terms of the 

derivatives of [ x(w) and the coefficients of the series exna. nsion. 

The first four polynominal coefficient in a polynominal 

expansion of 
1H t) iH t) 

are tabulated for various values of p 
q 

in Table 4.1. These figures were obtained by fitting a degree 

twenty polynominal to the numerically convolved Generalised Hanning 

window. The curve fitting was done on a digital computer using 

the orthogonal polynominal method of Forsythe (ref. 4.5")" 

It may be seen from the table that as p decreases, the size 

of the high-order coefficients increases rapidly. This indicates 

that when the autospectrum contains rapid fluctuations (associated 

with high order derivatives), the bias may be minimised by u.; ing 

P=0.5 in the Generalised Hanning window. Conversely, when the 

autospectrum is relatively smooth there is little edventage in 

choosing a large value of p. When used in conjunction with the 

numerically differentiated measured autospectrum the figures in 

Table 4.1. may be employed to obtain some degree of bias compensation. 

In practice only the coefficient a2 need be used, and a mean value for 

this coefficient when the Generalised Hanning window is used is -6.2. 
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In the real-time autospectrum estimation programme bias 

compensation should not be necessary since the parameters N and p 

can be varied on-line to reduce the bias to negligible proportions. 

However the technique of expressing bias as a function of derivatives 

of the autospectrum is still extremely useful because it enables us 

to establish the cause of bias errors. In chapters 5 and 6 for 

instance the technique is used to establish the possible sources of 

bias error in frequency response estimators. 

88 



TABLE, 4. ] 

Table of the first four polynominal coefficients obtained 
by fitting an order twenty orthogonal polynominal to the 

self convolute of the Generalised Nanning window for 

various values of p. 

p a2 a4 a6 a8 

0.5 -6.56 20.? -41.35 71.3 

0.4 -6.1 
1 26.3 -113.2 376.7 

0.3 -6.25 38.7 -204.9 704 

0.2 -6.67.56.7 -371 1487 

0.1 -6.73 64.7 -441.5 1785 

0 -6.43 66 -470 1918 

In the table a is defined by s- n 

20 
1 (1H(t) 

* 1H(t) antn 

n=0 

and because the Generalised Hanning window is an even function, 

coefficients of odd powers of t are zero. 

2 
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4.2.7. Discrete Autospectrum Estimation 

4.2.7. (a) Discrete Estimation Formulea 

In the previous pages the properties Of a continuous auto- 

spectrum estimator have been presented. In this section these results 

are used to obtain the corresponding properties of the equivalent 

discrete autospectral estimator. This discrete estimator is the one 

used throughout the real-time digital autospectrum estimation programmes. 

Firstly the expressions which relate the discrete Fourier 

transform and the continuous Fourier transform are given : - 

The discrete Fourier transform of an N point time series xi, 

modified by the window function 1i., is defined as :- 

N 
+2 

Ak xil1 VJNik 

i=-2 

2TT 
where, 'N = exp(-j N- 

) 

The Fourier transform of a signal x(t) modified by 1(t) is defined as :- 

+oý 
(ý -j wt 

x(w) Jx(t)1(t)e dt 

-co 

If the time series was obtained by sampling'x(t) every 

seconds, then the discrete, and continuous, Fourier transforms are 

related by :- 
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+00 
Abc A1N 

n- - co 

............ 4.17. 

'There W_ 21T k-nN) 
k-nN AN 

The discrete Fourier transform is thus a discrete aliased, 

form of continuous Fourier transform. 

Now the properties of the discrete autospectral estimators 

are obtained assuming that the spectrum of x(t) is zero above C- = 41 

and that spreading of the spectrum caused by windowing can be neglected. 

Under these circumstances the aliasing can be ignored, so that from 

section 4.2.2. the discrete sample autospectrum is :- 

Cxec(wk) N. Zý (1 Q2 
............ 4.18. 

Where wk _, and k=0, . "... 
2 

The function Cxx(c, ) is termed the 'raw' periodogram of x(t), 

and is a set of 
2+1 

points on the continuous sample autospectrum 

spaced at frequency intervals of N. 
The smoothed discrete autospectral 

estimator is obtained by averaging raw periodograns of adjacent segment 

of time series. This is known as the smoothed periodogram. 

The smoothed periodogram is defined by 

n 

Cxx(wk) = 
1,2 Cxx(Wk) ............ 4.19. 

1=1 
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Where C; ac(') are independent raw periodograms. The 

expected value of the smoothed periodogram is a discrete form of 

equation 4.5. 

4-00 

E(Cxx( 
k)) =q L2( v) ýoc( v_k) 

V= -oo 

1 
L2( ký * rx( v_k) ............ 4.20. 

4 

Here the star indicates the discrete convolution of L2(ß v) 

and Ixx(W ). The covariance of the smoothed periodogram components 
v 

at the discrete frequencies wk and wh can be found by writing equation 

4.9. in discrete form. Thus :- 

CoCxx(wk) 
9 Cxx_(wh)ý 

2 

2 
rxx(Wh) (('Ajk-h) 

L(Wk-h) 
qn 

+ rxx(w 
h) 

(kýh) 
* L«lk+h) 

)2 

............ 4.21. 

The discrete form of the Generalised Nanning window can be 

obtained from equation 4.16. 

LH(wk) = It(wk , N(1-p)) UH(wk) ............ 4.22. 

ýý) where LR(wk)" (1-p) 
ND sin 

TT k- (I-p) 

92 



and 'J11(Wk) cos (TV k2 

1-(2pk) 

The smoothed periodogram is a set of 
2+1 

estimates of the 

autospectrum, spaced at frequency intervals 
nN. 

Since A. N is 

analogous to T(the sample duration), the calibration of the frequency 

axes in graphs 4.1. to 4.6. corresponds with the spacing of the members 

of the periodogran. Two important results which use this fact can be 

obtained from the graphs. 

The first concerns the Generalised Hanning window when p=0. 

In this case L2H(wk, N) is (from graph 4.6. ) identically zero when 

2jTk (k ý 0). Therefore, from the discrete covariance relationship 
, e! N N 

(equation 4.21. ), the members of an unmodified periodogram (raw or 
t 

smoothed) forui a statistically independent set of estimators. The 

second result concerns 

this case L2(3,2 ) is 

2rck (k A Of 1). AN 

periodogram is correla 

the generalised Iianning window when p=0.5. In 

(from graph 4.1. ) identically zero when 

Therefore, each members of a fully Hanned 

ted only with its immediate neighbours. 

4.2.7. (b) The Effects of Aliasing 

We now consider the effects of aliasing upon the discrete 

autospectrum estimator. For si. 

of x(t) is low-pass, and decays 

first alias need be considered. 

write . - 
A (X (Wk 
k All 

nplicity it is assumed that the spectrum 

sufficiently fast so that only the 

Therefore from equation 4.17. we can 

1+ Yom( N-ký3 ............ 4.23. 
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where, Wk=TN, and X*(W) denotes the complex 

conjugate of X(w). 

From equation 4.23. we now define the aliased Fourier transform 

of x(t)l(t) as :- 

XA(Wk) _ X(wk) + X*( ON-k) 

From this definition the aliased sample autospectrum is 

CxxA(wk) 
1I 

XA()k) I2 
............ 4.24. 

q 

2 

qk N-k 

Now let us consider the expectation and variance of the 

aliased estimator. From appendix 3 the expected value of the aliased 

autospectrum estimator is :- 

ECCXXA(wk)) r (k) + rxx(ýN-k) 
............ 4.25. 

Also from appendix 3, the variance of the aliased auto- 

spectrum estimator is given by :- 

Varc" 
A( 

k)} 1-' 
E [xxA(t')k)) 

.......... 4.26. 

From the above results we conclude that aliasing does not 

effect the variability of the autospectral estimator, and that the 
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results of section 4.2.5. can be applied to aliased autospectral 

estimators. The undesirable effect of aliasing is to introduce bias 

errors into the estimated autospectrum. This bias may be controlled 

by introducing a low-pass filter into the autospectrum measurement 

scheme. If a low pass filter with power transfer function f(w) is 

introduced between the signal source and the on-line computer, the 

measured aliased autospectrum will have an expectation :- 

ECxxý(wk)ý z f(wk) Fxx( 
k) + f(wN-k) f'°c( N-k) 

The measured autospectrum can be compensated by dividing by 

r(Wk), Under these circumstances the bias due to aliasing is given 

by 

BCxxA( k)ý _f 

WTT-k> 
r-x x(co N-k) ............ 4.27. 

f k) 

Thus the bias error due to aliasing can be controlled to be 

less than E, r-oc(ccN_k) by choosing a filter whose power transfer 

function satisfies the relationship. 

f (wN-k 
when wk <r 

f(wk 

The useful frequency range is 0 to wr, and ideally wr is as 

close to the folding frequency as is possible. Several filter 

functions can be used to control aliasing in this way, and a discussion 

of some suitable filters is given in the next chapter (section 5.3.3. ). 
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4.3. Real-Time Digital Auto svectrum Estimation Using an on-line 

Diaita]. Computer 

4.3.1. Real-Time Autospectrum Estimation by Averaging Raw 
Periodograznt 

In the previous section the poor statistical properties of 

the raw periodogram were mentioned. The raw periodogram is an 

inconvenient estimator of the autospectrum. Its variance is equal to 

the square of its expected value, and so does not decrease as the sample 

size decreases. 

A way of overcoming this unfortunate property is to average 

n independent peridograms of the same signal. The variance of the 

smoothed periodogram calculated in this way -mould be 
n times the 

variance of the raw periodogram. In section 4.2.4. it was shown that 

this method can be applied to a sin--le'record, by segmenting the data 

into n consecutive lengths and avera( inzv, the raw periodograms of the 

segments. It is now shown that this method can be applied to an on-line 

digital computer to obtain autospectral estimates in real-time. First 

the basic method is discussed, then a detailed flowchart is given. 

The signal to he analysed is fed into the computer analogue/ 

digital (A/D) interface. The programme, under control of the real-time 

clock, samples the signal at a uniform rate (the clock frequency f0 Hz) 

and stores the samples in an 'input array'. When a data segment of 

size N has been read into the 'input array', the data is transferred 

to a 'working array', and the input routine reset so that the next 

signal reading starts filling the 'input array' again. In the 

description that follows it is understood that when a new signal reading 
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is due, the real-time clock interrupt stcps the computation flow 

temporarily to insect the new data point in the input array. 

After transferring the data to the working array the 

programme sets about computing (rapidly) the periodograrn of the data 

block. This is done using the fixed-point F? P described in chapter 3 

and the routines for transforming real data (also from chapter 3), and 

conjugate multiplying the Fourier components. The peridogram of the 

data block is then added into an accumulator array, and the programme 

goes to an idling loop until the input array is again full when the 

process is repeated. 

To show why this method was not viable before the discovery 

of the F FT, consider the timing requirements of the algorithm. 

The maximum frequency component wh?. ch can be studied is fc 2, 

i. e. half the maximum clock frequency. This is determined by the time, 

t(N), taken to compute the period, )gram of an N point data block. The 

time taken to read in an N point data block is N 'fc. Clearly this 

cannot be less than t(N), otherwise the computer will begin calculating 

the periode-ram of the new data block before the periodogram of the 

previous block is stored. Therefore, N 'fc must be greater than t(N) to 

allow the computer time to compute and store the peribdogram, of an 

N point data block, and return to the idling loop. 

There is no limit to the lowest sampling frequency, so the 

useful frequency range which can be analysed using this on-line 
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technique is :- 

N 
Hz 2. t (N 

Using the traditional discrete Fourier transform and floating- 

point arithmetic from table 2.1. t(1024) , I_ 20 minutes, so the useful 

frequency range would be : 

0 -+ 0.42 Hz 

Using the FF"P in fixed-point t(1024) N1 second, so that the 

useful frequency range is :- 

0 --r 500 Hz 

The FFT thus enables digital spectral analysis to be carried 

out on-line and in real-time over a wide band of sampling frequencies. 

The important adv, -Intage of this system i, the statistical 

stability of the spectral estimates. Provided that the signal is 

stationary the computer can continue averaging periodograzns until the 

spectrum accumulator is full. The possible stability of the estimate 

depends upon the accumulator size. The programme described here can 

average 8192 periodograms without overflow, giving a possible variance 

improvement of 
1/8192. This improvement would not be possible using 

off-line techniques, since it would require storage space in the 

computer for a data record of 8192. N points. Even for modest values 

of N the storage requirements would be very large. 
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To summarise, the method of averaging independent periodograil: 

can be implemented in real-time on a digital corl, uter. Thu FIT is used 

to calculate rapidly the per3. odogram of consecutive data blocks. The 

technique was not viable using the traditional DFT because its slowness 

imposed severe restrictions on the maximum sampling rate. The key 

advantage of the method is that (practically) arbitrary statistical 

stability can be attained if the signal is stationary, and if a 

sufficiently long record is available. 

4.3.2. Description of the On-Line Autospectrum Estimation 
Programme 

In this section a real-time on-line autospectrum estimation 

routine programmed on a GEC 90/2 on-line computer is described. This 

is done with the aid of the flowchart Fig. 4.1. appended to this 

chapter. The flow chart consists of three routines, the RTC routine, 

the analogue input routine, and the main routine. 

Mobility between routines is made possible by the 'priority 

interrupt' system. The (Real Time Clock) routine has the highest 

priority and when the interrupts are enabled can interrupt any instruction 

box starred thus :-*. It does this at the clock frequency. The 

analogue input routine has the second priority and can interrupt any 

flow-chart block crossed thus :-+. It interrupts whenever the input 

A/D converter signals the completion of a conversion. This occurs a 

short time after the RTC routine initiates A/D conversion. After 

"servicing" an interrupt routine, the computer returns to the point in 

the programme at which it was interrupted. 
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MAIN PROGRAMME. 

START 

Set parameters, clear spectral accummulator, 

and wait on breakpoint I. 

Run when breakpoint I set. and 

enable interrupt. 

.F Display loopr; display contents of spectral 

accummulato. 

A 

If breakpoint 2 set, disable interrupt . 

+ 
Transfer time series to working array, remove 
sample mean and linearly modify. 

Olt 
+ Form perlodogram, odd Into spectral accummulator. 

REAL-TIME-CLOCK 
ROUTINE. 

INPUT ROUTINE 

I 
Select analogue 

Input. 

ý- - -1 

1ý 

_. Convert analogue input and 
read into input array 

If input array full, reset 
input counter and skip to A 

Return to main programme 

at Interrupted Instruction 

Return to main 
programme at 
interrupted instruction. 

FIGURE 4.1. 

3k 

* 

i 
i 

-- 

SCHEMMATIC FLOW CHAPT FOR THE REAL TIME AUTOSPECTRUM 

ESTIMATION ROUTINE. 



The main routine has no interrl. pt associated with it. 

During run-time the programme is controlled by the RTC routine. Ultimate 

programme control is in the operator's hands; the 'breakpoints' on the 

computer console determine when to start/stop the estimation, and 

control the various data output routines. 

. 
(a) Initial Parameter Settings 

At the start of an experiment various parameters must be set, 

they are (i) the size of the data block N, (ii) is suppression of the 

d. c. component required?, (iii) is linear modification of the data 

required? (This refers to the 'windowing' of the data blocks prior to 

Fourier transformation. The effects and purpose of this are discussed 

in section (4.2.6. )), (iv) the parameter p to be used. (This is connected 

with the data windowing and governs the fraction of the data that is 

modified. ) The sampling frequency is set-up by attaching the output of a 

square wave generator of appropriate frequency to the external RTC input. 

4.3.2. (b) Running the Programme 

After the parameters have been set, the programme computes 

the bit-reversed table appropriate for that value of N, and sets the 

subsidiary programme parameters. The computer then enters a wait mode. 

To start the programme BPT 1 is depressed (set), this transfers the 

programme to a display loop which the RTC, and analogue input routines 

can interrupt. The display loop is a routine which, via the analogue 

outputs, displýays on an oscilloscope screen the contents of the spectrum 
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accumulator. This is the equivalent of he idle loop mentioned in 

4.3.1., and enables the operator to see the current estimate of the 

autospectrum while'the computer is not calculating the periodogram of 

a data block. 

When the Nth data point of a block has been read by the 

analogue input routine, the routine resets the input parameters. 

Instead of returning programme control to the appropriate point in the 

display loop, the routine diverts control to block A on the flowchart. 

This part of the programme transfers the newly completed data block to 

a working array. Here the following operations take place : - 

(i) If suppression of the signal mean is required, the sample mean 

is calculated and subtracted from the working array 

(ii) If linear modification is required the data is multiplied by the 

Generalised Hanning window function. 

(iii) The discrete Fourier transform of the data is then obtained 

using the FFT and a routine for transforming real data. 

(iv) The discrete Fourier coefficients are then conjugate multiplied 

and added into the spectral accumulator. 

The progrvrme then returns to the display loop and the updated 

spectrum appears on the oscilloscope screen. 

4.3.2(c) Stopping the Programme and Subsequent Data Handling 

When the operator decides that the displayed spectrum is 

sufficiently smooth, the programme can be stopped. This is done by 

depressing BPT 2, this causes the RTC interrupt to be disabled. The 
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programme now rests in the display loop. 

The possibility arises that the operator wishes to obtain 

'smoother' estimates from the existing estimates. This may be done by 

averaging adjacent spectral estimates, this increases the statistical 

stability of the estimates but also increases their bandwidth, so each 

estimate must be thought of as the average spectral power over an 

increased bandwidth. 

Provision is made for additional smoothing using the Ilanning 

filter weights , 1,4. Depressing BPT 4 convolves the accumulated 

spectrum with the weights 4. By repeatedly depressing BPT il 

the spectrum can be smoothed as much as desired. Should the operator 

feel he has smoothed the spectrum too much, the original accumulated 

spectrum can be recalled. 

Permanent records of the accumulated spectrum can be taken 

by :- (i) photographing the oscilloscope trace, (ii) using the on-line 

graph plotting facility. (This is triggered by set/resetting SiiS 0. ) 

(iii) 
punching the data on paper-tape. (This is triggered by set/reset 

BPT 3. ) 

The paper tape with the accumulated autospectrum punched on 

it is then used as data for an off-line "Algol" programme. This 

programme is coded for the University Elliot 4130 computer, and plots 

out the estimate of the autospectrum to either logarithmic or linear 

axes. The programme also prints out the autospectrum estimate. 
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4.4. Practical Asrects of Red. l-Time Digital Autospectrum 

4.4.1. Accuracy 

The accuracy of the digital autospectrun estimation programmes 

is determined by the size of the errors involved in collecting IT data 

points and calculating the periodogram. The main error sources are; 

quantisation error at the analogue-to-digital converter, and round-off 

error in the calculation of the M. For the purpose of assessing the 

accuracy of the method, these-errors can be lumped together, and 

replaced by an equivalent white noise source n(t). If the measurement 

noise is independent of the signal, the measured autospectrum of x(t) 

will have an expected value given by : - 

1 x(cA)) 
3 

measured 
_ 

f-xc w) + inn 
2 

............ 4.28. 

Where Gnn2 is the variance of n(t) rsui Fxx(W) is the auto- 

spectrum of x(t). 

The variance of the error sources is now determined. Consider 

first the quantisation error: The GEC 90/2 computer used in this 

project has an eleven bit analogue-to-digital converter. The leading 

bit is used to indicate the sign of the signal, and the remaining 

ten bits represent the mtigni. ttide of the signal. The GEC 90/2 uses a 

twelve-bit word, and the output of the analogue-to-digital converter 

is inserted in the least significant end of the word. Therefore, 

assuming that the binary point is to the right of the most significant 

bit, the quantisation error in the analogue-to-digital conversion is 

uniformly distributed in the range -2-12 to +2-12, and has a variance 
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of 2 2-24 

The round-off error in the fast Fourier transform was 

considered in chapter 3. From section 3.4. of chapter 3, the upper 

bound on the variance of the round-off error in transforming a 2m 

2m 
point real data block is C. 2.2-22ý 

The constant C depends upon the type of array-scaling used 

in the fast Fourier transform. The FFT used in this project employed 

the modulus resealing criterion with rescaling in the loop. From 

chapter 3, the value of C for this FFT is +0.41. 

The upper bound on the variance of the measurement noise is 

therefore 

2 
ý22m2-22 +1 2-24 O'12 

. 

ti 2m -22 C22............ 4.29. 

Since the digital autospectrurn estimates are scaled so that 

the maximum component lies between 1 and . ý, the measurement noise 

level can be conveniently expressed with respect to the magnitude of 

the maximum component of the measured autospectrum. In logarithmic 

terms the upper bound on the measurement noise level is approximately 

20 logi0(C 2m1 11)dß 
compared with the maximum autospectrum component. 

The above noise figure represents an upper bound on the 

measurement noise, since it assumes that a rescaling occurs at each 
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stage of the 1FT. If only s rescalings occur, then an approximate 

measurement noise level can be obtained as 20 1og10(C 
/ 2ý 11) 

. 

down on the maximum autospectrum component. The value of s may be 

read from the computer after an autospectr m measurement, and used to 

determine the approximate measurement noise level. 

4.4.2. Limitation on Sampling Frequency and Frequency Resolution 

In this section the maximum sampling, and the frequency 

resolution of the real-time autospectral estimation programmes are 

given. Firstly we consider the sampling frequency. For an N point 

block the maximum sampling frequency is determined by the time taken 

to estimate the periodogram of an N point real time series. Specifically, 

if it takes t seconds to calculate the. periodogram of N data points, 

the maximum sampling frequency is fm .H. The time taken to 

calculate the periodogrem depends upon the type of fixed-point FPr 

used in the programme, and the ancillary data processing routines, 

(such as d. c. suppression and dat 3. windovriný) . The fixed point Fr'y' 

which is used in the project uses the modulus resealing test with 

resealing in the loop. From chapter 3 this FIT can transform a 256- 

point real time series in 0.27 seconds. An extra 0.015 seconds are 

required for other computations, and so, assuming that no extra data 

proccasing is require-1, the m-cimun sampl Lnt; frequency that can be 

used is : 

ff = 900 Hz 

If the mean level is suppressed and linear modification is 
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used, the time required to compute the pýriodogram is increased to 

0.32 seconds. Under these circumstances the maximum sampling 

frequency is reduced to :- 

f= 800 Hz 
m 

These maximum sampling frequencies can be increased at the 

expense of accuracy by using the least accurate fixed-point FIT 

(described in chapter 3). Using this transform the maximum sampling 

frequency can be increased to 1 KHz. 

The frequency resolution is determined by the half-power 

bandwidth of the data window. In the on-line digital computer 

programmes the Generalised Hanning window is used. This window is 

described in section 4.2.6., and from -that description the half power 

bandwidth of the Generalised ilanning window is given by :- 

W ti `-"=Ü (1 + 2p) ............ 4.30. 
B 

Where, Ws is the angular sampling frequency, and p is a 

parameter of the Generalised Hanning window. This parameter can 

theoretically take any value between 0 and 12. However, in the 

programmes described here it is restricted to be a binary fraction. 

As well as affecting the resolution of the Generalised 

Hanning window, p also controls the asymptotic decay rate. In auto- 

spectral analysis the decay rate of the Generalised Hanning spectral 

window is proportional to w^2 for W (c. v 
p 

and proportional to U)-6 

for W>w, where 
Cos 

W 
pp NP 
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Therefore the parameter p shou: d be set at run-time to control 

the asymptotic decay rate of the Generalised Hanning window. The 

appropriate data block size is then found by substituting WS, I-) B and 

p in equation 4.30. It is not possible to select any specific data 

block size because of two restrictions upon N. The first restriction 

is set by the size of the FFP trignometrical 'look-up' tables used. 

In the programmes described here the maximum value of N is 256. This 

limit was set arbitrarily at the time of assembling the autospectrum 

estimation programmes, and can be easily increased by extending the 

'look-up' table. The ultimate limit upon N is set by the size of the 

computer store. For the GEC 90/2 with an 8K memory it should be 

possible to have N= 1024. 

The second restriction upon N is due to the FIT algorithm 

which restricts the programme to processing data blocks of size 2m 

(m integer). Therefore, the maximum resolution of the real-time 

digital autospectrum analysis programmes is 256 (1 + p). This can be 

doubled by selecting N= 128, and so on. 

4.4.3. Restrictions Upon the Useful Frequency Range Set by 
Aliasing 

Aliasing has been shown in section 4.2.7. to introduce bias 

errors in autospectrum estimation. It was also shown that these 

errors can be controlled by low-pass filtering the data before 

measuring the autospectrum. If the low-pass filter has a power 

transfer function f((J), then the bias due to aliasing at frequency Wk 

is given by equation 4.27. In chapter 5, tome suitable low-pass 
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filter functions are discussed. The simplest and the most readily 

available filter function treated in this chapter has the Maximally 

Flat, Butterworth response. It is shown that using a fourth order 

Butterworth low-pass filter with cut-off frequency 0=0.3 S, 
the 

alias distortion in the frequency range W=0 to 0.4w 
s 

is less than 

0.04 rxxcw 
-c. '). 9 

Therefore in practical autospectral measurements ifc, wl, is 

the maximum frequency of interest and the sampling frequency is set 

at 2.5w1, 'hen a fourth order Butterworth guard filter (ýý = 0.75( ) 

is sufficient to ensure that the bias due to aliasing is less than 

0.04 r ((j 
$- 

i) in the frequency range W=0 to W 
1. 

r 
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5. FfEQUITIcY RESFU_zs.: ^Tr r; TION 

5.1. Introduction 

This chapter deals with some aspects of frequency response 

estimation from noise-like data. Section 5.2. describes the properties 

of a continuous frequency response estimator obtained from finite joint 

records of a system input and output signals. In section 5.3. the 

corresponding discrete estimators are presented. Also in this section 

the problem of suppressing aliasing in discrete frequency response 

estimation is treated. 

Section 5.4. describes the application of these discrete 

estimators to on-line computers. In particular it is shown that, using 

the FFT, digital frequency response estimates over a wide frequency 

range can be obtained in real-time. A real-time frequency response 

estimation programme is described, and in section 5.5, its accuracy, 

resolution, and frequency r=nc-, e are discussed. 
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I 
, 
ist of Symbols for C'. ia. pter 5 

A kth coefficient of the discrete Fourier transfoT. n of x11. 

yili 

CXx (w) Sample autospectrum of x(t) 

Ca(w) smoothed estimate of the autospectrun of x(t) 

0((, 
J, ) smoothed discrete estimate of the autospectrum of x(t) 

Cxx (w) aliased, smoothed estimate of the autospectrum of x(t) 
A 

Cxy(w) sample cross-spectrum of x(t) leading y(t). Tne modifications 

to denote, aliased, discrete, and smoothed autospectrum 

estimates also apply to the cross-spectral estimate. 

f(W) power transfer function of a filter 

H(L) the frequency response function of a system 

HA(W) aliased estimate of H(W) 
? 
xh{w) the squared coherency between x(t) and y(t) 

KxyA(co) the aliased estimate of Kxy()) 

1(t) a data vindow function 

li a discrete data window function 

n number of sample spectra averaged to obtain a smoothed e:, tjmate 

n(t) a gaussian, zero mean, noise source 

P a probabi"Lity 

P. y(w) smoothed estimate of the co-spectrum of x(t) loadinr* y(t) 

xx'yy(W) n "" "" " quad-spectrwn" I' to of 

R 
ý, the Lower transfer ratio 

cu f 
of a filter N-k) 

rxx(' ) 
R (`"^)k) the autos-ectrL:. l ratios 

. l-k 

Fxx( k 

T the duration of a data sample 
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xi a time series obtained by sampiing x(t) 

x(t) input signal to a system 

X(w) the Fourier transform of x(t) l(t) 

XA(w) the aliased Fourier transform of x(t)l(t) 

ya real variable 

yi a time series obtained by sampling y(t) 

y(t) output signal of a system 

Y(w) the Fourier transform of y(t)l(t) 

YA(w) the aliased Fourier transform of y(t)l(t) 

za real variable 

rýc(w) 
autospectrum of x(t) 

I-xy(w) 
crossrepectrum of x(t) leading y(t) 

a sample period 

H confidence band associated with H(W) 

O(w) 

Axy(w) 
co-spectrum of x(t) leading y(t) 

2a 
variance 

O(w) the argument of H(w) 

k(W) 
the aliased estimate of O('-) 

lxy(w) the quad-spectrum of x(t) leading y(t) 

angular frequency 

L%c the angular cutoff frequency of a filter 

wk the discrete angular frequency 
Ö Nk 

g the angular sampling frequency 
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Input 

x(t) LINEAR, TIME-INVARIANT, 

TWO PORT NETWORK. 

I noise 
n(t) 

output 

z(t) _- y(t) 

FIGURE S. 1. LINEAR SYSTEM WITH OUTPUT CORRUPTED BY NOISE 
. 

5.2. Statistical Properties of 2perl Loop Frequency 1? es-ponse 
Estimators 

5.2.1. Introduction 

In this section we consider the properties of .: requency 

response estimators associated with open loop system identification. 

The type of system considered is the two-port, linear, time-invariant 

network shown in fig. 5.1., whose output is corrupted by noise. The 

input, x(t) and output y(t) of the system are assumed to be normally 

distributed random variables, with zero mean levels. The corrupting 

noise n(t) is also assumed to be a normally distributed random variable, 

and is uncorrela. ted with the input signal, 
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5.2.2. The Estimators 

The frequency response function, H(w), of the system shown 

in figure 5.1. may be measured using the input autospectrum 
fix, the 

output autospectrum 
ryy 

and the cross-spectrum between x(t) and y(t), 

1xy. The frequency response may be obtained from these functions 

using the equation :- 

H(w) _ ............ 5.1. 

'here fx-y (w) - lxy(W) +J 
Txy(c^') 

. /`xy(w) is the real part of rxy(W) and is termed 

the co-spectrum of x(t) leading y(t) 

Txy(w) 
is the imaginary part of 

rxy(w) and is 

termed the quad-spectrum of x(t) leading y(t) 

In practice H(w) must be measured using estimates of the auto 

and cross-spectra. When assessing the quality of these estimates it 

is useful to have a frequency-domain measure of the correlation 

between x(t) and y(t). This measure is provided by the squared coherency 

function, defined by :- 

2 

K2X, 11 (L0) 

1x(w) I y(c ) 

The squared coherency function can be rewritten in teens of 

the input autospectrum and the noise autospectrum. Thus :- 
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Kx(w) =1 

1+ 
rn(w) 

IH(w) 12 ýX(W) 

1 

.......... 5.3. 
1+ 

1n W 
Fz-z (w) 

Where, from figure 5.1., Iz(W) is the autocpectram of the 

noise-free system output. 

From equation 5.3. it is seen that the squared coherency is 

bounded by 0 and 1. The actual value that the squared coherency takos 

is governed by ratio of the noise-free output spectrum to the noise 

spectrum, Fzz(ýj)/ Fnn(w). ; 'Then the squared coherency is unity, the 

noise spectrum is zero, and the system output is entirely composed of 

components due to the input. Conversely, when the squarca coherency 

is zero, the output signal to noise spectrum ratio is zero, an( the 

system output is composed only of the noise n(t). Thus, the squared 

coherency gives a measure of the correlation between the input and 

output signals. It is therefore useful in assessing the quality of a 

frequency response estimate. 

Estimators of the frequency response and squared coherency 

based upon finite samples of x(t) and y(t) are now defined. Let x(t), 

Y(09 (0 <t <nT) be jointly recorded samples of the input and output 

signals of H((J). These samples are each sub-divided into n segments 

of duration T seconds. The ith segments are defined as 
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Xý1)(t) x(t + iT -T ) 

-T<t<2.......... 5.4. 

yý 
l) (t) = y(t + iT -2) 

The ith sample auto, and cross-spectra are obtained using 

the expressions :- 

tCo 
.w 

c (am) q Ixt) 1(t)o 
j tat 2 

+cc 
2 

Cyy(w) q j(t) 1(t)e-ýW 
tdt 

............ 5.5. 

+oo +c' 

CxY dt 
l(w) 

=q jx(1)(t) 1(t)e+Jwtdt. Y(1)(t) 1(t)e_JWt 

-00 -00 

''there 1(t) is a window function drawn from the class of 

functions defined by equation 4.2. 

The smoothed sample auto and cross-spectra based upon the 

samples x(t) and y(t) are defined by :- 
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nW 

Cxx(w) Cxx (w) 
r. L 

i=1 

nM 
cYY (W) 

............ 5.6. 

i=1 

Cxy(w) =n Cxy 
> (G') 

1=1 

The smoothed cross-spectral estimator Cxy(W) is ccinplex, and 

is defined as :- 

Cxy(w) _, Px}'(w) +J ýXS'(W) 
r 

'. 7he: re Pxy(po) is the real part of Cxy(: a), and is the smoothed 

sample co-spectrum of x(t) leading, y(t); and Qxy(w) is the imaginary 

part of Cxy(w), and is the smoothed sample quad-spectrum of x(t) lealinr; 

Y(t). 

Note that in our definition of cross-spectrum we have used 

the 'plus' convention, this convention is adhered to throughout this 

thesis. The alternative convention is to define the, cross-spectrum 

estimate as :- 

CV(W) = PxY(w) -j %YY(CA. ) 

And thence define cy(c. i) as the sine Fourier transform of the odd part 

of the cross-covariance estimate, (see for example ref. 5.1. ), 
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The frequency response and coherency estimators associated 

with these auto-and cross-spectrum estimators are 

x(w) 
= 

cX cý' 

22 A Cx w hxy(w) =_ 
C_ xx(w) Cyy(w) 

............ 5.7. 

............ 5.8. 

The frequency response estimate is usually expressed in 

terms of its modulus I (W)I and argwnient 
ý(U)) 

; thus :- 

H(W) _ 
Ix(c )I exp(j 

O(c. ) 

The modulus and argument of H(w) are teemed the 'gain' and 

'phase' respectively, and they are defined in terms of the auto- and. 

cross-spectrum estimators as :- 

G22 

XY(w) + ý, L) 
Cýoc(w) 

Pxy(w)j 

5.2.3. Variance and Bias of the Estimators 

Approximate expressions for the variance of the estimated 

frequency response, and squared coherency may be obtained by expanding 
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the estimators in a Taylor series expansion about their expected 

values as indicated in appendix 4. Using this technique the variance 

of H(w) and 
Kxy(w) 

can be expressed approximately in terms of the 

covariance matrix of the smoothed spectral estimators. Using the 

results of appendix 2 the covariance matrix of the smoothed estimators 

of equation 5,6. can be obtained as 

C ov C xx -r 

Cyy 

Pxy 

Qxy 

22 
rr 

2X (rxy+fyxi, Z-( xy - 
ryx) 

2 
FYY Iýy 

(rx-Y + rYX) 
2 

rY 
- ry-x) 

2 

2222 
4ýr3'+rvx+ 2fccf1-Y)r - (XY - 

f) 

J F2 
2 

ä(2 r fYY- 
Y- F3) 

............ 5.9. 

In this matrix, S denotes diagonal syrrunetry. -:: ie bias error 

due to windowing has been neglected, as has the dependence of the auto- 

and cross-spectra upon W. This practice is maintained throughout the 

remainder of the chapter, and the reader is asked to take the dependence 

of spectral functions upon w as being implicit. Using the elements of 

matrix 5.9., the following approximate variance expressions are 

obtained :- 
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OarCl III 
.)11-1 

H 2n K2 

11 
Varýýý _ -- -1 

2n Kxy 

22 
Var Kxy} 2 KXY (1 - Kxy) 

Kxy n 

............ 5.10. 

These expressions show that the variability of all estimators 

depend upon the coherency between the input and output. When the 

squared coherency is unity, the variances are zero, and (neglecting 

bias errors) the parameters can be measured exactly. Conversely, as 

the coherency decreases, the variance of the gain, phase and coherency 

estimators is increased. The effect of smoothing is shown, since the 

variance expressions are all inversely proportional to n, the number 

of :; ample srectra that are averaged. 

Approximate expressions for bias due to windowing may be 

obtained by expressing the bias of the estimators in terms of the bias 

in the auto, and cross-spectral estimators, (as shown in appendix 4). 

Using this oa; Dproa_ch, Emd the results of section 4.2.2. on bias errors, 

the approximate bias expressions for gain, phase and squared coherency 

are 
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11 . BIHIJ 
a2 

IHI -- IH I (5ý) 
2 

T1 

_a 

BCC) T2 

4ý 1 

........... 

B kxy) n (1 Kxy) 2.2 
2 3'. xy Kxy h xy 

T 

Where a2 is the second term in the power series expansion of 
1 [l(t) 

* 1(t)} ,T is the sample duration, and the dot notation is 
4 
used to indicate the first and second derivatives with respect to 

angular frequency. In the on-line digital computer routines for 

frequency response estimation the linear data window used to modify 

the records is the Generalised Hanning window. From TABLE 4.1., the 

value of a2 for this window is approximately -6. 

The following relevant points can be made concerning these 

bias expressions. 

i) The bias due to finite record lengths is inver-ce. ly proportional 

to the square of the sample record length, T. In discrete estimation 

expressions this is replaced by N the number of data points per. 

periodogram, and the derivatives become appropriate finite differences. 

ii) The bias in the gain and coherency estimators contain terms 

proportional to ý2, the squared first derivative of phase. This implies 

that if there is a large time delay T between x(t) and y(t), then the 

bias in gain and coherency will be proportional to 
(11} 

, 
If Tis 

of the same order of magnitude as the sample record length, then 

signi. fic,. na,; bias errors may occur. In the estimation procedure used 
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in the on-line computer programmes, it is unlikely that such large 

delays would be encountered. However, should such delays occur, they 

can be compensated for by entering new readings of x(t) into an S stage 

shift register, and storing the shift register output in the input 

array referred to in the programme description (section 5.4.2. ). This 

compensates for an S. L sec. time delay between x(t) and y(t), where 

A is the sampling period. 

The problem of time delays has been discussed by Akaike 

(ref. 5.2. ) in connection : ri. th the 'Lagged-Products' Method of spectral 

analysis. This method employs a data record of fixed duration, which 

we may call TR seconds, to obtain spectral estimates. To reduce the 

variability of the estirrat:. s they are effectively, smoothed by averaging 

n sample estimates obtained from n consecutive seonents of the record. 

Each segment is of duration T seconds, where T= 
TR 

, and typically 
th th n1 1T 

might lie between 10 and 100 of TF Therefore time delays which 

are insignificant compared with TR, may bey-comparable magnitude with 

T, thus causing severe bias errors (ref. 5.3. ). This situation could 

not arise in the on-line computer routines (section 5.. 1. ) because the 

effective sample duration T is specified initially, and smoothing is 

accomplishd by increasing TR. 

- i. i. i) The bias is the squared coherency estimate contains a teen 

inversely proportional to n. The Taylor series approximation to the 

bias suggests that the bias due to insufficient smoothing is equal to 

. However, experimental studies indicate that the smoothing bias is 11 

given by n (1 
-K 

y) 
as shown in the bias equation. This s result 

corresponds with. the empirical findin, -, s of Beniý,, nus (ref, 5. q, ). 
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5.2.4. Confidence Statements 

In order to malte confidence statements about the frequency 

response functions, we must first find appropriate sampling 

distributions for the estimators. A comprehensive study of the sampling 

distributions associated with frequency response estimation has been 

made by Goodman (ref. 5.5. ). Goodman obtained his results by extending 

the theory of statistical analysis of multivariate real-time series to 

the analysis of bi-variate complex series. The discrete Fourier 

transforms of the real-time series x(i) and y(i), 'which vie denote as 

X( k) and Y(c, j), form a bi-variate set of complex series. The joint 

distribution of these series can be obtained and used to formulate the 

distribution of functions associated with the frequency response 

estimator. 

Specifically, Goodman assumes that the complex random variables 

X1(), Yi( ), (i = 1, ..... n) form a set of independent estimates of 

the Fourier transform of the input x(t) and y(t) at a particular 

freiuency wk. Then lie determines distributions associated with the 

frequency response estimator 
f(w) defined by : -- 

n 
-x- Xi (cok) Yi(wk) 

i=1 
A H(co k) n ............ 5.12. 

i (w) Xi( k) 
i=1 

This is exactly the form of estimator that we use when 

es. timptinn the frequency response function. Hence, the results of 

Goodman apply directly to the estimators obtained in this chapter. 
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FIGURE 5.2. FREQUENCY RESPONSE ESTIMATE CONFIDENCE REGIONS 

t 

5.2.4(a) Confidence Statements for Gain and Phase 

Goodman has shown that the density function of the random 
A 

variable z associated with the modulus of the complex error H-H is 

given by :- 

2n(1 - Kxy)ny 
ff(Y) -1 

IC2xy)+y2) n+l ............ 5.13. 

Where in this context y=z. 
Y 

, and z is the random variable associatod 
Ifl; 

with the modulus of the complex error H-H. 

The cumulative distribution of y is given by :- 

2 -n yl 

Y(yi) 
1-1+2 

(1-hxy) ............ 5.14. 
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This can be used to make a probability statement about 
A rH-H, 

which in turn can be used to ma'. -c. e joint probability state- 

ments about the gain and phase. From reference 5.4., and using the 

symbols of figure 5.2., the following probability statement may be 

made :- 

A 
.......... 5.15. Prob 1+ 

dlM > IS >1- AM 
till 1111 IHI 

and Ao>ý-0>-Ao> Prob 
(izi < ýIH i} 

Now, if we define the probability P as :- 

P- Prob( IzI<Lý'jif 11 

Then equation 5.14. can be used to show that :- 

11 

AIM n-1 
KX IHI y- 

1ý 
.......... 5.16. 

ný Hý1 - sin' { ýxi 1 

From expression 5.15. the approximate simultaneous 100 I 

confidence intervals for gain H, and phase 0 are 

;1±. 
] IHIL1 ±L Hl 

Jenkins and Akaike (refs. 5.6., and 5.7. ) have also studied 

the sampling distribution of frequency response estimators, and have 

shown th,: j. t the functio: j Cxx 1I1 - HI2. (n-1)(Cnn)-1 is approximately 

Fisher distributed with degrees of freedom 2, and 2n-2 respectively. 
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Thus confidence statements concerning ILA and 
ý 

can be made using the 

widely tabulated Fisher distribution. 

However, a transformation of the Fisher distribution with 

degrees of freedom 2, and 2n-2 shows that the distribution of 11,11 - KI 

is the same as Goodman's distribution. The methods are thus equivalent. 

Use of Goodman's method is advocated since it is simpler than that of 

Jenkins and Akaike. 

5.2.4. (b) Confidence Statements for Squared Coherency 

The sampling distribution associated with the squared coherency 

has been determined by Goodman (ref. 5.5. ), and tabulated percentage 

points are available for n <20 (ref. 5.8. ). For larger values of n 

the cumulative distribution function can be computed. However, as n 

increases the time required to calculate the cumulative distribution 

rapidly becomes excessive. Goodman and Enochson (ref, 5.9. ) have 

investigated the sampling; distri. ution of the coherency function, and 

they show that the lengthy computations associated with the exact 

distribution can be avoided by using a gaussian approximation to the 

distribution. This approximation involves transforming the coherency, 

using the transformation :- 

11+ Kxy In ............ 5.17. za21 
- Kxy 

Where, for n> 20 the transformed variable, z, has, to a 

close approximation, a normal distribution. The variance and mean of 
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this distribution are :- 

2 1u i+ E(K2, 
......... 5is 

- E(Kx3r 

21-0,00t, 1,6Kxy + 0.22 

2(n-1) 

The variance expression is that quoted by Benigus (ref. 5.4. ). 

In his extensive study of the squared coherency estimator, he shows 

that using the expressions 5.18. the normal approximation to the 

distribution of squared coherency holds for the entire range of 

possible coherency values. 

I 
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5.3, Discrete " , stirnation of Frequency Response Functions 

5.3.1. Discrete Estimation Formulae 

In this section the discrete estimation formulae that are 

used in the real-time, digital, frequency response estimation 

programmes are given. The discrete estimators are obtained from the 

continuous estimators of section 5.2. using the analogy of section 

4.2.7. 

Let xi and yi be N-point real time series obtained by 

sampling x(t) and y(t) every L. seconds. The discrete Fourier transforms 

of the time series (modified by 1i., a window function dram from the 

class of functions defined by equation 4.3. ) are :- 

11 
_1 2 

Ak 
YX 

. j. `9Nik 

i=-2 N 

N_1 

Bk Ny iý, i 'tNik 

i= -2 

Where W= exp(-j=j N 

............ 5.19. 

The raw periodoCrans of the input and output are given by :- 
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ýrr2 Cxc f (wk) 
c} l `'I 

Cyy(cOk) 
qrr {I 

BkI 
2} 

C"y(Wk) qrrL 
1Bk 

i 

Where wk 
Z TV k 

9k=0, ..... 
2 

............ 5.20. 

smoothed discrete estimates are obtained by recording an nN 

point time series of x(t) and y(t), segmenting each time series into 

n time series, of N points each, and averaging the periodograms obtained 

from the segments. The smoothed periodograms obtained in this way are 

defined by :- 

n 
Cxx(Wk) =r> Cam(l) (Wk) 

i=1 

n 
Cyy(wk) an 

'7 
c 

(i) (wk) 

i=1 

n 

Cxy(wk) n 
Cxv(i) (wk) 

i=1 

............. 5.21. 

Where Cxc(i), Cyy(i), and Cxy(l) are the raw periodofram3 

obtained from the ith segment of the nN point series. 

The discrete frequency response estimate and squared coherency 

129 



estimate obtained from these smoothed p: riodograms are given by :- 

Cxy(wk) 

............ 5.22. 
'dxx(Wk) 

Kxy () 
ý (() ýYY(w 

k) 

'; there Wk = 
Nk k U, ..... 

2 

5.3.2. Aliasing 

The discrete estimation formulae given above are discrete 

. 
aliased versions of the continuous estimators given in section 5.2. 

The effect of aliasing is to distort the discrete estimates so that 

they are no longer faithful versions of the continuous functions. In 

this section we consider the nature of this distortion as it affects 

the expected value and variance of aliased frequency response estimators. 

If the continuous Fourier transforms of x(t) 1(-t) and y(t)l(t) 

are X(w) and Y(w) respectively, then the discrete Fourier transforms 

of xi11 and yili are related to the continuous transforms by :- 

+CO 

kaDN k-nN 
n=-m 

+00 

1 Bk aDN_ Y(Wk-nN) 

............ 5.23. 
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Where COk - 
AN l' 

Now, if *the spectra of x(t) and y(t) are low-pass, 

then we are justified in assuming that all but the first alias can be 

neglected. Under this assumption the aliased spectra of l(t)x(t) and 

1(t)y(t) can be defined as :- 

XA(c, K) AN Ak -C' X(ck) + X*(Wid-k) 

............. 5.24 

YA(W) =LN Bk 1'' Y(wk) +Y( ýT-ký 

The aliased auto, and cross-spectral estimators obtained 

from these aliased spectra are :- 

2 
CxxA(Wk) =qI XA( k) ! 

2 
CYYA( 

k) 
1I 

YA "i) 
1 

CXYA ( k) q 
XA' k) YA' k-) 

............ 5.25 

5.3.2. (a) Bias 

From appendix 3, the expected values of the auto- and cross- 

spectral estimators, (neglecting the effect of windowing) are given by: - 
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E(Cxx. A(wk)) 
fxc(wk) 

+ 
rX 

c`)N-k) 

Ec3's'ýý(`')} =. rry(wk) + f7( N_k) ........... 5,26 

E 
CCXYA(Wk)) 

_ 
fxy(wk) + fyx (N-k) 

Using these expressions approximate formulae for the bias error in 

aliased frequency response and squared coherency estimators can be 

obtained. These formulae are :- 

B 
ýI 

HA(Wk) rx( P1-k) 
Re 

_I*(1"N-k) 

HA(Wk)) (c ")k H(wk) 

B SS () 
rxx (Wli-k) 

Im 
H (w: 

1-k) 
....... 5.2 

A I-xx H(W ) k k 

B HyA(co f (W 
,. 

) 
- ße 

H*(Wýi-k) 
n 2 -1 

fYY(``'PZ 
k) 

__ 
KxyA(``'k) 

r, 
fx(c. 

"k) 
. 

H(t ) Iy(`"'k) 

5.3.2. (b) V riance 

From appendix 3, approximate expressions for the variance of 

the aliased, smoothed, auto and cross-spectral estimators are :- 

VarC xxA(=Qk)lj J``- n F2(CxxA(wk)jl C 

VarCyyA(wk) '`-'' E2lCYYA(cjk)) 

12 Var C; typ kB n Xy: k 

............ 5.28 

+2ý rxl ') FY-Y(wN-k) 

- 
rxy( 

k) 
f 
yx(U)N-k) 

132 



The methods described in section 5,2.3. can be used to obtain 

from equations 5.28. approximate variance expressions for the aliased, 

smoothed, frequency response estimator. However, the expressions 

obtained in this way are cumbersome, and do not directly indicate the 

effect of aliasing. The expressions simplify if we restrict our 

attention to the band of frequencies in the region of the folding 

frequency. This is the area we are primarily interested in, since it 

is in this band of frequencies that the effects of aliasing are most 

noticeable. 

For frequencies near the folding frequency we are justified 

in making the approximations. = WIT 
-k 

in equations 5.28. The 

resultant approximate variance expressions for the aliased gain and 

phase estimators are :- 

Var 
(1 üý(w) }11 

JEA(w) 1 2n Kxy. (W) 

............ 5.29 

Var 2n tan2 l 0(t°) ) 
JJ 

From these relationships the following conclu:: ions can be 

draw ; 

i) The variance of the aliased gain estimate near the folding 

frequency is determined by the aliased coherency. Now the aliased 

coherency is given by 

K2y (W) -MXY(W) KXy(W) .......... 5.30 rx(w) I y(, -)) 
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Therefore, if the cross-spectrum is not real near the 

folding frequency, the variance of the aliased gain estimate will be 

inflated. In the'extreme case of an imaginary cross-spectrum, the 

variance will become infinite. 

ii) The variance of the aliased phase estimates near the folding 

frequency is independent of the coherency. It is governed by the 

square of the tangent of the phase. So again, if the cross-spectrum 

near the folding frequency is imaginary, the variance of the aliased 

phase estimate will become very large. 

These results explain the rapid increase in the variability 

of discrete frequency estimates as thefölding frequency is approached. 

From the above results we cän conclude that if the quadrature- 

spectrum is zero near the folding frequency, then aliasin� ý, il]. not 

increase the variability of frequency response estimators. A 

corresponding comment can be made concerning the bias due to aliasing� 

since if the substitutionc.. wk =u. 
-k 

is made in equations 5.27., then 

the condition for zero bias error is that the quadrature-spectrum be 

zero. Therefore, aliasing errors in frequency response estimates are 

minimised if the cross-spectrum is adjusted so that it is real near 

the folding frequency. The cross-spectrum can be adjusted in this way 

by using the alignment procedure outlined in section 5.2.3. This 

procedure is not recommended as the sole means of controlling aliasing, 

but rather as an adjunct to a more reliable method, such as the 

filtering technique described in the next section. 
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5.3.3. The Control of Aliasing Errors by Filtering 

This sc: Lior deals vith a technique for the reduction and 

control of aliasirir, errors in digital frequency response estimation. 

The method employed is to insert low-pass guard filters at appropriate 

points in the frequency response measurement scheme. These filters 

are used to control the shape of the system input and output auto- 

spectra, and thence to reduce the aliasing errors in the frequency 

response estimates, 

From equations 5.27. the bias errors in the aliased gain, 

phase and squared coherency estimates at frequency wk are proporticnal 

to the autospectral ratios Rxx(Wk) and Ryy( ), defined by :- 

fX-X(wN) 
-k 

xx 
( k) - rxx((' k) 

............ 5.31 

R'r )a 
ryv( 

_k 
yyý k rYY((-)k 

Therefore, if the autospoctrum of the system input x(t) and 

output y(t) can be controlled so that Rxx(w) and Ryy(w) are negligible, 

then the bias errors in the digital frequency response estimates can 

be neglected. The autospectra of x(t) and y(t) can be controlled by 

using appropriate low-pass guard filters. Two possible schemes which 

employ guard filters are shown in fig. 5.3. Figure 5.3. (a) shows the 

case in which the system is identified using its normal operating 

input, and Fig. 5.3. (b) shows the alternative situation where the 

system is identified by superimposing; a noise-like test signal upon the 
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FIGURE 5.3a. FREQUENCY RESPONSE MEASUREMENT SCHEMES. 
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normal operating record. 

If the e*uard filters in fig. 5.3. are identical and have a 

power transfer function f(w), then the aliasing errors are controlled 

by the autospectral ratios of the filtered system input x (t) and the 

filtered system output y '(t). In terms of the filter power transfer 

function these autospectral ratios are :- 

Fix sý (wk) 
£(ýN-1: ) F11-k) 

(cak) rý ,, (wk ) 

............ 5.32 

r 

RY y' (wk) 
-f 

(W11-k) ry'((ý)N-k) 

f(wk) fry(c°k) 

Now, assuming that :- 

i) The test signal is a white-noise source. 

ii. ) The corrt. Dti. ng noise is white. 

iii) The system H(w) is such that :- 

IH(2)I>Irz(W)I 

Sor Wi 2s 
where 

W2 
is the folding 

frequency. 

Then, the autospectral ratios Rxx(w) and Ryy(w) will be less 

than, or equal to, the power transfer ratio R(w) of the Guard filters. 

This function is defined by : - 
f (co 

N-k) R(cA'k) = fýý 
S, 
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Thus, under these fairly General conditions, the aliasing 

error can be controlled by proper choice of the guard filter 

characteristics. Now, the digital frequency response estimates, 

H(Wk are situated at the discrete frequenciescak 
N, (where 

k=0,1, 
..... 

2 ). Therefore, to control the aliasing errors, filter 

characteristics should be chosen which minimise R(w) in the rcnre 

0 to co =ö, (where 2S , the folding frequency). 

The ideal guard filter has the low-pass, brick-wall, power 

transfer function, defined by :- 

f(w) a1 
Iu'ý < wS 

2 

............ 5.34 
W 

p awl s 
2 

r 

In this case R(W) is zero between zero frequency and the 

folding frequency, and so the estimates will be unaffected by aliasing. 

However, the ideal brick-wall filter is physically unrealizeable, and 

a suitable approximation must be used. There are several well known 

filter types :. rhich embody approximations to the brick-wall function, 

we will consider three of the best known, these are :- 

a) the Butterworth, Maximally Flat, filter 

b) the Chebyshev, equal ripple, filter 

c) the Optimal 'L' filter 

These filters are defined and described in reference 5.10. 

Men selecting a particular type of filter, two main para- 
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meters must be specified. These are the half-power, or cutoff 

frequency, wc, and the order of the filter, n. First we consider the 

factors which determine the selection of an appropriate cutoff frequency. 

The correct filter cutoff frequency is that frequency which 

minimises the function R(w) in the range 0 to 2. The optimum choice 

has been investigated, and for all the above filter types it has been 

established that w=0 minimises ß(w) for all n. In practice, if a 
c 

cutoff frequency of zero were used, the autospectrum would be highly 

attenuated for much of the frequency band. In this situation the 

'measurement noise' (described in section 5.1. ) may seriously impair 

the accuracy of the frequency response estimates. For this reason, a 

higher value of cutoff frequency is recommended. 

The effect upon R(w) of increasing the cutoff frequency is 

shown for a typical filter in graph 5.2. This shows the power 

transfer ratio of a third order, Butterworth filter for variousW0. 

In this graph the frequency scale is Yiormalised so that the sampling 

frequency is unity, the 0.5 Hz point on the normalised frequency axis, 

therefore denotes the folding frequency. From graph 5.2., it is seen 

that R(w) does not increase significantly when the cutoff frequency is 

increased from zero to 0.3 W. but as w is increased slightly beyond 
u ii 

0.3 
s 

to 0e4 
S, 

the power transfer ratio increases r: apid. ]. y. It is 

therefore concluded that 0.3ws is a suitable guard filter cutoff 

frequency. 

Having selected an appropriate cutoff frequency, the 

performances of the three filter types listed above may be compared. 
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Such a comparison is made in graphs 5.1. to 5.6. These graphs show 

the power transfer ratios of the Butterworth, Chebyshev, and Optimum 

'L' filters, for various Orders, n. Graph 5.1. shows the power 

transfer ratio of the Butterworth filter. In the Chebyshev filter 

design the maximum pass-band ripple can be specified, so graphs 5.3, 

5.4, and 5.5, illustrate the Chebyshev power transfer ratio for various 

pass-band ripples. Finally, graph 5.6. shows the power transfer ratio 

of the Optimum 'L' filter. 

Concerning these graphs the following points can be made : - 

(i) The power transfer ratios of all the filters decrease as n 

is increased. 

(ii) For any specific order n, the Chebyshev filter provides the 

minimum (and therefore the best) power transfer ratio. The performance 

of the Optimun 'L' filter is only slightly worse than the Chebyshev 

filter, and the Butterworth filter is the least efficient type gor 

suppressing aliasing errors. 

(iii) For n greater than three the power transfer ratio of the 

Chebyshev filter is insensitive to the amount of pass-band ripple. 

However, when n is equal to or less than three, the performance 

improves as the permissible pass-band ripple is increased. 

The graphs of power transfer ratio's for the Butterviorth, 

Chebyshev and Optimum 'L' filters can be used to specify the type, 

and order of guard filter required to limit aliasing errors in discrete 

frequency response estimation. For example, suppose frequency response 

estimates of a system H(w) are required in the range 0 tow 
r, 

and 
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fourth oraor Butterworth filters are available to control ali. asing, 

If a measurement scheme of the type illustrated in figure 5.3. is 

used, what cutoff frequency and sampling frequency should be 

employed in order that the bias error in the gain estimate ate r Will 

be less than l? 

Making the assumptions that the system input x(t) and the 

corrupting noise have flat au-tospectra, and that IH( r)I > IIi(w)I for 

w> wz,. Then the worst case bias errors occur at c.. 1, and (from 

equations 5.27. and 5.32. ) they are given by :- 

BT IHAA( r)ll 
-2R(w) 

FAA( r) 

8 ýA( r)) R(r) 

B 
ýKxyA( 

T)} 

2< -4h(ß r) 
I{XYA( r) 

Now from graph 5.1. the power transfer ratio of a fourth 

order Butterworth filter with cutoff frequency 0.3to, is 0.04 at 
u 

0.4ws. If the maximum required frequency wr is made equal to 0-4W , 

and a cutoff frequency of. 0.3c is used, then the worst case bias 
s 

errors will be 

Gain bias '- 

Phase bias ;±0.04 radians, or ± 2.3 degrees 

Squared Coherency bias ;- 16% 

140 



In terms of( -o 
the sampling frequency is 2,5 wr, and the 

filter cutoff frequency is 0,75 wr, 

Therefore, if fourth order Butterworth filters, with 

cutoff frequency 0.75W., and a sampling frequency of cos = 2.5 wr are 

used in the frequency response measurement scheme, then the bias in the 

gain will be less than -81i"o at wr, The corresponding worst case errors 

in phase and squared coherency are _ 2.3 degrees and -16% respectively. 

For frequencies below co the errors rapidly become insignificant, 
r 
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5.4. Real-Time Frequency Response Estimation using an On-Line 

Digital Co-muter 

5.4.1. General Description 

A digital estimate of the frequency response function of a 

system of the type discussed in 5.2. may be obtained using the smoothed 

periodogram of the input x(t), and the smoothed cross-periodogram of 

the input and output y(t). The smoothed periodogram of x(t) is 

obtained by averaging n raw periodograms, and the smoothed cross- 

periodogram is obtained in a similar way by averaging raw cross- 

periodograms. The discrete estimate of the frequency response function 

is then found by dividing the smoothed cross-periodogram by the smoothed 

auto-peridogram. This method can be applied to jointly recorded time 

series of the input and output, by segmenting each series into n 

segments and calculating the periodograms of each segment. The smoothed 

discrete frequency response estimate obtained in this way has a variance 

inversely proportional to n. 

It is shovm below that this method can be progr<. nmec. for sui 

on-line digital computer, and that by using the fixed-point Pl, 'P, 

frequency response functions can be estimated in real-time. The input, 

x(t), and output, y(t), of the system shown in figure 5.1. are fed 

into the on-line computer via an analogue-to-dirgital interface. Then, 

under control of the computer real-time clock (RTC), the computer 

samples the sigzials x(t) and y(t) at the RTC frequency, fc. The pairs 

of data points obtained in this way are stored in a pair of 'input 

arrays'. , then N pairs of data points have been read into the input 

arrays, they are transferred to a pair of 'working arrays'. The 

computer then commences to process the data in the working arrays. 
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This processing is interrupted every RT^, period, and a new p.: ir of 

data readings are collected and stored in the input arrays. 

The discrete Fourier transform of the data in the working 

arrays is obtained using an N point complex FIT an described in chapter 

3. The periodogram of the system input and output are formed using 

the discrete Fourier coefficients. These periodograms are added into 

arrays in a 'spectral accumulator', the computer then returns to an 

idling loop. The computer remains Ehere until the input arrays are 

full again. '+Jhen this happens the new N pairs of data points are 

transferred to tine working arrays, and the processing starts again. 

The computer continues in this way, adding; periodogranis into the 

spectral accumulator, and the contents of the accumulator become 

smoother estimates of the auto and cross-spectra. ; '/hen the periodograms 

in the spectral accumulator arrays are sufficiently smooth, the 

periodogram averaging is halted. The frequency response estirmrtc is 

then calculated. 

The usefulness of this real-time estimation procechare is 

determined by the maximum frequency component of a frequency response 

function, H(w), that can be estimated. This is limited by the 

maximum RTC frequency which can be used. If t(PN) is the time taken 

to process a pair of N point data blocks. Then, following the 

reasoning of section 4.3.1., the maximum frequency component that can 

be studied iý (N). Most of the processing time is occupied by the 

discrete Fourier transformation of the data blocks. Now, two real 

1024 point data blocks can be transformed in about 2 seconds, using 
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the fixed-point IT of chapter 3. Therefore, the maximum frequency 

component that can be studied in real-time is approximately 250 I1z. 

Thus, using a properly pro rammed on-line digital computer, a wide 

range of systems can be studied. 

The principal advantage of on-li. ne frequency response 

estimation over off-line methods is that the result is available 

immediately. The on-line method has the additional advantage that 

extremely stable estimators can be obtained, even in bad measurement 

conditions. For instance, the programme described in the next section 

can average, at most, 8192 poriodograms. From equation 5.10., this 

means that provided sufficient input/output data is available, it is 

possible to estimate frequency response functions with a variance of 

1%, when the squared coherency is only 
1/83. 

"n alternative method which could be used for real-time 

frequency response estimation is to calculate. the frequency response 

estimate after each new set of periodograms have been added i; ýto the 

spectral accumulator. This method has the advantage that the current 

estimate of the frequency response function is always available in 

the computer. However, the division required to calculate the 

frequency response estimate must, for accuracy, use floating-point 

arithmetic. This greatly increases the processinC-time, and reduces 

the maximum sampling frequency that can be used. For this reason this 

method is not recommended. 
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5.4.2. Programme Description 

This section describes the operation of a frequency-response 

estimation routine programmed for an on-line computer. The routine is 

programmed in assembly code for use on a GL 90/2 computer. 

a) Initial Parameter Setting 

At the start of the programme, the computer types a request 

for various parameters. The parameters are; N the number of data 

points per block; and p, the Generalised Harming window parameter. If 

the input/output signals of the system under test have significant mean 

levels, these can be suppressed by depressing SES switch 0 on the 

computer control console. The sampling frequency is set by patching 

a square wave generator of the desired frequency to the external RTC 

input. 

b) Running; the Programme 

To start the prof razxae breakpoint 1 on the control console 

is depressed (set). Vihen this is done, the computer commences 

averaging periodograms. After each pair of data blocks has been 

processed, and before the next . air is complete, the computer waits 

in a display loop. While in this loop, the current estimates of the 

auto and cross-spectra can be selected for display on an oscilloscope 

screen. 'hich spectra is displayed is determined by a set of SLS 

switches as follows :- 

SES 1 set, displays the input autospectrtun estimate 

SFB 2 to It output 

SES 3 to co-spectrum " 

SES 4" it of quad-spectrum 
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c) Stopping the Programme 

When the estimates appear sufficiently smooth the averaging 

process can be stoppe'd by setting breakpoint 2. This disconnects the 

real-time clock and transfers the programme to the display loop. To 

calculate the frequency response function the breakpoint 3 is set/reset. 

The computer then divides the estimated cross-spectrum by the estimated 

autospectrum, and displays the result as follows :- 

SES 1 set displays the frequency response in polar form. 

SES 2 set displays the real-part of the frequency response. 

SES 3 set displays the imaginary-part of the frequency response. 

The effect upon the frequency response estimate of further 

smoothing may be observed by set/resetting SFS 5. This convolves the 

real'and imaginary parts of the estimate with the Hanning filter weights 

4f ä, 3. By repeatedly depressing SAS 5, the estimate can be smoothed 

as much as desired, but with : corresponding loss of frequency resolution. 

A permanent record. of the frequency response estimate can be obtained in 

one of several ways :- (i) photographing the oscilloscope display, (ii) 

using the on-line graph-plotter. (This is triggered by set/resetting 

SE 6) or (iii) punching the contents-of the spectral accumulator on to 

paper tape. (This is triggered by set/resetting breakpoint 4). The 

paper tape containing the contents of the spectral accumulator can then 

be used as data for an off-line data handling programme. 

d) Restarting the ProRr ymne 

The variance of the frequency response estimate is inversely 
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proportional to the coherency between input and output, and the 

number of periodograms averaged. Therefore, if the coherency is low, 

it is possible that the auto, and cross-spectrum estimators will 

appear smooth, but the corresponding frequency response estimate will 

not.. In such a case the operator can restart averaging by set/ 

resetting breakpoint 1. The computer will then inquire, via the type- 

writer, if the spectral accumulator is to be cleared. If the operator 

types 'False' the computer will start averaging periodograms again 

with the contents of the spectral accumulator undisturbed. 

e) Resetting the Prograrr e 

To reset the programme breakpoint 1 should be reset, and 

breakpoint 4 set/reset. This returns the programme to the initial 

setting-up stage, and allows the operator to select new programme 

parameters, 
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5.5. Practical Aspects of Real--Time Dir-, ita li requ. ency Response 

5.5.1. Accur. cy 

'Neglecting the noise sources associated with the systems 

under test, the accuracy of the frequency response estimation routines 

described in section 5.4. is determined by the errors in the 

collection and processing of the data. The chief sources of these 

errors are the roared-off error in the fixed-point FFT, and the 

quantisation error caused by analog, Lie- to-digi. ta. l conversion. 

These errors can be combined to form an equivalent measure- 

ment noise source. If mi(t) is the measurement noise incurred 'by 

processing data collected frora the input to the system, and mo(t) is 

the measurement noise involved in processing data collected from the 

output of the system, then, assuming that mi(t) and mo(t) are 

independent, and neglecting other bias errors the measured frequency 

response has an expectation :- 

C^ TI(w) E; f@) }=............ 5.35. 
measured 1+ 1i i ýý 

1xx(w ) 

there Fii(w) is the eutocpect-mim of the ilýput mea^mremPnt 

noise mi(4; ) 
. 

It is justifiable to assume that the measurement noise is 

white. Therefore, if the measurement noise has a variance Qii2, and 

the input signal is white with variance "2, he bias error 
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X 
introduced by measurement errors is approximately :- 

0112 

2 H(cý) ............ 536. 
)c 

The frequency response estimation programme described in 

section 5.5. uses a double precision fixed-point FF1', so that the 

rounding error is negligible when compared with the quantization 

error. From section 4.4.1. the quantization error in the GBC 90/2 

anaiogue-to-digital converter has a variance of 
12 

2-'4 in the 

computer scaling. The analogue to digital converter is scaled so that 

10 volts signal is equivalent to - in the computer. The quantisation 

error in the GM 90/2 is therefore 8.4 2-22 volts2, and the fractional 

bias error caused by measurement error is :- 
t 

B (Hltw)l 
_ 

2°22 

H(W) (nX2 

So, for example, if the r. m. s. level of x(t) is greater 

than 0.5 volt, the mean measurement error will be negligible (ý: -- 0.001j'ß). 

5.5.2. Limitation on Samp1inr° Freguoncy and Frequency Resol'. ition 

The theoretical maximum sampling frequency of the real-time 

frequency response estimation programme described here is deternined. 

by the time taken to process a pair of N-point real data blocks. This 

processing involves, i) a complex N-point fixed-point F?! ', ii) The 

removal of the sample mean levels, iii) Linear modification of the 
ý41 CL 

V 
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data, iv) and forming three periodogran. s. 

Using the fixed-point FFT, which employs resealing in the 

FPT loop by the modulus test, the processing time for a pair of 

256-point data blocks is approximately 0.62 seconds. Therefore, the 

maximum theoretical sampling frequency is 410 Hz, and the useful 

frequency range is 0 to 200 Hz. 

The practical maximum sampling frequency of the programmes 

using the GC 90/2 computer is set up by the GLC analogue input 

multiplexer. This takes 8.8ms to switch from reading one analogue 

input to nnothcr. To avoid errors due to fluctuations in the multi- 

plexer reset tiia^, a soft,, -,, are delay of 9ms is p. ro, 7rammed into the 

routines, This limits the maximum practical samplint, frequency to 

55 Hz, giving a useful frequency range of 0 to 25 Hz. 

The frequency resolution of the frequency response estimation 

routines is deterc'ined by P,, tho number of points per block; wq, the 

sampling frequency; and p, the Generalised Hanning window parameter. 

From section 4.2.6., the frequency resolution using, the 

Generalised Banning window is determined byC , its half power band- 

with h. 

c. J B 
NS (1 + 2p) 

As described in section 4.2.6., p is chosen to set the 

desired asymptotic docay rate of the Generalised Nanning window 
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frequency response. In theory p may take any value between 0 and 

but in the computer programmes p is restricted to be a binary 

fraction (2,49 
..... 

). 

Having set p, and chosen an appropriate sampling frequency, 

N can be selected to give the required resolution. In the on-line 

computer programmes N is restricted by the F'FT algorithm to be of the 

form 2111(m. integer) . The maximum value of N is 256, this limit is 

set by the length of the trigonometric 'look-up' tables used in the 

FFU. The choice of 256 as the maximum value was an arbitrary one made 

during the initial compilation of the programmes, The maximum value 

of N can be increased by extending the trigonometric table. The 

u`timate limit is set by the size of the computer store, on the G1 90/2 

computer, with 8K of store, this limit is 512 points. 
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ö. TIE ESTIMATION OF FR OU"r TCY RESPONSE FUNCTIONS AS'', OCIATED ''11TH 

CLOSED-LOOP SY 'P:: , iS 

6.1. Introduction 

This chapter presents new theoretical results conecrninU 

frequency response estimators associated with closed loop systems. 

The system considered is shown in fig. 6.1. In this system the 

frequency response function of the forward path is Hl(w), and the 

feedback path is H2(w), The overall frequency response function is 

designated G(o) and is defined by 

H1(W) 
G(w) 

............ 
6.1. 

1+H1H2(W) 

The following assumptions are made concerning the system :- 

i) The input signal is a stationary, zero-meal, gaussian noise 

source. 

ii) All transfer functions are linear, time-invariant, two port 

networks. 

iii) There is a stationary, zero-mean, gaussian noise source 

associated with the forward and the feedback path, and these sources 

and the input signal are mutually uncorrelated. 

iv) The feedback path cannot be broken to make measurements. 

The fourth assumption is made because, often we have to make 

frequency response measurements on closed-loop systems with the 

system 'in-situ' and operaticnal. Under these conditions the feed- 

back path cannot be broken without endangering the no rnal operation 
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FIGURE 6.1. A CLOSED LOOP SYSTEM. 

FIGURE 6.2. AN EQUIVALENT OPEN LOOP SYSTEM . 

n (t) 

x (tý + x+ Y(t) 



of the system. Unfortunately, 'normal' estimates of Hl(W) and 

H2(W) based upon earlier techniques, and made with the loop closed, 

yield biased results. 

The aim of this chapter is to develop some of the statistical 

properties of an estimator which overcomes this difficulty. In 

section 6.2. the shortcomings of 'normal' estimators are described, 

and a new, unbiased, estimator is presented. Section 6.3. deals with 

the variance and bias of this new estimator, and in the remaining 

sections confidence intervals for the estimator are discussed. 
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List of Symbols in Chapter 6 

CXX(w) smoothed autospectrum estimator 

() CXy smoothed cross-spectrum estimator 

d(t) the noise source associated with the feedforward path 

e(t) the error signal 

Ei(W) Fourier transform of the ith sample of e(t) 

G(w) the overall Frequency response function 

H1(w) forward path frequency response function 

H2(w) feedback path frequency response function 

n(t) a noise source 

n the number of sample spectra averaged to obtain a smoothed 

spectral estimate 

Pa probability 

P3Ty(w) smoothed estimate of the co-spectrum of x(t) leading y(t) 

QXy(w) smoothed estimate of the quad-spectrum of x(t) leading; y(t) 

r radius of a z-plr; ýe confidence circle 

R radius of a w-plane confidence circle 

s(t) the noise source associated with the feedback path 

Sd(w) ratio of the noise autospectrum to input signal autospect: Cum 

ua real variable 

uc real co-ordinate of the centre of a w-plane confidence circle 

uo real Tart of the forward path frequency response function 

Va real variable 

we imaginary co-ordinate of the centre of a w-plane confidence 

circle 

V0 imaginary part of the forward path frequency response 

function 
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VI a UC l. Ux, vc, i. _'; 1.: 

w centre point of a w-plane confidence circle 0 

wo the complex point denoting iil(w) in the yr-plane 

x a real variable 

x the real co-ordinate of G(w) in the z-plane 
0 

x(t) the input 

Xi(w) Fourier transform of the ith sample of x(t) 

y a real variable 

yo the imaginary co-ordinate of GM in the z-plane 

y(t) the output 

Yi(w) Fourier transform of the ith sample of y(t) 

z a complex variable 

z(t) the feedback signal 

. 
al upper confidence limit of Arg( Hl(w) - Hl(w)) 

a2 lower confidence limit on Arg 
{ H1(W) 

- Hl(w)ý 

/3 imaginary part of/o 

real part of 

rxx(w) 
autospectruii of x(t) 

cross-spectrum of x(t) leading y(t) 

A1 
upper confidence limit on IH1(W) 

- Hl(w)l 

2 lower confidence limit on IH1(w) - Hl(w)l 

E P) the argument of 
rxe(w) 

(W) the argument of r y(W) 

the point 112(w) -l in the z-plane 

r (cý) the argument of Hl(w) 

w angular frequency 
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6.2. The Estimators 

It is assumed that smoothed auto, and cross-spectral. 

estimators are obtained, in the manner of chapter 5, from continuous, 

jointly recorded, samples of the input, error and output sii a1. The 

relevant, smoothed, spectral estimators are :- 

n 
Cxx(w) an Cxx(i)(W) 

i=1 

n 

CyYm 
n 

>7 
Cyy(i) (C') 

i=1 

n 

Cxy(w) a1y Cxy(1) (w) 

i=1 
I 

n 
Cxe(c. ) n Cxe(1) (ýý) 

i-I 

As before, these estimates are obtained by sub-dividing each 

sample into n see-ments, and averaging the spectra of the segments. 

6.2.1. The Overall Transfer function 

An estimate of the overall frequency response function of 

the system in figure 6,1. may be obtained using the methods of 

chapter 5. An equivalent two port is given in figure 6.2. In this 

figure G(W) is the overall transfer function of the closed-loop 

system, and the spectrum of the equivalent noise source n(t) is 
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given by :- 

21 
ý, 2 

Inn(w) 
= Idd(wý + 

r$((-'N I 
H. (w)I I1 

+ H1112(w)I 

The appropriate unbiased estimator of the overall transfer 

function is, from chapter 5, given by 

G(W) Cx w 
............ Eß. 3. 

Cxx(w) 

6.2.2. The Forward Path Transfer Function 

The normal estimator . of H1(w) as used in open loop analysis 

is of little use in estimating the forward path frequency response 
r 

function. This is because even if the effects of finite records are 

negligible, it gives a biased estimate. This may be seen if the 
Cev w 

expectation of the 'normal' estimator Cee(W) 
is considered. Neglecting 

the bias caused by finite record lengths, the expected value of the 

'normal' estimator is 

H (w) 

C'e w 
r1 + Ss(w) - Sa(o)) . F? 

2 Cee(w) 
1+ SS(w) + Sd(w) I H2(c. ')l 

where - S3(w) _ 
ýs ca 

, and d(w) .ý rX(w) 
xx(w) 

Note that the 'normal' estimator will bo unbiased only if the 

noise in the forvard path is zero, or if the feedback is disconnected. 
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To illustrate. the nature of the bias associated with this estimator, 

consider the following example. Suppose that H1(W) . l+jw ; the 

input signal x(t). and the corrupting noise d(t) are white, and are of 

equal variance; and there is unity (noise-free) feedback. The 

normal estimation procedure will yield an estimate of H1(W) whose 

expectation is :- 

1_ 1 
C ey(w) Hl W- 

Iil(Wý 2C 1(wýý 
ee(w) J2 

Thus it is clear that estimates based on the techniques of 

chapter 5 are biased in such a way that they may cause false 

conclusions to be drawn concerning the dynamic structure of the system. 

For instance, in the above example we. would be led to believe that, in 

addition to a first order la;, there is differential action in the 

forward path. 

The bias associated w ch normal estimators arises because, 

due to the feedback, the signal e(t) is correlated with the noise 

sources. An unbiased estimator of H1(w) may be obtained by introducing 

the input signal x(t) into the estimator, and using; a ratio of cross- 

spectra as our frequency response function estimator. A suitable 

unbiased estimator of the forwvard path transfer function is :- 

H1(W) 
_M (w) 

cxe ............ 6.4. 
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6.2.3. The Feedback Path Transfer Function 

Using similar reasoning, the 'normal' estimator of 112(w) 

can be shown to be biased. The expected value of the 'normal' 

estimator 
c_ `w is (neglecting the effects of finite duration 
cyy(c ) 

records) given by : -- 

CS (wý 
_ 

Hý (W) 
S Wý yz(Wý IiZ(cý) I II (wý 

2+ 

F 
11 Id7s 

rY(wý 

fIHi@I 

+ d(wý 4 
1IT1(w)! 

CS(c"'ý 

There -S (w) _ 
ýd 

w, 
and S (w) _ 

ýs 
w 

d Fx-x(w) (xx(w 

The conditions for zero bias error are that the food-forward 

loop be broken, or, that the noise in the feedback path be zero. As 
r 
in the forward path case the bias error is caused by correlation 

between the noise sources and the signals in the loop, and an unbiased 

estimator may be obtained oy introducing a reference signal which is 

uncorrelated with the noise sou'ces. A suitable reference source is 

the input signal x(t), and an unbiased estimator formed by using 

x(t) as a reference is :- 

H2(W) 
_ 

cxz (w) ............ 6.5. 
Cxy 

In the sectionsthat follow some statistical properties of 

the forward path transfer function estimate defined by equation 6.4. 

are given. The properties of the feedback path transfer function 

estimate are cmitted, since they can be calculated by an obvious 
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rearrangement of the results for the forward path transfer function. 
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6.3. Variance and Bias of Forward Path Estimators 

6.3.1. Variance 

The forward path frequency response estimator is defined 

as . 

HA(W) _ 
Pxy(W) +j?? Cy(w) 

Pxe(w) +j (me(w) 

The gain estimator is defined as 

Fi (WTI 
_ 

`Pxy(w) f 7x, Xcj 

ti> Xe (W) +` Xe(W) 

and the phase estimator is defined as :- 

-1 -1 r 
c), xe(ca. ý) ýýWý 

tan mo(w) 
- tan 

Pxy I'ýte(W) 

Therefore, using the methods of section 5.2.3. approximate 

ex;; reccior for the variance of the r'airi : Lrid phase estinator3 may be 

obtained in for of the covar. iý:. nce mat. ri x of Pxy, 7ýxy, Pxe, 

The covariance matrix (obtained using the results of 

appendix 2) is given in equation 6.7. In this matrix the S denotes 

diagonal symmetry, and for compactness the dependence upon the 

frequency hE. s been dropped. 
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the approximate expressions for the variance of the foraard 

path gain and phase estimates obtained from the covariance matrix axe :- 

Var 
( 

iil(w) 1 Sd(w) 

IHi(w) 2n IG(wý 2 l2 

............ 6.9. 

Var 
ý(W)) 1 sa(w)1 

2n Iv(w)I2(\ 

Where, G(w) is the overall frequency response function; and 

and, Sd(w) = 
rd 

1x(w) 

The above expressions are given in terms of the noise and 

signal spectra so that the effect that the noise signals have upon the 

estimators may be directly assessed. To provide a basis for this 

assessment, the variance figures for the 'open-loop' estimate ofril(w) 

are now given in terms of the noise and signal spectra. These 'open- 

1ojp' variance expressions are those which would apply if the feedback 

path were opened and the frequency response of ü, (&->) were estimated 
ýXYM 

using 
dxx(') . Denoting this estimator as 111(w)O/L we can write 
xx 

Var 1 Sd(ci) 

Iýýlfw) 12 2n INl(LO) 12 

1 Sd(63) 
V ar I (ý-ý) 

O/L 2n 
IH1(ý') I 
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And denoting the 'closed-loop' estimator. 
mo(w) 

as Hl(cw)C 
L, 

then 
Cxe(w) 

we can write :- 

2 
Var L 

IH1(W)C/LI 11 
+ 111112(w) I Var{I 1(cJ)O/LI) 

' () 2 ýAJ 
Vas Cr (w)c/L =I1+ H1H2(W) 

I 
Var{ (W) 

0/j 

From these expressions it may be seen that the variability 
2 

of the estimator 
Cxy-(w) 

is 
11 

+ 11 
1II2(W)( 

tunas that which would occur 
Cxe(w) 

if the loop were opened and the 'normal' estimator were used. Therefore, 

the variability of the estimator 
C codepends 

upon the nature of the 
Cxe(w) 

feedback as well as upon the usual factors. 

As an example, consider the simple case where the forward 

path transfer function is 
1+ jW ; the input signal x(t), and the 

disturbance d(t) are white noise signals with variances O;; x2 and ßd2 

respectively, and the feedback transfer function is the real constant 

B. The wiriance of the forward path -, ain estimate at w=1 radians/ 

second is from equation 6.9. :- 

VarCIHl(1)1ý 1d2{(1 + B) 
2+ 

1) 

1 H1(1) 12 2n 3oc2 

If the constant B were unity, the variance fi are would be :. 

5 cd-d 

2n 
xX2 
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If the constant B is doubled, the variance figure also 

doubles, and to reduce the variability to its previous level we would 

have to double n, or increase the r. m. s. level of the input r:; i nril by 

a factor of root two. 

The approximate variance expressions given in equations 6.9. 

indicate that the variability of the forward path frequency response 

estimator is nominally independent of the disturbance in the feedback 

loop. This interesting result arises because in arriving at equations 

6.9. we have neglected all but first order terms in a Taylor series 

expansion of the gain and phase estimators (see appendix 4). This 

point may be clarified if we consider the forward path frequency 

response estimator in terms of the autospectrum of x(t) and the cross- 

spectra between x(t) and the noise sources s(t) and d(t). The forward 

path estimator expanded in this way is :- 

1- Cxs (w) + 
Cxd (W) 

Cxx H1C3oc 
xýiw) = xl(ýý) 

1- Cxs (W) _ 
x2-Xd 

ýW) 
"xx öxc 

Now, when s(t) and d(t) are uncorrelated with x(t), the 

smoothed cross-spectral estimates Cxs(w) and Cxd((, )) have expected 

values of zero, and variances proportional to 
n-, 

so that as n is 

increased the terns 
Cxs(w) 

and 
Cxd(w) 

will become small. Assuming 
Cxx(W) cxx(w) 

that these terms are much smaller than one, we can make the 

approximation :- 
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H Cxd 
Hl(Wý ý` H, (W) 1- Cxs(w) 

+ 
Cxd(W 1+ 

Lam 
-2 (c 

Cxx H1Cxx Cxx Zxx 

H'(W) 

I1 

+C U') . G(w) 
Caac 

Thus we have verified that, to a first order approximation, 

the variability of the forward path frequency response estimate is 

independent of s(t). 

6.3.2. Bias 

The method used to derive expressions for the bias due to 

data-tiwindoving in the open-loop case can be extended to determine the 

bias due to data-windowing in the closed loop case. The approximate 

bias expressions obtained in this way are 

BF II a2 IH,! + 2IHll `r111ýýE+I) 
....... 

6.9. 

T' 1 feI i 

. 
ý3ýq 

) �, 
a 

T2 11111 1 (x-ei 

'. there = Arg (Iii) 

Arg (ry) 

E= Arg (1e) 

a2 = the coefficient of t2 in the power series 

of 
q 

(1(t) - 1(t)), and the dot notation 

is used to indicate deriw. tive s with 

respect to (am) 
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Comparing the above expressions with the open-loop 

expressions for bias due to windowing the foil owing points can be 

made 

i) Both gain and phase biases are inflated by a:? diticnal terns 

proportional to the first derivative of 
11e1 

ii) The gain bias contains terms proportional to 
YG 

and 

Therefore, if large transport delays occur between x(t), e(t) and x(t), 

y(t) significant bias errors in the gain estimate can be expected. 

For the reason given in chapter 5 this type of error is not 

significant in the estimators used by the author. However, should 

the 'lagged-products' method of spectral estimation be used, care 

should be taken to align x(t), e(t) and x(t), y(t) prior to estimating 

the cross-spectra. 
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6.4. Saniplir_, T Distributions Assoc,. ated with the Forward Path 

Frequency Response : tirýator 

In this section the problem of obtaining sampling 

distributions to suit estimators of the form of equation 6.4., 6.5., 

is discussed. 

6.4.1. The General Case 

We can study the general case of estimating forward path 

frequency response using an approach similar to Goodman's (ref. 6.1. ) 

Such an approach leads us to consider the joint statistical propertie. 

of a tri-variate complex normal random series. The work involved in 

this is complex and considerably more lengthy than Goodman's analysis 

For this reason the analysis was not attempted. Instead a special 

lase was considered., which enables direct use of Goodman's results. 

6.4.2. A Special Case 

Consider the problem of estimating the forward path 

frequency function FI1(w) of figure 6.1. when the feedback noise source 

is negligible. In this case the problem reduces to the estimation of 

the spectrum of a two-dimensional stationary gaussian process, and 

the work of Goodman can be used directly. 

Defining the sample spectra of the input, output and error 

signals as :- 
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Xi (cýa) the spectrum of the 
th 

sample of x(t) 

Yi (w) the spectrum of the th 
sample y(t) 

Ei (w) the spectrum of the 
th 

sample of e(t) 

Now, Goodman developed sampling distributions associated 

with the complex regression coefficient of Y()) on X(W), defined 

by "- 

Xi Yi(u)) 

i=1 G(w) 

Xi x1(c'`ý) 

i=1 

And we are interested in the sampling distributions associated with 

the function :- 

x Yi(W) 

Xi Ei(W) 

f=1 

m He(w) 

If the noise source in the feedback path is negligible, then these 

two functions are rel; itod by :- 

H1(w) 

G(w) 
ý ............ 

6.10. 
1+H2(W)f 

Therefore, in the special case of noise-free ; 'ecdb: ick, the 
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distributions associated with the estimator of the forward path 

transfer function can be obtained by a transformation of the 

distributions associated with overall transfer function estimate. 
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6.5. Confidence Regions for the Forward Path Freruency Response 

Esti. mutor 

6.5,1. Conformal Mapping of Goodman's Confidence Region-3 

Confidence statements concerning; the forward path frequency 

response estimator can be obtained by using equation 6,10. to transform 

the probability density functions given by Goodman in reference 6.1. 

However, in this section. an alternative method is employed. Using 

this method confidence statements for the forward path frequency 

response estimator are obtained by a complex conformal mapping of the 

confidence regions for the overall frequency response estimator. These 

confidence statements apply to the special case of noise-free feedback. 

Define the complex variables z and w as follows :- 

zx+ jy 

............ 6.11. 
w=u+ jv 

Let the point x01 yo in the z-plane represent the true value 

of the forward path frequency response function at frequency 141. 

Defining the complex constant as the inverse complex 

feedback fraction at frequency 
. 

We can say :- 

H2ýý 

............ 
6.12. 

_6+ i/3 
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Then, at Cwt, the z-plane is mapped into the iv-»l : nc i, y 

the bilinear conformal transfoi^nation :- 

w 
1 -/0 

Z 

............ 6.13. 

From section 5.2.4., we can draw circles of radius r, centre 

x09 yo, in the z-plane and attach a probability P, to the evenit that 

the overall. frequency response estimate will lie inside that circle. 

Using the transformation equation 6.13. we can draw corresponding 

contours in the w-plane, and attach the same probability to the event 

that the forward path frequency response estimate will lie inside the 

region mapped by the interior of the w-plane circle. 

Using the properties of bilinear transformations (ref. 6.2. ) 

we can show that the circles (r, xo, yo) in the z-plane map contours 

which are circles (R, u 
c, 

vc) in the w-plane.. The radius and centre 

of the w-plane circles are given by :- 

2 
I/ýI r 

ZS -x0) 
2+ (%3 'Yo) 

2- 
r2 

x0l/DI2 - ö( X+ 
yo 

- rý) 
6.14. 

(ö -x0) 
2+ (73 

-y0) 
2- 

r2 

y0ß/3] 
2-/3(xo2+y02-r21 

V c 
(5- x0)2 + ý/3- yo)2 - r2 

The true value of the f. or- an' path frequency re, >pouise fu>>ction .. 
1(`l1) 

is at u0, v., and is given by :- 
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x0IlJ12 - -6 (x2 + y0 ) 
u- 0 

(ý -x0)2 + (/3 - y0) 
2 

v_ yob/D 12 _ /3 (x + yö) 
o- 

(t5 -X )2 + (/3 - yo)2 

............ 6.15. 

From these equations, the w-plane confidence regions are a 

set of eccentric circles. For small r the circles are (approximately) 

centred at uo, V. As r increases the centre points move away from 

u0, v0. However, the circles always contain the u0, v0 point. 

Consider the area mapped in the w-planc by the interior of 

the z-plane circles. From figure 6.3. : - 

a) The contour Cl 

The interior of Cl maps the interior of Kl. This interior- 

to-interior mapping continues as the radius of the circles is increased, 

until. the contour. C2 is reached. 

b) The contour C2 

The contour C2, which has the nointp upon it, maps 

into the strair; ht line K2 given by 

2u(ß (xö + y2 -r 
2) 

- xöflý) + 2v(, /, 2 (x0 + y0 - r2) - ydý) 

ax+yoo............ 6.16. /ýI2 ir2 - 
2? ) 

And the interior of C2 maps into a section of the w-plzfe. 

c) The contour C3 

The interior of C3 maps, the ext';: ior of the corresponding 
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FIGURE 6.3. THE MAPPING OF THE Z -PLANE ON TO THE W-PLANE. 

Y ý1 NE. 
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contour K3 in the w-plane. The point uo, v0, lies outside K3, 

Summarising, confidence circles in the z-plane, which do 

not contain the point , map interior-to-interior. Confidence 

circles in the z-plane, which contain the Point /0 , map interior-to- 

exterior. Clearly, the mapping of confidence regions which contain 

are of little use in attaching confidence limits to the estimator 

because the transformed circles do not contain HI1(W) (the true 

value). Therefore, only circles which excluded are of interest to 

us. Recalling that/, 3 is associated with 
1/II2(wl) 

and that xo, y0 is 

the point 1+l(k) , 
±hen, 

1o can never coincide with xo, yo, so 
1 2(wi) 

there will always be a set of z-circles which give useful tronsformed 

W-circles. 

6.5.2. Joint Confidence Statements for Gain and Phase 

If a probability P can be attached to the event that the 

overall frequency response function will lie inside a circle radius 

, 
r, centre x 

Of y0 , then the same probability can be attached to the 

event that the sample forward path frequency response function will 

lie inside the transformed circle radius R. centre uc, vc. Using 

the same procedure as in section 5.2.4., the transformed confidence 

region can be used to obtain joint confidence statements for the gain 

and phase of the estimator of the forward path frequency response 

function. From figure 6.4., if the circle C is the transformed circle 

associated with the probability P that the forward path frequency 

response function will lie inside the circle radius : 2, then the 
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FIGURE 6,4. CONFIDENCE REGIONS FOR FORWARD PATH FREQUENCY 

RESPONSE FUNCTION ESTIMATES. 



fo11owincr confidence statement can be made 

+ zý l> 2 

Prob 
^>P 

oti 
1 

(w) >-a 

where O1 R+( IwoI - i', ioI ) 

A2 
=R-(I VIcl -f0 

OBI sin-1 I, 
R+ (6 - 

+) 

Lc 
a2 sin-'(F-, 

......... 6.17. 

i 
".......... " 

6.1 

R is defined by equation 6.14. as the rýidius of the trýýns- 

foi ed circle, Also 

Vl0 = the true gain 1111(Wl) l 

T 
the true ph,. se Arg H1(i) 

22 
I'aCI 

_ LLLC + VC 

simultaneous From expression 6.17. the approximate 1OO1 71, 

confidence intervals for the forward path f-ai. n and phase are :- 

+ýH1(w)ý ; 
1(ca)-ýý 

n 

(W) + al %I (W) > 
ý(W) 

- Aý 
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As an example of the use of these confidence statements 

consider the simple case of a closed loop systems with forward path 

transfer function 
l+ýw , and noise-free unity feedback. Consider 

the 75% confidence intervals for the overall, and forward path, 

frequency response functions at co a1 radian/second. If n=3.00 

and Kxy(l) = 0.5, then from the previous chapter the 75% confidence 

intervals for the overall gain and phase can be shown to be 

0.4496 + 0.053, and -26.6°± 6.8° respectively. 

These figures can be used to obtain the 7 confidence bands 

for the forward path estimator at co = 1, but first we must determine 

the appropriate values for xo, yo, uo, vo, uc, vc. The overall 

frequency response at WL1 is 
2+ý , therefore, xo_ 

! 
'and yo= 

ý. 
The 

forward path frequency response function at w61 is 
1+3, 

therefore, ý. 
o" 

and v0 -2. Also, because the radius of the confidence circle for 

the overall transfer function is small, uc ; u0 and vc ; v0. Since 

the feedback is unity then from equation 6.12,10 =1 

Substituting these fic; ures in the expression for R, the 

radius of the 75, ' confidence circle for the forward path frcqu^ncy 

response is approximately 0.132. Hence, the 79,7S confidence intervr_]s 

for the gain and phase of the forward path at wa1 are : - 

0.7117 ± 0.132, and -45°± 1.0.7°, respectively. 

6.5.3. Experimental Justification of the Confidence Regions 

To test the validity of thetransformed confidence circles, 

a typical system was simulated using:, a digital computer. The cv:; tum 
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was a unity forward path transfer function corrupted by noise n(t), 

and with a feedback transfer function B. The input signal x(t) and 

the noise n(t) are independent noise sources, but with identical 

autospectra. The amplitudes of x(t), and n(t) were chosen so that 

the squared coherency between input and output was 0.75. 

One hundred and twenty eight independent estimates of 

H1(wý were made, each estimate having 10 degrees of freedom. A 

scattergram of the estimates was then constructed and 50; ý transformed 

confidence circles superimposed upon the scatterggram. Typical results, 

for various B, are shown in graphs 6.1. to 6.3. In these graphs the 

estimates, and confidence circles are plotted in sets of 32 at 900 

intervals on the unit circle. This was done to make counting the 

experimental confidence region population easier. In all cases tried 

the actual populations of the 50 confidence circles were close to 

the expected population of sixteen. 

6.5.4. Confidence Statements for the General Case when the 
Feedback Path is Subjected to Random Disturbances 

The confidence statements derived in this section apply in 

the special case of noise-free feedback. However, from section 6.3., 

the variability of the forward path frequency. response estimate is 

(to a first order approximation) independent of the feedback noise. 

Therefore, in the absense of more general confidence statements, we 

are justified in suggesting that, although the confidence statements 

of equation 6.17. are not strictly valid, thcymay be used to obtain 

approximate confidence intervals in the general case of nniuy feedback. 
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This technique is only tentatively su,,; zested, and in order that its 

validity may be tested a more thorough examination of the variability 

of the estimator' )) is proposed in section 8.2. 
Cxe 

I 
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7" EXPERIMENTAL WORK 

7.1. Introduction 

This chapter presents some 

using the real-time digital spectral 

results are presented to illustrate 

in chapter 4 and 5, and to show some 

spectral technique. 

experimental results obtained 

analysis programmes. The 

some theoretical points made 

applications of the real-time 

The first two sections are concerned with demonstrating 

sources of error in the real-time spectral analysis techniques. 

One section deals with bias due to data windowing, and the other 

with bias and variance due to aliasing. Normal variability errors 

are not illustrated. This is because in most cases the programmes 

can be left running until the variance of the estimates is 

negligible. In the cases where this is not possible the confidence 

statements of chapters 4 and 5 may be used. 

The last three sections present applications of the re-1- 

time digital spectral analysis programmes. The first of these 

applications is in the autospectral analysis of acoustic data, and 

the second is in the auto, and cross-spectral analysis of vibration 

data. Finally, the identification of an internal combustion 

engine/dynamometer test rig is described. 
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7.2. Bias Errors due to Data Windowing 

As explained in chapter 4 using a data window, 1(t), of 

finite duration causes two types of bias error. These are local 

bias error, and long-germ bias error (leakage). These errors are 

now discussed as they occur in the real-time autospeatrum 

estimation programme. 

Spectral lepkage is the long-term bias which causes 

spectral components to be swamped by leakage from large peaks in 

the autospectrum. Graph 7.1. demonstrates leakage as it effects 

the measured spectrum of a sine-wave. The data window used in this 

measurement was the Generalised Hanning window with p=0. This 

window has slowly decaying side lobes (graph 4.6. ), 
. nd is the same 

as the spectrum of a simple rectangular data window. The spectrum 

measured in this way falls away slowly, and so small amplitude 

peaks near 10 Hz could easily be obscured. Theoretically the 

spectrum should decay as 1a4, however aliasing prevents it reaching 

this rate. 

The reduction of leakage caused by increasing p is shown 

by graph 7.2. This shows the spectrum of the same sinusoid, only 

measured using the Generalised Nanning window (parameter p-0.5. ). 

As can be seen the spectrum falls away very rapidly, and soon 

becomes lost in the measurement noise. The estimated noise level 

(shown dot;: ed) was calculated using the expression given in o-, oetion 

4.4.1. 

182 
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GRAPH 7.2. 
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Local bias is due to the non-zero width of the spectral 

window's central lobe. This form of bias can be compensated for 

using the power series expansion method of chapter 4. However, 

we are more likely to use a 'trial -and-error' Lppro; ých, in an 

attempt to reduce the bias to negligible proportions. This may 

be done by repeatedly estimating a spectrum using increasing values 

of N, until the peaks in the spectrum are resolved. This technique, 

which is similar to the 'window-closing' of Jenkins (ref. 7.1. ), is 

illustrated by graphs 7.3. to 7.6. These plots were obtained on- 

line, and show the smoothed periodograms of a band-pass noise source 

for various N. Remembering the simple relationship between the 

half-power width of the spectral window and of the periodogram 

points, the third plot (graph 7.5. ) would be chosen as being 

sufficiently resolved. 
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GRAPH 7.3. SMOOTHED PERIODOGRAM. Na 32. 
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GRAPH 7.5. SMOOTHED PERIODOGRAM. N ft 128. 
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7.3" . 41iasin_; Errors 

This section uses the real-time frequency response 

estimation progra. nmme to illustrate the effects of aliasing upon 

digital frequency response estimates. The results presented here 

are practical confirmation of the theoretical conclusions drawn in 

Chapter 5. 

The system identified in this section is a time &dv: ince. 

This is physically unrealisable, but may be easily simulated using 

the time delay inherent in the G: ", C 90/2 computer interface. The 

interface analoiue to digital converter takes 9ms to change from 

reading one analo. ie input to read Einother. Therefore, there is 

in the frequency response estimation programme a time delay between 

sampling the input of the system being studied and the output. To 

compensate for this delay another delay of equal duration would have 

to be incorporated in the system under test. Therefore, when the 

system under test is a unity gain transfer function, the frequency 

response estimation programme Lelieves it to be a time advance of 

9ms. A time advance can thus be simulated by connectirti, the test 

signal to the input and output samplers at the computer interface. 

In all the results given here the test sip*nel used was a 

laboratory white noise source. The noise was low-pass filtered 

using a variable cutoff point, fourth order, Butterworth filter. 

This filter fulfilled the purpose of the guard filtors in 

5.3. 
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1.3.1. Bias 

Grýphs 7.7. and 7.8, show the measured frequency response 

function and coherency in the absense of noise. The continuous 

curves are the measured values, and the dotted curves are the 

theoretical, expected, curves calculated using results of section 

5.3.3. 

The sampling frequency used for these cnd all other 

results, was 50Hz. The maximum frequency scale marking, 25 Hz, is 

the spectral folding frequency. The filter cutoff frequency used 

to obtain graphsl"7.4,7.8, was 15 Hz, this corresponds to the 

figure of 0.3 (fs) recommended in chapter 5. These estimates are 

therefore the best that can be expected using this particular guard 

filter. 

The detrimental effect of increasing the CLuuLrd f: 'Lltcr 

cut--off frequency is shown by graphs 7.9, and 7.10. These show the 

measured frequency response <<nd squared coherency of the time 

advance, when the filter cut-off frequency is 0.4 f9 (20 Hz). 

In theory the cut-off frequency which minimisos alias 

bias error for all low pass filter approximrationo is zero. In 

practice however chosing a low cut-off frequency will cause other 

error sources to become significant. 

The first of these errors is spectral letkago. If a low 

cutoff fr-quercy is used th-, spectra will have most of their powor 
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GRAPH 7.8. 

COHERENCY ESTIMATE FORs- 

ASI MULITED TIME EIOVt NCE OF 3 MS. BIAS DUE TO ALIASI NG; 

GUARD FILTER CUTOFF FREQUENCY OPTIMUM. 

1.00 

4 oo 

>- . 8OO 
U 

. 700 
W 

. GOO 
0 

W . 500 

. 400 
C'I 
0 

. 300 

. 200 

. 100 

. 000 
26.0 

FREQUENCY (H2) 

. 000 6.00 10.0 115.0 20.0 



GRAPH 7.9. 
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GRAPH 7.10. 
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concentrated at low frequencies. If the data window used has a 

low asymptotic decay rate, then spectral leakage from the low 

frequency components may overwhelm the true high frequency 

spectral components. Specifically, this form of error will occur 

when the asymptotic decay rate of the spectral window is loos than 

that of the guard filter. Graphs 7.11, and 7.1.2, illustrate such 

a situation. The cutoff frequency used here was 0.1 fs (5 11z), and 

the Generalised Hanning window with p=0, was used to modify the 

data linearly. When p-0, the spectral window has a low decay 

rate (see graph 4.0. ), and the leakage soon swamps the true spectra. 

Under these conditions the measured frequency response, «nd coherency 

tend to unity ý;. s the frequency increases. 

When the spectral leakage i F; negligible, the i:: ca sur. ement 

noise (described in chapter 5) can distort the estimates. At the 

higher frequencies the autospectrurn of the filtered test signal 

may become s: n: tl compared with the measurement, noise autosecctrum. 

Under these conditions the expected vo lues of the gain and i.. eherr ncy 

will tend to zero as frequency increases. The expectation of tho 

phase estimate will be unaltered, but an increase in vnrial'ilit, y 

may be expected because of non-zero correlation between uieý-: ýururnent 

noise sources over a finite sample. 

This type of distortion is shown by graph3 7.13, t{nd 7.14. 

The leakage between estimates was ,; upreosed by using pa0.5 in 

the Generalised. Hanning window. ThP gu:. rd filter cutoff frequency 

used rý s 0.1 fs, (5 Hz). 
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GRAPH 7.12. 
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GRAPH 7.13. 
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GRAPH 7.14. 
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7.3.2. Variance 

To indicate the effect of aliasing upon tho vý, ri: -: nce of 

frequency response estimates, a small noise component was added to 

the output of the simulated time advance. The noise signal was 

filtered in the same way as the test signal, so that the coherency 

between input signal and output signal was constant. In the 

absence of aliasing, the variance of the gain and phase estimates 

is constant with frequency. 

The estimated gain and phase are shown by graphs 7.15. 

and 7.16. As predicted the variance of the estimates increases 

greatly as the folding frequency is approached. This occurs 

because the cross-spectrum near the folding freciuoncy is 

predominantly imaginary. When the cross-spectrum is real at the 

folding frequency the variance of the estimates is not inflated. 

This point is illustrated by graphs 7.17,7.18. These curves are 

the estimated gÜinq phase and coherency of a-time delay. The delay 

was simulated using a P. R. B. S. generator. 

It can be seen from graphs 7.17, and 7.18, that, the 

condition which minimises the variance due to : liasing also minimicos 

the bias. Therefore, the effect of aliasing can be reduced by 

arranging that the cross-spectra between input and output of a 

system is real at the folding point. This may be done on-line using 

the alignment shift register technique described in chapter 5. 

Alignment ce-n then serve the dual purpose of reducing the effects 

of aliasing, <ýn, i reducing possible bins clue t- large time deli+ys. 
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GRAPH 7.16. 
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GRAPH 7.17. 
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GRAPH 7.18. 
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Alignment should not be used instead of' guard filtering, but in 

addition tc it. 

The 1r9riar1ce of aliased coherency estimates was not 

derived in ch<_pter 5, and so the variability ä the coherency 

estimates of grE. ph "1.16, and 7.18, cannot usefully be commented 

upon. It has however been noticed that the variance of coherency 

estim, -. tes is fairly insensitive to aliasing. 

r 
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7.4. Autocncctrs1 Analysis of Acoustic Noise Inside a Passenger 

Motor Car 

In the quality control of motor car production, an essential 

task is to ensure that the audible noise inside a typical car does not 

exceed a certain level. This is done by periodically testing a new car 

selected at random fron the production line. The car is driven at a 

fixed speed over a test surface, and a tape-recording made of the noise 

inside. A spectral analysis of the record is then conducted, and the 

estimated power spectrum is compared with the permissible power level. 

Traditionally, analogue spectrum analyzers of the parallel 

bank filter type are used in this type of acoustic application. Digital 

techniques have not been favoured because the time series are usually 

long (requiring large amounts of store), and the digital analysis is 

'off-line' (ref. 7.2. ). The real-time autospectrum estimation technique 

overcomes these difficulties. It also has the advantage of presenting 

the results in a way visually similar to that of the parallel bank 

analyser. This will appeal to users of this type of analogue spectrum 

analyser. The spectral analysis of acoustic data is therefore a natura]. 

application of the real-time autospectrum estimation programme. 

Graphs 7.19. and 7.20., show the digitally estimated auto- 

spectrum of the audible noise inside a large family saloon car. For 

convenience, the power is plotted with respect to a reference tone. 

The noise records were obtained by driving the car at a constant speed 

of 40 m. p. h. over a standard road surface, and recording the noise 

detected by microphone inthe front and rear of the car interior. To 

enable the required frequency range to be covered by the real-time 
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autost>ectr_um estimation programme, the tape recording was played brick; 

at reduced speed. Aliasing was suppressed by low-pass filtering in 

the manner described in chapter 4. The guard filter had a fourth order 

Butterw, vorth characteristic, and cutoff at 0.3 fs. The graphs are 

plotted u-,: to a frequency of 0.4 fS, and at this frequency the worst 

case bias error is + 4%. 

The autospectz~tm prograrune parameters for both graphs were, 

N= 256 and p=0.5. The number of periodograin averaged to obtain 

each curve was 80. The confidence bars are therefore based upon a 

chi-square distribution with 160 degrees of freedom. 

X90 



ri 

I 
d 

Inc 
0 

W 
7 
0 
I 
Lt 
0 
Ly- 

0 Hr 

G 
W 
I- 

z 
D 

0 

Z. 
0 

F-" 
U 
W 
d. 
lfl 

W 
H 
0 

z 
0 

HN 

LL 

w I- z H 

U 

LU 

Lii 0 0 00 

0 

O 
(0 

Q 

O 
ý7J 

O 

rj m 

0 
cD 

0 0 

N 
I 
.ý 

C) 
Z. 
W 

W 
L 
L 

(8O) 233mOd 3A I IU D1 ! 

'Q 
O 0 ý 

a' ýj 



0 N 

N 

2 
a 

0 

W 
Z 
O 
2 
O 
U 
H 

G 
W 
F- 
Z 
O 

OC 
W 

7- 

I- 
U 
W 
a. 
W 

Q 
Z 

0 

W 
Z 
l--1 

U 

%D Ln 2 
L n 0 0 

0 N 
Q) 

0 
-, 

0 
c 
0) 

0 
N 
M 

0 

0 0 
ai 

e-. N 
I 
v 

}- 
U 
z LI 

W 

L. 

(80) 2J3fOd 3A I JU-1326 

Imý> 



7.5. Enectral Analysis of a Dopey tiusnension System 

This section presents some results obtained during real-time 

spectrum analysis experiments carried-out by the author on behalf of 

the Engineering Research Division of British Rail. The analysis was 

conducted upon random data from strain gauges attached to one of the 

bogeys of a fully laden goods wagon. The data was obtained by tape 

recording the output of these gauges while the wagon was pulled over 

a section of jointed track. The track condition was consistent over 

the section, and the wagon speed constant, so it may be a3sumed that 

the strain gauge data is stationary. 

The data analysed here was taken from joint records of the 

outputs of strain gauges attached to a bogey axle box and the bogey 

bolster (to clarify these terms the reader is referred to fig. 7.1. ). 

The axle box gauge (gauge X) was situated on an axle box on the bogey 

side section, This gauge indicates directly the vibration of the bogey 

due to unevenness in the track. The bolster gauge (gauge Y) was 

att.,. ched to the bolster section, which supports the wagon superstructure. 

Between the bogey side section and the bolster is the suspension system 

of the bogey. Therefore, the output of gauge Y contains a component 

which is due to the vibration sensed by gauge X after they have been 

passed through the suspension. By jointly observing; the output of 

the strain gauges the nature of the bogey suspension may be deduced. 

The data from the two gauges can be considered for simplicity 

as the input and output of a two-port system. Gauge X represents the 

input to the system from the railway track, gauze Y represents the 
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suspension units are hatched thus: - m 

FIGURE 7.1. A RAILWAY GOODS-WAGON BOGEY. 

FIGURE 7.2. INPUTS AND OUTPUTS OF THE ENGINE/ DYNAMOMETER TEST RIG. 
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output of 1 he system, with the bogey suspension unit as the syst,. nn. 

In reality the situation is more complex than this. Since there are 

four wheels per bogey, the true system has multiple inputs. Also, 

because pairs of wheels are drawn over the same track, the inputs are 

correlated by pairs. The transfer function relating pairs will be a 

time delay determined by wagon speed and wheel spacing. 

The parameters of the autospectrum programme were set at 

N= 256, p=0.25. Aliasing was supressed by fourth order Butterworth 

filters. The autospectrum of the strain gauge signals are shown in 

graph 7.21. The major peak in the autospectrum of gauge X corresponds 

with the frequency at which the wagon was drawl over the rail joints. 

Comparison of the autospectra suggests that the suspension system has 

a high Q resonance at about 3.0 Hz. Also peaks in the spectra, at 

harmonics of the joint-crossing frequency indicate that the suspension 

is non-linear. 

The cross-spectra between gauge X and gauge Y is shown in 

graphs 7.22. These curves confirm that a resonance exists near 3.0 IIz. 

A frequency response estimate based upon this cross-spectrum estimate 

is given in aph 7.23. This estimate is of little value, since it 

assumes that the system is a linear two-port, and the actual : iystein is 

a non-linear, multiple (coherent) input system. However, one useful 

point emerges from the estimates. They indicate a peak in the phase 

near 3 Hz. This is known to indicate (ref. 7.3. ) the presence of two 

or more coupled modes near the phase peak:. 

It is concluded therefore, that the suspension system is 
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non-linear vith two or more high Q modes near 3 I3z. This is 

consistent with the suspension system being a lightly damped, multiple 

spring unit. The high degree of non-linearity is probably due to the 

wagon being fully laden. 

193 



GRAPH 7.21 . 
AUTOSPECTRA EST I MHTES F OR s -- 

BOGEY SUSPENSION SYSTEM 

20.0 

18.0 

16.0 

14.7 

12.0 
Cxx f 

Q 072 10.0 
xx 

8.00 

6.00 

4.00 

2.00 

. 000 

25.0 

22.5 

20.0 

17.5 

Ci 16.0 

G 
yy 12.5 

10.0 

7.60 

6.00 

2.60 

. ooo 

N- 256 
p -O. 25 

. 000 2.00 4.00 G. 00 81.00 10.0 12.0 14.0 

F'FECLUENGY HZ) 

. 000 2.00 4. OCR 6.00 8.00 1O. n 12.0 14.0 

FREQUENCY LHZ? 



GRAPH 7.22. 

CROSS - SPECTRAL ESTIMATE FOR c- 

BOGEY SUSPENSION SYSTEM 
N= 256 

p=O. 25 
IG. O 

12.0 

Pv(i) 
8.00 

OXXcrr 

4.00 

. 000 

-4.00 

-8.00 

2.00 

. 000 

Q, f, - 2.00- 

-4.00- 

-G. Co - 

-8.00- 

-10.0- 

-12.0- 

I. 0 

4.0 



GRAPH 7.23. 

FREQUENCY RESPONSE ESTIMATE FOR%- 
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GRAPH 7.24. 
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7.6. Identification of an Internal Combustion ? nr*ine/I1yn<. unoineter 

Test Hi 

This section presents some results obtained when the real- 

time frequency response estimation programme was used to identify an 

i. e. engine/dynamometer test rig. The engine was a Hillman Hunter, 

1725cc, petrol engine, loaded with an eddy-current dynamometer. A 

description of the rig is given by J. Monk and J. Comfort in reference 

(7.4. ), and is amplified in their doctoral theses. 

The aim of the identification experiment was to obtain frequency 

response curves which relate certain control parameters -nd controlled 

variables. These curves can then be used to construct a mathematicsa 

model of the test rig. The controlled variables measured were the 

shaft torque and the dynamometer speed, and the control parameters were 

the throttle butterfly angle and the dynamometer load current. A 

schematic diagram of the variables is given in fig. 7.2. To fully 

correlate the control and controlled variables, four tran. "rer functions 

must be known. These are :- 

i) Throttle / Torque 

ii) Throttle / Speed 

iii) Load / Torque 

iv) Load / Speed 

The frequency response estimates were obtained by suporimposing 

a small amplitude gaussian white noise test signal on to the normal 

operating signal of the control parameter. The test signal and the 

appropriate output signals were then passed through guard filters, and 

fed to the G,: 2 90/2 computer. The guard filters were used to suppress 
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aliasing in the manner described in sect. {. on 5.3.3. The filters had 

fourth order Butterworth characteristics, and cutoff frequencies of 

0.3 fs. All results are plotted up to a maximum frequency of 0.4 fs. 

Therefore, from chapter 5, the bias due to a, liasing is a maximum at 

0.4 fs. The worst case bias values at this frequency are -, gain 

error, + 0.04 radians phase error, and "-16% squared coherency error. 

The parameters of the real-time frequency response estimation programme 

were set at N= 256, p=0.25, throughout the experiment, and in each case 

the programme was allowed to run until a smooth estimate was obtained. 

The results of the experiment are presented in graphs 7.25, 

to 7.32., the continuous curves are results obtained using the real. -time 

frequency response estimation programme, and the points marked by circles 

indicate results obtained by sine-wave- testing. The estimatedfrequency 

response functions are plotted on logarithmic or linear scales. The 

gain functions shown plotted logarithmically are flat (within 1 dB) 

below the lowest plotted frequencies. 

The sine-wave results were obtained at the same operating 

point as used in the random-signal tests, using a test signal of r. m. s. 

level equal to that of the noise test signal. The sine-wý,. ve results 

were taken as a verification off' the curves obtained using the real-time 

frequency response estimation programme. This verification was thought 

necessary because the i. e. engine/dynamometer test ri, - is non-linear 

(ref. 7.4. ), and it was feared that some distortion in the real-time 

frequency response estimates might be encountered. The random-signaLl 

method and the sine-wave method handle non-linearities differently, so 
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that if norms-linear effects were serious, we would see significant 

differences between the two sets of results. Fortunately the results 

agree well, and so we can conclude that the real-time estimates are not 

seriously distorted by nori-linearities. 
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GRAPH 7.26. 
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GRAPH '%. 27. 
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GRAPH 7.28. 
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GRAPH 7.29. 
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GRAPH 7.30. 
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GRAPH 7.31. 
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GRAPH 7.32. 
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8. CONCLUSIONS 

This thesis presents a technique which enables digital 

spectral analysis to be carried out on-line and in real-timu. To 

demonstrate its validity programmes which implement the technique 

on a GEC 90/2 on-line digital computer are presented. These 

programmes allow rutospectral and frequency response measurements 

to be made in real-time up to a maximum frequencies of ' 500 Hz 

and N 250 Hz respectively. Theoretical support is provided by a 

description of the statistical properties of the estimators used in 

the programmes. The frequency response estimation programmes 

presented here are for the analysis of linear, time-invariant, open- 

loop, two-port systems. It was recognised that. in a large class of 

measurement situations the system under test is closed-loop, and 

the loop. cannot be opened to. make measurements. In such cases 

normal estimation methods are inadequate, and for this reason a 

study of frequency response estimators for closed-loop systems is 

also presented. 
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8.1. Assessment_of the Real-Time Spectral Analysis Technique 

The author would at this point like to present his brief 

assessment of the real-time digital spectral analysis method as 

compared with alternative techniques. The assessment is presented 

under a series of headings, each heading being concerned with a 

desirable feature we would wish to incorporate in a spectral 

analysis technique. 

i) Frequency Resolution and Statistical Stability 

These features are required in a spectral analysis method 

so that reliable spectral estimates with low variability and 

negligible bias error may be obtained. The real-time spectral 

analysis method, in common with special purpose machines, can 

combine the qualities of good resolution and statistioal stability. 

This is a significant, advantage over off-line techniques, which 

generally work from fixed duration records, cnd sacrifice resolution 

to obtain stable estimates. 

ii) Availability of Results 

If the user is to conduct experiments quickly and 

efficiently, the results of his analyses should be rapidly availablo. 

Here again the real-time digital method and. on-line special purpose 

machines have the advantage over off-line techniques, sinco they 

present results in real-time. 

iii) Frequency Range 

In order that a wide range of signal and systems can be 

studied, a good spectral analysis technique should allow measure- 

ments over a wide range of frequencies. In this respect off-line 

methods '-nd special purpose machines are usually superior, since 
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the maximum frequency range of the real-time technique is limited 

by the speed with which the computer can execute the FFT. The 

programmes described in this thesis have upper frequency limits 

of ' 500Hz and N 250 Hz for autospectral and frequency response 

measurements respectively. These limits may be extended if a 

faster computer is used, and estimated frequency ranges for a 

typical modern machine are given in section 8.2. 

iv) Accuracy 

If we are to attach any significance to our results, it is 

important that the analysis be carried out with as little error as 

possible. In this respect it is expected that the digital methods 

would be generally superior to analogue special purpose machines. 

This is because of the great accuracy that can be achieved with 

digital arithmetic. 

v) Flexibility 

If economic use is to be made of a spectral analysis 

machine it should be easily adaptable to suit a wide variety of 

problems. In this respect programmed computers have clear advantage 

over special purpose machinery. This is because it is cheap and 

easy to alter the coding of a computer programme, while the 

modification of a special purpose machine might be impractical, or 

involve the purchase of ancillary equipment. 

To summarise, real-time digital spectral methods over- 

come the major disadvantages of off-line digital methods, and are 

potentially more accurate and flexible than special purpose machines. 
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An important feature of spectral estimation methods 

not mentioned above is the way in which the analysis is conducted. 

Generally speaking, if we have to obtain an estimate of a 

continuous curve (such as a frequency response function) we set 

about it by estimating a set of points on the curve, and then obtain 

an estimated curve by fitting a curve to the set of points. The 

estimated points may be obtained in one of two ways s- either we 

can form estimates of the complete set of points concurrently, or 

we can obtain estimates point-by-point. These methods are known 

respectively as 'parallel' and 'serial' estimation. 

A parallel estimation procedure is employed in the real- 

time spectral analysis routines. Its chief advantage is that an 

overall z+ppreciation of the curves being estimated is quickly 

obtained, thus enabling the user to react immediately to results, 

and optimise estimation parameters. This is in direct contrz. st 

with the serial mode of estimation where the-user must wait until 

the set of estimates is complete before he can 'begin to esse,; s the 

results. 

The disadvantages of the parallel estimation procedure 

applied to real-time spectral analysis is s- 

i) The set of estimated points are equally spaced on the 

frequency axis. This is a disadvantage when small sections of a 

curve contain sharp peaks or troughs, Ind so require closely spaced 

points to described them, while the remainder of the curve is 

relatively smooth and can adequately be described by widely cnýýced 
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points. The equi-spacing of' points is also inconvenient when 

the data is plotted to logarithmic scales, since most of the 

points then become bunched at tha upper end of the scale. 

ii) When used to estimate frequency response functions, the 

parallel mode of the real-time spectral analysis technique is 

often inefficient. This occurs when the squared coherency is low 

only over a limited band of frequencies and the estimates are 

correspondingly unstable in this region. This may mean that much 

smoothing may have to be used on a set of estimates, which are only 

unstable over a limited region. 

These disadvantages are not shared by serial mode 

estimation procedures, since the spacing of estimates and the amount 

of averaging per estimate may be varied from point to point. 

From the preceding paragraphs it may be seen that 

parallel and serial estimation procedures are in some ways 

complementary z, nd, if used together in a real-time estimation routine, 

can form a powerful combination. For instance, a parallel estimation 

procedure can be used to form an initial set of estimates. Then 

from this set, areas of interest can be selected, and studied in 

detail using a serial estimation procedure. A proposal for such a 

real-time spectral analysis facility is given in the following 

section. 
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8.2. Proposals for Further Work 

in view of the general criticisms of parallel parameter 

estimation and the deficiences of the GEC 9012 computer programrnes, 

there is a strong case for the development of a flexible real-time 

spectral analysis facility on a larger computer. Since the School 

of Engineering Science is (probably) acquiring an XDS Sigma 5 

computer it is expected that the facility will be implemented on 

this machine. 

The proposal is that a digital spectral analysis programme 

package that contains a parallel and serial estimation procedure 

be developed. The package will be built around the fixed-point 

FFT, and will allow estimation of autospectra, cross-spectra or 

frequency response functions in parallel or serial mode. This will 

enable the user to obtain real-time estimates using the parallel 

estimation procedure, select areas of interest, and use the serial 

estimation procedure to amplify results in those regions. 

The parallel spectral estimation technique used will be the 

one described in this thesis, and it is suggested that the serial 

technique use the method of complex demodulates outline in the 

first chapter. 

It should be possible to programme this package 

efficiently on the Sigma 5 computer because : - 

i) The Symbol assembler is used, so 90/2 routines can be 

easily reprogrammed. 
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ii) Rath parallel and serial. estimation methods can use the 

same fixed-point FFT programme block. 

iii) The Sigr, ia 5 uses a 32 bit word so that look-up tables 

and data can be stored two elements per word. 

The Sigma 5 is a faster, larger and more accurate 

machine than the GEC 90/2 computer. The performance of the real- 

time spectral analysis programme will therefore be improved. It 

is estimated that the Sigma 5 spectral analysis facility will be 

able to handle data blocks of (at least) 2048 points, and analyze 

frequencies up to 3 KHz, (autospectra) and 1.5 KHz (frequency 

response). 

Further theoretical work that is proposed arises from the 

work contained in chapter 6 on closed-loop systems, and from the 

serial estimation procedure in the proposed real-time spectral 

analysis facility. 

Firstly, consider the results of chapter 6. Approximate 

variance expressions for the forward path frequency response 

function were obtained, and these indicated that disturbL, rices in the 

feedback loop are of secondary importance in assessing the 

variability of the forward path frequency response estimators. 

Confidence statements were developed for the special case of noise- 

free feedback, end it was suggested that since the feedback noise 

is a second order effect, (and in the absense of more rigorous 

results) these confidence st,, tements may be used to assess the 
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quality of estimates obtained in the general case of noisy feed- 

forward and feedback paths. 

To extend these results the following two items of study are 

proposed. Firstly, it is suggested that variance expressions which 

given some indication of the effect of feedback noise be derived. 

Secondly, it is suggested that the sampling properties of the forward 

path frequency response estimator be fully developed by considering the 

probability distributions associated with tri-variate, complex, gaussian 

process. These results may then be applied to the estimation of closed- 

loop frequency response functions, and to the more general field of 

tri-variate spectral analysis. Of particular interest in this field 

would be the linear, time-invariant, system with two coherent inputs 

and one output. 

The proposed real-time spectral analysis facility, which 

combines serial and parallel estimation techniques, will require theo- 

retical support. This will be necessary to design and justify an 

appropriate serial spectral estimation method. The method of complex 

demodulates was surr; ested as a suitable serial method bec;. u: e it can be 

conveniently programmed to operate using the same FFT programme block 

as the parallel estimation routine. It is therefore suggested that a 

thorough study of the complex demodulates method be undertaken. 
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APPENDIX 1: ALGOL PFA7GB. AMMES FL)R FOURIRR TRANS FOtZh! ATION. 

FFT'! ' & FFT. F 
PMC1 DUKES FF"1'T AND FFTF EXECUTE THE FAST 

FOURIER TRANSFORMATION ALGORITHM. THEY OPERATE ON THE N 
POINT COMPLEX ARRAY RFA[ I ]+J IMA[I ]. 1: =O, ---N-1. THE 
BLOCK SIZE IS N=RT M. 
CALL: 

70 FORWARD TRANSFORM THE N POINT COMPLEX TIME 
SERIES XR+JXI. CALL F. FTT(R. MS, N, XR, XI); 

TO INVSI'. SE TRANSFORM THE N POINT COMPLEX FOURIER 
COEFFICIENTS XR+JXI, CALL FFTT(It,, 4, N, XR, XI); 
TIMING: 

EXECUTION TIMES FOR TYPICAL N ARE GIVEN IN TABLE 2.1. 

"PROCEDURE" FFTT(R, M, N, REEA, IMA); 
"COMMENT" THIS PRDCEDURE EXECUTES THE FAST POURIIR TRASIX)RM USING 

DECIMATION IN TIME; 
"VALUE"R, M, N; "INTEGER"R, M, N; 
IARRAY"REA, I. MA; 
"BEGIN" 
"INTEGER"I, L, MLESS1, ILESS2, NLESSI, LTOP, KTOP, JT, JU, RMI, RI1, 
K, V, Q, StPI, P, JJ, NN; 
"REAL" TPN, A, B, ATR, ATI, BTR, BTI, TEMP; 
"INTEGER" "ARRAY" J[0: &1-1]; 
"IF" N<0 "THEN" NN: = -N "ELSE" NN: = N; 
MLESS1: =M-1; TPN: = -60283183307180/N; NLESS1: = NN-1; 
"FOR" I: =1"STEP" 1"UN: IL"M" Ln 
"BEGIN" RMI: =R1 (M-I); RIi: =Rt(I-1); 
LTOP: =RI1-1; K9'OP: =RMI-l; ILESS2: =I-2; 
"IOR"L: =O"STEP" 1"UNTIL"L'IOP"DO" 
"BEGIN" "IF"I. =O"THEN" 
"BEGIN" "FDR"P: =0 "STSP1el "UNTIL" ILESS2"DOn 
J[P]: =0; JW: =JT: =O; "END" 
"EL°, SE" "BEGIN" P: =ILESS2; 
RETURN: J[P]: =J[P)+1; 
"IF" J[P]=R "T!: J N" "BEGIN" J[P]: -0; P: =P-1; 
"MM" RETURN; "END"; 
JW: =JT: =O; 
""OR" P: =O "STEP" 1 "UNTIL" ILESS2 "DO" 
"BEGIN" JWY: =JW+J[P]*RTP; 
JT: =JT+J[P)*P. i (: LESSl-P); "END"; "END"; 
A: =COS (R`LI*JW*TPN ); 
13: =S IN (R'MI*JW*TPN ); 
"FOR" K: = iDP "STEP" -1 "UNTIL" 0 "DO" 
"BEGIN" V: =K+JT; Q: =V+RMI; 
TEbMP: =RE4[Q ]'. A- IMA[Q ] *B; 
ATR: =REA[V]+TEMP; BTR: =P. EA[V]-TEMP; 
TEMP: =IrSA[Q]*A +REA[Q]*B; 
ATI: =IMA[N]+TEMP; BTI: =IMA[V)-TEMP; 
REA[V]: =ATR; IMA[V]: =ATI; 
REA[Q]: =BTR; IMA[Q): =BTI; "END"; 
"END" L LOOP; 
"END" I LOOP; 
"FOR" P: =O "STEP" 1"UNTIL" NLESS1 "DO" 
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"BEGIN" K: P; 
BACK: SPA: =O; 
"FORº"I: =l "STEP" 1 "UNTIL" MLESS1 "DO" 
"BEGIN" Q: =K"DIV"R; 
JJ: =K-Q*R; 
SUM: =SUM*It+JJ; 
K: =Q; "END"; 
K: =SUM*R+K; 
"IF" K<P "THEN" "G OM" BACK; 
"IF" K "NE" P "THEN" 
"BEGIN" ATR: =BEA[K]; ATI: =IMA[K]; 
REA[K]: =REA[P] ; IMA[K]: =IMA[P]; 
REA[P]: =ATR; IMA[P]: =ATI; "END"; 
ººENDºº P LOOP; 
"IF" 0<N "THEN" "FO)R" I: =O "STEP" 1 "UNTIL" NLESS1 "DO" 
"BEGIN" REA[I]: = REA[I]/NN; 

IMA[I]: = IMA[I]/NN; 
"END"; 
"END" OF FFTT; 

"PROCEDURE" FFTF(R, M, N, REA, IMA); 
"COMMENT" THIS PROCEDURE EXECUTES THE FAST FOURIER TRANSFJRM USING 

DECIMATION IN FREQUENCY; 
"VALUE" R, M, N; "INTEGER" R, M, N; 
"ARRAY" REA, IMA; 
"BEGIN" 

"INTEGER" NN, NLESS1, RMI, 'K70P, LWP, MLESS1, KDASII, 1., K, KA,, KBIDIJ)WAI, 
P, Q, JJ, SUM; 

"REAL" TPN, C, S, ATR, ATI 'BTR, BTI, TPNIND; 
"IF"N<O "THEY" NN: =-N 

"ELSE" NN: =N; 
NLESS1 := NN-1; RMI := NN"DIV" R; 
KTOP := RMI-1; LTOP : =1; MLESSI : =M-l; 
TPN : =-60283185307180/N; 
"FOR" I: = 1 "STEP" 1 "UNTIL" W'DO" 

"BEGIN" KDASII : =0; TPNIND := TPN*LTOP; 
"FOR" L :=1 "STEP" 1 "UNTIL" LTOP "DO" 

"BEGIN" 
"FOR" K0 "STEP" 1 "UNTIL" KWP "DO" 

"BEGIN" 

C := COS (X*TPNIND); 
S := SIN (K*TPNIND); 
KA := K+KDASH; KB := KA+RMI; 
ATR := RE A[XA] + REA [KB]; 
ATI IMA[K(A] + IMA [KB]; 
BTR (REA[KA] - REA[KB]) *C - (IMA[KA] - IMA[KU])*S; 
BTI (IMA[KA] - IMA[KB ])*C + (REA[KA) - REA[KB])*S; 
REA[KA] := ATR; REAM B1 BTR; 
IMA[KA] := ATI; IMA[KB] := BTI; 

"END" OF KLOOP; 
KDASH := KDASH + OLDRMI; 

"END" OF LOOP; 
LTOP V= R*LTi)P; OLDRMI := RMI; 
RMI := RMI"DIV" R; KIUP := RMI -1; 

"END" OF I IDOP; 
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"IF" N>O "THEW' 
"FUR" I :=0 "STEP" 1 

"M GIN" 
REA[I] REA[ I]/NN; 
IMA [I] := IMA [17/NN; 

"END "" r 
ýrMR" P :=0 "STEP" 1 

"BEGIN" 
K : =P; 

BACK: SliM : =O; 
"FUR" I :=1 "STEP" 

"BEGIN" 

Q := K"DIV'º R; 
JJ := K-Q*R; 
SUM :- SCLc*R+JJ; 
K : =Q; 

"uh r u. " NLJ. ssi "vu" 

"UNTIL" NLESS1 "DO" 

Y "UNTIL" MLES S1 "DO" 

"END"; 
r 

K 
"IF" K<P "THEN" "GOTO" BACK; 
"IF" K "NE" P "THEN" 

"BEGIN" 

ATR := R1'sA[K]; ATI := IMA[K]; 
REA(K) REA[P]; IMA[K] :- IMA[P]; 
REA[P] := ATRR; IMA[PJ := ATI; 

"END"; 
"END" OF P IDOP; 
"END" OF FFTF; 

ODDEVEN 
PROCEDURE ODDEVEN IS USED WITH FFTT OR FFTF (AND A 

RADIX OF 'I%o) '1D DISCRETE FOURIER TRANSFORM A REAL TIUS 
SERIES XLI]. I: =Oi-------h-1, 
CALL: 

TO FORWARD TRANSFORM THE N POINT REAL TIL! C SERIES X[I], 
STORE X[I] IN THE rN/2 COLTL1: X ARRAY XR+JXI. 
SUCH THAT: - 

XRLI]: =X[2*K] 
XI[I]: =X[2*K+1] K: = 0------ N/2-1. 

XI[1: /2], Xit[N/2] UNASSIGNED WORK SPAC1. 
THEN CA",: - 

FFTF'(2, M-1, N"DIV"2, XR, XI); 
O1DEVEN(N"DIV"2, XR, XI); 

ARRAY XR, XI NOW C)N'TAIN THE FIRST N/2+1 C0.. 1RECTLY ORDERED 
DISCRETE FOUkIER CDEFFICIE, NTS. 

TO INV1: I`S TRANSFORM THE DISCRETE FOURIER COFFICIRNTS 
IN XR4"JXI CALL: - 

ODDEVRN(-N"DIV"2, XR, XI); 
FFTT (2, H- 1, -N"D IV"2, X. R-, X I) ; 

THE REAL TIME SERIES IS NOW IN XR+XI IN THE ODD-EVEN 
ORDER SPECIFIED FOR THE FORWARD TRANSFORM. 
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"PROCEDURE" ODDEVEN (N, REA, IMA) ; 
"COMMENT" Ti1IS PRIJCEDURE IS USED WITH FFT TD TRANSFJRM REAL DATA; 

"VALUE"..; "INTEGER"N; 
"ARRAY" ILA, IMA; 

"BEGIN" 
"INTEGER" NN, IHALFN", K; 
"REAL" ATR, A1I, BTR, BTI, S, C-, TPN; 
NN: ="IF" N<0 "THEN" -N "ELSE" N; 
HALFIN: =N: i''D IV" 2; 
TPN: =-3o 14159265359/NN; 
"IF" N>O 'P HEN" 

"BEGIN" 
REA[NN]: =REA[D]; 
IMA[NN]: =IMA[O); 

u Dn, 
"FOR" K: =O "STEP" 1 "UNTIL" HALFN "DO" 

"BEGIN" 
ATR: =R ; A[K 3+2EA[NN-K J; 
ATI: =IMA(KJ- IbIA[NN-K]; 
"IF" N>O "THEN" 

"BEGIN" 
BTI2: = (xldA(K J+ IMA[NN-K J)*0,25; 

BTI: = (aEA[! iN-KJ-REA[KJ)*0.25; 
S: =SIN (TPN*I) ; ATR: =ATR*O. 25; 
C: =COS(TPN-K); ATI: =ATI*0.25; 

"END" 
, sEME, f 

"BEGIN" 

BTR: =REA[K ]-REA[NN-K ]; 
BTI: =IP. IA[X J+ IMA[NN-K]; 
S: =GUS(Tº'N*K); 
C: =SIN(TPN*X); 

"END"; 
RFA(K ]: -ATR+C*BTR-S*BTI; 
REA[NN-K ] : =ATR-C*BTR+S*BTI; 
IMA[KJ: =ATI *}3TE+C*BTI; 
1MA[NN-K]: =-ATI+S*BTR+C*BTI; 

"END"; 
"END" OF ODDF. VEN; 
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APPF3'TPIX 2 

The Covariance of SPmTle Crass-srpetr« r'tirntors 

Let x(t). y(t), p(t), z(t). 
(- 2 <t< ), 

be samn1 r;; of 

gaussian, zero mean, signals. The sample cross-spoctrn]. estim-tors 

of x(t) leading, y( t) , and p(t) leading j( L) are :- 

+Co +j wt +Co 
_j(t 

Cxy(w) Q 
x(t) 1(t) e dt .f y(t) 1(t) e dt 

Co - oo 

+w +ýwt +CO 
-lwt 

t 

Cýz(w) n(t) 1(t) e dt . z(t) 1(t) e dt 

°o - Co 

The covariance of these cross-spectral estimators at 

frequencies W1 and w2 is given by : 

Coy( Crr(wl), 
VCpz(wZ)) = E( Cxy(wl), Cp7((0 

(Cxy((k) 11 I'; 
(CT, 

7(w2 ) 

Now .- 
+m 

Cxý (ý 
1) Cnz(W 2)) dt, dt2ri. t3dtn A. c4 

4 
00 

1 

............ 
n. 2.1. 

where A ]. (t1)1(t2)1(t3)1. (t4) E(x(tl)y(t2)n(t3)z(t4)) 

and E (x(t1)v(t2 )(t3)z(t )} 16 
xp(t-tl) yz(t4-t2) 

+ý )rz(t4-t1) v. D(t 3-t2) +ý xv(t2-t1 ) rz(t4-t3) .......... A . 2.2. 

Ka hk2 U c714. ýýý ý G/ 

Jn 
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The covariance can be obtained by substitutinp the thrc( 

term expansion of A. 2.2. into ecuation A. 2.1., and intef*ratinrr out 

each term. The first two terms require the use of the foHlowinjr 

approximation :- 

-, 1 )t -jwt 
L(w )* 

{ 
L(w) e1 !L ýL(w) I, (wý ý"e 

This aptroximation hölds provided L(w) is impulse-like 

compared ; with the cross-spectra.. Th covariance eurer den obtain-3 

using; this arrroximntion is :- 

Cov Cxy(wý), Cý, z(w`)ýa 

` 
L(wl_ c. ý? 1*T, (cvl_ W2, 

I. r7(wi,. 
frycw1 

.ý c2ýýý 
+ L(wl+ w? )*L(wl+ w2) 

I? 
Ixn(i). Iz, r(i) ............ 

A. 2.3. 

When W1 U-) 
2' this expression can bc' written In the mo? i ('4 eI 

form -- 

Cov 
(CxY() 

�Crz(U)) 
L2(W)* 1 xz(wl, L2(wý I ýVýW) 

(2n of' 

+ 
IL(2w)* 

L(2w) 
I? 

Ixn(uº) l zy(W) ...... A. 2.4. 

The srectral window functions, L((O), have low pass 

characteristics. The class of functions used in this thesis have pass- 

bands that are of thn order of 
1 

Hz wide, and out-side their pass-bands 

their responses fall away as (w) n. The width of the nass-bind and 

the decay rate are determined by the shape of the data window 1(t), 

211 



A simplified covarianee expression may be obtained by 

assummin- that the cross-spectra Ixz(w) and Ipy(w) are flat over the 

pass-band of the spectral window function. The exnresston can be 

further sirnplifiod by noting that for frequencies greater th^n the 

window Dass-band the second term in equation A. 2.4. is much smaller 

than the first term. 

The simplified covariance expression is :- 

Cov t Cxv(w), CP7(w)) _ 
F. 

m, 
I-PY(w) 

............ 
A-2-5. 

The covarir"nce exypressions A. 2.3. and A. 2.4. are general., and 

can be applied to any window functions, 1(t) which satisfies the 

conditions :- 

1(t) i(-t) 
a(t) 0 ! ti >z 

qsj: 12tdt 

As an example of the use of the general covariance expre:,:; ion, 

the covariance relation for a specific window function will be derived. 

A well kno:, m result is that given by Jenkins and Watts on p,.: g; e 4]. 5 of 

"Spectral Analysis and its Application" (Holden Day, 19083). This ; rives 

the covariance for cross-spectral estimators obtained using a 

rectangular data window. This covariance expression may be obtained 

from the general covariance expression A. 2.3. as follows :- 
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The ppropri. ate data window is the rec t3nqu1ar fu nctio, 

J(t), defined by 
.- 

1R(t) (T) ItI<2 

1R(t) -0; I tl >2 

+OD 

fi (t) dt =1 Jco 

The F curier trar.:, forTn of 1R(t) is denoted IR(w). In exn r"t,:;:; ioin 

A. 2.3. we re , quire the function (ý. ý}*Ll(-)j, this may be evaluated 
` 

indirectly by determining its Fourier transform first. Thus 

'3, 

+00 
IT 

_j')t t fe 
dt lI(a')-x-ý(c. ýý ý 27T (tý ý1K(tý e dt q ITT 

2 

sin 
fw TI 

en ---- 

ý21 

The ccvýýý.. r. ce exnrcc; ^inn for rectarý-ul. tr 

obtai^F? d a,; 

Coy (Cxy(, -? i) , Cpz( 2)) J 
22 

ý- .lI sue 
2 

ýl+w ( rP('ý1J rY(W, ) 
lý c. ýlý-J 

rz(`al) rPY( ' ýl 
ý2 J2 
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APPENDIX 3 

Expectation and Covariance of Aliased Cross-Spectral E>timntors 

Let X(w) be the continuous Fourier transform of the 

sample x(t) 
C- 

21 
(t 

21) of a gaussian siF-nal modified by the 

window function 1(t) (defined in Chapter 4). Also let Ak be the 

discrete Fourier transforms of the time series xi 
Ii 

=-2,..... 
14 
2- 

1rn, dificd by the window function li. Then, if the time scri:: s 

is obtained by sampling x(t) every seconds, the discrete and 

continuous Fourier transforms are related by s- 

-1 }OD 

_2 
iT k Ak - 

(L N) 
> 

x( Wk-nN) Wk 
pN 

Y1. -oo 

If the spectrum of x(t) is assumed to be low pats, th. n 

to a good approximation all but the first alias can be neglecter. 

Under this assumption we can define the aliased spectrum of x(t) 

as XA (wk) =P --N Ak. So that %- 

XA( k) - X( )+X (ýN-ký ............ 1.. 3.1. 

The aliased spectra of the gaussian signal sample y(t), 

P(t)y z(t) may be defined in a similar way as s- 

Y(Uý) Ak 

k) + P*(N-k) PA(r k) = P(u) 

ZA(Wk) = Z( k) + Z*( N-k) 
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And the aliased cross-spectrum of x(t) leading y(t) mý 

be defined as :- 

Cxyý (c )=1 XA(c. ) YA(c�C) ............ A. 3. . 4 

Similarly the aliased sample cross-spectrum of p(t) leading z(t) 

is 

CpzA((&. )=1 PA(c, ) ZA( k) ............ A.. 3.3. 

a) The Expected Value 

The expected value of the aliasod sample cross-spectrum 

is s- 

E 
CCXYA(wk)) 

=qE XA(wk) YA( k)) 

1 L2(wk), (. Fxy(w + L2( N-k * Fy-x(WJ-k) 

2trq 

Assuming the cross-spectrum is smooth over t:. e pass-band 

of the spectral window, the approximate expocted value of t?.. © 

aliased sample cross-spectrum is s- 

E 
CCXYA(cok)) fxy(60k) 

+ 
ýx(wN-k) 

.......... A. 3.4. 

bý Covariance 

The covariance of the aliased sample cross-spectra of 

x(t) leading y(t), and p(t) leading z(t) is given by s- 

Cov CxyA( ), CpzA(WN-k)) = ECxyA( k)"CPzA( 1-k) 3; CryA( k)N-1: 
'1 
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This expression can be evaluated in a way oindlar to 

that used in appendix 2. Frisking the usual approximation that the 

cross-spectra are-smooth in the pass-band of the spectral window, 

the approximate covariance expression is :- 

Cov 
CC 

k) 9 CPzA(K)) 7? 
fxy(c-) 

" 
FpY(`. 

`>k) + 
ýYPý 

N-k) 
ýXýwN-k) 

+ rP(Wk ý"1 z((N-k) + 1x(wk) 
" 

I"Y( 
N-k) 

............ A. 3.5. 

The covariance expression for smoothed, aliased, crocs- 

spectral estimators, CxyA(w), CpzA(w), obtained by averaging n 

independent: sample, aliased, cross-spectral estimators can be 

written directly as :- 

Cov CxyA( k), CpzA( k)) =n Cov 
{GxyA( 

k), CpzA( k)ý ". """""". A. 3.6. 

From equations A. 3.4. and A. 3.5. the variance expressions 

for smoothed, aliased, auto- mnd cross-spectral estirnntos can be 

written in terms of their expected valuos. Thus s- 

VarýCxx (wkýý nr E2rCxxA( k)) 

Var xyý(wk 
n ; ý;? ýCXYA(``'k)) +2 

rx(`. ýk) (4-k) - 
ry(c'-k) ryx((*, 

-k 

............ A. 3-7. 

Fror these expression we conclude that aliasin, will 
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modify the variability of cross-spectral estimators, but not 

auto-spectral estimators. The extent to which the variance of 

cross-spectral estimators is altered can be judged by considering 
Ws 

the behaviour of expression A. 3.7. as the folding frequency, -2 

is approached. Near the folding frequency wo are justified in 

making the approximation wk =W Substituting for U) in 
Nk * Nk 

A. 3.7. gives :- 

Var D 
Y'YA(c. ýk)1 

n 
;? 

CCXYA(wký 
+2 

rx 
c( ) ryy( )ClýCxy(Wk............. 

1-3-8. 

Therefore, since the squared coherency is bounded by 0 and 1, the 

variability of cross-spectral estimates is generally incro,: ood by 

aliasing. 
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APP )TX 4 

Bias and Verl.? nce of Non-Lirear. Functions of R nlom Variables 

Suppose f(x1, x2, ..... xn) is a non-1inrnrr function of the 

random variables Xl, X2, ...., X. Approximate exr-(, -: r; ions for the 

bias and variance of f(x1, x2, ..... xn) in terms of the bias and 

covariances of the random variables may be obtained from a Taylor 

series expansion. To a first order approximation, f(x1, x2, ..... xn) 

in the region of p� p2, ...., rn is given by :- 

xl, x2, ..... xn 
1"-2 n xj ii 

i=1 r 

a) Bias 

.......... 
x. 4.1. 

If the random variables xl, x2 .:.. * xn are associpted with 

estimators of the parameters pl, n2, ..... pn, then the bias in the 

estimator associated with f(x1, xa, ..... xn) is annroxlrl?. te1. y :- 

B{f(xl, x2, ..... xn)) 

n 

_b 
f1 

bxiJ ýCXi 

i=ý p 
.......... A. 4.2. 

b) Variance 

If the expected value of x1. x2. ..... xn is denoted 

» 1, µ2, """" P- 
n, 

then the first order anrrox'in tion about the rpan 

is . 

/- 

f(xl, x2' .... * xn) 
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V. arIf(x]. x2' ..... xn) 

n 

-a Cnv(x, x 
) 

ji Ö xi JI ýx 

........... ... 4.1. 
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APPENDIX 5 

Errors in Frequency Response Mäasurements caused by Non-Identical Guard 

Filters 

In section 5.3.3" a technique for the suppression of aliasing 

errors using a pair of identical guard filters is described. In this 

appendix we consider the errors that occur when the guard filters do 

not have identical frequency responses. This situation may be caused 

by variations in filter component values. 

Let us assume that in figure 5.3. the frequency response 

function of the filter for x(t) is gl(w) and that the frequency response 

function of the filter for y(t) is g2(w), then neglecting errors caused 

by windowing and aliasing, the expected value of the frequency response 

between x'(t) and y'(t) is :- 

r2 (W) IE 
(w)1 i ýý R(w) ........... A. 5. ]. 

ll 1 

From this equation it can be seen that the fractional biao 

error in the gain estimate is :- 

B( I r(ü) ll 
_ 

1ß2(W) I-1 

A. 5.: 

and also that the bias error in the pha"ý eotimite is :- 

g (W) Art, 2 
........... A.,. f,. 
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The following simple example illustrates the likely 

magnitude of these errors. Assume that the guard filters in figure 

5.3. have fourth order Butterworth characteristics, but that their 

cutoff frequencies are slightly different. The guard filter for the 

input signal x(t) has a cutoff frequency of 0.3f 
s 

HZ (the value 

recommended in section 5.3.3", and the guard filter for the output 

signal y(t) has a cutoff frequency of 0.3f 
s 

(1 + a)HZ (where a is a 

small constant). The errors associated with various values of a 

have been plotted using equations A. 5.2. and A. 5.3. and are shown in 

graphs A. 5.1. and A. 5.2. The frequency scale on these graphs is 

normalised so that the sampling frequency is unity and the 0.5 HZ 

point on the normalised frequency axis therefore denotes the folding 

frequency. 

It can be seen from the graphs that even for small differences, 

between the two guard filters the errors in the gain and phase estimates 

can be large. It is therefore important that the guard filters have 

identical responses. In some cases, however, it may be impractical 

to obtain or construct matched guard filters and in these cases the u:, e 

of the following procedure is advocated. 

1) Match the guard filters as closely as possible and then 

estimate the frequency response between x'(t) and y'(t) using one of 

the measurement schemes shown in figure 5.3. Neglecting windowing and 

a'iasing errors this estimate will have an expectation given by equation 

A. 5.1. 
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TYPICAL ERRORS IN FREQUENCY RESPONSE ESTIMATES CAUSED BY GUARD 

FILTERS WITH UNEQUAL CUTOFF FREQUENCIES. (FOURTH ORDER BUTTERWORTH 

FILTERS; FOR THE INPUT FILTER fc=0.3fs, AND FOR THE OUTPUT FILTER 

f=0.3f (1 + a)). cs 
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2) Disconnect the system under test and replace it with 

a short-circuit. 

3) Estimate the frequency response between x'(t) and y'(t) 

g2(W) again. Its expectation will now be From equations A. 5.2. and 
1W 

A"5.3. this estimate can be used to obtain values for the gain and phase 

error and these in turn can be used to correct the estimated frequency 

response of the system under test. 

The disadvantage of this procedure is that two frequency 

response measurements are required instead of one. However, this is 

not a serious disadvantage because the second frequency response 

measurement is noise-free and thus occupies little time. 
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