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A new bound for the B conjecturé

Daniel Kral'®  Chun-Hung Lid  Jean-$&bastien Serehi
Peter Whaleh Zelealem B. Yilmé&

Abstract

We show that any-vertex complete graph with edges colored with three colors
contains a set of at most four vertices such that the numbieafeighbors of these
vertices in one of the colors is at leasi/3. The previous best value, proved by Erdés,
Faudree, Gould, Gyarfas, Rousseau and Schelp in 1989, it B conjectured that
three vertices dfice.

1 Introduction

Erdds and Hajnal [9] made the observation that for a fixedtipesntegert, a positive real
€, and a grapl onn > ng vertices, there is a set ofvertices that have a neighborhood
of size at least (& (1 + €)(2/3)")n in eitherG or its complement. They further inquired
whether 23 may be replaced by/2. This was answered in thdhiamative by Erdos,
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Faudree, Gyarfas and Schelp [7], who not only proved thaltéut also dispensed with
the (1+ ¢€) factor. They also phrased the question as a problem ofwddmination in a
multicolored graph.

Given a colorc in anr-coloring of the edges of the complete graph, a subsgtthe
vertex sec-dominateganother subse if, for everyy € B\ A, there exists a vertexe A
such that the edgry is coloredc. The subseA strongly edominatesB if, in addition,
for everyy € BN A, there exists a vertex € A such thatxy is coloredc. (Thus, the two
notions coincide whe N B = (.) The result of Erddgt al. [7] may then be stated as
follows.

Theorem 1. For any fixed positive integer t and a@ycoloring of the edges of the complete
graph K, on n vertices, there exist a color ¢ and a subset X of size at nso€h that all
but at most 12! vertices of K are c-dominated by X.

In a more general form, they aske@iven positive integers r, t, and n along with an
r-coloring of the edges of the complete graphdf n vertices, what is the largest subset B
of the vertices of Knecessarily monochromatically dominated by some t-eleswdset
of K,? However, in the same paper [7], the authors presented adBhuglof the edges
of K,, — attributed to Kierstead — which shows thatrif> 3, then it is not possible to
monochromatically dominate all but a small fraction of tlegtices with any fixed number
t of vertices. This 3-coloring is defined as follows: the et ofK, are partitioned into
three setd/y, V,, V3 of equal sizes and an edgg with x € V; andy € V; is coloredi if
1<i<j<3andj-i<1while edges betweew, andV; are colored 3. Observe that, if
tis fixed, then at mostr¥/ 3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up papeEoflés, Faudree, Gould,
Gyarfas, Rousseau and Schelp [8], that3f 22, then, indeed, at leash/3 vertices are
monochromatically dominated in any 3-coloring of the edgiels,. The authors then ask
if 22 may be replaced by a smaller number (specifically, 3). pidee here that > 4 is
suficient.

Theorem 2. For any3-coloring of the edges of Kwhere n> 2, there exist a color ¢ and
a subset A of at most four vertices gf 8uch that A strongly c-dominates at le&si/3
vertices of K.

In Kierstead’s coloring, the number of colors appearing lo& ¢édges incident with
any given vertex is precisely 2. As we shall see later on, phigperty plays a central
role in our arguments. In this regard, our proof seems toesigat Kierstead’s coloring
is somehow extremal, giving more credence to the conjec¢haethree vertices would
sufice to monochromatically dominate a set of sin¢g2in any 3-coloring of the edges of
Kn.



We note that there exist 3-colorings of the edge&ekuch that no pair of vertices
monochromatically dominaten23 + O(1) vertices. This can be seen by realizing that in
a random 3-coloring, the probability that an arbitrary pdivertices monochromatically
dominate more thanrg9 + o(n) vertices iso(1) by Cherndt’s bound.

Our proof of Theorem 2 utilizes the flag algebra theory iniet by Razborov, which
has recently led to numerous results in extremal graph apergyaph theory. In the
following section, we present a brief introduction to thegf@gebra framework. The
proof of Theorem 2 is presented in Section 3.

We end this introduction by pointing out another interggiijuestion: what happens
when one increasesthe number of colors? Constructions in the vein of that @rkiead
— for example, partitionind, into s parts and using = (;) colors — show that the size
of dominated sets decreases with increasing/hile it may be dificult to determine the
minimum value ot dominating a certain proportion of the vertices, it wouldrteresting
to find out whether such constructions do, in fact, give theew bounds.

2 FlagAlgebras

Flag algebras were introduced by Razborov [23] as a toodb@aséhe graph limit theory of
Lovasz and Szegedy [20] and Bomggsal.[5] to approach problems pertaining to extremal
graph theory. This tool has been successfully applied tiowatopics, such as Turan-type
problems [25], super-saturation questions [24], jumpsyipengraphs [2], the Caccetta-
Haggkvist conjecture [17], the chromatic number of comrgmaphs [14] and the number
of pentagons in triangle-free graphs [12, 15]. This listasffom being exhaustive and
results keep coming [1, 3, 4, 6, 11, 10, 13, 16, 18, 19, 21, 22].

Let us now introduce the terminology related to flag algelmasded in this paper.
Since we deal with 3-colorings of the edges of complete ggaple restrict our attention
to this particular case. Let us defindracolored graphto be a complete graph whose
edges are colored with 3 colors.Gfis a tricolored graph, thew(G) is its vertex-set and
|G| is the number of vertices @. LetF, be the set of non-isomorphic tricolored graphs
with £ vertices, where two tricolored graphs are considered ted®orphic if they dier
by a permutation of the vertices and a permutation of the ediges. (Therefore, which
specific color is used for each edge is irrelevant: what mattewhether or not pairs of
edges are assigned the same color.) The elemeritg afe shown in Figure 1. We set
F = UsnF,. Given a tricolored graphr, we defineF] to be the set of tricolored graphs
F on ¢ vertices with a fixed embedding of, that is, an injective mappingfrom V(o) to
V(F) such that Im{) induces inF a subgraph that ffers fromo only by a permutation
of the edge colors. The elementsijfare usually calledr-flagswithin the flag algebras



A

Figure 1: The elements df;. The edges of color 1, 2 and 3 are represented by solid,
dashed and dotted lines, respectively.

framework. We sef” = Uy\FY.

The central notions are factor algebrasfFadndF’ equipped with addition and multi-
plication. Let us start with the simpler caseloflf H € FandH’ € F,1, thenp(H, H’)
is the probability that a randomly chosen subsegHjfvertices ofH’ induces a subgraph
isomorphic toH. For a seF, we defineRF to be the set of all formal linear combinations
of elements of with real codficients. LetA = RF and let¥ be A factorised by the
subspace oRF generated by all combinations of the form

H- > p(H.H)H"

H’€F|H|+1

Next, we define the multiplication orfl based on the elements Bfas follows. If
H,; andH, are two elements df andH € Fjy,.n,, thenp(Hy, Hy; H) is the probability
that two randomly chosen disjoint subsets of verticell afith sizes|H,| and|H;| induce
subgraphs isomorphic td,; andH,, respectively. We set

Hi-Ha= > p(Hy, Has H)H.

HEE |y |+ |1y

The multiplication is linearly extended tRF. Standard elementary probability compu-
tations [23, Lemma 2.4] show that this multiplicationR¥ gives rise to a well-defined
multiplication in the factor algebra.

The definition ofA” follows the same lines. Léd andH’ be two tricolored graphs in
F” with embeddings andyv’ of o-. Informally, we consider the copy af in H and we
extend it into an element @, by randomly choosing additional verticesliti. We are
interested in the probability that this random extensideasnorphic toH and the isomor-
phism preserves the embeddingsoof Formally, we letp(H, H’) be the probability that
v'(V(0)) together with a randomly chosen subsettdf— |o| vertices inV(H’) \ v/(V (o))
induce a subgraph that is isomorphicHothrough an isomorphisnh that preserves the
embeddings, that is; = f o v. The setA” is composed of all formal real linear combina-
tions of elements dRF” factorised by the subspaceRF” generated by all combinations
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of the form

H- > p(HH)H"

’ (o
H EF|H|+1

Similarly, p(Hy, Hp; H) is the probability that(V (o)) together with two randomly chosen
disjoint subsets ofH,| — |o| and|H;| — |o| vertices inV(H) \ v(V(o)) induce subgraphs
isomorphic toH; andH,, respectively, with the isomorphisms preserving the erdivegs
of o. The definition of the product is then analogous to tha#in

Consider an infinite sequenc@;jicn of tricolored graphs with an increasing number
of vertices. Recall that iH € F, thenp(H, G;) is the probability that a randomly chosen
subset ofH| vertices ofG; induces a subgraph isomorphickb The sequencey))icy is
convergentif p(H, G;) has a limit for everH € F. A standard argument (using Tychdfis
theorem [26]) yields that every infinite sequence of tricetbgraphs has a convergent
(infinite) subsequence.

The results presented in this and the next paragraph wergissied by Razborov [23].
Fix now a convergent sequeneg )iy of tricolored graphs. We sgtH) = lim;_,., p(H, G;)
for everyH € F, and we linearly extend to :A. The obtained mapping is a homo-
morphism fromA to R. Moreover, foro € F and an embedding of o in G;, define
p'(H) := p(H,G;). Pickingv at random thus gives rise to a random distribution of map-
pings from A’ to R, for eachi € N. Sincep(H, G;) converges (as tends to infinity)
for everyH e F, the sequence of these distributions must also convergiactyq itself
fully determines the random distributions @f for all o-. In what follows,q” will be a
randomly chosen mapping fromi’ to R based on the limit distribution. Any mapping
from support of the limit distribution is a homomorphismrtgA” to R.

Let us now have a closer look at the relation betwgesnd g”. The “averaging”
operator{-], : AT — A is a linear operator defined on the element§oby [H], =
p - H’, whereH’ is the (unlabeled) tricolored graph hcorresponding téd andp is the
probability that a random injective mapping frovigo) to V(H’) is an embedding af in
H’ yieldingH. The key relation betweemandq” is the following:

VHeA”, q(H],) = f q’(H), (1)

where the integration is over the probability space givemhaylimit random distribution
of q”. We immediately conclude that @ (H) > 0 almost surely, theq([H],) > 0. In
particular,

vHeA”, q(H?])>o0. (2)
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Figure 2: The elements,, ..., o7 of F,. The edges of color 1, 2 and 3 are represented by
solid, dashed and dotted lines, respectively.

2.1 Particular Notation Used in our Proof

Before presenting the proof of Theorem 2, we need to intredoeme notation and several
lemmas. Recall that,, og andoc, the elements a3, are given in Figure 1. Fare
{A,B,C}and atriplet € {1, 2,3}, letF! be the element df,' in which the unlabeled vertex
of F! is joined by an edge of coldy to the image of thg-th vertex ofc; for j € {1, 2, 3}.
Two elements ofA7® and two of A’¢ will be of interest in our further considerations:

Wg = 165F2 5+ 165F 5, — 279F 2, — 44F 2, + 328FB, . + 10F 5, + 421F5,
Wg = —580F T3 — 580F §35 + 668F 1,5 — 264F 15, + 10F 13y + 725F 555 + 632F 5,5,
We := 100F;, + 100F§;, — 100F 7,5 — 100F 35+ 162F T, + 163F5,;, and

W = —10F$, — 10F g, + 10FF 5 + 10F S, — 77FS,, + 89F 5.

We make use of seven elemeumnts ..., o7 out of the 15 elements d,. They are
depicted in Figure 2. Fadre {1, ...,7} and a quadrupld € {1, 2, 3}*, let Fjj be the element
of Fg' such that the unlabeled vertex®f is joined by an edge of colaf; to thej-th vertex
of o for j € {1,2,3,4}. If i € {1,..., 7} andc € {1,2,3}, thenF , is the element ofA”
that is the sum of all the five-vertex-flagsF}, such that the unlabeled vertex is joined by
an edge of coloc to at least one of the vertices @f, i.e., at least one of the entriesafs
C.

Finally, we defineHy, ..., Hi4, to be the elements dfs in the way depicted in Ap-
pendix A.

3 Proof of Theorem 2
In this section, we prove Theorem 2 by contradiction: in aeseof lemmas, we shall

prove some properties of a counterexample which eventadiiyv us to establish the
nonexistence of counterexamples. Specifically, we firstdimaimber of flag inequalities
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i=1 i=2 =3 i=4 i=5 i=6 i=7
c=1 -3 0 -¥3 -3 O 0 0
c=2 12 0 Y -13 -1/3 -1)3 O
c=3 12 Y2 12 12 Y2 O 0

Table 1: The values(o) fori € {1,...,7} andc € {1, 2, 3}.

by hand and then we combine them with appropriatéfments to obtain a contradiction.
The codficients are found with the help of a computer.

Let G be a tricolored complete graph. For a vertesf G, let A, be the set of colors
of the edges incident with. Consider a sequence of grapl@&X.n, obtained fromG
by replacing each vertex of G with a complete graph of ordde with edges colored
uniformly at random with colors iA; the colors of the edges between the complete graphs
corresponding to the verticesandVv of G are assigned the color of the edgé. This
sequence of graphs converges asymptotically almost suetlgs be the corresponding
homomorphism froniA to R.

Letn > 2. We define a&ounterexampléo be a tricolored graph with vertices such
that for every coloc € {1, 2, 3}, each seW of at most four vertices stronglydominates
less than B/3 vertices ofG. A counterexample readily satisfies the following property

Observation 3. If G is a counterexample, then every vertex is incident wilfpes of at
least two djferent colors.

In the next lemma, we establish an inequality thasatisfies IfG is a counterexample.
To do so, define the quantity(o) fori € {1,..., 7} andc € {1, 2, 3} to be 12 if o contains
a single edge with colot, —1/3 if each vertex ot is incident with an edge coloreg
1/6 if o contains at least two edges with colorand a vertex incident with edges of
a single color dierent fromc, and 0, otherwise. These values are gathered in Table 1.
Let us underline that, unlike in most of the previous appiwes of flag algebras, we do
need to deal with second-order terms (specific&@d,/n) terms) in our flag inequalities
to establish Theorem 2.

Lemma 4. Let G be a counterexample with n vertices. For evegy({il,...,7} and ce
{1,2,3}, ahomomorphism{ from A’ to R almost surely satisfies the inequality

2 gc(oi)

qgi(F‘(C)) < 3T




Proof. Fix i € {1,...,7} andc € {1,2,3}. Consider the grapty for suficiently large
k. Let (wi, W>, W3, W,) be a randomly selected quadruple of vertice€spfinducing a
subgraph isomorphic te;. Further, letW be the set of vertices strongtydominated by
{Wa, ..., Ws}. We show thaiW| < %‘ + &c(oi)k + o(k) with probability tending to one ds
tends to infinity. This will establish the inequality staieadhe lemma. Indeed, it implies
that for everyy > 0, there existk, such that ifk > k,, thenqZ (Fi,) < § + &la) 4 5 with
probability at least + . As qu(F'(C)) tends togg (FEC)) ask tends to infinity, we obtain the
stated inequality with probability 1.

Fori € {1,2 3,4}, letv; be the vertex ofG corresponding to the cliqu@/ of Gi
containingw;. LetV be the set of vertices @ that are stronglg-dominated byv,, . . ., v4}.
SinceG is a counterexamplgy| < 2n/3, and hencdV| < 2n/3 - 1/3. If w; andw; are
joined by an edge of colarand, furthermorey; = vy, thenv; is added td/ as well. Since
V is still stronglyc-dominated by a quadruple of vertices@(replacev; by any of its
c-neighbors), it follows thalv| < 2n/3 - 1/3.

The setW can contain th¢V|k vertices of the cliques corresponding to the vertices
in V, and, potentially, it also contains some additional vedid w; has noc-neighbors
amongwi, ..., W. In this case, the additional vertices\vi are thec-neighbors ofw; in
W. With high probability, there are at madst3 + o(k) such vertices i¥; is incident with
edges of all three colors i@, and at mosk/2 + o(k) if v; is incident with edges of only
two colors inG.

If ec(oi) = —1/3, then all the verticewn, ..., w,; have ac-neighbor amongvy, ..., W,
and thusW contains only vertices of the cliques corresponding to tbdicesV. We
conclude thajw] < €22+ o(K), as required.

If (o) = 0O, then all but one of the vertices,, ..., w,; have ac-neighbor among
Wi, ..., Ws and the vertexv; that has none is incident im; with edges of the two colors
different fromc. In particular, eithew; has noc-neighbors insid&V; or v; is incident with
edges of three distinct colors @ This implies thatw| < &2 1 o(k) in the former case
and|W| < Z¥ + o(K) in the latter case. So, the bound holds.

If e(o) = 1/6, then all but one of the vertices amowg, . . ., w; have ac-neighbor
amongwi, ..., Ws. Letw; be the exceptional vertex. Sineg has at mosk/2 + o(k)
c-neighbors inW;, it follows that|W| < Z* + £ + o(k).

Finally, if ec(ci) = 1/2, then two verticesv; andw;, amongws, ..., W, have noc-
neighbors infws, ..., ws}. The verticesw; andw; have at mosk/2 + o(k) c-neighbors
each inW; andW;, respectively. Moreover, sinag;, contains edges of all three colors,
one ofw; andw; is incident ino; with edges of the two colors fierent fromc. Hence,
this vertex has at mosy3 + o(k) c-neighbors irW;. We conclude that the s&¢ contains
at mostV|k + 5k/6 + o(k) < %‘ + 'g + o(k) vertices. O




As a consequence of (1), we have the following corollary ahbea 4.

Lemma 5. Let G be a counterexample with n vertices. For evegy({il,...,7} and ce
{1, 2, 3} such thats.(c) < 0, it holds that

de([201/3-Fiy| ) >0.

aj

We now prove that in a counterexample, at most two colors sed to color the edges
incident with any given vertex. As we shall see, this strradtproperty of counterexamples
directly implies their nonexistence, thereby proving Tieso 2.

Lemma 6. No counterexample contains a vertex incident with edged tifrae colors.

Proof. Let G be a counterexample ang; € RF5 be the sum of all elements &% that
contain a vertex incident with at least three colors. By ti&nition of g, the graplG has
a vertex incident with edges of all three colors if and onlgdfws) > 0. Lemma 5 implies
that gs(H) is non-negative for each elemeHt of A corresponding to any column of
Table 2 (in Appendix B). In addition, (2) ensures tigg{H) is also non-negative for each
elementH of A corresponding to any of the first four columns of Table 3 (irpApdix B).
Note that these elements can be expressed as elemdRis.o6umming these columns
with codficients

23457815885978657985 134730108347752975 134730108347752975

AR Als 105 AR I hotos oo SOSORAIRErcos
SRR, I AHBNres
WA s Y T e
o A

32944185136400384 24708138852300288

respectively, yields an elemewy of A given in the very last column of Table 3. Notice
that for everyH e Fs, the codficient of H in —wjg Is at least the cd&cient of H in ws.

In particular, the sumvs + Wy, which belongs tdRFs, has only non-positive céiécients.
We now view bothang andw; as elements oft and use thatls is a homomorphism from
A to R. First of all, gs(ws + Wp) < 0. So, we derive thagg(ws) < —gs(Wp). As noted
earlier,gs(H) > O for each elemeril used to definev,. Hence, since none of the above
(displayed) cofficients is negative, we deduce tlogg{wg) > 0. Consequenthgs(ws) < 0,
which therefore implies thaijg(ws) = 0. This means thak has no vertex incident with
edges of all three colors. |

We are now in a position to prove Theorem 2, whose statemeeataled below.

Theorem 2. Let n> 2. Every tricolored graph with n vertices contains a subsettaohost
four vertices that strongly c-dominates at leasf 3 vertices for some color c.

9



Proof. Suppose, on the contrary, that there exists a countererdBipRecall thatA, is
the set of colors that appear on the edges incident to thexwertNow, by Observation 3
and Lemma 6, it holds th@h, | = 2 for every vertex of G. Hence V(G) can be partitioned
into three set¥;, V, andVs, wherev € V; if and only ifi ¢ A,. Without loss of generality,
assume thgvq| > |V5| > |V3|. Picku € V; andv € V,. AsA, N A, = {3} forall w e V5, we
observe thaY/, is 3-dominated byu}. Similarly, V; is 3-dominated byv}. Therefore, the
set{u, v} strongly 3-dominate¥; U V,, which has size at leash23. O

4 Concluding remarks

It is natural to ask what bound can be proven for dominatiaih wiree vertices. Here,
it does not seem that the trick we used in this paper helps. agmve only that every
tricolored graph withn vertices contains a subset of at most three verticexttatninates
at least 06611'A vertices for some colas.

We believe the dficulty we face is caused by the following phenomenon. Theaaeer
number of vertices dominated by a triple isomorphicjoor og (see Figure 1 for notation)
is bounded away from/3 in the graphs@®y)«.n, Which are described at the beginning of
Section 3, foiG being the rainbow triangle. So, if any of these two configoret is used,

a tight bound cannot be proven since the inequalities ana®¢p that in Lemma 5 are
not tight and no triple of vertices dominates more thd8 &f the vertices inGy)yen tO
compensate this deficiency.

We see that if we aimed to prove a tight result, we can onlyayemover rainbow
triangles (which are isomorphic tec). Now consider the following grap@: start from
the disjoint union of a large clique of ordem?with all edges colored 1 and a rainbow
triangle. Fori € {1, 2}, join exactlym vertices of the clique to all three vertices of the
rainbow triangle by edges colorédThe obtained simple complete graph has exactly one
rainbow triangle, which dominates about half of the vericEhus, the average proportion
of vertices dominated by triples isomorphicdg in the graphs Gy« is close to 12.
This phenomenon does not occur for quadruples of vertices.
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