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A new bound for the 2/3 conjecture∗

Daniel Kŕal’† Chun-Hung Liu‡ Jean-Śebastien Sereni§

Peter Whalen¶ Zelealem B. Yilma‖

Abstract

We show that anyn-vertex complete graph with edges colored with three colors
contains a set of at most four vertices such that the number ofthe neighbors of these
vertices in one of the colors is at least 2n/3. The previous best value, proved by Erdős,
Faudree, Gould, Gyárfás, Rousseau and Schelp in 1989, is 22. It is conjectured that
three vertices suffice.

1 Introduction

Erdős and Hajnal [9] made the observation that for a fixed positive integert, a positive real
ǫ, and a graphG on n > n0 vertices, there is a set oft vertices that have a neighborhood
of size at least (1− (1 + ǫ)(2/3)t)n in eitherG or its complement. They further inquired
whether 2/3 may be replaced by 1/2. This was answered in the affirmative by Erdős,
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Faudree, Gyárfás and Schelp [7], who not only proved the result but also dispensed with
the (1+ ǫ) factor. They also phrased the question as a problem of vertex domination in a
multicolored graph.

Given a colorc in an r-coloring of the edges of the complete graph, a subsetA of the
vertex setc-dominatesanother subsetB if, for everyy ∈ B \ A, there exists a vertexx ∈ A
such that the edgexy is coloredc. The subsetA strongly c-dominatesB if, in addition,
for everyy ∈ B∩ A, there exists a vertexx ∈ A such thatxy is coloredc. (Thus, the two
notions coincide whenA ∩ B = ∅.) The result of Erdőset al. [7] may then be stated as
follows.

Theorem 1. For any fixed positive integer t and any2-coloring of the edges of the complete
graph Kn on n vertices, there exist a color c and a subset X of size at most t such that all
but at most n/2t vertices of Kn are c-dominated by X.

In a more general form, they asked:Given positive integers r, t, and n along with an
r-coloring of the edges of the complete graph Kn on n vertices, what is the largest subset B
of the vertices of Kn necessarily monochromatically dominated by some t-element subset
of Kn? However, in the same paper [7], the authors presented a 3-coloring of the edges
of Kn — attributed to Kierstead — which shows that ifr > 3, then it is not possible to
monochromatically dominate all but a small fraction of the vertices with any fixed number
t of vertices. This 3-coloring is defined as follows: the vertices ofKn are partitioned into
three setsV1,V2,V3 of equal sizes and an edgexy with x ∈ Vi andy ∈ V j is coloredi if
1 6 i 6 j 6 3 and j − i 6 1 while edges betweenV1 andV3 are colored 3. Observe that, if
t is fixed, then at most 2n/3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper ofErdős, Faudree, Gould,
Gyárfás, Rousseau and Schelp [8], that ift > 22, then, indeed, at least 2n/3 vertices are
monochromatically dominated in any 3-coloring of the edgesof Kn. The authors then ask
if 22 may be replaced by a smaller number (specifically, 3). Weprove here thatt > 4 is
sufficient.

Theorem 2. For any3-coloring of the edges of Kn, where n> 2, there exist a color c and
a subset A of at most four vertices of Kn such that A strongly c-dominates at least2n/3
vertices of Kn.

In Kierstead’s coloring, the number of colors appearing on the edges incident with
any given vertex is precisely 2. As we shall see later on, thisproperty plays a central
role in our arguments. In this regard, our proof seems to suggest that Kierstead’s coloring
is somehow extremal, giving more credence to the conjecturethat three vertices would
suffice to monochromatically dominate a set of size 2n/3 in any 3-coloring of the edges of
Kn.

2



We note that there exist 3-colorings of the edges ofKn such that no pair of vertices
monochromatically dominate 2n/3+ O(1) vertices. This can be seen by realizing that in
a random 3-coloring, the probability that an arbitrary pairof vertices monochromatically
dominate more than 5n/9+ o(n) vertices iso(1) by Chernoff’s bound.

Our proof of Theorem 2 utilizes the flag algebra theory introduced by Razborov, which
has recently led to numerous results in extremal graph and hypergraph theory. In the
following section, we present a brief introduction to the flag algebra framework. The
proof of Theorem 2 is presented in Section 3.

We end this introduction by pointing out another interesting question: what happens
when one increasesr, the number of colors? Constructions in the vein of that of Kierstead
— for example, partitioningKn into s parts and usingr =

(

s
2

)

colors — show that the size
of dominated sets decreases with increasingr. While it may be difficult to determine the
minimum value oft dominating a certain proportion of the vertices, it would beinteresting
to find out whether such constructions do, in fact, give the correct bounds.

2 Flag Algebras

Flag algebras were introduced by Razborov [23] as a tool based on the graph limit theory of
Lovász and Szegedy [20] and Borgset al.[5] to approach problems pertaining to extremal
graph theory. This tool has been successfully applied to various topics, such as Turán-type
problems [25], super-saturation questions [24], jumps in hypergraphs [2], the Caccetta-
Häggkvist conjecture [17], the chromatic number of commongraphs [14] and the number
of pentagons in triangle-free graphs [12, 15]. This list is far from being exhaustive and
results keep coming [1, 3, 4, 6, 11, 10, 13, 16, 18, 19, 21, 22].

Let us now introduce the terminology related to flag algebrasneeded in this paper.
Since we deal with 3-colorings of the edges of complete graphs, we restrict our attention
to this particular case. Let us define atricolored graphto be a complete graph whose
edges are colored with 3 colors. IfG is a tricolored graph, thenV(G) is its vertex-set and
|G| is the number of vertices ofG. Let Fℓ be the set of non-isomorphic tricolored graphs
with ℓ vertices, where two tricolored graphs are considered to be isomorphic if they differ
by a permutation of the vertices and a permutation of the edgecolors. (Therefore, which
specific color is used for each edge is irrelevant: what matters is whether or not pairs of
edges are assigned the same color.) The elements ofF3 are shown in Figure 1. We set
F ≔ ∪ℓ∈NFℓ. Given a tricolored graphσ, we defineFσ

ℓ
to be the set of tricolored graphs

F on ℓ vertices with a fixed embedding ofσ, that is, an injective mappingν from V(σ) to
V(F) such that Im(ν) induces inF a subgraph that differs fromσ only by a permutation
of the edge colors. The elements ofFσ

ℓ
are usually calledσ-flagswithin the flag algebras
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σA

1 2

3

σB

1 2

3

σC

1 2

3

Figure 1: The elements ofF3. The edges of color 1, 2 and 3 are represented by solid,
dashed and dotted lines, respectively.

framework. We setFσ ≔ ∪ℓ∈NFσℓ .
The central notions are factor algebras ofF andFσ equipped with addition and multi-

plication. Let us start with the simpler case ofF. If H ∈ F andH′ ∈ F|H|+1, thenp(H,H′)
is the probability that a randomly chosen subset of|H| vertices ofH′ induces a subgraph
isomorphic toH. For a setF, we defineRF to be the set of all formal linear combinations
of elements ofF with real coefficients. LetA ≔ RF and letF beA factorised by the
subspace ofRF generated by all combinations of the form

H −
∑

H′∈F|H|+1

p(H,H′)H′.

Next, we define the multiplication onA based on the elements ofF as follows. If
H1 andH2 are two elements ofF andH ∈ F|H1|+|H2|, thenp(H1,H2; H) is the probability
that two randomly chosen disjoint subsets of vertices ofH with sizes|H1| and|H2| induce
subgraphs isomorphic toH1 andH2, respectively. We set

H1 · H2 ≔

∑

H∈F|H1|+|H2|

p(H1,H2; H)H.

The multiplication is linearly extended toRF. Standard elementary probability compu-
tations [23, Lemma 2.4] show that this multiplication inRF gives rise to a well-defined
multiplication in the factor algebraA.

The definition ofAσ follows the same lines. LetH andH′ be two tricolored graphs in
F
σ with embeddingsν andν′ of σ. Informally, we consider the copy ofσ in H′ and we

extend it into an element ofFσ
|H| by randomly choosing additional vertices inH′. We are

interested in the probability that this random extension isisomorphic toH and the isomor-
phism preserves the embeddings ofσ. Formally, we letp(H,H′) be the probability that
ν′(V(σ)) together with a randomly chosen subset of|H| − |σ| vertices inV(H′) \ ν′(V(σ))
induce a subgraph that is isomorphic toH through an isomorphismf that preserves the
embeddings, that is,ν′ = f ◦ ν. The setAσ is composed of all formal real linear combina-
tions of elements ofRFσ factorised by the subspace ofRFσ generated by all combinations
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of the form
H −

∑

H′∈Fσ
|H|+1

p(H,H′)H′.

Similarly, p(H1,H2; H) is the probability thatν(V(σ)) together with two randomly chosen
disjoint subsets of|H1| − |σ| and |H2| − |σ| vertices inV(H) \ ν(V(σ)) induce subgraphs
isomorphic toH1 andH2, respectively, with the isomorphisms preserving the embeddings
of σ. The definition of the product is then analogous to that inA.

Consider an infinite sequence (Gi)i∈N of tricolored graphs with an increasing number
of vertices. Recall that ifH ∈ F, thenp(H,Gi) is the probability that a randomly chosen
subset of|H| vertices ofGi induces a subgraph isomorphic toH. The sequence (Gi)i∈N is
convergentif p(H,Gi) has a limit for everyH ∈ F. A standard argument (using Tychonoff’s
theorem [26]) yields that every infinite sequence of tricolored graphs has a convergent
(infinite) subsequence.

The results presented in this and the next paragraph were established by Razborov [23].
Fix now a convergent sequence (Gi)i∈N of tricolored graphs. We setq(H) ≔ limi→∞ p(H,Gi)
for every H ∈ F, and we linearly extendq to A. The obtained mappingq is a homo-
morphism fromA to R. Moreover, forσ ∈ F and an embeddingν of σ in Gi, define
pνi (H) ≔ p(H,Gi). Pickingν at random thus gives rise to a random distribution of map-
pings fromAσ to R, for eachi ∈ N. Sincep(H,Gi) converges (asi tends to infinity)
for everyH ∈ F, the sequence of these distributions must also converge. Infact, q itself
fully determines the random distributions ofqσ for all σ. In what follows,qσ will be a
randomly chosen mapping fromAσ to R based on the limit distribution. Any mappingqσ

from support of the limit distribution is a homomorphism fromAσ to R.
Let us now have a closer look at the relation betweenq and qσ. The “averaging”

operator~·�σ : Aσ → A is a linear operator defined on the elements ofFσ by ~H�σ ≔
p · H′, whereH′ is the (unlabeled) tricolored graph inF corresponding toH andp is the
probability that a random injective mapping fromV(σ) to V(H′) is an embedding ofσ in
H′ yielding H. The key relation betweenq andqσ is the following:

∀H ∈ Aσ, q(~H�σ) =
∫

qσ(H), (1)

where the integration is over the probability space given bythe limit random distribution
of qσ. We immediately conclude that ifqσ(H) > 0 almost surely, thenq(~H�σ) > 0. In
particular,

∀H ∈ Aσ, q(
�

H2
�

σ
) > 0. (2)
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σ2
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σ3

1 2

34

σ4

1 2

34

σ5

1 2

34

σ6

1 2

34

σ7

1 2

34

Figure 2: The elementsσ1, . . . , σ7 of F4. The edges of color 1, 2 and 3 are represented by
solid, dashed and dotted lines, respectively.

2.1 Particular Notation Used in our Proof

Before presenting the proof of Theorem 2, we need to introduce some notation and several
lemmas. Recall thatσA, σB andσC, the elements ofF3, are given in Figure 1. Fori ∈
{A, B,C} and a triplet ∈ {1, 2, 3}3, let F i

t be the element ofFσi
4 in which the unlabeled vertex

of F i
t is joined by an edge of colort j to the image of thej-th vertex ofσi for j ∈ {1, 2, 3}.

Two elements ofAσB and two ofAσC will be of interest in our further considerations:

wB ≔ 165FB
113+ 165FB

333− 279FB
123− 44FB

131+ 328FB
133+ 10FB

233+ 421FB
323,

w′B ≔ −580FB
113− 580FB

333+ 668FB
123− 264FB

131+ 10FB
133+ 725FB

233+ 632FB
323,

wC ≔ 100FC
112+ 100FC

312− 100FC
113− 100FC

133+ 162FC
122+ 163FC

221, and

w′C ≔ −10FC
112− 10FC

312+ 10FC
113+ 10FC

133− 77FC
122+ 89FC

221.

We make use of seven elementsσ1, . . . , σ7 out of the 15 elements ofF4. They are
depicted in Figure 2. Fori ∈ {1, . . . , 7} and a quadrupled ∈ {1, 2, 3}4, let F i

d be the element
of Fσi

5 such that the unlabeled vertex ofF i
d is joined by an edge of colord j to the j-th vertex

of σi for j ∈ {1, 2, 3, 4}. If i ∈ {1, . . . , 7} andc ∈ {1, 2, 3}, thenF i
(c) is the element ofAσi

that is the sum of all the five-vertexσi-flagsF i
d such that the unlabeled vertex is joined by

an edge of colorc to at least one of the vertices ofσi, i.e., at least one of the entries ofd is
c.

Finally, we defineH1, . . . ,H142 to be the elements ofF5 in the way depicted in Ap-
pendix A.

3 Proof of Theorem 2

In this section, we prove Theorem 2 by contradiction: in a series of lemmas, we shall
prove some properties of a counterexample which eventuallyallow us to establish the
nonexistence of counterexamples. Specifically, we first finda number of flag inequalities
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i=1 i=2 i=3 i=4 i=5 i=6 i=7

c = 1 -1/3 0 -1/3 -1/3 0 0 0
c = 2 1/2 0 1/6 -1/3 -1/3 -1/3 0
c = 3 1/2 1/2 1/2 1/2 1/2 0 0

Table 1: The valuesεc(σi) for i ∈ {1, . . . , 7} andc ∈ {1, 2, 3}.

by hand and then we combine them with appropriate coefficients to obtain a contradiction.
The coefficients are found with the help of a computer.

Let G be a tricolored complete graph. For a vertexv of G, let Av be the set of colors
of the edges incident withv. Consider a sequence of graphs (Gk)k∈N, obtained fromG
by replacing each vertexv of G with a complete graph of orderk with edges colored
uniformly at random with colors inAv; the colors of the edges between the complete graphs
corresponding to the verticesv andv′ of G are assigned the color of the edgevv′. This
sequence of graphs converges asymptotically almost surely; let qG be the corresponding
homomorphism fromA to R.

Let n > 2. We define acounterexampleto be a tricolored graph withn vertices such
that for every colorc ∈ {1, 2, 3}, each setW of at most four vertices stronglyc-dominates
less than 2n/3 vertices ofG. A counterexample readily satisfies the following property.

Observation 3. If G is a counterexample, then every vertex is incident with edges of at
least two different colors.

In the next lemma, we establish an inequality thatqG satisfies ifG is a counterexample.
To do so, define the quantityεc(σi) for i ∈ {1, . . . , 7} andc ∈ {1, 2, 3} to be 1/2 if σi contains
a single edge with colorc, −1/3 if each vertex ofσi is incident with an edge coloredc,
1/6 if σi contains at least two edges with colorc and a vertex incident with edges of
a single color different fromc, and 0, otherwise. These values are gathered in Table 1.
Let us underline that, unlike in most of the previous applications of flag algebras, we do
need to deal with second-order terms (specifically,O(1/n) terms) in our flag inequalities
to establish Theorem 2.

Lemma 4. Let G be a counterexample with n vertices. For every i∈ {1, . . . , 7} and c ∈
{1, 2, 3}, a homomorphism qσi

G fromAσi to R almost surely satisfies the inequality

qσi
G (F i

(c)) 6
2
3
+
εc(σi)

n
.

7



Proof. Fix i ∈ {1, . . . , 7} andc ∈ {1, 2, 3}. Consider the graphGk for sufficiently large
k. Let (w1,w2,w3,w4) be a randomly selected quadruple of vertices ofGk inducing a
subgraph isomorphic toσi. Further, letW be the set of vertices stronglyc-dominated by
{w1, . . . ,w4}. We show that|W| 6 2nk

3 + εc(σi)k+ o(k) with probability tending to one ask
tends to infinity. This will establish the inequality statedin the lemma. Indeed, it implies
that for everyη > 0, there existskη such that ifk > kη, thenqσi

Gk
(F i

(c)) 6
2
3 +

εc(σi )
n + η with

probability at least 1− η. As qσi
Gk

(F i
(c)) tends toqσi

G (F i
(c)) ask tends to infinity, we obtain the

stated inequality with probability 1.
For i ∈ {1, 2, 3, 4}, let vi be the vertex ofG corresponding to the cliqueWi of Gk

containingwi. LetV be the set of vertices ofG that are stronglyc-dominated by{v1, . . . , v4}.
SinceG is a counterexample,|V| < 2n/3, and hence,|V| 6 2n/3− 1/3. If wj andwj′ are
joined by an edge of colorc and, furthermore,vj = vj′ , thenvj is added toV as well. Since
V is still stronglyc-dominated by a quadruple of vertices inG (replacevj′ by any of its
c-neighbors), it follows that|V| 6 2n/3− 1/3.

The setW can contain the|V| k vertices of the cliques corresponding to the vertices
in V, and, potentially, it also contains some additional vertices if wi has noc-neighbors
amongw1, . . . ,w4. In this case, the additional vertices inW are thec-neighbors ofwi in
Wi. With high probability, there are at mostk/3+ o(k) such vertices ifvi is incident with
edges of all three colors inG, and at mostk/2 + o(k) if vi is incident with edges of only
two colors inG.

If εc(σi) = −1/3, then all the verticesw1, . . . ,w4 have ac-neighbor amongw1, . . . ,w4

and thusW contains only vertices of the cliques corresponding to the verticesV. We
conclude that|W| 6 (2n−1)k

3 + o(k), as required.
If εc(σi) = 0, then all but one of the verticesw1, . . . ,w4 have ac-neighbor among

w1, . . . ,w4 and the vertexwj that has none is incident inσi with edges of the two colors
different fromc. In particular, eitherwj has noc-neighbors insideWj or vj is incident with
edges of three distinct colors inG. This implies that|W| 6 (2n−1)k

3 + o(k) in the former case
and|W| 6 2nk

3 + o(k) in the latter case. So, the bound holds.
If εc(σi) = 1/6, then all but one of the vertices amongw1, . . . ,w4 have ac-neighbor

amongw1, . . . ,w4. Let wj be the exceptional vertex. Sincewj has at mostk/2 + o(k)
c-neighbors inWj, it follows that|W| 6 2nk

3 +
k
6 + o(k).

Finally, if εc(σi) = 1/2, then two verticeswj andwj′ amongw1, . . . ,w4 have noc-
neighbors in{w1, . . . ,w4}. The verticeswj andwj′ have at mostk/2 + o(k) c-neighbors
each inWj andWj′ , respectively. Moreover, sinceσi contains edges of all three colors,
one ofwj andwj′ is incident inσi with edges of the two colors different fromc. Hence,
this vertex has at mostk/3+ o(k) c-neighbors inWj. We conclude that the setW contains
at most|V| k+ 5k/6+ o(k) 6 2nk

3 +
k
2 + o(k) vertices. �
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As a consequence of (1), we have the following corollary of Lemma 4.

Lemma 5. Let G be a counterexample with n vertices. For every i∈ {1, . . . , 7} and c ∈
{1, 2, 3} such thatεc(σi) 6 0, it holds that

qG(
�

2σi/3− F i
(c)

�

σi
) > 0.

We now prove that in a counterexample, at most two colors are used to color the edges
incident with any given vertex. As we shall see, this structural property of counterexamples
directly implies their nonexistence, thereby proving Theorem 2.

Lemma 6. No counterexample contains a vertex incident with edges of all three colors.

Proof. Let G be a counterexample andw3 ∈ RF5 be the sum of all elements ofF5 that
contain a vertex incident with at least three colors. By the definition ofqG, the graphG has
a vertex incident with edges of all three colors if and only ifqG(w3) > 0. Lemma 5 implies
that qG(H) is non-negative for each elementH of A corresponding to any column of
Table 2 (in Appendix B). In addition, (2) ensures thatqG(H) is also non-negative for each
elementH ofA corresponding to any of the first four columns of Table 3 (in Appendix B).
Note that these elements can be expressed as elements ofRF5. Summing these columns
with coefficients

23457815885978657985
1029505785512512 ,

134730108347752975
4596007971038 ,

134730108347752975
4596007971038 ,

15852088219609163945
514752892756256 ,

196791037567187109905
12354069426150144 ,

33245823856447882025
24708138852300288,

3956624143678293415
772129339134384 ,

30762195734543710715
772129339134384 ,

20816545085118359705
4118023142050048 ,

74313622711306287405
2059011571025024 ,

48968798259015
514752892756256,

39315342699665
6177034713075072,

15977347300925119
32944185136400384,

8880723226482731
24708138852300288,

respectively, yields an elementw0 of A given in the very last column of Table 3. Notice
that for everyH ∈ F5, the coefficient of H in −w0 is at least the coefficient of H in w3.
In particular, the sumw3 + w0, which belongs toRF5, has only non-positive coefficients.
We now view bothw0 andw3 as elements ofA and use thatqG is a homomorphism from
A to R. First of all, qG(w3 + w0) 6 0. So, we derive thatqG(w3) 6 −qG(w0). As noted
earlier,qG(H) > 0 for each elementH used to definew0. Hence, since none of the above
(displayed) coefficients is negative, we deduce thatqG(w0) > 0. Consequently,qG(w3) 6 0,
which therefore implies thatqG(w3) = 0. This means thatG has no vertex incident with
edges of all three colors. �

We are now in a position to prove Theorem 2, whose statement isrecalled below.

Theorem 2. Let n> 2. Every tricolored graph with n vertices contains a subset ofat most
four vertices that strongly c-dominates at least2n/3 vertices for some color c.

9



Proof. Suppose, on the contrary, that there exists a counterexample G. Recall thatAv is
the set of colors that appear on the edges incident to the vertex v. Now, by Observation 3
and Lemma 6, it holds that|Av| = 2 for every vertexv of G. Hence,V(G) can be partitioned
into three setsV1, V2 andV3, wherev ∈ Vi if and only if i < Av. Without loss of generality,
assume that|V1| > |V2| > |V3|. Picku ∈ V1 andv ∈ V2. As Au ∩ Aw = {3} for all w ∈ V2, we
observe thatV2 is 3-dominated by{u}. Similarly,V1 is 3-dominated by{v}. Therefore, the
set{u, v} strongly 3-dominatesV1 ∪ V2, which has size at least 2n/3. �

4 Concluding remarks

It is natural to ask what bound can be proven for domination with three vertices. Here,
it does not seem that the trick we used in this paper helps. We can prove only that every
tricolored graph withn vertices contains a subset of at most three vertices thatc-dominates
at least 0.66117n vertices for some colorc.

We believe the difficulty we face is caused by the following phenomenon. The average
number of vertices dominated by a triple isomorphic toσA orσB (see Figure 1 for notation)
is bounded away from 2/3 in the graphs (Gk)k∈N, which are described at the beginning of
Section 3, forG being the rainbow triangle. So, if any of these two configurations is used,
a tight bound cannot be proven since the inequalities analogous to that in Lemma 5 are
not tight and no triple of vertices dominates more than 2/3 of the vertices in (Gk)k∈N to
compensate this deficiency.

We see that if we aimed to prove a tight result, we can only average over rainbow
triangles (which are isomorphic toσC). Now consider the following graphG: start from
the disjoint union of a large clique of order 2m with all edges colored 1 and a rainbow
triangle. Fori ∈ {1, 2}, join exactlym vertices of the clique to all three vertices of the
rainbow triangle by edges coloredi. The obtained simple complete graph has exactly one
rainbow triangle, which dominates about half of the vertices. Thus, the average proportion
of vertices dominated by triples isomorphic toσC in the graphs (Gk)k∈N is close to 1/2.
This phenomenon does not occur for quadruples of vertices.
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A The Elements of F5

H1 H2 H3 H4 H5 H6 H7 H8 H9

H10 H11 H12 H13 H14 H15 H16 H17 H18

H19 H20 H21 H22 H23 H24 H25 H26 H27

H28 H29 H30 H31 H32 H33 H34 H35 H36

H37 H38 H39 H40 H41 H42 H43 H44 H45

H46 H47 H48 H49 H50 H51 H52 H53 H54

H55 H56 H57 H58 H59 H60 H61 H62 H63

H64 H65 H66 H67 H68 H69 H70 H71 H72

H73 H74 H75 H76 H77 H78 H79 H80 H81

H82 H83 H84 H85 H86 H87 H88 H89 H90



H91 H92 H93 H94 H95 H96 H97 H98 H99

H100 H101 H102 H103 H104 H105 H106 H107 H108

H109 H110 H111 H112 H113 H114 H115 H116 H117

H118 H119 H120 H121 H122 H123 H124 H125 H126

H127 H128 H129 H130 H131 H132 H133 H134 H135

H136 H137 H138 H139 H140 H141 H142



B Vectors Used in the Proof of Lemma 6

Table 2: The first ten vectors
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H1 0 0 0 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0 0 0 0
H4 -1/90 0 0 0 0 0 0 0 0 0
H5 0 0 0 0 0 0 0 0 0 0
H6 -1/90 -1/180 1/90 0 0 0 0 0 0 0
H7 0 0 0 0 0 0 0 0 0 0
H8 0 -1/60 -1/60 0 0 0 0 0 0 0
H9 0 -1/45 2/45 0 0 0 0 0 0 0
H10 0 0 0 0 0 0 0 0 0 0
H11 0 0 0 -1/90 0 0 0 0 0 0
H12 0 0 0 0 0 0 0 0 0 0
H13 0 0 0 0 0 0 0 0 0 0
H14 -1/90 0 0 0 -1/180 1/90 0 0 0 0
H15 0 0 0 0 0 0 0 0 0 0
H16 -1/180 0 0 -1/180 0 0 -1/360 1/180 0 0
H17 -1/90 0 0 -1/180 0 0 0 0 1/180 0
H18 0 0 0 0 0 0 0 0 0 0
H19 -1/180 0 0 0 0 0 1/180 -1/360 0 0
H20 -1/90 1/90 -1/180 0 0 0 0 0 0 0
H21 -1/180 0 0 -1/180 0 0 0 0 0 1/120
H22 0 0 0 1/180 0 0 0 0 0 0
H23 0 0 0 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0 0 0 0
H25 0 -1/180 -1/180 0 -1/90 -1/90 0 0 0 0
H26 0 0 0 0 0 0 0 0 0 0
H27 0 -1/180 -1/180 0 0 0 -1/180 -1/180 0 0
H28 0 -1/90 -1/90 0 0 0 0 0 1/90 0
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H29 -1/90 0 0 0 0 0 0 0 0 0
H30 -1/180 -1/180 -1/180 0 0 0 -1/360 -1/360 0 0
H31 -1/180 -1/180 1/90 0 -1/180 1/90 1/180 -1/360 0 0
H32 0 -1/60 -1/60 0 0 0 0 0 0 0
H33 0 -1/90 1/180 0 0 0 -1/360 1/180 0 0
H34 0 -1/90 -1/90 1/90 0 0 0 0 -1/90 0
H35 0 0 0 0 0 0 0 0 0 0
H36 0 -1/180 1/90 0 0 0 1/90 -1/180 0 0
H37 0 0 0 0 0 0 -1/180 -1/180 0 0
H38 0 1/90 1/90 0 0 0 0 0 0 0
H39 0 -1/180 -1/180 0 0 0 0 0 0 0
H40 0 0 0 -1/90 0 0 0 0 0 0
H41 0 0 0 0 0 0 0 0 0 0
H42 0 0 0 -1/90 0 0 0 0 0 0
H43 -1/90 0 0 0 1/90 -1/180 0 0 0 0
H44 1/180 0 0 -1/180 0 0 0 0 0 0
H45 -1/180 0 0 -1/90 0 0 1/180 1/180 0 0
H46 -1/90 0 0 0 0 0 0 0 1/45 0
H47 0 0 0 0 0 0 0 0 0 0
H48 0 0 0 0 0 0 0 0 0 0
H49 0 0 0 0 0 0 0 0 0 0
H50 0 0 0 0 -1/180 -1/180 -1/180 -1/180 0 0
H51 -1/180 0 0 0 -1/180 -1/180 -1/360 -1/360 0 0
H52 -1/180 0 0 -1/180 0 0 -1/360 -1/360 0 0
H53 -1/180 0 0 0 -1/180 -1/180 0 0 1/180 0
H54 0 0 0 0 0 0 0 0 0 0
H55 0 0 0 0 0 0 -1/180 -1/180 0 0
H56 0 -1/180 -1/180 0 -1/90 -1/90 0 0 0 0
H57 -1/180 -1/180 -1/180 0 0 0 -1/360 -1/360 0 0
H58 0 -1/180 -1/180 0 0 0 1/360 -1/180 1/180 0
H59 0 -1/180 1/90 0 -1/90 -1/90 0 0 1/180 0
H60 0 -1/180 1/90 -1/180 0 0 -1/180 -1/180 0 0
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H61 0 -1/180 -1/180 1/90 0 0 0 0 -1/45 0
H62 -1/180 0 0 0 0 0 -1/360 -1/360 0 0
H63 -1/180 0 0 0 0 0 1/360 1/360 0 0
H64 0 0 0 0 0 0 1/90 -1/180 0 0
H65 0 0 0 1/90 0 0 -1/360 -1/360 0 0
H66 0 -1/180 -1/180 0 0 0 -1/180 -1/180 0 0
H67 0 -1/180 -1/180 0 0 0 0 0 0 0
H68 0 -1/180 1/90 0 1/90 -1/180 1/360 -1/180 0 0
H69 1/90 -1/90 1/180 0 0 0 0 0 0 0
H70 0 -1/180 -1/180 1/90 0 0 -1/360 1/180 0 -1/120
H71 0 0 0 0 0 0 -1/180 -1/180 1/180 0
H72 0 0 0 1/90 0 0 0 0 0 -1/60
H73 0 0 0 -1/60 0 0 0 0 0 0
H74 -1/90 1/90 1/90 -1/180 0 0 0 0 0 0
H75 -1/45 0 0 0 0 0 0 0 0 0
H76 -1/90 0 0 -1/90 1/90 1/90 0 0 0 0
H77 -1/90 0 0 0 0 0 1/90 -1/180 0 0
H78 -1/90 0 0 0 0 0 0 0 0 0
H79 -1/90 1/45 -1/90 0 -1/180 1/90 0 0 0 0
H80 -1/180 0 0 0 -1/180 -1/180 -1/360 -1/360 0 0
H81 1/90 0 0 0 0 0 1/360 -1/180 0 0
H82 -1/180 -1/180 -1/180 0 0 0 1/180 -1/360 1/180 0
H83 1/90 1/60 -1/60 0 0 0 -1/360 1/180 0 0
H84 -1/90 0 0 0 -1/90 1/45 0 0 0 0
H85 -1/90 0 0 0 0 0 -1/180 1/360 -1/90 0
H86 -1/180 -1/180 -1/180 0 -1/180 -1/180 -1/360 -1/360 0 0
H87 1/90 -1/180 -1/180 -1/180 -1/180 1/90 -1/360 -1/360 0 0
H88 1/90 -1/180 -1/180 0 1/90 -1/180 0 0 -1/90 -1/120
H89 -1/180 -1/180 -1/180 0 1/180 1/180 -1/360 -1/360 0 0
H90 1/90 -1/180 -1/180 0 0 0 -1/180 1/90 0 -1/120
H91 1/45 -1/90 -1/90 0 0 0 0 0 -1/90 0
H92 0 0 0 0 0 0 0 0 0 0
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H93 0 0 0 0 0 0 0 0 0 0
H94 0 -1/180 -1/180 0 -1/90 -1/90 0 0 0 0
H95 0 1/90 -1/180 0 0 0 1/90 -1/180 0 0
H96 0 -1/180 1/90 0 -1/90 -1/90 0 0 1/180 0
H97 0 1/90 -1/180 1/90 0 0 -1/180 -1/180 0 0
H98 0 0 0 0 0 0 0 0 -1/30 0
H99 0 0 0 -1/60 0 0 0 0 0 0
H100 0 -1/90 -1/90 0 0 0 0 0 1/90 0
H101 0 2/45 -1/45 0 0 0 0 0 0 0
H102 0 -1/90 -1/90 0 -1/90 -1/90 0 0 0 0
H103 0 1/45 -1/90 0 1/90 -1/180 -1/180 -1/180 0 0
H104 0 -1/90 -1/90 0 1/45 -1/90 0 0 -1/90 0
H105 0 -1/90 -1/90 0 0 0 0 0 -1/90 0
H106 0 1/45 -1/90 -1/180 -1/90 -1/90 0 0 0 0
H107 0 0 0 -1/45 0 0 0 0 0 0
H108 0 0 0 -1/45 0 0 0 0 0 0
H109 0 0 0 -1/90 0 0 0 0 0 0
H110 0 0 0 -1/180 0 0 -1/180 -1/180 0 0
H111 0 0 0 -1/180 -1/180 -1/180 1/180 -1/360 0 0
H112 0 0 0 -1/90 0 0 0 0 0 0
H113 0 0 0 -1/180 -1/180 -1/180 1/180 -1/360 0 0
H114 0 0 0 -1/90 0 0 1/360 -1/180 0 0
H115 0 0 0 -1/180 -1/90 -1/90 0 0 -1/90 0
H116 0 0 0 -1/180 -1/90 1/180 -1/180 -1/180 0 0
H117 0 0 0 -1/180 -1/180 -1/180 -1/180 1/360 -1/90 0
H118 0 0 0 1/180 0 0 -1/180 -1/180 0 0
H119 0 0 0 1/90 0 0 -1/360 -1/360 -1/90 -1/120
H120 0 0 0 -1/90 0 0 0 0 0 0
H121 0 0 0 -1/180 -1/180 1/90 -1/180 1/360 0 0
H122 0 0 0 -1/180 0 0 -1/360 -1/360 0 0
H123 0 0 0 -1/180 0 0 -1/180 -1/180 -1/90 0
H124 0 0 0 -1/180 0 0 -1/90 1/180 0 0
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H125 0 0 0 1/180 0 0 -1/360 -1/360 0 -1/120
H126 0 0 0 -1/180 0 0 -1/180 -1/180 1/180 0
H127 0 0 0 -1/180 1/180 -1/90 -1/360 -1/360 0 -1/120
H128 0 0 0 1/90 0 0 0 0 -1/90 -1/60
H129 0 0 0 0 0 0 -1/180 -1/180 0 0
H130 0 0 0 0 0 0 0 0 0 0
H131 0 0 0 0 -1/180 -1/180 -1/180 -1/180 0 0
H132 0 0 0 0 0 0 1/180 -1/90 0 0
H133 0 0 0 0 -1/180 -1/180 -1/360 -1/360 1/180 0
H134 0 0 0 0 -1/60 0 -1/180 -1/180 0 0
H135 0 0 0 0 0 -1/60 0 0 0 -1/60
H136 0 0 0 0 -1/90 -1/90 -1/180 -1/180 -1/90 0
H137 0 0 0 0 1/90 -1/180 -1/120 0 0 -1/120
H138 0 0 0 0 -1/180 -1/180 -1/180 1/360 -1/45 0
H139 0 0 0 0 -1/180 -1/180 -1/360 -1/360 -1/90 -1/120
H140 0 0 0 0 0 0 -1/180 1/90 0 -1/60
H141 0 0 0 0 0 0 -1/90 -1/90 0 0
H142 0 0 0 0 0 0 0 0 -2/45 0



Table 3: The last six vectors

~wB · wB�σB

�

w′B · w
′
B

�

σB
~wC · wC�σC

�

w′C · w
′
C

�

σC
w3 w0

H1 0 0 0 0 0 0
H2 0 0 0 0 0 0
H3 0 0 0 0 0 0
H4 0 0 0 0 1 −1563854392398577199

6177034713075072
H5 0 0 0 0 0 0
H6 29161/60 101524/15 0 0 1 -1
H7 0 0 0 0 0 0
H8 0 0 2000 20 0 0
H9 0 0 -4000/3 -40/3 0 0
H10 0 0 0 0 0 0
H11 1815/2 33640/3 0 0 1 −10173977739002723

55152095652456
H12 0 0 0 0 0 0
H13 0 0 0 0 0 0
H14 -242 5104 0 0 1 −734882450141728337

2316388017403152
H15 0 0 0 0 0 0
H16 -9922/15 -422/3 0 0 1 −5722046702587908817

37062208278450432
H17 57013/60 -65634/5 0 0 1 −57717650068438077139

148248833113801728
H18 0 0 0 0 0 0
H19 0 0 0 0 1 −703462682135213465

3369291661677312
H20 29161/60 101524/15 0 0 1 -1
H21 781/2 -37700/3 0 0 1 −5891700664190917297

148248833113801728
H22 -1804 -580/3 0 0 1 −32614888977443071

18531104139225216
H23 0 0 0 0 0 0
H24 0 0 0 0 0 0
H25 0 0 19723/20 2047/20 1 −15461491234942018543

5929953324552069120
H26 0 0 0 0 0 0
H27 0 0 540 77/3 1 −88140807390257339

289548502175394
H28 10/3 105125/6 0 0 1 −35834405989042100849

74124416556900864
H29 0 0 0 0 1 −1563854392398577199

6177034713075072
H30 0 0 270 77/6 1 −5456161234717178191

12354069426150144
H31 0 0 0 0 1 −4427934211353668633

37062208278450432
H32 0 0 2000 20 0 0
H33 0 0 -1810/3 -97/6 1 −1570031427111652271

6177034713075072
H34 -328/3 725/3 2000/3 20/3 1 −327323049775204219

6738583323354624
H35 0 0 0 0 0 0
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~wB · wB�σB
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w′B · w
′
B
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σB
~wC · wC�σC
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w′C · w
′
C

�

σC
w3 w0

H36 0 0 0 0 1 −2040849950139277
1323650295658944

H37 0 0 2187/5 5929/60 1 −324486989357699
150414806324880

H38 0 0 -4000/3 -40/3 0 0
H39 177241/60 99856/15 0 0 1 −14389006173379021

6177034713075072
H40 53792/15 10/3 0 0 1 -1
H41 0 0 0 0 0 0
H42 53792/15 10/3 0 0 1 -1
H43 -242 5104 0 0 1 −2444189262506217731

32944185136400384
H44 -19723/60 8018 0 0 1 −130980504818216225

5294601182635776
H45 19251/20 -46426/5 0 0 1 −767941410949255531

4118023142050048
H46 0 0 0 0 1 −5219817337367791253

37062208278450432
H47 -4743/20 -27388/5 0 0 1 −354709127257189891

6177034713075072
H48 0 0 0 0 0 0
H49 0 0 0 0 0 0
H50 0 0 0 0 1 −102522009006261748933

296497666227603456
H51 0 0 4401/10 -6853/60 1 −103816701767414115797

592995332455206912
H52 1331/4 24476/3 0 0 1 −1794830760611264087

5294601182635776
H53 -7157/30 72838/15 0 0 1 −55226415700070668835

296497666227603456
H54 0 0 0 0 0 0
H55 0 0 2187/5 5929/60 1 −324486989357699

150414806324880
H56 0 0 1630/3 -89/3 1 −148706888944854103

561548610279552
H57 0 0 270 77/6 1 −5456161234717178191

12354069426150144
H58 0 0 0 0 1 −74826771055029195907

148248833113801728
H59 0 0 0 0 1 -1
H60 0 0 -540 -77/3 1 −127346913837154513

240663690119808
H61 -93 48430/3 0 0 1 −10466732649688555

5294601182635776
H62 0 0 0 0 1 −9320739160958665481

37062208278450432
H63 0 0 0 0 1 −62387193432797713

37062208278450432
H64 0 0 0 0 1 −217609023306544037

1323650295658944
H65 -34522/15 316/3 0 0 1 -1
H66 0 0 540 77/3 1 −88140807390257339

289548502175394
H67 177241/60 99856/15 0 0 1 −14389006173379021

6177034713075072
H68 0 0 -815/3 89/6 1 −42621413028711205

37062208278450432
H69 4631/4 -18328/3 -1000/3 -10/3 1 −1330374174754201

1029505785512512
H70 -39153/20 105544/15 -270 -77/6 1 −5834645898385742195

16472092568200192
H71 0 0 0 0 1 −3652233205897755459

16472092568200192
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~wB · wB�σB

�

w′B · w
′
B

�

σB
~wC · wC�σC

�

w′C · w
′
C

�

σC
w3 w0

H72 -39153/10 211088/15 0 0 1 −40194399986166687563
74124416556900864

H73 17391/4 114896/15 0 0 1 −67376462435613401
1323650295658944

H74 -3069/2 -38744/3 0 0 1 -1
H75 -968 20416 0 0 1 −206704879201250857

441216765219648
H76 -13706/15 -92396/15 0 0 1 −8722501888932923387

16472092568200192
H77 0 0 0 0 1 −703462682135213465

1684645830838656
H78 4631/2 -36656/3 0 0 1 −2050765293919679467

18531104139225216
H79 0 0 0 0 1 -1
H80 0 0 0 0 1 −34340368851241376879

98832555409201152
H81 -4631/15 -13904/5 0 0 1 -1
H82 0 0 0 0 1 −10725188546965769537

21178404730543104
H83 0 0 -2810/3 -39/2 1 -1
H84 0 0 0 0 1 −7417316739041385395

18531104139225216
H85 121/6 -30595/3 0 0 1 −21505715322664188433

74124416556900864
H86 0 0 815/3 -89/6 1 −10051575074463385

18384031884152
H87 1331/4 24476/3 270 77/6 1 −2065655974432544177

9265552069612608
H88 -8657/30 -194687/15 -815/3 89/6 1 −10513889487465286471

21178404730543104
H89 0 0 270 77/6 1 −102492676367157469795

296497666227603456
H90 4631/4 -18328/3 -270 -77/6 1 −3470421686575164043

148248833113801728
H91 121/3 -61190/3 2000/3 20/3 1 −12539057139644285

8236046284100096
H92 0 0 0 0 0 0
H93 0 0 0 0 0 0
H94 0 0 19723/20 2047/20 1 −15461491234942018543

5929953324552069120
H95 0 0 0 0 1 −2040849950139277

1323650295658944
H96 0 0 -1630/3 89/3 1 −37632094249561791565

148248833113801728
H97 0 0 -540 -77/3 1 −147229716847699567

9265552069612608
H98 0 0 0 0 1 −4163309017023671941

24708138852300288
H99 77841/20 111556/5 0 0 1 -1
H100 10/3 105125/6 0 0 1 −35834405989042100849

74124416556900864
H101 0 0 -4000/3 -40/3 0 0
H102 0 0 1630/3 -89/3 1 −10943236189159518679

18531104139225216
H103 0 0 -1630/3 89/3 1 −244304794290394685

32944185136400384
H104 0 0 -1630/3 89/3 1 −6580270239524616359

10589202365271552
H105 0 0 0 0 1 −17483526616286112727

24708138852300288
H106 0 0 -1630/3 89/3 1 −2389728277891266261

8236046284100096
H107 107584/15 20/3 0 0 1 -2
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~wB · wB�σB

�

w′B · w
′
B

�

σB
~wC · wC�σC

�

w′C · w
′
C

�

σC
w3 w0

H108 30504/5 1336/3 0 0 1 −66935245670393753
661825147829472

H109 1815/2 33640/3 0 0 1 −10173977739002723
55152095652456

H110 0 0 0 0 1 −866621514187196297
2059011571025024

H111 4631/4 -18328/3 0 0 1 −7493427555720786047
26954333293418496

H112 -1804 -580/3 0 0 1 −4771933910371470719
9265552069612608

H113 -34522/15 316/3 0 0 1 −56090180193586615063
98832555409201152

H114 -3069/4 -19372/3 0 0 1 −6146435219180552237
9265552069612608

H115 55 -42050/3 26569/60 7921/60 1 −476307820942045182061
1976651108184023040

H116 0 0 0 0 1 −19450524422641811549
32944185136400384

H117 -93/2 24215/3 0 0 1 −8220306420511019599
42356809461086208

H118 -1804 -580/3 2187/5 5929/60 1 −362958430331557939
92655520696126080

H119 -70439/30 8177 0 0 1 −15367554150816847711
49416277704600576

H120 1815/2 33640/3 0 0 1 −10173977739002723
55152095652456

H121 0 0 0 0 1 −1003343753899617143
6177034713075072

H122 4631/4 -18328/3 0 0 1 −2082303347082636833
9265552069612608

H123 -328/3 725/3 0 0 1 −12006211264574547431
24708138852300288

H124 0 0 0 0 1 −13765701958912919
2059011571025024

H125 -27249/10 8684/15 0 0 1 −75624575885139732659
148248833113801728

H126 55 -42050/3 0 0 1 −70683455524198969843
148248833113801728

H127 0 0 0 0 1 −11080743495118222157
21178404730543104

H128 170681/60 103481/15 0 0 1 -1
H129 0 0 0 0 1 −1157293995940733471

4632776034806304
H130 0 0 0 0 0 0
H131 0 0 4401/5 -6853/30 1 -1
H132 0 0 0 0 1 −426427906114141689

1029505785512512
H133 421/6 22910/3 0 0 1 −1235497822172284283

8984777764472832
H134 0 0 4401/5 -6853/30 1 −5617524380783071181

32944185136400384
H135 0 0 0 0 1 −26428837039774952311

42356809461086208
H136 0 0 0 0 1 −73815219170205621743

148248833113801728
H137 0 0 0 0 1 −51576322752518046641

296497666227603456
H138 0 0 0 0 1 −37389454791911250173

296497666227603456
H139 421/6 22910/3 0 0 1 −17214181054154995319

32944185136400384
H140 0 0 0 0 1 −1542818265173952315

8236046284100096
H141 0 0 0 0 1 −1157293995940733471

2316388017403152
H142 20/3 105125/3 0 0 1 -1


