THE UNIVERSITY OF WARWICK

Original citation:

Král', Daniel, Liu, Chun-Hung, Sereni, Jean-Sébastien, Whalen, Peter and Yilma, Zelealem B.. (2013) A new bound for the 2/3 conjecture. Combinatorics, Probability and Computing, Volume 22 (Number 03). pp. 384-393. ISSN 0963-5483

Permanent WRAP url:

http://wrap.warwick.ac.uk/56910

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

This article has been accepted for publication appears in a revised form, subsequent to peer review and/or editorial input by Cambridge University Press, in Combinatorics, Probability and Computing published by Cambridge University Press ©. Volume 22 (Number 03). pp. 384-393
http://dx.doi.org/10.1017/S0963548312000612

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

A new bound for the $2 / 3$ conjecture*

Daniel Král ${ }^{\dagger}$ Chun-Hung Liu ${ }^{\ddagger}$ Jean-Sébastien Sereni ${ }^{\S}$ Peter Whalen ${ }^{\text {II }} \quad$ Zelealem B. Yilma ${ }^{\text {II }}$

Abstract

We show that any n-vertex complete graph with edges colored with three colors contains a set of at most four vertices such that the number of the neighbors of these vertices in one of the colors is at least $2 n / 3$. The previous best value, proved by Erdős, Faudree, Gould, Gyárfás, Rousseau and Schelp in 1989, is 22. It is conjectured that three vertices suffice.

1 Introduction

Erdős and Hajnal [9] made the observation that for a fixed positive integer t, a positive real ϵ, and a graph G on $n>n_{0}$ vertices, there is a set of t vertices that have a neighborhood of size at least $\left(1-(1+\epsilon)(2 / 3)^{t}\right) n$ in either G or its complement. They further inquired whether $2 / 3$ may be replaced by $1 / 2$. This was answered in the affirmative by Erdős,

[^0]Faudree, Gyárfás and Schelp [7], who not only proved the result but also dispensed with the $(1+\epsilon)$ factor. They also phrased the question as a problem of vertex domination in a multicolored graph.

Given a color c in an r-coloring of the edges of the complete graph, a subset A of the vertex set c-dominates another subset B if, for every $y \in B \backslash A$, there exists a vertex $x \in A$ such that the edge $x y$ is colored c. The subset A strongly c-dominates B if, in addition, for every $y \in B \cap A$, there exists a vertex $x \in A$ such that $x y$ is colored c. (Thus, the two notions coincide when $A \cap B=\emptyset$.) The result of Erdős et al. [7] may then be stated as follows.

Theorem 1. For any fixed positive integer t and any 2-coloring of the edges of the complete graph K_{n} on n vertices, there exist a color c and a subset X of size at most t such that all but at most $n / 2^{t}$ vertices of K_{n} are c-dominated by X.

In a more general form, they asked: Given positive integers r, t, and n along with an r-coloring of the edges of the complete graph K_{n} on n vertices, what is the largest subset B of the vertices of K_{n} necessarily monochromatically dominated by some t-element subset of K_{n} ? However, in the same paper [7], the authors presented a 3-coloring of the edges of K_{n} - attributed to Kierstead - which shows that if $r \geqslant 3$, then it is not possible to monochromatically dominate all but a small fraction of the vertices with any fixed number t of vertices. This 3-coloring is defined as follows: the vertices of K_{n} are partitioned into three sets V_{1}, V_{2}, V_{3} of equal sizes and an edge $x y$ with $x \in V_{i}$ and $y \in V_{j}$ is colored i if $1 \leqslant i \leqslant j \leqslant 3$ and $j-i \leqslant 1$ while edges between V_{1} and V_{3} are colored 3. Observe that, if t is fixed, then at most $2 n / 3$ vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdős, Faudree, Gould, Gyárfás, Rousseau and Schelp [8], that if $t \geqslant 22$, then, indeed, at least $2 n / 3$ vertices are monochromatically dominated in any 3 -coloring of the edges of K_{n}. The authors then ask if 22 may be replaced by a smaller number (specifically, 3). We prove here that $t \geqslant 4$ is sufficient.

Theorem 2. For any 3-coloring of the edges of K_{n}, where $n \geqslant 2$, there exist a color c and a subset A of at most four vertices of K_{n} such that A strongly c-dominates at least $2 n / 3$ vertices of K_{n}.

In Kierstead's coloring, the number of colors appearing on the edges incident with any given vertex is precisely 2 . As we shall see later on, this property plays a central role in our arguments. In this regard, our proof seems to suggest that Kierstead's coloring is somehow extremal, giving more credence to the conjecture that three vertices would suffice to monochromatically dominate a set of size $2 n / 3$ in any 3 -coloring of the edges of K_{n} 。

We note that there exist 3 -colorings of the edges of K_{n} such that no pair of vertices monochromatically dominate $2 n / 3+O(1)$ vertices. This can be seen by realizing that in a random 3-coloring, the probability that an arbitrary pair of vertices monochromatically dominate more than $5 n / 9+o(n)$ vertices is $o(1)$ by Chernoff's bound.

Our proof of Theorem 2 utilizes the flag algebra theory introduced by Razborov, which has recently led to numerous results in extremal graph and hypergraph theory. In the following section, we present a brief introduction to the flag algebra framework. The proof of Theorem 2 is presented in Section 3.

We end this introduction by pointing out another interesting question: what happens when one increases r, the number of colors? Constructions in the vein of that of Kierstead — for example, partitioning K_{n} into s parts and using $r=\binom{s}{2}$ colors — show that the size of dominated sets decreases with increasing r. While it may be difficult to determine the minimum value of t dominating a certain proportion of the vertices, it would be interesting to find out whether such constructions do, in fact, give the correct bounds.

2 Flag Algebras

Flag algebras were introduced by Razborov [23] as a tool based on the graph limit theory of Lovász and Szegedy [20] and Borgs et al. [5] to approach problems pertaining to extremal graph theory. This tool has been successfully applied to various topics, such as Turán-type problems [25], super-saturation questions [24], jumps in hypergraphs [2], the CaccettaHäggkvist conjecture [17], the chromatic number of common graphs [14] and the number of pentagons in triangle-free graphs [12,15]. This list is far from being exhaustive and results keep coming $[1,3,4,6,11,10,13,16,18,19,21,22]$.

Let us now introduce the terminology related to flag algebras needed in this paper. Since we deal with 3-colorings of the edges of complete graphs, we restrict our attention to this particular case. Let us define a tricolored graph to be a complete graph whose edges are colored with 3 colors. If G is a tricolored graph, then $V(G)$ is its vertex-set and $|G|$ is the number of vertices of G. Let \mathbb{F}_{ℓ} be the set of non-isomorphic tricolored graphs with ℓ vertices, where two tricolored graphs are considered to be isomorphic if they differ by a permutation of the vertices and a permutation of the edge colors. (Therefore, which specific color is used for each edge is irrelevant: what matters is whether or not pairs of edges are assigned the same color.) The elements of \mathbb{F}_{3} are shown in Figure 1. We set $\mathbb{F}:=\cup_{\ell \in \mathbb{N}} \mathbb{F}_{\ell}$. Given a tricolored graph σ, we define $\mathbb{F}_{\ell}^{\sigma}$ to be the set of tricolored graphs F on ℓ vertices with a fixed embedding of σ, that is, an injective mapping v from $V(\sigma)$ to $V(F)$ such that $\operatorname{Im}(v)$ induces in F a subgraph that differs from σ only by a permutation of the edge colors. The elements of $\mathbb{F}_{\ell}^{\sigma}$ are usually called σ-flags within the flag algebras

Figure 1: The elements of \mathbb{F}_{3}. The edges of color 1,2 and 3 are represented by solid, dashed and dotted lines, respectively.
framework. We set $\mathbb{F}^{\sigma}:=\bigcup_{\ell \in \mathbf{N}} \mathbb{F}_{\ell}^{\sigma}$.
The central notions are factor algebras of \mathbb{F} and \mathbb{F}^{σ} equipped with addition and multiplication. Let us start with the simpler case of \mathbb{F}. If $H \in \mathbb{F}$ and $H^{\prime} \in \mathbb{F}_{|H|+1}$, then $p\left(H, H^{\prime}\right)$ is the probability that a randomly chosen subset of $|H|$ vertices of H^{\prime} induces a subgraph isomorphic to H. For a set F, we define $\mathbf{R} F$ to be the set of all formal linear combinations of elements of F with real coefficients. Let $\mathcal{A}:=\mathbf{R} \mathbb{F}$ and let \mathcal{F} be \mathcal{A} factorised by the subspace of $\mathbf{R F}$ generated by all combinations of the form

$$
H-\sum_{H^{\prime} \in \mathbb{E} \mid(\mid l+1} p\left(H, H^{\prime}\right) H^{\prime} .
$$

Next, we define the multiplication on \mathcal{A} based on the elements of \mathbb{F} as follows. If H_{1} and H_{2} are two elements of \mathbb{F} and $H \in \mathbb{F}_{\left|H_{1}\right|+\left|H_{2}\right|}$, then $p\left(H_{1}, H_{2} ; H\right)$ is the probability that two randomly chosen disjoint subsets of vertices of H with sizes $\left|H_{1}\right|$ and $\left|H_{2}\right|$ induce subgraphs isomorphic to H_{1} and H_{2}, respectively. We set

$$
H_{1} \cdot H_{2}:=\sum_{H \in \mathbb{F}\left|H_{1}\right|+\left|H_{2}\right|} p\left(H_{1}, H_{2} ; H\right) H .
$$

The multiplication is linearly extended to $\mathbf{R F}$. Standard elementary probability computations [23, Lemma 2.4] show that this multiplication in $\mathbf{R F}$ gives rise to a well-defined multiplication in the factor algebra \mathcal{A}.

The definition of \mathcal{F}^{σ} follows the same lines. Let H and H^{\prime} be two tricolored graphs in \mathbb{F}^{σ} with embeddings v and v^{\prime} of σ. Informally, we consider the copy of σ in H^{\prime} and we extend it into an element of $\mathbb{F}_{|H|}^{\sigma}$ by randomly choosing additional vertices in H^{\prime}. We are interested in the probability that this random extension is isomorphic to H and the isomorphism preserves the embeddings of σ. Formally, we let $p\left(H, H^{\prime}\right)$ be the probability that $v^{\prime}(V(\sigma))$ together with a randomly chosen subset of $|H|-|\sigma|$ vertices in $V\left(H^{\prime}\right) \backslash v^{\prime}(V(\sigma))$ induce a subgraph that is isomorphic to H through an isomorphism f that preserves the embeddings, that is, $v^{\prime}=f \circ v$. The set \mathcal{A}^{σ} is composed of all formal real linear combinations of elements of $\mathbf{R} \mathbb{F}^{\sigma}$ factorised by the subspace of $\mathbf{R} \mathbb{F}^{\sigma}$ generated by all combinations
of the form

$$
H-\sum_{H^{\prime} \in \mathbb{F}_{\mid \mathbb{R}_{\mid+1}^{s}}^{s}} p\left(H, H^{\prime}\right) H^{\prime}
$$

Similarly, $p\left(H_{1}, H_{2} ; H\right)$ is the probability that $v(V(\sigma))$ together with two randomly chosen disjoint subsets of $\left|H_{1}\right|-|\sigma|$ and $\left|H_{2}\right|-|\sigma|$ vertices in $V(H) \backslash v(V(\sigma))$ induce subgraphs isomorphic to H_{1} and H_{2}, respectively, with the isomorphisms preserving the embeddings of σ. The definition of the product is then analogous to that in \mathcal{A}.

Consider an infinite sequence $\left(G_{i}\right)_{i \in \mathbf{N}}$ of tricolored graphs with an increasing number of vertices. Recall that if $H \in \mathbb{F}$, then $p\left(H, G_{i}\right)$ is the probability that a randomly chosen subset of $|H|$ vertices of G_{i} induces a subgraph isomorphic to H. The sequence $\left(G_{i}\right)_{i \in \mathbf{N}}$ is convergent if $p\left(H, G_{i}\right)$ has a limit for every $H \in \mathbb{F}$. A standard argument (using Tychonoff's theorem [26]) yields that every infinite sequence of tricolored graphs has a convergent (infinite) subsequence.

The results presented in this and the next paragraph were established by Razborov [23]. Fix now a convergent sequence $\left(G_{i}\right)_{i \in \mathbf{N}}$ of tricolored graphs. We set $q(H):=\lim _{i \rightarrow \infty} p\left(H, G_{i}\right)$ for every $H \in \mathbb{F}$, and we linearly extend q to \mathcal{A}. The obtained mapping q is a homomorphism from \mathcal{A} to \mathbf{R}. Moreover, for $\sigma \in \mathbb{F}$ and an embedding v of σ in G_{i}, define $p_{i}^{\nu}(H):=p\left(H, G_{i}\right)$. Picking v at random thus gives rise to a random distribution of mappings from \mathcal{A}^{σ} to \mathbf{R}, for each $i \in \mathbf{N}$. Since $p\left(H, G_{i}\right)$ converges (as i tends to infinity) for every $H \in \mathbb{F}$, the sequence of these distributions must also converge. In fact, q itself fully determines the random distributions of q^{σ} for all σ. In what follows, q^{σ} will be a randomly chosen mapping from \mathcal{F}^{σ} to \mathbf{R} based on the limit distribution. Any mapping q^{σ} from support of the limit distribution is a homomorphism from \mathcal{A}^{σ} to \mathbf{R}.

Let us now have a closer look at the relation between q and q^{σ}. The "averaging" operator $\llbracket \cdot \rrbracket_{\sigma}: \mathcal{A}^{\sigma} \rightarrow \mathcal{A}$ is a linear operator defined on the elements of \mathbb{F}^{σ} by $\llbracket H \rrbracket_{\sigma}:=$ $p \cdot H^{\prime}$, where H^{\prime} is the (unlabeled) tricolored graph in \mathbb{F} corresponding to H and p is the probability that a random injective mapping from $V(\sigma)$ to $V\left(H^{\prime}\right)$ is an embedding of σ in H^{\prime} yielding H. The key relation between q and q^{σ} is the following:

$$
\begin{equation*}
\forall H \in \mathcal{A}^{\sigma}, \quad q\left(\llbracket H \rrbracket_{\sigma}\right)=\int q^{\sigma}(H), \tag{1}
\end{equation*}
$$

where the integration is over the probability space given by the limit random distribution of q^{σ}. We immediately conclude that if $q^{\sigma}(H) \geqslant 0$ almost surely, then $q\left(\llbracket H \rrbracket_{\sigma}\right) \geqslant 0$. In particular,

$$
\begin{equation*}
\forall H \in \mathcal{F}^{\sigma}, \quad q\left(\llbracket H^{2} \rrbracket_{\sigma}\right) \geqslant 0 \tag{2}
\end{equation*}
$$

Figure 2: The elements $\sigma_{1}, \ldots, \sigma_{7}$ of \mathbb{F}_{4}. The edges of color 1,2 and 3 are represented by solid, dashed and dotted lines, respectively.

2.1 Particular Notation Used in our Proof

Before presenting the proof of Theorem 2, we need to introduce some notation and several lemmas. Recall that σ_{A}, σ_{B} and σ_{C}, the elements of \mathbb{F}_{3}, are given in Figure 1. For $i \in$ $\{A, B, C\}$ and a triple $t \in\{1,2,3\}^{3}$, let F_{t}^{i} be the element of $\mathbb{F}_{4}^{\sigma_{i}}$ in which the unlabeled vertex of F_{t}^{i} is joined by an edge of color t_{j} to the image of the j-th vertex of σ_{i} for $j \in\{1,2,3\}$. Two elements of $\mathcal{A}^{\sigma_{B}}$ and two of $\mathcal{A}^{\sigma_{c}}$ will be of interest in our further considerations:

$$
\begin{aligned}
& w_{B}:=165 F_{113}^{B}+165 F_{333}^{B}-279 F_{123}^{B}-44 F_{131}^{B}+328 F_{133}^{B}+10 F_{233}^{B}+421 F_{323}^{B}, \\
& w_{B}^{\prime}:=-580 F_{113}^{B}-580 F_{333}^{B}+668 F_{123}^{B}-264 F_{131}^{B}+10 F_{133}^{B}+725 F_{233}^{B}+632 F_{323}^{B}, \\
& w_{C}:=100 F_{112}^{C}+100 F_{312}^{C}-100 F_{113}^{C}-100 F_{133}^{C}+162 F_{122}^{C}+163 F_{221}^{C}, \quad \text { and } \\
& w_{C}^{\prime}:=-10 F_{112}^{C}-10 F_{312}^{C}+10 F_{113}^{C}+10 F_{133}^{C}-77 F_{122}^{C}+89 F_{221}^{C} .
\end{aligned}
$$

We make use of seven elements $\sigma_{1}, \ldots, \sigma_{7}$ out of the 15 elements of \mathbb{F}_{4}. They are depicted in Figure 2. For $i \in\{1, \ldots, 7\}$ and a quadruple $d \in\{1,2,3\}^{4}$, let F_{d}^{i} be the element of $\mathbb{F}_{5}^{\sigma_{i}}$ such that the unlabeled vertex of F_{d}^{i} is joined by an edge of color d_{j} to the j-th vertex of σ_{i} for $j \in\{1,2,3,4\}$. If $i \in\{1, \ldots, 7\}$ and $c \in\{1,2,3\}$, then $F_{(c)}^{i}$ is the element of $\mathcal{A}^{\sigma_{i}}$ that is the sum of all the five-vertex σ_{i}-flags F_{d}^{i} such that the unlabeled vertex is joined by an edge of color c to at least one of the vertices of σ_{i}, i.e., at least one of the entries of d is c.

Finally, we define H_{1}, \ldots, H_{142} to be the elements of \mathbb{F}_{5} in the way depicted in Appendix A.

3 Proof of Theorem 2

In this section, we prove Theorem 2 by contradiction: in a series of lemmas, we shall prove some properties of a counterexample which eventually allow us to establish the nonexistence of counterexamples. Specifically, we first find a number of flag inequalities

	$\mathrm{i}=1$	$\mathrm{i}=2$	$\mathrm{i}=3$	$\mathrm{i}=4$	$\mathrm{i}=5$	$\mathrm{i}=6$	$\mathrm{i}=7$
$c=1$	$-1 / 3$	0	$-1 / 3$	$-1 / 3$	0	0	0
$c=2$	$1 / 2$	0	$1 / 6$	$-1 / 3$	$-1 / 3$	$-1 / 3$	0
$c=3$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	0	0

Table 1: The values $\varepsilon_{c}\left(\sigma_{i}\right)$ for $i \in\{1, \ldots, 7\}$ and $c \in\{1,2,3\}$.
by hand and then we combine them with appropriate coefficients to obtain a contradiction. The coefficients are found with the help of a computer.

Let G be a tricolored complete graph. For a vertex v of G, let A_{v} be the set of colors of the edges incident with v. Consider a sequence of graphs $\left(G_{k}\right)_{k \in \mathbf{N}}$, obtained from G by replacing each vertex v of G with a complete graph of order k with edges colored uniformly at random with colors in A_{v}; the colors of the edges between the complete graphs corresponding to the vertices v and v^{\prime} of G are assigned the color of the edge $v v^{\prime}$. This sequence of graphs converges asymptotically almost surely; let q_{G} be the corresponding homomorphism from \mathcal{A} to \mathbf{R}.

Let $n \geqslant 2$. We define a counterexample to be a tricolored graph with n vertices such that for every color $c \in\{1,2,3\}$, each set W of at most four vertices strongly c-dominates less than $2 n / 3$ vertices of G. A counterexample readily satisfies the following property.

Observation 3. If G is a counterexample, then every vertex is incident with edges of at least two different colors.

In the next lemma, we establish an inequality that q_{G} satisfies if G is a counterexample. To do so, define the quantity $\varepsilon_{c}\left(\sigma_{i}\right)$ for $i \in\{1, \ldots, 7\}$ and $c \in\{1,2,3\}$ to be $1 / 2$ if σ_{i} contains a single edge with color $c,-1 / 3$ if each vertex of σ_{i} is incident with an edge colored c, $1 / 6$ if σ_{i} contains at least two edges with color c and a vertex incident with edges of a single color different from c, and 0 , otherwise. These values are gathered in Table 1. Let us underline that, unlike in most of the previous applications of flag algebras, we do need to deal with second-order terms (specifically, $O(1 / n)$ terms) in our flag inequalities to establish Theorem 2.

Lemma 4. Let G be a counterexample with n vertices. For every $i \in\{1, \ldots, 7\}$ and $c \in$ $\{1,2,3\}$, a homomorphism $q_{G}^{\sigma_{i}}$ from $\mathcal{A}^{\sigma_{i}}$ to \mathbf{R} almost surely satisfies the inequality

$$
q_{G}^{\sigma_{i}}\left(F_{(c)}^{i}\right) \leqslant \frac{2}{3}+\frac{\varepsilon_{c}\left(\sigma_{i}\right)}{n} .
$$

Proof. Fix $i \in\{1, \ldots, 7\}$ and $c \in\{1,2,3\}$. Consider the graph G_{k} for sufficiently large k. Let $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ be a randomly selected quadruple of vertices of G_{k} inducing a subgraph isomorphic to σ_{i}. Further, let W be the set of vertices strongly c-dominated by $\left\{w_{1}, \ldots, w_{4}\right\}$. We show that $|W| \leqslant \frac{2 n k}{3}+\varepsilon_{c}\left(\sigma_{i}\right) k+o(k)$ with probability tending to one as k tends to infinity. This will establish the inequality stated in the lemma. Indeed, it implies that for every $\eta>0$, there exists k_{η} such that if $k>k_{\eta}$, then $q_{G_{k}}^{\sigma_{i}}\left(F_{(c)}^{i}\right) \leqslant \frac{2}{3}+\frac{\varepsilon_{c}\left(\sigma_{i}\right)}{n}+\eta$ with probability at least $1-\eta$. As $q_{G_{k}}^{\sigma_{i}}\left(F_{(c)}^{i}\right)$ tends to $q_{G}^{\sigma_{i}}\left(F_{(c)}^{i}\right)$ as k tends to infinity, we obtain the stated inequality with probability 1 .

For $i \in\{1,2,3,4\}$, let v_{i} be the vertex of G corresponding to the clique W_{i} of G_{k} containing w_{i}. Let V be the set of vertices of G that are strongly c-dominated by $\left\{v_{1}, \ldots, v_{4}\right\}$. Since G is a counterexample, $|V|<2 n / 3$, and hence, $|V| \leqslant 2 n / 3-1 / 3$. If w_{j} and $w_{j^{\prime}}$ are joined by an edge of color c and, furthermore, $v_{j}=v_{j^{\prime}}$, then v_{j} is added to V as well. Since V is still strongly c-dominated by a quadruple of vertices in G (replace $v_{j^{\prime}}$ by any of its c-neighbors), it follows that $|V| \leqslant 2 n / 3-1 / 3$.

The set W can contain the $|V| k$ vertices of the cliques corresponding to the vertices in V, and, potentially, it also contains some additional vertices if w_{i} has no c-neighbors among w_{1}, \ldots, w_{4}. In this case, the additional vertices in W are the c-neighbors of w_{i} in W_{i}. With high probability, there are at most $k / 3+o(k)$ such vertices if v_{i} is incident with edges of all three colors in G, and at most $k / 2+o(k)$ if v_{i} is incident with edges of only two colors in G.

If $\varepsilon_{c}\left(\sigma_{i}\right)=-1 / 3$, then all the vertices w_{1}, \ldots, w_{4} have a c-neighbor among w_{1}, \ldots, w_{4} and thus W contains only vertices of the cliques corresponding to the vertices V. We conclude that $|W| \leqslant \frac{(2 n-1) k}{3}+o(k)$, as required.

If $\varepsilon_{c}\left(\sigma_{i}\right)=0$, then all but one of the vertices w_{1}, \ldots, w_{4} have a c-neighbor among w_{1}, \ldots, w_{4} and the vertex w_{j} that has none is incident in σ_{i} with edges of the two colors different from c. In particular, either w_{j} has no c-neighbors inside W_{j} or v_{j} is incident with edges of three distinct colors in G. This implies that $|W| \leqslant \frac{(2 n-1) k}{3}+o(k)$ in the former case and $|W| \leqslant \frac{2 n k}{3}+o(k)$ in the latter case. So, the bound holds.

If $\varepsilon_{c}\left(\sigma_{i}\right)=1 / 6$, then all but one of the vertices among w_{1}, \ldots, w_{4} have a c-neighbor among w_{1}, \ldots, w_{4}. Let w_{j} be the exceptional vertex. Since w_{j} has at most $k / 2+o(k)$ c-neighbors in W_{j}, it follows that $|W| \leqslant \frac{2 n k}{3}+\frac{k}{6}+o(k)$.

Finally, if $\varepsilon_{c}\left(\sigma_{i}\right)=1 / 2$, then two vertices w_{j} and $w_{j^{\prime}}$ among w_{1}, \ldots, w_{4} have no c neighbors in $\left\{w_{1}, \ldots, w_{4}\right\}$. The vertices w_{j} and $w_{j^{\prime}}$ have at most $k / 2+o(k) c$-neighbors each in W_{j} and $W_{j^{\prime}}$, respectively. Moreover, since σ_{i} contains edges of all three colors, one of w_{j} and $w_{j^{\prime}}$ is incident in σ_{i} with edges of the two colors different from c. Hence, this vertex has at most $k / 3+o(k) c$-neighbors in W_{j}. We conclude that the set W contains at most $|V| k+5 k / 6+o(k) \leqslant \frac{2 n k}{3}+\frac{k}{2}+o(k)$ vertices.

As a consequence of (1), we have the following corollary of Lemma 4.
Lemma 5. Let G be a counterexample with n vertices. For every $i \in\{1, \ldots, 7\}$ and $c \in$ $\{1,2,3\}$ such that $\varepsilon_{c}\left(\sigma_{i}\right) \leqslant 0$, it holds that

$$
q_{G}\left(\left[2 \sigma_{i} / 3-F_{(c)}^{i} \|_{\sigma_{i}}\right) \geqslant 0\right.
$$

We now prove that in a counterexample, at most two colors are used to color the edges incident with any given vertex. As we shall see, this structural property of counterexamples directly implies their nonexistence, thereby proving Theorem 2.

Lemma 6. No counterexample contains a vertex incident with edges of all three colors.
Proof. Let G be a counterexample and $w_{3} \in \mathbf{R F}_{5}$ be the sum of all elements of \mathbb{F}_{5} that contain a vertex incident with at least three colors. By the definition of q_{G}, the graph G has a vertex incident with edges of all three colors if and only if $q_{G}\left(w_{3}\right)>0$. Lemma 5 implies that $q_{G}(H)$ is non-negative for each element H of \mathcal{A} corresponding to any column of Table 2 (in Appendix B). In addition, (2) ensures that $q_{G}(H)$ is also non-negative for each element H of \mathcal{A} corresponding to any of the first four columns of Table 3 (in Appendix B). Note that these elements can be expressed as elements of $\mathbf{R} \mathbb{F}_{5}$. Summing these columns with coefficients

respectively, yields an element w_{0} of \mathcal{A} given in the very last column of Table 3. Notice that for every $H \in \mathbb{F}_{5}$, the coefficient of H in $-w_{0}$ is at least the coefficient of H in w_{3}. In particular, the sum $w_{3}+w_{0}$, which belongs to $\mathbf{R} \mathbb{F}_{5}$, has only non-positive coefficients. We now view both w_{0} and w_{3} as elements of \mathcal{A} and use that q_{G} is a homomorphism from \mathcal{A} to R. First of all, $q_{G}\left(w_{3}+w_{0}\right) \leqslant 0$. So, we derive that $q_{G}\left(w_{3}\right) \leqslant-q_{G}\left(w_{0}\right)$. As noted earlier, $q_{G}(H) \geqslant 0$ for each element H used to define w_{0}. Hence, since none of the above (displayed) coefficients is negative, we deduce that $q_{G}\left(w_{0}\right) \geqslant 0$. Consequently, $q_{G}\left(w_{3}\right) \leqslant 0$, which therefore implies that $q_{G}\left(w_{3}\right)=0$. This means that G has no vertex incident with edges of all three colors.

We are now in a position to prove Theorem 2, whose statement is recalled below.
Theorem 2. Let $n \geqslant 2$. Every tricolored graph with n vertices contains a subset of at most four vertices that strongly c-dominates at least $2 n / 3$ vertices for some color c.

Proof. Suppose, on the contrary, that there exists a counterexample G. Recall that A_{v} is the set of colors that appear on the edges incident to the vertex v. Now, by Observation 3 and Lemma 6, it holds that $\left|A_{v}\right|=2$ for every vertex v of G. Hence, $V(G)$ can be partitioned into three sets V_{1}, V_{2} and V_{3}, where $v \in V_{i}$ if and only if $i \notin A_{v}$. Without loss of generality, assume that $\left|V_{1}\right| \geqslant\left|V_{2}\right| \geqslant\left|V_{3}\right|$. Pick $u \in V_{1}$ and $v \in V_{2}$. As $A_{u} \cap A_{w}=\{3\}$ for all $w \in V_{2}$, we observe that V_{2} is 3-dominated by $\{u\}$. Similarly, V_{1} is 3-dominated by $\{v\}$. Therefore, the set $\{u, v\}$ strongly 3-dominates $V_{1} \cup V_{2}$, which has size at least $2 n / 3$.

4 Concluding remarks

It is natural to ask what bound can be proven for domination with three vertices. Here, it does not seem that the trick we used in this paper helps. We can prove only that every tricolored graph with n vertices contains a subset of at most three vertices that c-dominates at least $0.66117 n$ vertices for some color c.

We believe the difficulty we face is caused by the following phenomenon. The average number of vertices dominated by a triple isomorphic to σ_{A} or σ_{B} (see Figure 1 for notation) is bounded away from $2 / 3$ in the graphs $\left(G_{k}\right)_{k \in \mathbf{N}}$, which are described at the beginning of Section 3, for G being the rainbow triangle. So, if any of these two configurations is used, a tight bound cannot be proven since the inequalities analogous to that in Lemma 5 are not tight and no triple of vertices dominates more than $2 / 3$ of the vertices in $\left(G_{k}\right)_{k \in \mathbf{N}}$ to compensate this deficiency.

We see that if we aimed to prove a tight result, we can only average over rainbow triangles (which are isomorphic to σ_{C}). Now consider the following graph G : start from the disjoint union of a large clique of order $2 m$ with all edges colored 1 and a rainbow triangle. For $i \in\{1,2\}$, join exactly m vertices of the clique to all three vertices of the rainbow triangle by edges colored i. The obtained simple complete graph has exactly one rainbow triangle, which dominates about half of the vertices. Thus, the average proportion of vertices dominated by triples isomorphic to σ_{C} in the graphs $\left(G_{k}\right)_{k \in \mathbf{N}}$ is close to $1 / 2$. This phenomenon does not occur for quadruples of vertices.

References

[1] R. Baber, Turán densities of hypercubes. Submitted for publication.
[2] R. Baber and J. Talbot, Hypergraphs do jump, Combin. Probab. Comput., 20 (2011), pp. 161-171.
[3] R. Baber and J. Talbot, New Turán densities for 3-graphs, Electron. J. Combin., 19 (2012). Research Paper 22.
[4] J. Balogh, P. Hu, B. Lidický, and H. Liu, Upper bounds on the size of 4- and 6-cyclefree subgraphs of the hypercube. Submitted for publication.
[5] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, Adv. Math., 219 (2008), pp. 1801-1851.
[6] J. Cummings, D. Král', F. Pfender, K. Sperfeld, A. Treglown, and M. Young, Monochromatic triangles in three-coloured graphs. Submitted for publication.
[7] P. Erdős, R. Faudree, A. Gyárfás, and R. H. Schelp, Domination in colored complete graphs, J. Graph Theory, 13 (1989), pp. 713-718.
[8] P. Erdős, R. J. Faudree, R. J. Gould, A. Gyárfás, C. Rousseau, and R. H. Schelp, Monochromatic coverings in colored complete graphs, in Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), vol. 71 of Congr. Numer., 1990, pp. 29-38.
[9] P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Appl. Math., 25 (1989), pp. 37-52. Combinatorics and complexity (Chicago, IL, 1987).
[10] V. Falgas-Ravry and E. R. Vaughan, On applications of Razborov's flag algebra calculus to extremal 3-graph theory. Submitted for publication.
[11] _ Turán H-densities for 3-graphs. Submitted for publication.
[12] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph, J. Comb. Theory Ser. B, 102 (2012), pp. 1061-1066.
[13] H. Hatami, J. Hirst, and S. Norine, The inducibility of blow-up graphs. Submitted for publication.
[14] H. Hatami, J. Hladký, D. Král', S. Norine, and A. Razborov, Non-three-colorable common graphs exist, Combin. Probab. Comput., 21 (2012), pp. 734-742.
[15] _-, On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A, (forthcoming).
[16] J. Hirst, The inducibility of graphs on four vertices. Submitted for publication.
[17] J. Hladký, D. Král', and S. Norine, Counting flags in triangle-free digraphs. Submitted for publication.
[18] D. Král', L. Mach, and J.-S. Sereni, A new lower bound based on Gromov's method of selecting heavily covered points, Discrete Comput. Geom., 48 (2012), pp. 487498.
[19] L. Kramer, R. R. Martin, and M. Young, On diamond-free subposets of the Boolean lattice, J. Combin. Theory Ser. A, 120 (2013), pp. 545-560.
[20] L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), pp. 933-957.
[21] O. Pikhurko, Minimum number of k-cliques in graphs with bounded independence number. Submitted for publication.
[22] O. Pikhurko and A. Razborov, Asymptotic structure of graphs with the minimum number of triangles. Submitted for publication.
[23] A. Razborov, Flag algebras, J. Symbolic Logic, 72 (2007), pp. 1239-1282.
[24] __, On the minimal density of triangles in graphs, Combin. Probab. Comput., 17 (2008), pp. 603-618.
[25] __, On 3-hypergraphs with forbidden 4-vertex configurations, SIAM J. Discrete Math., 24 (2010), pp. 946-963.
[26] A. Tychonoff, Über die topologische erweiterung von räumen, Mathematische Annalen, 102 (1930), pp. 544-561.

A The Elements of \mathbb{F}_{5}

B Vectors Used in the Proof of Lemma 6

Table 2: The first ten vectors

									$\begin{gathered} \text { b } \\ \hline 0 \\ 10 \\ 1 \\ 0 \\ 6 \\ 0 \\ \hline 1 \end{gathered}$	
H_{1}	0	0	0	0	0	0	0	0	0	0
H_{2}	0	0	0	0	0	0	0	0	0	0
H_{3}	0	0	0	0	0	0	0	0	0	0
H_{4}	$-1 / 90$	0	0	0	0	0	0	0	0	0
H_{5}	0	0	0	0	0	0	0	0	0	0
H_{6}	-1/90	$-1 / 180$	1/90	0	0	0	0	0	0	0
H_{7}	0	0	0	0	0	0	0	0	0	0
H_{8}	0	-1/60	-1/60	0	0	0	0	0	0	0
H_{9}	0	-1/45	2/45	0	0	0	0	0	0	0
H_{10}	0	0	0	0	0	0	0	0	0	0
H_{11}	0	0	0	-1/90	0	0	0	0	0	0
H_{12}	0	0	0	0	0	0	0	0	0	0
H_{13}	0	0	0	0	0	0	0	0	0	0
H_{14}	-1/90	0	0	0	$-1 / 180$	1/90	0	0	0	0
H_{15}	0	0	0	0	0	0	0	0	0	0
H_{16}	$-1 / 180$	0	0	-1/180	0	0	$-1 / 360$	1/180	0	0
H_{17}	-1/90	0	0	$-1 / 180$	0	0	0	0	1/180	0
H_{18}	0	0	0	0	0	0	0	0	0	0
H_{19}	$-1 / 180$	0	0	0	0	0	1/180	$-1 / 360$	0	0
H_{20}	-1/90	1/90	$-1 / 180$	0	0	0	0	0	0	0
H_{21}	$-1 / 180$	0	0	$-1 / 180$	0	0	0	0	0	1/120
H_{22}	0	0	0	1/180	0	0	0	0	0	0
H_{23}	0	0	0	0	0	0	0	0	0	0
H_{24}	0	0	0	0	0	0	0	0	0	0
H_{25}	0	$-1 / 180$	$-1 / 180$	0	-1/90	-1/90	0	0	0	0
H_{26}	0	0	0	0	0	0	0	0	0	0
H_{27}	0	$-1 / 180$	$-1 / 180$	0	0	0	$-1 / 180$	$-1 / 180$	0	0
H_{28}	0	-1/90	-1/90	0	0	0	0	0	1/90	0

Table 2 - Continued from previous page

	$\begin{aligned} & \stackrel{5}{2} \\ & 1 \\ & 1 \\ & 0 \\ & 5 \\ & 0 \\ & \hline \end{aligned}$						$\begin{gathered} \stackrel{6}{6} \\ 1 \\ 1 \\ n \\ n \\ n \\ n \\ n \end{gathered}$			
H_{29}	-1/90	0	0	0	0	0	0	0	0	0
H_{30}	-1/180	$-1 / 180$	-1/180	0	0	0	-1/360	$-1 / 360$	0	0
H_{31}	-1/180	$-1 / 180$	1/90	0	$-1 / 180$	1/90	1/180	-1/360	0	0
H_{32}	0	-1/60	-1/60	0	0	0	0	0	0	0
H_{33}	0	-1/90	1/180	0	0	0	$-1 / 360$	1/180	0	0
H_{34}	0	-1/90	-1/90	1/90	0	0	0	0	-1/90	0
H_{35}	0	0	0	0	0	0	0	0	0	0
H_{36}	0	$-1 / 180$	1/90	0	0	0	1/90	-1/180	0	0
H_{37}	0	0	0	0	0	0	$-1 / 180$	$-1 / 180$	0	0
H_{38}	0	1/90	1/90	0	0	0	0	0	0	0
H_{39}	0	$-1 / 180$	-1/180	0	0	0	0	0	0	0
H_{40}	0	0	0	-1/90	0	0	0	0	0	0
H_{41}	0	0	0	0	0	0	0	0	0	0
H_{42}	0	0	0	-1/90	0	0	0	0	0	0
H_{43}	$-1 / 90$	0	0	0	1/90	-1/180	0	0	0	0
H_{44}	1/180	0	0	-1/180	0	0	0	0	0	0
H_{45}	-1/180	0	0	$-1 / 90$	0	0	1/180	1/180	0	0
H_{46}	-1/90	0	0	0	0	0	0	0	1/45	0
H_{47}	0	0	0	0	0	0	0	0	0	0
H_{48}	0	0	0	0	0	0	0	0	0	0
H_{49}	0	0	0	0	0	0	0	0	0	0
H_{50}	0	0	0	0	-1/180	$-1 / 180$	$-1 / 180$	-1/180	0	0
H_{51}	$-1 / 180$	0	0	0	-1/180	-1/180	$-1 / 360$	-1/360	0	0
H_{52}	-1/180	0	0	$-1 / 180$	0	0	$-1 / 360$	-1/360	0	0
H_{53}	$-1 / 180$	0	0	0	-1/180	$-1 / 180$	0	0	1/180	0
H_{54}	0	0	0	0	0	0	0	0	0	0
H_{55}	0	0	0	0	0	0	$-1 / 180$	-1/180	0	0
H_{56}	0	$-1 / 180$	-1/180	0	-1/90	$-1 / 90$	0	0	0	0
H_{57}	$-1 / 180$	$-1 / 180$	-1/180	0	0	0	$-1 / 360$	-1/360	0	0
H_{58}	0	$-1 / 180$	-1/180	0	0	0	1/360	-1/180	1/180	0
H_{59}	0	-1/180	1/90	0	$-1 / 90$	$-1 / 90$	0	0	1/180	0
H_{60}	0	$-1 / 180$	1/90	$-1 / 180$	0	0	$-1 / 180$	$-1 / 180$	0	0

Table 2 - Continued from previous page

				$\begin{gathered} \underset{\sim}{6} \\ 1 \\ 1 \\ n \\ e^{6} \\ 0 \end{gathered}$				$\begin{gathered} b^{n} \\ 1 \\ 1 \\ n \\ n \\ n \\ n \\ n \end{gathered}$	$\begin{gathered} \text { E } \\ \hline 0 \\ 1 \\ 1 \\ 0 \\ 6 \\ 0 \\ \hline \end{gathered}$	
H_{61}	0	$-1 / 180$	$-1 / 180$	1/90	0	0	0	0	-1/45	0
H_{62}	-1/180	0	0	0	0	0	-1/360	-1/360	0	0
H_{63}	$-1 / 180$	0	0	0	0	0	1/360	1/360	0	0
H_{64}	0	0	0	0	0	0	1/90	$-1 / 180$	0	0
H_{65}	0	0	0	1/90	0	0	-1/360	$-1 / 360$	0	0
H_{66}	0	-1/180	$-1 / 180$	0	0	0	$-1 / 180$	$-1 / 180$	0	0
H_{67}	0	-1/180	-1/180	0	0	0	0	0	0	0
H_{68}	0	$-1 / 180$	1/90	0	1/90	$-1 / 180$	1/360	$-1 / 180$	0	0
H_{69}	1/90	-1/90	1/180	0	0	0	0	0	0	0
H_{70}	0	$-1 / 180$	$-1 / 180$	1/90	0	0	-1/360	1/180	0	$-1 / 120$
H_{71}	0	0	0	0	0	0	$-1 / 180$	$-1 / 180$	1/180	0
H_{72}	0	0	0	1/90	0	0	0	0	0	-1/60
H_{73}	0	0	0	-1/60	0	0	0	0	0	0
H_{74}	$-1 / 90$	1/90	1/90	-1/180	0	0	0	0	0	0
H_{75}	$-1 / 45$	0	0	0	0	0	0	0	0	0
H_{76}	-1/90	0	0	-1/90	1/90	1/90	0	0	0	0
H_{77}	$-1 / 90$	0	0	0	0	0	1/90	$-1 / 180$	0	0
H_{78}	$-1 / 90$	0	0	0	0	0	0	0	0	0
H_{79}	$-1 / 90$	1/45	-1/90	0	-1/180	1/90	0	0	0	0
H_{80}	$-1 / 180$	0	0	0	-1/180	-1/180	-1/360	$-1 / 360$	0	0
H_{81}	1/90	0	0	0	0	0	1/360	$-1 / 180$	0	0
H_{82}	$-1 / 180$	$-1 / 180$	$-1 / 180$	0	0	0	1/180	$-1 / 360$	1/180	0
H_{83}	1/90	1/60	-1/60	0	0	0	-1/360	1/180	0	0
H_{84}	$-1 / 90$	0	0	0	-1/90	1/45	0	0	0	0
H_{85}	-1/90	0	0	0	0	0	$-1 / 180$	1/360	-1/90	0
H_{86}	$-1 / 180$	$-1 / 180$	$-1 / 180$	0	$-1 / 180$	-1/180	$-1 / 360$	$-1 / 360$	0	0
H_{87}	1/90	$-1 / 180$	$-1 / 180$	-1/180	$-1 / 180$	1/90	$-1 / 360$	$-1 / 360$	0	0
H_{88}	1/90	$-1 / 180$	$-1 / 180$	0	1/90	-1/180	0	0	-1/90	-1/120
H_{89}	$-1 / 180$	$-1 / 180$	$-1 / 180$	0	1/180	1/180	$-1 / 360$	$-1 / 360$	0	0
H_{90}	1/90	$-1 / 180$	$-1 / 180$	0	0	0	$-1 / 180$	1/90	0	-1/120
H_{91}	1/45	-1/90	-1/90	0	0	0	0	0	-1/90	0
H_{92}	0	0	0	0	0	0	0	0	0	0

Continued on next page

Table 2 - Continued from previous page

							$\begin{gathered} \underset{n}{b^{n}} \\ 1 \\ n \\ n \\ n_{n}^{n} \\ n \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{6}{6} \\ 1 \\ 1 \\ n \\ n \\ n \\ n \\ n \end{gathered}$	$\begin{gathered} \text { E } \\ 0 \\ 1 \\ 1 \\ n \\ 6 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{5}{4} \\ & \underset{\sim}{a} \\ & 1 \\ & 0 \\ & 5 \\ & \hline \end{aligned}$
H_{93}	0	0	0	0	0	0	0	0	0	0
H_{94}	0	-1/180	-1/180	0	-1/90	-1/90	0	0	0	0
H_{95}	0	1/90	-1/180	0	0	0	1/90	-1/180	0	0
H_{96}	0	-1/180	1/90	0	-1/90	-1/90	0	0	1/180	0
H_{97}	0	1/90	-1/180	1/90	0	0	$-1 / 180$	-1/180	0	0
H_{98}	0	0	0	0	0	0	0	0	-1/30	0
H_{99}	0	0	0	-1/60	0	0	0	0	0	0
H_{100}	0	-1/90	-1/90	0	0	0	0	0	1/90	0
H_{101}	0	2/45	-1/45	0	0	0	0	0	0	0
H_{102}	0	-1/90	-1/90	0	-1/90	-1/90	0	0	0	0
H_{103}	0	1/45	-1/90	0	1/90	-1/180	$-1 / 180$	-1/180	0	0
H_{104}	0	-1/90	-1/90	0	1/45	-1/90	0	0	-1/90	0
H_{105}	0	-1/90	-1/90	0	0	0	0	0	-1/90	0
H_{106}	0	1/45	-1/90	$-1 / 180$	-1/90	-1/90	0	0	0	0
H_{107}	0	0	0	-1/45	0	0	0	0	0	0
H_{108}	0	0	0	-1/45	0	0	0	0	0	0
H_{109}	0	0	0	-1/90	0	0	0	0	0	0
H_{110}	0	0	0	$-1 / 180$	0	0	-1/180	-1/180	0	0
H_{111}	0	0	0	$-1 / 180$	$-1 / 180$	$-1 / 180$	1/180	-1/360	0	0
H_{112}	0	0	0	-1/90	0	0	0	0	0	0
H_{113}	0	0	0	$-1 / 180$	$-1 / 180$	$-1 / 180$	1/180	-1/360	0	0
H_{114}	0	0	0	-1/90	0	0	1/360	-1/180	0	0
H_{115}	0	0	0	-1/180	-1/90	-1/90	0	0	-1/90	0
H_{116}	0	0	0	$-1 / 180$	-1/90	1/180	-1/180	-1/180	0	0
H_{117}	0	0	0	$-1 / 180$	$-1 / 180$	$-1 / 180$	-1/180	1/360	-1/90	0
H_{118}	0	0	0	1/180	0	0	-1/180	-1/180	0	0
H_{119}	0	0	0	1/90	0	0	-1/360	-1/360	-1/90	$-1 / 120$
H_{120}	0	0	0	-1/90	0	0	0	0	0	0
H_{121}	0	0	0	$-1 / 180$	$-1 / 180$	1/90	-1/180	1/360	0	0
H_{122}	0	0	0	$-1 / 180$	0	0	-1/360	-1/360	0	0
H_{123}	0	0	0	$-1 / 180$	0	0	-1/180	-1/180	-1/90	0
H_{124}	0	0	0	$-1 / 180$	0	0	-1/90	1/180	0	0

Continued on next page

Table 2 - Continued from previous page

H_{125}	0	0	0	1/180	0	0	-1/360	-1/360	0	-1/120
H_{126}	0	0	0	-1/180	0	0	-1/180	$-1 / 180$	1/180	0
H_{127}	0	0	0	-1/180	1/180	-1/90	-1/360	-1/360	0	-1/120
H_{128}	0	0	0	1/90	0	0	0	0	-1/90	-1/60
H_{129}	0	0	0	0	0	0	-1/180	$-1 / 180$	0	0
H_{130}	0	0	0	0	0	0	0	0	0	0
H_{131}	0	0	0	0	$-1 / 180$	$-1 / 180$	-1/180	$-1 / 180$	0	0
H_{132}	0	0	0	0	0	0	1/180	-1/90	0	0
H_{133}	0	0	0	0	-1/180	$-1 / 180$	-1/360	-1/360	1/180	0
H_{134}	0	0	0	0	-1/60	0	-1/180	$-1 / 180$	0	0
H_{135}	0	0	0	0	0	-1/60	0	0	0	-1/60
H_{136}	0	0	0	0	-1/90	-1/90	-1/180	$-1 / 180$	-1/90	0
H_{137}	0	0	0	0	1/90	-1/180	-1/120	0	0	-1/120
H_{138}	0	0	0	0	-1/180	-1/180	-1/180	1/360	-1/45	0
H_{139}	0	0	0	0	$-1 / 180$	$-1 / 180$	-1/360	$-1 / 360$	-1/90	-1/120
H_{140}	0	0	0	0	0	0	-1/180	1/90	0	-1/60
H_{141}	0	0	0	0	0	0	-1/90	-1/90	0	0
H_{142}	0	0	0	0	0	0	0	0	-2/45	0

Table 3: The last six vectors

	$\llbracket w_{B} \cdot w_{B} \rrbracket_{\sigma_{B}}$	$\\| w_{B}^{\prime} \cdot w_{B}^{\prime} \rrbracket_{\sigma_{B}}$	$\llbracket w_{C} \cdot w_{C} \rrbracket_{\sigma_{C}}$	$\left\\|w_{C}^{\prime} \cdot w_{C}^{\prime}\right\\|_{\sigma_{C}}$	w_{3}	w_{0}
H_{1}	0	0	0	0	0	0
H_{2}	0	0	0	0	0	0
H_{3}	0	0	0	0	0	0
H_{4}	0	0	0	0	1	$\frac{-1563854392398577199}{6177034713075072}$
H_{5}	0	0	0	0	0	0
H_{6}	29161/60	101524/15	0	0	1	-1
H_{7}	0	0	0	0	0	0
H_{8}	0	0	2000	20	0	0
H_{9}	0	0	-4000/3	-40/3	0	0
H_{10}	0	0	0	0	0	0
H_{11}	1815/2	33640/3	0	0	1	$\frac{-10173977739002723}{55152095652456}$
H_{12}	0	0	0	0	0	0
H_{13}	0	0	0	0	0	0
H_{14}	-242	5104	0	0	1	$\frac{-734882450141728337}{2316388017403152}$
H_{15}	0	0	0	0	0	0
H_{16}	-9922/15	-422/3	0	0	1	$\frac{-5722046702587908817}{3706208278450432}$
H_{17}	57013/60	-65634/5	0	0	1	$\frac{-57717650068438077139}{148248833113801728}$
H_{18}	0	0	0	0	0	0
H_{19}	0	0	0	0	1	$\frac{-703462682135213465}{3369291661677312}$
H_{20}	29161/60	101524/15	0	0	1	-1
H_{21}	781/2	-37700/3	0	0	1	$\frac{-5891700664190917297}{1422488311380128}$
H_{22}	-1804	-580/3	0	0	1	$\frac{-326148897440971}{18531104139225216}$
H_{23}	0	0	0	0	0	0
H_{24}	0	0	0	0	0	0
H_{25}	0	0	19723/20	2047/20	1	$\frac{-15461491234942018543}{5929953324552069120}$
H_{26}	0	0	0	0	0	0
H_{27}	0	0	540	77/3	1	$\frac{-88140807390257339}{288545502175394}$
H_{28}	10/3	105125/6	0	0	1	
H_{29}	0	0	0	0	1	
H_{30}	0	0	270	77/6	1	
H_{31}	0	0	0	0	1	$\begin{array}{r} -424743494241353064633 \\ \hline 37062208278450432 \end{array}$
H_{32}	0	0	2000	20	0	0
H_{33}	0	0	-1810/3	-97/6	1	
H_{34}	-328/3	725/3	2000/3	20/3	1	$\frac{-327325499975204219}{673858323354624}$
H_{35}	0	0	0	0	0	0

Table 3 - Continued from previous page

	$\llbracket w_{B} \cdot w_{B} \rrbracket_{\sigma_{B}}$	$\left\\|w_{B}^{\prime} \cdot w_{B}^{\prime}\right\\|_{\sigma_{B}}$	$\llbracket w_{C} \cdot w_{C} \rrbracket_{\sigma_{C}}$	$\llbracket w_{C}^{\prime} \cdot w_{C}^{\prime} \rrbracket_{\sigma_{C}}$	w_{3}	w_{0}
H_{36}	0	0	0	0	1	$\frac{-2040849950139277}{1323650295658994}$
H_{37}	0	0	2187/5	5929/60	1	$\frac{-324486989357699}{150414806324880}$
H_{38}	0	0	-4000/3	-40/3	0	0
H_{39}	177241/60	99856/15	0	0	1	$\frac{-14389006173379021}{6177034713075072}$
H_{40}	53792/15	10/3	0	0	1	-1
H_{41}	0	0	0	0	0	0
H_{42}	53792/15	10/3	0	0	1	-1
H_{43}	-242	5104	0	0	1	$\frac{-2444189262506217731}{32941853640384}$
H_{44}	-19723/60	8018	0	0	1	$\frac{-1399805048488216225}{5294601182635765}$
H_{45}	19251/20	-46426/5	0	0	1	
H_{46}	0	0	0	0	1	
H_{47}	-4743/20	-27388/5	0	0	1	$\begin{array}{r} -354720121257189891 \\ \hline 6177034713075072 \\ \hline \end{array}$
H_{48}	0	0	0	0	0	0
H_{49}	0	0	0	0	0	0
H_{50}	0	0	0	0	1	$\frac{-102522000006261748933}{29649766227603456}$
H_{51}	0	0	4401/10	-6853/60	1	
H_{52}	1331/4	24476/3	0	0	1	
H_{53}	-7157/30	72838/15	0	0	1	$\frac{-55226415700070668835}{29649766227603456}$
H_{54}	0	0	0	0	0	0
H_{55}	0	0	2187/5	5929/60	1	$\frac{-324486989357699}{150414806324880}$
H_{56}	0	0	1630/3	-89/3	1	$\frac{-1487008888944884103}{56154861027552}$
H_{57}	0	0	270	77/6	1	$\frac{-54561681234717177191}{123540642150141}$
H_{58}	0	0	0	0	1	
H_{59}	0	0	0	0	1	-1
H_{60}	0	0	-540	-77/3	1	$\frac{-127346913837154513}{240663600119808}$
H_{61}	-93	48430/3	0	0	1	
H_{62}	0	0	0	0	1	
H_{63}	0	0	0	0	1	$\frac{-62387193432797713}{3706203278450432}$
H_{64}	0	0	0	0	1	$\frac{-21700902330544037}{1323650295659944}$
H_{65}	-34522/15	316/3	0	0	1	-1
H_{66}	0	0	540	77/3	1	$\frac{-88140807390257339}{28954850215534}$
H_{67}	177241/60	99856/15	0	0	1	
H_{68}	0	0	-815/3	89/6	1	
H_{69}	4631/4	-18328/3	-1000/3	-10/3	1	
H_{70}	-39153/20	105544/15	-270	-77/6	1	
H_{71}	0	0	0	0	1	$\frac{-36452032058897955459}{1647209256820192}$

Table 3 - Continued from previous page

	$\llbracket w_{B} \cdot w_{B} \rrbracket_{\sigma_{B}}$	$\llbracket w_{B}^{\prime} \cdot w_{B}^{\prime} \\|_{\sigma_{B}}$	$\llbracket w_{C} \cdot w_{C} \rrbracket_{\sigma_{C}}$	$\left\\|w_{C}^{\prime} \cdot w_{C}^{\prime}\right\\|_{\sigma_{C}}$	w_{3}	w_{0}
H_{72}	-39153/10	211088/15	0	0	1	-40194399986166687563
H_{73}	17391/4	114896/15	0	0	1	$\frac{-66377462435613601}{1323650295658944}$
H_{74}	-3069/2	-38744/3	0	0	1	-1
H_{75}	-968	20416	0	0	1	$\frac{-206704879201250857}{441216765219648}$
H_{76}	-13706/15	-92396/15	0	0	1	$\frac{-8742501678952929628}{16287}$
H_{77}	0	0	0	0	1	$\frac{-7044626882153213465}{1684645830838566}$
H_{78}	4631/2	-36656/3	0	0	1	$\frac{-205076559393919679467}{1853110413925216}$
H_{79}	0	0	0	0	1	-1
H_{80}	0	0	0	0	1	$\frac{-34340368851241376879}{98832555409201152}$
H_{81}	-4631/15	-13904/5	0	0	1	-1
H_{82}	0	0	0	0	1	$\frac{-10725188546965769537}{21178404730543104}$
H_{83}	0	0	-2810/3	-39/2	1	${ }^{21}$
H_{84}	0	0	0	0	1	$\frac{-7417316739041385395}{18551104139225216}$
H_{85}	121/6	-30595/3	0	0	1	
H_{86}	0	0	815/3	-89/6	1	$\frac{-10051575074463385}{1838403188452}$
H_{87}	1331/4	24476/3	270	77/6	1	-2065655974435444177
H_{88}	-8657/30	-194687/15	-815/3	89/6	1	
H_{89}	0	0	270	77/6	1	
H_{90}	4631/4	-18328/3	-270	-77/6	1	
H_{91}	121/3	-61190/3	2000/3	20/3	1	
H_{92}	0	0	0	0	0	0
H_{93}	0	0	0	0	0	0
H_{94}	0	0	19723/20	2047/20	1	$\frac{-15461491234942018543}{5929953324555069120}$
H_{95}	0	0	0	0	1	$\frac{-2040849950139277}{132355025658944}$
H_{96}	0	0	-1630/3	89/3	1	$\frac{-37632094249561791565}{14824883113801728}$
H_{97}	0	0	-540	-77/3	1	
H_{98}	0	0	0	0	1	
H_{99}	77841/20	111556/5	0	0	1	
H_{100}	10/3	105125/6	0	0	1	$\frac{-35834405989042100849}{74124416556900864}$
H_{101}	0	0	-4000/3	-40/3	0	0
H_{102}	0	0	1630/3	-89/3	1	$\frac{-10943236189159518679}{18531104139225216}$
H_{103}	0	0	-1630/3	89/3	1	$\frac{-244304794290394685}{32944185136400384}$
H_{104}	0	0	-1630/3	89/3	1	
H_{105}	0	0	0	0	1	$\frac{-17485206062806112727}{2470838523028}$
H_{106}	0	0	-1630/3	89/3	1	$\frac{-2389728277891266261}{8236046284100996}$
H_{107}	107584/15	20/3	0	0	1	-2

Table 3 - Continued from previous page

	$\llbracket w_{B} \cdot w_{B} \rrbracket_{\sigma_{B}}$	$\left\\|w_{B}^{\prime} \cdot w_{B}^{\prime}\right\\|_{\sigma_{B}}$	$\llbracket w_{C} \cdot w_{C} \rrbracket_{\sigma_{C}}$	$\llbracket w_{C}^{\prime} \cdot w_{C}^{\prime} \rrbracket_{\sigma_{C}}$	w_{3}	w_{0}
H_{108}	30504/5	1336/3	0	0	1	$\frac{-66935245670393753}{60182517489292920}$
H_{109}	1815/2	33640/3	0	0	1	$\frac{661829747890422723}{55152095652456}$
H_{110}	0	0	0	0	1	-866625151487196297
H_{111}	4631/4	-18328/3	0	0	1	$\frac{-74934275555720788047}{2695433293418496}$
H_{112}	-1804	-580/3	0	0	1	
H_{113}	-34522/15	316/3	0	0	1	$\frac{-56090180193586615063}{98832555409201152}$
H_{114}	-3069/4	-19372/3	0	0	1	$\frac{-6146435219180552237}{9265552069012608}$
H_{115}	55	-42050/3	26569/60	7921/60	1	
H_{116}	0	0	0	0	1	
H_{117}	-93/2	24215/3	0	0	1	$\frac{-82203064205110195999}{4236809461086208}$
H_{118}	-1804	-580/3	2187/5	5929/60	1	\qquad
H_{119}	-70439/30	8177	0	0	1	
H_{120}	1815/2	33640/3	0	0	1	
H_{121}	0	0	0	0	1	$\frac{-10033437538999617143}{6177034713075072}$
H_{122}	4631/4	-18328/3	0	0	1	
H_{123}	-328/3	725/3	0	0	1	
H_{124}	0	0	0	0	1	
H_{125}	-27249/10	8684/15	0	0	1	$\frac{-75624575885139732659}{14828831180128}$
H_{126}	55	-42050/3	0	0	1	
H_{127}	0	0	0	0	1	$\frac{-11080773495118222157}{21178404730543104}$
H_{128}	170681/60	103481/15	0	0	1	-1
H_{129}	0	0	0	0	1	$\frac{-1157293995940733471}{4632776034806304}$
H_{130}	0	0	0	0	0	0
H_{131}	0	0	4401/5	-6853/30	1	-1
H_{132}	0	0	0	0	1	
H_{133}	421/6	22910/3	0	0	1	
H_{134}	0	0	4401/5	-6853/30	1	
H_{135}	0	0	0	0	1	
H_{136}	0	0	0	0	1	$\frac{-73815219170205621743}{11824883313081728}$
H_{137}	0	0	0	0	1	$\frac{-51576322752518046641}{299496627075456}$
H_{138}	0	0	0	0	1	$\frac{-3778944799991250173}{29647662260356}$
H_{139}	421/6	22910/3	0	0	1	$\frac{-17214181054154995319}{32944185136400384}$
H_{140}	0	0	0	0	1	
H_{141}	0	0	0	0	1	$\begin{aligned} & -1157293995940039671 \\ & 2316388017403152 \end{aligned}$
H_{142}	20/3	105125/3	0	0	1	-1

[^0]: *This work was done in the framework of LEA STRUCO.
 ${ }^{\dagger}$ Institute of Mathematics, DIMAP and Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom. Previous affiliation: Institute of Computer Science (IUUK), Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 11800 Prague 1, Czech Republic. E-mail: D.Kral@warwick.ac.uk. The work of this author leading to this invention has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 259385.
 ${ }^{\ddagger}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA. E-mail: cliu87@math.gatech.edu.
 ${ }^{\S}$ CNRS (LORIA), Nancy, France. E-mail: sereni@kam.mff.cuni.cz. This author’s work was partially supported by the French Agence Nationale de la Recherche under reference and 10 jcJc 020401.
 ${ }^{\text {II }}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA. E-mail: pwhalen3@math.gatech.edu.
 "LIAFA (Université Denis Diderot), Paris, France. E-mail: Zelealem.Yilma@liafa.jussieu.fr. This author's work was supported by the French Agence Nationale de la Recherche under reference anr 10 jcjc 020401.

