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Rank of divisors on tropical curves

Jan Hladký∗ Daniel Král’† Serguei Norine‡

Abstract

We investigate, using purely combinatorial methods, structural and algo-
rithmic properties of linear equivalence classes of divisors on tropical curves.
In particular, we confirm a conjecture of Baker asserting that the rank of a
divisor D on a (non-metric) graph is equal to the rank of D on the corre-
sponding metric graph, and construct an algorithm for computing the rank of
a divisor on a tropical curve.

1 Introduction

Tropical geometry investigates properties of tropical varieties, objects which are
commonly considered to be combinatorial counterparts of algebraic varieties. There
are several survey articles on this recent branch of mathematics [14, 16, 17]. In
particular, [6] concentrates on topics which are particularly close to the subject of
this paper.

Tropical varieties share many important features with their algebro-geometric
analogues, and allow for a variety of algebraic, combinatorial and geometric tech-
niques to be used. We illustrate this on several important examples related to the
current paper.

• In [3], a version of the Riemann-Roch theorem for graphs was proved by
purely combinatorial methods. Shortly afterwards Gathmann and Kerber [7]
used the result to prove Riemann-Roch theorem for tropical curves. Their
contribution was a method of approximating a tropical curve by graphs.

• Mikhalkin and Zharkov [15] gave (among others) another proof of the Riemann-
Roch theorem for tropical curves. Their approach used a combination of al-
gebraic and combinatorial techniques.

• Recently, a machinery which allows one to transfer certain results from Rie-
mann surfaces to tropical curves has been developed in [2]. For example,
Baker [2] introduced a tropical version of Weierstrass points, and proved us-
ing this machinery that every tropical curve of genus more than one contains
at least one such point, a fact well known in the context of algebraic curves.
Note that the method necessarily has some limitations. Indeed, it is known
that analogues of some theorems about Riemann surfaces do not hold in the
tropical context, Pappus’ Theorem being one such example ([16, §7]).
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In this paper, we contribute further towards the theory by proving new structural
results on divisors on tropical curves. In particular, we confirm a conjecture of
Baker [2] relating the ranks of a divisor on a graph and on a tropical curve (see
Theorem 1.3), and construct an algorithm for computing the rank of a divisor
on a tropical curve (see Theorem 4.1). All the proofs in the paper are purely
combinatorial. In an expanded version of this article [8] we have employed these
results to obtain an alternative proof of the Riemann-Roch theorem for tropical
curves.

1.1 Overview and notation

Throughout the paper, a graph G is a finite connected multigraph that can contain
loops, i.e., G is a pair consisting of a set V (G) of vertices and a multiset E(G) of
edges, which are unordered pairs of not necessarily distinct vertices. The degree
degG(v) of a vertex v is the number of edges incident with it (counting loops twice).
The k-th subdivision of a graph G is the graph Gk obtained from G by replacing
each edge with a path with k inner vertices.

Graphs have been considered as analogues of Riemann surfaces in several con-
texts, in particular, in [3, 4] in the context of linear equivalence of divisors. In
this paper we further investigate the properties of linear equivalence classes of di-
visors. We primarily concentrate on metric graphs, but let us start the exposition
by recalling the definitions and results from [3] related to (non-metric) graphs.

A divisor D on a graph G is an element of the free abelian group Div(G) on
V (G). We can write each element D ∈ Div(G) uniquely as

D =
∑

v∈V (G)

D(v)(v)

with D(v) ∈ Z. We say that D is effective, and write D ≥ 0, if D(v) ≥ 0 for all
v ∈ V (G). For D ∈ Div(G), we define the degree of D by the formula

deg(D) =
∑

v∈V (G)

D(v).

Analogously, we define

deg+(D) =
∑

v∈V (G)

max{0, D(v)}.

For a function f : V (G) → Z, the divisor associated to f is given by the formula

div(f) =
∑

v∈V (G)

∑

e=vw∈E(G)

(f(v)− f(w)) (v).

Divisors associated to integer-valued functions on V (G) are called principal. An
equivalence relation ∼ on Div(G), is defined as D ∼ D′, if and only if D − D′

is principal. We sometimes write ∼G instead of ∼ when the graph is not clearly
understood from the context. For a divisor D, |D| denotes the set of effective
divisors equivalent to it, i.e.,

|D| = {E ∈ Div(G) : E ≥ 0 and E ∼ D}.

We refer to |D| as the (complete) linear system associated to D. Sometimes, we
write |D|G for |D| if the underlying graph G is not clear. If D ∼ D′, we call the
divisors D and D′ equivalent (or linearly equivalent).
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The rank of a divisor D on a graph G is defined as

rG(D) = min
E≥0

|D−E|=∅

deg(E)− 1 . (1)

We frequently omit the subscript G in rG(D) when the graph G is clear from the
context. Also note that r(D) depends only on the linear equivalence class of D. In
the classical case, r(D) is usually referred to as the dimension of the linear system
|D|. In our setting, however, we are not aware of any interpretation of r(D) as the
topological dimension of a physical space. Thus, we refer to r(D) as “the rank”
rather than “the dimension”. See Remark 1.13 of [3] for further discussion about
similarities and differences between our definition of r(D) and the classical definition
in the Riemann surface case.

The canonical divisor on G is the divisor KG defined as

KG =
∑

v∈V (G)

(deg(v)− 2)(v).

The genus of G is the number g = |E(G)| − |V (G)|+1. In graph theory, g is called
the cyclomatic number of G.

The following graph-theoretical analogue of the classical Riemann-Roch theorem
is one of the main results of [3].

Theorem 1.1. If D is a divisor on a loopless graph G of genus g, then

r(D) − r(KG −D) = deg(D) + 1− g.

Let us note that while the graph-theoretical results, such as Theorem 1.1, can
be viewed as simply being analogous to classical results from algebraic geometry,
there exist deep relations between the two contexts, e.g., a connection arising from
the specialization of divisors on arithmetic surfaces is explored in [2].

Tropical geometry provides another connection between graph theory and the
theory of algebraic curves. The analogue of an algebraic curve in tropical geometry
is an (abstract) tropical curve, which following Mikhalkin [13], can be considered
simply as a metric graph. A metric graph Γ is a graph with each edge being assigned
a positive length. Each edge of a metric graph is associated with an interval of the
length assigned to the edge with the end points of the interval identified with the
end vertices of the edge. A special type of edges are loops, which are edges where
the two end points coincide. The points of these intervals are referred to as points
of Γ. The internal points of the interval are referred to as internal points of the
edge and they form the interior of the edge. Subintervals of these intervals are then
referred to as segments.

This geometric representation of Γ equips the metric graph with a topology,
in particular, we can speak about open and closed sets. The distance distΓ(v, w)
between two points v and w of Γ is measured in the metric space corresponding to
the geometric representation of Γ. For an edge e of Γ and two points x, y ∈ e we use
diste(x, y) to denote the distance between x and y measured on the edge e. Note
that in general, distΓ(x, y) can be strictly smaller than diste(x, y).

The vertices of Γ are called branching points and the set of branching vertices
of Γ is denoted by B(Γ). We allow branching points of degree two. As usual, we
assume that the number of branching points of Γ is finite.

A tropical curve is a metric graph where edges incident with vertices of degree
one (leaves) are allowed to have infinite length. Such edges are identified with the
interval [0,∞], such that ∞ is identified with the vertex of degree one, and are
called infinite edges. The points corresponding to ∞ are referred to as unbounded
ends. The unbounded ends are also considered to be points of the tropical curve.
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The notions of genus, divisor, degree of a divisor and canonical divisorKΓ readily
translate from graphs to metric graphs and tropical curves (with basis of the free
abelian group of divisors Div(Γ) being the infinite set of all the points of Γ). In
order to define linear equivalence on Div(Γ), the notion of rational function has to
be adapted.

A rational function on a tropical curve Γ is a continuous function f : Γ →
R ∪ {±∞} which is a piecewise linear function with integral slopes on every edge.
We require that the number of linear parts of a rational function on every edge is
finite and the only points v with f(v) = ±∞ are unbounded ends.

The order ordv(f) of a point v of Γ with respect to a rational function f is the
sum of outgoing slopes of all the segments of Γ emanating from v. In particular,
if v is not a branching point of Γ and the function f does not change its slope at
v, ordv(f) = 0. Hence, there are only finitely many points v with ordv(f) 6= 0.
Therefore, we can associate a divisor div(f) to the rational function f by setting
div(f)(v) = ordv(f) for every point v of Γ. Observe that deg(div(f)) is equal to
zero as each linear part of f with slope s contributes towards the sum defining
deg(div(f)) by +s and −s (at its two boundary points). Note that ordv(f) need
not be zero for unbounded ends v.

Rational functions on tropical curves lead to a definition of principal divisors on
tropical curves. In particular, we say that divisorsD and D′ on Γ are equivalent and
write D ∼ D′ if there exists a rational function f on Γ such that D = D′ + div(f).
With this notion of equivalence the linear system and the rank of a divisor on
a tropical curve are defined in the same manner as for finite graphs above, in
particular:

|D| = {E ∈ Div(Γ) : E ≥ 0 and E ∼ D},

rΓ(D) = min
E≥0, E∈Div(Γ)

|D−E|=∅

deg(E)− 1 .

We may occasionally use |D|Γ for |D| if the underlying tropical curve Γ is not clear
from the context. Gathmann and Kerber [7] and, independently, Mikhalkin and
Zharkov [15] have proved the following version of the Riemann-Roch theorem for
tropical curves.

Theorem 1.2. Let D be a divisor on a tropical curve Γ of genus g. Then

r(D) − r(KΓ −D) = deg(D) + 1− g.

Theorem 1.2 is also proven in an expanded version of this paper [8].
We prove in Section 3 the following theorem relating the ranks of divisors on

ordinary and metric graphs. Before stating the theorem we need to introduce a
definition. We say that a metric graph Γ corresponds to the graph G if Γ is obtained
from G by setting the length of each edge of G to be equal to one.

Theorem 1.3. Let D be a divisor on a loopless graph G and let Γ be the metric
graph corresponding to G. Then,

rG(D) = rΓ(D).

The sets of effective divisors and principal divisors on Γ are both strictly larger
than the respective sets for G. Hence, Theorem 1.3 is not a priori obvious.

Theorem 1.3 implies a conjecture of Baker [2] that the rank of a divisor on a
loopless graph G is the same as its rank on the graph Gk, the graph where every
edge of G is k times subdivided (see Corollary 3.4). Gathmann and Kerber proved
in [7, Proposition 2.4] the following statement: Given a divisor D on a loopless
graph G there exist infinitely many subdivisions G′ of G such that rG(D) = rG′(D).
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Corollary 3.4 therefore strengthens quantification of [7, Proposition 2.4] by allowing
all possible subdivisions as opposed to just an infinite family of subdivisions.

We finish the paper by considering algorithmic applications of the results es-
tablished in Sections 2 and 3, and design an algorithm for computing the rank of
divisors on tropical curves.

1.2 The Riemann-Roch criterion

In this section, we recall an abstract criterion from [3] giving necessary and sufficient
conditions for the Riemann-Roch formula to hold (Theorem 1.4). By Theorem 1.2
we will be able to utilize these conditions in the context of tropical curves in Sec-
tion 2. In an expanded version of this paper [8], we proceed the other way around:
we show that the abstract conditions of Theorem 1.4 are met for divisors on tropical
curves, thereby giving another proof of Theorem 1.2.

The setting for the results of this section is as follows. Let X be a non-empty
set, and let Div(X) be the free abelian group on X . Elements of Div(X) are called
divisors on X , divisors E with E ≥ 0 are called effective. Let ∼ be an equivalence
relation on Div(X) satisfying the following two properties:

(E1) If D ∼ D′, then deg(D) = deg(D′).

(E2) If D1 ∼ D′
1 and D2 ∼ D′

2, then D1 +D′
1 ∼ D2 +D′

2.

As before, given D ∈ Div(X), define

|D| = {E ∈ Div(X) : E ≥ 0 and E ∼ D}

and
r(D) = min

E≥0
|D−E|=∅

deg(E)− 1 .

For a nonnegative integer g (which will correspond to the abstract genus of X),
let us define the set of non-special divisors

N = {D ∈ Div(X) : deg(D) = g − 1 and |D| = ∅} . (2)

Some heed is needed when comparing our notion of non-special divisors to the
classic notion from the theory of Riemann surfaces. Indeed, suppose that Z is a
compact Riemann surface Z of genus gZ with its canonical divisor KZ . A divisor
D on Z is called special whenever its rank satisfies rZ(KZ −D) ≥ 0. Thus, clas-
sically, non-special divisors do not necessarily have rank of the genus decreased by
one, a property which will be guaranteed by our later choice of the abstract genus
g. However, when we additionally assume that degZ(D) = gZ − 1 then, by the
Riemann-Roch Theorem for Riemann surfaces, our definition (2) is consistent with
the notion of non-special divisors.

Finally, let K be an element of Div(X) having degree 2g − 2. The following
theorem from [3] gives necessary and sufficient conditions for the Riemann-Roch
formula to hold for elements of Div(X)/ ∼.

Theorem 1.4. Define ǫ : Div(X) → Z/2Z by declaring that ǫ(D) = 0 if |D| 6= ∅
and ǫ(D) = 1 if |D| = ∅. Then the Riemann-Roch formula

r(D) − r(K −D) = deg(D) + 1− g

holds for all D ∈ Div(X) if and only if the following two properties are satisfied:

(RR1) For every D ∈ Div(X), there exists ν ∈ N such that

ǫ(D) + ǫ(ν −D) = 1 .

5



(RR2) For every D ∈ Div(X) with deg(D) = g − 1, we have

ǫ(D) + ǫ(K −D) = 0 .

In addition to Theorem 1.4, we will later use the following lemma from [3] that
also holds in the abstract setting.

Lemma 1.5. If (RR1) holds, then for every D ∈ Div(X) we have

r(D) =



 min
D′∼D
ν∈N

deg+(D′ − ν)



 − 1 .

1.3 Reducing tropical curves to loopless metric graphs

We finish the introductory part of the paper by reducing the study of divisors on
tropical curves to the corresponding situation on loopless metric graphs. Let Γ be a
tropical curve, and let Γ′ be the metric graph obtained from Γ by removing interiors
of infinite edges and their unbounded ends. There exists a natural retraction map
ψΓ : Γ → Γ′ that maps deleted points of infinite edges of Γ to the ends of those
edges that belong to Γ′ and is an identity on the points of Γ′. This map induces
a map from Div(Γ) to Div(Γ′), which is denoted by ψΓ. The following proposition
combines the results of Lemma 3.4, Remark 3.5, Lemma 3.6 and Remark 3.7 of [7].

Proposition 1.6. Let Γ be a tropical curve, and let Γ′ and ψΓ be defined as above.
Let D ∈ Div(Γ), and set D′ = ψΓ(D). We have D ∼Γ D

′, deg(D) = deg(D′), and
rΓ(D) = rΓ′(D′). In addition, it holds that KΓ′ = ψΓ(KΓ).

It follows from Proposition 1.6 that Theorem 1.2 restricted to metric graphs
implies Theorem 1.2 in full generality. It also follows that given an algorithm to
compute the rank of divisors on metric graphs one can readily design an algorithm
to compute rank of divisors on tropical curves. Based on these observations we
concentrate our further investigations on metric graphs.

Further, we shall restrict ourselves to loopless metric graphs in auxiliary lemmas
leading to our main results. The general case can be reduced to the loopless one
by introducing a branching point of degree two on each edge. This transformation
does not change the set of divisors or their properties.

1.4 Rank-determining sets

The results of this paper have been substantially extended since the first version
of this manuscript was posted on the arXiv in 2007. Most importantly, Luo [11]
introduced the notion of rank-determining set, and using this notion he extended
Theorem 1.3. Indeed, our Theorem 1.3 asserts that the rank of a divisor on a
(loopless) metric graph with edges of integral lengths can be determined on a much
simpler (and finite) object, that is, on a graph. Luo’s main result roughly speaking
says that such a finitization is possible even for general metric graphs. To state
Luo’s result precisely, we need to give the definition of rank-determing sets which
in turn builds on the notion of restricted rank. Let A be a non-empty set of points
of a metric graph Γ. We then define the A-restricted rank of a divisor D ∈ Div(Γ)
by

rA(D) = min
E∈Div(A),E≥0

|D−E|=∅

deg(E)− 1 . (3)

The set A is rank-determining if rΓ(D) = rA(D) for each D ∈ Div(Γ).
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We are now ready to state our main result concerning rank-determining sets, a
result originally due to Luo [11].1

Theorem 1.7. The set B(Γ) of branching points of any loopless metric graph Γ is
rank-determining.

We give a proof of Theorem 1.7 in Section 3. See also [1] for an alternative proof
of Theorem 1.7.

As we show in Section 3, Theorem 1.7 implies Theorem 1.3. While not difficult,
the argument is not entirely trivial. In particular, mind that the condition |D−E| =
∅ in (1) and in (3) refer to different equivalence relations on the sets of divisors.

2 Non-special divisors, alignments, and rank-pairs

As in Subsection 1.2, we define the set of non-special divisors on a metric graph Γ
to be

N = {D ∈ Div(Γ) : deg(D) = g − 1 and |D| = ∅}

where g is the genus of Γ. The main results of this section is an alternative formula
for computing the rank of a divisor on a metric graph (Corollary 2.5).

We rely on results from [15]. An alternative, self-contained approach which gives
as a by-product another (purely combinatorial) proof of the Riemann-Roch theorem
for tropical curves can be found in an expanded version of this paper [8].

2.1 A formula for the rank of a divisor

We present a class of non-special divisors that is of primary interest to us in our
later considerations. Let P be an ordered sequence of finitely many points of Γ. We
say that the set of points in P is the support of P and denote it by supp P . The
sequence P can also be viewed as a linear order <P on supp P . If B(Γ) ⊆ supp P
then P is an alignment of points of Γ. The set of all alignments of points of Γ is
denoted by P(Γ).

We now define a divisor νP corresponding to an alignment P . A segment L of Γ
is a P -segment if both ends of L belong to supp P , and the interior of L is disjoint
from supp P . For v ∈ supp P , let SP (v) denote the set of P -segments of Γ with one
end at v and the other end preceding v in the order determined by P . Finally, let

νP =
∑

v∈ supp P

(|Sp(v)| − 1)(v).

It is easy to verify that deg(νP ) = g − 1, where g is the genus of Γ. We start our
investigation of divisors corresponding to alignments by giving two simple proposi-
tions.

Proposition 2.1. Let P be an alignment of points of a metric graph Γ. For every
point v of Γ that is not contained in supp P , there exists an alignment P ′ such that
supp P ′ = supp P ∪ {v} and νP = νP ′ .

Proof. Such an alignment P ′ can be obtained by inserting the point v in the sequence
P between the (distinct) boundary points of the (unique) segment containing v.

Proposition 2.2 ([15, Lemma 7.8]). If P is an alignment of points of a metric
graph Γ, then νP ∈ N .

1The proof of Theorem 1.3 as given in the original version of the manuscript (version 1 on the
arXiv) can actually serve as a proof of Theorem 1.7 due to Luo if phrased in the right terminology.

7



The next fact asserts that every divisor is either equivalent to an effective divisor,
or is equivalent to a divisor dominated by νP for some alignment P , and not both.

Corollary 2.3 ([15, Corollary 7.9]). Let Γ be a metric graph. For every D ∈
Div(G), exactly one of the following holds

(a) r(D) ≥ 0; or

(b) r(νP −D) ≥ 0 for some alignment P .

Corollary 2.4 ([15, Corollary 7.10]). If ν is a non-special divisor on a metric graph
Γ of genus g, then ν ∼ νP for some alignment P of a finite set of points of Γ.

Corollary 2.3 is a consequence of Proposition 2.2. Corollary 2.4 in turn follows
from Corollary 2.3 applied to non-special divisors. The arguments to derive these
corollaries are rather straightforward. We refer the reader to [15, 8].

We finish this section with establishing a formula for rank of divisors on metric
graphs that will be central in our later analysis of the rank.

Corollary 2.5. If D is a divisor on a metric graph Γ, then the following formula
holds:

r(D) = min
D′∼D
P∈P(Γ)

deg+(D′ − νP )− 1. (4)

Proof. The Riemann-Roch formula holds for divisors on metric graphs (Theorem 1.2),
and hence condition (RR1) from Theorem 1.4 is satisfied. Lemma 1.5 can be applied
and we infer that

r(D) = min
D′∼D
ν∈N

deg+(D′ − ν) − 1 . (5)

By Proposition 2.2, the minimum in (4) is taken over smaller set of parameters
than the minimum in (5). Hence, it is enough to show that there exist D′′ ∼ D and
P ∈ P(Γ) such that r(D) = deg+(D′′ − νP )− 1. Let D′ ∼ D and ν ∈ N be chosen
so that r(D) = deg+(D′ − ν)− 1.

By Corollary 2.4, we have ν ∼ νP for some alignment P of points of Γ. Setting
D′′ = D′ + (νP − ν) yields

r(D) = deg+(D′ − ν)− 1 = deg+(D′′ − νP )− 1,

as desired.

Motivated by Corollary 2.5, we say that the pair (D′, P ) is a rank-pair for D if
D′ ∼ D, and r(D) = deg+(D′ − νP )− 1.

Note that the result analogous to Corollary 2.5 also holds for non-metric graphs,
as shown in [3]. Let P(G) denote the set of all alignments of V (G). As in the case of
metric graphs, we can define the divisor νP corresponding to P ∈ P(G) by setting
νP (v) to be equal to the number of edges from v to vertices in V (G) preceding v,
decreased by one. The next formula for the rank of a divisor on a finite graph G
was established by Baker and the last author [3].

Lemma 2.6. The following formula holds for the rank of every divisor D on a
graph G:

r(D) = min
D′∼D

P∈P(G)

deg+(D′ − νP )− 1 . (6)

It should be remarked that Lemma 2.6 follows in a straightforward fashion
from the results above; at least for loopless graphs. Indeed, we use the Riemann-
Roch Theorem 1.1 to conclude that property (RR1) in Theorem 1.4 holds. Then
Lemma 2.6 is just Lemma 1.5. In [3], where these results were first obtained the
arguments proceeded the other way round: the Riemann-Roch Theorem 1.1 was
established as a consequence of abstract combinatorial criteria from Theorem 1.4.
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3 Rank of divisors on metric graphs

In this section we show that the divisor and the alignment in Corollary 2.5 can
be assumed to have a very special structure. We establish a series of lemmas
strengthening our assumptions on this structure. It will then follow from our results
that the rank of a divisor on a graph and on the corresponding metric graph are
the same, thereby establishing Theorem 1.3.

Lemma 3.1. Let D be a divisor on a loopless metric graph Γ. Suppose there
exists an alignment P of points of Γ such that r(D) = deg+(D − νP ) − 1. Then
there also exists an alignment P ′ of the points of B(Γ) ∪ supp D such that r(D) =
deg+(D − νP ′)− 1.

Proof. By Proposition 2.1, we can assume that the support of P contains all the
points of B(Γ) ∪ supp D. Choose among all alignments P ′ satisfying r(D) =
deg+(D− νP ′)− 1 and B(Γ)∪ supp D ⊆ supp P ′ an alignment such that |supp P ′|
is minimal.

If supp P ′ = B(Γ) ∪ supp D, then the lemma holds. Assume that there exists
a point v0 ∈ supp P ′ \ (B(Γ) ∪ supp D). Let v1, v2 ∈ supp P ′ be such that the
segments in Γ with ends v0 and vi, for i = 1, 2, contain no other points of supp P ′.
We can assume by symmetry that v1 <P ′ v2.

Consider now the alignment P ′′ obtained from P ′ by removing the point v0. We
shall distinguish three cases based on the mutual order of v0, v1 and v2 in P ′, and
conclude in each of the cases that deg+(D− νP ′′) ≤ deg+(D− νP ′). This, together
with the fact that supp P ′′ ( supp P ′ will contradict the choice of P ′.

If v0 <P ′ v1 and v0 <P ′ v2, then νP ′(v0) = −1. Observe that νP ′′ (v1) =
νP ′(v1)− 1, νP ′′(v0) = 0, and νP ′′(v) = νP ′(v) for v 6= v0, v1. We infer that

deg+(D − νP ′)− deg+(D − νP ′′) =

= 1 +max{D(v1)− νP ′(v1), 0} −max{D(v1)− νP ′(v1) + 1, 0} ≥ 0 .

Therefore deg+(D − νP ′′) ≤ deg+(D − νP ′).
If v1 <P ′ v0 <P ′ v2, then νP ′ = νP ′′ and again deg+(D−νP ′′) = deg+(D−νP ′).
It remains to consider the case v1 <P ′ v0 and v2 <P ′ v0. Observe that νP ′(v0) =

1, νP ′′(v0) = 0, νP ′′(v2) = νP ′(v2) + 1, and νP ′′(v) = νP ′(v) for v 6= v0, v2. We
conclude that

deg+(D − νP ′)− deg+(D − νP ′′) =

= max{D(v2)− νP ′(v2), 0} −max{D(v2)− νP ′(v2)− 1, 0} ≥ 0 .

Consequently, deg+(D − νP ′′ ) ≤ deg+(D − νP ′).

Next, we show that the divisorD′ ∼ D that minimizes minP∈P(Γ) deg
+(D′−νP )

can be assumed to be non-negative everywhere except for the points of B(Γ).

Lemma 3.2. Let D be a divisor on a loopless metric graph Γ. There exists a rank-
pair (D′, P ) for D such that P is an alignment of the points of B(Γ)∪ supp D′ and
D′ is non-negative on the interior of every edge of Γ.

Proof. By Corollary 2.5 and Lemma 3.1, there exist a divisorD0 equivalent toD and
an alignment P0 of the points ofB(Γ)∪supp D0 such that r(D) = deg+(D0−νP0

)−1.
Among all such divisors let us consider the divisor D0 such that the sum

S =
∑

v ∈ supp D0\B(Γ)

min{0, D0(v)}
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is maximal. If S = 0, then the divisor D0 is non-negative on the interior of every
edge of Γ, and there is nothing to prove. Hence, we assume S < 0 in the rest, i.e.,
there exists an edge e with an internal point where D0 is negative.

Let v1, . . . , vk be the longest sequence of points of supp D0 in the interior of e,
such that D0(vi) < 0 for i = 1, . . . , k and the points are consecutive points, i.e.,
there is no point of supp D0 on the segment between vi and vi+1, i = 1, . . . , k − 1.
Let w1 be the point of B(Γ) ∪ supp D0 such that the segment between v1 and w1

contains no point of B(Γ) ∪ supp D0 and w1 6= v2, and let w2 be the point of
B(Γ) ∪ supp D0 such that the segment between vk and w2 contains no point of
B(Γ) ∪ supp D0 and vk−1 6= w2.

We now modify the divisor D0 and the alignment P0. By symmetry, we can
assume that diste(w1, v1) ≤ diste(w2, vk). Let d0 = diste(w1, v1), let L be the
segment from w1 to w2 that contains v1, . . . , vk and let v′k be the point of L at
distance d0 from w2. Consider the rational function f equal to 0 on L between v1 and
v′k and f(v) = min{d0, diste(v, v1), diste(v, v′k)} elsewhere. Observe that ordw1

(f) =
ordw2

(f) = −1 if w1 6= w2, ordw1
(f) = −2 if w1 = w2, ordv1(f) = ordv′

k
(f) = 1 if

v1 6= v′k, ordv1(f) = 2 if v1 = v′k, and ordv(f) = 0 if v 6= w1, w2, v1, v
′
k. In addition,

observe that if w1 = w2, then L is a loop in Γ, and w1 = w2 is a branching point of
Γ.

Let D′
0 = D0 + div(f). We first show that the sum

S′ =
∑

v ∈ supp D′

0
\B(Γ)

min{0, D′
0(v)}

is strictly larger than S. The value of D′
0 is smaller than the value of D0 only at

w1 and w2. If w1 is a branching point, then the change of the value of the divisor
at w1 does not affect the sum. Otherwise, the points w1 and w2 are distinct (as we
have observed earlier), and D0(w1) ≥ 1 by the choice of w1. Hence, D′

0(w1) ≥ 0
and the sum is not affected by the corresponding summand. Analogous statements
are true for the point w2. We infer from ordv1(f) > 0 that D′

0(v1) > D0(v1). Since
D0(v1) < 0, this change increases the sum by one. Finally, the change at v′k either
increases the sum by one (if D0(v

′
k) < 0) or does not affect the sum (if D0(v

′
k) ≥ 0)

at all. We conclude that S′ ≥ S + 1.
We next modify the alignment P0 to P ′

0 in such a way that deg+(D0 − νP0
) =

deg+(D′
0−νP ′

0
). Without loss of generality, we assume that v′k ∈ supp P0 (cf. Propo-

sition 2.1). The alignment P ′
0 is obtained from P0 as follows: all the points of

supp P0 distinct from v1, . . . , vk and v′k form the initial part of the alignment in the
same order as in P0, and the points v1, v2, . . . , vk, v

′
k then follow (in this order).

Let W = {w1, w2, v1, . . . , vk, v
′
k}. For simplicity, let us assume that the points

w1 and w2 are distinct, as well as the points v1, vk and v′k. It is easy to verify that
all our arguments translate to the setting when some of these points coincide. Since
D0(v) = D′

0(v) and νP0
(v) = νP ′

0
(v) for all points v 6∈ W , the following holds:

deg+(D0 − νP0
)− deg+(D′

0 − νP ′

0
) =

=
∑

v∈W

(

max{0, (D0 − νP0
)(v)} −max{0, (D′

0 − νP ′

0
)(v)}

)

.

By the choice of the points v1, . . . , vk, we have D0(vi) ≤ −1 and therefore (D0 −
νP0

)(v) ≤ 0 for v ∈ W \ {v′k, w1, w2}. Note also that νP ′

0
(vi) = 0 and νP ′

0
(v′k) = 1.

Finally, note that D′
0(vi) ≤ D0(vi) + 1 ≤ 0, unless vi = v′k, and D

′
0(v

′
k) ≤ 1. As a

result, we have (D′
0 − νP ′

0
)(v) ≤ 0 for v ∈ W \ {w1, w2}. Consequently, we obtain
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the following:

deg+(D0 − νP0
)− deg+(D′

0 − νP ′

0
) =

=max{0, (D0 − νP0
)(w1)} −max{0, (D′

0 − νP ′

0
)(w1)}

+max{0, (D0 − νP0
)(w2)} −max{0, (D′

0 − νP ′

0
)(w2)} .

Since ordw1
(f) = −1, we have D′

0(w1) = D0(w1) − 1. On the other hand, the
value νP ′

0
(w1) is either equal to νP0

(w1), or to νP0
(w1)− 1 (the latter is the case if

w1 >P0
v1). We conclude that (D′

0 − νP ′

0
)(w1) is equal to either (D0 − νP0

)(w1) or
(D0 − νP0

)(w1)− 1. Hence,

max{0, (D0 − νP0
)(w1)} −max{0, (D′

0 − νP ′

0
)(w1)} ≥ 0 .

An entirely analogous argument yields that

max{0, (D0 − νP0
)(w2)} −max{0, (D′

0 − νP ′

0
)(w2)} ≥ 0 .

Consequently, we obtain that

deg+(D0 − νP0
)− deg+(D′

0 − νP ′

0
) ≥ 0 .

Since r(D) = deg+(D0 − νP0
)− 1, and D′

0 is equivalent to D, the inequality above
must be the equality, and thus r(D) = deg+(D′

0 − νP ′

0
) − 1. By Lemma 3.1, there

exists an alignment P ′′
0 of points of B(Γ) ∪ supp D′

0 such that r(D) = deg+(D′
0 −

νP ′′

0
)− 1. As S′ > S, the existence of D′

0 contradicts the choice of D0.

Next, we show that the divisor D′ can be assumed to be zero outside B(Γ),
except possibly for a single point on each edge, where its value could be equal to
one.

Lemma 3.3. Let D be a divisor on a loopless metric graph Γ. There exists rank-
pair (D′, P ) for D such that P is an alignment of the points of B(Γ)∪ supp D′, and
every edge e of Γ contains at most one point v where D′ is non-zero, and if such a
point v exists, then D′(v) = 1.

Furthermore, the alignment P can be assumed to be such that all the non-
branching points of supp P follow the branching points in the order determined
by P .

Proof. By Lemma 3.2, there exist a divisor D0 and an alignment P0 of the points
of B(Γ) ∪ supp D0 such that (D0, P ) is a rank-pair for D, and D0 is non-negative
in the interior of every edge of Γ. Among all such divisors, consider the divisor D0

such that the sum
S =

∑

v ∈ supp D0\B(Γ)

D0(v)

is minimal. If every edge e contains at most one point v where D0 is non-zero, and
D0(v) = 1 at such a point v, then the lemma holds. We assume that D0 does not
have this property for a contradiction.

Choose an edge e such that the sum of the values of D0 in the interior of e is
at least two. Let w1 and w2 be the end points of e and v1, . . . , vk all the points of
supp D0 inside e ordered from w1 to w2. In the rest we assume that v1 6= vk. As
in the proof of the previous lemma, our arguments readily translate to the setting
when some of these points are the same, but this assumption helps us to avoid
technical complications during the presentation of the proof. Let us note, in order
to assist the reader with the verification of the remaining cases, that if v1 = vk,
then D0(v1) ≥ 2.
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By symmetry, we can assume that diste(w1, v1) ≤ diste(w2, vk). Let d0 =
diste(w1, v1) and let w′

2 be the point on the segment between vk and w2 at dis-
tance d0 from vk. For the sake of simplicity, we assume that w2 6= w′

2; again, our
arguments readily translate to the setting when w2 = w′

2. Consider the rational
function f equal to 0 on the points outside the edge e and on the segment be-
tween w2 and w′

2 and f(v) = min{diste(v, w1), diste(v, w
′
2), d0} elsewhere. Observe

that ordw1
(f) = ordw′

2
(f) = 1, ordv1(f) = ordvk(f) = −1, and ordv(f) = 0 if

v 6= w1, w
′
2, v1, vk.

Let D′
0 = D0+div(f). Since D′

0(v1) = D0(v1)−1 ≥ 0, D′
0(vk) = D0(vk)−1 ≥ 0

and D′
0(w

′
2) = 1, the sum

S′ =
∑

v ∈ supp D′

0
\B(Γ)

D′
0(v)

is equal to S − 1, and D′
0 is non-negative in the interior of all the edges of Γ.

Next, we construct an alignment P ′
0 such that r(D) = deg+(D′

0−νP ′

0
)−1. First,

insert w′
2 into P0 between vk and w2, preserving the order of vk and w2 (this did not

change νP0
, see Proposition 2.1). The alignment P ′

0 is obtained from P0 as follows:
the points v1, . . . , vk form the initial part of P ′

0 in the same order as they appear in
P0, and the remaining points form the final part of P ′

0, again in the same order as
they appear in P0.

It is easy to verify that νP0
(v) = νP ′

0
(v) for all points v 6∈ {w1, w

′
2, v1, vk}. Hence,

deg+(D0 − νP0
)− deg+(D′

0 − νP ′

0
) =

=max{0, (D0 − νP0
)(w1)} −max{0, (D′

0 − νP ′

0
)(w1)}

+max{0, (D0 − νP0
)(w′

2)} −max{0, (D′
0 − νP ′

0
)(w′

2)}

+max{0, (D0 − νP0
)(v1)} −max{0, (D′

0 − νP ′

0
)(v1)}

+max{0, (D0 − νP0
)(vk)} −max{0, (D′

0 − νP ′

0
)(vk)} .

Let us first consider the points v1 and w1. We distinguish two cases based on the
mutual order of v1 and w1 in P0.

The case we consider first is that v1 <P0
w1. We have νP0

(v1) = νP ′

0
(v1) ≤ 0

and νP0
(w1) = νP ′

0
(w1) ≥ 0. As D′

0(v1) = D0(v1)− 1 ≥ 0, we have that

max{0, (D0 − νP0
)(v1)} −max{0, (D′

0 − νP ′

0
)(v1)} = 1 .

As D′
0(w1) = D0(w1) + 1, we have that

max{0, (D0 − νP0
)(v1)} −max{0, (D′

0 − νP ′

0
)(v1)} ≥ −1 .

We conclude that

max{0, (D0 − νP0
)(w1)} −max{0, (D′

0 − νP ′

0
)(w1)}

+max{0, (D0 − νP0
)(v1)} −max{0, (D′

0 − νP ′

0
)(v1)} ≥ 0 .

Let us deal with the other case when v1 >P0
w1. Since νP0

(v1) = νP ′

0
(v1) + 1 and

D′
0(v1) = D0(v1)− 1, we have

max{0, (D0 − νP0
)(v1)} = max{0, (D′

0 − νP ′

0
)(v1)} .

Similarly, since νP0
(w1) = νP ′

0
(w1)− 1 and D′

0(w1) = D0(w1) + 1, we have

max{0, (D0 − νP0
)(w1)} = max{0, (D′

0 − νP ′

0
)(w1)} .
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Therefore, in this case we also obtain that

max{0, (D0 − νP0
)(w1)} −max{0, (D′

0 − νP ′

0
)(w1)}

+max{0, (D0 − νP0
)(v1)} −max{0, (D′

0 − νP ′

0
)(v1)} = 0 .

A symmetric argument yields that

max{0, (D0 − νP0
)(w′

2)} −max{0, (D′
0 − νP ′

0
)(w′

2)}

+max{0, (D0 − νP0
)(vk)} −max{0, (D′

0 − νP ′

0
)(vk)} = 0 .

Hence,
deg+(D0 − νP0

)− deg+(D′
0 − νP ′

0
) = 0 .

Since r(D) = deg+(D0 − νP0
) − 1, we have that r(D) = deg+(D′

0 − νP ′

0
). Since

the alignment P ′
0 can be chosen in such a way that supp P ′

0 = B(Γ) ∪ supp D′
0 by

Lemma 3.1 and S′ < S, the existence of D′
0 and P ′

0 contradict the choice of D0 and
P0.

Last, we prove the “furthermore” part of the statement. That is, we show that
the alignment P can be assumed to be such that all the non-branching points of
supp P follow the branching points in the order determined by P .

Consider the alignment P ′ obtained from P by moving a point v ∈ supp D′\B(Γ)
to the end of the alignment. We claim that r(D) = deg+(D′ − νP ′)− 1.

By Corollary 2.5, it suffices to show that deg+(D′ − νP ′) ≤ deg+(D′ − νP ). Let
w1 and w2 be the end points of the edge containing v. We consider in detail the
case when v <P w1 and v <P w2; the other cases are analogous. As D′(v) = 1 and
νP (v) = −1, it holds that D′(v) − νP (v) = 2 and D′(v) − νP ′(v) = 0. Similarly,
νP ′(wi) = νP (wi)− 1, and thus D′(wi)− νP ′(wi) = D′(wi)− νP (wi)+1 for i = 1, 2.
We conclude that

deg+(D′ − νP )− deg+(D′ − νP ′) =

=max{0, D′(w1)− νP (w1)} −max{0, D′(w1)− νP ′(w1)}

+max{0, D′(w2)− νP (w2)} −max{0, D′(w2)− νP ′(w2)}

+max{0, D′(v) − νP (v)} −max{0, D′(v) − νP ′(v)}

≥(D′(w1)− νP (w1))− (D′(w1)− νP ′(w1))

+ (D′(w2)− νP (w2))− (D′(w2)− νP ′(w2)) + 2 ≥ 0 .

The claim now follows. Hence, we can assume without loss of generality that all
the points of supp D′ \ B(Γ) follow the points of B(Γ) in the order determined by
P , i.e., νP (v) = 1 for v ∈ supp D′ \B(Γ).

Lemma 3.3 allows us to prove Theorem 1.7. We are grateful to an anonymous
referee for suggesting the proof.

Proof of Theorem 1.7. Consider an arbitrary divisor D on a loopless metric graph
Γ. By Lemma 3.3 there exists a rank-pair (D′, P ) for D such that P is an alignment
of supp (D′) ∪B(Γ). Every edge of Γ contains at most one inner point v with non-
zero value D′(v), and if such a point v exists, then D′(v) = 1. Furthermore, the
points of B(Γ) precede the other points of supp (D′).

Let E be the non-negative part of D′ − νP . Note that supp (E) ⊆ B(Γ). We
have, D′ − E ≤ νP . Applying the rank on this inequality and using the fact that
νP is non-special, we get rΓ(D

′ − E) ≤ rΓ(νP ) = −1. By the choice of D′ and P ,
we have rΓ(D) = deg(E) − 1. Consequently, |D′ − E| = ∅, that is, E is as in (3),
showing that rB(Γ)(D

′) ≤ deg(E)− 1. Consequently,

rΓ(D) ≤ rB(Γ)(D) = rB(Γ)(D
′) ≤ deg(E)− 1 = deg+(D′ − νP )− 1 = rΓ(D) .

It follows that rΓ(D) = rB(Γ)(D), proving the theorem.
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With Theorem 1.7 at hand, we can now give a short proof of Theorem 1.3.

Proof of Theorem 1.3. The following claim establishes one of the two desired in-
equalities between the ranks.

Claim 3.3.1. For an arbitrary divisor F ∈ Div(G) we have rG(F ) ≥ rΓ(F ).

Proof of Claim 3.3.1. If F ′ is a divisor equivalent to F on the graph G then F ′ is
equivalent to F also on the metric graph Γ. Thus the range of minimization in (4)
is a superset of that in (6), and the claim follows.

Consider an arbitrary divisor D on G. By Theorem 1.7 the set B(Γ) = V (G) is
rank-determining, i.e., we have rΓ(D) = rV (G)(D), where rV (G)(D) refers to V (G)-
restricted rank on Γ. To prove the theorem, it thus suffices to show that we range
over the same sets of divisors E in the formulea (1) (for the rank on G) and (3)
(for the V (G)-restricted rank on Γ). In other words, it needs to be shown that for a
divisor E ∈ Div(V (G)) we have |D −E|G = ∅ if and only if |D −E|Γ = ∅. Clearly,
if |D − E|Γ = ∅ then |D − E|G = ∅. The other direction follows from Claim 3.3.1
which tells us that rG(D − E) = −1 implies rΓ(D − E) = −1.

As a corollary of Theorem 1.3 we can prove that the rank of a divisor on a graph
is preserved under subdivision. We say that a bijection ϕ between the points of a
metric graph Γ and the points of a metric graph Γ′ is a homothety if there exists
a real number α > 0 such that distΓ(v, w) = α · distΓ′(ϕ(v), ϕ(w)) for every two
points v and w of Γ. Note that composition of a rational function with a homothety
is a rational function, and thus a homothety preserves the rank of divisors.

Corollary 3.4. Let D be a divisor on a loopless graph G and let Gk be the graph
obtained from G by subdividing each edge of G exactly k times. The ranks of D in
G and in Gk are the same.

Proof. Let Γ be the metric graph corresponding to G. Observe that there exists a
homothety from Γ to the metric graph Γ′ corresponding to Gk. Since the rank of
D in G is equal to the rank of D in Γ by Theorem 1.3 and the rank of D in Gk is
equal to the rank of D in Γ′ by the same theorem, the ranks of D in G and in Gk

are the same.

Finally, we show that, in addition to the conditions given in Lemma 3.3, the
divisor D′ can be assumed to be zero inside edges of a spanning tree of Γ. This will
be used as a main auxiliary result in Section 4.1 to give an algorithm for computing
the rank of divisors on metric graphs.

Lemma 3.5. Let D be a divisor on a loopless metric graph Γ. There exists a divisor
D′, a spanning tree T of Γ, and an alignment P ∈ P(Γ) such that (D′, P ) is a
rank-pair for D, D′ is zero in the interior of every edge of T , and every edge e 6∈ T
contains at most one interior point v where D′(v) 6= 0, and, if such a point v exists,
then D′(v) = 1.

Proof. Let D′ be a divisor equivalent to D, and let P be an alignment of the points
of B(Γ) ∪ supp D′ as in Lemma 3.3.

Let us now color the edges of Γ with red and blue, so that the red edges contain
in their interior a point v in Γ with D′(v) = 1 and the blue edges do not. Let
V1, . . . , Vk be the components of Γ formed by blue edges. Choose among all divisors
D′ equivalent to D, and alignments P , satisfying the conditions of Lemma 3.3, the
divisor D′ such that the number k of the components V1, . . . , Vk is the smallest
possible. If k = 1, there exists a spanning tree of Γ formed by the blue edges, and
there is nothing to prove.
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Assume now that k ≥ 2 for the divisor D′ which minimizes k. Recall that
v <P v′ for every v ∈ B(Γ) and v′ ∈ supp D′ \ B(Γ). Let us call the red edges
connecting points of V1 to points of B(Γ) \ V1 orange edges. We can assume that
the points of V1 ∩B(Γ) follow all the other points of B(Γ) in the order determined
by P , as every orange edge contains a point in supp D′ \B(Γ). For an orange edge
e incident with a branching point v1 of V1, let d(e) be the distance between v1 and
the point of supp D′ in the interior of e. Let d0 be the minimum d(e) taken over
all orange edges e.

Consider the following rational function f : f(v) = 0 for points v on edges
between two branching points of V1,

f(v) = min{d0,max{0, diste(v1, v) + d0 − d(e)}}

for points v on any orange edge e incident with any branching point v1 of V1, and
f(v) = d0 for the remaining points of Γ. Set D′′ = D′ + div(f). Clearly, D′′ is
a divisor equivalent to D that is non-zero on at most one point in the interior of
every edge of Γ and is equal to one at such a point. Moreover, since the blue edges
remain blue and the orange edges e with d(e) = d0 become blue, the number of
components formed by blue edges in D′′ is smaller than this number in D′.

We now find an alignment P ′ of the points of B(Γ) ∪ supp D′′ such that
deg+(D′′ − νP ′) = deg+(D′ − νP ). The existence of such an alignment P ′ would
contradict our choice of D′. The alignment P ′ is defined as follows: The branching
points of Γ are ordered as in P , and they precede all the points of supp D′′ \B(Γ).
The points of supp D′′\B(Γ) are ordered arbitrarily. If v is a point ofB(Γ)∪supp D′′

that is not contained inside an orange edge, and that is not a branching point of
V1, then D′′(v) = D′(v) and νP ′(v) = νP (v). Hence, such points do not affect
deg+(D′′ − νP ′).

We now consider a branching point v of V1. Let ℓ be the number of edges incident
with v that are orange with respect to D′ and blue with respect to D′′. Clearly, ℓ is
the number of orange edges e incident with v such that d(e) = d0. By the choice of
f , D′′(v) = D′(v) + ℓ. In addition, since the other branching points, incident with
such edges, precede v in the order determined by P ′, νP ′(v) = νP (v) + ℓ. Hence,
(D′′ − νP ′)(v) = (D′ − νP )(v).

It remains to consider internal points of orange edges. Let v be such a point. If
v is contained in the interior of an orange edge e with respect to D′, then D′(v) = 1
and νP (v) = 1, i.e., (D′ − νP )(v) = 0. If v is contained in the interior of an orange
edge e with respect to D′′, then D′′(v) = 1 and νP ′(v) = 1, i.e., (D′′ − νP ′)(v) = 0.
We conclude that such points do not affect deg+(D′′ − νP ′) at all. Consequently,
deg+(D′′ − νP ′) = deg+(D′ − νP ), as desired.

4 An algorithm for computing the rank

We now present the main algorithmic result of this paper. We describe an algorithm
which, given a metric graph Γ and a divisor D on it, computes its rank. It is not
a priori clear that such an algorithm has to exist2. If the lengths of all the edges
of D and all the distances of non-zero values of D to the branching points are
rational, then the problem is solvable on a Turing machine. However, this need
not be the case in general. As the input can contain irrational numbers, we assume
real arithmetic operations with infinite precision to be allowed in our computational
model. The bound on the running time of our algorithm can easily be read from its
construction; it is a simple function depending on the number of edges, number of

2Indeed, let us recall as a negative example in a similar setting that there exists no universal
algorithm for solving Diophantine equations, a result due to Matiyasevich [12].
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vertices of Γ, the ratio between the longest and the shortest edge in Γ, and the values
of D. The running time is not more than exponential in any of these parameters.

There are several papers dealing with algorithmic aspects of tropical geometry,
as [5, 9, 19] for a sample. Many of these papers rely on machinery of commutative
algebra, while our algorithm utilizes combinatorial properties of divisors on tropical
curves which were developed in previous parts of the paper.

Theorem 4.1. There exists an algorithm that for a divisor D on a metric graph Γ
computes the rank of D.

As a tool for proving Theorem 4.1 we shall need the following auxiliary result
of Gathmann and Kerber [7, Lemma 1.8].

Lemma 4.2. Let a metric graph Γ and an integer p be given. Then there exists a
computable integer U such that any rational function f on Γ with deg+(div(f)) ≤ p
has slope at most U at every point.

Remark 4.3. It follows from the proof in [7] that U = (∆ + p)m in Lemma 4.2 is a
sufficient bound; here ∆ and m are the maximum degree and the number of edges
of Γ, respectively.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. To prove the theorem, it is enough to show that there are
only finitely many divisors equivalent to a given divisorD that satisfy the conditions
in the statement of Lemma 3.5.

We write ℓe for the length of an edge e. Without loss of generality, we can assume
that Γ is loopless, and that supp D ⊆ B(Γ) (introduce new branching points incident
with only two edges if needed). We can also assume that the length of each edge of
Γ is at least one. Let n be the number of branching points of Γ, m the number of
edges of Γ, and M = maxv ∈ supp D |D(v)|. We assume that n ≥ 2 (and thus m ≥ 1)
since otherwise Γ is formed by a single point w0 and r(D) = max{D(w0),−1}.
Similarly, we can also assume that M ≥ 1 since otherwise D is equal to zero at all
points and thus r(D) = 0. Finally, we let U be given by Lemma 4.2 for

p = 2n2M + 3mn ≥
1

2
(3n2M + 3mn+m− n+ 1) .

We first describe the algorithm and then verify its correctness. Fix an arbitrary
vertex w ∈ B(Γ). The algorithm ranges through all spanning trees T of Γ (here,
T is the set of edges of the tree, i.e., |T | = n − 1) and all functions F : T →
{−U,−U + 1, . . . , U − 1, U}.

The algorithm then constructs all rational functions f on Γ such that for every
branching point v ∈ B(Γ) we have

f(v) =
k

∑

i=1

F (ei)ℓei ,

where e1, e2, . . . , ek are the edges of T on the path from w to v, f is linear on every
edge of T , and ordv(f) 6= 0 for at most one point v on every edge not in T (and
ordv(f) = 1 for such a point v if it exists).

Let us observe that there is only one rational function f satisfying the above
constraints. Indeed, the function f is uniquely defined on edges of T as it should
be linear on such edges. Consider now an edge e between branching points v1 and
v2 that is not contained in T . By symmetry, we can assume that f(v1) ≤ f(v2).
Then e contains a point v either with ordv(f) = 1 or v = v2 such that f is linear
on e everywhere except for v. The average slope of f from v1 to v2 along e is
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(f(v1) − f(v2))/ℓe. Therefore, we must have a slope of ⌊(f(v1) − f(v2))/ℓe⌋ from
v1 to v and a slope of ⌊(f(v1) − f(v2))/ℓe⌋ + 1 from v to v2. This determines the
position of v on e as well. We conclude that there are only finitely many rational
functions f that satisfy conditions described in the previous paragraph.

The algorithm now computes the divisor D′ = D + div(f), and then ranges
through all alignments P of the points B(Γ) ∪ supp D′. For each such alignment,
the value of deg+(D′ − νP ) − 1 is computed and the minimum of all such values
over all the choices of T , F (and thus f) and P is output as the rank of D. Since
the number of choices of T , F and P is finite, the algorithm eventually finishes and
outputs the rank of D.

We have to verify that the above algorithm is correct. By Corollary 2.5, the
output value is greater than or equal to the rank of D. Hence, we have to show that
the algorithm at some point of its execution considers D′ ∈ Div(Γ) and P ∈ P(Γ)
such that deg+(D′−νP )−1 = r(D). Consider now the divisorD′ and the alignment
P as in Lemma 3.5. Since supp P = B(Γ) ∪ supp D′, and the algorithm ranges
through all alignments P of B(Γ) ∪ supp D′ for every constructed divisor D′, it
is enough to show that the algorithm constructs a rational function f such that
D′ = D + div(f).

Consider the step when the algorithm ranges through T as in Lemma 3.5 and
let f0 be the rational function given by the lemma. We can assume without loss of
generality that f0(w) = 0.

We establish that there exists a function F : T → {−U, . . . , U} such that f0 can
be constructed (as described above) from F . The existence of such a function F will
yield the correctness of the presented algorithm. In order to establish the existence
of F , it is enough to show that absolute value of the slope of f0 is bounded by U
on every edge of T . Due to the relation between U and p it suffices to prove that

deg+(div(f0)) ≤ p . (7)

We devote the rest of the proof to establishing (7).
It can be inferred from the definition of the rank that r(D) ≤ deg(D). Hence,

r(D) ≤ nM . We now show that |D′(v)| ≤ 2(nM +m) for every v ∈ B(Γ). If there
exists a branching point v0 with D′(v0) > 2(nM +m), then

nM ≥ r(D) = deg+(D′ − νP )− 1

≥ D′(v0)− νP (v0)− 1 > 2(nM +m)−m− 1 ≥ 2nM ,

which is impossible. On the other hand, if there exists a branching point v0 with
D′(v0) ≤ −2(nM + m), then D′(v0) − νP (v0) ≤ −2(nM + m) + 1 < 0 and thus
deg+(D′ − νP ) = deg+(D′′), where D′′(v0) = 0 and D′′(v) = (D′ − νP )(v) for
v 6= v0. Observe that

deg(D′′) = deg(D′ − νP )− (D′(v0)− νP (v0))

≥ deg(D′)− deg(νP ) + 2(nM +m)− 1

≥ −nM − (m− n) + 2(nM +m)− 1 = nM +m+ n− 1

≥ r(D) +m+ 1 .

We therefore have

deg+(D′ − νP ) = deg+(D′′) ≥ deg(D′′) > nM +m ≥ r(D) +m+ 1,

which contradicts our choice of D′ and P . We conclude that |D′(v)| ≤ 2(nM +m),
and that

|ordv(f0)| ≤M + |D′(v)| ≤ 3(nM +m) , (8)
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for every v ∈ B(Γ).
We express

deg+(div(f0)) =
1

2

∑

v∈Γ

|ordv(f0)| =
1

2





∑

v∈B(Γ)

|ordv(f0)|+
∑

v∈Γ\B(Γ)

|ordv(f0)|



 .

The first sum on the right-hand side has n summands, each can be bounded us-
ing (8). The second sum has at most m− (n− 1) non-zero summands, each of them
equal to one. Plugging in these bounds we establish (7).

Proposition 1.6 and Theorem 4.1 now imply the existence of an algorithm for
computing the rank of a divisor on tropical curves.

Corollary 4.4. There exists an algorithm that for a divisor D on a tropical curve
Γ computes the rank of D.

The algorithm which we presented is finite, i.e., it terminates for every input,
however, its running time is exponential (as can be seen by plugging the bound
from Remark 4.3 into Theorem 4.1) in the size of the input. It seems natural to
ask whether it is possible to design a polynomial-time algorithm for computing
the rank of divisors. In the case of graphs the question was posed by Hendrik
Lenstra [10], and, to the best of our knowledge, is still open. Tardos [18] presented
an algorithm which decides whether a divisor D on a graph has a non-negative
rank. His algorithm is weakly polynomial, i.e., the running time is bounded by
a polynomial in the size of the graph and deg+(D) (note that Tardos was using
a different language to state the result). It is possible to modify his algorithm in
such a way that the running time becomes polynomial in the size of the graph and
log(deg+(D)), i.e., to obtain a truly polynomial-time algorithm for deciding whether
a given divisor on a graph has a non-negative rank. We omit further details.
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